
Android Development 1
Lesson 1: Get t ing St art ed wit h Andro id Develo pment

About Eclipse
Perspectives and the Red Leaf Icon
Working Sets

Hello , Andro id!
Create the Pro ject
Run the Application
Editing Programs
Andro id Package Structure

Bonus Round

Wrapping Up

Lesson 2: Act ivit ies and Views
Andro idManifest.xml

Activity Class

Basic View Components: Layouts and Buttons
Layouts
View Components

Wrapping Up

Lesson 3: Navigat io n wit h Dat a
Working with Intent

An Emulator Email Alternative

Sharing Data Between Activities
Sending Data to a New Activity
Returning Data to the Previous Activity

Application Class

Wrapping Up

Lesson 4: Andro id Reso urces
String Resources

Loading Strings in XML
Loading Strings in Code

The Resource Values Fo lder

Wrapping Up

Lesson 5: Drawables - Image Basics
Drawable Fo lders and Qualifiers

Using Drawables
Dimensions
Image Padding
The ImageButton Widget

Wrapping Up

Lesson 6 : List s

Implementing an Andro id List
ListView
ListActivity
Empty Lists
ListAdapter
Sorting the Adapter
Overriding ArrayAdapter

List Interaction

Wrapping Up

Lesson 7: Dialo gs, New and Old
Old Style

AlertDialog
Custom Dialog

New Style
Support Library
Fragments
DialogFragment

Wrapping Up

Lesson 8 : Menus
Menus, Menus, Menus

Options Menu
Modifying an Options Menu
Context Menu

Wrapping Up

Lesson 9 : Saving Dat a wit h Shared Pref erences
Shared Preferences

Getting Started with SharedPreferences
PreferenceActivity

Wrapping Up

Lesson 10: Saving Dat a wit h a Dat abase
SQLite

Creating a Helper
Using the Helper
Cursor and CursorAdapater

Wrapping Up

Lesson 11: T hreading wit h AsyncT asks
Threading in Andro id

AsyncTask
Tracking Progress

Wrapping Up

Lesson 12: St yles and T hemes
Introduction to Styling

Defining Styles

Defining Themes
Style Inheritance
Direct Theme References

Learning to Learn

Wrapping Up

Lesson 13: Andro id Final Pro ject
Final Pro ject

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Getting Started with Android Development

Welcome to the O'Reilly School o f Technology Andro id 1 course! We're glad you've decided to take this journey with us into
Andro id application development. By the time you finish the course, we're confident that you'll have a firm grasp on developing
applications for the Andro id platform.

Course Objectives
When you complete this course, you will be able to :

use basic view components and application classes.
program strings, drawables, and lists.
display dialogs, menus, styles, and themes.
save and manipulate data using Shared Preferences and SQLite databases.
use thread processes.
create an application that implements multiple activities and can interact with a SQLite database.

In this course, you will learn the fundamentals o f writing Andro id applications. Topics covered include activities, views,
navigation with data, drawables, lists, menus, saving data with an SQLite database, and threading. By the end o f the course, you
will be able to create an application that implements multiple activities and can interact with an SQLite database.

To be successful in this course, you must have a basic understanding o f object-oriented programming and the Java
programming language. If either o f those are unfamiliar to you, talk to your instructor about taking the O'Reilly School o f
Technology Object Oriented Java course.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.

http://www.oreillyschool.com/courses/java/

Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

About Eclipse
We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right
now. IDEs assist programmers by performing many o f the tasks that need to be done repetitively. IDEs can also help
to edit and debug code, and organize pro jects.

Note You'll make some changes to your working environment during this lesson, so when you complete the
lesson, you'll need to exit Eclipse to save those changes.

The Eclipse window displays lesson content, and provides space for you to create, manage, and run programs:

Perspectives and the Red Leaf Icon

The Ellipse Plug-in fo r Eclipse, developed by the O'Reilly School o f Technology, adds an icon to the too l bar
in Eclipse. This icon is your "panic button." Since Eclipse is so versatile, you are allowed to move things
around, like views, too lbars, and such. If you become confused and want to return to the default perspective
(window layout), clicking on the Red Leaf icon allows you to do that right away.

The icon has these functions:

It allows you to reset the current perspective, by clicking the icon.
It allows you to change perspectives by clicking the drop-down arrow beside the Red Leaf icon and
selecting a series name (ANDROID, JAVA, PYTHON, C++, etc.). Most o f the perspectives look
similar, but subtle changes may be present "under the hood," so it's best to use the correct
perspective for the course. For this course, select Andro id.

Working Sets

All pro jects created in Eclipse exist in the workspace directory o f your account on our server. As you create
multiple pro jects fo r each lesson in each course, it's possible that your workspace directory could become
pretty cluttered. To help alleviate the potential clutter, in this course, we'll use working sets. A working set is a
logical view of the workspace; it behaves like a fo lder, but it's really just an association o f files. Working sets

allow you to limit the detail that you see at any given time. The difference between a working set and a fo lder is
that a working set doesn't actually exist in the file system. A working set is a convenient way to group related
items together. You can assign a pro ject to one or more working sets. In some cases, like with the Andro id
ADT plugin to Eclipse, new pro jects are created without regard for working sets and will be placed in the
workspace, but not assigned to a working set (appearing in the "Other Pro jects" working set). To assign one
of these pro jects to a working set, right-click on the pro ject name and select the Assign Wo rking Set s menu
item.

We've created some working sets in the Eclipse IDE for you already. To turn the working set display on and
off in Eclipse, see these instructions.

Setting Up Your Android Emulator
The Andro id team has made an excellent Eclipse plugin for Andro id called ADT (Andro id Developer Too lkit). ADT helps
with Andro id development in Eclipse in many different ways, so it's important that we get the Eclipse environment and
ADT set up correctly from the start, so we can build and test our Andro id applications.

Note

The Andro id Developer Too lkit plugin for Eclipse changes extremely frequently. The developers behind
the too lkit are do ing amazing work and constantly updating and improving the plugin. However, this
means the most recent version may differ from what you see here and what the instructions detail. Don't
worry if what you see slightly differs from the instructions. While the look, feel, and features may have
changed (likely fo r the better), the core decisions and options such as application and package names
will generaly still be recognizable. We periodically update the too lkit on our systems.

Point ADT to the Android SDK

The ADT plugin is installed on the instance o f Eclipse that you are using right now. To open ADT, you can
either click the Andro id Virtual Device Manager icon in the button bar at the top, or select Windo w | AVD
Manager:

Go ahead and try that now. You'll probably get an error message informing you that the Andro id SDK could
not be found:

WorkingSets.html

To fix this error, open the Eclipse preferences from the too lbar menu by clicking Windo w | Pref erences. The
Eclipse preferences window will appear. Then click the Andro id section on the left. (You may be asked if you
want to send usage data to Google. Click "No.") Then, in the SDK Location field, type C:\Pro gram Files
(x86)\Andro id\andro id-sdk and click OK.

Note
Sometimes when reopening a remote Eclipse session, ADT will fo rget that it already has the
location o f the SDK, and will pop-up the error again. If that happens, just open the Eclipse
Preferences window again (Windo w | Pref erences) and it should show that the path is in there
already. Click OK and everything should work fine again.

Your Preferences for Andro id will look like this:

Now ADT is ready to go! To test to make sure it's working, open the ADT window by clicking the button
or selecting Windo w | AVD Manager. The ADT dialog window will open. Feel free to look around in the
window to get an idea o f what goes on there before you continue on to the next section, where we'll create an
emulator using the AVD Manager.

Note

Your AVD Manager probably won't be empty like the screenshot above. Due to the nature o f the
remote development environment we're using and the way the AVD Manager handles
emulators, you'll probably see many o ther users' emulators. Conversely, any changes you
make in the AVD Manager will be visible to o ther users as well. Please be respectful o f the o ther
users and do not modify or delete any emulators o ther than those you've created for yourself.

Create an Emulator

If you closed it, open your ADT window again. This is the window that allows you to create and configure as
many Andro id emulators as you like so you can test your application on various different hardware and
software configurations. For now, we'll create a single emulator.

On the right side o f the ADT window, click New.... The "Create new Andro id Virtual Device (AVD)" wizard
appears.

For the Name, enter your-ost-username-andro id2.2.3 (fo r example, if your username is
jjamiso n, your emulator name would be jjamiso n-andro id2.2.3).
In the Device dropdown, select the Nexus S .
in the Target dropdown, select Andro id 2.2.3 - API Level 10 .
For the SD card, select the Size radio button and enter 20 MiB.

When you're ready, click Creat e AVD at the bottom. Then, select your new emulator in the Virtual Devices list,
and click St art ... on the right:

A Launch Options window appears. The emulator is actually a little too big for our remote Eclipse session, so
we'll scale it down a little. Check the Scale display t o real size box, enter 8.0 in the Screen Size (in.) field,
and then click Launch:

The emulator will take a while to load. Now might be a good time to pour yourself another cup o f co ffee or let
the dog out. When the emulator is finally loaded, you'll see it in another window on top o f Eclipse.

At this po int, you can close the Virtual Device Manager window, but try not to close the emulator when
developing your application. You'll save a lo t o f time if you don't have to sit through the boot-up process o f
the emulator. Alternatively, you might use the Snapshot feature in the Launch Options window (above). In
Snapshot mode, whenever the emulator is closed, AVD saves a snapshot o f the current state o f the emulator,
which allows it to boot up faster. However, if your emulator ends up in a weird or broken state, you'll need to
check the Wipe user dat a box in the Launch Options window when you restart it, in order to reset the
snapshot state o f the emulator.

To switch between this lesson content and the emulator, use the tabs at the bottom of the screen:

Note
You can set up o ther emulators to match different devices, if you like. Always begin the emulator
name with your OST user name, so you can differentiate them from emulators created by o ther
users.

In the next section, we'll finally dig into some code and run our first Andro id application!

Hello, Android!

Create the Project

We need an Andro id pro ject! Let's create one now. Select File | New | Ot her, and then select Andro id
Applicat io n Pro ject from the New Pro ject Window as shown below:

Note
When you finish the process below to create your new pro ject, ADT will likely automatically
switch your Eclipse Perspective to Java (which will hide this instruction window). Don't be
alarmed, just remember to select the Android perspective in the drop-down again to return to the
lesson.

Now you see the first window of the "New Andro id Application" Wizard. This process takes you through three
different windows to help set up your new pro ject. In the first window, type the Pro ject name as Hello Wo rld,
enter the Package Name co m.o st .andro id1.hello wo rld, and select the o ther options as shown:

Click Next . In the next window, uncheck the Creat e cust o m launcher ico n box, and make sure the Add
pro ject t o wo rking set s box is checked and the Andro id1_Lesso ns working set is entered in the
Working Sets field:

Click Next . In the next window, check the Creat e Act ivit y box and select Blank Act ivit y:

Click Next . In the next window, accept the default Activity Name MainAct ivit y, Layout Name act ivit y_main,
and Navigation Type No ne :

Click Finish.

Remember these steps—you'll need to perform them for any new pro ject you create in this course.

If Andro id1_Lesso ns doesn't appear in your Package Explorer window, fix it now. In the top-right corner o f
the Package Explorer window, click the downward-po inting arrow and select Co nf igure Wo rking Set s....

Check the boxes for the Andro id1 working sets and click OK:

Now you'll see those working sets (and the Other Pro jects) in the Package Explorer window:

Run the Application

To run the application, right-click the root pro ject fo lder Hello Wo rld in the Package Explorer, and select Run
As | Andro id Applicat io n. If your emulator was closed, it will open automatically now; if it was still open,
you'll have to bring the emulator window back to the front. If your emulator is in lock mode, unlock it by
dragging the green unlock button to the right side o f the screen. Once ADT has finished installing the
application onto the emulator, it will launch automatically.

It's not much to look at yet, but it's a great start. Now we have a so lid foundation to start getting into some real
Andro id application development.

Editing Programs

When you create the pro ject, the act ivit y_main.xml file, in the /res/layo ut fo lder, is created:

By default, Andro id XML files load in a Graphical Layout view. We'll talk about that in detail later; fo r now, we'll
focus on the actual XML. Click the act ivit y_main.xml tab in the lower portion o f the editor screen:

Edit the code as shown:

CODE TO TYPE:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_worldHello World!" />

</RelativeLayout>

Save and run the application again. You see your new text:

Android Package Structure

Let's take a moment to get familiar with the Andro id package structure. Take note o f the default files that were
created in the root directory o f the pro ject:

All Andro id pro jects have an Andro idManif est .xml file, along with a /res fo lder, and a source fo lder, usually
titled /src. If you open the /src fo lder, and then the co m.o st .andro id1.hello wo rld package, you'll see the
MainAct ivit y class that we defined when creating the pro ject. Go ahead and double-click that file to open it
now:

Let's take a look at the code:

OBSERVE: MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

This MainActivity is the first entry po int into our Java code for this application. The o nCreat e() method is first
called when the Activity is created. We will cover the Activity class in depth in the next lesson, but fo r now, just
be aware that each view in an application is contro lled by an Activity.

Also, notice that the second line o f o nCreat e() calls set Co nt ent View(R.layo ut .act ivit y_main) . This
method loads the view that MainActivity will contro l. R.layo ut .act ivit y_main is a reference to the
act ivit y_main.xml file in the /res/layo ut fo lder. Let's look at that file again:

OBSERVE: activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

</RelativeLayout>

It may seem like there's a lo t go ing on in this method, but we'll just focus on the tag names for now. This view
defines a Relat iveLayo ut with one child, a T ext View.

Bonus Round
Haven't had enough yet? That's great! There is so much more we can do now that we have a running application. Let's
get back into the code and start making some changes o f our own!

Our earlier change was pretty straightforward. Let's try changing it up a bit more. Edit act ivit y_main.xml again as
shown:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is going to be the best app ever!" />

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Whoa, look, a button!" />

</RelativeLinearLayout>

Save and run it again to see your view has grown:

Note

After you run an application for the first time using right-click and Run As o r the Run menu, there's a

faster way to run it. You can click the Run icon button in the button bar at the top. With Eclipse,
there's o ften more than one way to accomplish a particular task. These shortcuts will help cut down on
your development time, so you'll definitely want to use them!

Wrapping Up
We've covered lo ts o f topics here that are essential to every good Andro id developer. From setting up your
environment to creating an emulator to creating and running an Andro id pro ject, these skills fo rm the foundation for
building and testing any Andro id application. You're do ing great—see you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Activities and Views

Welcome back! In the last lesson we covered the foundations o f Andro id development—setting up the Eclipse environment with
ADT, creating an emulator, creating a new Andro id pro ject, and installing and running it on the emulator. In this lesson we'll learn
more about views, and also explore the fundamental classes o f every Andro id application.

AndroidManifest.xml
Every Andro id pro ject must have an Andro idManifest.xml file located in the root o f the pro ject directory. Think o f it as
the backbone o f your Andro id application, defining the package name (unique for each application in the market), every
Activity and Service, each permission that the Application requires, and more. We'll refer back to the Andro idMainfest
o ften during the course.

Let's go back into our existing pro ject and use it to demonstrate the importance o f the Andro idManifest. We'll start by
writing some code to launch a new activity. Open your pro ject, then open the MainAct ivit y.java file and then edit the
code as shown:

MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.content.Intent;
import android.view.Menu;

public class MainActivity extends Activity {
 @Override

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 startHermes();
 }

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 startActivity(intent);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

Note

T he Impo rt ance o f impo rt : If you're familiar with Java, then you know the importance o f import
statements at the top o f classes. Throughout the course we'll reference o ther classes that will require
additional imports (such as the Intent class above, which requires the import declaration import
android.content.Intent;). I will rarely refer to the exact import updates that are necessary for each code
change we make, though, because Eclipse can add those imports to our files automatically. There are
various ways to get Eclipse to do this. For example, you might use So urce | Organize Impo rt s on the
menu or the keyboard shortcut Ct rl+Shif t +O. These commands will save you a lo t o f development time
in Java.

The code we've just written will launch a new Activity called HermesActivity during the onCreate method. (The Intent
class is an important one in Andro id and it has many purposes beyond launching Activities; we'll discuss those o ther
purposes in detail a bit later.) Eclipse displays a red squiggly line under HermesActivity.class, because it doesn't exist
yet. Let's create it now. Select File | New | Class. In the "New Class" window, name the class HermesActivity and set
the superclass to be andro id.app.Act ivit y:

Click Finish to create the class. You can close the HermesActivity.java class file now, because we won't be modifying

it fo r this demonstration. Now let's run the application (click the Run icon).

Note
The emulator should start up automatically if it wasn't already started before running the pro ject. It may
take a while fo r it to start though. When it finishes, the pro ject should install on to the emulator
automatically and execute. Although on occasion Andro id may think the emulator has timed-out while
waiting for it to start; if that happens, just re-run the pro ject after the emulator is up and running.

So, how does it look? Did you get an error message that looked something like this?

Don't worry. This was one o f those planned errors we sneak in from time to time to get you used to encountering them
—and fixing them. This was the most common error I ran across when I first dove into Andro id programming. Let's
take a look at the logs and see what's go ing on. Click the Lo gCat view tab on the Package Explorer pane:

This view displays all the log information from a connected emulator or device. Scro ll down to the bottom of the
LogCat view and find the red text (the co lor used for Error logs). Click and drag the right edge o f the panel to widen it,
and hover with the mouse over the second error. You should see something like this:

Note

You can always have multiple devices connected and multiple emulators running, but LogCat can only
display one device or emulator's logs at a time. If LogCat isn't showing you the logs you expected, use

the DDMS perspective to select the correct device/emulator. We'll cover the DDMS perspective
in detail in a later lesson.

This error is a little vague, but in short, it's saying it couldn't find our Activity, HermesActivity. That's because we haven't
defined it in Andro idManifest.xml yet. As we discussed earlier, the Andro idManifest defines each Activity available to an
application. The declaration informs the Andro id system which Activities are present and how they can be launched. So
let's add the declaration now. Go back to the Package Explorer tab (drag its right border back to make it narrower) and
open Andro idManif est .xml in the Hello Wo rld pro ject. There are a lo t o f different sub-screens available for
Andro idManifest to help modify the file using a GUI, but we'll just edit the XML directly. Click the
Andro idManif est .xml sub-tab in the bottom of the view :

Now that we're in the correct view, let's add the HermesActivity to the manifest:

CODE TO TYPE:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ost.android1.helloworld"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10"
 android:targetSdkVersion="10" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name="com.ost.android1.helloworld.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name=".HermesActivity"
 android:label="Hermes Activity"/>

 </application>
</manifest>

Save the changes and run the application again. This time you don't see the error—or much o f anything else:

This probably doesn't come as a surprise, though, because we didn't even add a view to our HermesActivity.

Let's analyze the changes we did make to the Andro idManifest:

OBSERVE:

<activity android:name=".HermesActivity"
 android:label="Hermes Activity"/>

Each Activity in an Andro id application requires an <act ivit y /> node, nested within the <application /> node.
andro id:name refers to the name of the activity prefaced by the package in which the Activity is located, relative to the
package o f the application, which is defined by the attribute andro id:package in the root <manifest> node. The
package o f our application is "com.ost.andro idhelloworld," which we defined in the New Project wizard previously.
Since Hermes activity is located in the root o f our pro ject (and not in a subfo lder), " .HermesAct ivit y" is sufficient fo r
the value o f the andro id:name attribute. This is the only required attribute for activity nodes, but there are many o ther
optional parameters; fo r example, andro id:label specifies the text that appears in our output. We'll cover a few more
of these attributes in lessons to come, but feel free to explore the o ther possible attributes on your own.

Activity Class
In the MVC (Model-View-Contro ller) design pattern, the Activity class is considered the Contro ller. The MVC pattern is
outside o f the scope o f this course, but if you are unfamiliar with it, I highly recommend that you take a few minutes to
read about it in Wikipedia. The Activity class is used to communicate with the View by populating it with data (from the
Model) and handling or responding to user interactions with the View.

We'll look at the Activity class more later, but first we have to make one small change to our XML view. Open
act ivit y_main.xml. If you haven't made any changes to it since we worked on it before, the parent node will still be a
LinearLayout with three child nodes: two TextViews and a Button. Modify the Button node in
act ivit y_act ivit y_main.xml as shown:

/res/layout/activity_activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is going to be the best app ever!" />

 <Button
 android:id="@+id/my_button"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Whoa, look, a button!"/>

</LinearLayout>

Save the file, switch to the MainAct ivit y.java file, then edit your code as shown:

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

CODE TO TYPE:

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 startHermes();
 Button myButton = (Button) findViewById(R.id.my_button);
 myButton.setOnClickListener(myButtonClickListener);
 }

 private OnClickListener myButtonClickListener = new OnClickListener() {
 @Override
 public void onClick(View v) {
 startHermes();
 }
 };

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 startActivity(intent);
 }
}

After you've made those changes, when you fix the imports, you might be presented with multiple classes for
OnClickListener. Be sure to choose to import the View.OnClickList ener class.

Save your changes and run the pro ject to see how these changes have affected the application. The home screen
probably looks familiar to you, and now when you click the button it will actually do something! If everything is hooked
up correctly in the code, the button will cause our HermesActivity to load, and the empty Hermes view should be
visible.

So what did we do exactly? Let's review our changes, one by one:

OBSERVE:

Button myButton = (Button) findViewById(R.id.my_button);

First, we located and stored a reference to the Button into a variable . The f indViewById() method comes from the
parent Act ivit y class, takes one Integer parameter, and returns a generic View object, so we must cast it to its specific
class. Our parameter R.id.my_but t o n is a resource reference to the id attribute we added to our XML view earlier. R
is a class that is generated by the Andro id compiler and automatically populated with references to resources in the
/res fo lder, because we referenced it earlier in the onCreate() method to load the view R.layout.activity_main.

OBSERVE:

myButton.setOnClickListener(myButtonClickListener);

Next, we attached a click listener to the button using the set OnClickList ener() method, which takes a parameter o f
the View.OnClickList ener type.

OBSERVE:

private OnClickListener myButtonClickListener = new OnClickListener() {
 @Override
 public void onClick(View v) {
 startHermes();
 }
};

Finally, we created the myBut t o nClickList ener object that we passed to setOnClickListener. View.OnClickListener
is an Interface that has one method, o nClick(View view) , to handle each click event. The View parameter sent to the
o nClick() method is a reference back to the View that dispatched the click event. Then, we call the method we defined
earlier to launch the Hermes Activity.

This is the most basic way o f responding to clicks on Buttons in Andro id. Originally, this was the only way to handle
clicks; but as o f Andro id version 1.6 , there is another, more efficient way. Since our pro ject is already targeting version
2.2 o f Andro id, let's update our code to use this alternate method o f handling clicks. Open act ivit y_main.xml class
again and make the fo llowing change:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is going to be the best app ever!" />

 <Button
 android:id="@+id/my_button"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Whoa, look, a button!"
 android:onClick="handleMyButtonClick" />

</LinearLayout>

Now, modify MainAct ivit y.java below as shown:

MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button myButton = (Button) findViewById(R.id.my_button);
 myButton.setOnClickListener(myButtonClickListener);
 }

 private OnClickListener myButtonClickListener = new OnClickListener() {
 @Override
 public void onClick(View v) {
 startHermes();
 }
 };

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 startActivity(intent);
 }

 public void handleMyButtonClick(View view) {
 startHermes();
 }
}

Run the pro ject again to test the code. The app will function the same way it did before. This change simplifies the code
for handling clicks siginificantly. Instead o f finding the button in the View and attaching a listener object to it, we use the
XML andro id:onClick attribute to reference a method in our activity. There is no compiler-time checking for this method
name; the method is presumed to be present in the Activity that implements the View. If the method is not present (or if
it is defined incorrectly) then the application will throw an error when a user clicks the button. Methods referenced from
the andro id:onClick attribute must have a return type o f vo id and receive one parameter o f type View.

Using this abbreviated method eliminates the need to store a reference to the button on the View. It's still sometimes
necessary to get a reference to components on a View though, so you'll want to know how to use the findViewById()
method correctly.

Basic View Components: Layouts and Buttons

Layouts

Now that we know a bit more about contro lling our Views, let's explore some more features o f Andro id XML
Views, starting with layouts. When you first create a View using the ADT wizard, it's populated with a
LinearLayout tag for its root node automatically. The LinearLayout tag is used for arranging elements
automatically, in a single direction, either horizontally or vertically. Horizontal layout is the default direction. To
change the direction, use the android:orientation attribute.

There are two o ther common layouts to consider using when setting up your views, RelativeLayout and
FrameLayout. RelativeLayout allows you to define position constraints fo r a view's components, relative to
the parent and o ther components. FrameLayout puts each child on a separate layer (or frame), stacking them
on top o f each o ther.

View Components

There are many components available to use for Andro id views. We've already used two in our main view—
TextView and Button. The standard view elements you would expect to see such as tabs, checkboxes, radio
buttons, toggle buttons, and editable TextViews (called EditText), are already available. We're not go ing to
cover each available component in this course, but you'll probably want to look into the available
components on your own in the Andro id SDK on the documentation site or using the Graphical Layout XML
editor provided by ADT.

Wrapping Up
We've covered a lo t in this lesson! You should feel comfortable using the Activity class to find View components and
handle click events, and you should know about many o f the different types o f View components available in Andro id.
Feel free to experiment some more on your own until you feel confident in using those too ls. See you in the next
lesson, where we'll dig even further into Navigation and Data!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com/reference/android/widget/package-summary.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Navigation with Data

Welcome back! Earlier we mentioned starting a new Activity with an Intent. In this lesson, we'll go over Activities in more depth.
We'll also talk more about the Intent class, and various methods for sharing data between activities.

Working with Intent
In the previous lesson we started a new Activity by creating an Intent and sending it to our current activity's startActivity()
method. Here's the code we used in our MainActivity class to start the HermesAct ivit y:

OBSERVE:

Intent intent = new Intent(MainActivity.this, HermesActivity.class);
startActivity(intent);

The Intent class in Andro id is used for much more than just starting Activities. Think o f the Intent class as your way o f
letting the Andro id OS know of your "intent" to perform an action.

For example, to start a Service, you call Act ivit y.st art Service and send an int ent as the parameter. You can also
use Intents to request that an action be performed in another application, such as opening a web page in the browser,
sending a text message, or sending an email. Let's try do ing that last one now.

First, we'll add a new button to our view to start this action. Edit act ivit y_main.xml as shown here:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is going to be the best app ever!" />

 <Button
 android:id="@+id/my_button"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Whoa, look, a button!"
 android:onClick="handleMyButtonClick" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Send Email"
 android:onClick="handleSendEmailClick" />

</LinearLayout>

Now, in MainAct ivit y.java, add the logic to be performed when this button is clicked:

MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 startActivity(intent);
 }

 public void handleMyButtonClick(View view) {
 startHermes();
 }

 public void handleSendEmailClick(View view) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("plain/text");
 startActivity(Intent.createChooser(emailIntent, "Email"));
 }
}

Save and run it. If we try to test this now using the Andro id emulator, we won't see much o f anything aside from a
warning message.

This is because the default Andro id emulator doesn't come pre-bundled with any applications that support sending
email. Specifically, the emulator doesn't have any applications that handle the Intent.ACTION_SEND action.

The best way to test this code would be to install the application on an actual device. But even if you own an Andro id
device, you won't be able to install the application to it because the remote desktop connection environment can't
recognize a device attached to your local computer. You would have to set up the andro id SDK and developer
environment on your own computer in order to install to your own device. That's pretty extreme for our purposes, but
don't worry—we can work around that.

An Emulator Email Alternative

I've created a basic mock application to handle the email intent, which you can download directly from the
emulator. Open the browser on the emulator and type the url
ht t p://co urses.o reillyscho o l.co m/andro id1/so f t ware/Mo ck.apk:

This downloads the application. Once it finishes downloading, drag down the window notification shade, and
click on the download complete notification to install it:

When the icon appears, click and drag anywhere in the top bar to pull down the "window shade."

This application won't actually send email, but now, when you test the code we wrote earlier, you'll see more
than just the "No applications can perform this action" message. Instead, you'll see this:

Using this emulator, we can also define the fields o f the email—such as the T o , the Subject , and the Bo dy—using
the Int ent .put Ext ra method:

OBSERVE:

public void handleSendEmailClick(View view) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("plain/text");
 emailIntent.putExtra(android.content.Intent.EXTRA_EMAIL, new String[]{"predefined@e
mail"});
 emailIntent.putExtra(android.content.Intent.EXTRA_SUBJECT, "predefined Subject");
 startActivity(Intent.chooseIntent(emailIntent));
}

For a list o f available Intent actions, see the andro id documentation site fo r the Intent class.

Sharing Data Between Activities

http://developer.android.com/reference/android/content/Intent.html

Sometimes you'll need to pass data from one activity to another. We can do that using the Intent class as well. In fact,
you've already done that once before in our example when you started the email Intent by using the Int ent .put Ext ra
method. Let's update our application to send some data back and forth between the MainActivity and the
HermesActivity.

Sending Data to a New Activity

First, let's add an EditText to our act ivit y_main.xml so we can get some user-defined text.

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is going to be the best app ever!" />

 <Button
 android:id="@+id/my_button"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Whoa, look, a button!"
 android:onClick="handleMyButtonClick" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Send Email"
 android:onClick="handleSendEmailClick" />

 <EditText
 android:id="@+id/my_edit_text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

</LinearLayout>

Next, edit MainAct ivit y.java as shown:

MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class MainActivity extends Activity {

 private EditText myEditText;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 myEditText = (EditText) findViewById(R.id.my_edit_text);
 }

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 intent.putExtra(HermesActivity.MY_EXTRA, myEditText.getText().toString()
);
 startActivity(intent);
 }

 public void handleMyButtonClick(View view) {
 startHermes();
 }

 public void handleSendEmailClick(View view) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("plain/text");
 startActivity(Intent.createChooser(emailIntent, "Email"));
 }
}

int ent .put Ext ra uses a key/value pair system to store and retrieve the data being shared. The first
parameter is the key, and is always a String value. Because this value must be exactly the same for storing
and retrieving the value from the Intent, it's a good idea to use a static constant value here that both Activities
can access. We're using the value on HermesActivity, which we just defined.

The second parameter to Intent.putExtra is the value. This parameter must be a primitive data type (such as
Integer, Long, Float, o r String) or it must be an object that implements the Parcelable interface. For now, we're
only go ing to be sharing primitives between our activities; we'll talk about using the Parcelable interface in a
later lesson.

When you save this file, you'll see a compiler error on the second line o f the startHermes method. This is
because we haven't defined the MY_EXTRA variable in HermesActivity yet. Let's do that before we proceed
any further. Update HermesAct ivit y.java as shown:

HermesActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;

public class HermesActivity extends Activity {

 public static final String MY_EXTRA = "myExtra";

}

Save your changes and run the pro ject; you'll see the new EditText field on the screen.

Returning Data to the Previous Activity

When sending data to a previous Activity, we use the Intent class, but the process is a bit different from the
process used when sharing in the o ther direction. First o f all, if an Activity expects to receive data from an
Activity it starts, then it needs to use a different method to start that Activity.

We also need to add another method to handle receiving the data. Make the changes to MainAct ivit y.java
as shown:

MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class MainActivity extends Activity {

 private EditText myEditText;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 myEditText = (EditText) findViewById(R.id.my_edit_text);
 }

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 intent.putExtra(HermesActivity.MY_EXTRA, myEditText.getText().toString()
);
 startActivity(intent);
 startActivityForResult(intent, HermesActivity.EXTRA_REQUEST);
 }

 public void handleMyButtonClick(View view) {
 startHermes();
 }

 public void handleSendEmailClick(View view) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("plain/text");
 startActivity(Intent.createChooser(emailIntent, "Email"));
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data
) {
 super.onActivityResult(requestCode, resultCode, data);

 switch(requestCode) {
 case HermesActivity.EXTRA_REQUEST:
 if (resultCode == RESULT_OK) {
 String stringExtra = data.getStringExtra(HermesActivity.MY_EXTRA
);
 myEditText.setText(stringExtra);
 }
 break;
 }
 }
}

Next, we'll need to update both HermesActivity and its view. Well, actually, we haven't created a view for

HermesActivity yet, so let's start there. To create the new layout XML file, we'll use the ADT wizard. Select File
| New | Ot her and choose Andro id XML Layo ut File in the Andro id fo lder. Name the file
hermes_view.xml and click Finish. Leave the rest o f the settings at their default values.

Click the hermes_view.xml tab at the bottom and make these changes to the file:

CODE TO TYPE:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <EditText
 android:id="@+id/hermes_edit_text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 />

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Finish"
 android:onClick="onFinishClick"
 />

</LinearLayout>

Finally, we'll update HermesAct ivit y to handle the data passed to it from the previous Activity, apply that
data to the EditText, and respond to the Finish button being clicked by closing the Activity and sending the
data back to the former Activity. Modify your code as shown:

CODE TO TYPE:

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class HermesActivity extends Activity {

 public static final String MY_EXTRA = "myExtra";

 public static final int EXTRA_REQUEST = 0;

 private EditText hermesEditText;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.hermes_view);

 hermesEditText = (EditText) findViewById(R.id.hermes_edit_text);
 Intent i = getIntent();
 if (i.hasExtra(MY_EXTRA))
 hermesEditText.setText(i.getStringExtra(MY_EXTRA));
 }

 public void onFinishClick(View view) {
 String text = hermesEditText.getText().toString();
 Intent i = new Intent();
 i.putExtra(MY_EXTRA, text);
 setResult(RESULT_OK, i);
 finish();
 }
}

Run the application and test the code. The processes for sending data to an Activity and receiving data back
from a started Activity are really similar. Both invo lve storing and retrieving data by use o f an Intent object.
You'll be able to make changes to the EditText in either activity, and then see the result when navigating to the
other Activity using the Who a, lo o k, a But t o n! and Finish Buttons.

Application Class
You can also share data between multiple Activities throughout an Application using a custom Application class. As
we mentioned earlier, every App on Andro id has a single Application class. This class is essentially a singleton (a
design pattern that restricts the instantiation o f a class to one object), and we can override the class with our own
custom extension o f the Application class to store state data.

Note
Do not abuse the singleton model in the Application class. The Andro id developer documentation on
developer.andro id.com recommends using the Application class only fo r storing session state. You
could also just store your state data on a helper class using public static variables. This would allow you
to keep your code more modular and remove any dependencies on the Application framework.

Let's make a custom Application class now to store some application data. First, create a new class called
MyApplicat io n and make it extend the andro id.app.Applicat io n class.

http://developer.android.com

The Application class has lifecycle methods similar to the Activity class. Any default data initialization should occur
during the Application.onCreate() method. Edit your new class as shown:

MyApplication.java

package com.ost.android1.helloworld;

import android.app.Application;

public class MyApplication extends Application {

 public String defaultString;

 @Override
 public void onCreate() {
 super.onCreate();

 defaultString = "some default text";
 }

}

To get the Application to use our new class, we'll need to update the Andro idManif est .xml file. Update the
<applicat io n> tag with a reference to the new class:

Andro idManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ost.android1.helloworld"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10"
 android:targetSdkVersion="10"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:name="MyApplication" >
 <activity
 android:label="@string/app_name"
 android:name=".MainActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name=".HermesActivity"
 android:label="Hermes Activity"/>

 </application>

</manifest>

Now that we've hooked up our new class properly, we just need to get a reference to it from our activities. Add the
fo llowing to MainActivity.java:

CODE TO TYPE:

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class MainActivity extends Activity {

 private EditText myEditText;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 myEditText = (EditText) findViewById(R.id.my_edit_text);

 MyApplication app = (MyApplication) getApplication();
 myEditText.setHint(app.defaultString);
 }

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 intent.putExtra(HermesActivity.MY_EXTRA, myEditText.getText().toString());
 startActivityForResult(intent, HermesActivity.EXTRA_REQUEST);
 }

 public void handleMyButtonClick(View view) {
 startHermes();
 }

 public void handleSendEmailClick(View view) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("plain/text");
 startActivity(Intent.createChooser(emailIntent, "Email"));
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 switch(requestCode) {
 case HermesActivity.EXTRA_REQUEST:
 if (resultCode == RESULT_OK) {
 String stringExtra = data.getStringExtra(HermesActivity.MY_EXTRA);
 myEditText.setText(stringExtra);
 }
 break;
 }
 }
}

Test the application again. The default text fo r the EditText now contains the text we defined in our Application class
("some default text"). There are certainly better (and easier) ways o f defining default text fo r a view component, but this
will work just fine for our purposes right now.

Wrapping Up
Hopefully by now you're feeling comfortable with the Intent class and sharing data throughout your application. In the
next lesson, we'll get to know the contents o f the Andro id resources fo lder even better! See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Android Resources

Welcome back! Now that we've covered the basics o f Navigation and sharing data, it's time to go further into the Andro id
resources fo lder. In this lesson we'll cover string resources and how to use them in your code and views. Let's get started, shall
we?

String Resources
If you've explored the /res fo lder, you may have noticed the /res/values/st rings.xml file. This file defines and co llects
immutable string values for use in an application. Keeping all o f your permanent strings defined in this file can be
useful fo r so lo developers or development teams—all Strings can be found, modified, and reused in a single location
without having to hunt through every class just to find something like a typo, fo r example.

You've seen the strings that are already defined in strings.xml by default. Open strings.xml now (select the
st rings.xml tab at the bottom to edit it in xml mode) and add a few more strings:

/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">HelloWorld</string>
 <string name="action_settings">Settings</string>
 <string name="hello_world">Hello world!</string>
 <string name="header_text">Headers are cool.</string>
 <string name="subheader_text">Make sure you \"escape\" special characters like quot
es & ampersands.</string>
 <string name="next">Go to Next Activity</string>
 <string name="send_email">Send Email</string>
 <string name="hint_text">This is hint text</string>
</resources>

Save the file.

Loading Strings in XML

That was pretty straightforward, but there's nothing to look at until we implement it in our view. Let's use our
strings to populate the labels fo r our Buttons in our main view. Open act ivit y_main.xml and update the
views as shown:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 android:text="@string/header_text" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is going to be the best app ever!"
 android:text="@string/subheader_text" />

 <Button
 android:id="@+id/my_button"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Whoa, look, a button!"
 android:onClick="handleMyButtonClick" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Send Email"
 android:text="@string/send_email"
 android:onClick="handleSendEmailClick" />

 <EditText
 android:id="@+id/my_edit_text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/hint_text" />

</LinearLayout>

You can see in your code that when referencing string resources in XML views, you use the format
@string/<string name>. The "code complete" feature (Ct rl+space) also works in these views to help you find
available resources and prevent typos. If you have trouble getting "code complete" to work in the editor, make
sure the XML file has been opened in the appropriate editor. The file icon in the editor tab should look like this

. If you're seeing a different icon, close the file, and then reopen it by right-clicking the file
name in the Package Explorer and selecting Open Wit h | Andro id Layo ut Edit o r. That way you'll be sure
that the "code complete" feature for resource values is working in your xml.

Save and run the application to test the results. Your first screen o f the application will look like this:

At this po int we don't actually have to run this in the emulator to make sure our view is correct. We can use the
Design view o f the Andro id Layout Editor, which is much faster. It can take a moment to initialize the first time
the Design view is loaded for an Eclipse session, but ultimately it will save you valuable time.

The Design view won't always be able to render a pixel-perfect representation o f the way a view will look in
actual devices, but it should be sufficient fo r basic layouts and value testing like this.

Note

There's another nice little feature in some versions o f ADT that can help you to create string
resources. When you're working in your layout, you can select a string value that needs to be
converted into a string resource, then use the Ref act o r | Andro id | Ext ract Andro id
St ring... menu option to add the value to the strings file and update the component to use the
new resource automatically. Incorporating this feature means you don't have to keep switching
back and forth between your XML view layouts and the string resources.

Loading Strings in Code

Now that we've got our string resources loading in our views, let's use them in our code! I left out the next
string resource intentionally so we could test that one in code; it could have been loaded in the XML like the
others just as easily though. Open the MainAct ivit y.java class and enter the code below into the onCreate
method, as shown:

MainActivity.java

package com.ost.android1.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends Activity {

 private Button myButton;
 private EditText myEditText;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 myButton = (Button) findViewById(R.id.my_button);

 String next = getString(R.string.next);
 myButton.setText(next);

 myEditText = (EditText) findViewById(R.id.my_edit_text);

 MyApplication app = (MyApplication) getApplication();
 myEditText.setHint(app.defaultString);
 }

 private OnClickListener myButtonClickListener = new OnClickListener() {
 @Override
 public void onClick(View v) {
 startHermes();
 }
 };

 public void startHermes() {
 Intent intent = new Intent(MainActivity.this, HermesActivity.class);
 intent.putExtra(HermesActivity.MY_EXTRA, myEditText.getText().toString()
);
 startActivityForResult(intent, HermesActivity.EXTRA_REQUEST);
 }

 public void handleSendEmailClick(View view) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("plain/text");
 startActivity(Intent.createChooser(emailIntent, "Email"));
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data
) {
 super.onActivityResult(requestCode, resultCode, data);

 switch(requestCode) {
 case HermesActivity.EXTRA_REQUEST:
 if (resultCode == RESULT_OK) {
 String stringExtra = data.getStringExtra(HermesActivity.MY_EXTRA
);
 myEditText.setText(stringExtra);
 }
 break;
 }
 }
}

Just like layout files (which are also located in the /res fo lder), string resources are loaded by using the
generated R.java file. The actual string value is loaded by using the helper method get St ring() , which is
defined on the encapsulated Context class. I haven't mentioned the Context class yet, but as we go further
into the Andro id SDK, you'll see that Context is used frequently. You'll need a Context object to accomplish
certain tasks (like loading resources or creating a database). Both Activity and Application classes
encapsulate the Context class, so we typically pass one or the o ther as the Context.

Note
There is also a helper method available on the TextView component that takes the resource
string id directly, which means the code could be simplified even more so that it's just a single
line, fo r example: myBut t o n.set T ext (R.st ring.next) .

The Resource Values Folder
In lessons to come, we'll create and use more files in the /res/values fo lder. The names o f the files in the /res/values
fo lder are chosen according to convention; the XML root node uses the <resources> tag. We used strings.xml file here
to gather all the string definitions into a single file, but we could actually name the file whatever we want, just so long as
the XML root node is the <resources> tag.

The files in the values fo lder are the only resource files where the name is not important. For every o ther file from other
/res subfo lders, the name is extremely important. This is because in those fo lders the name is essentially the 'id' value
used to load the resource. For example, to access layouts (in code), we use R.layout.<filename>. The same pattern is
used for every o ther subfo lder in /res except values; the values subfo lder adheres to this pattern: R.<subfo lder-
name>.<filename>. To load values defined in files in the values subfo lder, we use the pattern R.<value-type>.<name-
attribute-value>.

Note
Andro id restricts the names o f files in the resources fo lder. Filenames can only contain lower-case
characters a thru z, numbers 0 thru 9 , and the underscore symbol. No capital letters, spaces, or special
characters are allowed. The exception to this rule is fo r files in the res/values fo lder. For files in the
/res/values fo lder, the rules apply to the values for the name attribute instead.

Wrapping Up
Using string resources in Andro id will help you to create better, more efficient code, and also make your code easier
for o ther developers to read. Learn them, and love them! See you next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Drawables - Image Basics

In this lesson we'll work with resources again, but this time we'll focus on the Drawable class, which is used to manage images
in Andro id. Let's get started!

Drawable Folders and Qualifiers
So far we've done all o f our work on a single pro ject, and it's starting to become a little cluttered. Let's close that pro ject
and start a new one for this lesson to clean up the workspace a bit and focus on just the current topics.

1. Right-click your Hello Wo rld root pro ject fo lder and select Clo se Pro ject . (Also , close any open files
from the HelloWorld pro ject in the Editor window.)
2. Create a new Andro id pro ject named Drawables.
3. Set the package name of the pro ject to co m.o st .andro id1.drawables.
4. Uncheck the Creat e cust o m launcher ico n box.
5. Add the pro ject to the Andro id1_Lesso ns working set.

By default, images for Andro id applications should be stored in the res/drawable fo lder. There are already four
different "drawable" fo lders in our pro ject: drawable-hdpi, drawable-ldpi, drawable-mdpi, and drawable-xhdpi. The
extended names for these fo lders are called "qualifiers." A qualifier is a string appended to one o f the default fo lder
names to indicate for which unique configuration that fo lder should be used.

The generated drawable fo lders in our application have qualifiers fo r the various Andro id phone screen reso lution
ranges. The "-hdpi" qualifier is fo r high reso lution devices. This means a device that supports the high-density
reso lution range (~240dpi) fo r Andro id will attempt to load drawables out o f the drawable-hdpi fo lder by default. "-
mdpi" is fo r medium-density reso lutions (~160dpi) and "ldpi" is fo r low-density reso lution devices (~120dpi).

Note

Qualifiers are used in Andro id for more than just screen reso lution. They can be used to override any
resource value for almost any hardware configuration, such as screen size, device layout, locale, and
hardware support (such as a camera or trackball). We'll use qualifiers more in the coming lessons, but if
you're curious to find out more about qualifiers now, check out this article on Supporting Multiple Screens
on the Andro id developer documentation site.

Using Drawables
Our drawable fo lders are already populated with a single default image that is being used for the application icon. Now
let's add another one to integrate into our application. To download the image, right-click on the image below and save
the file to your /res/drawable-hdpi fo lder:

Note The pro ject fo lders are located on the V drive in the /workspace/ fo lder; the full path where you should
save the image is V:\wo rkspace\Drawables\res\drawable-hdpi.

Now that we have the new image in place, let's get it loaded into our application. Open act ivit y_main.xml from the
/res/layo ut / fo lder and make these changes:

http://developer.android.com/guide/practices/screens_support.html#qualifiers

/res/layout/activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_android_robot"
 />

</RelativeLayout>

Like all values in the resources fo lder, drawables are referenced using the @ symbol syntax. Let's run the application
now to make sure that the ImageView loads the image correctly:

When you want to load a non-interactive image for display in your application, you'll typically use the ImageView
component, like we just did. Other common use cases for loading images are for button icons and button skins.

Note "Button skinning" is a little beyond the scope o f this lesson, but we'll discuss how to implement a button
skin later, when we cover Application skinning. Trust me, it will all make perfect sense to you later!

Let's add a button with the previous image as the button icon. Modify act ivit y_main.xml as shown:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_android_robot"
 />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableLeft="@drawable/ic_android_robot"
 android:text="Icon Button"
 />

</RelativeLinearLayout>

Run the application again; your view will look like this:

The drawableLef t is a convenience property (alias) defined on the TextView class (o f which Button is a subclass). As
you may have guessed, there are additional properties called, drawableT o p, drawableRight , and
drawableBo t t o m ; they behave exactly as you'd expect.

Dimensions

So far we've defined the layo ut _widt h and layo ut _height attributes o f our Images (and all o f our
components) as either mat ch_parent o r wrap_co nt ent . These are handy relative dimension properties,
but when neither property is sufficient fo r your needs, you'll want to use a more specific dimension.

If you've ever developed a user interface for another application, you're probably used to defining your width
and height dimensions in pixels. In Andro id, using precise pixels fo r dimensions is not recommended
though, because Andro id devices come in so many different shapes and sizes, with so many different
reso lutions. This means that the number o f available pixels on the screen can vary greatly by device. To
address this issue, the Andro id SDK has its own unit fo r dimensions called "density independent
pixels"—"dip" or "dp" fo r short. When you use "dip" units fo r your dimensions, the Andro id SDK will
automatically scale the actual pixel dimension to an appropriate relative pixel size to keep the relative sizes
and spacing the same for each device.

Let's update our view now to use the "dip" unit fo r some of our dimensions, so we can better contro l the size
of our components. Make these changes to activity_main.xml:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <ImageView
 android:layout_width="wrap_content200dp"
 android:layout_height="wrap_content40dp"
 android:src="@drawable/ic_android_robot"
 android:scaleType="fitXY" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableLeft="@drawable/ic_android_robot"
 android:text="Icon Button" />

</LinearLayout>

Save the file and give it a test run; the first screen o f the application will look like this:

Note

There isn't any direct way to have a button resize its drawableX (drawableLeft, drawableRight,
and so on) icons. You can change the dimensions o f the button, but the image will remain its
original size (and clip the edge o f the button if the button is smaller than the image). Another way
to approach this issue (without creating a new image) would be to use an XML drawable. We'll
cover XML drawables in a future lesson.

In order to see a complete comparison o f the differences between using density independent pixels and
ordinary pixel units, you'd need to create a second emulator with slightly different dimensions and test the
code on each device once using "dip" fo r your dimensions and again using "px." Do ing that while using a
remote desktop connection would be pretty time consuming though.

Note
When defining a font size for text components using exact pixels is not recommended either.
Andro id provides an alternative unit called "scale independent pixels"—"sp" for short. These
units behave exactly like "dip" units, but they will also be scaled by the user's default font scale if
specified.

For an in-depth explanation o f how dip units work, check out the Andro id developer documentation site
regarding dimensions.

Image Padding

If you want to adjust the placement and spacing o f the icon image inside your button, there are a few tricks you
can use. First, there is a property called drawablePadding, which defines the minimum amount o f padding
the widget should use between the icon and the text content. This property adds padding only between the text
and the icon, and only when there is a drawable icon defined as well. This will no t create padding between the
icon and the edge o f the button. If you want to add space between the icon and the edge o f the button, use the
padding property just as you would for any layout component that has children.

Note

By default, the drawableX property will draw the icon as close as it can to the edge o f the button.
This is most noticeable when using a drawableLeft o r drawableRight icon and the button has a
layout_width value o f "match_parent" so that it fills the entire width o f the device. In that situation
the icon will be drawn near the edge o f the button and not near the text inside the button. So, in
this instance the drawablePadding property will have no effect on the button.

Let's add some drawablePadding to the Button component in act ivit y_main.xml:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <ImageView
 android:layout_width="200dp"
 android:layout_height="40dp"
 android:src="@drawable/ic_android_robot"
 android:scaleType="fitXY" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableLeft="@drawable/ic_android_robot"
 android:drawablePadding="20dp"
 android:text="Icon Button" />

</LinearLayout>

Save and run it; you'll see something like this:

http://developer.android.com/guide/topics/resources/more-resources.html#Dimension

The only space that is affected is that between the icon and the text o f the button. The space between the icon
and the top, left, and bottom edges o f the button remains unchanged.

The ImageButton Widget

If you have a button that needs only an icon (and no text on the button) then you should probably use an
ImageButton. The ImageButton class is actually a subclass o f ImageView (and not Button). There are actually
very few differences between an ImageButton and an ImageView. Both have a backgro und property that
takes a drawable, as well as an src property that also takes a drawable, and both are clickable view
components. However, by default, the ImageButton component will use the default skin for Button as its
background drawable, while the ImageView does not have a default background.

Let's add an ImageButton component to our code:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <ImageView
 android:layout_width="200dp"
 android:layout_height="40dp"
 android:src="@drawable/ic_android_robot"
 android:scaleType="fitXY" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:drawableLeft="@drawable/ic_android_robot"
 android:drawablePadding="20dp"
 android:text="Icon Button" />

 <ImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/ic_android_robot" />

</LinearLayout>

Now run the app to verify the results:

As you can see, the ImageButton still has the default skin o f the Button, with our icon drawn in the middle o f
the button. Since the ImageButton component is a subclass o f ImageView and not Button, there is no
drawablePadding attribute available (besides, it wouldn't be o f any use for this component). It doesn't have
a t ext attribute either, but it does have the scaleT ype property available to help you to define how the image
is scaled inside o f the view component.

Wrapping Up
We've covered a lo t o f important stuff in this lesson. I'm confident that you know how to use Images in your views, as
well as how Andro id uses "density independent pixels" as a dimension unit.

We've spent a lo t o f time in the resources fo lder so far, and you have a pretty strong grasp o f how to implement a
majority o f Andro id's view components. If you feel like you want to experiment a bit more with these concepts on your
own, do it! In upcoming lessons, we'll get back to work in the Java classes. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Lists

Good to see you again! This lesson will cover Andro id lists. Let's get started!

Implementing an Android List
Go ahead and start a new application. Select File | New | Pro ject | Andro id Applicat io n Pro ject , and create the
application using these settings:

1. Name the Pro ject List s.
2. Type co m.o reillyscho o l.andro id1.list s fo r the Package name.
3. Clear the Creat e cust o m launcher ico n check box.
4. Add the pro ject to the Andro id1_Lesso ns working set.

ListView

Before we can start implementing our list, we need to make one small change to our view; we need to add a
list to it, o f course! Open act ivit y_main.xml in the /res/layo ut / fo lder and make these changes:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />
 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

</RelativeLinearLayout>

Note As of Andro id API 8 , 2.2, the layout attribute f ill_parent was replaced with the more accurate
mat ch_parent label.

The ListView component is the default List handler fo r Andro id. Notice that we used a slightly different "id"
value from what we used before. (We'll discuss that in greater detail a bit later.)

There's not much to see in our program yet, but if you click the Graphical Layo ut tab in the XML editor, you
will see a stubbed default List:

This view can show only fake stub data and will never reflect the actual content o f your list. You'll need to run
the application to test and make sure that your list items are working correctly. Before you can do that, though,
you'll need to implement the list in code.

ListActivity

To use a List in your view, you'll want to use a different kind o f Activity class called the ListActivity. ListActivity
is a subclass o f Activity, and while it is not required for implementing lists, it can make the setup and
maintenance o f a list much easier.

Open MainAct ivit y.java and make these changes:

/src/MainActivity.java

package com.oreillyschool.android1.lists;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.Menu;

public class MainActivity extends ListActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

Remember earlier how we used a unique value for our "andro id:id" attribute in the XML view? This id value is
actually predefined by the Andro id SDK. The code reference equivalent is andro id.R.id.list . However, unlike
before, we don't need to find and store a reference to this view (using findViewById), because ListActivity has
already taken care o f that. ListActivity expects that the layout loaded by set Co nt ent View contains a list that
contains that id value, loads that value, and manages it internally. Any interaction with the ListView component
is then handled by helper methods available on the ListActivity class. If you wanted to subclass a regular
Activity class, you would need to manage the ListView component manually.

Empty Lists

ListActivity also has the added benefit o f showing an alternate view when its list is empty. Taking advantage o f
this feature requires another special Andro id id, andro id.R.id.empt y. Let's open act ivit y_main.xml again
and add an "empty" view:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

 <TextView
 android:id="@android:id/empty"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="@string/empty_text"
 android:gravity="center"
 />

</LinearLayout>

You'll also need to add a string named empt y_t ext to the strings.xml file. You can do that manually or use
the Ref act o r | Andro id | Ext ract Andro id St ring... shortcut we discussed earlier. Give the string
whatever value you like. When you're finished, go ahead and run the application; you'll see that the empty text
is shown, because our list doesn't have any data yet:

ListAdapter

A list isn't at all useful without data, so we'll need to work on that. To manage list data in Andro id we use an
Adapter. A list view expects an object o f the type android.widget.ListAdapter, which is an interface.
Implementing the entire interface isn't necessary, though, because there are many default implementations
available in the SDK that you can use that are less labor intensive. I personally prefer the
andro id.widget .ArrayAdapt er<T > class.

Let's get our ListView hooked up to an adapter with an instance o f ArrayAdapter. Make these changes to
MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.lists;

import android.app.ListActivity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
 private String[] data = new String [] {
 "Odin",
 "Thor",
 "Loki",
 "Baldr",
 "Freyr",
 "Heimdallr",
 "Ullr",
 "Meili",
 "Hodr",
 "Forseti"
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple_list_item_1, android.R.id.text1, data);
 setListAdapter(adapter);
 }
}

Now run the application and test your results. Your emulator should look like this:

Let's look at our code in some more detail and see exactly what's go ing on:

OBSERVE:

...

public class MainActivity extends ListActivity {
 private String[] data = new String [] {
 "Odin",
 "Thor",
 "Loki",
 ...
 "Forseti"
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple_list_item_1, android.R.id.text1, data);
 setListAdapter(adapter);
 }
}

First, we created some basic st ub dat a f o r t he list , o therwise the list would still be empty. Then we used
set List Adapt er() , a helper method on ListActivity that sets the adapter on the ListView component
managed by the ListActivity.

Our constructor fo r ArrayAdapter has a signature that requires four parameters:

ArrayAdapter Constructor

ArrayAdapter(Context context, int resource, int textViewResourceId, T[] objects)

The first parameter is a Context. All Activity classes are subclasses o f Context, so we just pass t his as the
value.

The next parameter, int reso urce , is a resource reference to the XML layout to be used for each item in the
list. We used a basic layout that was already provided in the Andro id SDK:
andro id.R.layo ut .simple_list _it em_1. This layout contains only one component: a TextView.

The third parameter, int t ext ViewReso urceId, is more or less self-explanatory. It's an id reference to the
TextView component that is contained in the previously defined resource's layout. The id reference to the
TextView contained in the simple_list_item_1 layout is andro id.R.id.t ext 1.

The final parameter is to an Array o f the data that will be used to populate the TextView component fo r each
item in the list. Note that this Array is type-restricted to the bounded type parameter that was used for the
constructor method, which in our case is St ring.

Sorting the Adapter

To sort the ArrayAdapter, just call so rt () on the adapter and send it a Comparator object. Let's implement sort
in our code now. Change MainAct ivit y.java as shown:

CODE TO TYPE:

package com.oreillyschool.android1.lists;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
 private String[] data = new String [] {
 "Odin",
 "Thor",
 "Loki",
 ...
 "Forseti"
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple_list_item_1, android.R.id.text1, data);
 adapter.sort(new Comparator<String>() {
 @Override
 public int compare(String arg0, String arg1) {
 return arg0.compareTo(arg1);
 }
 });
 setListAdapter(adapter);
 }
}

Save and run it again. You'll see this:

Overriding ArrayAdapter

If all you need to display in your list is a simple view, the basic ArrayAdapter implementation is all you need.
However, many Lists require a more invo lved layout to display a more complicated data model. There are
some other default layouts that o ffer a bit more detail. For example, using
andro id.R.layout.simple_list_item_single_cho ice includes a CheckBox in the list item layout. These default
layouts can only get you so far though; in order to create a truly customized layout, you'll need to override the
default implementation o f your adapter. Let's do that now.

First, we'll need to create a new layout that will be used for each item in the List. Create a new Andro id XML
layout named my_list _it em.xml. Modify the XML as shown:

CODE TO TYPE:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 android:orientation="horizontal"
 android:gravity="center_vertical">

 <View
 android:id="@+id/color"
 android:layout_width="10dp"
 android:layout_height="50dp"
 />

 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />

</LinearLayout>

Next, let's change our data model a little bit so that it contains more than just a String. We're go ing to create a
class locally inside o f MainActivity, but you could as easily create it in a new file:

CODE TO TYPE:

package com.oreillyschool.android1.lists;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
 private String[] data = new String [] {
 "Odin",
 "Thor",
 "Loki",
 "Baldr",
 "Freyr",
 "Heimdallr",
 "Ullr",
 "Meili",
 "Hodr",
 "Forseti"
 };

 public class MyData {
 public String name;
 public boolean clicked;
 public MyData(String name) {
 this.name = name;
 this.clicked = false;
 }
 }

 private MyData[] data = new MyData[] {
 new MyData("Odin"),
 new MyData("Thor"),
 new MyData("Loki"),
 new MyData("Baldr"),
 new MyData("Freyr"),
 new MyData("Heimdallr"),
 new MyData("Ullr"),
 new MyData("Meili"),
 new MyData("Hodr"),
 new MyData("Forseti")
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple_list_item_1, android.R.id.text1, data);
 adapter.sort(new Comparator<String>() {
 @Override
 public int compare(String arg0, String arg1) {
 return arg0.compareTo(arg1);
 }
 });
 setListAdapter(adapter);
 }
}

You get an error; do you know why? Mull that over; we'll fix it in a minute. For now, let's move back to creating
our customized Adapter. Create a new class in the co m.o reillyscho o l.andro id1.list s package named
MyList Adapt er, and set the Superclass to andro id.widget .ArrayAdapt er<MyDat a> :

With the new class created and opened, make these changes to your code:

CODE TO TYPE:

package com.oreillyschool.android1.lists;

import android.widget.ArrayAdapter;
import com.oreillyschool.android1.lists.MainActivity.MyData;
import android.content.Context;
import android.graphics.Color;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class MyListAdapter extends ArrayAdapter<MyData> {

 private LayoutInflater inflater;

 public MyListAdapter(Context context, MyData[] data) {
 super(context, R.layout.my_list_item, data);
 inflater = LayoutInflater.from(context);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup root) {
 View view = convertView;
 if (view == null) {
 view = inflater.inflate(R.layout.my_list_item, null);
 }
 MyData data = getItem(position);

 TextView textView = (TextView) view.findViewById(R.id.text);
 textView.setText(data.name);

 View imageView = view.findViewById(R.id.color);
 int color = data.clicked ? Color.RED : Color.BLUE;
 imageView.setBackgroundColor(color);

 return view;
 }
}

Now, we need one last change to hook up the new class to the ListView. Go back to MainActivity.java and
make these changes:

CODE TO TYPE:

package com.oreillyschool.android1.lists;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
 public class MyData {
 public String name;
 public boolean clicked;
 public MyData(String name) {
 this.name = name;
 this.clicked = false;
 }
 }

 private MyData[] data = new MyData[] {
 new MyData("Odin"),
 new MyData("Thor"),
 new MyData("Loki"),
 new MyData("Baldr"),
 new MyData("Freyr"),
 new MyData("Heimdallr"),
 new MyData("Ullr"),
 new MyData("Meili"),
 new MyData("Hodr"),
 new MyData("Forseti")
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple_list_item_1, android.R.id.text1, data);
 adapter.sort(new Comparator<String>() {
 @Override
 public int compare(String arg0, String arg1) {
 return arg0.compareTo(arg1);
 }
 });
 MyListAdapter adapter = new MyListAdapter(this, data);
 adapter.sort(new Comparator<MyData>() {
 @Override
 public int compare(MyData arg0, MyData arg1) {
 return arg0.name.compareTo(arg1.name);
 }
 });
 setListAdapter(adapter);
 }
}

There's a lo t go ing on here, but before we analyze our changes in detail, let's run it and make sure the code is
working. Your list will look like this:

Now that we've verified that everything is working alright, let's take a closer look at our custom adapter,
starting with the constructor:

OBSERVE:

public MyListAdapter(Context context, MyData[] data) {
 super(context, R.layout.my_list_item, data);
 inflater = LayoutInflater.from(context);
}

In our constructor, we start o ff with the mandatory call to the super co nst ruct o r; but we're calling a different
super than we did before. And this time we're using a simpler constructor because we'll be handling the
creation o f each list item manually. The superclass will still handle the Array data, though:

OBSERVE:

@Override
public View getView(int position, View convertView, ViewGroup root) {
 View view = convertView;
 if (view == null) {
 view = inflater.inflate(R.layout.my_list_item, null);
 }
 MyData data = getItem(position);

 TextView textView = (TextView) view.findViewById(R.id.text);
 textView.setText(data.name);

 View imageView = view.findViewById(R.id.color);
 int color = data.clicked ? Color.RED : Color.BLUE;
 imageView.setBackgroundColor(color);

 return view;
}

The get View() method gets called each time the ListView needs to create a new ListItem or update an
existing one. There are three parameters that get sent to the method, but our main concern is with the first two.
The first, int po sit io n, is the position o f the list item that needs a layout. The second, View co nvert View,
can be either null o r contain a recycled View component that was created previously with this method for a
different item in the list. If the convertView is null, we'll need to inflate a new View component; o therwise we
just need to update the data on the view component.

Inflating a layout can consume a fair amount o f resources and time for the CPU. Inflating just one or two views
isn't usually noticeable by a user, but a ListView can be scro lled very quickly, which means many different
layouts could be required in very quick succession. For this reason, the Andro id ListView will recycle its items
so that unnecessary layout inflation can be avo ided.

Note

A common error programmers make when creating a custom list adapter is not updating all
necessary values in a recycled view. Never rely on any default values o f a newly inflated View,
because if the view has been recycled, those values have very likely changed. If you find that
your view is showing incorrect data on a list item, data that was perhaps on a previously
rendered list item, then your first step to fixing that bug should be to verify you have invalidated
all your custom data on your View in getView.

To get a reference to our data, we call the superclass method get It em() . This method returns an object o f
the type defined by the bound type parameter, which in our simple use-case is a String. This value type can be
whatever data model you wish, just as long as your Array (or ArrayList) supplied to the super constructor
contains objects only o f that type.

The rest o f the code probably looks familiar. It's the same type o f code used to find views on an Activity and
update the data for those views.

List Interaction
Now that we have the list data loading, let's update our code to react to a user clicking on a list item. Add the
MainAct ivit y.java method as shown:

MainActivity.java

package com.oreillyschool.android1.lists;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.view.View;
import android.widget.ListView;

public class MainActivity extends ListActivity {
 public class MyData {
 public String name;
 public boolean clicked;
 public MyData(String name) {
 this.name = name;
 this.clicked = false;
 }
 }

 private MyData[] data = new MyData[] {
 new MyData("Odin"),
 new MyData("Thor"),
 new MyData("Loki"),
 ...
 new MyData("Forseti")
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 MyListAdapter adapter = new MyListAdapter(this, data);
 adapter.sort(new Comparator<MyData>() {
 @Override
 public int compare(MyData arg0, MyData arg1) {
 return arg0.name.compareTo(arg1.name);
 }
 });
 setListAdapter(adapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v, int position, long id) {
 MyListAdapter adapter = (MyListAdapter) getListAdapter();
 MyData item = adapter.getItem(position);
 item.clicked = !item.clicked;
 adapter.notifyDataSetInvalidated();
 }
}

This method override is available only to ListActivity. If you were handling your ListView component manually, you
would need to set up a listener and send it to the o nIt emClickList ener() method available on the ListView
component.

Now, run the application one last time to test the results. Click some of the items to make sure the click handler is
working:

Wrapping Up
We've covered a lo t o f ground here! It's good to know that you have a handle on ListView component and Adapters
now, because virtually every Andro id application on the market uses at least one list. You're go ing to want to know
how to use them well.

Alright then. So far, so good! See you next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Dialogs, New and Old

Back for more, huh? Excellent. In this lesson, we'll talk about Dialogs. There are a few different types o f dialogs, and also a few
different methods to create and show Dialogs in Andro id.

There are essentially two ways to create dialogs in Andro id now, the new style and the o ld. With the release o f Honeycomb,
Andro id 3.x, which is specifically fo r tablets, Andro id added the new way o f creating dialogs. This process has been carried over
into Ice Cream Sandwich, Andro id 4.0 , which works on both phones and tablets. Also, thanks to the Andro id support library,
many features from Andro id 3+ are available to Andro id applications that target o lder builds o f Andro id.

Old Style
Before we get go ing, let's create a new pro ject fo r this lesson named Dialo gs, assigned to the Andro id1_Lesso ns
working set. Name the package co m.o reillyscho o l.andro id1.dialo gs.

The API methods used to create and show dialogs from an Activity are now marked "@Deprecated" in the most recent
API updates to Andro id. However, it's still worth learning how to use these o ld methods in case you run across code
that has already implemented dialogs that use it.

AlertDialog

There are a few different types o f specialized Dialogs available in Andro id, such as AlertDialog and
ProgressDialog. You can also create a custom Dialog class and populate it with whatever content you like.
Let's begin by building an AlertDialog by adding a button to the primary view. Open act ivit y_main.xml and
make these changes:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old AlertDialog"
 android:onClick="onOldAlertDialogClick" />

</RelativeLinearLayout>

Next, let's update the MainActivity to handle this button's click event; we'll tell the Activity we want to show a
Dialog, and override the o nCreat eDialo g method to create our Dialog. Make these changes:

MainActivity.java

package com.oreillyschool.android1.dialogs;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;

public class MainActivity extends Activity {

 private static final int SIMPLE_DIALOG = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void onOldAlertDialogClick(View view) {
 showDialog(SIMPLE_DIALOG);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog dialog = null;

 switch(id) {
 case SIMPLE_DIALOG:
 dialog = new AlertDialog.Builder(this).setTitle("My Alert Dialog")
 .setMessage("Pancakes or Waffles?")
 .create();
 break;
 }

 return dialog;
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

Now save the changes and run the code to see what it does. Click the OldAlert Dialo g button and you'll see
a dialog like this:

To close this dialog, you'll need to click the back button on the emulator. Typical dialogs contain at least one
button to close, or multiple buttons to allow a user to make a decision. AlertDialog makes it easy to add one,
two, or three buttons. Make these changes to MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.dialogs;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class MainActivity extends Activity {

 private static final int SIMPLE_DIALOG = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void onOldAlertDialogClick(View view) {
 showDialog(SIMPLE_DIALOG);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog dialog = null;

 switch(id) {
 case SIMPLE_DIALOG:
 dialog = new AlertDialog.Builder(this).setTitle("My Alert Dialog")
 .setMessage("Pancakes or Waffles?")

 .setNegativeButton("Boring Pancakes", dialogListener)
 .setPositiveButton("Awesome Waffles!!", dialogListener)

 .create();
 break;
 }

 return dialog;
 }

 private DialogInterface.OnClickListener dialogListener = new DialogInterface
.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 switch (which) {
 case Dialog.BUTTON_NEGATIVE:
 Toast.makeText(MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG).show();
 break;
 case Dialog.BUTTON_POSITIVE:
 Toast.makeText(MainActivity.this, "Waffles are where it's at!",
Toast.LENGTH_LONG).show();
 break;
 }
 removeDialog(SIMPLE_DIALOG);
 }
 };
}

We defined the listener function we just used as a parameter.

Save and run this code to test the results. Now after clicking either button, you'll see two buttons in the dialog,
as well as the appropriate Toast response. To close the dialog, we call the remo veDialo g method and send

as well as the appropriate Toast response. To close the dialog, we call the remo veDialo g method and send
the same id that was passed to sho wDialo g. The dialog will close after either button click.

Note

In the Andro id SDK, there are two interface methods with the signature OnClickList ener() . One
is in the andro id.view.View package. It's the interface that we used earlier fo r handling clicks to
buttons, and it's used for all standard view component click handling. The o ther is in the
andro id.co nt ent .Dialo gInt erf ace package, which is used for dialogs, and is the one we
used in our code here. I like to define the type as Dialo gInt erf ace.OnClickList ener fo r dialog
listeners to help differentiate between the more common View.OnClickList ener methods; you
can just as easily remove the Dialo gInt erf ace portion from the type as long as you are sure to
import the proper package.

The o nCreat eDialo g() method that we implemented is called by an Activity only once per id parameter
passed. If we want to make changes to the dialog created in o nCreat eDialo g before the dialog is shown, we
need to define a count variable and an o nPrepareDialo g method:

MainActivity.java

package com.oreillyschool.android1.dialogs;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.widget.Toast;

public class MainActivity extends Activity {

 private static final int SIMPLE_DIALOG = 0;
 private int count = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void onOldAlertDialogClick(View view) {
 showDialog(SIMPLE_DIALOG);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog dialog = null;

 switch(id) {
 case SIMPLE_DIALOG:
 dialog = new AlertDialog.Builder(this).setTitle("My Alert Dialog")
 .setMessage("Pancakes or Waffles?")

 .setNegativeButton("Boring Pancakes", dialogListener)
 .setPositiveButton("Awesome Waffles!!", dialogListener)

 .create();
 break;
 }

 return dialog;
 }

 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 switch (id)
 {
 case SIMPLE_DIALOG:
 count++;
 dialog.setTitle("Dialog "+count);
 break;
 }
 }

 private DialogInterface.OnClickListener dialogListener = new DialogInterface
.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 switch (which) {
 case Dialog.BUTTON_NEGATIVE:
 Toast.makeText(MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG).show();
 break;
 case Dialog.BUTTON_POSITIVE:
 Toast.makeText(MainActivity.this, "Waffles are where it's at!",

Toast.LENGTH_LONG).show();
 break;
 }
 removeDialog(SIMPLE_DIALOG);
 }
 };
}

Save and run the program. The title o f the dialog is replaced by the new title we defined in o nPrepareDialo g
and the count is updated each time a new dialog is shown:

Custom Dialog

Alert Dialo g and its Builder class are handy too ls fo r creating a quick and functional dialog, but if you need
a customized view or more contro l over functionality, you'll need to create a custom dialog.

Let's create a new custom dialog that contains an image, a radio button, and a regular button. We'll start by
creating a new button in the act ivit y_main.xml view:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old AlertDialog"
 android:onClick="onOldAlertDialogClick"
 />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old CustomDialog"
 android:onClick="onOldCustomDialogClick"
 />

</LinearLayout>

Next, update MainAct ivit y.java with the fo llowing changes:

MainActivity.java

package com.oreillyschool.android1.dialogs;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class MainActivity extends Activity {

 private static final int SIMPLE_DIALOG = 0;
 private static final int CUSTOM_DIALOG = 1;
 private int count = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void onOldAlertDialogClick(View view) {
 showDialog(SIMPLE_DIALOG);
 }

 public void onOldCustomDialogClick(View view) {
 showDialog(CUSTOM_DIALOG);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog dialog = null;

 switch(id) {
 case SIMPLE_DIALOG:
 dialog = new AlertDialog.Builder(this).setTitle("My Alert Dialog")
 .setMessage("Pancakes or Waffles?")

 .setNegativeButton("Boring Pancakes", dialogListener)
 .setPositiveButton("Awesome Waffles!!", dialogListener)

 .create();
 break;
 case CUSTOM_DIALOG:
 dialog = new Dialog(this);
 dialog.setContentView(R.layout.custom_dialog);
 dialog.setTitle("My Custom Dialog");
 break;
 }

 return dialog;
 }

 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 switch (id)
 {
 case SIMPLE_DIALOG:
 count++;
 dialog.setTitle("Dialog "+count);
 break;
 }
 }

 private DialogInterface.OnClickListener dialogListener = new DialogInterface

.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 switch (which) {
 case Dialog.BUTTON_NEGATIVE:
 Toast.makeText(MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG).show();
 break;
 case Dialog.BUTTON_POSITIVE:
 Toast.makeText(MainActivity.this, "Waffles are where it's at!",
Toast.LENGTH_LONG).show();
 break;
 }
 removeDialog(SIMPLE_DIALOG);
 }
 };
}

Finally, we'll need to create the layout fo r the dialog. Create a new XML Layout file in the /res/layo ut fo lder,
name it cust o m_dialo g.xml, and then make these changes to it:

/res/layout/custom_dialog.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center_vertical" >

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@android:drawable/ic_menu_help" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Is this the real life?" />
 </LinearLayout>

 <RadioGroup
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <RadioButton
 android:id="@+id/rb_one"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Real life"/>
 <RadioButton
 android:id="@+id/rb_two"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Just fantasy"/>
 </RadioGroup>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <Button
 android:id="@+id/cancel_btn"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Cancel" />
 <Button
 android:id="@+id/okay_btn"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Okay" />
 </LinearLayout>

</LinearLayout>

Save all the changes and run the application to test the code. If all is working correctly, you'll see a new dialog
like this:

Just like before, we haven't hooked up any event listeners to our dialog, so the only way to close it is by
clicking the back button. Let's hook these buttons up to close the dialog. Make these changes to
MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.dialogs;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends Activity {

 private static final int SIMPLE_DIALOG = 0;
 private static final int CUSTOM_DIALOG = 1;
 private int count = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void onOldAlertDialogClick(View view) {
 showDialog(SIMPLE_DIALOG);
 }

 public void onOldCustomDialogClick(View view) {
 showDialog(CUSTOM_DIALOG);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog dialog = null;

 switch(id) {
 case SIMPLE_DIALOG:
 dialog = new AlertDialog.Builder(this).setTitle("My Alert Dialog")
 .setMessage("Pancakes or Waffles?")

 .setNegativeButton("Boring Pancakes", dialogListener)
 .setPositiveButton("Awesome Waffles!!", dialogListener)

 .create();
 break;
 case CUSTOM_DIALOG:
 dialog = new Dialog(this);
 dialog.setContentView(R.layout.custom_dialog);
 dialog.setTitle("My Custom Dialog");
 ((Button)dialog.findViewById(R.id.cancel_btn)).setOnClickListener(cu
stomDialogClickListener);
 ((Button)dialog.findViewById(R.id.okay_btn)).setOnClickListener(cust
omDialogClickListener);
 break;
 }

 return dialog;
 }

 @Override
 protected void onPrepareDialog(int id, Dialog dialog) {
 switch (id)
 {
 case SIMPLE_DIALOG:
 count++;
 dialog.setTitle("Dialog "+count);

 break;
 }
 }

 private View.OnClickListener customDialogClickListener = new View.OnClickLis
tener() {
 @Override
 public void onClick(View v) {
 removeDialog(CUSTOM_DIALOG);
 }
 };

 private DialogInterface.OnClickListener dialogListener = new DialogInterface
.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 switch (which) {
 case Dialog.BUTTON_NEGATIVE:
 Toast.makeText(MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG).show();
 break;
 case Dialog.BUTTON_POSITIVE:
 Toast.makeText(MainActivity.this, "Waffles are where it's at!",
Toast.LENGTH_LONG).show();
 break;
 }
 removeDialog(SIMPLE_DIALOG);
 }
 };
}

Test the code to make sure it works. Both buttons should close the dialog. You might've noticed that this time
we used the View.OnClickList ener instead o f the Dialo gInt erf ace.OnClickList ener interface. That's
because we're setting the listener directly on the button in the view of our Dialog, and not on the Dialog itself.
In fact, the base Dialog class doesn't even use the Dialo gInt erf ace.OnClickList ener interface, it uses
only the subclasses like AlertDialog and ProgressDialog.

Note

You might be tempted to try and use the andro id:o nClick attribute shortcut in the XML to
handle the click event from the buttons in the dialog. Unfortunately, this won't work inside a
dialog and will actually throw an error when you click the button. That's because the view is a
part o f the Dialog and not the Activity, and the Dialog class does not implement a dynamic
andro id:o nClick listener.

New Style
As of Andro id 3.0 and beyond, there is a new standard way to create and manage Andro id dialogs. But there is a way
to implement Dialogs using the new processes and still target an o lder version o f the Andro id SDK. Before we can get
to that though, we're go ing to have to take a short detour and talk about the Andro id compatibility library and fragments.

Support Library

Unfortunately, the majority o f Andro id phones in use run o lder versions o f Andro id and, as such, they don't
have access to the latest Andro id SDK features. In order to help developers take advantage o f the new
features o f the latest SDK, Google created a "compatibility library" (also called "support library" or "support
package") that allows applications that target o lder versions o f the Andro id SDK to take advantage o f many o f
the new features o f Andro id.

To use the Support library we will need to download and add it to our pro ject. ADT makes this process very
easy now. Right-click on the root pro ject fo lder Dialo gs, choose Andro id T o o ls | Add Suppo rt Library,
select the latest support library version when prompted, click Accept , and you're done. Eclipse will
automatically download the latest version o f the support library and include it in your pro ject. When it's
finished you can verify the process worked by expanding the libs fo lder to find the android-support-v4.jar file.

Fragments

Perhaps the most important feature in the Support Library is its support fo r fragments. A Fragment is like a
mini-activity. They behave much like Activities, but they must be added to an activity. They can be created and
destroyed within an Activity's lifecycle, but if the Activity is stopped, no fragment within it can be started; if the
Activity is destroyed, then all o f its fragments are destroyed as well.

Let's get a little practice in with basic fragments. We'll convert our current dialog application to use a fragment.
Start by creating a new class named MainFragment and have it extend Fragment :

Now let's create a new XML Layout File named main_f ragment .xml, copy all the XML from
act ivit y_main.xml, and place it in main_f ragment .xml. It will look like this when you are finished:

/res/layout/main_fragment.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old AlertDialog"
 android:onClick="onOldAlertDialogClick" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old CustomDialog"
 android:onClick="onOldCustomDialogClick" />

</LinearLayout>

Now close main_f ragment .xml, go back to act ivit y_main.xml, and update it to use the fragment
MainFragment . We'll also change it to a basic FrameLayout since we'll only be using a single fragment:

/res/layout/activity_main.xml

<LinearFrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context=".MainActivity" >>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old AlertDialog"
 android:onClick="onOldAlertDialogClick" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old CustomDialog"
 android:onClick="onOldCustomDialogClick" />

 <fragment
 class="com.ost.android1.dialogs.MainFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearFrameLayout>

Save that file. Now, back in MainFragment .java, update it to load a view:

MainFragemnt.java

package com.oreillyschool.android1.dialogs;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class MainFragment extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.activity_main_fragment, container, fals
e);
 }

}

This is a little different from how we define a view in an Activity, but it's actually similar to how we create views
in a list adapter. In a fragment that has a view, you need to override and implement the o nCreat eView
method. An Inf lat er object is passed to the method as a convenience to inflate a new View. The
Inf lat er.inf lat e method is actually overloaded, but the version we're using here takes three parameters: a
resource id to the view layout, a ViewGro up object that will be used to parent the View, and a Bo o lean to
determine whether to attach the View to the ViewGroup. One o f the overloaded methods doesn't have the 3rd
Bo o lean parameter, effectively making that an optional parameter. We don't want to attach our View to the
container during inflation, so we send "false," that way the inflated view inherits only the layout parameters
from the container.

Before we can test this code we'll need to make one last change to MainActivity so it can load fragments (it's
only a small change so we'll just show the affected lines this time):

MainActivity.java

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends FragmentActivity {
...

Save and run the Application. Everything functions exactly as it did before. We'll explore the benefits and best
usage for fragments in future lessons, but right now we'll move on, or rather get back, to creating dialogs in
the "new way" with a type o f fragment called Dialo gFragment .

DialogFragment

A Dialo gFragment is a type o f fragment that's loaded into an Activity like any o ther fragment, except that its
view is a dialog. This allows the dialog's lifecycle to be tied to a fragment instance instead o f directly to the
Activity itself. This also lets us create dialogs that support the standard for Andro id devices running SDK 3.0
and up.

Let's add and implement a DialogFragment to our application. Create a new class called
MyCust o mDialo gFragment and have it extend the Dialo gFragment class:

Next, let's update this code to use the same view as our previous custom dialog:

MyCustomDialogFragment.java

package com.oreillyschool.android1.dialogs;

import android.app.Dialog;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;

public class MyCustomDialogFragment extends DialogFragment {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setStyle(DialogFragment.STYLE_NORMAL, android.R.style.Theme_Dialog);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.custom_dialog, container, false);
 ((Button)v.findViewById(R.id.cancel_btn)).setOnClickListener(listener);
 ((Button)v.findViewById(R.id.okay_btn)).setOnClickListener(listener);
 return v;
 }

 private View.OnClickListener listener = new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 dismiss();
 }
 };

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 Dialog d = super.onCreateDialog(savedInstanceState);
 d.setTitle("My New Custom Dialog");
 return d;
 }

}

Now, open main_f ragment .xml and add another button:

main_fragment.xml

...

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Old CustomDialog"
 android:onClick="onOldCustomDialogClick"
 />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New CustomDialog"
 android:onClick="onNewCustomDialogClick"
 />

</LinearLayout>

And finally, go back to MainAct ivit y.java to implement the click event fo r this button:

MainActivity.java

import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentTransaction;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends FragmentActivity {
 private static final int SIMPLE_DIALOG = 0;
 private static final int CUSTOM_DIALOG = 1;

 private static final String CUSTOM_DIALOG_FRAGMENT = "customDialogFragment";

 private int count = 0;

...

 public void onOldCustomDialogClick(View view) {
 showDialog(CUSTOM_DIALOG);
 }

 public void onNewCustomDialogClick(View view) {
 FragmentManager fm = getSupportFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 DialogFragment df = new MyCustomDialogFragment();
 df.show(ft, CUSTOM_DIALOG_FRAGMENT);
 }

...

Save all this code and run it. The new button launches a custom dialog that looks exactly the same as the
previous custom dialog (since they're using the same layout view), only with a slightly different title.

Now instead o f using the Activity to manage the display and concealment o f the Dialog, we use the
DialogFragment through the Dialo gFragment .sho w() and Dialo gFragment .dismiss() methods.
Dialo gFragment .sho w() requires either a Fragment Manager object or a Fragment T ranscat io n. An
instance o f Fragment Manager can always be retrieved from a Fragment Act ivit y by calling the
get Fragment Manager() method in Andro id SDK version 3.0 and up, or by calling
get Suppo rt Fragment Manager() which is available to the Fragment Act ivit y in the support library for
use in applications using o lder versions o f Andro id SDK.

We could've created an AlertDialog using a DialogFragment as well. The only difference between this and the
o ld method is that we wouldn't even need to implement onCreateView() fo r the AlertDialog. All we would have
to do is copy the Alert Dialo g.Builder code from before into the o nCreat eDialo g implemention o f the
dialog fragment.

Wrapping Up
Wow! We covered a lo t in this lesson too. We learned about Dialogs and dipped our toes into the support library and
fragments. Don't be discouraged if you still find fragments perplexing. The more we use them, the more you'll
understand them.

See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Menus

Hi there and welcome back! In this lesson we'll cover the various types o f menus in Andro id. Menus are convenient too ls that
provide contextual options to a user during an activity. There's quite a bit to cover so let's get started!

Menus, Menus, Menus
The term "menu" can refer to a few different types o f components in Andro id. The most common menu in Andro id is
the Options Menu. The Options Menu appears when a user touches the hardware menu button on their device. In
versions before Andro id 3.0 , the Options Menu appears as a small window anchored to the bottom of the device
screen, ho lding up to six menu items (automatically arranged into two rows o f three buttons). On devices using
Andro id 3.0 and up, the menu is integrated into the Application Bar.

Another type o f menu is the Context Menu. Unlike the Options Menu, the Context Menu is directly associated with a
View component instead o f the Activity. A Context Menu will appear when the user long-presses on the View with
which it was registered. The Context Menu is similar in appearance to a traditional Dialog. These are typically
implemented on items in a list to allow the user to perform an alternate action on the list item.

The last type o f menu is a Submenu. A Submenu is a menu item contained within another menu. A Submenu can be
added to an Options Menu or a Context Menu. Regardless o f the type o f menu to which a Submenu is attached, it will
resemble a Context Menu.

Options Menu

To get started making our menus, create a new pro ject named Menus, with the with the Package name
co m.o reillyscho o l.andro id1.menus, in the Andro id1_Lesso ns working set.

Menus in Andro id are typically defined using XML resource files that are stored in the /res/menu fo lder o f the
pro ject. Let's use the ADT XML values file wizard to create our menu:

1. Select the Menus pro ject and then select File | New | Ot her (o r use the keyboard shortcut Ct rl-
N).
2. In the "Select a Wizard" dialog, choose the Andro id XML File option in the Andro id fo lder, and
click Next .
3. In the "New Andro id XML File" wizard, change the "Resource Type" to Menu, choose the Menus
pro ject, enter the file name main_menu. Click Finish to create the XML resource.

If it did not already exist, the wizard creates the /res/menu fo lder automatically and saves the new XML
resource into that fo lder. Now let's get into that new XML and create some menu items! Modify
main_menu.xml as shown:

/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/mi_dalek"
 android:title="Dalek"/>

 <item
 android:id="@+id/mi_cybermen"
 android:title="Cybermen"/>

</menu>

In order to define menus in the XML resource, the root xml node must be menu, and its children must be
either it em o r gro up nodes. An item node typically takes no children, but has many possible attributes, fo r
instance, id, t it le , ico n, o r visible . Each item node represents an item in the menu. A group node can take
only o ther item nodes as children; a group node is used to define certain attributes for its child item nodes,
such as visible , enabled, and checkable .

Our menu here has only two items defined with titles (and no icons).

Note

There's a plethora o f native icons available to developers in the Andro id SDK. There are many
common menu actions among apps on Andro id (like "info" and "help"). If you implement these
kinds o f menu items in your applications, I recommend that you use system icons. System
icons provide a consistent experience for the end user that will help them to understand how
your application works. If you find yourself in need o f custom icons, check out the Andro id
recommended guidelines for icon design.

We've hard-coded our strings for the title attribute, but we could have used a res/string.xml string reference id
instead (using the @string/<string-id> format). In fact, just about any Andro id function that takes a string can
also take a reference to string resource id. I generally recommend using string resources rather than hard-
coded strings. So far in the course, we've been hard-coding most o f our strings to keep the code concise and
focused. But in your own future pro jects, you'll want to put all strings that will be visible to users in the strings
XML resource file.

Okay, now let's get started with MainAct ivit y.java to implement the menu resource. Add the code below to
MainAct ivit y.java as shown:

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
}

And that's it! Now we can save and run the pro ject. Once the application is installed and running on the
emulator, click the Menu key on the emulator screen; the menu should pop up from the bottom:

http://developer.android.com/guide/practices/ui_guidelines/icon_design_menu.html

OBSERVE:

@Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

We use the o nCreat eOpt io nsMenu() method to create our menu. The method is called by Andro id
automatically when a user clicks on the Menu button. o nCreat eOpt io nsMenu() receives one object in its
parameters, a Menu object. Then we inflate the menu object with our XML by using a MenuInf lat er obtained
from get MenuInf lat er() . The menu inflater takes two parameters: an R.java reference to the XML file and
the menu o bject into which the XML is inflated.

Just like the dialog methods for creating a dialog, o nCreat eOpt io nsMenu() is called only once by the
Activity during its active lifecycle. To make updates to the menu before it is presented to the user, we would
override and implement the o nPrepareOpt io nsMenu() method. We'll practice do ing that later in the lesson,

but fo r now let's add some code to MainAct ivit y.java in order to respond to clicks on the menu items:

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT
).show();
 break;
 }
 return true;
 }
}

Save and run it. You'll see the appropriate toast message pop up for each menu item.

OBSERVE:

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT
).show();
 break;
 }
 return true;
 }

When a menu item is selected, the Andro id system triggers a call to the o nOpt io nsIt emSelect ed()
method, passing the selected MenuIt em object as the only parameter. As long as you have assigned an id
attribute to each o f the items in your XML, you can use a switch/cases block on the it em.get It emId() integer
to find out which item was clicked and respond accordingly. The t hird paramet er fo r the makeText) method
contro ls how long the message will display.

To demonstrate the "More" button, we'll add a few more items to main_menu.xml:

/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/mi_dalek"
 android:title="Dalek"/>

 <item
 android:id="@+id/mi_cybermen"
 android:title="Cybermen"/>

 <item
 android:id="@+id/mi_angels"
 android:title="Weeping Angels"/>

 <item
 android:id="@+id/mi_silence"
 android:title="The Silence"/>

 <item
 android:id="@+id/mi_silurians"
 android:title="Silurians"/>

 <item
 android:id="@+id/mi_sontarans"
 android:title="Sontarans"/>

 <item
 android:id="@+id/mi_master"
 android:title="The Master"/>

</menu>

Now when you run the application you'll see the regular Options Menu showing only the first five items; the
sixth item is a "More" button. When you click the More button, you'll see another vertically arranged menu that
contains the remaining items:

We can try experimenting with a submenu now as well. Modify main_menu.xml as shown (in Eclipse, you
can indent a block o f code by highlighting it and pressing the T ab key):

/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/mi_dalek"
 android:title="Dalek"/>

 <item
 android:id="@+id/mi_cybermen"
 android:title="Cybermen"/>

 <item
 android:title="Others">

 <menu>

 <item
 android:id="@+id/mi_angels"
 android:title="Weeping Angels"/>

 <item
 android:id="@+id/mi_silence"
 android:title="The Silence"/>

 <item
 android:id="@+id/mi_silurians"
 android:title="Silurians"/>

 <item
 android:id="@+id/mi_sontarans"
 android:title="Sontarans"/>

 <item
 android:id="@+id/mi_master"
 android:title="The Master"/>
 </menu>
 </item>
</menu>

Here we wrapped some of the previous items in a menu tag, and then wrapped that within a new it em tag
titled "Others." Now when we test the application menu button, the initial Options Menu only shows "Dalek,"
"Cybermen," and "Others."

When you click Ot hers, you see a submenu with the remaining items:

Modifying an Options Menu

As you do with a Dialog, you'll want to update a menu before it becomes visible to the user. Since the "create"
method for a menu gets called just once during the lifecycle o f an activity, you need to use another method to
handle the updates. Make these changes to MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends Activity {
 private int optionLastClickedId = -1;
 private int optionClickedId = -1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }
 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 optionClickedId = item.getItemId();

 switch (optionClickedId) {
 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();
 break;
 }
 return true;
 }
}

Save and run it. Whichever menu item you click will become disabled the next time the Options Menu is
presented (and the previously disabled item will become enabled):

OBSERVE:

public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }
 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
}

The o nPrepareOpt io nsMenu() method receives one parameter, the Menu object that was created earlier
in the onCreateOptionsMenu() method. We can use this object to modify the menu any way we like, such as

finding specif ic MenuIt em o bject s and mo dif ying t heir pro pert ies, o r even adding or removing a
MenuItem from the Menu.

Note
Menus can be created programmatically as well, using the Menu and MenuIt em constructors,
then adding them with any o f the various "add" methods available on Menu. In this lesson,
though, we create all o f our Menus with the most commonly used MenuInf lat er method.

Context Menu

Like Options Menus, Context Menus can also be defined using an XML resource file. We can reuse the menu
XML resource that we used earlier fo r the Options Menu to implement a Context Menu. In order to do that, we
register the menu with a view component in our Activity. First, we'll need to define a view component in
act ivit y_main.xml:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

</RelativeLinearLayout>

We use the default TextView that was generated with our pro ject, and we add an id attribute so we can locate
the component. Next let's update MainAct ivit y.java to register the view with a menu:

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.View;

public class MainActivity extends Activity {
 private int optionLastClickedId = -1;
 private int optionClickedId = -1;

 /** Called when the activity is first created. */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 View textView = findViewById(R.id.text);
 registerForContextMenu(textView);
 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo me
nuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }
 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 optionClickedId = item.getItemId();

 switch (optionClickedId) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();

 break;
 }
 return true;
 }
}

In our Activity, we must override and implement the o nCreat eCo nt ext Menu() method in order to handle
creating the context menu when our registered View has been long-pressed (that is, when part o f your screen
has been tapped and held down). We inflated the menu here exactly the same way we did for the Options
Menu. This works because we've registered only a single view for a Context Menu, but once we register
multiple views (or a list), we'll probably need to add some more code to determine which View is requesting a
Context Menu, o therwise each View would present the exact same Context Menu. We can save and run our
code now to test the menu. To present the menu, you'll need to click and ho ld on the TextView (the emulator
version o f a long-press):

Responding to Context Menu clicks is similar to the Options Menu as well. We just need to override a different
method. We can reuse the code from o nOpt io nsIt emSelect ed() since we're already inflating the same
menu:

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.View;

public class MainActivity extends Activity {
 private int optionLastClickedId = -1;
 private int optionClickedId = -1;

 /** Called when the activity is first created. */
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 View textView = findViewById(R.id.text);
 registerForContextMenu(textView);
 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo me
nuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();
 break;
 }
 return true;
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }
 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 optionClickedId = item.getItemId();

 switch (optionClickedId) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();
 break;
 }
 return true;
 }
}

Save and run the app once more to test that the click handler is working correctly. The method for handling
Context Menu clicks works exactly the same way as the Options Menu click handler method. However, while
the Options Menu always comes from the same menu source, the Context Menu could potentially be
generated from any View in the activity that registered to display a Context Menu, so you might need to write
some defensive code to determine which View initiated the menu. This is especially true when using a
Context Menu with a ListView.

Let's add a ListView to this application to see how to use Context Menu with a list. We can reuse the list code
from our earlier lesson that covered the ListView component. If you still have the List s pro ject available, go
ahead and copy the /src/MyList Adapt er.java and res/layo ut /my_list _it em.xml files into the
corresponding fo lders in this pro ject, as well as the data and setup that was defined in MainActivity.java and
the ListView component from activity_main.xml. Don't just copy those last two files over, though; we want to
merge, not replace, the list data with our existing code.

If you don't have the previous code or you just want to re-type it, you can fo llow the change instructions
below. Create a new class file named MyList Adapt er and make it extend the
andro id.widget .ArrayAdapt er class. Then modify MyListAdapter.java as shown:

MyListAdapter.java

package com.oreillyschool.android1.menus;

import com.oreillyschool.android1.menus.MainActivity.MyData;
import android.content.Context;
import android.graphics.Color;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.TextView;

public class MyListAdapter extends ArrayAdapter<MyData> {

 private LayoutInflater inflater;

 public MyListAdapter(Context context, MyData[] data) {
 super(context, R.layout.my_list_item, data);
 inflater = LayoutInflater.from(context);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup root) {
 View view = convertView;
 if (view == null) {
 view = inflater.inflate(R.layout.my_list_item, null);
 }
 MyData data = getItem(position);

 TextView textView = (TextView) view.findViewById(R.id.text);
 textView.setText(data.name);

 View imageView = view.findViewById(R.id.color);
 int color = data.clicked ? Color.RED : Color.BLUE;
 imageView.setBackgroundColor(color);

 return view;
 }

}

Next, create a new XML layout file named my_list _it em.xml as shown:

/res/layout/my_list_item.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 android:gravity="center_vertical">

 <View
 android:id="@+id/color"
 android:layout_width="10dp"
 android:layout_height="50dp" />

 <TextView
 android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

</LinearLayout>

Next, modify act ivit y_main.xml and MainAct ivit y.java as shown:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:id="@+id/text"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

</LinearLayout>

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.Activity;
import android.app.ListActivity;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.Toast;
import android.widget.ListView;
import java.util.Comparator;

public class MainActivity extends Activity {
public class MainActivity extends ListActivity {
 private int optionLastClickedId = -1;
 private int optionClickedId = -1;

 public class MyData {
 public String name;
 public boolean clicked;
 public MyData(String name) {
 this.name = name;
 this.clicked = false;
 }
 }

 private MyData[] data = new MyData[] {
 new MyData("Odin"),
 new MyData("Thor"),
 new MyData("Loki"),
 new MyData("Baldr"),
 new MyData("Freyr"),
 new MyData("Heimdallr"),
 new MyData("Ullr"),
 new MyData("Meili"),
 new MyData("Hodr"),
 new MyData("Forseti")
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 View textView = findViewById(R.id.text);
 registerForContextMenu(textView);
 MyListAdapter adapter = new MyListAdapter(this, data);
 adapter.sort(new Comparator<MyData>() {
 @Override
 public int compare(MyData arg0, MyData arg1) {
 return arg0.name.compareTo(arg1.name);
 }
 });

 setListAdapter(adapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v, int position, long id) {
 MyListAdapter adapter = (MyListAdapter) getListAdapter();
 MyData item = adapter.getItem(position);
 item.clicked = !item.clicked;
 adapter.notifyDataSetInvalidated();

 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo me
nuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();
 break;
 }
 return true;
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }
 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 optionClickedId = item.getItemId();

 switch (optionClickedId) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();
 break;
 }
 return true;
 }
}

Before we make any further changes, save everything here and run the pro ject to make sure our previous
menus and the list from the previous lesson are working. You'll see the list and still get the Context menu
when you click and ho ld on the TextView:

Now let's make some more changes to get the ListView to show a context menu for each item. We'll start by
creating a new menu XML resource. Name the new resource list _menu.xml and make these changes:

/res/menu/list_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/mi_alpha"
 android:title="Alpha" />

 <item
 android:id="@+id/mi_echo"
 android:title="Echo" />

 <item
 android:id="@+id/mi_sierra"
 android:title="Sierra" />

</menu>

Now we'll register our list to show a context menu for each item in the list. Make these changes to
MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.menus;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.AdapterView.AdapterContextMenuInfo;
import android.widget.ListView;
import android.widget.Toast;
import java.util.Comparator;

public class MainActivity extends ListActivity {
 private int optionLastClickedId = -1;
 private int optionClickedId = -1;

 public class MyData {
 public String name;
 public boolean clicked;
 public MyData(String name) {
 this.name = name;
 this.clicked = false;
 }
 }

 private MyData[] data = new MyData[] {
 new MyData("Odin"),
 new MyData("Thor"),
 new MyData("Loki"),
 new MyData("Baldr"),
 new MyData("Freyr"),
 new MyData("Heimdallr"),
 new MyData("Ullr"),
 new MyData("Meili"),
 new MyData("Hodr"),
 new MyData("Forseti")
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 View textView = findViewById(R.id.text);
 registerForContextMenu(textView);
 registerForContextMenu(getListView());

 MyListAdapter adapter = new MyListAdapter(this, data);
 adapter.sort(new Comparator<MyData>() {
 @Override
 public int compare(MyData arg0, MyData arg1) {
 return arg0.name.compareTo(arg1.name);
 }
 });

 setListAdapter(adapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v, int position, long id) {
 MyListAdapter adapter = (MyListAdapter) getListAdapter();
 MyData item = adapter.getItem(position);
 item.clicked = !item.clicked;

 adapter.notifyDataSetInvalidated();
 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo me
nuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 final MenuInflater inflater = getMenuInflater();
 if (v == getListView()) {
 inflater.inflate(R.menu.list_menu, menu);
 } else {
 inflater.inflate(R.menu.main_menu, menu);
 }
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 MyData data = null;
 if (item.getMenuInfo() != null && item.getMenuInfo() instanceof AdapterC
ontextMenuInfo) {
 AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuI
nfo();
 data = (MyData) getListAdapter().getItem(info.position);
 }

 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT
).show();
 break;
 case R.id.mi_alpha:
 case R.id.mi_echo:
 case R.id.mi_sierra:
 if (data != null)
 Toast.makeText(this, "You clicked " + item.getTitle(), Toast.LENGT
H_LONG).show();
 break;
 }
 return true;
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 final MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }
 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {

 optionClickedId = item.getItemId();

 switch (optionClickedId) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT
).show();
 break;
 }
 return true;
 }
}

Save your changes and test the app. You'll see the new Context Menu when you long-press on a list item. If
you tap a Context menu item, you'll see the corresponding Toast message:

Now we'll make a change to the o nCo nt ext It emSelect ed method in MainActivity so it looks up which
ListItem was clicked and displays both the list item name and the menu option name that was clicked in the
Toast message:

MainActivity.java

...
 @Override
 public boolean onContextItemSelected(MenuItem item) {
 MyData data = null;
 if (item.getMenuInfo() != null && item.getMenuInfo() instanceof AdapterC
ontextMenuInfo) {
 AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuI
nfo();
 data = (MyData) getListAdapter().getItem(info.position);
 }

 switch (item.getItemId()) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_LONG).show();
 break;
 case R.id.mi_cybermen:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT
).show();
 break;
 case R.id.mi_alpha:
 case R.id.mi_echo:
 case R.id.mi_sierra:
 if (data != null)
 Toast.makeText(this, data.name + " - " + item.getTitle(), To
ast.LENGTH_LONG).show();
 break;
 }
 return true;
 }
...

Save and run the code. When you long-press an item and then select alpha, echo, or sierra, you'll see a
message with both selections.

OBSERVE:

MyData data = null;
if (item.getMenuInfo() != null && item.getMenuInfo() instanceof AdapterContextMe
nuInfo) {
 AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuInfo();
 data = (MyData) getListAdapter().getItem(info.position);
}

In the beginning o f the method we call get MenuInf o () on the MenuIt em object that was passed to the
method. If the source o f this Context Menu is a list view item, the get MenuInf o () returns an instance o f
Adapt erCo nt ext MenuInf o . If the source o f the Context Menu is a TextView, get MenuInf o () will only
return a null, so we have to write some defensive code here to make sure we don't get a null po inter error. If
we get an Adapt erCo nt ext MenuInf o object, we can use it to find the position o f the list item, and with that
we can retrieve the model that was used to create the list item and then use the model name property in the
Toast message.

Note
Unlike the Options Menu, the Context Menu's create method gets called after each long-press
on the registered View, so there's no "prepare" method to override in order to make changes to
the menu before it is shown; instead, you just put the logic in the o nCreat eCo nt ext Menu()
method. Keep in mind that Context Menus do not support icons.

Wrapping Up
Well, it seem like menus can pop up anywhere, huh? That's good, because they allow you to provide additional
functionality to the screen without cluttering up the view. Now that you have experience creating, modifying, and
handling each o f the various types o f Menus, feel free to play around with these too ls on your own. If you feel like you'd
like a bit more guidance, hit up the Andro id documentation site to explore Menus even further.

When you're ready, move on to the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com/guide/topics/ui/menus.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Saving Data with Shared Preferences

Good to have you back. I appreciate your persistence! This lesson covers Shared Preferences. Shared Preferences help your
application to remember decisions and the state o f the data between each application session. There are o ther, more invo lved
methods o f data persistence available on Andro id (such as a sqlite database), but we'll cover those in future lessons.

Shared Preferences
For this lesson, we'll recycle code from before. There was a lo t go ing on in the code from that last pro ject, but that
density will make it especially useful fo r us to use to test the Shared Preferences feature.

Think o f a Shared Preference as a basic data model to which your application can read and write efficiently. The
SharedPreferences class is the interface used to communicate with the data. You can write any primitive data object to
the SharedPrefences data model (such as int, float, long, and string). The data is saved as a key-value pair.

SharedPreferences doesn't support complex data models, but it works well fo r preserving application state and
personalized user settings between sessions. There's actually a specialized Activity fo r managing user settings that
handles much o f the work automatically. We'll get into that later, but right now let's go over with the basics o f using the
SharedPreferences class.

Note To save space in this and future lessons, we'll sometimes just show relevant portions o f the programs in
our CODE TO TYPE boxes. We'll use ellipses (...) to indicate that some code has been omitted.

Getting Started with SharedPreferences

We'll jump right in and integrate SharedPreferences into our existing code. Previously, we created an Options
Menu that would disable the previously selected option. Let's modify our code to persist the previous
disabled option between sessions. In the Menus pro ject, open the MainAct ivit y.java file, and make these
changes:

MainActivity.java

...
import android.app.ListActivity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.widget.AdapterView.AdapterContextMenuInfo;
import android.widget.ListView;
import android.widget.Toast;
import java.util.Comparator;
...
public class MainActivity extends ListActivity {

 private static final String DISABLED_OPTION_KEY = "disabledOption";
 private int optionLastClickedId = -1;
 private int optionClickedId = -1;

...

We start by defining a permanent key to use in the key-value pair. In larger pro jects, it's sometimes more
practical to define constant values in a helper/utility class, but we didn't do that here because we're focused on
using SharedPreferences. We also delete the optionClickedId variable, because we'll be handling that entirely
in SharedPreferences now. Go ahead and make the next set o f changes to MainAct ivit y.java:

MainActivity.java

...

 @Override
 public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem item = menu.findItem(optionLastClickedId);
 if (item != null) {
 item.setEnabled(true);
 }

 int optionClickedId = getPreferences(MODE_PRIVATE).getInt(DISABLED_OPTIO
N_KEY, -1);

 item = menu.findItem(optionClickedId);
 if (item != null) {
 item.setEnabled(false);
 }
 optionLastClickedId = optionClickedId;

 return super.onPrepareOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 optionClickedId = item.getItemId();
 int optionClickedId = item.getItemId();
 final SharedPreferences prefs = getPreferences(MODE_PRIVATE);
 final SharedPreferences.Editor editor = prefs.edit();
 editor.putInt(DISABLED_OPTION_KEY, optionClickedId);
 editor.commit();

 switch (optionClickedId) {
 case R.id.mi_dalek:
 Toast.makeText(this, "Exterminate!", Toast.LENGTH_SHORT).show();
 break;
 case R.id.mi_cyberman:
 Toast.makeText(this, "You will be upgraded.", Toast.LENGTH_SHORT).sh
ow();
 break;
 }
 return true;
 }
}

Save the program. To make sure your code works, run the application, click the Menu button, choose a menu
option and make sure that it's disabled when you open the menu again, close the application (hit the back
button until you see the desktop), and then re-open the application to make sure the menu item that was
disabled before, is still disabled. You should be able to restart the emulator and the application should still
persist the disabled menu option:

Since we are no longer using the o pt io nClickedId class member variable, we have to update each
reference that uses it to use the SharedPreferences class instead. Take a look at onPrepareOptionsMenu():

OBSERVE:

int optionClickedId = getPreferences(MODE_PRIVATE).getInt(DISABLED_OPTION_KEY, -
1);

The first fix was to load the value out o f the SharedPreferences. We call the method get Pref erences()
(available from Activity) to get an instance o f the SharedPreference class unique to the current Activity. The
method takes o ne paramet er, which defines the permissions o f the preferences file that is created for the
Activity. The Activity class defines a series o f constants to help you configure the privacy correctly:
MODE_PRIVATE, MODE_APPEND, MODE_WORLD_READABLE, and MODE_WORLD_WRITABLE. We use
MODE_PRIVAT E to keep the preferences private and inaccessible to o ther languages. If a preference file
already exists with a privacy o ther than MODE_PRIVATE, that preference file will be deleted and a new one
created. Using MODE_APPEND as our parameter would only create a new preference file if one didn't exist,
regardless o f privacy setting. MODE_WORLD_READABLE allows o ther apps to read the preference file, and
MODE_WORLD_WRITABLE allows o ther apps to read and modify the preference file.

We use the get Int () method, sending it the DISABLED_OPT ION_KEY key, to retrieve the saved value for
our key-value pair. This method (as well as every o ther get method on SharedPreferences) takes a second
parameter as a "default value" to be returned if the key-value pair does not exist yet in the SharedPreference
file. It is safe to use -1 as a default value here because resource id parameters never use negative values:

OBSERVE: onOptionsItemSelected()

int optionClickedId = item.getItemId();
final SharedPreferences prefs = getPreferences(MODE_PRIVATE);
final SharedPreferences.Editor editor = prefs.edit();
editor.putInt(DISABLED_OPTION_KEY, optionClickedId);
editor.commit();

Next, we update o nOpt io nsIt emSelect ed() to save the correct value into SharedPref erences. Again we
use get Pref erences with the same privacy paramet er to get access to our SharedPref erences object.
To write a value to the preference file, you have to get an instance o f the SharedPref erences.Edit o r class
by calling the edit () method on the SharedPreferences class. Then, with the Editor, we use the helper method
to update the key-value pair to the preference. Finally, we call co mmit () on the Editor class in order to write
the value to the SharedPreferences file; if we didn't call co mmit () , SharedPreferences would ro ll back to their
previous values.

There are many o ther helper methods available on the Editor class for the different types o f value that are
supported by SharedPreferences, such as put St ring() and put Lo ng() . Instead o f using the
get Pref erences() method to get the SharedPreferences object, we could have used the
get SharedPref erences() method. Both methods work almost identically, but get SharedPref erences()
takes another parameter (a String) that is used as a unique name for the SharedPreferences file that is created
for the Activity. Using get SharedPref erences() , you can create as many different SharedPreference files as
you want. If you need only a single preference cache for a single Activity, use get Pref erences() . If you want
multiple activities to have access to the same preference class, then you have a few options available. You
could use get SharedPref erences() and use the same name in each Activity that loads the preference, or
you could use the Application class to create a default SharedPreference; fo r example,
get Applicat io n().get Pref erences(MODE_PRIVAT E) .

We haven't covered the Application class in great detail, but there's not typically much need to do that. The
Application class functions almost exactly like an Activity with similar methods available to it (both Activity and
Application extend the Context class). However, each Andro id app has only one Application, and it can be
accessed from any Activity class using the get Applicat io n() method.

Probably the best option for making sure all your activities use the same preferences file is the
PreferenceManager class. It has a static method called get Def ault SharedPref erences() that takes one
parameter (a Context such as an Activity or Application) and returns a default SharedPreferences object will
use the same file, regardless o f the Context that is passed to it. This file is best used with the
Pref erenceAct ivit y class because it's the same SharedPref erence file used by that class.

Note
Pref erenceManager.get Def ault SharedPref erences() is actually using the option I
described earlier; it's using the same name for the get SharedPref erences() call each time.
The name it uses is actually a combination o f the application package name and the string
"_preferences" (co nt ext .get PackageName() + "_pref erences").

PreferenceActivity

Many applications have what's commonly referred to as a "Settings screen." Andro id has a native custom
Activity available, the Pref erenceAct ivit y, that is meant to assist you in creating a Settings screen designed
specifically fo r your application. The PreferenceActivity has its own unique XML format fo r declaring its view.
The PreferenceActivity uses the PreferenceManager class to manage its SharedPreferences object as well, so
that the preferences managed on the activity are available to the rest o f the activities in the application.

Note

If you browse the Andro id developer documentation for help implementing the
PreferenceActivity, you might find it a bit frustrating. As o f Andro id 3.0 , all o f the previous APIs for
setting up a PreferenceActivity were deprecated in favor o f the new standard using the
PreferenceFragment class. Unlike o ther fragments, however, the PreferenceFragment is not
available in the support library, so we still have to use the deprecated APIs if we want to support
devices running an Andro id version before 3.0 .

Let's implement a PreferenceActivity screen in our application now. Start by creating a new class called
MyPref erenceAct ivit y; make sure it extends the Pref erenceAct ivit y class:

Click Finish to create the activity. We have relatively little code to modify fo r this activity; just make this
change:

MyPreferenceActivity.java

package com.oreillyschool.android1.menus;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class MyPreferenceActivity extends PreferenceActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.preferences);
 }
}

This should be throwing an error right now since we reference a resources file that we haven't created yet—so
let's create it now:

1. With the Menus pro ject selected, select File | New | Ot her (o r use the keyboard shortcut Ct rl-
N).
2. In the "Select a Wizard" dialog, choose the Andro id XML File option in the Andro id fo lder, and
click Next .
3. In the "New Andro id XML File Wizard," change the "Resource Type" to Pref erence ; name the
file pref erences; under "Root Element," select the Pref erenceScreen; and click Finish to
create the XML resource.

This creates the /res/xml fo lder in your pro ject (if it doesn't already exist), then creates the new
pref erences.xml file and saves it in there. Now let's add a preference to this XML. Modify your code as
shown:

/res/xml/preferences.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >

 <PreferenceCategory android:title="Important Stuff">

 <CheckBoxPreference
 android:key="listViewVisible"
 android:title="ListView visible"
 android:defaultValue="true"
 />

 <EditTextPreference
 android:key="username"
 android:title="Username"
 android:defaultValue="User"
 />

 </PreferenceCategory>

 <PreferenceCategory android:title="Unimportant Stuff">

 <CheckBoxPreference
 android:key="doesNothing"
 android:title="Unimportant Text"
 />

 </PreferenceCategory>

</PreferenceScreen>

The PreferenceActivity XML supports many different types o f standard preference screen components
including checkboxes, editable, text areas, lists, as well as preference groups to help organize your
preferences. Here we've used two types o f components: the CheckBo xPref erence and the
Edit T ext Pref erence , which will correspond to a CheckBox and EditText view component, respectively.

Before we can even test our code, we need to update MainAct ivit y.java with a hook to load this activity.
Let's go the quick-and-dirty route o f setting up a quick click-listener on the top TextView. Modify your code as
shown:

MainActivity.java

...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 View textView = findViewById(R.id.text);
 textView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startActivity(new Intent(MainActivity.this, MyPreferenceActivity
.class));
 }
 });
 registerForContextMenu(textView);
 registerForContextMenu(getListView());

 ...
 }

Finally, we need to add the Activity to the Andro idManif est .xml file. Modify your code so it looks like this:

Andro idManifest.xml

...
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".MainActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".MyPreferenceActivity"></activity>
 </application>
...

Now we're ready to test the code. The preferences aren't hooked up to anything yet, but we should at least be
able to test to make sure that the PreferenceActivity is creating its view correctly. Start up the application, and
click the Hello wo rld text at the top o f the screen; your PreferenceActivity screen will look like this:

Note
The Pref erenceScreen xml tag can even be nested inside o f itself. When clicked, this will
create an item on the screen that will load a brand new preference screen, populated with the
preferences that are children o f the nested tag. This is commonly used for things like "Advanced
Settings" options in a typical settings screen.

Now let's hook up some of these preferences to verify that they're working. Make these changes to
MainAct ivit y.java:

MainActivity.java

...
 @Override
 protected void onResume() {
 super.onResume();

 SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(
this);
 TextView textView = (TextView)findViewById(R.id.text);
 textView.setText(String.format("Hello %s, welcome back!", prefs.getStrin
g("username", "user")));

 if (prefs.getBoolean("listViewVisible", true)) {
 getListView().setVisibility(View.VISIBLE);
 } else {
 getListView().setVisibility(View.INVISIBLE);
 }
 }

Here we choose to override the o nResume method instead o f using o nCreat e . In the lifecycle o f an
Andro id Activity class, the onCreate method will get called only once when the Activity is initially prepared and
created. The o nResume method, however, always gets called just before the activity becomes visible. Since
the MainAct ivit y class isn't destroyed when we load the MyPref erenceAct ivit y (just added to the back-
stack), we have to manage the update o f our preference changes in the o nResume method. To learn more
about the lifecycle o f an Activity, I highly recommend checking out the Andro id developer site (complete with a
handy info-graphic).

After loading the SharedPref erences object from the Pref erenceManager, the rest o f the code works
exactly the same way it did before, using the various "get" methods to retrieve the cached data. Be sure to test
your application and verify that the settings page now contro ls the "name" that's used in the TextView, as well
as the CheckBoxPreference contro lling whether the ListView is visible.

Note

There are a couple o f down-sides to be aware o f with the PreferenceActivity. First, you can't use
a "static final" variable as your key in the XML preference resource, so make certain that your key
strings are always identical (or consider using a strings.xml resource). Also , frequently you'll
need to define a default value in multiple areas. It's usually best to keep them consistent. In any
case, the benefits o f using the Pref erenceAct ivit y far outweigh these minor inconveniences.

Wrapping Up
We've only just scratched the surface o f managing data on Andro id with these essential classes. Make sure you're
confident using a simple SharedPreferences object and setting up a PreferencesActivity. These convenient classes will
help you to implement simple data persistence quickly, in any application.

Good work so far. Let's press on!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Saving Data with a Database

Welcome back! In this lesson, we'll work on storing and retrieving data from a database in Andro id. The Andro id SDK has built-
in classes to help create and manage an SQLite database.

SQLite

Note
While it is not necessary to be an expert in SQLite for this lesson, it's good to have a basic understanding
of how databases work, and how to perform SQL queries. If you think you could use some help when it
comes to working with databases, consider taking the O'Reilly School o f Technology course PHP/SQL 1:
Introduction to Database Programming.

Creating a Helper

Let's get started! Create a pro ject named Dat abase , name the package
co m.o reillyscho o l.andro id1.dat abase , and assign it to the Andro id1_Lesso ns working set.

The primary class for interacting with a SQLite database in Andro id is the SQLit eOpenHelper class. The
SQLit eOpenHelper class is an abstract class to be used for creation and version management o f the
SQLite database. Let's set up a basic SQLit eOpenHelper implementation first. In the Dat abase pro ject,
create a new class file named DBHelper that extends the SQLit eOpenHelper class:

http://www.oreillyschool.com/courses/phpsql1/

SQLit eOpenHelper has two abstract methods that we must implement: o nCreat e() and o nUpgrade() .
Each method is intended to be used to modify the structure o f a database after the respective event. During
o nCreat e , we'll set up the basic tables for all the data, and in o nUpgrade , we'll enter any migration logic
needed to convert a database from an o lder version to match the new database. Make sure that both
methods result in the database having the same schema, regardless o f whether they just installed the
application or are updating from a previous application version.

You might have noticed that the class generated from the "New Class Wizard" throws a compiler error
initially. This is because we haven't implemented a constructor fo r the class to complete our implementation.
Let's tackle that now. Make these changes to your code:

DBHelper.java

package com.oreillyschool.android1.database;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;

public class DBHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "myDatabase.db";
 private static final int DB_VERSION = 1;

 public DBHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 // TODO Auto-generated method stub

 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // TODO Auto-generated method stub

 }
}

In the constructor, we call the super constructor with the appropriate values:

OBSERVE:

private static final String DB_NAME = "myDatabase.db";
 private static final int DB_VERSION = 1;

 public DBHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

We can predefine the last three values from within this class, but we'll need a Co nt ext from whatever class is
attempting to access the database (most likely an Activity). The second parameter is the unique name to use
for our database. This should never change, especially when you update the application. If you need multiple
databases, make sure the name value is unique for each database. We can safely ignore the t hird
paramet er fo r now. The last parameter is the versio n o f t he Dat abase that we are currently using. Any
time you update the application and you have to make changes to the schema of your database, you should
increment this version id (just change the "static final" variable). If the SQLit eOpenHelper detects an
existing database with a version lower than this id, the o nUpgrade() method will be called instead o f
o nCreat e() .

Let's define and initialize a simple database for use in our application in the o nCreat e() method:

DBHelper.java

...

public class DBHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "myDatabase.db";
 private static final int DB_VERSION = 1;

 public static final String TABLE_PEOPLE = "people";
 public static final String C_ID = "_id";
 public static final String C_NAME = "name";

 public DBHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 // TODO Auto-generated method stub
 final String sqlCreateTablePeople = "CREATE TABLE "
 + TABLE_PEOPLE + "(" + C_ID
 + " integer primary key autoincrement, " + C_NAME
 + " text not null);";
 db.execSQL(sqlCreateTablePeople);
 }

...

We added a few more "static final" String values to the class that defines the table and co lumn names. We left
these public to allow o ther classes to use them as well. In the o nCreat e() method, we created the SQL
statement necessary to add our table to the database using a String, and executed the string by passing it to
the SQLit eDat abase method execSQL() . The execSQL() statement is used only fo r quick SQL
commands to execute on the database when you don't require any feedback from the database. This makes it
ideal fo r schema updates such as creating/deleting a table or modifying table co lumns.

Next, let's write a quick and basic implementation o f the o nUpgrade() method:

DBHelper.java

...
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // TODO Auto-generated method stub
 final String sqlDropTablePeople = "DROP TABLE IF EXISTS " + TABLE_PEOPLE
 + ";";
 db.execSQL(sqlDropTablePeople);
 onCreate(db);
 }

For o nUpgrade() , we drop the "people" table (if it already exists) and then recreate it by calling the
o nCreat e() method. This is the easiest way to safely implement a database upgrade, but with one glaring
potential concern: depending on your application, you might want to preserve any data already in the
database during an upgrade. In that situation you would need to write the appropriate migration logic fo r your
tables to correctly update the database schema.

Using the Helper

Now that we've created a simple helper and defined our database, we'll need to write some code to use this
data in a view. Let's start with updating the act ivit y_main.xml layout file. Modify your code as shown:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/add_btn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Add Person"
 android:onClick="onAddClicked" />

 <Button
 android:id="@+id/delete_btn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Delete Person"
 android:onClick="onDeleteClicked" />

 </LinearLayout>

 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</RelativeLinearLayout>

Here we have two buttons at the top: one to add rows to the database and one to remove rows. We'll also
use a ListView to display the data in the database. Next, let's create a view for a dialog that can be present
when we click the New Perso n button. Create a new Andro id Layout XML file named add_perso n_dialo g
and make these changes:

/res/layout/add_perso0n_dialog.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <EditText
 android:id="@+id/name"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Name" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >

 <Button
 android:id="@+id/okay_btn"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Okay" />

 <Button
 android:id="@+id/cancel_btn"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Cancel" />

 </LinearLayout>

</LinearLayout>

This basic view with an EditText and two Buttons should work. Next, modify MainAct ivit y.java to hook the
dialog up to the "Add Person" button and implement an insert on our database:

MainActivity.java

package com.oreillyschool.android1.database;

import android.app.Activity;
import android.app.Dialog;
import android.content.ContentValues;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends Activity {

 private static final int ADD_DIALOG = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void onAddClicked(View view) {
 showDialog(ADD_DIALOG);
 }

 public void onDeleteClicked(View view) {
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 Dialog d;
 switch (id) {
 case ADD_DIALOG:
 d = new Dialog(this);
 d.setContentView(R.layout.add_person_dialog);
 d.setTitle("Add a Person");
 final TextView nameText = (TextView) d.findViewById(R.id.name);
 d.findViewById(R.id.okay_btn).setOnClickListener(new View.OnClickLis
tener() {
 @Override
 public void onClick(View v) {
 addPerson(nameText.getText().toString());
 dismissDialog(MainActivity.ADD_DIALOG);
 }
 });
 d.findViewById(R.id.cancel_btn).setOnClickListener(new View.OnClickL
istener() {
 @Override
 public void onClick(View v) {
 dismissDialog(MainActivity.ADD_DIALOG);
 }
 });
 break;
 default:
 d = super.onCreateDialog(id);
 break;
 }
 return d;
 }

 public void addPerson(String name) {
 // add the new data to the db
 DBHelper helper = new DBHelper(this);
 SQLiteDatabase db = helper.getWritableDatabase();
 ContentValues cv = new ContentValues();
 cv.put(DBHelper.C_NAME, name);

 db.insert(DBHelper.TABLE_PEOPLE, null, cv);
 db.close();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

The important new code to take note o f here is in the new addPerso n() method:

OBSERVE:

 public void addPerson(String name) {
 // add the new data to the db
 DBHelper helper = new DBHelper(this);
 SQLiteDatabase db = helper.getWritableDatabase();
 ContentValues cv = new ContentValues();
 cv.put(DBHelper.C_NAME, name);
 db.insert(DBHelper.TABLE_PEOPLE, null, cv);
 db.close();
 }

Here we use our DBHelper class to get a SQLit eDat abase object on which we can perform inserts. We
also need to create a Co nt ent Values object fo r the new data. The Co nt ent Values class ho lds all the data
in a key-value map where the key is the database co lumn to use for the value. Then we use the
SQLit eDat abase insert () method to commit the data. Its parameters are t he t able name , a "null co lumn
hack" string (which we can safely ignore), and the co nt ent values to be inserted. SQLite only supports a
single row insert at a time, so for each insert you want to perform, you must call insert () again. Finally, since
we are done using the database, we call clo se() on the SQLit eDat abase .

At this po int we are able to save and test to make sure that our Dialog is being created and dismissed
correctly, but we'll still have no idea whether our Database inserts are actually working. For that, we'll have to
write some logic to query the database and update the ListView with the results.

Cursor and CursorAdapater

Andro id provides a wrapper class for retrieving the results from a query to a database called a Cursor.
Andro id also provides a convenient implementation o f the Adapt er interface for supplying data to a list
through a Curso r, called a SimpleCurso rAdapt er. These classes are perfect fo r testing the results o f our
earlier code. Make these changes to MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.database;

import android.app.Activity;
import android.app.Dialog;
import android.app.ListActivity;
import android.content.ContentValues;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.view.View;
import android.widget.SimpleCursorAdapter;
import android.widget.TextView;

public class MainActivity extends ActivityListActivity {

 private static final int ADD_DIALOG = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // initialize the adapter
 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_single_choice,
 null,
 new String[]{DBHelper.C_NAME},
 new int[]{android.R.id.text1});
 setListAdapter(adapter);

 updateAdapterData();
 }

 public void updateAdapterData() {
 // re-query the data
 SQLiteDatabase db = new DBHelper(this).getReadableDatabase();
 Cursor c = db.query(DBHelper.TABLE_PEOPLE,
 null, null, null, null, null, null);
 ((SimpleCursorAdapter)getListAdapter()).changeCursor(c);
 db.close();
 }

 ...

 public void addPerson(String name) {
 // add the new data to the db
 DBHelper helper = new DBHelper(this);
 SQLiteDatabase db = helper.getWritableDatabase();
 ContentValues cv = new ContentValues();
 cv.put(DBHelper.C_NAME, name);
 db.insert(DBHelper.TABLE_PEOPLE, null, cv);
 db.close();

 // update the view
 updateAdapterData();
 }

Now we should be able to save and run the code to make sure that our add method is correctly adding to the
database, as well as see our data being loaded correctly into the List View:

There's a lo t go ing on in here. Let's look at it bit by bit:

OBSERVE: onCreate()

// initialize the adapter
SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 null,
 new String[]{DBHelper.C_NAME},
 new int[]{android.R.id.text1});
setListAdapter(adapter);

We start o ff by creating an inst ance o f t he SimpleCurso rAdapat er fo r our list, which takes five
parameters for its constructor: a Co nt ext , an int layo ut id ref erence , a Curso r, a St ring array o f
co lumn names, and an int array o f view ids. For the layo ut , we use a default layout available to us in
Andro id which provides a basic TextView. For the Curso r, we send null fo r now, because we're handling that
later in the updat eAdapt erDat a() method. The last two array parameters are intended to match one another
in length, so that the values from each co lumn defined in the St ring array will be assigned to the respective

view component with the id defined in the int array.

After creating this adapt er, we assign it to the list through the List Act ivit y method set List Adapt er() . And
finally we call the updat eAdapt erDat a method that we just created below to load the data into the list. We
must refresh the Cursor after each addition to keep that logic in a helper method so we're not writing the same
code in multiple areas:

OBSERVE: updateAdapterData()

 public void updateAdapterData() {
 // re-query the data
 SQLiteDatabase db = new DBHelper(this).getReadableDatabase();
 Cursor c = db.query(DBHelper.TABLE_PEOPLE,
 null, null, null, null, null, DBHelper.C_NAME);
 startManagingCursor(c);
 ((SimpleCursorAdapter)getListAdapter()).changeCursor(c);
 db.close();
 }

In updat eAdapt erDat a() , we use the DBHelper class again. This time we call the query() method to
retrieve the data. The query() method is a helper method for performing a "SELECT" query on the database.
It takes many parameters in order to support many various types o f "SELECT" queries. We are performing
only basic queries, so we end up passing null to many o f the parameters. The first parameter is the t able
name—it is not optional. The only o ther parameter we're sending is the last one, which defines by which
co lumn t he result s sho uld be so rt ed. If we didn't care about sorting, we could pass null fo r that
parameter as well. This query() call is the equivalent to the SQL "SELECT * FROM people ORDER BY
name;". Proper usage o f the query() method sanitizes the query automatically, to prevent SQL injection
hacks.

We won't go into all the parameters available to query() here, but most o f them are more or less self-
explanatory when you read the code hints in Eclipse. If you want to read more about the parameters, check
the Andro id developer documentation on the SQLiteDatabase query method.

Finally, we'll implement the "delete" button that we created earlier. Make these changes to MainAct ivit y.java:

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#query(java.lang.String, java.lang.String[], java.lang.String, java.lang.String[], java.lang.String, java.lang.String, java.lang.String, java.lang.String)

MainActivity.java

...
import android.widget.ListView;
...
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final ListView list = getListView();
 list.setItemsCanFocus(false);
 list.setChoiceMode(ListView.CHOICE_MODE_SINGLE);

 // initialize the adapter
 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_single_choice,
 null,
 new String[]{DBHelper.C_NAME},
 new int[]{android.R.id.text1});
 setListAdapter(adapter);

 updateAdapterData();
 }

 ...

 public void onDeleteClicked(View view) {
 int position = getListView().getCheckedItemPosition();
 if (position >= 0) {
 long itemId = getListAdapter().getItemId(position);
 SQLiteDatabase db = new DBHelper(this).getWritableDatabase();
 int rowsAffected = db.delete(DBHelper.TABLE_PEOPLE, DBHelper.C_ID +
" = " + itemId, null);
 db.close();
 if (rowsAffected > 0)
 updateAdapterData();
 }
 }

Now you'll be able to run the application again and delete whatever row is checked:

We made a few changes to the list here to allow us to select an individual row. The default layout
simple_list _it em_single_cho ice looks just like the previous layout, but with a RadioButton added to the
side o f the row as well. By calling set Cho iceMo de() on the list earlier and giving it the parameter
List View.CHOICE_MODE_SINGLE, we instruct the list to manage the checked row, and to allow only one
row to be checked at a time.

In the o nDelet eClicked() method, we implemented the delete action. We use the List View method
get CheckedIt emPo sit io n() to find out which item is checked. This could potentially be -1 if no item is
checked, so we code defensively around that. Then we have to use the ListAdapter to retireve the actual row id
of the item. This corresponds to the "_id" co lumn of the data in the database. Finally, we get a writable version
of the database from our helper again, only this time we call delet e , giving it the table name, and an SQL
"WHERE" clause to delete just the row that matches the "_id" o f the list item that is checked. Passing null to
the second argument would delete all rows in the table. The final argument is used to help sanitize the query
again by replacing any question marks in the "WHERE" clause with a sanitized value from the third argument.
We aren't concerned with that here, so we just pass in null. If any rows were affected by our delete query, then
we update the adapter (after closing the database, o f course).

Wrapping Up

Properly managing a database in Andro id can seem like quite a daunting task. Thankfully Andro id has provided many
convenient helper classes to make that easier. Hopefully by now you're feeling comfortable with performing the CRUD
actions (create, read, update, delete) on a database in Andro id. There's a lo t o f advanced SQLite content that we didn't
cover in this lesson, but this is an excellent foundation and usually enough for most applications. If you find yourself in
need o f some really advanced SQLite work in your application, as always, be sure to check out the Andro id developer
documentation site.

See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Threading with AsyncTasks

Welcome back! This lesson covers threading in Andro id. Implementing proper threading is crucial fo r Andro id application
development. It helps you to maintain fast and seamless views that enable a good user experience, and even more importantly,
it can help prevent your application from falling into an Application Not Responding (ANR) state.

An ANR Dialog will be presented over your application in the event that the user interface doesn't respond to input events (such
as a screen touch or key press event) within 5 seconds. When the ANR dialogue is presented, the Andro id system (and the
user) assume that your application has crashed and will no t recover. In most cases, this will lead to negative reviews on the
Andro id app market as well.

Threading in Android
In Andro id, every Application is assigned a default "main" thread, commonly referred to as the UI Thread. All work for
an application is done on this thread by default, including user interface drawing, event dispatching and handling, and
all the code that you write. If you write code that takes a long time to finish, during that time, your interface may not be
able to draw updates to the screen. This is o ften the cause o f an ANR state. To prevent an occurrence o f an ANR state,
we'll create a separate thread to handle the work that, when executed, will run asynchronously. The Andro id SDK
provides a helper class for creating and managing work in a separate Thread, called an AsyncT ask.

AsyncTask

AsyncTask is a helper class that makes it easier to spin o ff a Thread to do work, track progress, and respond
to the results. It can be a little confusing to set up at first because it takes three generic parameters. We'll set
up a new pro ject named T hreads, with package name co m.o reillyscho o l.andro id1.t hreads, assigned to
the Andro id1_Lesso ns working set.

Let's create a short method that fakes some heavy work. Make these changes to MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.threads;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.view.Menu;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 private Bitmap downloadImage() {
 final long start = System.currentTimeMillis();

 // wait 5 seconds (5000 milliseconds) until proceeding
 while (System.currentTimeMillis() - start < 5000) {
 }

 return BitmapFactory.decodeResource(getResources(), R.drawable.ic_launch
er);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

This short method will wait five seconds and then return the app icon image as a Bitmap. Next, add some
components to help demonstrate our concepts. Make these changes to act ivit y_main.xml:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="onLoadImageClicked"
 android:text="Load Image" />

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center" >

 <ProgressBar
 android:id="@+id/progress"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:indeterminate="true" />

 <ImageView
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="center"
 android:visibility="gone" />

 </RelativeLayout>

</RelativeLinearLayout>

We added a button to trigger our loading process, as well as a Pro gressBar and an ImageView nested and
centered in a Relat iveLayo ut . The Pro gressBar is set to indet erminat e so that it will spin continuously.
The ImageView is not initially visible. Once we load the image, we'll hide the Pro gressBar and show the
ImageView. Now let's head back to MainAct ivit y.java and connect everything:

MainActivity.java

package com.oreillyschool.android1.threads;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.view.View;
import android.widget.ImageView;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

 private ImageView image;
 private ProgressBar progress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 progress = (ProgressBar) findViewById(R.id.progress);
 image = (ImageView) findViewById(R.id.image);
 }

 public void onLoadImageClicked(View view) {
 // show the progress and hide the image
 image.setVisibility(View.GONE);
 progress.setVisibility(View.VISIBLE);

 image.setImageBitmap(downloadImage());

 // show the image and hide the progress
 image.setVisibility(View.VISIBLE);
 progress.setVisibility(View.GONE);
 }

 private Bitmap downloadImage() {
 final long start = System.currentTimeMillis();

 // wait 5 seconds (5000 milliseconds) until proceeding
 while (System.currentTimeMillis() - start < 5000) {
 }

 return BitmapFactory.decodeResource(getResources(), R.drawable.ic_launch
er);
 }
}

Now that we've hooked everything up, we can give the code a test run. We aren't using an AsyncTask yet,
because I want to demonstrate some problems you can run into if you don't use a separate thread to run
heavy code. After the application is installed and running, you'll see the infinite progress bar spinning in the
middle. If you click Lo ad Image , the progress bar spinner will freeze during the five seconds that the image
takes to load. Odds are that the button itself will be frozen in the pressed state as well. This would be pretty
frustrating to a user to say the least!

Alright, so now that we have code that's freezing the application, let's go back and fix it with a proper
implementation o f threading. Make these changes to MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.threads;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.widget.ImageView;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

 private ImageView image;
 private ProgressBar progress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 progress = (ProgressBar) findViewById(R.id.progress);
 image = (ImageView) findViewById(R.id.image);
 }

 public void onLoadImageClicked(View view) {
 // show the progress and hide the image
 image.setVisibility(View.GONE);
 progress.setVisibility(View.VISIBLE);

 image.setImageBitmap(downloadImage());

 // show the image and hide the progress
 image.setVisibility(View.VISIBLE);
 progress.setVisibility(View.GONE);

 new AsyncTask<Void, Void, Bitmap>() {
 @Override
 protected Bitmap doInBackground(Void... params) {
 return downloadImage();
 }

 @Override
 protected void onPostExecute(Bitmap bitmap) {
 image.setImageBitmap(bitmap);

 // show the image and hide the progress
 image.setVisibility(View.VISIBLE);
 progress.setVisibility(View.GONE);
 }
 }.execute();
 }

 private Bitmap downloadImage() {
 final long start = System.currentTimeMillis();

 // wait 5 seconds (5000 milliseconds) until proceeding
 while (System.currentTimeMillis() - start < 5000) {
 }

 return BitmapFactory.decodeResource(getResources(), R.drawable.ic_launch
er);
 }
}

AsyncTask is an abstract class, meaning we have to define its implementation. Typically, you would create a
new class that extends AsyncTask, but that's not always necessary. You can define an in-line class
implementation (also known as an anonymous class). This is especially useful when your implementation is
go ing to be short and relatively uncomplicated:

OBSERVE:

 new AsyncTask<Void, Void, Bitmap>() {
 @Override
 protected Bitmap doInBackground(Void... params) {
 return downloadImage();
 }

 @Override
 protected void onPostExecute(Bitmap bitmap) {
 image.setImageBitmap(bitmap);

 // show the image and hide the progress
 image.setVisibility(View.VISIBLE);
 progress.setVisibility(View.GONE);
 }
 }.execute();

AsyncTask has three generic class parameters that must be defined in any implementation. The first
parameter (Params) is used to define any parameter input. In our example, we didn't need any parameters so
we defined this parameter as Vo id (Null). This generic class parameter corresponds to the class type o f
objects passed to the execut e() method and received in the do InBackgro und() method. The ellipses (...)
at the end o f the type in the do InBackgro und() method is called "varargs" (variable-length argument). This
syntax allows any number o f arguments o f the class type to be sent to the method, which will then be
combined into an array in the method automatically. Had our image-loading method been implemented to
download an image from the internet correctly, then we probably would've defined this generic as the St ring
or the URI class. In that case, our implementation might have looked something looked like this:

OBSERVE:

new AsyncTask<String, Void, Bitmap[]>() {
 @Override
 protected Bitmap doInBackground(String... params) {
 Bitmap[] bitmaps = new Bitmap[params.length];
 for (int i=0; i<params.length; i++) {
 bitmaps[i] = downloadImage();
 }
 return bitmaps;
 }

 @Override
 protected void onPostExecute(Bitmap[] bitmaps) {
 loadBitmapsIntoImageViews(bitmaps);
 }
}.execute(url1, url2, url3);

The second generic parameter fo r AsyncTask is used to track progress. We usually use a numeric primitive
for this generic, like an Int eger o r a Flo at , but you can use whatever class you like, including a String or
even your own custom class. (We'll discuss progress tracking further a bit later in the lesson.)

The third parameter is used to define the class type o f the result o f the work done in the do InBackgro und()
method. This parameter is used as the return type o f doInBackground(), as well as the parameter type for the
onPostExecute() method. All o f the generic parameters are technically optional. If you'd rather not use any in
your application, you can just define each o f them as Null and ignore them in your code.

do InBackgro und() is the only method in AsyncTask that we must define in our implementation (that is, the
only abstract method). So, you might be wondering why we return the final result value in do InBackgro und()
and then handle assigning the image to the ImageView in onPostExecute(). We do that because in Andro id
you cannot interact with View components that are attached to the view hierarchy from any thread o ther than
the main "UI" thread. The doInBackground() method runs on a new thread that was created specifically fo r the
AsyncTask class and so it cannot assign the bitmap to the ImageView component. However, the
onPostExecute() method is guaranteed to run on the UI thread, so we can assign the data to the ImageView in

that method safely.

Tracking Progress

When an application is performing extensive work, it will o ften report progress to the user in the form of a
progress bar. The second generic parameter in AsyncTask helps with the implementation o f progress
tracking in a thread-safe manner. Again, the doInBackground() method does not run on the UI thread, so it
cannot be used to update any views. Fortunately, there is another helper method that runs on the UI thread
that we can override to handle progress updates. Make these changes to MainAct ivit y.java:

MainActivity.java

package com.oreillyschool.android1.threads;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.widget.ImageView;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

 private ImageView image;
 private ProgressBar progress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 progress = (ProgressBar) findViewById(R.id.progress);
 image = (ImageView) findViewById(R.id.image);
 }

 public void onLoadImageClicked(View view) {
 // show the progress and hide the image
 image.setVisibility(View.GONE);
 progress.setVisibility(View.VISIBLE);

 new AsyncTask<Void, Void, Bitmap>() {
 new AsyncTask<Void, Integer, Bitmap>() {
 @Override
 protected Bitmap doInBackground(Void... params) {
 return downloadImage();
 }

 private Bitmap downloadImage() {
 final long start = System.currentTimeMillis();

 // wait 5 seconds (5000 milliseconds) until proceeding
 int progress = 0;
 int current = 0;
 publishProgress(progress);
 while ((current = (int)(System.currentTimeMillis() - start)) < 5
000) {
 current = (int) ((float)current * 100 / 5000);
 if (current > progress) {
 progress = current;
 publishProgress(current);
 }
 }

 return BitmapFactory.decodeResource(getResources(), R.drawable.i
c_launcher);
 }

 @Override
 protected void onProgressUpdate(Integer... values) {
 progress.setProgress(values[0]);
 }

 @Override
 protected void onPostExecute(Bitmap bitmap) {
 image.setImageBitmap(bitmap);

 // show the image and hide the progress
 image.setVisibility(View.VISIBLE);
 progress.setVisibility(View.GONE);
 }
 }.execute();
 }

 private Bitmap downloadImage() {
 final long start = System.currentTimeMillis();

 // wait 5 seconds (5000 milliseconds) until proceeding
 while (System.currentTimeMillis() - start < 5000) {
 }

 return BitmapFactory.decodeResource(getResources(), R.drawable.ic_launch
er);
 }
}

Here, we moved the downloadImage() method we defined earlier into the anonymous class implementation
of AsyncTask and made a couple o f changes to it. Now we'll make one minor change to the ProgressBar in
the XML layout in order to display the progress. Modify the ProgressBar in act ivit y_main.xml as shown:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="onLoadImageClicked"
 android:text="Load Image" />

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center" >

 <ProgressBar
 android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:minWidth="200dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:indeterminate="false" />

 <ImageView
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="center"
 android:visibility="gone" />

 </RelativeLayout>

</LinearLayout>

Note
You might be wondering about the curious syntax we just used for the style attribute o f the
ProgressBar. This is a unique way o f referencing a dynamic style value. Don't worry too much
about it fo r now, we'll hit this subject again later. Just remember that if you need to show a
horizontal progress bar, use the style value ?andro id:at t r/pro gressBarSt yleHo rizo nt al.

Make sure all your changes are saved, and run the pro ject in the emulator. Now when you load the image you
should see the progress bar crawl its way across the screen during the five seconds the download method
takes to finish:

We moved the download logic inside o f the anonymous class so that we could make calls to the
publishPro gress() method. The Integer value we passed to publishPro gress() gets sent to the
o nPro gressUpdat e() method that we have implemented as well now. o nPro gressUpdat e() runs on the
UI thread, so we can update the progress o f the ProgressBar view component here safely. The Int eger
generic value is also defined with varargs, so it is put into an array automatically. We only send one value at a
time to publishPro gress() , so we can grab the first item out o f the array (values[0]) safely each time.

We've also added some code to our download method to make sure we don't call publishPro gress() on

every single iteration o f the while loop. Calling publishPro gress() each time is unnecessary (since the
progress won't always increment enough to even be noticeable on the progress bar), and could cause the
application to slow down if we overwhelm the UI thread with progress updates. That would defeat our
purpose and make the application look broken to users, so we've added a small check to make sure the
progress has increased by at least a factor o f 1%.

Another method that can be useful when you're implementing an AsyncTask class is the onPreExecute()
method. It's guaranteed to run on the UI thread just like publishProgress() and onPostExecute(). This method
is a great place to implement any setup for a progress bar or show a notification to the user that a background
action is about to begin.

Wrapping Up
This lesson was relatively brief, but it may be the most important lesson yet. If you know how to write an Andro id
application that implements threading properly, it can make the difference between getting featured on the Andro id
Market and getting a slew of lowly one-star reviews. I'm confident that you can work with the AsyncTask and avo id the
dreaded ANR dialog now. Good work!

See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Styles and Themes

Welcome back! In this lesson we'll go over the various ways to style Andro id views and components. Styling is a significant
portion o f application development and is way too dense to be covered in just one lesson. I'm go ing to focus on the basics o f
styling that will apply to most components. By the end o f the lesson, you'll feel comfortable modifying the default Andro id style
for applications.

Introduction to Styling
Like most elements in Andro id, there are a lo t o f different ways to go about implementing styles for your Andro id
components. We'll cover a few of the more common ones. Create a new pro ject named St yling, with the package
name co m.o reillyscho o l.andro id1.st yling, and assign the pro ject to the Andro id1_Lesso ns working set.

Defining Styles

Perhaps the easiest way to define styles on a component is directly on the view component XML definition.
We've already done a little bit o f this in previous lessons, and you might have noticed the options yourself if
you used code assist in Eclipse to write your XML. Changing a style directly on a component is an efficient
way to update a single component, but when you want to style an entire application, that can get tedious. To
manage the style o f an entire application, you'll want to use the styles and themes resources.

Note We use a particular convention to name all o f our XML files in the /res/values fo lder. You can
use whatever file names you like; just make sure the root XML tag is <reso urces> .

Let's add a styles XML resource file to our pro ject and define some initial values. Select File | New | Ot her |
Andro id XML Values File to create a file named st yles as shown:

Answer Yes when prompted to overwrite the existing file. When you finish, open the st yles.xml file in the
/res/values fo lder, switch to the manual edit (styles.xml) sub-tab and make these changes:

/res/values/styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="MyButtonStyle">
 <item name="android:background">#aa0000</item>
 <item name="android:textColor">#000000</item>
 <item name="android:drawableLeft">@drawable/ic_launcher</item>
 </style>

</resources>

This is a basic style definition. Every style definition needs just one attribute, a name , which is used to
reference the style using the @st yle syntax. All children o f the st yle tag must be it em tags, with name
attributes o f their own. The it em tag's name attribute must reference a style property o f the View component
that this style will modify. There is no component type-checking handled here, so be careful that the styles you
define are actually applicable to the component you are styling, o therwise you might be unpleasantly
surprised when you change styles later and nothing changes in the view!

The andro id:backgro und style is common to all view components in Andro id. It can accept both drawable
resources and co lors. In fact, just about any style that accepts a drawable can accept a co lor definition
instead. However, the inverse is not true. For example, the andro id:t ext Co lo r attribute must be a co lor
definition and not a drawable reference.

Next, we'll use this style in a layout view. Open act ivit y_main.xml and make these changes:

/res/layout/activity_main.xml

<RelativeLinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="My Styled Button"
 style="@style/MyButtonStyle" />

</RelativeLinearLayout>

Note

You should be able to test the styles o f most code you change in this lesson just by looking at
the "Graphical Layout" sub-tab o f activity_main.xml in the XML editor. Sometimes the "Graphical
Layout" is unable to generate the view properly and you'll need to run the application in the
emulator, but fo r most minor changes you make, you won't need to wait fo r the emulator to test
them.

The style attribute is a unique attribute for view components in XML layouts because it doesn't use the
"andro id" namespace (notice it's called "style" instead o f "andro id:style"). While most layout XML attributes
correspond to a property on the respective view class, style is not a property o f any view. This is important; it
means that in order to change the styles o f a view component at runtime you will have to change each
individual style. There's no way to update the XML-defined style property at runtime. Also, note that we use the
@st yle /<st yle name> syntax to reference the style we defined in styles.xml.

Using the "Graphical Layout" mode o f the editor, o r running the application in the emulator, we can now test
to make sure that our styles defined in st yles.xml do indeed get assigned to the button in the view.

Defining Themes

Using the style attribute on a XML view makes it convenient fo r reusing styles that you would potentially apply
to multiple views. But what if you just want to apply the style to every component in your application
generically? This is where t hemes come into play.

generically? This is where t hemes come into play.

Themes are defined exactly like styles—they even use the same XML node name of <st yle> . The difference
is in how you use them. We'll get to that, but first let's create a new file to contain our themes for the
application. This is a standard convention used to organize the definitions and make it easier to find each
resource later; if you really wanted to , you could define all your styles and themes in the same file.

Okay let's get to work. Remove the style tag from Button in act ivit y_main.xml:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="My Styled Button"
 style="@style/MyButtonStyle" />
</LinearLayout>

In the "Graphical Layout," verify that the style has been removed and our button is back to looking like a
regular button. Next, create another new Andro id Values XML file named t hemes.xml, and then make these
changes:

/res/values/theme.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="MyTheme" parent="@android:style/Theme">
 <item name="android:buttonStyle">@style/MyButtonStyle</item>
 </style>

</resources>

Now let's use the theme. As I mentioned before, the difference between themes and styles isn't in the way you
define them, but how you use them. To use a theme, you define it fo r either an activity or the entire application.
This is all done in the Andro idManif est .xml file.

Andro idManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.oreillyschool.android1.styling"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10"
 android:targetSdkVersion="10" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/MyTheme" >
 <activity
 android:name="com.oreillyschool.android1.styling.MainActivity"
 android:label="@string/app_name" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Here, we defined our theme on the <applicat io n> tag. This will ensure that every activity we create in this
application will have its core styles defined by the theme resource MyT heme . (If you wanted to have a
specific alternate theme for just one Activity, you could also add an andro id:t heme attribute to the
<act ivit y> tag. Then any styles defined in the application theme would be overridden by the styles from the
activity's theme.)

The "Graphical Layout" viewer for XML layouts occasionally has a hard time loading themes correctly. You'll
need to use the theme dropdown located in the top right to select your new theme MyT heme :

If MyT heme doesn't show up initially, try changing something else (like the Andro id SDK version above the
theme dropdown) to get it to refresh, or close and reopen the editor. If all else fails, you can just run the
application to test it on the emulator:

Let's look at the theme we defined in t hemes.xml in more detail:

OBSERVE:

<resources>

 <style name="MyTheme" parent="@android:style/Theme">
 <item name="android:buttonStyle">@style/MyButtonStyle</item>
 </style>

</resources>

The only item we've added to this theme/style is andro id:but t o nSt yle , which references the style we
defined in styles.xml named MyBut t o nSt yle . This item works only in a style that is used as a theme.
andro id:but t o nSt yle defines the style that is used on buttons. There's a list o f all items you can define in a
theme (and descriptions o f what they will do) available on the Andro id developer documentation site.

Here are some of the more common items (with the acceptable value types in parentheses) that you might

http://developer.android.com/reference/android/R.styleable.html#Theme

consider overriding when designing themes for your own applications:

andro id:windowBackground (drawable or co lor)
andro id:windowNoTitle (boo lean)
andro id:buttonStyle (style)
andro id:tabWidgetStyle (style)
andro id:checkBoxStyle (style)
andro id:listViewStyle (style)
andro id:listDivider (style)
andro id:listPreferredItemHeight (dimension)
andro id:dialogTheme (style/theme)
andro id:textAppearance (style)
andro id:textAppearanceButton (style)
andro id:textColorPrimary (drawable or co lor)
andro id:textColorPrimaryInverse (drawable or co lor)
andro id:textColorSecondary (drawable or co lor)
andro id:textColorSecondaryInverse (drawable or co lor)

Another difference between styles and themes is that a theme will cascade, but a style will no t. If you're
familiar with CSS files in web development, you're familiar with the concept o f cascading styles. In Andro id, if
you define a style fo r a LinearLayo ut , such as a background image or co lor, that style will no t cascade to its
children. That means you don't have to worry that all the sub-views will get assigned the same background or
co lor. However, if you define a style item such as andro id:backgro und in a theme, and then use that theme
on an Activity, every view in that activity's view hierarchy will inherit that same background (if they don't
manually override with a different background). Be careful about what you define in themes. As a general rule,
you should never define andro id:backgro und in a theme. Go ahead and define andro id:backgro und in
our current application giving it the @drawable/ic_launcher as the value and run the application. Behold the
disastrous results!:

When you want to define a global background that shows up as the background o f every Activity o f your
application, but not every view component, use the andro id:windo wBackgro und property instead. That way
you can be certain that your selected background shows up only as the background to your activity window,
and won't cascade to any view components in the view hierarchy.

Style Inheritance

The last concept I want to discuss regarding themes.xml is inheritance:

/res/values/themes.xml

<resources>

 <style name="MyTheme" parent="@android:style/Theme">
 <item name="android:buttonStyle">@style/MyButtonStyle</item>
 </style>

</resources>

Styles and themes can inherit items from other styles in two different ways. The first way is demonstrated in
our theme with the parent attribute. Using the parent attribute on a style, we can inherit all o f the elements o f
a style defined in the Andro id SDK package. This is recommended, especially fo r themes, so that you receive
all the default styles that you are used to seeing, and then you can select which individual items to override.
The fo llowing are some of the more popular Andro id SDK themes you can use to parent your own themes:

@andro id:style/Theme
@andro id:style/Theme.Black
@andro id:style/Theme.Black.NoTitleBar
@andro id:style/Theme.Black.NoTitleBar.Fullscreen
@andro id:style/Theme.Light
@andro id:style/Theme.Light.NoTitleBar
@andro id:style/Theme.Light.NoTitleBar.Fullscreen

The second method o f inheriting from another style is demonstrated in the list above. You can prefix the
name of your style with another style name and a period. You can use this method to create alternates o f a
style. For example, to create a sub-style o f our earlier MyBut t o nSt yle you could name it
MyBut t o nSt yle .Large , and then have another style inheriting from that one named
MyBut t o nSt yle .Large.Red, and so on.

Note Prefix inheritance only works for o ther styles that you have defined in your application. In order
to inherit from Andro id SDK styles, you must use the parent attribute.

Direct Theme References

While themes will style the default components with the styleable items available to the Theme class
automatically, on occasion you might want to pull a value directly from a theme to be assigned to a different
View. We used this syntax in another lesson when we defined the style o f the Pro gressBar component. The
syntax for referencing a style item from a theme is written either, "?at t r/t hemeAt t ribut e" , o r with the
Andro id SDK namespace, "?andro id:at t r/t hemeAt t ribut e" .

Let's practice using our button code. First, remove the theme reference that overrides the default button style
(and the one we added to create the ugly background) in t hemes.xml:

/res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="MyTheme" parent="@android:style/Theme">
 <item name="android:buttonStyle">@style/MyButtonStyle</item>
 <item name="android:background">@drawable/ic_launcher</item>
 </style>

</resources>

Next, make the fo llowing changes to act ivit y_main.xml:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="My StyledPrimary Button" />

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="?android:attr/textColorPrimary"
 android:text="My Secondary Button" />

</LinearLayout>

Save and run it in the emulator or use the "Graphical Layout" view (though occasionally the "Graphical
Layout" view will struggle when using these resources). Your view will look something like this:

Here we made a second button and to ld it to load the t ext Co lo rPrimary theme value for its text co lor. The
textColor on the Button component uses a dark black or near black co lor by default; we can see that in the first
button. When we define the style as ?andro id:at t r/t ext Co lo rPrimary, the co lor gets loaded as whatever is
assigned to the t ext Co lo rPrimary item in the current theme. We can even override t ext Co lo rPrimary in
our theme. Change t hemes.xml as shown:

/res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="MyTheme" parent="@android:style/Theme">
 <item name="android:textColorPrimary">#00ff00</item>
 </style>

</resources>

Here we gave the t ext Co lo rPrimary item a hexidecimal co lor value o f "#00ff00", which is a hideous bright
green co lor. Now when we test the act ivit y_main.xml view in the "Graphical Layout" or in the emulator, the
second button's text is that co lor:

While overriding properties in this manner can be convenient fo r changing a style property in your application
globally, do not rely on this technique. Changing a system property can have dramatic effects on your design
and unintended consequences in weird places!

Learning to Learn
The most important too l you can have when it comes to styling may be the ability to look up what can and cannot be
styled. The ADT plugin for Eclipse has come a long way and includes code hints fo r most XML properties. This may
help you discover new attributes, but it can only get you so far. The best resource for learning about properties that can
be used in styles for a View is on the class reference page for the view on the Andro id developer documentation site.
For example, here is the XML attributes section for the TextView component.

Also, check the parent components o f a view to learn about o ther attributes available to components. Take a look at
the (reference page for the Button component), fo r example. Even though there are many specific XML attributes
available to Button, the reference page doesn't show any. That's because it doesn't have any specific unique styles
available. All o f Button's styles are inherited from its parent components (TextView and its parent, View).

Another more concise list can be found on the (R.st ylable resource page). This page actually lists the properties
available to every standard component in the Andro id SDK, and is definitely worth putting in your bookmarks.

Wrapping Up
Having a good design for your Andro id application is crucial fo r its success on the Andro id market. As the platform has

http://developer.android.com/reference/android/widget/TextView.html#lattrs
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/R.styleable.html

matured, users have come to expect a high-quality look and feel in their applications. The Andro id styles and design
standards seem to change with each new release o f the Andro id SDK, but the core methods to styling remain the
same. The skills you have now will help you keep current with the latest styling thechniques through each update to the
Andro id SDK.

You're almost done! Great work so far. In the next lesson, you'll be completing your final pro ject fo r the course. You'll
have a chance to show your stuff there—I'm looking forward to seeing what you can do!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Android Final Project

Final Project
Congratulations on completing the lessons! For your final pro ject you will create your very own Andro id application
(surprised?). The type o f application you create is entirely up to you, but just in case, here are some ideas you can use
for your pro ject:

A basic note-taking application—supports creating multiple notes, editing notes, and deleting notes.
A "To Do" list application—slightly more invo lved than the note taking application, the "To Do" application
supports creating, editing, and deleting multiple "To Do" lists. Each list can be modified to add, edit, o r
remove "To Do" items. The items can also be "checked" o ff when completed and the time the items were
completed is recorded (and displayed in the view).
Hangman!—the Hangman application will implement the game Hangman using the common view
components (no need for intense graphics here). The word used in the game is randomly chosen from a
st ring-array XML resource. Users guess letters to spell out the word, and lose po ints fo r each incorrect
guess. Use a simple po ints system, counting down from the appropriate number (usually 6 , fo r a head,
torso, two arms, and two legs), to keep track o f remaining guesses and/or get creative with the view
components or your own graphics which utimatelt lead to the drawing o f a hanged stick figure.
Any type o f internet data presentation application using a freely available public API (such as imgur, reddit, o r
yahoo weather). There are many o ther publicly available APIs (such as Flickr, all Google APIs, and Twitter),
but they usually require you to sign up for an API key (feel free to do that if you like). This type o f Application
will need to implement a data interpreter such as an XML or JSON parser. If you are unfamiliar with using
libraries for these interpreters, then you might not want to tackle this type o f application right o ff the bat. If you
do choose this type o f application, make sure you adhere to the po licies for the API and give proper
attribution to the source o f the data.

Whichever you choose, you application must meet these requirements:

Functions on Andro id devices.
Implements at least three Activities, each with a unique view layout.
At least two Activities share data between each o ther using the proper Intent passing methods.
Implements at least one ListView, with its own custom adapter and custom view layout fo r the list items.
Implements at least one Dialog using the new process with the support library.
Implements a SharedPreferences object (implementing a PreferenceActivity is optional, but can count
towards one o f your three Activities).
Implements a SQLite database for caching data between application sessions.
All SQLiteDatabase usage (such as query, insert, and delete) should be used inside o f an AsyncTask.
All internet usage (if implemented) is used inside o f an AsyncTask.
All hard-coded strings are loaded from string XML resources.
Use themes and styles via XML resources for all appropriate styling properly.

Make an application that you are proud to have created! Keep your code clean, organized, and bug-free! You might
even consider publishing your work on the Andro id Market when you are finished. Thanks for taking the course and
good luck!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://en.wikipedia.org/wiki/Hangman_%28game%29
http://creativecommons.org/licenses/by-sa/3.0/legalcode

