Android Development 1

Lesson 1: Getting Started with Android Development
About Eclipse
Perspectives and the Red Leaflcon

Working Sets

Hello, Android!
Create the Project

Run the Application

Editing Programs

Android Package Structure

Bonus Round

Wrapping Up

Lesson 2: Activities and Views
AndroidManifest.xml
Activity Class
Basic View Components: Layouts and Buttons

Layouts
View Components

Wrapping Up

Lesson 3: Navigation with Data
Working with Intent

An Emulator Email Alternative

Sharing Data Between Activities
Sending Data to a New Activity
Returning Data to the Previous Activity

Application Class

Wrapping Up

Lesson 4: Android Resources
String Resources
Loading Strings in XML
Loading Strings in Code

The Resource Values Folder

Wrapping Up

Lesson 5: Drawables - Image Basics
Drawable Folders and Qualifiers

Using Drawables

Dimensions

Image Padding
The ImageButton Widget

Wrapping Up

Lesson 6:Lists

Implementing an Android List

ListView
ListActivity
Empty Lists

ListAdapter
Sorting the Adapter

Overriding ArrayAdapter

List Interaction

Wrapping Up

Lesson 7: Dialogs, New and Old
Old Style
AlertDialog
Custom Dialog

New Style
Support Library
Fragments
DialogFragment

Wrapping U

Lesson 8: Menus
Menus, Menus, Menus
Options Menu
Modifying an Options Menu

Context Menu
Wrapping Up

Lesson 9: Saving Data with Shared Preferences

Shared Preferences

Getting Started with SharedPreferences

PreferenceActivity

Wrapping Up

Lesson 10: Saving Data with a Database
SQlLite
Creating a Helper

Using the Helper

Cursor and CursorAdapater

Wrapping Up

Lesson 11: Threading with AsyncTasks

Threading in Android

AsyncTask
Tracking Progress

Wrapping Up

Lesson 12: Styles and Themes

Introduction to_Styling

Defining Styles

Defining Themes

Style Inheritance
Direct Theme References

Learning to Learn

Wrapping Up

Lesson 13: Android Final Project
Final Project

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Getting Started with Android Development

Welcome to the O'Reilly School of Technology Android 1 course! We're glad you've decided to take this journey with us into
Android application development. By the time you finish the course, we're confident that you'll have a firm grasp on developing
applications for the Android platform.

Course Objectives

When you complete this course, you will be able to:

e use basic view components and application classes.

e program strings, drawables, and lists.

e display dialogs, menus, styles, and themes.

e save and manipulate data using Shared Preferences and SQLite databases.

e use thread processes.

e create an application thatimplements multiple activities and can interact with a SQLite database.

In this course, you will learn the fundamentals of writing Android applications. Topics covered include activities, views,
navigation with data, drawables, lists, menus, saving data with an SQL.ite database, and threading. By the end of the course, you
will be able to create an application thatimplements multiple activities and can interact with an SQLite database.

To be successful in this course, you must have a basic understanding of object-oriented programming and the Java
programming language. If either of those are unfamiliar to you, talk to your instructor about taking the O'Reilly School of
Technology Object Oriented Java course.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. Italso gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance,but don't depend on it. Try to solve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

http://www.oreillyschool.com/courses/java/

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you atit
until you've mastered the skill. We want you to get that satisfied, "I'm so cool! | did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try outlots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).
If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove witt—Fook—Fike—this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is

provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:

About Eclipse

We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right

now. IDEs assist programmers by performing many of the tasks that need to be done repetitively. IDEs can also help
to editand debug code, and organize projects.

Note

You'll make some changes to your working environment during this lesson, so when you complete the
lesson, you'll need to exit Eclipse to save those changes.

The Eclipse window displays lesson content, and provides space for you to create, manage, and run programs:

B DST Python - Fo

g, ilipichodl tm

Fle Edt Refactor Maovigate Search Project Pum Window Help
- ADE DDM |« | |5 -0 -G -

0& =3

(Menu bar and toolbar) Ll o L;
windoes Sektings = [Back Refresh File Google =

SCHOOL of
TECHNOLOG

@ start Fage | Sylebus 1
OREILLY ‘

* My Courses

Android D

]

Course contant: Here's where the text of the course is shown

-
i =
£ pach 11 - g Prob | < Task | S Ter | Wilog | = Preg | B Cons ' B - ~ =
ShomWorking Sets » = T 7

& Cttar Promets

T dnddrod]_Hancback

5 Androidi_Compunty

8 medroid]_Homaresk . = L

& edcidh_Lassons Package Explorer contains The Editor Window is a space where you can create, modify, and test

your working sets, folders your applications
and files
- S

R : bt ffareibrschoal comfstudent fiessons phe " OOUR SE D= 1 ST8cour se_code=androkd]

Android S0K Comtert: Loader

Perspectives and the Red Leaf Icon

The Ellipse Plug-in for Eclipse, developed by the O'Reilly School of Technology, adds an icon to the tool bar
in Eclipse. This icon is your "panic button." Since Eclipse is so versatile, you are allowed to move things
around, like views, toolbars, and such. If you become confused and want to return to the default perspective
(window layout), clicking on the Red Leaficon allows you to do thatright away.

The ﬂj icon has these functions:

e Itallows you to resetthe current perspective, by clicking the icon.

e [tallows you to change perspectives by clicking the drop-down arrow beside the Red Leaficon and
selecting a series name (ANDROID, JAVA, PYTHON, C++, etc.). Most of the perspectives look
similar, but subtle changes may be present"under the hood," so it's bestto use the correct
perspective for the course. For this course, select Android.

Working Sets

8- ||

T Java

— Python
C++

All projects created in Eclipse existin the workspace directory of your accounton our server. As you create
multiple projects for each lesson in each course, it's possible that your workspace directory could become
pretty cluttered. To help alleviate the potential clutter, in this course, we'll use working sets. A working setis a
logical view of the workspace; it behaves like a folder, butit's really just an association of files. Working sets

allow you to limit the detail that you see at any given time. The difference between a working setand a folder is

that a working set doesn't actually existin the file system. A working setis a convenient way to group related
items together. You can assign a projectto one or more working sets. In some cases, like with the Android
ADT plugin to Eclipse, new projects are created without regard for working sets and will be placed in the

workspace, but notassigned to a working set (appearing in the "Other Projects" working set). To assign one
ofthese projects to a working set, right-click on the project name and select the Assign Working Sets menu

item.

We've created some working sets in the Eclipse IDE for you already. To turn the working set display on and

offin Eclipse, see these instructions.

Setting Up Your Android Emulator

The Android team has made an excellent Eclipse plugin for Android called ADT (Android Developer Toolkit). ADT helps

with Android developmentin Eclipse in many different ways, so it's important that we get the Eclipse environment and

ADT set up correctly from the start, so we can build and test our Android applications.

Point ADT to the Android SDK

The Android Developer Toolkit plugin for Eclipse changes extremely frequently. The developers behind
the toolkit are doing amazing work and constantly updating and improving the plugin. However, this

Note means the mostrecent version may differ from what you see here and what the instructions detail. Don't
worry if what you see slightly differs from the instructions. While the look, feel, and features may have
changed (likely for the better), the core decisions and options such as application and package names
will generaly still be recognizable. We periodically update the toolkiton our systems.

The ADT plugin is installed on the instance of Eclipse that you are using right now. To open ADT, you can
either click the Android Virtual Device Manager icon in the button bar at the top, or select Window | AVD

Manager:

= 05T Android Java - Eclipse Platform
File Edit Mavigate Search Project Run | Window Help

J=w' |-:-|_-:-J

Plew MWindow
e Edibar;

L
K‘ Skark Page ‘ Syl

abus &5 Open Perspective

Shioe Wigw

To start the emulator,

. Resek Perspective. ..
select either of these. .

o Close Perspective
Close all Perspectives

Customize Perspective. .,
Save Perspective s, .,

Mavigation
We've created sorge we ;

» help alleviate the p
Working sets allow
L working set is a C[)a%
2w projects are creall!
ssign one of these pro

b turn the working sel*

Getting Starte

w\’..-hh'w-«m'\.ﬁ‘....-‘-.-‘knq ‘m=m¢"“"‘““*1‘vf‘""““*‘“

Go ahead and try that now. You'll probably get an error message informing you that the Android SDK could

not be found:

WorkingSets.html

& Android SDK |

@ Location of the Android SOK has not been setup in the preferences.

To fix this error, open the Eclipse preferences from the toolbar menu by clicking Window | Preferences. The
Eclipse preferences window will appear. Then click the Android section on the left. (You may be asked if you
wantto send usage data to Google. Click "No.") Then, in the SDK Location field, type C:\Program Files
(x86)\Android\android-sdk and click OK.

Sometimes when reopening a remote Eclipse session, ADT will forget that it already has the

Note location of the SDK, and will pop-up the error again. If that happens, just open the Eclipse
Preferences window again (Window | Preferences) and it should show that the path is in there
already. Click OK and everything should work fine again.

Itype Filker bexk Android SR T

- eneral
. " android Preferences
B &ndroid

-Ank SOK Location:(| C:\Program Files {x860androidandroid-sdk
SCfCH+
-EMF Facet _

-Help e | Yendor | PlakForm | AP, |
-Inst; Tvpe exactly as shown. &ndroid Open Source Project 1.5 3

dary ’ ’ &ndroid Open Source Project 1.6 4

‘oL Brgrond 2. 1 Android Open Source Project 2.1 7

- Q5T Preferences android 2.2 Android Open Source Project 2.2 g8

- F‘apy.rus &ndroid 2.3.3 Android Open Source Project 2.3.3 10

E#l- Plug-in Development Irkel Abom %86 Syst... Intel Corporation 2.3.3 10

" PyDev Android 4.0 Android Open Source Project 4.0 14

Erowse, .. |

ist of SOk Targets below is only reloaded once wou bt 'Bpply or 'Ok

- Remote Systems .) A
: Android 4.0.3 Android Open Source Projeck 4.0.3 15
- Run/Debug

- Team
i Terminal
[+ UrnlCollabor ationlse
[+ UrnlCormmon
[+ UMLConnectionPointReferanc
[+ UrniMessage
- UmnlParameter
-- UrilProperty
- UmnlState
- UrniTransikion
- Web
Web Page Editor Standard Android plakform 1.5

[HML

| _pl Restare Defaulks | Apply |

oy I—I
l\‘? y (] 4 Cancel |

Now ADT is ready to go! To testto make sure it's working, open the ADT window by clicking the E button
or selecting Window | AVD Manager. The ADT dialog window will open. Feel free to look around in the
window to getan idea of what goes on there before you continue on to the next section, where we'll create an
emulator using the AVD Manager.

K

& Android Virtual Device Manager
List of existing Android Virtual Devices located at V:\\.android\awd
AVD Mame I Target Mame | Platform I APT Level | CPU/ABI I Mew...

Edit. ..
Delete, ..

Repait...

Details, ..

Statk,..

Refresh

= A valid Android Virtual Device. & repairable Android Virtual Device.
¥ An Android Virtual Device that failed to load. Click 'Details' to see the error.

Your AVD Manager probably won't be empty like the screenshotabove. Due to the nature of the
' remote development environment we're using and the way the AVD Manager handles

. Note emulators, you'll probably see many other users' emulators. Conversely, any changes you
make in the AVD Manager will be visible to other users as well. Please be respectful of the other
' users and do not modify or delete any emulators other than those you've created for yourself.

Create an Emulator

If you closed it, open your ADT window again. This is the window that allows you to create and configure as
many Android emulators as you like so you can test your application on various different hardware and
software configurations. For now, we'll create a single emulator.

On the right side ofthe ADT window, click New.... The "Create new Android Virtual Device (AVD)" wizard
appears.

e Forthe Name, enter your-ost-username-android2.2.3 (for example, if your username is
jjamison, your emulator name would be jjamison-android2.2.3).

e Inthe Device dropdown, selectthe Nexus S.

e inthe Targetdropdown, select Android 2.2.3 - APl Level 10.

e Forthe SD card, select the Size radio button and enter 20 MiB.

= Create new Android ¥irtual Device (A¥YD) E3 |

AYD Mame: (Ismiller-andmidE.S.S }

Device: { |Nexus S{4.0" 480 = 800: hdpid)
Target: (|.ﬁ.nn:lru:ui|:| 2.3.3-APILevel 10)

CPU/ABT: { IF'.FLM (armeabi))

Lef L Lo

Kevboard: ¥ Hardware kevboard present
Skin: ¥ Display a skin with hardware contrals
Fraonk Camera: INnne

=
Back Camera: II"-.In:une j

Memory Qptions: | o awy [343 WM Heap: | 32

Internal Storage: I 00 IMiB j

S0 Cards

* size: |z z) mie =]
™ File: | Browse, ., |

Ermulation Options: I~ Snapshat [T Use Haost GPU

[T override the existing AYDIwith the same name

| Ik I Cancel

When you're ready, click Create AVD atthe bottom. Then, select your new emulator in the Virtual Devices list,
and click Start... on the right:

T Android ¥irtual Device Manager =l E

Android Yirtual Devices | Device Definitions I

List of existing &ndroid Wirtual Devices located at Y.\, androidlaswd

Mew, ..

Edit...

Delete, ..

Repait:

Details, ..

[Skart. ..

o A valid Android Virbual Device, & repairable Android Wirtual Device,

3¢ An Android Yirtual Device that Failed to laad, Click 'Details' ta see the error,

A Launch Options window appears. The emulator is actually a little too big for our remote Eclipse session, so
we'll scale itdown a little. Check the Scale display to real size box, enter 8.0 in the Screen Size (in.) field,

and then click Launch:
= Launch Options |

Skir: 480300
Density: High (2400
¥ scale display tao real size

Screen Size (in): I glo
Monitor dpi: I Q5

Scale: 0.8z

[~ Wipe user data
™| Launch from snapshat
[T Save bo snapshot

| Launch I Cancel

The emulator will take a while to load. Now mightbe a good time to pour yourself another cup of coffee or let
the dog out. When the emulator is finally loaded, you'll see itin another window on top of Eclipse.

") 5554:smiller-android2.2.3

1:05 Iﬂﬁ\ P

ANdroid oo

|l

Wednesday, September 11
€ Connect your charger.

To unlock, click and drag right.

Atthis point, you can close the Virtual Device Manager window, but try not to close the emulator when
developing your application. You'll save a lotoftime if you don't have to sitthrough the boot-up process of
the emulator. Alternatively, you might use the Snapshotfeature in the Launch Options window (above). In
Snapshot mode, whenever the emulatoris closed, AVD saves a snapshot of the current state of the emulator,
which allows itto boot up faster. However, if your emulator ends up in a weird or broken state, you'll need to

check the Wipe user data box in the Launch Options window when you restartit, in order to reset the
snapshotstate of the emulator.

To switch between this lesson content and the emulator, use the tabs at the bottom of the screen:

< 05T Andruid Java - Eclipse Platform

Fic Edt Navighe Scarch Projec Refactor Run Window Mol
Hiwi m BB |E|d [(@ |w [0 Q- |¢ | HEG ™5 T i A [@ DOMS %5 Debug ™
‘8 Q‘.!(Pagem_ Wirdows Settrgs = Back Refiech Pl webBrowser 1]

At this point, you can close the Virtual Device Manager window, but fry not to close the emulator when developing your applic ot it theanak
the boot-up process of the emulator. Alternatively, you might use the Snapshof feature in the Launch Options window (above) =

saves a snapshot of the current state of the emulator, which allows it to boot up faster. However, if your emulator ends up in a

data box in the Launch Options window when you restart it, in order to reset the snapshot state of the emulator

Hello, Android!
Create the Project

Woe need an Android project! Lef's create one now. Select File | New | Other, and then select Android Project from the New

When you firish the process below lo creale your new project, ADT willikely automatically switch your Eclipse Perspective. [Al s
alarmed, just remember fo select the Android perspective in the drop-down again fo return to the lesson. Touch the Launche

Note

2]
|4 Packoge Explorer 52 E.'_mel:m|ang\:¢; = .
Shawwerking Sets - = 5 T

&5 Other Projects

15 snvdrod]_Harchack
Androidi_Community
Adrakdi_Homewrk
Andraidi_Lessans

You can setup other emulators to match different devices, if you like. Always begin the emulator
' Note name with your OST user name, so you can differentiate them from emulators created by other !
' users. '

In the next section, we'll finally dig into some code and run our first Android application!

Hello, Android!

Create the Project

We need an Android project! Let's create one now. SelectFile | New | Other, and then select Android
Application Project from the New Project Window as shown below:

When you finish the process below to create your new project, ADT will likely automatically
switch your Eclipse Perspective to Java (which will hide this instruction window). Don't be
alarmed, justremember to select the Android perspective in the drop-down again to return to the
lesson.

=
o
-
(]

= New =] E3

Select a wizard

Create an Android Application Project [

Wizards:

It\,.fpe Filber bt

-2 Untitled Text File |
== android

----- 2 andraid Activity

""" @ Android Application Project

""" @ Android Icon Sek

Android Object

""" @ Android Project from Existing Code

""" @ Android Sample Project

""" J:‘? Android Test Project

""" | Android =ML File

""" | Android %ML Lavyout File

""" il Android XML Yalues File

----- JEI Template Development Wizard ;I

[~ Show all Wizards,

«
@JJ = Back I Mext = I Finist Zancel

Now you see the first window of the "New Android Application" Wizard. This process takes you through three
different windows to help setup your new project. In the first window, type the Project name as HelloWorld,
enter the Package Name com.ost.android1.helloworld, and select the other options as shown:

= Mew Android Application M= E

New Android Application

Creakes a new sndroid Application

Application Mame: @'I Hellohyorld

Project Marme: @l Hellahwarld

Package Mame: @'l com.ost,androidl helloworld

Minimurn Required SOK: @IAF‘I 10: Android 2.3.3 (Gingerbread)

Target SDK:@IAPI 10: Android 2,3.3 (Gingerbread)

Lef Lef L

Compile With: @IAF‘I 10: Android 2.3.3 (Gingerbread)

Theme: © TR - |

Choose the base theme to use For the application

) Ii I
|\‘?J| < Back Mexk = Firish Cancel

Click Next. In the next window, uncheck the Create custom launchericon box, and make sure the Add
project to working sets boxis checked and the Android1_Lessons working setis entered in the
Working Sets field:

= New Android Application M=l E3

New Android Application

Zonfigure Project

[~ Create custom launcher icon

W Create ackivity
[Mark this project as a library

W Create Project in Workspace

LLocation: | W hworkspaceiHellow'arld Browse, ., |

Working sets

v add project to working sets

Working sets: |Androidl_Lessons j Select. .. |

@:l < Back I Mext = Firish Cancel

Click Next. In the nextwindow, check the Create Activity box and select Blank Activity:

= New Android Application =] E3
Create Activity

Select whether to create an activity, and if so, what kind of ackivity,

W Create Ackivity

Blank, Ackivity
Fullscreen Ackivity
Master Detail Flow

{.NW\N'\

Blank Activity

Creates a new blank ackivity, with an action bar and optional navigational elements such as tabs or horizontal swipe,

iy
'\‘?_,.' < Back I Mexk = I Finish Cancel

Click Next. In the next window, accept the default Activity Name MainActivity, Layout Name activity_main,
and Navigation Type None:

= Mew Android Application M= E
Blank Activity

Creates a new blank ackiviky, with an action bar and optional navigational elements such as kabs or horizontal
swipe,

Activity MName & | Mainactivicy

Layouk Name'ﬁll ackivity_main

Mavigation Type ®|I"-.I|:||'|E j

» The name of the activity class to create

X
@) < Back Mext = | Einish I Cancel

Click Finish.

Remember these steps—you'll need to perform them for any new project you create in this course.

If Android1_Lessons doesn'tappearin your Package Explorer window, fix it now. In the top-right corner of
the Package Explorer window, click the downward-pointing arrow and select Configure Working Sets....

[package Explorer 52 . f Problems} = Console} = LngCaq ':',,El_“\

Show Working Sets = = %v|]

Top Level Elinents 3

F-#5 Other Projects

=T
SsoFilkers...

Package Presentation 3
w Show 'Referenced Libraries' Node

5. Link with Editor

Y A

Check the boxes for the Android1 working sets and click OK:

& Configure Working Sets _ O

Select and sort warking sets wisible in Package Explorer:

J.S.I Other Projects - [0
O 15 3avat_Handback
O 45 3aval_Community Dinr
O J.f,‘.l Javal _Homework,
D J."_”-.‘.I Jawval_lessons
O 45 pythanz_Homewark Deselect Al
O J.f,‘.l Pythonz_Lessons

O J.f,‘.l Pythond_Homework,

O J.S.I Pythond_Lessons

12 andraidl_Handback

J.f,‘.l Androidl _Commmunity

J.S.I Android1 _Homewark,

15 android1_Lessons

O 4= androidz_Community

O J.f,‘.l androidz_Handback.

O {5‘.! AndroidZ_Homework, ;I

Select Al

BELL

[~ sSork working sets

Mew, .. | Edit, .. | Remaye |

5
l\‘?) 84 I Cancel

Now you'll see those working sets (and the Other Projects) in the Package Explorer window:

=

i p -
% Package Explarer &3 | t
Showe Working Seks ~ = G:é} =

ﬂﬁl Other Projects

J.f,‘.l androidl _Handback
J.fTJ Android1 _Community
. 151 androidl_Homework
#-45) Androidl_Lessons

at
4
. x‘“a__h_ ' “—-*m..-\‘,xq_f""-l--&u/

Run the Application

To run the application, right-click the root project folder HelloWorld in the Package Explorer, and select Run
As | Android Application. If your emulator was closed, it will open automatically now; if it was still open,
you'll have to bring the emulator window back to the front. If your emulator is in lock mode, unlock it by
dragging the green unlock button to the right side of the screen. Once ADT has finished installing the
application onto the emulator, it will launch automatically.

=) 5554:smiller-android2.3.3

s o

Hello world!

It's not much to look at yet, butit's a great start. Now we have a solid foundation to start getting into some real
Android application development.

Editing Programs

When you create the project, the activity_main.xml file, in the /res/layout folder, is created:

.
w.; Prn:nl:nlemw El Cn:-nscnlew = Ln:ngt:aq =

Shouw Working Sets

=

é’j.l Other Projects

Ellﬁ gen [Generated Java Files)
B, Android 4.3
B4, Android Private Libraries

@:-IE& Fes
= drawable-hdpi
1= drawahble-ldpi
= drawable-mdpi
= drawable-xhdpi
= layout
('_i__g, activity_main.xml}
1= menu
= values
= values-swal0dp
1= values-sw720dp-land
= walues-vi1
H-2 values-v14

""" |1 androidManifest, xml

8
=

By default, Android XML files load in a Graphical Layout view. We'll talk about thatin detail later; for now, we'll
focus on the actual XML. Click the activity_main.xml tab in the lower portion of the editor screen:

B (= drawable-mdpi

(& drawable-chdpi
E-= layout

el activity_mainxml
(= menu

(& values

(= values-swe00dp

(& values-sn720dp-land
= values-v1t

(& values-v14

a0 androidManiest. vl
proguard-project.txt
project. properties

Lists

Menus

Stying

Threads

[X

1B -

. Form Widgets
Textview BB Large Text =

Medium Text Small Text =

EE- D8

(1 Tewt Fields
[l Layouts
| Composite

C Click this tab.

(1 Custom & Dtgary Yiews Il

aqalasq

[# package Explorer 51 i pmmems] B cnnsnla]’mgcat] = ﬁ]ﬂg activity_main xml 53 =8
- || 4 Palette Struct »
show Vorknaets - (] % 7 | B o | Onexusone - | B - | o Apptheme ~ | & Manactiviey - | @ - | e
& dramable-pi][Paett= = g Outine

EH{H] RelativeLayout
Textview - 'Helo viorld!”

] Froperties I

<Mo properties >

Graphical Lsyuuﬁ | =] activiey_main.xml \)

Edit the code as shown:

CODE TO TYPE:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
tools:context=".MainActivity" >

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="g#stringAretto—wortdtello World!" />

</RelativeLayout>

Save and run the application again. You see your new text:

Android Package Structure

Let's take a momentto get familiar with the Android package structure. Take note of the defaultfiles that were
created in the root directory of the project:

P T
[Package Explorer &3 E.L F‘rcul:ulems} E Cl:unscule\l =] Ll:u;Caq = B
Show Working Sets = - <~}==5 ~

ﬂﬁl Other Projects
421 androidl_Handback

------ 450 androidl_Cammunity

o J.S' Androidl _Homework,
=45 androidl_Lessons

Ell% Hellahworld

o

G@ gen [Generated Java Files]
B Android 4.3
E.a &ndroid Private Libraries
----- G@ assets

B2 bin

[= drawable-hdpi
== drawable-ldpi
H-[-= drawable-rmdpi
[E:- drawable-xhdpi
EI:E: layout
e 471 ackivity _main. sl
H-[= menu
E-E2 values
E:- values-swa00dp
7= values-sw720dp-land
b= values-vldl

H- = values-vld
----- 21| Androidranifest, xml
----- proguard-project, bxk
----- projeck. properties ﬂ

All Android projects have an AndroidManifest.xml file, along with a Ires folder, and a source folder, usually
titted Isrc. If you open the Isrc folder, and then the com.ost.android1.helloworld package, you'll see the
MainActivity class that we defined when creating the project. Go ahead and double-click that file to open it
now:

ackage Explorer . Problems onsole ogCat = ackivity_main, xml lainActivity. java
[£ Package Explorer 52 “_jf.i Prablems | & Console | 83 LogCat O || activic 1 Maindctivit]
Show Working Sets -~ G T || 1 backage com.ost.androidi.hellovorld; hd
#57 Other Projects = : . d
%5 Androidt_Handback I¥import android.os.Bundle;[] ’
o il] ! &
45 Androidi_Community . X
55 android)_Homemerk 7 public class Nainkctivity extends Activity {
=45 Android!_Lessons s)
£33 Helloworld 99 Boverrids
B e ~10 protected void onCreate(Bundle savedInstanceState] {
25 com.ast.androidt. helowarld 11 super.onCreate (savedInstanceState] ; P
) Maur;Actwthy]'ava 1z serContentView (R. layout. activity main) ;)

®-88 gen [Generated Java Files] 3

- Androld 4.3
- Ancloid Private Libraries
& assets

15 Boverride
2 public hoolean onCreateOptionsMenu(Menu menu) |
B q@bm 17 /¢ Inflate the menu; this adds items to the acrion bar if it is present.
- libs 16 getMenuInflater (). inflace [R.menu.main, wenu):
B res 13 return true;

(= drawable-hdpi

¢
&
= drawable-ldpi z1
(= drawable-mdpi zg }
ol AP, g, o i gt BN i e B Ayl i N B i,

Let's take a look at the code:

OBSERVE: MainActivity.java

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu

public class MainActivity extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

@QOverride

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenulInflater () .inflate (R.menu.main, menu) ;
return true;

This MainActivity is the first entry pointinto our Java code for this application. The onCreate() method is first
called when the Activity is created. We will cover the Activity class in depth in the nextlesson, butfor now, just
be aware that each view in an application is controlled by an Activity.

Also, notice thatthe second line of onCreate() calls setContentView(R.layout.activity_main). This
method loads the view that MainActivity will control. R.layout.activity_main is a reference to the
activity_main.xml file in the /res/layout folder. Let's look at that file again:

OBSERVE: activity_main.xml

<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
tools:context=".MainActivity" >

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Hello World!" />

</RelativeLayout>

ltmay seem like there's a lot going on in this method, but we'll justfocus on the tag names for now. This view
defines a RelativeLayout with one child, a TextView.

Bonus Round

Haven't had enough yet? That's great! There is so much more we can do now that we have a running application. Let's
get back into the code and start making some changes of our own!

Our earlier change was pretty straightforward. Let's try changing it up a bitmore. Editactivity_main.xml again as
shown:

Ires/layout/activity_main.xml

<RetmtivelinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Hello World!" />

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="This is going to be the best app ever!" />

<Button
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Whoa, look, a button!" />

</RetativelinearLayout>

Save and run it again to see your view has grown:

5554:smiller-android2.2.3

s o

HelloWorld

Hello World!
This is going to be the best app ever!

Whoa, look, a button!

After you run an application for the first ime using right-click and Run As or the Run menu, there's a

faster way to run it. You can click the Run icon button ﬁ " in the button bar at the top. With Eclipse,
there's often more than one way to accomplish a particular task. These shortcuts will help cutdown on
your developmenttime, so you'll definitely want to use them!

Z
(o)
-~
(1)

Wrapping Up

We've covered lots of topics here that are essential to every good Android developer. From setting up your
environment to creating an emulator to creating and running an Android project, these skills form the foundation for
building and testing any Android application. You're doing great—see you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Activities and Views

Welcome back! In the lastlesson we covered the foundations of Android development—setting up the Eclipse environment with
ADT, creating an emulator, creating a new Android project, and installing and running iton the emulator. In this lesson we'll learn
more about views, and also explore the fundamental classes of every Android application.

AndroidManifest.xml

Every Android project must have an AndroidManifest.xml file located in the root of the project directory. Think of it as
the backbone of your Android application, defining the package name (unique for each application in the market), every
Activity and Service, each permission that the Application requires, and more. We'll refer back to the AndroidMainfest
often during the course.

Let's go back into our existing project and use itto demonstrate the importance of the AndroidManifest. We'll start by
writing some code to launch a new activity. Open your project, then open the MainActivity.java file and then edit the
code as shown:

MainActivity.java

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.os.Bundle;
import android.content.Intent;

TP

public class MainActivity extends Activity {

= <l K| M
TS oI vV I ewW L ety

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

startHermes () ;

}

public void startHermes () {
Intent intent = new Intent (MainActivity.this, HermesActivity.class);
startActivity (intent) ;

PRI . .
T [cavivs TCCeHY TO

e . N = R i
1T aC IO oot T TC o Pt e

= n :
CC (N e Ira s et i, metra)y

The Importance of import: If you're familiar with Java, then you know the importance ofimport
statements at the top of classes. Throughout the course we'll reference other classes that will require
additional imports (such as the Intent class above, which requires the import declaration import
android.content.Intent;). | will rarely refer to the exactimport updates that are necessary for each code
change we make, though, because Eclipse can add those imports to our files automatically. There are
various ways to get Eclipse to do this. For example, you mightuse Source | Organize Imports on the
menu or the keyboard shortcut Ctrl+Shift+0. These commands will save you a lotof developmenttime
in Java.

The code we've just written will launch a new Activity called HermesActivity during the onCreate method. (The Intent
class is an importantone in Android and it has many purposes beyond launching Activities; we'll discuss those other
purposes in detail a bitlater.) Eclipse displays a red squiggly line under HermesActivity.class, because it doesn't exist
yet. Let's create itnow. SelectFile | New | Class. In the "New Class" window, name the class HermesActivity and set
the superclass to be android.app.Activity:

& New Java Class M=] B9
Jawva Class —.
Create a new Java class, @

Guurce Folder: I Hellu:u'-.-'u'curld,l'src) Browse, .,

G‘acl&age: | corm.ost, androidl. helloworld Browse. .,

I Enclosing type: | Browse, ..

il

G‘-.Iame: I HerrmesAckivity)

Modifiers: = public " defaul: £ private " protected
[T abstract [Ffinal ™| skatic

Cﬁuperclass: I andruid.app..ﬁ.ctivitﬂ) Browse, ..

Interfaces: add...

J

wehich method stubs would vou like to create?
[public static void mainString[] args)
[Construckars From superclass
¥ Inherited abstract methods

Do wiou wank bo add comments? (Confioure kemplates and default value hered

@jj Einish I Cancel

Click Finish to create the class. You can close the HermesActivity.java class file now, because we won't be modifying

i -

it for this demonstration. Now let's run the application (click the Run

The emulator should start up automatically if it wasn't already started before running the project. It may
take a while for it to startthough. When it finishes, the project should install on to the emulator
automatically and execute. Although on occasion Android may think the emulator has timed-out while
waiting for it to start; if that happens, justre-run the project after the emulator is up and running.

=
o
-
(1)

So, how does itlook? Did you getan error message thatlooked something like this?

(%) 5554:smiller-android2.3.3

MmO A

DPAD

=D

Hardware Keyboard

The application HelloWorld
(process com.ost.

android1.helloworld) has
stopped unexpectedly. Please
try again.

Force close

Don'tworry. This was one of those planned errors we sneak in from time to time to getyou used to encountering them
—and fixing them. This was the mostcommon error I ran across when I firstdove into Android programming. Let's
take a look atthe logs and see what's going on. Click the LogCat view tab on the Package Explorer pane:

i B
[% Package Explorer 53 |.L_'.|a'._ F'ru:ul:ulems}] Eunsul{rﬁj LogCat) = B

Show Working Sets -] 5 7

----- 15 android1_Homewark ;I
=45 androidi_Lessons

Click this tab.
(1] Hetresrresrrrerrrars
Maindckivity, java

-3 gen [Generated Java Files]

-2 Android 4.3

-2, Android Private Libraries

""" Ellr_—"/' assets

B2 bin

= libs

-5 res

(2 drawable-hdpi

= drawable-ldpi

-2 drawable-rdpi (I
IE? drawable-xhdpi

E|:Eb laneaut

------ =] ackiviky _rain,xml

FH-= menu
F-= values ;I

This view displays all the log information from a connected emulator or device. Scroll down to the bottom of the
LogCat view and find the red text (the color used for Error logs). Click and drag the right edge of the panel to widen i,
and hover with the mouse over the second error. You should see something like this:

[+ Package Explorer H._ Problems (E Consale (@ Logat 23 = O[la ackivity_main.zml (@ Maindctivity java I3 =0
el 1 package com.ost.androidl.helloworld: B
savedFiters gk = [\ [Search for messages. Accepts Java regexes, Prefix with pid:, app:, tag; or text: to lmit scope. [verbose =] =] E”E* z
Allmessages (no fiters, : 97 dmport android.os.Dundle;
L...| Time lpio |7 | Application | 7| Text | 4 import android.app.lictivity:
Endro?dl.helluwurld{.l{alnﬂ:tl\nby: pid=46% uic 5 import android.content.Intent;
D 09-12 14... 461 461 A Shutting dowm VI 5 import android.view.Menu:
D 09-12 14_.. 461 463 d. GC_COMNCURRENT freed 10ZK, €83% free 3Z0K/10Z4K, 7
®, paused lustlns o public class Mainkctivity extends Aotivity f
D 09-1Z l4... 461 465 d. Debugger has devached; ohject registry had 1 e 3
I 09-12 14_.. 4681 470 L. NOTE: attach of thread 'Binder Thread $3' fail 10 @override
pooB9-lz le... 467 463 com.est.andre... A Shutting dewa VI 211 protected void onCreats (Bundle savedInstanceSta
1z super.onCreate (savedInstanceitate)
) 13 setContentView (R. layout. ectivity main);
E 03-1z 14... 483 463 com.ost. andro.. . A FATAL EXCEPTION: main -
E 03-1Z l4... 463 463 com.est.andro. .. A | javalang.RuntimeException: Unable bo start sctivity Compone rtHermes () :
ntInfo{com.ost. androidl helloworld/com.ost.anc 16 3
ld.Maindctivity}: java.lang. PuntineException: 17
e lins #1l: You must supply a layour_widch avt gla public void startHermes() {
- N i i - s o 19 | Threnf intent = new Tatent. rmrw nnr-.r.wwr.v.r.his_.'LI
4 3
[T | Andraid SOk Conkent Loader
e 1
' '
1 !
! You can always have multiple devices connected and multiple emulators running, but LogCat can only !
' display one device or emulator's logs ata time. If LogCatisn't showing you the logs you expected, use '
i i
1 N 1
: Note _ DDM _ , _ ;
' the DDMS perspective to select the correct device/emulator. We'll cover the DDMS perspective '
1 . . .]
! in detail in a later lesson. !
1 1
e T T I T T T T I I T T T I T e I T T T I e e e T 4

This error is a little vague, butin short, it's saying it couldn't find our Activity, HermesActivity. That's because we haven't
defined itin AndroidManifest.xml yet. As we discussed earlier, the AndroidManifest defines each Activity available to an
application. The declaration informs the Android system which Activities are present and how they can be launched. So
let's add the declaration now. Go back to the Package Explorer tab (drag its right border back to make it narrower) and
open AndroidManifest.xml in the HelloWorld project. There are a lot of different sub-screens available for
AndroidManifest to help modify the file using a GUI, but we'll just edit the XML directly. Click the
AndroidManifest.xml sub-tab in the bottom of the view :

IE Package 52 N i th\ems} =] Cnr\snle]ﬂlchaq = O|| 4 activity_main.zml ﬂ] MainActiviey, java fo Helloworld Marifest £2
; - i i
. ShowWorking Sets = 1B 5 Android Manifest
2= bi -
He bin) Manifest General Attributes
= libs
Hp=] Defines general information about the androidManifest. xml
B res
(= drawsble-hdpi Package com,ost.andraidl hellaworld
& drawable-ldpi Versioncode |1
#-(= drawable-mdpi
(= dramable-xhdpi Versionname [1.0
E layout Shared user id
el ackiviey_main.xml
(= menu Shared user label
(= walues "
(= values-swe00dp Installloc Click this tab
(= walues-sw720dp-land cithis 1ab.
" Manifest O @ A=
(= values-v11 -
(= valuss-v14 D) Uses sdk.
A AndroidManifest. xml
[E proguard-praject txt = }
project.properties ||| =] Manifest [[A] Appiication ‘ [P] Permissions | o Instrumentatiorq_ Bl AndruidMamFestxmlD

J 0 LRL: https: | tap-test.oreilyschoal.comfstudent/lessons. php? COURSEID=1578course_code=androidl

Now thatwe're in the correct view, let's add the HermesActivity to the manifest:

J Android SDK Content Loadsr

CODE TO TYPE:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.ost.androidl.helloworld"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="10"
android:targetSdkVersion="10" />

<application
android:allowBackup="true"
android:icon="@drawable/ic launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >

<activity
android:name="com.ost.androidl.helloworld.MainActivity"
android:label="@string/app name" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
</intent-filter>
</activity>

<activity android:name=".HermesActivity"
android:label="Hermes Activity"/>

</application>
</manifest>

/>

Save the changes and run the application again. This time you don't see the error—or much of anything else:

5554:=smiller-android2.3.3

x ol 4:34
Hermes Activity

Hardware Keyboard

Lhe your physical keybaard 1o provsde

This probably doesn't come as a surprise, though, because we didn't even add a view to our HermesActivity.

Let's analyze the changes we did make to the AndroidManifest:

OBSERVE:

<activity android:name=".HermesActivity"
android:label="Hermes Activity"/>

Each Activity in an Android application requires an <activity /> node, nested within the <application /> node.
android:name refers to the name of the activity prefaced by the package in which the Activity is located, relative to the
package of the application, which is defined by the attribute android:package in the root <manifest> node. The
package of our application is "com.ost.androidhelloworld," which we defined in the New Project wizard previously.
Since Hermes activity is located in the rootof our project (and notin a subfolder), ".HermesActivity" is sufficient for
the value of the android:name attribute. This is the only required attribute for activity nodes, but there are many other
optional parameters; for example, android:label specifies the text that appears in our output. We'll cover a few more
ofthese attributes in lessons to come, but feel free to explore the other possible attributes on your own.

Activity Class

In the MVC (Model-View-Controller) design pattern, the Activity class is considered the Controller. The MVC pattern is
outside of the scope of this course, but if you are unfamiliar with it, | highly recommend that you take a few minutes to
read aboutitin Wikipedia. The Activity class is used to communicate with the View by populating it with data (from the
Model) and handling or responding to user interactions with the View.

We'll look at the Activity class more later, but first we have to make one small change to our XML view. Open
activity_main.xml. If you haven't made any changes to it since we worked on it before, the parent node will still be a
LinearLayout with three child nodes: two TextViews and a Button. Modify the Button node in
activity_activity_main.xml as shown:

Ires/layout/activity_activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Hello World!" />

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="This is going to be the best app ever!" />

<Button

android:id="@+id/my button"
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Whoa, look, a button!"/>

</LinearLayout>

Save the file, switch to the MainActivity.java file, then edit your code as shown:

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

CODE TO TYPE:

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public class MainActivity extends Activity {

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

. T VA
cCarcrermesS{/

Button myButton = (Button) findViewById(R.id.my button);
myButton.setOnClickListener (myButtonClickListener) ;
}

private OnClickListener myButtonClickListener = new OnClickListener () {

@QOverride
public void onClick (View v) {
startHermes () ;
}
}i
public void startHermes () {

Intent intent = new Intent (MainActivity.this, HermesActivity.class);
startActivity (intent);
}

}

After you've made those changes, when you fix the imports, you might be presented with multiple classes for
OnClickListener. Be sure to choose to importthe View.OnClickListener class.

Save your changes and run the project to see how these changes have affected the application. The home screen
probably looks familiar to you, and now when you click the button it will actually do something! If everything is hooked
up correctly in the code, the button will cause our HermesActivity to load, and the empty Hermes view should be
visible.

So what did we do exactly? Let's review our changes, one by one:

OBSERVE:

Button myButton = (Button) findViewById(R.id.my button);

First, we located and stored a reference to the Button into a variable. The findViewByld() method comes from the
parent Activity class, takes one Integer parameter, and returns a generic View object, so we must castitto its specific
class. Our parameter R.id.my_button is a resource reference to the id attribute we added to our XML view earlier. R
is a class thatis generated by the Android compiler and automatically populated with references to resources in the
Ires folder, because we referenced it earlier in the onCreate() method to load the view R.layout.activity_main.

OBSERVE:

myButton.setOnClickListener (myButtonClickListener) ;

Next, we attached a click listener to the button using the setOnClickListener() method, which takes a parameter of
the View.OnClickListener type.

OBSERVE:

private OnClickListener myButtonClickListener = new OnClickListener () {
@Override
public void onClick (View v) {
startHermes () ;
}
}i

Finally, we created the myButtonClickListener object that we passed to setOnClickListener. View.OnClickListener
is an Interface that has one method, onClick(View view), to handle each click event. The View parameter sent to the
onClick() method is a reference back to the View that dispatched the click event. Then, we call the method we defined
earlier to launch the Hermes Activity.

This is the mostbasic way of responding to clicks on Buttons in Android. Originally, this was the only way to handle
clicks; butas of Android version 1.6, there is another, more efficient way. Since our projectis already targeting version
2.2 of Android, let's update our code to use this alternate method of handling clicks. Open activity_main.xml class
again and make the following change:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Hello World!" />

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="This is going to be the best app ever!" />

<Button
android:id="@+id/my button"
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Whoa, look, a button!"
android:onClick="handleMyButtonClick" />

</LinearLayout>

Now, modify MainActivity.java below as shown:

MainActivity java

package com.ost.androidl.helloworld;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity {

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

£ o
T TIrce
n
=

\
7

no Toaad \
T I uramn OO ToT—
. o leT o oot \

T KOoOrSTCITCST)y

llly ITCT T I =3 CUIT
2 = Ol s alT o ot Do ol o aleT o o — ol s aleT o o L\ L
PrIvat e elbtsterer—myButtontiiekbstener—rew—onctekitsterer{—f
a1 o el 1 - 1 (375 L
f/LAL}LLu AR wy 1T LT TTRT TCTW 7 1
PSS,
SCarcrecrintesS (/s
—++
public void startHermes () {

Intent intent = new Intent (MainActivity.this, HermesActivity.class);
startActivity(intent) ;
}

public void handleMyButtonClick (View view) {
startHermes () ;

}

}

Run the project again to testthe code. The app will function the same way it did before. This change simplifies the code
for handling clicks siginificantly. Instead of finding the button in the View and attaching a listener object to it, we use the
XML android:onClick attribute to reference a method in our activity. There is no compiler-time checking for this method
name; the method is presumed to be presentin the Activity thatimplements the View. If the method is not present (or if
itis defined incorrectly) then the application will throw an error when a user clicks the button. Methods referenced from
the android:onClick attribute must have a return type of void and receive one parameter of type View.

Using this abbreviated method eliminates the need to store a reference to the button on the View. It's still sometimes
necessary to geta reference to components on a View though, so you'll wantto know how to use the findViewByld()
method correctly.

Basic View Components: Layouts and Buttons

Layouts

Now that we know a bit more about controlling our Views, let's explore some more features of Android XML
Views, starting with layouts. When you first create a View using the ADT wizard, it's populated with a
LinearLayout tag for its root node automatically. The LinearLayout tag is used for arranging elements
automatically, in a single direction, either horizontally or vertically. Horizontal layout is the default direction. To
change the direction, use the android:orientation attribute.

There are two other common layouts to consider using when setting up your views, RelativeLayout and
FramelLayout. RelativeLayout allows you to define position constraints for a view's components, relative to
the parent and other components. FramelLayout puts each child on a separate layer (or frame), stacking them
on top of each other.

View Components

There are many components available to use for Android views. We've already used two in our main view—
TextView and Button. The standard view elements you would expectto see such as tabs, checkboxes, radio
buttons, toggle buttons, and editable TextViews (called EditText), are already available. We're not going to
cover each available componentin this course, but you'll probably wantto look into the available
components on your own in the Android SDK on the documentation site or using the Graphical Layout XML

editor provided by ADT.

I@ Palette -

= Form Widgets

TexkYiew Large Text =
Medium Text small Text =
Buttan Small Bukkon

B ToggleButton CheckBox
- =l

M Maindckivity, java 1 12 Hellatwaorld Manifest 1
— E—
Ealette al - | [mexusone - | B - | +r AppTheme - | (3 MainActivity | ® - | e -

m[E | =@ Qaalaa |a

) Text Fields

[:I Layouts

| Composite

[Images & Media

[Time & Date

[C1 Transitions

[Advanced

[other

|71 Custom & Library Yiews

Graphical Layout J_C:I activity_rmain. xml |

Wrapping Up

We've covered a lotin this lesson! You should feel comfortable using the Activity class to find View components and

handle click events, and you should know about many of the different types of View components available in Android.

Feel free to experimentsome more on your own until you feel confidentin using those tools. See you in the next
lesson, where we'll dig even further into Navigation and Datal

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com/reference/android/widget/package-summary.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Navigation with Data

Welcome back! Earlier we mentioned starting a new Activity with an Intent. In this lesson, we'll go over Activities in more depth.
We'll also talk more about the Intent class, and various methods for sharing data between activities.

Working with Intent

In the previous lesson we started a new Activity by creating an Intentand sending itto our current activity's startActivity()
method. Here's the code we used in our MainActivity class to startthe HermesActivity:

OBSERVE:

Intent intent = new Intent (MainActivity.this, HermesActivity.class);
startActivity (intent) ;

The Intent class in Android is used for much more than just starting Activities. Think of the Intent class as your way of
letting the Android OS know of your "intent" to perform an action.

For example, to start a Service, you call Activity.startService and send an intent as the parameter. You can also
use Intents to request that an action be performed in another application, such as opening a web page in the browser,
sending a text message, or sending an email. Let's try doing thatlastone now.

First, we'll add a new button to our view to start this action. Editactivity_main.xml as shown here:

Ires/layout/activity_main.xml

<Button

<Button

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:
android:
android:
android:
android:
android:
android:
tools:context=".MainActivity" >

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Hello World!" />

<TextView
android:layout width="fill parent"
android:layout height="wrap content”
android:text="This is going to be the best app ever!" />

android:id="@+id/my button"
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Whoa, look, a button!"
android:onClick="handleMyButtonClick" />

android:layout width="wrap content"
android:layout height="wrap content"
android:text="Send Email"
android:onClick="handleSendEmailClick" />

</LinearLayout>

layout width="match parent"

layout height="match parent"
paddingBottom="@dimen/activity vertical margin"
paddingLeft="@dimen/activity horizontal margin"
paddingRight="@dimen/activity horizontal margin"
paddingTop="@dimen/activity vertical margin"
orientation="vertical"

Now, in MainActivity.java, add the logic to be performed when this button is clicked:

MainActivity java

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class MainActivity extends Activity {

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

public void startHermes () {
Intent intent = new Intent (MainActivity.this, HermesActivity.class);
startActivity(intent);

public void handleMyButtonClick (View view) {
startHermes () ;

}

public void handleSendEmailClick (View view) {
Intent emaillIntent = new Intent (Intent.ACTION_ SEND) ;
emailIntent.setType ("plain/text") ;
startActivity (Intent.createChooser (emailIntent, "Email"));

Save and run it. If we try to test this now using the Android emulator, we won't see much of anything aside from a
warning message.

(%) 5554:smiller-android2.3.3

Email

No applications can perform
this action.

This is because the default Android emulator doesn't come pre-bundled with any applications that support sending
email. Specifically, the emulator doesn't have any applications that handle the Intent ACTION_SEND action.

The best way to test this code would be to install the application on an actual device. But even if you own an Android
device, you won't be able to install the application to it because the remote desktop connection environment can't
recognize a device attached to yourlocal computer. You would have to set up the android SDK and developer
environmenton your own computer in order to install to your own device. That's pretty extreme for our purposes, but
don'tworry—we can work around that.

An Emulator Email Alternative

I've created a basic mock application to handle the email intent, which you can download directly from the
emulator. Open the browser on the emulator and type the url
http:/lcourses.oreillyschool.com/android1/software/Mo ck.apk:

(%) 5554:smiller-androidz2.3.3

TUV

This downloads the application. Once it finishes downloading, drag down the window notification shade, and
click on the download complete notification to install it:

(@) 55 54:smiller-android?.3.3

S .
er‘

v Click and drag down.

> http://courses.oreillyschool.com/
./ android1/software/Mock.apk

TUV

When the icon appears, click and drag anywhere in the top bar to pull down the "window shade."

'#l 5554:=miller-android2.3.3
September 12, 2013

‘Android

;!;@Iuck-tapk

Download complete

9:29 "

ﬂl'hﬂ

CIEHF Hardware Butlons

DFAD

Click here to install.

(@) 5554:smiller-android2.3.3

T

s N

Do you want to install this
application?

Click to install.

Install : Cancel

(%) 5554:smiller-android2.3.3

Basic Cantrals

-~~~
P VodkEmailHandier .

Hardwar wyhoard
e your physical keyboard 1o provsde mput

v Application installed

Click when finished.

This application won't actually send email, but now, when you test the code we wrote earlier, you'll see more
than justthe "No applications can perform this action" message. Instead, you'll see this:

5554:smiller-android2.3.3

9:38 Mt
e 0O0C

Mock Email Handler OO0 D

TO:

Hardware K
Lhee your pl eybaard 1o provede mput

Using this emulator, we can also define the fields of the email—such as the To, the Subject, and the Body—using
the Intent.putExtra method:

OBSERVE:

public void handleSendEmailClick (View view) {
Intent emailIntent = new Intent (Intent.ACTION SEND) ;

emailIntent.setType ("plain/text™) ;
emaillntent.putExtra(android.content.Intent.EXTRA EMAIL, new String[]{"predefined@e

mail"});
emailIntent.putExtra (android.content.Intent.EXTRA SUBJECT, "predefined Subject");
startActivity (Intent.chooseIntent (emaillIntent)) ;

For a list of available Intent actions, see the android documentation site for the Intent class.

Sharing Data Between Activities

http://developer.android.com/reference/android/content/Intent.html

Sometimes you'll need to pass data from one activity to another. We can do that using the Intent class as well. In fact,
you've already done that once before in our example when you started the email Intent by using the Intent.putExtra
method. Let's update our application to send some data back and forth between the MainActivity and the
HermesActivity.

Sending Data to a New Activity

First, let's add an EditTextto our activity_main.xml so we can get some user-defined text.

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Hello World!" />

<TextView
android:layout width="fill parent"
android:layout height="wrap content"
android:text="This is going to be the best app ever!" />

<Button
android:id="@+id/my button"
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Whoa, look, a button!"
android:onClick="handleMyButtonClick" />

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Send Email"
android:onClick="handleSendEmailClick" />

<EditText
android:id="@+id/my edit text"
android:layout width="match parent"
android:layout height="wrap content" />

</LinearLayout>

Next, edit MainActivity.java as shown:

MainActivity java

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class MainActivity extends Activity {
private EditText myEditText;

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myEditText = (EditText) findViewById(R.id.my edit text);
}

public void startHermes () {
Intent intent = new Intent (MainActivity.this, HermesActivity.class);
intent.putExtra (HermesActivity.MY EXTRA, myEditText.getText () .toString()

startActivity (intent);

public void handleMyButtonClick (View view) {
startHermes () ;

}

public void handleSendEmailClick (View view) {
Intent emailIntent = new Intent (Intent.ACTION SEND) ;
emailIntent.setType ("plain/text");
startActivity (Intent.createChooser (emaillIntent, "Email"));

intent.put Extra uses a key/value pair system to store and retrieve the data being shared. The first
parameter is the key, and is always a String value. Because this value must be exactly the same for storing
and retrieving the value from the Intent, it's a good idea to use a static constant value here that both Activities
can access. We're using the value on HermesActivity, which we just defined.

The second parameter to Intent.putExtra is the value. This parameter must be a primitive data type (such as
Integer, Long, Float, or String) or it must be an object thatimplements the Parcelable interface. For now, we're
only going to be sharing primitives between our activities; we'll talk about using the Parcelable interface in a
later lesson.

When you save this file, you'll see a compiler error on the second line of the startHermes method. This is
because we haven't defined the MY_EXTRA variable in HermesActivity yet. Let's do that before we proceed
any further. Update HermesActivity.java as shown:

HermesActivity.java

package com.ost.androidl.helloworld;
import android.app.Activity;
public class HermesActivity extends Activity {

public static final String MY EXTRA = "myExtra";

Save your changes and run the project; you'll see the new EditText field on the screen.

Returning Data to the Previous Activity

When sending data to a previous Activity, we use the Intent class, but the process is a bit different from the
process used when sharing in the other direction. First of all, if an Activity expects to receive data from an
Activity it starts, then it needs to use a different method to start that Activity.

We also need to add another method to handle receiving the data. Make the changes to MainActivity.java
as shown:

MainActivity.java

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class MainActivity extends Activity {

private EditText myEditText;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myEditText = (EditText) findViewById(R.id.my edit text);

public void startHermes () {

Intent intent = new Intent (MainActivity.this, HermesActivity.class);
intent.putExtra (HermesActivity.MY EXTRA, myEditText.getText () .toString()

i A A Ry A A
ST ChCCIvVICyY \tIrceirc)

startActivityForResult (intent, HermesActivity.EXTRA REQUEST) ;

public void handleMyButtonClick (View view) {
startHermes () ;

public void handleSendEmailClick (View view) {
Intent emaillntent = new Intent (Intent.ACTION_SEND) ;
emailIlntent.setType ("plain/text") ;
startActivity(Intent.createChooser (emailIntent, "Email"));

@Override
protected void onActivityResult (int requestCode, int resultCode, Intent data

super.onActivityResult (requestCode, resultCode, data);

switch (requestCode) {
case HermesActivity.EXTRA REQUEST:
if (resultCode == RESULT OK) {
String stringExtra = data.getStringExtra (HermesActivity.MY EXTRA

myEditText.setText (stringExtra) ;
}

break;

Next, we'll need to update both HermesActivity and its view. Well, actually, we haven't created a view for

HermesActivity yet, so let's start there. To create the new layout XML file, we'll use the ADT wizard. Select File
| New | Other and choose Android XML Layout File in the Android folder. Name the file
hermes_view.xml and click Finish. Leave the rest of the settings at their default values.

& New Android Layout XML File [_ O]
New Android Layout XML File

Creates a new Android Lawvouk =ML File,

Resource Tvpe: ILayDut j

Praject: IHeIIn:n'-.-'n-'cand j

-
File: Ghermes_view.xm“)

Rook Element;

|:|I|LinearLa';.u:uut ﬂ

ElListview

P MediaController

o MultidutoComplete Tesxtyiew

j ProgressBar

I GuickcontactBadge J
RadioButton
RadinGroup

W RakingBar

Relativelayout

E ScrollYisw
N seskBar

|_| SlidingCr awer j

@:J < Back | Mext = { Finish :ll Cancel

Click the hermes_view.xml tab at the bottom and make these changes to the file:

CODE TO TYPE:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical">

<EditText
android:id="@+id/hermes_edit text"
android:layout width="match parent"
android:layout height="wrap content"

/>

<Button
android:layout width="match parent"
android:layout height="wrap content"
android:text="Finish"
android:onClick="onFinishClick"

/>

</LinearLayout>

Finally, we'll update HermesActivity to handle the data passed to it from the previous Activity, apply that
data to the EditText, and respond to the Finish button being clicked by closing the Activity and sending the
data back to the former Activity. Modify your code as shown:

CODE TO TYPE:

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class HermesActivity extends Activity {
public static final String MY EXTRA = "myExtra";
public static final int EXTRA REQUEST = 0;
private EditText hermesEditText;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.hermes view);

hermesEditText = (EditText) findViewById(R.id.hermes edit text);
Intent i = getlntent();
if (i.hasExtra (MY EXTRA))
hermesEditText.setText (i.getStringExtra (MY EXTRA));
}

public void onFinishClick (View view) {
String text = hermesEditText.getText () .toString();
Intent 1 = new Intent();
i.putExtra (MY EXTRA, text);
setResult (RESULT OK, 1i);
finish();

Run the application and test the code. The processes for sending data to an Activity and receiving data back
from a started Activity are really similar. Both involve storing and retrieving data by use of an Intent object.
You'll be able to make changes to the EditText in either activity, and then see the result when navigating to the
other Activity using the Whoa, look, a Button! and Finish Buttons.

Application Class

You can also share data between multiple Activities throughout an Application using a custom Application class. As
we mentioned earlier, every App on Android has a single Application class. This class is essentially a singleton (a
design pattern that restricts the instantiation of a class to one object), and we can override the class with our own
custom extension of the Application class to store state data.

Do notabuse the singleton model in the Application class. The Android developer documentation on
developer.android.com recommends using the Application class only for storing session state. You
could also juststore your state data on a helper class using public static variables. This would allow you
to keep your code more modular and remove any dependencies on the Application framework.

=
o
-
o

Let's make a custom Application class now to store some application data. First, create a new class called
MyApplication and make it extend the android.app.Application class.

http://developer.android.com

& Mew Java Class =]

Jawa Class —.
Create a new lava class, @

. 8

Gu:uurce Folder: |He||u:u'n.u'u'u:ur|d,l'sru:__) Browse. ., |
Gacbage: in:-:um.u:ust.andru:uidl.hellu:uwu:urld i Browse, ., |

[Enclosing type: | Browse, .. |
G.Iame: iMy.ﬂ.ppIicatiDn _)

Modifiers: ' public " default = private " protected

[abstract [final ™| static
¥

Gupern:lass: l"'l-E|n|:|r|:|i|:|.-5||:-|:|..'!'.|:||:|Ii-:-E|I:i|:-r|| _) Browse. ..

Interfaces:

Bemaove

I

Wehich method stubs would vou like ko create?
[public static void main{String[] args)
[Construckars From superclass
v Inhetited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

- zenerate comments

@j Einish I Zancel

The Application class has lifecycle methods similar to the Activity class. Any default data initialization should occur
during the Application.onCreate() method. Edit your new class as shown:

MyApplication.java

package com.ost.androidl.helloworld;

import android.app.Application;

public class MyApplication extends Application ({
public String defaultString;
@Override
public void onCreate () {

super.onCreate () ;

defaultString = "some default text";

To getthe Application to use our new class, we'll need to update the AndroidManifest.xml file. Update the
<application> tag with a reference to the new class:

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.ost.androidl.helloworld"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="10"
android:targetSdkVersion="10"/>

<application
android:icon="@drawable/ic launcher"
android:label="@string/app name"
android:name="MyApplication" >
<activity
android:label="@string/app name"
android:name=".MainActivity" >
<intent-filter >
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<activity android:name=".HermesActivity"
android:label="Hermes Activity"/>

</application>

</manifest>

Now that we've hooked up our new class properly, we just need to get a reference to it from our activities. Add the
following to MainActivity.java:

CODE TO TYPE:

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class MainActivity extends Activity {
private EditText myEditText;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

myEditText = (EditText) findViewById(R.id.my edit text);

MyApplication app = (MyApplication) getApplication();
myEditText.setHint (app.defaultString) ;

public void startHermes () {
Intent intent = new Intent (MainActivity.this, HermesActivity.class);
intent.putExtra (HermesActivity.MY EXTRA, myEditText.getText () .toString());
startActivityForResult (intent, HermesActivity.EXTRA REQUEST) ;

public void handleMyButtonClick (View view) {
startHermes () ;

}

public void handleSendEmailClick (View view) {
Intent emaillIntent = new Intent (Intent.ACTION_ SEND) ;
emailIntent.setType ("plain/text") ;
startActivity (Intent.createChooser (emaillIntent, "Email"));

@Override
protected void onActivityResult (int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

switch (requestCode) {
case HermesActivity.EXTRA REQUEST:
if (resultCode == RESULT OK) {
String stringExtra = data.getStringExtra (HermesActivity.MY EXTRA);
myEditText.setText (stringExtra);
}

break;

Test the application again. The default text for the EditText now contains the text we defined in our Application class
("some default text"). There are certainly better (and easier) ways of defining default text for a view component, but this
will work justfine for our purposes right now.

Wrapping Up

Hopefully by now you're feeling comfortable with the Intent class and sharing data throughout your application. In the
nextlesson, we'll getto know the contents of the Android resources folder even better! See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Android Resources

Welcome back! Now that we've covered the basics of Navigation and sharing data, it's time to go further into the Android
resources folder. In this lesson we'll cover string resources and how to use them in your code and views. Let's get started, shall
we?

String Resources

If you've explored the /res folder, you may have noticed the /res/values/strings.xml file. This file defines and collects
immutable string values for use in an application. Keeping all of your permanent strings defined in this file can be
useful for solo developers or development teams—all Strings can be found, modified, and reused in a single location
without having to hunt through every class justto find something like a typo, for example.

You've seen the strings that are already defined in strings.xml by default. Open strings.xml now (select the
strings.xml tab at the bottom to edititin xmI mode) and add a few more strings:

/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"7?>
<resources>
<string name="app name">HelloWorld</string>
<string name="action settings">Settings</string>
<string name="hello world">Hello world!</string>
<string name="header text">Headers are cool.</string>
<string name="subheader text">Make sure you \"escape\" special characters like quot
es & ampersands.</string>
<string name="next">Go to Next Activity</string>
<string name="send email">Send Email</string>
<string name="hint text">This is hint text</string>
</resources>

Save the file.

Loading Strings in XML

That was pretty straightforward, but there's nothing to look at until we implementitin our view. Let's use our
strings to populate the labels for our Buttons in our main view. Open activity_main.xml and update the
views as shown:

/res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"

android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"

android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="wrap_ content"
android:layout height="wrap content"

ol LD I
IS TCT

android:text="@string/header text" />

I B & A |
C=" 1T <

1aln

T
WO

<TextView

android:
android:

<l

layout width="fill parent"
layout height="wrap content"

& ML s 1

<
[cE v nmn

android:

TCre

e N
T © TS

Sotne
text="@string/subheader text"

=3 =3 TITT T

<Button
android:
android:
android:
android:
android:

id="@+id/my button"

layout width="fill parent"

layout height="wrap content"

text="Whoa, look, a button!"

onClick="handleMyButtonClick" />

<Button
android:
android:

layout width="wrap content"
layout height="wrap content"
ol e
text="@string/send email"

onClick="handleSendEmailClick"

g | el

<l i1}
c="oCIT<r

< kil :
[cEs v N T

android:
android:

/>

<EditText
android:id="@+id/my edit text"

android:layout width="match parent"

android:layout height="wrap content”

android:hint="@string/hint text" />

</LinearLayout>

You can see in your code that when referencing string resources in XML views, you use the format

@string/<string name>. The "code complete" feature (Ctrl+space) also works in these views to help you find
available resources and prevent typos. If you have trouble getting "code complete" to work in the editor, make
sure the XML file has been opened in the appropriate editor. The file icon in the editor tab should look like this

rCI miain.xml &3

. If you're seeing a differenticon, close the file, and then reopen it by right-clicking the file
name in the Package Explorer and selecting Open With | Android Layout Editor. That way you'll be sure
that the "code complete" feature for resource values is working in your xml.

Save and run the application to testthe results. Your first screen of the application will look like this:

(@) 5554:smiller-android2.3.3

HelloWorld

Headers are cool.

Make sure you "escape” special characters like
quotes & ampersands.

Whoa, look, a button!

Send Email

i fsc}me default text

Atthis pointwe don't actually have to run this in the emulator to make sure our view is correct. We can use the
Design view of the Android Layout Editor, which is much faster. It can take a moment to initialize the firsttime
the Design view is loaded for an Eclipse session, but ultimately it will save you valuable time.

=
[ackivity_main,zml 23 m MainActivity, java 1 21 HellotWorld Manifest 1 m Myapplication, java T 1 skrings, il T &

;Iil Pal ttpalﬂttE a | [nexusone » | B | or AppTheme + | O Mainactivity + | & ~ |
= [=lnn=] =

= -

=" Form Widgets e -

[80] Tewtview (80| Large Text = D]]E | @l @ @ | a @1 | n
Medium Text amall Texk

Button Srnall Button

"

' HelloWorld
E' ToggleButton CheckBox
(®) RadioButtan Headers are cool _)

Make sure you "escape” special characters
CheckedTextWiew b like guotes & ampersands
[w] spinner Whoa, look, a button!
B0 ProgressBar (Large) ;

Send Email

B ProgressBar (Mormal) =
] Text Fields This is hint text

[Layouts
[Composite

["] Images & Media
[Time & Date

[Transitions

[advanced

[other

["7) Custom & Library ¥iews

Graphical Layvout |;:| activit';.f_main.xml|

The Design view won't always be able to render a pixel-perfect representation of the way a view will look in
actual devices, but it should be sufficient for basic layouts and value testing like this.

There's another nice little feature in some versions of ADT that can help you to create string

' resources. When you're working in your layout, you can select a string value that needs to be
Note converted into a string resource, then use the Refactor | Android | Extract Android

! String... menu option to add the value to the strings file and update the componentto use the
' new resource automatically. Incorporating this feature means you don't have to keep switching
back and forth between your XML view layouts and the string resources.

Loading Strings in Code

Now thatwe've gotour string resources loading in our views, let's use them in our code! I left out the next
string resource intentionally so we could test that one in code; it could have been loaded in the XML like the
others justas easily though. Open the MainActivity.java class and enter the code below into the onCreate
method, as shown:

MainActivity.java

package com.ost.androidl.helloworld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends Activity {

private Button myButton;
private EditText myEditText;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
myButton = (Button) findViewById(R.id.my button);

String next = getString(R.string.next);
myButton.setText (next) ;

myEditText = (EditText) findViewById(R.id.my edit text);

MyApplication app = (MyApplication) getApplication();
myEditText.setHint (app.defaultString);

private OnClickListener myButtonClickListener = new OnClickListener () {
@Override
public void onClick(View v) {
startHermes () ;
}
bi
public void startHermes () {

Intent intent = new Intent (MainActivity.this, HermesActivity.class);
intent.putExtra (HermesActivity.MY EXTRA, myEditText.getText () .toString()

startActivityForResult (intent, HermesActivity.EXTRA REQUEST) ;

public void handleSendEmailClick (View view) {
Intent emaillntent = new Intent (Intent.ACTION_ SEND) ;
emailIntent.setType ("plain/text");
startActivity (Intent.createChooser (emaillIntent, "Email"));

@Override
protected void onActivityResult (int requestCode, int resultCode, Intent data

super.onActivityResult (requestCode, resultCode, data);

switch (requestCode) {
case HermesActivity.EXTRA REQUEST:
if (resultCode == RESULT OK) {
String stringExtra = data.getStringExtra (HermesActivity.MY EXTRA

myEditText.setText (stringExtra);
}

break;

Justlike layoutfiles (which are also located in the /res folder), string resources are loaded by using the
generated R.java file. The actual string value is loaded by using the helper method getString(), which is
defined on the encapsulated Context class. | haven't mentioned the Context class yet, but as we go further
into the Android SDK, you'll see that Contextis used frequently. You'll need a Context object to accomplish
certain tasks (like loading resources or creating a database). Both Activity and Application classes
encapsulate the Context class, so we typically pass one or the other as the Context.

There is also a helper method available on the TextView component that takes the resource
' Note string id directly, which means the code could be simplified even more so thatit's justa single '
' line, for example: myButton.setText(R.string.next). '

The Resource Values Folder

In lessons to come, we'll create and use more files in the /res/values folder. The names of the files in the /res/values
folder are chosen according to convention; the XML root node uses the <resources> tag. We used strings.xml file here
to gather all the string definitions into a single file, but we could actually name the file whatever we want, justso long as
the XML rootnode is the <resources> tag.

The files in the values folder are the only resource files where the name is notimportant. For every other file from other
Ires subfolders, the name is extremely important. This is because in those folders the name is essentially the 'id' value
used to load the resource. For example, to access layouts (in code), we use R.layout.<filename>. The same pattern is
used for every other subfolder in /res except values; the values subfolder adheres to this pattern: R.<subfolder-
name>.<filename>. To load values defined in files in the values subfolder, we use the pattern R.<value-type>.<name-
attribute-value>.

Android restricts the names offiles in the resources folder. Filenames can only contain lower-case
characters a thru z, numbers 0 thru 9, and the underscore symbol. No capital letters, spaces, or special
characters are allowed. The exception to this rule is for files in the res/values folder. For files in the
Ires/values folder, the rules apply to the values for the name attribute instead.

Z
(o)
-~
(1)

Wrapping Up

Using string resources in Android will help you to create better, more efficient code, and also make your code easier
for other developers to read. Learn them, and love them! See you nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Drawables - Image Basics

In this lesson we'll work with resources again, but this time we'll focus on the Drawable class, which is used to manage images
in Android. Let's get started!

Drawable Folders and Qualifiers

So far we've done all of our work on a single project, and it's starting to become a little cluttered. Let's close that project
and starta new one for this lesson to clean up the workspace a bit and focus on just the current topics.

1. Right-click your HelloWorld root project folder and select Close Project. (Also, close any open files
from the HelloWorld projectin the Editor window.)

2. Create a new Android project named Drawables.

3. Setthe package name of the projectto com.ost.android1.drawables.
4.Uncheck the Create custom launchericon box.

5. Add the projectto the Android1_Lessons working set.

By default, images for Android applications should be stored in the res/drawable folder. There are already four
different "drawable" folders in our project: drawable-hdpi, drawable-ldpi, drawable-mdpi, and drawable-xhdpi. The
extended names for these folders are called "qualifiers." A qualifier is a string appended to one of the default folder
names to indicate for which unique configuration that folder should be used.

The generated drawable folders in our application have qualifiers for the various Android phone screen resolution
ranges. The "-hdpi" qualifier is for high resolution devices. This means a device that supports the high-density
resolution range (~240dpi) for Android will attempt to load drawables out of the drawable-hdpi folder by default. "-
mdpi" is for medium-density resolutions (~160dpi) and "Idpi" is for low-density resolution devices (~120dpi).

Qualifiers are used in Android for more than just screen resolution. They can be used to override any
resource value for almost any hardware configuration, such as screen size, device layout, locale, and '
Note hardware support(such as a camera or trackball). We'll use qualifiers more in the coming lessons, butif |

you're curious to find out more about qualifiers now, check out this article on Supporting Multiple Screens
' on the Android developer documentation site.

Using Drawables

Our drawable folders are already populated with a single defaultimage thatis being used for the application icon. Now
let's add another one to integrate into our application. To download the image, right-click on the image below and save
the file to your /res/drawable-hdpi folder:

The projectfolders are located on the V drive in the /workspace/folder; the full path where you should

Note save the image is V:\workspace\Drawable s\res\drawable-hdpi.

Now that we have the new image in place, let's getitloaded into our application. Open activity_main.xml from the
Ires/layout/folder and make these changes:

http://developer.android.com/guide/practices/screens_support.html#qualifiers

Ires/layout/activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
tools:context=".MainActivity" >

<l P | i Ao 11 i]
o T gC WICCcir wrap COITceirc

< P la] I P s, S | | i]
SO gCc eI 9T UE==T =) TTenT

ol LD N | o W] N | 1
IO TroTCre T C— CoCLIIIg/IICTIITO WOLrITCO

<ImageView
android:layout width="wrap content"
android:layout height="wrap content"
android:src="@drawable/ic_android robot"

/>

</RelativelLayout>

Like all values in the resources folder, drawables are referenced using the @ symbol syntax. Let's run the application
now to make sure thatthe ImageView loads the image correctly:

- b5 54:=miller-android2.3.3

Drawables

When you want to load a non-interactive image for display in your application, you'll typically use the ImageView
component, like we just did. Other common use cases for loading images are for button icons and button skins.

Note "Button skinning" is a little beyond the scope of this lesson, butwe'll discuss how to implement a button
skin later, when we cover Application skinning. Trust me, it will all make perfect sense to you later!

Let's add a button with the previous image as the button icon. Modify activity_main.xml as shown:

Ires/layout/activity_main.xml

android

/>

<Button

/>

android:
android:
android:
android:
tools:context=".MainActivity" >

<RetativelinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:
android:
:paddingBottom="@dimen/activity vertical margin"

layout width="match parent"
layout height="match parent"

paddingLeft="@dimen/activity horizontal margin"
paddingRight="@dimen/activity horizontal margin"
paddingTop="@dimen/activity vertical margin"
orientation="vertical"

<ImageView
android:layout width="wrap_ content"
android:layout height="wrap content"
android:src="@drawable/ic_android robot"

android:layout width="wrap content"
android:layout height="wrap content"
android:drawableLeft="@drawable/ic android robot"
android:text="Icon Button"

</RetativelinearLayout>

Run the application again; your view will look like this:

5554:smiller-android2.3.3
s N
Drawables

Icon Button

The drawableLeft is a convenience property (alias) defined on the TextView class (of which Button is a subclass). As
you may have guessed, there are additional properties called, drawableTop, drawableRight, and
drawableBottom;they behave exactly as you'd expect.

Dimensions

So far we've defined the layout_width and layout_height attributes of our Images (and all of our
components) as either match_parent or wrap_content. These are handy relative dimension properties,
but when neither property is sufficient for your needs, you'll want to use a more specific dimension.

If you've ever developed a user interface for another application, you're probably used to defining your width
and heightdimensions in pixels. In Android, using precise pixels for dimensions is notrecommended
though, because Android devices come in so many different shapes and sizes, with so many different
resolutions. This means that the number of available pixels on the screen can vary greatly by device. To
address this issue, the Android SDK has its own unit for dimensions called "density independent
pixels"—"dip" or "dp" for short. When you use "dip" units for your dimensions, the Android SDK will
automatically scale the actual pixel dimension to an appropriate relative pixel size to keep the relative sizes
and spacing the same for each device.

Let's update our view now to use the "dip" unitforsome of our dimensions, so we can better control the size
of our components. Make these changes to activity_main.xml:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<ImageView
android:layout width="weap—ecortert200dp"
android:layout height="wrap—eenternt40dp"
android:src="@drawable/ic_android robot"
android:scaleType="fitXy" />

<Button
android:layout width="wrap_ content"
android:layout height="wrap content"
android:drawableLeft="Q@drawable/ic_android robot"
android:text="Icon Button" />

</LinearLayout>

Save the file and give it a test run; the first screen of the application will look like this:

5554:smiller-android2.3.3
s N
Drawables

[con Button

There isn'tany direct way to have a button resize its drawableX (drawableLeft, drawableRight,
and so on)icons. You can change the dimensions of the button, but the image will remain its '
Note original size (and clip the edge of the button if the button is smaller than the image). Another way
to approach this issue (without creating a new image) would be to use an XML drawable. We'll
cover XML drawables in a future lesson. '

In order to see a complete comparison of the differences between using density independent pixels and
ordinary pixel units, you'd need to create a second emulator with slightly different dimensions and test the
code on each device once using "dip" for your dimensions and again using "px." Doing that while using a
remote desktop connection would be pretty time consuming though.

When defining a font size for text components using exact pixels is notrecommended either.
Android provides an alternative unit called "scale independent pixels"—"sp" for short. These
units behave exactly like "dip" units, but they will also be scaled by the user's default font scale if
specified.

4
[e)
=3
(]

For an in-depth explanation of how dip units work, check out the Android developer documentation site

regarding dimensions.

Image Padding

If you want to adjust the placement and spacing of the icon image inside your button, there are a few tricks you

can use. First, there is a property called drawable Padding, which defines the minimum amount of padding

the widget should use between the icon and the text content. This property adds padding only between the text

and the icon, and only when there is a drawable icon defined as well. This will not create padding between the
icon and the edge of the button. If you want to add space between the icon and the edge of the button, use the

padding property justas you would for any layout component that has children.

By default, the drawableX property will draw the icon as close as it can to the edge of the button.
This is most noticeable when using a drawableLeft or drawableRighticon and the button has a

the icon will be drawn near the edge of the button and not near the text inside the button. So, in

this instance the drawablePadding property will have no effecton the button.

. Note layout width value of "match_parent" so thatitfills the entire width of the device. In that situation

Let's add some drawablePadding to the Button componentin activity_main.xml:

res/layout/activity_main.xml

<Button

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:
android:
android:
android:
android:
android:
android:
tools:context=".MainActivity" >

layout width="match parent"

layout height="match parent"
paddingBottom="@dimen/activity vertical margin"
paddingLeft="@dimen/activity horizontal margin"
paddingRight="@dimen/activity horizontal margin"
paddingTop="@dimen/activity vertical margin"
orientation="vertical"

<ImageView
android:layout width="200dp"
android:layout height="40dp"
android:src="@drawable/ic android robot"
android:scaleType="fitXy" />

android:layout width="wrap content"
android:layout height="wrap content"
android:drawableLeft="@drawable/ic android robot"
android:drawablePadding="20dp"

android:text="Icon Button" />

</LinearLayout>

Save and run it; you'll see something like this:

http://developer.android.com/guide/topics/resources/more-resources.html#Dimension

554:=miller-android2.3.3

E ||

Drawables

Icon Button

The only space thatis affected is that between the icon and the text of the button. The space between the icon
and the top, left, and bottom edges of the button remains unchanged.

The ImageButton Widget

If you have a button that needs only anicon (and no text on the button) then you should probably use an
ImageButton. The ImageButton class is actually a subclass of ImageView (and not Button). There are actually
very few differences between an ImageButton and an ImageView. Both have a background property that
takes a drawable, as well as an src property that also takes a drawable, and both are clickable view
components. However, by default, the ImageButton component will use the default skin for Button as its
background drawable, while the ImageView does not have a default background.

Let's add an ImageButton componentto our code:

/res/layout/activity_main.xml

android

<Button

android:
android:
android:
android:
tools:context=".MainActivity" >

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:
android:
:paddingBottom="@dimen/activity vertical margin"

layout width="match parent"
layout height="match parent"

paddingLeft="@dimen/activity horizontal margin"
paddingRight="@dimen/activity horizontal margin"
paddingTop="@dimen/activity vertical margin"
orientation="vertical"

<ImageView
android:layout width="200dp"
android:layout height="40dp"
android:src="@drawable/ic_android robot"
android:scaleType="fitXy" />

android:layout width="wrap content"
android:layout height="wrap content"
android:drawableLeft="@drawable/ic_android robot"
android:drawablePadding="20dp"

android:text="Icon Button" />

<ImageButton
android:layout width="wrap content"
android:layout height="wrap content"
android:src="@drawable/ic android robot" />

</LinearLayout>

Now run the app to verify the results:

5554:smiller-android2.3.3

Drawables

Icon Button

Hardware Keyboard

Lhe your physical keybaard 1o provsde

As you can see, the ImageButton still has the default skin of the Button, with our icon drawn in the middle of
the button. Since the ImageButton componentis a subclass of ImageView and not Button, there is no
drawablePadding atiribute available (besides, it wouldn't be of any use for this component). ltdoesn't have
a text attribute either, butitdoes have the scaleType property available to help you to define how the image
is scaled inside of the view component.

Wrapping Up

We've covered a lotofimportant stuffin this lesson. I'm confident that you know how to use Images in your views, as
well as how Android uses "density independent pixels" as a dimension unit.

We've spenta lotoftime in the resources folder so far, and you have a pretty strong grasp of how to implement a
majority of Android's view components. If you feel like you want to experiment a bit more with these concepts on your
own, do itl In upcoming lessons, we'll get back to work in the Java classes. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Lists

Good to see you again! This lesson will cover Android lists. Let's get started!

Implementing an Android List

Go ahead and starta new application. Select File | New | Project | Android Application Project, and create the
application using these settings:

1. Name the Project Lists.

2. Type com.oreillyschool.android1.lists for the Package name.
3. Clear the Create custom launchericon check box.

4. Add the projectto the Android1_Lessons working set.

ListView

Before we can startimplementing our list, we need to make one small change to our view; we need to add a
listto it, of course! Open activity_main.xml in the /res/layout/folder and make these changes:

Ires/layout/activity_main.xml

<RetativelinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<FextView

2 . 1]
S EoT

(1} i
= Wrop COIrceirc

b. .

i]
WIraP TTernT

i R | 1
CrIg/7 IcIrto wWorro

=

androtdtayon
afrctrotdt

<ListView
android:id="@android:id/list"
android:layout width="match parent"
android:layout height="match parent"

/>

</RetativelinearLayout>

As of Android API 8, 2.2, the layout attribute fill_parent was replaced with the more accurate
match_parent label.

The ListView componentis the default List handler for Android. Notice that we used a slightly different "id"
value from what we used before. (We'll discuss thatin greater detail a bit later.)

There's not much to see in our program yet, butif you click the Graphical Layout tab in the XML editor, you
will see a stubbed default List:

4 Palette

<) = | D Nexus One = | E - | * AppTheme - | @ Maindctivity - | O - | |ﬁ| 15 -

13 Palette =
[~ Form Widgets (1 = |
TextMiew Large Text =
Medium Text Small Text '=' LiSTS
Bukkon Smnall Butkon
E] ToggleButton CheckBox Item 1
. Sub Item 1
@) RadioButton
i Item 2
CheckedTextYiew Sub ltem 2
E Spinner
Item 3
B8 ProgressBar (Large) Sub Item 3
B ProgressBar (Mormal) Item 4
[Text Fields Sub Item 4
[Layouts
L ltem 5
] Composite Suly Item §
[Images & Media
ltem 6
7] Time & Date Sub Item &
[Transitions
[Advanced
[Other

[Custom & Library Yiews
Graphical Layout] |E| activity_main.xml|

This view can show only fake stub data and will never reflect the actual content of your list. You'll need to run
the application to test and make sure that your listitems are working correctly. Before you can do that, though,
you'll need to implement the listin code.

ListActivity

To use a Listin your view, you'll want to use a different kind of Activity class called the ListActivity. ListActivity
is a subclass of Activity, and while itis notrequired forimplementing lists, it can make the setup and
maintenance of a list much easier.

Open MainActivity.java and make these changes:

/src/MainActivity.java

package com.oreillyschool.androidl.lists;

import android.app.ListActivity;
import android.os.Bundle;

public class MainActivity extends ListActivity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

Remember earlier how we used a unique value for our "android:id" attribute in the XML view? This id value is
actually predefined by the Android SDK. The code reference equivalentis android.R.id.list. However, unlike
before, we don't need to find and store a reference to this view (using findViewByld), because ListActivity has
already taken care of that. ListActivity expects that the layoutloaded by setContentView contains a list that
contains thatid value, loads that value, and manages itinternally. Any interaction with the ListView component
is then handled by helper methods available on the ListActivity class. If you wanted to subclass a regular
Activity class, you would need to manage the ListView component manually.

Empty Lists

ListActivity also has the added benefit of showing an alternate view when its listis empty. Taking advantage of
this feature requires another special Android id, android.R.id.empty. Let's open activity_main.xml again
and add an "empty" view:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<ListView
android:id="@android:id/list"
android:layout width="match parent"
android:layout height="match parent"

/>

<TextView
android:id="@android:id/empty"
android:layout width="match parent"
android:layout height="match parent"
android:text="@string/empty text"
android:gravity="center"

/>

</LinearLayout>

You'll also need to add a string named empty_text to the strings.xml file. You can do that manually or use
the Refactor | Android | Extract Android String... shortcut we discussed earlier. Give the string
whatever value you like. When you're finished, go ahead and run the application; you'll see that the empty text
is shown, because ourlistdoesn't have any data yet:

5554:smiller-android2.3.3

i M

Lists

Empty text

ListAdapter

Alistisn't at all useful without data, so we'll need to work on that. To manage list data in Android we use an
Adapter. A list view expects an object of the type android.widget.ListAdapter, which is an interface.
Implementing the entire interface isn't necessary, though, because there are many defaultimplementations
available in the SDK that you can use that are less labor intensive. | personally prefer the
android.widget.ArrayAdapter<T> class.

Let's getour ListView hooked up to an adapter with an instance of ArrayAdapter. Make these changes to
MainActivity.java:

MainActivity.java

package com.oreillyschool.androidl.lists;

import android.app.ListActivity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
private String[] data = new String [] {
"odin",
"Thor",
"Loki",
"Baldr",
"Freyr",
"Heimdallr",
"Ullz",
"Meili",
"Hodr",
"Forseti"

}i

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple list item 1, android.R.id.textl, data);
setListAdapter (adapter) ;
}

Now run the application and test your results. Your emulator should look like this:

(@) 5554:smiller-android2.3.3

= Ml

Lists
Odin
Thor
Loki
Baldr
Freyr
Heimdallr

Ullr

Let's look atour code in some more detail and see exactly what's going on:

OBSERVE:

public class MainActivity extends ListActivity {
private String[] data = new String [] {
"Odin",
"Thor",
"Loki" ,

"Forseti"

b

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple list item 1, android.R.id.textl, data);
setListAdapter (adapter) ;
}

First, we created some basic stub data for the list, otherwise the list would still be empty. Then we used
setList Adapter(), a helper method on ListActivity that sets the adapter on the ListView component
managed by the ListActivity.

Our constructor for ArrayAdapter has a signature that requires four parameters:

ArrayAdapter Constructor

ArrayAdapter (Context context, int resource, int textViewResourceld, T[] objects)

The first parameter is a Context. All Activity classes are subclasses of Context, so we just pass this as the
value.

The next parameter, int resource, is a resource reference to the XML layout to be used for each item in the
list. We used a basic layout that was already provided in the Android SDK:
android.R.layout.simple_list_item_1. This layout contains only one component: a TextView.

The third parameter, int textViewResourceld, is more or less self-explanatory. It's an id reference to the
TextView component thatis contained in the previously defined resource's layout. The id reference to the
TextView contained in the simple_list _item_1layoutis android.R.id.text1.

The final parameter is to an Array of the data that will be used to populate the TextView component for each
item in the list. Note that this Array is type-restricted to the bounded type parameter that was used for the
constructor method, which in our case is String.

Sorting the Adapter

To sort the ArrayAdapter, just call sort() on the adapter and send ita Comparator object. Let's implementsort
in our code now. Change MainActivity.java as shown:

CODE TO TYPE:

package com.oreillyschool.androidl.lists;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
private String[] data = new String [] {
"odin",
"Thor",
"Loki",

"Forseti"

}i

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

layout.simple list item 1, android.R.id.textl, data);
adapter.sort (new Comparator<String>() {
@Override
public int compare (String arg0, String argl)
return arg0.compareTo (argl) ;

});
setListAdapter (adapter) ;

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

{

android.R.

Save and run itagain. You'll see this:

554:smiller-android2.3.3

i M

Lists
Baldr
Forseti
Freyr
Heimdallr
Hodr
Loki

Meili

Overriding ArrayAdapter

If all you need to display in your listis a simple view, the basic ArrayAdapter implementation is all you need.
However, many Lists require a more involved layout to display a more complicated data model. There are
some other defaultlayouts that offer a bit more detail. For example, using

android.R.layout.simple_list _item_single_choice includes a CheckBox in the listitem layout. These default
layouts can only getyou so far though;in order to create a truly customized layout, you'll need to override the
defaultimplementation of your adapter. Let's do thatnow.

First, we'll need to create a new layout that will be used for each item in the List. Create a new Android XML
layoutnamed my_list_item.xml. Modify the XML as shown:

CODE TO TYPE:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
ot ortertetor—verticat"
android:orientation="horizontal"
android:gravity="center vertical">

<View
android:id="@+id/color"
android:layout width="10dp"
android:layout height="50dp"
/>

<TextView
android:id="@+id/text"
android:layout width="wrap content"
android:layout height="wrap content"

/>

</LinearLayout>

Next, let's change our data model a little bit so that it contains more than justa String. We're going to create a
class locally inside of MainActivity, but you could as easily create itin a new file:

CODE TO TYPE:

package com.oreillyschool.androidl.lists;
import android.app.Activity;
import android.os.Bundle;

import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {

: i NS r1 o — faF SIS r 4
PrrVvVace—QoSTcEIng T Soca - frew oCctr Iiig] T

@,
H-

b

q
H

q
i+
a.

@,
H

H
H
~

l(

H H

fFFddf
q

He

e
=il 3
q
H H

q

. H-

H

5l
d ~

d
o
[(

— I

public class MyData {
public String name;
public boolean clicked;
public MyData (String name) {
this.name = name;
this.clicked = false;

private MyData[] data = new MyDatal[] {

new MyData ("Odin"),

new MyData ("Thor"),

new MyData ("Loki"),

new MyData ("Baldr"),

new MyData ("Freyr"),

new MyData ("Heimdallr"),
new MyData ("Ullr"),

new MyData ("Meili"),

new MyData ("Hodr"),

new MyData ("Forseti")

}i

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this, android.R.
layout.simple list item 1, android.R.id.textl, data);
adapter.sort (new Comparator<String>() {
@Override
public int compare (String arg0, String argl) {
return arg0.compareTo (argl) ;

});
setListAdapter (adapter) ;

You getan error; do you know why? Mull that over; we'll fix itin a minute. For now, let's move back to creating
our customized Adapter. Create a new class in the com.oreillyschool.android1.lists package named
MyList Adapter, and setthe Superclass to android.widget.ArrayAdapter<MyData>:

= New Java Class H=]

Jawa Class —.
Create a new lava class, @

Source Folder: | Listsfsrc Browse, ., |
Package: | carm,ask, android, lisks Braowse, ., |
[Enclosing type: | Browse, .. |
Marne: | MyListadapter

Modifiers: ' public " default = private " protected

[~ abstract [Final ™| static

J

Supetclass: l‘] Endroid widget, Arrayadapter <MyData = Browse, .,

Interfaces: Add...

Remaove

d

Wehich method stubs would vou like ko create?
[T public static void main{String[] args)
[Construckors From superclass
V' Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

I_ Generate comments

@j Finish I Cancel

With the new class created and opened, make these changes to your code:

CODE TO TYPE:

package com.oreillyschool.androidl.lists;

import android.widget.ArrayAdapter;

import com.oreillyschool.androidl.lists.MainActivity.MyData;
import android.content.Context;

import android.graphics.Color;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.TextView;

public class MyListAdapter extends ArrayAdapter<MyData> {
private LayoutInflater inflater;

public MyListAdapter (Context context, MyDatal[] data) {
super (context, R.layout.my list item, data);
inflater = LayoutInflater.from(context);

@Override
public View getView (int position, View convertView, ViewGroup root) {
View view = convertView;
if (view == null) {
view = inflater.inflate(R.layout.my list item, null);
}
MyData data = getltem(position);

TextView textView = (TextView) view.findViewById(R.id.text);
textView.setText (data.name) ;

View imageView = view.findViewById(R.id.color);
int color = data.clicked ? Color.RED : Color.BLUE;

imageView.setBackgroundColor (color) ;

return view;

Now, we need one last change to hook up the new class to the ListView. Go back to MainActivity.java and
make these changes:

CODE TO TYPE:

package com.oreillyschool.androidl.lists;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;

public class MainActivity extends ListActivity {
public class MyData {
public String name;
public boolean clicked;
public MyData (String name) {
this.name = name;
this.clicked = false;

private MyData[] data = new MyDatal[] {
new MyData ("Odin"),
new MyData ("Thor"),
new MyData ("Loki"),
new MyData ("Baldr"),
new MyData ("Freyr"),
new MyData ("Heimdallr"),
new MyData ("Ullr"),
new MyData ("Meili"),
new MyData ("Hodr"),
new MyData ("Forseti")

}i

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

<l s O 4 <l s - Dl e lalF' S 2 SN <l el T
rrayAdapter<Strin—adapter—hew—Arravhdapter<Strine{tthis—androteRs
ul e 4 | 1= 4= e ul =i P B Y = A= 4= PRI \
tayortrsimpre—tist—ttemt—eandrotdRidrtextir—data)r
<l = =/ ral A= (el s 2 L
aAUdpP TtT L OoUL T TIITW UMM a 1L a T UL O CLTITY \WJ 1
ol el
T i S . W 4
- 4 e O 4 al O 4 1) L
prte—irE fpare{SErirg—argb—SErtag—argt—t
e al nul L 1)
returr—argbconparefo{taragt
)I
MyListAdapter adapter = new MyListAdapter (this, data);
adapter.sort (new Comparator<MyData> () {
@Override

public int compare (MyData arg0, MyData argl) {
return arg0.name.compareTo (argl.name) ;

}) i
setListAdapter (adapter) ;

There's alotgoing on here, but before we analyze our changes in detail, let's run itand make sure the code is
working. Your list will look like this:

15554:smiller-android2.3.3

Lists

Baldr
Forseti
Freyr
Heimdallr
Hodr

Loki

Meili
Odin

i M

Now that we've verified that everything is working alright, let's take a closer look at our custom adapter,

starting with the constructor:

OBSERVE:

public MyListAdapter (Context context, MyDatal]
super (context, R.layout.my list item, data);
inflater = LayoutInflater.from(context) ;

data) {

In our constructor, we start off with the mandatory call to the super constructor; butwe're calling a different
super than we did before. And this time we're using a simpler constructor because we'll be handling the
creation of each listitem manually. The superclass will still handle the Array data, though:

OBSERVE:

@Override
public View getView (int position, View convertView, ViewGroup root) ({
View view = convertView;
if (view == null) {
view = inflater.inflate(R.layout.my list item, null);
}
MyData data = getItem(position);

TextView textView = (TextView) view.findViewById(R.id.text);
textView.setText (data.name) ;

View imageView = view.findViewById(R.id.color) ;
int color = data.clicked ? Color.RED : Color.BLUE;

imageView.setBackgroundColor (color) ;

return view;

The getView() method gets called each time the ListView needs to create a new Listltem or update an
existing one. There are three parameters that get sent to the method, but our main concern is with the first two.
The first, int position,is the position of the listitem that needs a layout. The second, View convertView,
can be either null or contain a recycled View component that was created previously with this method for a
differentitem in the list. If the convertView is null, we'll need to inflate a new View component; otherwise we
justneed to update the data on the view component.

Inflating a layout can consume a fairamount of resources and time for the CPU. Inflating justone or two views
isn't usually noticeable by a user, but a ListView can be scrolled very quickly, which means many different
layouts could be required in very quick succession. For this reason, the Android ListView will recycle its items
so thatunnecessary layoutinflation can be avoided.

A common error programmers make when creating a custom list adapter is not updating all

' necessary values in a recycled view. Never rely on any default values of a newly inflated View,
Note because if the view has been recycled, those values have very likely changed. If you find that

! your view is showing incorrect data on a listitem, data that was perhaps on a previously

' rendered listitem, then your first step to fixing that bug should be to verify you have invalidated
all your custom data on your View in getView.

To get areference to our data, we call the superclass method getltem(). This method returns an object of
the type defined by the bound type parameter, which in our simple use-case is a String. This value type can be
whatever data model you wish, justas long as your Array (or ArrayList) supplied to the super constructor
contains objects only of that type.

The rest of the code probably looks familiar. It's the same type of code used to find views on an Activity and
update the data for those views.

List Interaction

Now that we have the list data loading, let's update our code to reactto a user clicking on a listitem. Add the
MainActivity.java method as shown:

MainActivity java

package com.oreillyschool.androidl.lists;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ArrayAdapter;
import android.view.View;

import android.widget.ListView;

public class MainActivity extends ListActivity {
public class MyData {
public String name;
public boolean clicked;
public MyData (String name) {
this.name = name;
this.clicked = false;

private MyData[] data = new MyDatal[] {
new MyData ("Odin"),
new MyData ("Thor"),
new MyData ("Loki"),

new MyData ("Forseti")

}:

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
MyListAdapter adapter = new MyListAdapter (this, data);
adapter.sort (new Comparator<MyData> () {
@Override
public int compare (MyData arg0, MyData argl) {
return arg0.name.compareTo (argl.name) ;

}) i
setListAdapter (adapter) ;

@Override

protected void onListItemClick(ListView 1, View v, int position, long id) {
MyListAdapter adapter = (MyListAdapter) getListAdapter();
MyData item = adapter.getltem(position);
item.clicked = !item.clicked;

adapter.notifybDataSetInvalidated() ;

This method override is available only to ListActivity. If you were handling your ListView component manually, you
would need to setup alistener and send it to the onltemClickListener() method available on the ListView
component.

Now, run the application one lasttime to test the results. Click some ofthe items to make sure the click handler is
working:

5554:smiller-android2.3.3

xE M

Lists

Baldr

Forseti

Freyr

Heimdallr

Hodr

Loki

Meili

Odin

hor

Wrapping Up

We've covered a lotofground here! It's good to know that you have a handle on ListView component and Adapters

now, because virtually every Android application on the market uses atleastone list. You're going to wantto know
how to use them well.

Alright then. So far, so good! See you nextlesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Dialogs, New and Old

Back for more, huh? Excellent. In this lesson, we'll talk about Dialogs. There are a few different types ofdialogs, and also a few
different methods to create and show Dialogs in Android.

There are essentially two ways to create dialogs in Android now, the new style and the old. With the release of Honeycomb,
Android 3.x, which is specifically for tablets, Android added the new way of creating dialogs. This process has been carried over
into Ice Cream Sandwich, Android 4.0, which works on both phones and tablets. Also, thanks to the Android supportlibrary,
many features from Android 3+ are available to Android applications that target older builds of Android.

old Style

Before we getgoing, let's create a new project for this lesson named Dialogs, assigned to the Android1_Lessons
working set. Name the package com.oreillyschool.android1.dialogs.

The API methods used to create and show dialogs from an Activity are now marked "@Deprecated" in the most recent
APl updates to Android. However, it's still worth learning how to use these old methods in case you run across code
that has already implemented dialogs thatuse it.

AlertDialog

There are a few different types of specialized Dialogs available in Android, such as AlertDialog and
ProgressDialog. You can also create a custom Dialog class and populate it with whatever content you like.
Let's begin by building an AlertDialog by adding a button to the primary view. Open activity_main.xml and
make these changes:

Ires/layout/activity_main.xml

<RetativelinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity">

<l 2l 1 4= el 1] = 1
Fhdrotretayout—wradth=wrap—cofrtert
<l 2l 1 4= N~ 2 S |] 4= 4= 11
aparotretayott—hetrght="wrap FrEere
ul o al . = 10 . o N~ 11 1 111
JITUT OO C c T L,L;ilg 1TITTTOT WO LT
<Button

android:layout width="wrap content"
android:layout height="wrap content"
android:text="01ld AlertDialog"
android:onClick="onOldAlertDialogClick" />

</RetativelinearLayout>

Next, let's update the MainActivity to handle this button's click event; we'll tell the Activity we wantto show a
Dialog, and override the onCreateDialog method to create our Dialog. Make these changes:

MainActivity.java

package com.oreillyschool.androidl.dialogs;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.os.Bundle;

: i <l K| M.
POt aaroTa. vIew . ettty

import android.view.View;
public class MainActivity extends Activity {
private static final int SIMPLE DIALOG = 0;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

public void onOldAlertDialogClick (View view) ({
showDialog (SIMPLE DIALOG) ;

@Override
protected Dialog onCreateDialog(int id) {
Dialog dialog = null;

switch (id) {
case SIMPLE DIALOG:
dialog = new AlertDialog.Builder (this) .setTitle("My Alert Dialog")
.setMessage ("Pancakes or Waffles?")
.create();
break;

return dialog;

e o 1 bl A N AV \ ‘
POOTIC OO0 TCaIT OIITTICaCCUP CIOIISITCITO (MICTTa etra/ T
e N = B A] ol A A =l A 1o N = A 4
TITE TaC cCrre— eIty —Ccirt oSS e CO—CHe aCcCtCIor oarr—TIr TC I T e
Ry O =l L £1 o /Ty : \
geTrrengrirrracer (/- riit race (N neira - ity eira/ 7
e e
reTorir—craty

Now save the changes and run the code to see whatitdoes. Click the OldAlertDialog button and you'll see
a dialog like this:

(%) 5554:smiller-android2.3.3

My Alert Dialog

Pancakes or Waffles?

To close this dialog, you'll need to click the back button on the emulator. Typical dialogs contain atleastone
button to close, or multiple buttons to allow a user to make a decision. AlertDialog makes iteasy to add one,
two, or three buttons. Make these changes to MainActivity.java:

MainActivity.java

package com.oreillyschool.androidl.dialogs;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialogInterface;
import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class MainActivity extends Activity {
private static final int SIMPLE DIALOG = 0;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

public void onOldAlertDialogClick (View view) ({
showDialog(SIMPLE_DIALOG);
}

@Override
protected Dialog onCreateDialog(int id) {
Dialog dialog = null;

switch (id) {
case SIMPLE DIALOG:
dialog = new AlertDialog.Builder (this) .setTitle("My Alert Dialog")
.setMessage ("Pancakes or Waffles?")

.setNegativeButton ("Boring Pancakes", dialogListener)
.setPositiveButton ("Awesome Waffles!!", dialoglListener)

.create();
break;

return dialog;

private DialogInterface.OnClickListener dialogListener = new DialogInterface
.OnClickListener () {
@Override
public void onClick(DialogInterface dialog, int which) {
switch (which) {
case Dialog.BUTTON NEGATIVE:
Toast.makeText (MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG) .show () ;
break;
case Dialog.BUTTON POSITIVE:
Toast.makeText (MainActivity.this, "Waffles are where it's at!",
Toast .LENGTH LONG) .show () ;
break;
}
removeDialog (SIMPLE DIALOG) ;

We defined the listener function we just used as a parameter.

Save and run this code to testthe results. Now after clicking either button, you'll see two buttons in the dialog,
as well as the appropriate Toastresponse. To close the dialoa, we call the removeDialoa method and send

the same id that was passed to shdeiang. The dialog will close after either button click.

(%) 5554:smiiller-android2.3.3

My Alert Dialog

Pancakes or Waffles?

Awesome Waffles!! || Boring Pancakes

-
In the Android SDK, there are two interface methods with the signature OnClickListener(). One
' is in the android.view.View package. It's the interface that we used earlier for handling clicks to
' buttons, and it's used for all standard view component click handling. The other s in the

Note android.content.Dialoglnterface package, which is used for dialogs, and is the one we

' used in our code here. | like to define the type as Dialoglinterface.OnClickListener for dialog
: listeners to help differentiate between the more common View.OnClickListener methods; you
can just as easily remove the Dialoglnterface portion from the type as long as you are sure to
' import the proper package.

The onCreateDialog() method that we implemented is called by an Activity only once per id parameter
passed. If we want to make changes to the dialog created in onCreateDialog before the dialog is shown, we
need to define a countvariable and an onPrepareDialog method:

MainActivity.java

package com.oreillyschool.androidl.dialogs;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialoglInterface;
import android.widget.Toast;

public class MainActivity extends Activity {

private static final int SIMPLE DIALOG =
private int count = 0;

@Override

0;

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

public void onOldAlertDialogClick (View view) {

showDialog (SIMPLE DIALOG) ;
}

@Override
protected Dialog onCreateDialog(int id) {
Dialog dialog = null;

switch (id) {
case SIMPLE DIALOG:

dialog = new AlertDialog.Builder (this) .setTitle("My Alert Dialog")
.setMessage ("Pancakes or Waffles?")

.setNegativeButton ("Boring Pancakes", dialogListener)
.setPositiveButton ("Awesome Waffles!!", dialogListener)

.create();
break;

return dialog;

@Override

protected void onPrepareDialog(int id, Dialog dialog) {

switch (id)

{

case SIMPLE DIALOG:
count++;
dialog.setTitle("Dialog "+count) ;
break;

private DialogInterface.OnClickListener dialogListener = new DialogInterface

.OnClickListener () {
@Override

public void onClick(DialogInterface dialog, int which) {

switch (which) {
case Dialog.BUTTON_NEGATIVE:

Toast.makeText (MainActivity.this, "Pancakes? Really?", Toast.LEN

GTH_LONG) .show () ;
break;
case Dialog.BUTTON POSITIVE:

Toast.makeText (MainActivity.this, "Waffles are where it's at!",

Toast.LENGTH LONG) .show () ;
break;
}
removeDialog (SIMPLE DIALOG) ;

Save and run the program. The title of the dialog is replaced by the new title we defined in onPrepareDialog
and the countis updated each time a new dialog is shown:

Dialog 3

Pancakes or Waffles?

Awesome Waffles!! Boring Pancakes

Custom Dialog

AlertDialog and its Builder class are handy tools for creating a quick and functional dialog, but if you need
a customized view or more control over functionality, you'll need to create a custom dialog.

Let's create a new custom dialog that contains an image, a radio button, and a regular button. We'll start by
creating a new button in the activity_main.xml view:

/res/layout/activity_main.xml

<Button

/>

<Button

/>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:
android:
android:
android:
android:
android:
android:
tools:context=".MainActivity" >

layout width="match parent"

layout height="match parent"
paddingBottom="@dimen/activity vertical margin"
paddingLeft="@dimen/activity horizontal margin"
paddingRight="@dimen/activity horizontal margin"
paddingTop="@dimen/activity vertical margin"
orientation="vertical"

android:layout width="wrap_ content"
android:layout height="wrap content"
android:text="01ld AlertDialog"
android:onClick="onOldAlertDialogClick"

android:layout width="wrap content"
android:layout height="wrap content"
android:text="0ld CustomDialog"
android:onClick="onOldCustombDialogClick"

</LinearLayout>

Next, update MainActivity.java with the following changes:

MainActivity java

package com.oreillyschool.androidl.dialogs;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialoglInterface;
import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class MainActivity extends Activity {

private static final int SIMPLE DIALOG = 0;
private static final int CUSTOM DIALOG = 1;
private int count = 0;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

public void onOldAlertDialogClick (View view) {
showDialog (SIMPLE DIALOG) ;

public void onOldCustomDialogClick (View view) {
showDialog (CUSTOM DIALOG) ;

@Override
protected Dialog onCreateDialog(int id) {
Dialog dialog = null;

switch (id) {
case SIMPLE DIALOG:

dialog = new AlertDialog.Builder (this) .setTitle("My Alert Dialog")

.setMessage ("Pancakes or Waffles?")

.setNegativeButton ("Boring Pancakes", dialogListener)
.setPositiveButton ("Awesome Waffles!!", dialogListener)

.create();
break;
case CUSTOM DIALOG:
dialog = new Dialog(this);
dialog.setContentView (R.layout.custom dialog) ;
dialog.setTitle ("My Custom Dialog") ;
break;

return dialog;

@Override
protected void onPrepareDialog(int id, Dialog dialog) {
switch (id)
{
case SIMPLE DIALOG:
count++;
dialog.setTitle("Dialog "+count);
break;

private DialogInterface.OnClickListener dialogListener =

new DialogInterface

.OnClickListener () {
@Override
public void onClick(DialogInterface dialog, int which) {
switch (which) {
case Dialog.BUTTON NEGATIVE:
Toast.makeText (MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG) .show () ;
break;
case Dialog.BUTTON POSITIVE:
Toast.makeText (MainActivity.this, "Waffles are where it's at!",
Toast.LENGTH LONG) .show () ;
break;
}
removeDialog (SIMPLE DIALOG) ;

Finally, we'll need to create the layout for the dialog. Create a new XML Layout file in the /res/layout folder,
name itcustom_dialog.xml, and then make these changes to it:

/res/layout/custom_dialog.xml

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >

<LinearLayout
android:layout width="match parent"
android:layout height="wrap content"
android:gravity="center vertical" >

<ImageView
android:layout width="wrap content"
android:layout height="wrap content"
android:src="@android:drawable/ic menu help" />

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Is this the real life?" />
</LinearLayout>

<RadioGroup
android:layout width="match parent"
android:layout height="wrap content"
android:orientation="vertical">
<RadioButton
android:id="@+id/rb one"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Real life"/>
<RadioButton
android:id="@+id/rb_ two"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Just fantasy"/>
</RadioGroup>

<LinearLayout
android:layout width="match parent"
android:layout height="wrap content">
<Button
android:id="@+id/cancel btn"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:text="Cancel" />
<Button
android:id="@+id/okay btn"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:text="0Okay" />
</LinearLayout>

</LinearLayout>

Save all the changes and run the application to testthe code. If all is working correctly, you'll see a new dialog
like this:

(%) 5554:smiller-android2_3.3

My Custom Dialog

Is this the real life?
Real life

Just fantasy

Cancel Okay

Justlike before, we haven't hooked up any eventlisteners to our dialog, so the only way to close itis by
clicking the back button. Let's hook these buttons up to close the dialog. Make these changes to
MainActivity.java:

MainActivity java

package com.oreillyschool.androidl.dialogs;

import
import
import
import
import
import
import
import

android

.app.Activity;
android.
android.
android.
android.
android.
android.
android.

app.AlertDialog;
app.Dialog;
content.DialogInterface;
os.Bundle;

view.View;
widget.Button;
widget.Toast;

public class MainActivity extends Activity {

private static final int SIMPLE DIALOG = 0;
private static final int CUSTOM DIALOG = 1;
private int count = 0;

@Override
public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

public void onOldAlertDialogClick (View view) ({
showDialog (SIMPLE DIALOG) ;

public void onOldCustomDialogClick (View view)

showDialog (CUSTOM DIALOG) ;

@Override
protected Dialog onCreateDialog(int id) {

Dialog

dialog = null;

switch(id) {
case SIMPLE DIALOG:
dialog = new AlertDialog.Builder (this) .setTitle("My Alert Dialog")

.setMessage ("Pancakes or Waffles?")

{

{

.setNegativeButton ("Boring Pancakes", dialogListener)
.setPositiveButton ("Awesome Waffles!!", dialogListener)

.create();

break;
case CUSTOM DIALOG:
dialog = new Dialog(this);
dialog.setContentView (R.layout.custom dialog) ;
dialog.setTitle ("My Custom Dialog");
((Button)dialog.findViewById(R.id.cancel btn)).setOnClickListener (cu
stomDialogClickListener) ;
((Button)dialog.findViewById(R.1id.okay btn)) .setOnClickListener (cust
omDialogClickListener) ;
break;

return

@Override
protected void onPrepareDialog(int id, Dialog dialog) {

switch

{

dialog;

(id)

case SIMPLE DIALOG:
count++;
dialog.setTitle ("Dialog "+count);

break;

}

private View.OnClickListener customDialogClickListener = new View.OnClickLis
tener () {
@Override
public void onClick(View v) {
removeDialog (CUSTOM DIALOG) ;

}
7

private DialogInterface.OnClickListener dialogListener = new DialogInterface
.OnClickListener () {
@Override
public void onClick(DialogInterface dialog, int which) {
switch (which) {
case Dialog.BUTTON NEGATIVE:
Toast.makeText (MainActivity.this, "Pancakes? Really?", Toast.LEN
GTH_LONG) .show () ;
break;
case Dialog.BUTTON POSITIVE:
Toast.makeText (MainActivity.this, "Waffles are where it's at!",
Toast.LENGTH LONG) .show () ;
break;
}
removeDialog (SIMPLE DIALOG) ;

Testthe code to make sure it works. Both buttons should close the dialog. You might've noticed that this time
we used the View.OnClickListener instead of the DialogInterface.OnClickListener interface. That's
because we're setting the listener directly on the button in the view of our Dialog, and not on the Dialog itself.
In fact, the base Dialog class doesn'teven use the Dialoginterface.OnClickListener interface, ituses
only the subclasses like AlertDialog and ProgressDialog.

You might be tempted to try and use the android:onClick attribute shortcutin the XML to
' handle the click event from the buttons in the dialog. Unfortunately, this won'twork inside a '
. Note dialog and will actually throw an error when you click the button. That's because the view is a '
part of the Dialog and not the Activity, and the Dialog class does notimplementa dynamic
' android:onClick listener. '

New Style

As of Android 3.0 and beyond, there is a new standard way to create and manage Android dialogs. But there is a way
to implement Dialogs using the new processes and still target an older version of the Android SDK. Before we can get
to thatthough, we're going to have to take a shortdetour and talk about the Android compatibility library and fragments.

Support Library

Unfortunately, the majority of Android phones in use run older versions of Android and, as such, they don't
have access to the latest Android SDK features. In order to help developers take advantage of the new
features of the latest SDK, Google created a "compatibility library" (also called "supportlibrary" or "support
package") that allows applications that target older versions of the Android SDK to take advantage of many of
the new features of Android.

To use the Support library we will need to download and add itto our project. ADT makes this process very
easy now. Right-click on the root project folder Dialogs, choose Android Tools | Add Support Library,
select the latest support library version when prompted, click Acce pt, and you're done. Eclipse will
automatically download the latest version of the supportlibrary and include itin your project. When it's
finished you can verify the process worked by expanding the /ibs folder to find the android-support-v4 jar file.

----- Run As S
Debug As > p— leam 3
- r & ¢ With >
Profile As » ampare i
Coverage As 9 Restore from Local History...
— P 3
Team i’ Esoni yDev
A | Compare \With »
T Restore From Local Histary, ..
% Package Expl PyDev , aq = Eq (CI rnair, il (m Maind
Android Tools JEI Mew Test Project. . [& Comm. o
=l Androidi Canfigure g o Mew Resource File,,. droi
R androi
1= Data ;
EI‘ a w FUBpENIES Alt+Erker Export Signed Application Package. .. androi
i “'g[g e Expart Unsigned Application Package. .. androi
. E|EE com,ost, androidl, dialogs Display dex bytecods :zgizi
» - (1] Maindctivity java Rename Application Package androi
lﬁ gen [Generated Java Files) i1 Add Support Library... androi
E“" Android 2.2 Fix Project Properties androi
[#-B Android Dependencies
= Referenced Libraries +| Run Link: Check For Common Errors
----- B2 assets Clear Link Markers class
- b -
- ik private sta
i HE? I nvivate =ta
Fragments

Perhaps the mostimportant feature in the Support Library is its support for fragments. A Fragmentis like a
mini-activity. They behave much like Activities, butthey must be added to an activity. They can be created and
destroyed within an Activity's lifecycle, but if the Activity is stopped, no fragment within it can be started; if the

Activity is destroyed, then all of its fragments are destroyed as well.

Let's get a little practice in with basic fragments. We'll convert our current dialog application to use a fragment.

Start by creating a new class named MainFragment and have itextend Fragment:

= Mew Java Class M=] B9

Jawva Class

Create a new Java class,

i e

Source Folder: | Dialogsysrc Browse. .,
Package: (i com.ost, android, dialogs) Browse, .,
I Enclosing type: | Browse, ..
Mame: (IMainFragment }
Modifiers: = public £~ defaul: £ private " protecked

[T abstract [Final ™| skatic
Superclass: @anu:lru:ui-:l.suppu:urt.v4.app.Fragment|_) Browse, ., |
Interfaces: add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

@::I Finish I Cancel

Now let's create a new XML Layout File named main_fragment.xml, copy all the XML from
activity_main.xml, and place itin main_fragment.xml. It will look like this when you are finished:

/res/layout/main_fragment.xml

xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<Button
android:layout width="wrap_ content"
android:layout height="wrap content"
android:text="01ld AlertDialog"
android:onClick="onOldAlertDialogClick" />

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="01ld CustomDialog"
android:onClick="onOldCustombDialogClick" />

</LinearLayout>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

Now close main_fragment.xml, go back to activity_main.xml, and update it to use the fragment
MainFragment. We'll also change itto a basic FramelLayout since we'll only be using a single fragment:

/res/layout/activity_main.xml

xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
tools:context=".MainActivity" >>

ol D I | i D P S 1] A 1]
o TC T OC WICCcir wridap COIrceirc

<l P | I AN S, N 1 | i A1
o TC T T rergac wrap TeenT

< DN I | W BN] bl L AN | i1}
oSO TC T =3 TCr TerToTaroY

ol ol o i1} 1l N NN | ol s o
OO T OINITTICRT OlNIUTOIITC I CUTaTOg T T ICR

< PN | i Ao 1 i]
SO T gC wWrCCcir wrap COIrceiTc

u] PN | I PN s, Sy | | i]
oo T T T TTIIC WIS TTerT

ol LD N | PN IS L . N | i1}
IO TroTCre T T TCr oSTomMoTraroYy

<l 1 o (1} R Pal A V| Fak B |

IS TS eI CR= ONnoraCcuS coMoTaTtogTTICR

<fragment
class="com.ost.androidl.dialogs.MainFragment"
android:layout width="match parent"
android:layout height="match parent" />

</FrrearFramelayout>

<FfmeerFramelayout xmlns:android="http://schemas.android.com/apk/res/android"

Save thatfile. Now, back in MainFragment.java, update itto load a view:

MainFragemnt.java

package com.oreillyschool.androidl.dialogs;

import android.os.Bundle;

import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

public class MainFragment extends Fragment {

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return inflater.inflate(R.layout.activity main fragment, container, fals

This is a little different from how we define a view in an Activity, butit's actually similar to how we create views
in a listadapter. In a fragment that has a view, you need to override and implementthe onCreateView
method. An Inflater objectis passed to the method as a convenience to inflate a new View. The
Inflater.inflate method is actually overloaded, but the version we're using here takes three parameters: a
resource id to the view layout, a ViewGroup object that will be used to parent the View, and a Boolean to
determine whether to attach the View to the ViewGroup. One of the overloaded methods doesn't have the 3rd
Boolean parameter, effectively making that an optional parameter. We don't want to attach our View to the
container during inflation, so we send "false," that way the inflated view inherits only the layout parameters
from the container.

Before we can test this code we'll need to make one last change to MainActivity so it can load fragments (it's
only a small change so we'll just show the affected lines this time):

MainActivity java

Trport—androtdappActvitys

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialogInterface;

import android.os.Bundle;

import android.support.véd.app.FragmentActivity;
import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends FragmentActivity {

Save and run the Application. Everything functions exactly as it did before. We'll explore the benefits and best
usage for fragments in future lessons, butright now we'll move on, or rather get back, to creating dialogs in
the "new way" with a type of fragment called DialogFragment.

DialogFragment

A DialogFragment is a type of fragment that's loaded into an Activity like any other fragment, except that its
view is a dialog. This allows the dialog's lifecycle to be tied to a fragmentinstance instead of directly to the
Activity itself. This also lets us create dialogs that support the standard for Android devices running SDK 3.0
and up.

Let's add and implement a DialogFragment to our application. Create a new class called
MyCustomDialogFragment and have it extend the DialogFragment class:

= Mew Java Class M=] B9

Jawva Class

Create a new Java class,

i e

Source Folder: | Dialogsysrc Browse. .,
e

Package: (l com.ost, android, dialogs) Browse, .,

I Enclosing type: | Browse, ..

Mame: CI MyiZustomDialogFragment __)

Modifiers: = public £~ defaul: £ private " protecked

[T abstract [Ffinal [T static

—

Browse. ..

J

Superclass: l“l android.suppaort, w4, app. DislogFragment]

Interfaces: Add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

@::I Finish I Cancel

Next, let's update this code to use the same view as our previous custom dialog:

MyCustomDialogFragment.java

package com.oreillyschool.androidl.dialogs;

import android.app.Dialog;

import android.os.Bundle;

import android.support.véd.app.DialogFragment;
import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

public class MyCustomDialogFragment extends DialogFragment {

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setStyle (DialogFragment.STYLE NORMAL, android.R.style.Theme Dialog) ;

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
View v = inflater.inflate(R.layout.custom dialog, container, false);
((Button)v.findViewById(R.id.cancel btn)).setOnClickListener (listener);
((Button)v.findViewById(R.id.okay btn)) .setOnClickListener (listener);
return v;

private View.OnClickListener listener = new View.OnClickListener () {
@Override
public void onClick(View v) {
dismiss () ;
}
bi

@Override

public Dialog onCreateDialog (Bundle savedInstanceState) {
Dialog d = super.onCreateDialog(savedInstanceState);
d.setTitle ("My New Custom Dialog");
return d;

Now, open main_fragment.xml and add another button:

main_fragment.xml

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="01ld CustomDialog"
android:onClick="onOldCustombDialogClick"
/>

<Button
android:layout width="wrap content"
android:layout height="wrap content”
android:text="New CustomDialog"
android:onClick="onNewCustomDialogClick"

/>

</LinearLayout>

And finally, go back to MainActivity.java to implementthe click event for this button:

MainActivity java

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialoglInterface;

import android.os.Bundle;

import android.support.vd.app.DialogFragment;
import android.support.véd.app.FragmentActivity;
import android.support.vé4.app.FragmentManager;
import android.support.vé4.app.FragmentTransaction;
import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends FragmentActivity {
private static final int SIMPLE DIALOG = 0;
private static final int CUSTOM DIALOG = 1;

private static final String CUSTOM DIALOG FRAGMENT = "customDialogFragment";

private int count = 0;

public void onOldCustomDialogClick (View view) {
showDialog (CUSTOM DIALOG) ;
}

public void onNewCustomDialogClick (View view) {
FragmentManager fm = getSupportFragmentManager () ;
FragmentTransaction ft = fm.beginTransaction() ;
DialogFragment df = new MyCustomDialogFragment () ;
df.show (ft, CUSTOM DIALOG FRAGMENT) ;

Save all this code and run it. The new button launches a custom dialog thatlooks exactly the same as the
previous custom dialog (since they're using the same layout view), only with a slightly different title.

Now instead of using the Activity to manage the display and concealment of the Dialog, we use the
DialogFragment through the DialogFragment.show() and DialogFragment.dismiss() methods.
DialogFragment.show() requires either a FragmentManager objectora FragmentTranscation. An
instance of FragmentManager can always be retrieved from a FragmentActivity by calling the
getFragmentManager() method in Android SDK version 3.0 and up, or by calling
getSupportFragmentManager() which is available to the Fragment Activity in the supportlibrary for
use in applications using older versions of Android SDK.

We could've created an AlertDialog using a DialogFragment as well. The only difference between this and the
old method is that we wouldn't even need to implement onCreateView() for the AlertDialog. All we would have
to do is copy the AlertDialog.Builder code from before into the onCreateDialog implemention of the
dialog fragment.

Wrapping Up

Wow! We covered a lotin this lesson too. We learned about Dialogs and dipped our toes into the support library and
fragments. Don't be discouraged if you still find fragments perplexing. The more we use them, the more you'll
understand them.

See you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Menus

Hi there and welcome back! In this lesson we'll cover the various types of menus in Android. Menus are convenienttools that
provide contextual options to a user during an activity. There's quite a bitto cover so let's get started!

Menus, Menus, Menus

The term "menu” can refer to a few different types of components in Android. The mostcommon menu in Android is
the Options Menu. The Options Menu appears when a user touches the hardware menu button on their device. In
versions before Android 3.0, the Options Menu appears as a small window anchored to the bottom of the device
screen, holding up to six menu items (automatically arranged into two rows of three buttons). On devices using
Android 3.0 and up, the menu is integrated into the Application Bar.

Another type of menu is the Context Menu. Unlike the Options Menu, the Context Menu is directly associated with a
View componentinstead of the Activity. A Context Menu will appear when the user long-presses on the View with
which it was registered. The Context Menu is similarin appearance to a traditional Dialog. These are typically
implemented on items in a listto allow the user to perform an alternate action on the listitem.

The lasttype of menu is a Submenu. A Submenu is a menu item contained within another menu. A Submenu can be
added to an Options Menu or a Context Menu. Regardless of the type of menu to which a Submenu is attached, it will
resemble a Context Menu.

Options Menu

To get started making our menus, create a new project named Menus, with the with the Package name
com.oreillyschool.android1.menus, in the Android1_Lessons working set.

Menus in Android are typically defined using XML resource files that are stored in the Ires/menu folder of the
project. Let's use the ADT XML values file wizard to create our menu:

1. Select the Menus project and then select File | New | Other (or use the keyboard shortcut Ctrl-
N).

2.In the "Select a Wizard" dialog, choose the Android XML File option in the Android folder, and
click Next.

3. In the "New Android XML File" wizard, change the "Resource Type" to Menu, choose the Menus
project, enter the file name main_menu. Click Finish to create the XML resource.

& New Android XML File H=]
New Android XML File

Creates a new Android XML File,

-
Gescnur-:e Twpe: IMenu) j

{ Project: !Menus) j

File: main_menu| D

Rook Elernent:

@menu

@::l < Back Mext = | Finish I Cancel

Ifit did not already exist, the wizard creates the /res/menu folder automatically and saves the new XML
resource into thatfolder. Now let's getinto that new XML and create some menu items! Modify

main_menu.xml as shown:

/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item
android:id="@+id/mi_ dalek"
android:title="Dalek"/>

<item
android:id="@+id/mi_cybermen"
android:title="Cybermen"/>

</menu>

In order to define menus in the XML resource, the root xml node mustbe menu, and its children must be
eitheritem or group nodes. An item node typically takes no children, but has many possible attributes, for
instance, id, title,icon, or visible. Each item node represents an item in the menu. A group node can take
only other item nodes as children; a group node is used to define certain attributes for its child item nodes,

such as visible, enabled, and checkable.

Our menu here has only two items defined with titles (and no icons).

There's a plethora of native icons available to developers in the Android SDK. There are many
common menu actions among apps on Android (like "info" and "help"). If you implement these

Note kinds of menu items in your applications, | recommend that you use system icons. System
icons provide a consistent experience for the end user that will help them to understand how
your application works. If you find yourselfin need of custom icons, check out the Android
recommended guidelines foricon design.

We've hard-coded our strings for the title attribute, but we could have used a res/string.xml string reference id
instead (using the @string/<string-id> format). In fact, just about any Android function that takes a string can
also take a reference to string resource id. | generally recommend using string resources rather than hard-
coded strings. So far in the course, we've been hard-coding most of our strings to keep the code concise and
focused. Butin your own future projects, you'll want to putall strings that will be visible to users in the strings
XML resource file.

Okay, now let's get started with MainActivity.java to implement the menu resource. Add the code below to
MainActivity.java as shown:

MainActivity.java

package com.oreillyschool.androidl.menus;

import android.app.Activity;
import android.os.Bundle;

import android.view.Menu;

import android.view.Menulnflater;

public class MainActivity extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

}

@Override
public boolean onCreateOptionsMenu (Menu menu) {

getMeratrftaterO—infiate{Rrert et —mernt—
final MenulInflater inflater = getMenulnflater();
inflater.inflate (R.menu.main menu, menu);

return true;

And that's itt Now we can save and run the project. Once the application is installed and running on the
emulator, click the Menu key on the emulator screen; the menu should pop up from the bottom:

http://developer.android.com/guide/practices/ui_guidelines/icon_design_menu.html

5554:=miller-android2.3.3

Hello world!

Hardware Keyboard

Lhe your physicsl keybaard 1o provsde

Cybermen

OBSERVE:

@Override
public boolean onCreateOptionsMenu (Menu menu) {
final MenulInflater inflater = getMenuInflater():;
inflater.inflate (R.menu.main menu, menu);
return true;

We use the onCreateOptionsMenu() method to create our menu. The method is called by Android
automatically when a user clicks on the Menu button. onCreateOptionsMenu() receives one objectin its
parameters, a Menu object. Then we inflate the menu object with our XML by using a Menulnflater obtained
from getMenulnflater(). The menu inflater takes two parameters: an R.java reference to the XML file and
the menu object into which the XML is inflated.

Just like the dialog methods for creating a dialog, onCreateOptionsMenu() is called only once by the
Activity during its active lifecycle. To make updates to the menu before itis presented to the user, we would
override and implement the onPrepareOptionsMenu() method. We'll practice doing that later in the lesson,

butfor now let's add some code to MainActivity.java in order to respond to clicks on the menu items:

MainActivity.java

package com.oreillyschool.androidl.menus;

import android.app.Activity;
import android.os.Bundle;

import android.view.Menu;

import android.view.Menulnflater;
import android.view.Menultem;
import android.widget.Toast;

public class MainActivity extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

}

@Override

public boolean onCreateOptionsMenu (Menu menu) {
final MenuInflater inflater = getMenulnflater();
inflater.inflate (R.menu.main menu, menu);
return true;

}

@Override
public boolean onOptionsItemSelected (Menultem item) {
switch (item.getItemId()) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show();
break;

case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT
) .show () ;
break;
}

return true;

Save and run it. You'll see the appropriate toast message pop up for each menu item.

OBSERVE:

@QOverride
public boolean onOptionsItemSelected (Menultem item) ({
switch (item.getItemId()) ({
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show () ;
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT
) .show () ;
break;
}

return true;

When a menu item is selected, the Android system triggers a call to the onOptionslitemSelected()
method, passing the selected Menultem object as the only parameter. As long as you have assigned an id
attribute to each of the items in your XML, you can use a switch/cases block on the item.getltemld() integer
to find out which item was clicked and respond accordingly. The third parameter for the makeText) method
controls how long the message will display.

To demonstrate the "More" button, we'll add a few more items to main_menu.xml:

/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"7?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item
android:id="@+id/mi_dalek"
android:title="Dalek"/>

<item
android:id="@+id/mi_cybermen"
android:title="Cybermen"/>

<item
android:id="@+id/mi_angels"
android:title="Weeping Angels"/>

<item
android:id="@+id/mi_ silence"
android:title="The Silence"/>

<item
android:id="@+id/mi_silurians"
android:title="Silurians"/>

<item
android:id="@+id/mi sontarans"
android:title="Sontarans"/>

<item
android:id="@+id/mi master"

android:title="The Master"/>

</menu>

Now when you run the application you'll see the regular Options Menu showing only the first five items; the
sixth item is a "More" button. When you click the More button, you'll see another vertically arranged menu that
contains the remaining items:

(%) 5554:smiller-android2.3.3

Hello world!

Dalek Cybermen Weeping Angels

The Silence Silurians

(%) 5554:smiller-android2.3.3

Hello world!

Sontarans

The Master

We can try experimenting with a submenu now as well. Modify main_menu.xml as shown (in Eclipse, you
can indent a block of code by highlighting it and pressing the Tab key):

/res/menu/main_menu.xml

<?xml version="1.0" encoding="utf-8"7?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item
android:id="@+id/mi_dalek"
android:title="Dalek"/>

<item
android:id="@+id/mi_cybermen"
android:title="Cybermen"/>

<item
android:title="Others">

<menu>
<item
android:id="@+id/mi_angels"
android:title="Weeping Angels"/>
<item
android:id="@+id/mi_silence"
android:title="The Silence"/>
<item
android:id="@+id/mi_silurians"
android:title="Silurians"/>
<item
android:id="@+id/mi_sontarans"
android:title="Sontarans"/>
<item
android:id="@+id/mi master"
android:title="The Master"/>
</menu>
</item>

</menu>

Here we wrapped some of the previous items in a menu tag, and then wrapped that within a new item tag
titted "Others." Now when we test the application menu button, the initial Options Menu only shows "Dalek,"
"Cybermen," and "Others."

(%) 5554:smiller-android2.3.3

Hello world!

Cybermen Others

When you click Others, you see a submenu with the remaining items:

(%) 5554:smiller-android2.3.3

Weeping Angels

The Silence

Silurians

Sontarans

The Master

Modifying an Options Menu

As you do with a Dialog, you'll wantto update a menu before it becomes visible to the user. Since the "create"
method for a menu gets called just once during the lifecycle of an activity, you need to use another method to
handle the updates. Make these changes to MainActivity.java:

MainActivity java

package com.oreillyschool.androidl.menus;

import android.app.Activity;
import android.os.Bundle;

import android.view.Menu;

import android.view.MenuInflater;
import android.view.Menultem;
import android.widget.Toast;

public class MainActivity extends Activity {
private int optionLastClickedId = -1;
private int optionClickedId = -1;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

@Override

public boolean onCreateOptionsMenu (Menu menu) {
final MenulInflater inflater = getMenulInflater();
inflater.inflate (R.menu.main menu, menu);
return true;

@Override
public boolean onPrepareOptionsMenu (Menu menu) {
Menultem item = menu.findItem(optionLastClickedId);
if (item != null) {
item.setEnabled (true);
}
item = menu.findItem(optionClickedId) ;
if (item != null) {
item.setEnabled(false);
}
optionLastClickedId = optionClickedId;

return super.onPrepareOptionsMenu (menu) ;

@Override
public boolean onOptionsItemSelected (Menultem item) {
optionClickedId = item.getItemId();

switch (optionClickedId) {
switeh—ti+tem—getttemtadtr——+
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show () ;
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow();
break;
}

return true;

Save and run it. Whichever menu item you click will become disabled the next time the Options Menu is
presented (and the previously disabled item will become enabled):

554:smiller-android2.3.3

R

Menus

Hello world!

Others

OBSERVE:

public boolean onPrepareOptionsMenu (Menu menu) {
MenuItem item = menu.findItem (optionLastClickedId) ;
if (item != null) {
item.setEnabled (true) ;
}
item = menu.findItem (optionClickedId) ;
if (item != null) {
item.setEnabled (false) ;
}
optionLastClickedId = optionClickedId;

return super.onPrepareOptionsMenu (menu) ;

The onPrepareOptionsMenu() method receives one parameter, the Menu object that was created earlier
in the onCreateOptionsMenu() method. We can use this object to modify the menu any way we like, such as

finding specific Menultem objects and modifying their properties, oreven adding orremoving a
Menultem from the Menu.

Menus can be created programmatically as well, using the Menu and Menultem constructors,
' Note then adding them with any of the various "add" methods available on Menu. In this lesson, '
' though, we create all of our Menus with the most commonly used Menulnflater method. '

Context Menu

Like Options Menus, Context Menus can also be defined using an XML resource file. We can reuse the menu
XML resource that we used earlier for the Options Menu to implement a Context Menu. In order to do that, we
register the menu with a view componentin our Activity. First, we'll need to define a view componentin
activity_main.xml:

Ires/layout/activity_main.xml

<RetativelinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:id="@+id/text"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/hello" />

</RetativelinearLayout>

We use the default TextView that was generated with our project, and we add an id attribute so we can locate
the component. Next let's update MainActivity.java to register the view with a menu:

MainActivity java

package com.oreillyschool.androidl.menus;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.Menultem;

import android.widget.Toast;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenulInfo;
import android.view.View;

public class MainActivity extends Activity {
private int optionLastClickedId = -1;
private int optionClickedId = -1;

/** Called when the activity is first created. */

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

View textView = findViewById(R.id.text);
registerForContextMenu (textView) ;

@Override
public void onCreateContextMenu (ContextMenu menu, View v, ContextMenulInfo me
nulnfo) {
super.onCreateContextMenu (menu, v, menulnfo);
final MenuInflater inflater = getMenulInflater();
inflater.inflate (R.menu.main menu, menu);

@Override

public boolean onCreateOptionsMenu (Menu menu) {
final MenulInflater inflater = getMenulnflater();
inflater.inflate (R.menu.main menu, menu);
return true;

@Override
public boolean onPrepareOptionsMenu (Menu menu) {
Menultem item = menu.findItem(optionLastClickedId);
if (item != null) {
item.setEnabled (true);
}
item = menu.findItem(optionClickedId);
if (item != null) {
item.setEnabled(false);
}
optionLastClickedId = optionClickedId;

return super.onPrepareOptionsMenu (menu) ;

@Override
public boolean onOptionsItemSelected (Menultem item) ({
optionClickedId = item.getItemId();

switch (optionClickedId) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show();
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow () ;

break;

}

return true;

In our Activity, we must override and implementthe onCreateContextMenu() method in order to handle
creating the context menu when our registered View has been long-pressed (thatis, when part of your screen
has been tapped and held down). We inflated the menu here exactly the same way we did for the Options
Menu. This works because we've registered only a single view for a Context Menu, but once we register
multiple views (or a list), we'll probably need to add some more code to determine which View is requesting a
Context Menu, otherwise each View would present the exact same Context Menu. We can save and run our
code now to testthe menu. To presentthe menu, you'll need to click and hold on the TextView (the emulator

version of a long-press):

(Z) 5554:smiller-android2.3.3

Click and hold here. ..

__to see this context menu.

Dalek

Cybermen

Others

Responding to Context Menu clicks is similar to the Options Menu as well. We just need to override a different
method. We can reuse the code from onOptionsitemSelected() since we're already inflating the same
menu:

MainActivity.java

package com.oreillyschool.androidl.menus;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.Menultem;

import android.widget.Toast;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenulInfo;
import android.view.View;

public class MainActivity extends Activity {
private int optionLastClickedId = -1;
private int optionClickedId = -1;

/** Called when the activity is first created. */

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

View textView = findViewById(R.id.text);
registerForContextMenu (textView) ;

@Override
public void onCreateContextMenu (ContextMenu menu, View v, ContextMenulInfo me
nulnfo) {
super.onCreateContextMenu (menu, v, menulnfo);
final MenuInflater inflater = getMenulInflater();
inflater.inflate (R.menu.main _menu, menu);

@Override
public boolean onContextItemSelected (Menultem item) {
switch (item.getItemId()) {

case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show () ;
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow();
break;
}

return true;

@Override

public boolean onCreateOptionsMenu (Menu menu) {
final MenuInflater inflater = getMenulInflater();
inflater.inflate (R.menu.main _menu, menu);
return true;

@Override
public boolean onPrepareOptionsMenu (Menu menu) {
Menultem item = menu.findItem(optionLastClickedId);
if (item != null) {
item.setEnabled (true) ;
}
item = menu.findItem(optionClickedId);
if (item != null) {
item.setEnabled (false) ;
}
optionLastClickedId = optionClickedId;

return super.onPrepareOptionsMenu (menu) ;

}

@Override
public boolean onOptionsItemSelected (Menultem item) {
optionClickedId = item.getItemId();

switch (optionClickedId) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show () ;
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow();
break;
}

return true;

Save and run the app once more to test that the click handler is working correctly. The method for handling
Context Menu clicks works exactly the same way as the Options Menu click handler method. However, while
the Options Menu always comes from the same menu source, the Context Menu could potentially be
generated from any View in the activity that registered to display a Context Menu, so you might need to write
some defensive code to determine which View initiated the menu. This is especially true when using a
Context Menu with a ListView.

Let's add a ListView to this application to see how to use Context Menu with a list. We can reuse the list code
from our earlier lesson that covered the ListView component. If you still have the Lists project available, go
ahead and copy the Isrc/MyList Adapter.java and res/layout/my_list_item.xml files into the
corresponding folders in this project, as well as the data and setup that was defined in MainActivity.java and
the ListView componentfrom activity_main.xml. Don't just copy those last two files over, though; we want to
merge, notreplace, the list data with our existing code.

If you don't have the previous code or you just want to re-type it, you can follow the change instructions
below. Create a new class file named MyList Adapter and make it extend the
android.widget.ArrayAdapter class. Then modify MyListAdapter.java as shown:

MyListAdapter.java

package com.oreillyschool.androidl.menus;

import com.oreillyschool.androidl.menus.MainActivity.MyData;
import android.content.Context;

import android.graphics.Color;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

import android.widget.TextView;

public class MyListAdapter extends ArrayAdapter<MyData> {
private LayoutInflater inflater;

public MyListAdapter (Context context, MyDatal[] data) {
super (context, R.layout.my list item, data);
inflater = LayoutInflater.from(context);

@Override
public View getView (int position, View convertView, ViewGroup root) {
View view = convertView;
if (view == null) {
view = inflater.inflate(R.layout.my list item, null);
}
MyData data = getltem(position);

TextView textView = (TextView) view.findViewById(R.id.text);
textView.setText (data.name) ;

View imageView = view.findViewById(R.id.color);
int color = data.clicked ? Color.RED : Color.BLUE;

imageView.setBackgroundColor (color) ;

return view;

Next, create a new XML layout file named my_list_item.xml as shown:

/res/layout/my_list_item.xml

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="horizontal"
android:gravity="center vertical">

<View
android:id="@+id/color"
android:layout width="10dp"
android:layout height="50dp" />

<TextView
android:id="@+id/text"
android:layout width="wrap content"
android:layout height="wrap content"/>

</LinearLayout>

Next, modify activity_main.xml and MainActivity.java as shown:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

android:
android:
android:
android:
android:
android:
android:

layout width="match parent"

layout height="match parent"
paddingBottom="@dimen/activity vertical margin"
paddingLeft="@dimen/activity horizontal margin"
paddingRight="@dimen/activity horizontal margin"
paddingTop="@dimen/activity vertical margin"
orientation="vertical"

tools:context=".MainActivity" >

<TextView
android:id="@+id/text"
android:layout width="fill parent"
android:layout height="wrap content"
android:text="@string/hello"™ />

<ListView
android:id="@android:id/list"
android:layout width="match parent"
android:layout height="match parent"

/>

</LinearLayout>

MainActivity.java

package com.oreillyschool.androidl.menus;

tmport—androtdappActIvitys

import android.app.ListActivity;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenulInfo;

import android.view.Menu;

import android.view.MenulInflater;

import android.view.Menultem;

import android.view.View;

import android.widget.Toast;

import android.widget.ListView;

import java.util.Comparator;

T T T S

public class MainActivity extends ListActivity {
private int optionLastClickedId = -1;
private int optionClickedId = -1;

public class MyData {
public String name;
public boolean clicked;
public MyData (String name) {
this.name = name;
this.clicked = false;

private MyData[] data = new MyDatal[] {
new MyData ("Odin"),
new MyData ("Thor"),
new MyData ("Loki"),
new MyData ("Baldr"),

new MyData ("Freyr"),

new MyData ("Heimdallr"),

new MyData ("Ullr"),

new MyData ("Meili"),

new MyData ("Hodr"),

new MyData ("Forseti")

}i

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

View textView = findViewById(R.id.text);

registerForContextMenu (textView) ;

MyListAdapter adapter = new MyListAdapter (this,

adapter.sort (new Comparator<MyData> () {
@Override

data) ;

public int compare (MyData arg0, MyData argl) {

return arg0O.name.compareTo (argl.name) ;

)

setListAdapter (adapter) ;

@Override
protected void onListItemClick(ListView 1, View v,

int position,

MyListAdapter adapter = (MyListAdapter) getListAdapter();

MyData item = adapter.getItem(position);
item.clicked = !item.clicked;
adapter.notifyDataSetInvalidated() ;

long

id)

}
@Override
public void onCreateContextMenu (ContextMenu menu, View v, ContextMenuInfo me
nulnfo) {
super.onCreateContextMenu (menu, v, menulnfo);
final MenuInflater inflater = getMenulnflater();
inflater.inflate (R.menu.main_menu, menu);
}
@Override
public boolean onContextItemSelected (Menultem item) {
switch (item.getItemId()) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show () ;
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow () ;
break;
}
return true;
}
@Override
public boolean onCreateOptionsMenu (Menu menu) {
final MenulInflater inflater = getMenulnflater();
inflater.inflate (R.menu.main menu, menu);
return true;
}
@Override
public boolean onPrepareOptionsMenu (Menu menu) {
Menultem item = menu.findItem(optionLastClickedId);
if (item != null) {
item.setEnabled (true);
}
item = menu.findItem(optionClickedId) ;
if (item != null) {
item.setEnabled(false);
}
optionLastClickedId = optionClickedId;
return super.onPrepareOptionsMenu (menu) ;
}
@Override
public boolean onOptionsItemSelected (Menultem item) {
optionClickedId = item.getItemId();
switch (optionClickedId) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show();
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow();
break;
}
return true;
}
}

Before we make any further changes, save everything here and run the project to make sure our previous
menus and the list from the previous lesson are working. You'll see the list and still get the Context menu
when you click and hold on the TextView:

() 5554:smiller-android2.3.3

Dalek

Cybermen

Others

Now let's make some more changes to get the ListView to show a context menu for each item. We'll start by
creating a new menu XML resource. Name the new resource list_menu.xml and make these changes:

/res/menul/list_menu.xml

<?xml version="1.0" encoding="utf-8"7?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item
android:id="@€+id/mi_alpha"
android:title="Alpha" />

<item
android:id="@€+id/mi_echo"
android:title="Echo" />

<item
android:id="@+id/mi_sierra"

android:title="Sierra" />

</menu>

Now we'll register our list to show a context menu for each item in the list. Make these changes to
MainActivity.java:

MainActivity.java

package com.oreillyschool.androidl.menus;

import android.app.ListActivity;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenulInfo;
import android.view.Menu;

import android.view.MenulInflater;

import android.view.Menultem;

import android.view.View;

import android.widget.AdapterView.AdapterContextMenulnfo;
import android.widget.ListView;

import android.widget.Toast;

import java.util.Comparator;

public class MainActivity extends ListActivity {
private int optionLastClickedId = -1;
private int optionClickedId = -1;

public class MyData {
public String name;
public boolean clicked;
public MyData (String name) {
this.name = name;
this.clicked = false;

private MyData[] data = new MyDatal[] {
new MyData ("Odin")

new MyData ("Thor"),
)

l4

[

(

(

new MyData ("Loki"),
new MyData ("Baldr"),
new MyData ("Freyr"),
new MyData ("Heimdallr"),
new MyData ("Ullr"),

new MyData ("Meili"),

new MyData ("Hodr"),

new MyData ("Forseti")

}i

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

View textView = findViewById(R.id.text);
registerForContextMenu (textView) ;
registerForContextMenu (getListView()) ;

MyListAdapter adapter = new MyListAdapter (this, data);
adapter.sort (new Comparator<MyData> () {
@Override
public int compare (MyData arg0, MyData argl) {
return arg0O.name.compareTo (argl.name) ;

)

setListAdapter (adapter) ;

@Override
protected void onListItemClick(ListView 1, View v, int position,
MyListAdapter adapter = (MyListAdapter) getListAdapter();

MyData item = adapter.getItem(position);
item.clicked = l!item.clicked;

long id)

{

adapter.notifyDataSetInvalidated();

@Override
public void onCreateContextMenu (ContextMenu menu, View v, ContextMenuInfo me
nulInfo) {
super.onCreateContextMenu (menu, v, menulnfo);
final MenuInflater inflater = getMenulInflater();

if (v == getlListView()) {
inflater.inflate (R.menu.list menu, menu);
} else {

inflater.inflate (R.menu.main_menu, menu);

@Override
public boolean onContextItemSelected (Menultem item) {
MyData data = null;

if (item.getMenulnfo() != null && item.getMenuInfo() instanceof AdapterC
ontextMenuInfo) {
AdapterContextMenulInfo info = (AdapterContextMenulnfo) item.getMenul
nfo();
data = (MyData) getListAdapter().getItem(info.position);
}
switch (item.getItemId()) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show();
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT
) .show () ;

break;
case R.id.mi_alpha:
case R.id.mi_echo:
case R.id.mi sierra:
if (data !'= null)
Toast.makeText (this, "You clicked " + item.getTitle(), Toast.LENGT
H LONG) .show () ;
break;
}

return true;

@Override

public boolean onCreateOptionsMenu (Menu menu) {
final MenuInflater inflater = getMenulInflater();
inflater.inflate (R.menu.main menu, menu);
return true;

@Override
public boolean onPrepareOptionsMenu (Menu menu) {
Menultem item = menu.findItem(optionLastClickedId);
if (item != null) {
item.setEnabled (true);
}
item = menu.findItem (optionClickedId) ;
if (item != null) {
item.setEnabled (false) ;
}
optionLastClickedId = optionClickedId;

return super.onPrepareOptionsMenu (menu) ;

@Override
public boolean onOptionsItemSelected (Menultem item) {

optionClickedId = item.getItemId();

switch (optionClickedId) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show();
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT
) .show () ;
break;
}

return true;

Save your changes and test the app. You'll see the new Context Menu when you long-press on a listitem. If
you tap a Context menu item, you'll see the corresponding Toast message:

-} 5554:=miller-android2.3.3
& il

Menus

Hello world!

Baldr

Forseti

Freyr

Heimdallr

Hodr

Loki

Meili

You clicked Echo

Odin

Now we'll make a change to the onContextltemSelected method in MainActivity so itlooks up which
Listltem was clicked and displays both the listitem name and the menu option name that was clicked in the
Toastmessage:

MainActivity.java

@Override
public boolean onContextItemSelected (Menultem item) ({
MyData data = null;
if (item.getMenulInfo() != null && item.getMenuInfo() instanceof AdapterC
ontextMenuInfo) {
AdapterContextMenuInfo info = (AdapterContextMenulInfo) item.getMenul
nfo () ;
data = (MyData) getlListAdapter () .getItem(info.position);
}

switch (item.getItemId()) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH LONG) .show();
break;
case R.id.mi cybermen:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT
) .show () ;
break;
case R.id.mi alpha:
case R.id.mi echo:
case R.id.mi sierra:
if (data != null)
Toast.makeText (this, data.name + " - " + item.getTitle(), To
ast.LENGTH LONG) .show () ;
break;
}

return true;

Save and run the code. When you long-press an item and then select alpha, echo, or sierra, you'll see a
message with both selections.

5554:smiller-android2.3.3
& N

Menus

Hello world!

Baldr

Forseti

Freyr

Heimdallr

Hodr

Loki

Meili

Loki - Echo

Odin

OBSERVE:

MyData data = null;
if (item.getMenuInfo() != null && item.getMenulInfo() instanceof AdapterContextMe
nulnfo) {
AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuInfo();
data = (MyData) getListAdapter ().getItem(info.position);

In the beginning of the method we call getMenulnfo() on the Menultem object that was passed to the
method. If the source of this Context Menu is a list view item, the get Menulnfo () returns an instance of
AdapterContextMenulnfo. If the source of the Context Menu is a TextView, get Menulnfo () will only
return a null, so we have to write some defensive code here to make sure we don'tgeta null pointer error. If
we getan AdapterContextMenulnfo object, we can use itto find the position of the listitem, and with that
we can retrieve the model that was used to create the listitem and then use the model name property in the
Toastmessage.

Unlike the Options Menu, the Context Menu's create method gets called after each long-press
on the registered View, so there's no "prepare" method to override in order to make changes to
the menu before itis shown; instead, you just put the logicin the onCreateContextMenu()
method. Keep in mind that Context Menus do not supporticons.

Z
o
-
®

Wrapping Up

Well, it seem like menus can pop up anywhere, huh? That's good, because they allow you to provide additional
functionality to the screen without cluttering up the view. Now that you have experience creating, modifying, and
handling each of the various types of Menus, feel free to play around with these tools on your own. If you feel like you'd
like a bit more guidance, hit up the Android documentation site to explore Menus even further.

When you're ready, move on to the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com/guide/topics/ui/menus.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Saving Data with Shared Preferences

Good to have you back. | appreciate your persistence! This lesson covers Shared Preferences. Shared Preferences help your
application to remember decisions and the state of the data between each application session. There are other, more involved
methods of data persistence available on Android (such as a sqlite database), but we'll cover those in future lessons.

Shared Preferences

For this lesson, we'll recycle code from before. There was a lotgoing on in the code from that last project, but that
density will make it especially useful for us to use to test the Shared Preferences feature.

Think of a Shared Preference as a basic data model to which your application can read and write efficiently. The
SharedPreferences class is the interface used to communicate with the data. You can write any primitive data object to
the SharedPrefences data model (such as int, float, long, and string). The data is saved as a key-value pair.

SharedPreferences doesn't support complex data models, butit works well for preserving application state and
personalized user settings between sessions. There's actually a specialized Activity for managing user settings that
handles much of the work automatically. We'll getinto that later, but right now let's go over with the basics of using the
SharedPreferences class.

To save space in this and future lessons, we'll sometimes just show relevant portions of the programs in
our CODE TO TYPE boxes. We'll use ellipses (...) to indicate that some code has been omitted.

Getting Started with SharedPreferences

We'll jump rightin and integrate SharedPreferences into our existing code. Previously, we created an Options
Menu that would disable the previously selected option. Let's modify our code to persistthe previous
disabled option between sessions. In the Menus project, open the MainActivity.java file, and make these
changes:

MainActivity.java

import android.app.ListActivity;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.ContextMenu.ContextMenulInfo;
import android.view.Menu;

import android.view.MenuInflater;

import android.view.Menultem;

import android.view.View;

import android.widget.AdapterView.AdapterContextMenulnfo;
import android.widget.ListView;

import android.widget.Toast;

import java.util.Comparator;

public class MainActivity extends ListActivity {

private static final String DISABLED OPTION KEY = "disabledOption";
private int optionLastClickedId = -1;
il = i P I |

: i L e oz
TrTVvaT TITC PpTIrofncTTIEReCTa— T

We start by defining a permanent key to use in the key-value pair. In larger projects, it's sometimes more
practical to define constant values in a helper/utility class, but we didn't do that here because we're focused on
using SharedPreferences. We also delete the optionClickedld variable, because we'll be handling that entirely
in SharedPreferences now. Go ahead and make the next set of changes to MainActivity.java:

MainActivity.java

@Override
public boolean onPrepareOptionsMenu (Menu menu) {
Menultem item = menu.findItem (optionLastClickedId);
if (item != null) {
item.setEnabled (true) ;

int optionClickedId = getPreferences (MODE PRIVATE) .getInt (DISABLED OPTIO
N KEY, -1);

item = menu.findItem(optionClickedId);
if (item != null) {
item.setEnabled(false);

}
optionLastClickedId = optionClickedId;

return super.onPrepareOptionsMenu (menu) ;

@Override

public boolean onOptionsItemSelected (Menultem item) {
optionttiekedtd——Ftemgetttemntdt;
int optionClickedId = item.getItemId() ;
final SharedPreferences prefs = getPreferences (MODE PRIVATE) ;
final SharedPreferences.Editor editor = prefs.edit();
editor.putInt (DISABLED OPTION KEY, optionClickedId);

editor.commit () ;

switch (optionClickedId) {
case R.id.mi dalek:
Toast.makeText (this, "Exterminate!", Toast.LENGTH SHORT) .show();
break;
case R.id.mi cyberman:
Toast.makeText (this, "You will be upgraded.", Toast.LENGTH SHORT) .sh
ow () ;
break;
}

return true;

Save the program. To make sure your code works, run the application, click the Menu button, choose a menu
option and make sure thatit's disabled when you open the menu again, close the application (hit the back
button until you see the desktop), and then re-open the application to make sure the menu item that was
disabled before, is still disabled. You should be able to restart the emulator and the application should still
persist the disabled menu option:

5554 smiller-androidz.3.3

Hello world!

Baldr

Forseti Hardware Keyboard

Use your physical keyboar

Freyr

Hodr

Loki

Meili

IHeimdaHr

Others

Since we are no longer using the optionClickedld class member variable, we have to update each
reference thatuses it to use the SharedPreferences class instead. Take a look at onPrepareOptionsMenu():

OBSERVE:

int optionClickedId = getPreferences (MODE PRIVATE) .getInt (DISABLED OPTION KEY, -
1);

The first fix was to load the value out of the SharedPreferences. We call the method getPreferences()
(available from Activity) to get an instance of the SharedPreference class unique to the current Activity. The
method takes one parameter, which defines the permissions of the preferences file thatis created for the
Activity. The Activity class defines a series of constants to help you configure the privacy correctly:
MODE_PRIVATE, MODE_APPEND, MODE_WORLD_READABLE, and MODE_WORLD_WRITABLE. We use
MODE_PRIVATE to keep the preferences private and inaccessible to other languages. If a preference file
already exists with a privacy other than MODE_PRIVATE, that preference file will be deleted and a new one
created. Using MODE_APPEND as our parameter would only create a new preference file if one didn't exist,
regardless of privacy setting. MODE_WORLD_READABLE allows other apps to read the preference file, and
MODE_WORLD_WRITABLE allows other apps to read and modify the preference file.

We use the getint() method, sending itthe DISABLED_OPTION_KEY key, to retrieve the saved value for
our key-value pair. This method (as well as every other get method on SharedPreferences) takes a second
parameter as a "default value" to be returned if the key-value pair does not exist yetin the SharedPreference
file. ltis safe to use -1 as a default value here because resource id parameters never use negative values:

OBSERVE: onOptionsltemSelected()

int optionClickedId = item.getItemId() ;

final SharedPreferences prefs = getPreferences (MODE PRIVATE) ;
final SharedPreferences.Editor editor = prefs.edit();
editor.putInt (DISABLED OPTION KEY, optionClickedId);
editor.commit () ;

Next, we update onOptionsitemSelected() to save the correct value into SharedPreferences. Again we
use getPreferences with the same privacy parameter to getaccess to our SharedPreferences object.
To write a value to the preference file, you have to getan instance of the SharedPreferences.Editor class
by calling the edit () method on the SharedPreferences class. Then, with the Editor, we use the helper method
to update the key-value pair to the preference. Finally, we call commit() on the Editor class in order to write
the value to the SharedPreferences file; if we didn't call commit (), SharedPreferences would roll back to their
previous values.

There are many other helper methods available on the Editor class for the different types of value that are
supported by SharedPreferences, such as putString() and putLong(). Instead of using the
getPreferences() method to getthe SharedPreferences object, we could have used the
getSharedPreferences() method. Both methods work almostidentically, butgetSharedPreferences()
takes another parameter (a String) thatis used as a unique name for the SharedPreferences file thatis created
for the Activity. Using getSharedPreferences(), you can create as many different SharedPreference files as
you want. If you need only a single preference cache for a single Activity, use getPreferences(). If you want
multiple activities to have access to the same preference class, then you have a few options available. You
could use getSharedPreferences() and use the same name in each Activity that loads the preference, or
you could use the Application class to create a default SharedPreference; for example,
getApplication().getPreferences(MODE_PRIVATE).

We haven't covered the Application class in great detail, but there's not typically much need to do that. The
Application class functions almost exactly like an Activity with similar methods available to it (both Activity and
Application extend the Context class). However, each Android app has only one Application, and it can be
accessed from any Activity class using the get Application() method.

Probably the best option for making sure all your activities use the same preferences file is the
PreferenceManager class. It has a static method called getDefaultSharedPreferences() thattakes one
parameter (a Context such as an Activity or Application) and returns a default SharedPreferences object will
use the same file, regardless of the Contextthatis passed to it. This file is best used with the
PreferenceActivity class because it's the same SharedPreference file used by that class.

PreferenceManager.getDefaultSharedPreferences() is actually using the option |
described earlier; it's using the same name for the getSharedPreferences() call each time.

Z
o
-
®

The name ituses is actually a combination of the application package name and the string
"_preferences" (context.getPackageName() + "_preferences").
PreferenceActivity

Many applications have what's commonly referred to as a "Settings screen." Android has a native custom
Activity available, the PreferenceActivity, thatis meantto assistyou in creating a Settings screen designed
specifically for your application. The PreferenceActivity has its own unique XML format for declaring its view.
The PreferenceActivity uses the PreferenceManager class to manage its SharedPreferences object as well, so
that the preferences managed on the activity are available to the rest of the activities in the application.

If you browse the Android developer documentation for help implementing the

' PreferenceActivity, you might find it a bit frustrating. As of Android 3.0, all of the previous APIs for
E Note setting up a PreferenceActivity were deprecated in favor of the new standard using the

! PreferenceFragment class. Unlike other fragments, however, the PreferenceFragmentis not

' available in the supportlibrary, so we still have to use the deprecated APlIs if we wantto support
E devices running an Android version before 3.0.

Let's implement a PreferenceActivity screen in our application now. Start by creating a new class called
MyPreferenceActivity; make sure it extends the PreferenceActivity class:

= New Java Class =]
Jawva Class —.
Create a new Java class, @

Source Folder: (iMenus,l'sru:) Browse, .,
Package: (!cnm.nst.andruid.menus) Browse, .,

I Enclosing type: | Browse, ..

Marne: l' | MyPreferencedckivity)

iy

Modifiers: * public r default £ private " protecked
[~ abstract I Final [=tatic
T
Superclass: l“landru:ui-:l.preFerence.PreFerence.ﬁ.ctivitﬂ Browse. ., |
Interfaces: add...

Remove |

Which method stubs would wou like ko create?
[public skatic void maintSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {Configure templates and default walue hered

[T Generate comments

iy .
I\‘? ¥ Finish I Cancel

Click Finish to create the activity. We have relatively little code to modify for this activity; just make this
change:

MyPreferenceActivity.java

package com.oreillyschool.androidl.menus;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class MyPreferenceActivity extends PreferenceActivity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
addPreferencesFromResource (R.xml.preferences) ;

This should be throwing an error right now since we reference a resources file that we haven't created yet—so
let's create ithow:

1. With the Menus project selected, select File | New | Other (or use the keyboard shortcut Ctrl-

2.In the "Select a Wizard" dialog, choose the Android XML File option in the Android folder, and
click Next.

3. In the "New Android XML File Wizard," change the "Resource Type" to Preference; name the
file preferences; under "Root Element," selectthe PreferenceScreen; and click Finish to
create the XML resource.

& New Android XML File [_ O]
Mew Android XML File

Creates a new Android XML File,

Y
(Resource Tvpe: IF'reFerenu:e } j

G‘rnject: Menus D j
Gile: | preFerences)

Rook Element;

@Checkﬁan‘reFerence
r.:E:lEl:litTextF'reI“erenn:e
@ListPreFerence
@F‘reference

Flesk E N
LI =a =0 =0 B L=y \-I'.L":l'-'l :I'

®RingtnnePreFerence

@::I < Back Mext = | Finish I Cancel

This creates the Ires/xml folder in your project (if it doesn't already exist), then creates the new
preferences.xml file and saves itin there. Now let's add a preference to this XML. Modify your code as

shown:

Ires/xml/preferences.xml

<?xml version="1.0" encoding="utf-8"7?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >

<PreferenceCategory android:title="Important Stuff">

<CheckBoxPreference
android:key="1listViewVisible"
android:title="ListView visible"
android:defaultValue="true"

/>

<EditTextPreference
android:key="username"
android:title="Username"
android:defaultvValue="User"

/>
</PreferenceCategory>
<PreferenceCategory android:title="Unimportant Stuff">
<CheckBoxPreference
android:key="doesNothing"
android:title="Unimportant Text"
/>

</PreferenceCategory>

</PreferenceScreen>

The PreferenceActivity XML supports many different types of standard preference screen components
including checkboxes, editable, text areas, lists, as well as preference groups to help organize your
preferences. Here we've used two types of components: the CheckBoxPreference and the
EditTextPreference, which will correspond to a CheckBox and EditText view component, respectively.

Before we can even test our code, we need to update MainActivity.java with a hook to load this activity.

Let's go the quick-and-dirty route of setting up a quick click-listener on the top TextView. Modify your code as
shown:

MainActivity java

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

View textView = findViewById(R.id.text);
textView.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {

startActivity (new Intent (MainActivity.this, MyPreferenceActivity
.class));

}) i
registerForContextMenu (textView) ;

e k] o . NS L SEP § X} L\
regTrSTerrorTonTteXRTrreio (g€ coTr STV IewW (/7

Finally, we need to add the Activity to the AndroidManifest.xml file. Modify your code so itlooks like this:

AndroidManifest.xml

<application
android:icon="@drawable/ic launcher"
android:label="@string/app name" >
<activity
android:label="@string/app name"
android:name=".MainActivity" >
<intent-filter >
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".MyPreferenceActivity"></activity>
</application>

Now we're ready to testthe code. The preferences aren't hooked up to anything yet, butwe should atleastbe
able to testto make sure that the PreferenceActivity is creating its view correctly. Start up the application, and
click the Hello world text at the top of the screen; your PreferenceActivity screen will look like this:

5554:smiller-android2.3.3

i M

Menus

ListView visible

Username

Unimportant Text

The PreferenceScreen xml tag can even be nested inside of itself. When clicked, this will
create an item on the screen that will load a brand new preference screen, populated with the
preferences that are children of the nested tag. This is commonly used for things like "Advanced
Settings" options in a typical settings screen.

Z
(o)
-
D

Now let's hook up some of these preferences to verify that they're working. Make these changes to
MainActivity.java:

MainActivity java

@Override
protected void onResume () {
super.onResume () ;

SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences (
this);

TextView textView = (TextView) findViewById(R.id.text);

textView.setText (String.format ("Hello %s, welcome back!", prefs.getStrin
g ("username", "user")));

if (prefs.getBoolean("listViewVisible", true)) {
getListView() .setVisibility (View.VISIBLE) ;
} else {
getListView() .setVisibility (View.INVISIBLE) ;
}

Here we choose to override the onResume method instead of using onCreate. In the lifecycle of an
Android Activity class, the onCreate method will get called only once when the Activity is initially prepared and
created. The onResume method, however, always gets called just before the activity becomes visible. Since
the MainActivity class isn't destroyed when we load the MyPreferenceActivity (justadded to the back-
stack), we have to manage the update of our preference changes in the onResume method. To learn more
about the lifecycle of an Activity, | highly recommend checking out the Android developer site (complete with a
handy info-graphic).

After loading the SharedPreferences object from the PreferenceManager, the rest of the code works
exactly the same way itdid before, using the various "get" methods to retrieve the cached data. Be sure to test
your application and verify that the settings page now controls the "name" that's used in the TextView, as well
as the CheckBoxPreference controlling whether the ListView is visible.

There are a couple of down-sides to be aware of with the PreferenceActivity. First, you can't use
' a "static final" variable as your key in the XML preference resource, so make certain that your key !
. Note strings are always identical (or consider using a strings.xml resource). Also, frequently you'll '
need to define a default value in multiple areas. It's usually best to keep them consistent. Inany
' case, the benefits of using the PreferenceActivity far outweigh these minorinconveniences. !

Wrapping Up

We've only just scratched the surface of managing data on Android with these essential classes. Make sure you're
confident using a simple SharedPreferences object and setting up a PreferencesActivity. These convenient classes will
help you to implement simple data persistence quickly, in any application.

Good work so far. Let's press on!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Saving Data with a Database

Welcome back! In this lesson, we'll work on storing and retrieving data from a database in Android. The Android SDK has built-
in classes to help create and manage an SQLite database.

While itis notnecessary to be an expertin SQLite for this lesson, it's good to have a basic understanding
ofhow databases work, and how to perform SQL queries. If you think you could use some help when it
comes to working with databases, consider taking the O'Reilly School of Technology course PHP/SQL 1:
Introduction to Database Programming.

Creating a Helper

Let's get started! Create a project named Database, name the package
com.oreillyschool.android1.database, and assignitto the Android1_Lessons working set.

The primary class for interacting with a SQLite database in Android is the SQLiteOpenHelper class. The
SQLiteOpenHelperclass is an abstract class to be used for creation and version management of the
SQLite database. Let's setup a basic SQLiteOpenHelper implementation first. In the Database project,
create a new class file named DBHelper that extends the SQLiteOpenHelper class:

http://www.oreillyschool.com/courses/phpsql1/

& New Java Class _ O]
Jawva Class —

Create a new Java class, @
Gu:uuru:e Folder: I Dakabase/src) Browse, .. |

(F:an:kage: !-:u:nm.n:nst.andrcnidl.datal:uase i Browse, ., |
rEnclnsingtype: I Erowse, .. |

G.Iame: i DEHelper)

Modifiers: % public " default " private " protected
[abstrace [final ™| static

—
Guperclass: l"lanu:lru:uid.database.sqlite.SQLiteOpenHeIper| __) Browse, ., |

Interfaces: Add...

Remove |

wehich method stubs would vou like to create?
[public static void mainString[] args)
[Construckars From superclass
¥ Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

|_ aenetate comments

@:I Finish I Cancel

SQLiteOpenHelper has two abstract methods that we mustimplement: onCreate() and onUpgrade().
Each method is intended to be used to modify the structure of a database after the respective event. During
onCreate, we'll setup the basic tables for all the data, and in onUpgrade, we'll enter any migration logic
needed to convert a database from an older version to match the new database. Make sure that both
methods resultin the database having the same schema, regardless of whether they justinstalled the
application or are updating from a previous application version.

You might have noticed that the class generated from the "New Class Wizard" throws a compiler error
initially. This is because we haven'timplemented a constructor for the class to complete ourimplementation.
Let's tackle that now. Make these changes to your code:

DBHelper.java

package com.oreillyschool.androidl.database;
import android.content.Context;

import android.database.sqglite.SQLiteDatabase;
import android.database.sglite.SQLiteOpenHelper;

public class DBHelper extends SQLiteOpenHelper {

private static final String DB NAME
private static final int DB VERSION

"myDatabase.db";
1;

public DBHelper (Context context) {
super (context, DB NAME, null, DB VERSION) ;
}

@QOverride
public void onCreate (SQLiteDatabase db) {
// TODO Auto-generated method stub

}

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion, int newVersion) {
// TODO Auto-generated method stub

In the constructor, we call the super constructor with the appropriate values:

OBSERVE:

private static final String DB NAME = "myDatabase.db";
private static final int DB _VERSION = 1;

public DBHelper (Context context) ({
super (context, DB NAME, null, DB VERSION) ;
}

We can predefine the last three values from within this class, but we'll need a Context from whatever class is
attempting to access the database (mostlikely an Activity). The second parameter is the unique name to use
for our database. This should never change, especially when you update the application. If you need multiple
databases, make sure the name value is unique for each database. We can safely ignore the third
parameter for now. The last parameter is the version of the Database that we are currently using. Any
time you update the application and you have to make changes to the schema of your database, you should
increment this version id (just change the "static final" variable). If the SQLiteOpenHelper detects an
existing database with a version lower than this id, the onUpgrade() method will be called instead of
onCreate().

Let's define and initialize a simple database for use in our application in the onCreate() method:

DBHelper.java

public class DBHelper extends SQLiteOpenHelper {

private static final String DB NAME = "myDatabase.db";
private static final int DB VERSION = 1;

public static final String TABLE PEOPLE = "people";
public static final String C ID = " id";

public static final String C NAME = "name";

public DBHelper (Context context) {
super (context, DB NAME, null, DB VERSION) ;
}

@Override
public void onCreate (SQLiteDatabase db) {
s T e T
final String sglCreateTablePeople = "CREATE TABLE "
+ TABLE PEOPLE + "(" + C ID
+ " integer primary key autoincrement, " + C_NAME

+ " text not null);";
db.execSQL (sglCreateTablePeople) ;

We added a few more "static final" String values to the class that defines the table and column names. We left
these public to allow other classes to use them as well. In the onCreate() method, we created the SQL
statement necessary to add our table to the database using a String, and executed the string by passing itto
the SQLiteDatabase method execSQL(). The execSQL() statementis used only for quick SQL
commands to execute on the database when you don't require any feedback from the database. This makes it
ideal for schema updates such as creating/deleting a table or modifying table columns.

Next, let's write a quick and basic implementation of the onUpgrade () method:

DBHelper.java

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion, int newVersion) {

AN i ol el ol el
oD gco— e eraceme T oS STuS

final String sglDropTablePeople = "DROP TABLE IF EXISTS " + TABLE PEOPLE

db.execSQL (sglDropTablePeople) ;
onCreate (db) ;

ForonUpgrade(), we drop the "people" table (if it already exists) and then recreate it by calling the
onCreate() method. This is the easiest way to safely implement a database upgrade, but with one glaring
potential concern: depending on your application, you might want to preserve any data already in the
database during an upgrade. In that situation you would need to write the appropriate migration logic for your
tables to correctly update the database schema.

Using the Helper

Now thatwe've created a simple helper and defined our database, we'll need to write some code to use this
data in a view. Let's start with updating the activity_main.xml layout file. Modify your code as shown:

/res/layout/activity_main.xml

<RetativelinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

< P | i D P SN T i 1]
o T gC wWtiCCcir wrap COITceirc

< PN | RN || i A1
o T gtT TSI gIrT AE==y =) TTernT

ol L la N | o W] R | RERR1]
IO TroTCre T C— CoCLIIg/IICTIITO WOLrITO

<LinearLayout
android:layout width="match parent"
android:layout height="wrap content">

<Button
android:id="@+id/add btn"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Add Person"
android:onClick="onAddClicked" />

<Button
android:id="@+id/delete btn"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Delete Person"
android:onClick="onDeleteClicked" />

</LinearLayout>

<ListView
android:id="@android:id/list"
android:layout width="match parent"
android:layout height="match parent" />

</RetativelinearLayout>

Here we have two buttons atthe top: one to add rows to the database and one to remove rows. We'll also
use a ListView to display the data in the database. Next, let's create a view for a dialog that can be present
when we click the New Person button. Create a new Android Layout XML file named add_person_dialog
and make these changes:

/res/layout/add_persoOn_dialog.xml

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >

<EditText
android:id="@+id/name"
android:layout width="match parent"
android:layout height="wrap content"
android:hint="Name" />

<LinearLayout
android:layout width="match parent"
android:layout height="wrap content" >

<Button
android:id="@+id/okay btn"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:text="Okay" />

<Button
android:id="@+id/cancel btn"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:text="Cancel" />

</LinearLayout>

</LinearLayout>

This basic view with an EditText and two Buttons should work. Next, modify MainActivity.java to hook the
dialog up to the "Add Person" button and implement an inserton our database:

MainActivity.java

package com.oreillyschool.androidl.database;

import android.app.Activity;

import android.app.Dialog;

import android.content.ContentValues;

import android.database.sglite.SQLiteDatabase;
import android.os.Bundle;

3 4= <l ool DA
Hport—androtdviewMent
import android.view.View;
import android.widget.TextView;

public class MainActivity extends Activity {
private static final int ADD DIALOG = 0;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

public void onAddClicked (View view) {
showDialog (ADD DIALOG) ;
}

public void onDeleteClicked (View view) {

}

@Override
protected Dialog onCreateDialog(int id) {
Dialog d;

switch (id) {

case ADD DIALOG:
d = new Dialog(this);
d.setContentView (R.layout.add person dialog);
d.setTitle ("Add a Person");

final TextView nameText = (TextView) d.findViewById(R.id.name);
d.findViewById(R.id.okay btn) .setOnClickListener (new View.OnClickLis
tener () {
@Override
public void onClick (View v) {
addPerson (nameText.getText () .toString ()) ;
dismissDialog (MainActivity.ADD DIALOG) ;
}
1)
d.findViewById(R.id.cancel btn).setOnClickListener (new View.OnClickL
istener () {

@Override
public void onClick (View v) {
dismissDialog (MainActivity.ADD DIALOG) ;

)
break;
default:
d = super.onCreateDialog(id);
break;
}

return d;

public void addPerson (String name) {
// add the new data to the db
DBHelper helper = new DBHelper (this);
SQLiteDatabase db = helper.getWritableDatabase();
ContentValues cv = new ContentValues();
cv.put (DBHelper.C NAME, name) ;

db.insert (DBHelper.TABLE PEOPLE, null, cv);
db.close();
a1 o N~ 1 ral . = o b4 b4 \ L
J:)LAL}J.J__/ L AW AW au 1T 1T LA TT kJL,J_\JJ.l T ITTC (T TTC TIETTA) 1
T £ 4= =l o <ol L A= =l o 1 L= L 2 4=
TITO TOC CITTC 1T ITTC, CITT T [eAwiw Fw) L C TTT = w) C1IT aCTT 1T Lo nn o T C [Sre) bJJ_ =] ITC .
=N I £ = L) 3 £ 4= n o \
getMenutrftater—irfiate{Rirent—fat— et
. .
LT T CTOLIT CL O,

The important new code to take note of here is in the new addPerson() method:

OBSERVE:

public void addPerson (String name) {
// add the new data to the db
DBHelper helper = new DBHelper (this) ;
SQLiteDatabase db = helper.getWritableDatabase () ;
ContentValues cv = new ContentValues() ;
cv.put (DBHelper.C NAME, name) ;
db.insert (DBHelper.TABLE PEOPLE, null, cv);
db.close() ;

Here we use our DBHelper class to geta SQLiteDatabase objecton which we can perform inserts. We
also need to create a ContentValues object for the new data. The ContentValues class holds all the data

in a key-value map where the key is the database column to use for the value. Then we use the

SQLiteDatabase insert() method to commit the data. lts parameters are the table name, a "null column
hack" string (which we can safely ignore), and the content values to be inserted. SQLite only supports a
single row insertata time, so for each insert you want to perform, you must call insert() again. Finally, since

we are done using the database, we call close() on the SQLiteDatabase.

Atthis point we are able to save and testto make sure thatour Dialog is being created and dismissed
correctly, but we'll still have no idea whether our Database inserts are actually working. For that, we'll have to

write some logic to query the database and update the ListView with the results.

Cursor and CursorAdapater

Android provides a wrapper class for retrieving the results from a query to a database called a Cursor.
Android also provides a convenientimplementation of the Adapter interface for supplying data to a list
through a Cursor, called a SimpleCursorAdapter. These classes are perfect for testing the results of our

earlier code. Make these changes to MainActivity.java:

MainActivity java

package com.oreillyschool.androidl.database;

trport—androtdappActivitys

import android.app.Dialog;

import android.app.ListActivity;

import android.content.ContentValues;

import android.database.Cursor;

import android.database.sglite.SQLiteDatabase;
import android.os.Bundle;

import android.view.View;

import android.widget.SimpleCursorAdapter;
import android.widget.TextView;

public class MainActivity extends &etiwitylListActivity {
private static final int ADD DIALOG = 0;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

// initialize the adapter

SimpleCursorAdapter adapter = new SimpleCursorAdapter (this,
android.R.layout.simple list item single choice,
null,
new String[]{DBHelper.C NAME},
new int[]{android.R.id.textl});

setListAdapter (adapter) ;

updateAdapterData () ;

public void updateAdapterData () {
// re-query the data
SQLiteDatabase db = new DBHelper (this) .getReadableDatabase () ;
Cursor ¢ = db.query (DBHelper.TABLE PEOPLE,
null, null, null, null, null, null);
((SimpleCursorAdapter)getlListAdapter ()) .changeCursor (c);
db.close();

public void addPerson (String name) {
// add the new data to the db
DBHelper helper = new DBHelper (this);
SQLiteDatabase db = helper.getWritableDatabase() ;
ContentValues cv = new ContentValues();
cv.put (DBHelper.C NAME, name);
db.insert (DBHelper.TABLE PEOPLE, null, cv);
db.close();

// update the view
updateAdapterData () ;

Now we should be able to save and run the code to make sure that our add method is correctly adding to the
database, as well as see our data being loaded correctly into the ListView:

)1 5554:smiller-android2.3.3

Add a Person

Name

Okay @ Cancel

.@ ABC DEF

GHI JKL MNO

PORSY FTOV™ FWXYZ

A=a

There's alotgoing on in here. Let's look at it bit by bit:

OBSERVE: onCreate()

// initialize the adapter
SimpleCursorAdapter adapter = new SimpleCursorAdapter (this,
android.R.layout.simple list item 1,
null,
new String[] {DBHelper.C NAME},
new int[]{android.R.id.textl})
setListAdapter (adapter) ;

We start off by creating an instance of the SimpleCursorAdapater for our list, which takes five
parameters forits constructor: a Context, an int layout id reference,a Cursor,a String array of
column names, and an int array of view ids. For the layout, we use a defaultlayout available to us in
Android which provides a basic TextView. For the Cursor, we send null for now, because we're handling that
laterin the update AdapterData() method. The lasttwo array parameters are intended to match one another
in length, so that the values from each column defined in the String array will be assigned to the respective

view component with the id defined in the int array.

After creating this adapter, we assign itto the listthrough the List Activity method setList Adapter(). And
finally we call the update AdapterData method that we just created below to load the data into the list. We
mustrefresh the Cursor after each addition to keep thatlogic in a helper method so we're not writing the same
code in multiple areas:

OBSERVE: updateAdapterData()

public void updateAdapterData () {
// re-query the data
SQLiteDatabase db = new DBHelper (this) .getReadableDatabase () ;
Cursor c = db.query (DBHelper.TABLE PEOPLE,

null, null, null, null, null, DBHelper.C NAME) ;

startManagingCursor (c) ;
((SimpleCursorAdapter)getListAdapter ()) .changeCursor (c) ;
db.close () ;

Inupdate AdapterData(), we use the DBHelper class again. This time we call the query() method to
retrieve the data. The query() method is a helper method for performing a "SELECT" query on the database.
It takes many parameters in order to support many various types of "SELECT" queries. We are performing
only basic queries, so we end up passing null to many of the parameters. The first parameter is the table
name—itis notoptional. The only other parameter we're sending is the last one, which defines by which
column the results should be sorted. If we didn't care about sorting, we could pass null for that
parameter as well. This query() call is the equivalent to the SQL "SELECT * FROM people ORDER BY
name;". Proper usage of the query() method sanitizes the query automatically, to prevent SQL injection
hacks.

We won't go into all the parameters available to query() here, but mostofthem are more or less self-
explanatory when you read the code hints in Eclipse. If you want to read more about the parameters, check
the Android developer documentation on the SQLiteDatabase query method.

Finally, we'll implement the "delete" button that we created earlier. Make these changes to MainActivity.java:

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#query(java.lang.String, java.lang.String[], java.lang.String, java.lang.String[], java.lang.String, java.lang.String, java.lang.String, java.lang.String)

MainActivity java

import android.widget.ListView;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

final ListView list = getListView();
list.setItemsCanFocus (false);
list.setChoiceMode (ListView.CHOICE MODE SINGLE) ;

// initialize the adapter

SimpleCursorAdapter adapter = new SimpleCursorAdapter (this,
android.R.layout.simple list item single choice,
null,
new String[]{DBHelper.C NAME},
new int[]{android.R.id.textl});

setListAdapter (adapter) ;

updateAdapterData () ;

public void onDeleteClicked (View view) {
int position = getListView () .getCheckedItemPosition () ;
if (position >= 0) {
long itemId = getListAdapter () .getItemId(position);
SQLiteDatabase db = new DBHelper (this) .getWritableDatabase() ;
int rowsAffected = db.delete (DBHelper.TABLE PEOPLE, DBHelper.C ID +
" = " 4 itemId, null);

db.close();
if (rowsAffected > 0)
updateAdapterData () ;

Now you'll be able to run the application again and delete whatever row is checked:

5554:=miller-android2.3.3
I ||
Database

Add Person Delete Person

Me

You

We made a few changes to the list here to allow us to select an individual row. The defaultlayout
simple_list_item_single_choice looks justlike the previous layout, but with a RadioButton added to the
side ofthe row as well. By calling setChoiceMode() on the list earlier and giving it the parameter
ListView.CHOICE_MODE_SINGLE, we instruct the listto manage the checked row, and to allow only one
row to be checked ata time.

In the onDeleteClicked() method, we implemented the delete action. We use the ListView method
getCheckedltemPosition() to find out which item is checked. This could potentially be -1if no item is
checked, so we code defensively around that. Then we have to use the ListAdapter to retireve the actual row id
ofthe item. This corresponds to the "_id" column of the data in the database. Finally, we get a writable version
of the database from our helper again, only this time we call delete, giving it the table name, and an SQL
"WHERE" clause to delete just the row that matches the "_id" of the listitem thatis checked. Passing null to
the second argument would delete all rows in the table. The final argumentis used to help sanitize the query
again by replacing any question marks in the "WHERE" clause with a sanitized value from the third argument.
We aren't concerned with that here, so we just pass in null. If any rows were affected by our delete query, then
we update the adapter (after closing the database, of course).

Wrapping Up

Properly managing a database in Android can seem like quite a daunting task. Thankfully Android has provided many

convenient helper classes to make that easier. Hopefully by now you're feeling comfortable with performing the CRUD
actions (create, read, update, delete) on a database in Android. There's a lot of advanced SQLite content that we didn't
cover in this lesson, but this is an excellent foundation and usually enough for most applications. If you find yourselfin
need of some really advanced SQLite work in your application, as always, be sure to check out the Android developer
documentation site.

See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://developer.android.com
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Threading with AsyncTasks

Welcome back! This lesson covers threading in Android. Implementing proper threading is crucial for Android application
development. It helps you to maintain fastand seamless views that enable a good user experience, and even more importantly,
it can help prevent your application from falling into an Application Not Responding (ANR) state.

A sSorry!

Activity Hello, Android (in
application Hello, Android) is

not responding.

‘ Force close I‘ Wait I

An ANR Dialog will be presented over your application in the event that the user interface doesn't respond to input events (such
as a screen touch or key press event) within 5 seconds. When the ANR dialogue is presented, the Android system (and the
user) assume that your application has crashed and will not recover. In most cases, this will lead to negative reviews on the
Android app market as well.

Threading in Android

In Android, every Application is assigned a default "main" thread, commonly referred to as the Ul Thread. All work for
an application is done on this thread by default, including user interface drawing, event dispatching and handling, and
all the code that you write. If you write code that takes a long time to finish, during thattime, your interface may not be
able to draw updates to the screen. This is often the cause of an ANR state. To preventan occurrence of an ANR state,
we'll create a separate thread to handle the work that, when executed, will run asynchronously. The Android SDK
provides a helper class for creating and managing work in a separate Thread, called an AsyncT ask.

AsyncTask

AsyncTask is a helper class that makes it easier to spin offa Thread to do work, track progress, and respond
to the results. It can be a little confusing to set up at first because it takes three generic parameters. We'll set
up a new projectnamed Threads, with package name com.oreillyschool.android1.threads, assigned to
the Android1_Lessons working set.

Let's create a short method that fakes some heavy work. Make these changes to MainActivity.java:

MainActivity.java

package com.oreillyschool.androidl.threads;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.os.Bundle;

_;_Mlbl J_t O.lldJ_ J‘_d. . vv.l\/{cu.u,
public class MainActivity extends Activity {

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

private Bitmap downloadImage () {
final long start = System.currentTimeMillis () ;
// wait 5 seconds (5000 milliseconds) until proceeding
while (System.currentTimeMillis() - start < 5000) {

}

return BitmapFactory.decodeResource (getResources (), R.drawable.ic launch

er);
b N~ 1 4= hVd hVd \ L
tJLAL}J.J_\/ L A 1T 1T LT TT™ bJL,J_\)ll T ITTC (T TTCC 1T TTCCT 1
T £ 4= =l i, <l . = =l . 1o = . o 4=
Frrftate—the—ment—this—adds—ttems—to—theeactionrbar+f i+t s presents
DA I £ = =1 . LI S AY
\:dCl,Li ITOTITO T TTLI) TITT T TCTT (T .lllcllu.lllOLllr TITITA
. .
p. CCOL1T CL Oy,

This short method will wait five seconds and then return the app icon image as a Bitmap. Next, add some
components to help demonstrate our concepts. Make these changes to activity_main.xml:

/res/layout/activity_main.xml

<RetativelinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

android:layout width="match parent"

android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"

tools:context=".MainActivity" >

< PN | i D P N | i]
oSO T BT WG vETopPp COITCeITT

ol S | I P J | =]
JIMOTroTrT. Tayouc ICIgIICc wrap COIICCIrc

ol LD NI | o W] N | 1
IS TCT T COoOCLIIg/ICTIIoO WOoOrTo

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:onClick="onLoadImageClicked"
android:text="Load Image" />
<Relativelayout
android:layout width="match parent"
android:layout height="match parent"
android:gravity="center" >
<ProgressBar
android:id="@+id/progress"
android:layout width="wrap content"
android:layout height="wrap content"
android:indeterminate="true" />
<ImageView
android:id="@+id/image"
android:layout width="match parent"
android:layout height="match parent"
android:scaleType="center"
android:visibility="gone" />
</RelativeLayout>

</RetativelinearLayout>

We added a button to trigger our loading process, as well as a ProgressBar and an ImageView nested and
centered in a RelativeLayout. The ProgressBar is setto indeterminate so thatitwill spin continuously.
The ImageView is notinitially visible. Once we load the image, we'll hide the ProgressBar and show the
ImageView. Now let's head back to MainActivity.java and connect everything:

MainActivity.java

package com.oreillyschool.androidl.threads;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.os.Bundle;

import android.view.View;

import android.widget.ImageView;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

private ImageView image;
private ProgressBar progress;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

progress = (ProgressBar) findViewById(R.id.progress);
image = (ImageView) findViewById(R.id.image);
}

public void onLoadImageClicked (View view) {
// show the progress and hide the image
image.setVisibility (View.GONE) ;
progress.setVisibility (View.VISIBLE) ;

image.setImageBitmap (downloadImage ()) ;

// show the image and hide the progress
image.setVisibility (View.VISIBLE) ;
progress.setVisibility (View.GONE) ;

}

private Bitmap downloadImage () {
final long start = System.currentTimeMillis();

// wait 5 seconds (5000 milliseconds) until proceeding
while (System.currentTimeMillis() - start < 5000) {
}

return BitmapFactory.decodeResource (getResources (), R.drawable.ic launch
er);

Now that we've hooked everything up, we can give the code a testrun. We aren't using an AsyncTask yet,
because | wantto demonstrate some problems you can run into if you don't use a separate thread to run
heavy code. After the application is installed and running, you'll see the infinite progress bar spinning in the
middle. If you click Load Image, the progress bar spinner will freeze during the five seconds that the image
takes to load. Odds are that the button itself will be frozen in the pressed state as well. This would be pretty
frustrating to a user to say the least!

(%) 5554:smiller-android2.3.3
& N

Threads

Load Image
|

Alright, so now that we have code that's freezing the application, let's go back and fix it with a proper
implementation of threading. Make these changes to MainActivity.java:

MainActivity.java

package com.oreillyschool.androidl.threads;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget.ImageView;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

private ImageView image;
private ProgressBar progress;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

progress = (ProgressBar) findViewById(R.id.progress);
image = (ImageView) findViewById(R.id.image) ;

public void onLoadImageClicked (View view) {
// show the progress and hide the image
image.setVisibility (View.GONE) ;
progress.setVisibility (View.VISIBLE) ;

I .

3.
1
a@.

.
STTOW

er);

. i
CIre rimage—alr THe Pprogre
. L L) TOoOTOT TN
Emieas CVISIorrIrcy (vIew ToLTooN)
ML & S EPNICE N 2 & AT
PTESSTE T oC TV IS TOT T I CY (VICW s JUNLT /7

new AsyncTask<Void, Void, Bitmap>() {
@Override
protected Bitmap doInBackground(Void... params) {
return downloadImage () ;

}

@Override
protected void onPostExecute (Bitmap bitmap) {
image.setImageBitmap (bitmap) ;

// show the image and hide the progress
image.setVisibility (View.VISIBLE) ;
progress.setVisibility (View.GONE) ;

}

}.execute () ;

private Bitmap downloadImage () {
final long start = System.currentTimeMillis();

// wait 5 seconds (5000 milliseconds) until proceeding
while (System.currentTimeMillis() - start < 5000) {
}

return BitmapFactory.decodeResource (getResources (), R.drawable

.ic_launch

AsyncTask is an abstract class, meaning we have to define its implementation. Typically, you would create a
new class that extends AsyncTask, but that's not always necessary. You can define an in-line class
implementation (also known as an anonymous class). This is especially useful when your implementation is
going to be short and relatively uncomplicated:

OBSERVE:

new AsyncTask<Void, Void, Bitmap> () {
@Override
protected Bitmap doInBackground(Void... params) ({
return downloadImage () ;

}

@QOverride
protected void onPostExecute (Bitmap bitmap) {
image.setImageBitmap (bitmap) ;

// show the image and hide the progress
image.setVisibility (View.VISIBLE) ;
progress.setVisibility (View.GONE) ;
}
} .execute () ;

AsyncTask has three generic class parameters that must be defined in any implementation. The first
parameter (Params) is used to define any parameter input. In our example, we didn't need any parameters so
we defined this parameter as Void (Null). This generic class parameter corresponds to the class type of
objects passed to the execute() method and received in the doinBackground() method. The ellipses (...)
atthe end of the type in the doInBackground() method is called "varargs" (variable-length argument). This
syntax allows any number of arguments of the class type to be sentto the method, which will then be
combined into an array in the method automatically. Had our image-loading method been implemented to
download an image from the internet correctly, then we probably would've defined this generic as the String
or the URI class. In that case, our implementation might have looked something looked like this:

OBSERVE:
new AsyncTask<String, Void, Bitmap[]>() {
@Override
protected Bitmap doInBackground (String... params) {

Bitmap[] bitmaps = new Bitmap[params.length];

for (int 1=0; i<params.length; i++) {
bitmaps[i] = downloadImage () ;

}

return bitmaps;

}

@Override

protected void onPostExecute (Bitmap[] bitmaps) {
loadBitmapsIntoImageViews (bitmaps) ;

}

} .execute (urll, url2, url3);

The second generic parameter for AsyncTask is used to track progress. We usually use a numeric primitive
for this generic, like an Integer or a Float, but you can use whatever class you like, including a String or
even your own custom class. (We'll discuss progress tracking further a bit later in the lesson.)

The third parameter is used to define the class type of the result of the work done in the doInBackground()
method. This parameteris used as the return type of doInBackground(), as well as the parameter type for the
onPostExecute() method. All of the generic parameters are technically optional. If you'd rather notuse any in
your application, you can just define each of them as Null and ignore them in your code.

dolnBackground() is the only method in AsyncTask that we must define in our implementation (thatis, the
only abstract method). So, you might be wondering why we return the final result value in doInBackground()
and then handle assigning the image to the ImageView in onPostExecute(). We do that because in Android
you cannotinteract with View components that are attached to the view hierarchy from any thread other than
the main "UI" thread. The doInBackground() method runs on a new thread that was created specifically for the
AsyncTask class and so it cannot assign the bitmap to the ImageView component. However, the
onPostExecute() method is guaranteed to run on the Ul thread, so we can assign the data to the ImageView in

that method safely.

Tracking Progress

When an application is performing extensive work, it will often report progress to the userin the form ofa
progress bar. The second generic parameter in AsyncTask helps with the implementation of progress
tracking in a thread-safe manner. Again, the doInBackground() method does notrun on the Ul thread, so it
cannotbe used to update any views. Fortunately, there is another helper method that runs on the Ul thread
that we can override to handle progress updates. Make these changes to MainActivity.java:

MainActivity java

package com.oreillyschool.androidl.threads;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget.ImageView;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

private ImageView image;
private ProgressBar progress;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

progress = (ProgressBar) findViewById(R.id.progress);
image = (ImageView) findViewById(R.id.image) ;

public void onLoadImageClicked (View view) {
// show the progress and hide the image
image.setVisibility (View.GONE) ;
progress.setVisibility (View.VISIBLE) ;

e e e
new AsyncTask<Void, Integer, Bitmap>() {
@Override
protected Bitmap doInBackground(Void... params) {

return downloadImage () ;

}

private Bitmap downloadImage () {
final long start = System.currentTimeMillis();

// wait 5 seconds (5000 milliseconds) until proceeding

int progress = 0;
int current = 0;
publishProgress (progress) ;
while ((current = (int) (System.currentTimeMillis() - start)) < 5
000) {
current = (int) ((float)current * 100 / 5000);
if (current > progress) {
progress = current;

publishProgress (current) ;

return BitmapFactory.decodeResource (getResources (), R.drawable.i
c_launcher) ;
}
@Override
protected void onProgressUpdate (Integer... values) {

progress.setProgress (values[0]) ;

@Override
protected void onPostExecute (Bitmap bitmap) {
image.setImageBitmap (bitmap) ;

// show the image and hide the progress
image.setVisibility(View.VISIBLE) ;
progress.setVisibility (View.GONE) ;

}

} .execute () ;

. . towrond

£ - i i fal . s LV e L
TTirar Torg T C — oOyoCcch.carrefcrrmerirrr S (/) 7

I v ol VA ~laVWaVal i |] o
WaTrtc o SeCOoTSS— APV A 41 ou s g) oS — ot Pro oIS
AN IXal e L Mol L) . i [=aVaValiy 4
Wit T ToyoSceft-CarreTcr eI Tt TS (7 STOET [SAvAVAvA) T
i D k] A <l Aol T ol | : hl L
rFreTOfiT DICOpPractory - o eneSoTTrcegeTT e S 7 L arrawaoreT e tauafrctr
ef) 7

}

Here, we moved the downloadlmage() method we defined earlier into the anonymous class implementation
of AsyncTask and made a couple of changes to it. Now we'll make one minor change to the ProgressBar in
the XML layoutin order to display the progress. Modify the ProgressBar in activity_main.xml as shown:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:onClick="onLoadImageClicked"
android:text="Load Image" />

<Relativelayout
android:layout width="match parent"
android:layout height="match parent"
android:gravity="center" >

<ProgressBar
android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:minWidth="200dp"
android:layout width="wrap content"
android:layout height="wrap content"
android:indeterminate="false" />

<ImageView
android:id="@+id/image"
android:layout width="match parent"
android:layout height="match parent"
android:scaleType="center"
android:visibility="gone" />

</RelativeLayout>

</LinearLayout>

You might be wondering about the curious syntax we justused for the style attribute of the
ProgressBar. This is a unique way of referencing a dynamic style value. Don't worry too much
aboutitfor now, we'll hit this subject again later. Just remember that if you need to show a
horizontal progress bar, use the style value ?android:attr/progressBarStyleHorizontal.

4
(o)
=3
D

Make sure all your changes are saved, and run the projectin the emulator. Now when you load the image you
should see the progress bar crawl its way across the screen during the five seconds the download method
takes to finish:

Load Image

We moved the download logic inside of the anonymous class so that we could make calls to the
publishProgress() method. The Integer value we passed to publishProgress() gets sentto the
onProgressUpdate() method that we have implemented as well now. onProgressUpdate() runs on the
Ul thread, so we can update the progress of the ProgressBar view component here safely. The Integer
generic value is also defined with varargs, so itis putinto an array automatically. We only send one value ata
time to publishProgress(), so we can grab the firstitem out of the array (values[0]) safely each time.

We've also added some code to our download method to make sure we don'tcall publishProgress() on

every single iteration of the while loop. Calling publishProgress() each time is unnecessary (since the
progress won'talways increment enough to even be noticeable on the progress bar), and could cause the
application to slow down if we overwhelm the Ul thread with progress updates. That would defeatour
purpose and make the application look broken to users, so we've added a small check to make sure the
progress has increased by atleasta factor of 1%.

Another method that can be useful when you're implementing an AsyncTask class is the onPreExecute()
method. It's guaranteed to run on the Ul thread just like publishProgress() and onPostExecute(). This method
is a great place to implement any setup for a progress bar or show a notification to the user that a background
action is about to begin.

Wrapping Up

This lesson was relatively brief, butit may be the mostimportantlesson yet. If you know how to write an Android
application that implements threading properly, it can make the difference between getting featured on the Android
Market and getting a slew of lowly one-star reviews. I'm confident that you can work with the AsyncTask and avoid the
dreaded ANR dialog now. Good work!

See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Styles and Themes

Welcome back! In this lesson we'll go over the various ways to style Android views and components. Styling is a significant
portion of application developmentand is way too dense to be covered in justone lesson. I'm going to focus on the basics of
styling that will apply to most components. By the end ofthe lesson, you'll feel comfortable modifying the default Android style
for applications.

Introduction to Styling

Like mostelements in Android, there are a lot of different ways to go aboutimplementing styles for your Android
components. We'll cover a few of the more common ones. Create a new project named Styling, with the package
name com.oreillyschool.android1.styling, and assign the project to the Android1_Lessons working set.

Defining Styles

Perhaps the easiest way to define styles on a componentis directly on the view component XML definition.
We've already done a little bit of this in previous lessons, and you might have noticed the options yourself if
you used code assistin Eclipse to write your XML. Changing a style directly on a componentis an efficient
way to update a single component, but when you want to style an entire application, that can get tedious. To
manage the style of an entire application, you'll want to use the styles and themes resources.

Note We use a particular convention to name all of our XML files in the /res/values folder. You can
' use whatever file names you like; just make sure the root XML tag is <resources>.

Let's add a styles XML resource file to our project and define some initial values. Select File | New | Other |
Android XML Values File to create a file named styles as shown:

= New Android ¥alues XML File H=]

Mew Android Yalues XML File

I, The destination file already exists

Resource Type: I'n-'alues j
Projeck: j
File: styles|

Rook Elernent:

R)resources

oy
'\ﬂ?) < Back Mext = | Finish I Cancel

Answer Yes when prompted to overwrite the existing file. When you finish, open the styles.xml file in the
Iresivalues folder, switch to the manual edit (styles.xml) sub-tab and make these changes:

Ires/values/styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="MyButtonStyle">

<item name="android:background">#aa0000</1item>

<item name="android:textColor">#000000</item>

<item name="android:drawableLeft">@drawable/ic_ launcher</item>
</style>

</resources>

This is a basic style definition. Every style definition needs just one attribute, a name, which is used to
reference the style using the @style syntax. All children of the style tag mustbe item tags, with name
attributes of theirown. The item tag's name attribute must reference a style property of the View component
that this style will modify. There is no component type-checking handled here, so be careful that the styles you
define are actually applicable to the componentyou are styling, otherwise you might be unpleasantly
surprised when you change styles later and nothing changes in the view!

The android:background style is common to all view components in Android. It can accept both drawable
resources and colors. In fact, just about any style that accepts a drawable can accept a color definition
instead. However, the inverse is nottrue. For example, the android:textColor attribute mustbe a color
definition and not a drawable reference.

Next, we'll use this style in a layout view. Open activity_main.xml and make these changes:

/res/layout/activity_main.xml

<RetativelinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/hello world" />

<Button
android:layout width="fill parent"
android:layout height="wrap content"
android:text="My Styled Button"
style="@style/MyButtonStyle" />

</RetativelinearLayout>

You should be able to test the styles of most code you change in this lesson just by looking at
the "Graphical Layout" sub-tab of activity_main.xml in the XML editor. Sometimes the "Graphical |
Note Layout"is unable to generate the view properly and you'll need to run the application in the '
emulator, butfor most minor changes you make, you won't need to wait for the emulator to test
them. '

The style attribute is a unique attribute for view components in XML layouts because it doesn'tuse the
"android" namespace (notice it's called "style" instead of "android:style"). While mostlayout XML attributes
correspond to a property on the respective view class, style is nota property of any view. This is important; it
means thatin order to change the styles of a view component at runtime you will have to change each
individual style. There's no way to update the XML-defined style property at runtime. Also, note that we use the
@style/<style name> syntax to reference the style we defined in styles.xml.

Using the "Graphical Layout" mode of the editor, or running the application in the emulator, we can now test
to make sure that our styles defined in styles.xml do indeed getassigned to the button in the view.

T
12 ackivity_main, sl 23 il skyles,xml 1 '

4 Palette
i\ Palette =

L= Form Widgets || | - H@

=l
Im TeavHiliau ’m L arne Tavh =
(] Text Fields

(| Layouts

(] Composite

(] Images & Media
[Time & Date

|a = | [Mexus cne = | H - | 7 AppTheme - | (5 Mainackivity - | & - | i l-

("] Transitions

. "r“’“wg\ncedl' el

Defining Themes

Using the style attribute on a XML view makes it convenient for reusing styles that you would potentially apply
to multiple views. But whatif you just want to apply the style to every componentin your application
generically? This is where themes come into play.

Themes are defined exactly like styles—they even use the same XML node name of <style>. The difference
is in how you use them. We'll get to that, but first let's create a new file to contain our themes for the
application. This is a standard convention used to organize the definitions and make it easier to find each
resource later; if you really wanted to, you could define all your styles and themes in the same file.

Okay let's getto work. Remove the style tag from Button in activity_main.xml:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/hello world" />

<Button
android:layout width="fill parent"
android:layout height="wrap content”
android:text="My Styled Button"
1 =110 A= 1 Mz
-ug M

FS 4o laF S| 1] />
STY L STY L DUOCCOIoCy T

</LinearLayout>

In the "Graphical Layout," verify that the style has been removed and our button is back to looking like a
regular button. Next, create another new Android Values XML file named themes.xml, and then make these
changes:

/res/values/theme.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="MyTheme" parent="@android:style/Theme">
<item name="android:buttonStyle">@style/MyButtonStyle</item>
</style>

</resources>

Now let's use the theme. As | mentioned before, the difference between themes and styles isn'tin the way you
define them, buthow you use them. To use a theme, you define it for either an activity or the entire application.
This is all done in the AndroidManifest.xml file.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"7?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.oreillyschool.androidl.styling"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="10"
android:targetSdkVersion="10" />

<application

android:allowBackup="true"

android:icon="@drawable/ic launcher"

android:label="@string/app name"

android:theme="@style/MyTheme" >

<activity
android:name="com.oreillyschool.androidl.styling.MainActivity"
android:label="@string/app name" >
<intent-filter >

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Here, we defined our theme on the <application> tag. This will ensure that every activity we create in this
application will have its core styles defined by the theme resource MyTheme. (If you wanted to have a
specific alternate theme for just one Activity, you could also add an android:theme attribute to the
<activity> tag. Then any styles defined in the application theme would be overridden by the styles from the
activity's theme.)

The "Graphical Layout" viewer for XML layouts occasionally has a hard time loading themes correctly. You'll

need to use the theme dropdown located in the top right to select your new theme MyTheme:

IfMyTheme doesn't show up initially, try changing something else (like the Android SDK version above the

theme dropdown) to getitto refresh, or close and reopen the editor. If all else fails, you can justrun the
application to testiton the emulator:

5554:smiller-android2.3.3

Hardware Butbans

dD260 O

DFAD

Hardwars

Lia youn 3 yhaard 1o provede nput

Let's look at the theme we defined in themes.xml in more detail:

OBSERVE:

<resources>

<style name="MyTheme" parent="@android:style/Theme">

<item name="android:buttonStyle">@style/MyButtonStyle</item>
</style>

</resources>

The only item we've added to this theme/style is android:buttonStyle, which references the style we
defined in styles.xml named MyButtonStyle. This item works only in a style thatis used as a theme.
android:buttonStyle defines the style thatis used on buttons. There's a list of all items you can define in a
theme (and descriptions of what they will do) available on the Android developer documentation site.

Here are some ofthe more common items (with the acceptable value types in parentheses) that you might

http://developer.android.com/reference/android/R.styleable.html#Theme

consider overriding when designing themes for your own applications:

Another difference between styles and themes is that a theme will cascade, but a style will not. If you're
familiar with CSS files in web development, you're familiar with the concept of cascading styles. In Android, if
you define a style for a LinearLayout, such as a background image or color, that style will not cascade to its
children. That means you don't have to worry that all the sub-views will get assigned the same background or
color. However, if you define a style item such as android:background in a theme, and then use thattheme
on an Activity, every view in that activity's view hierarchy will inherit that same background (if they don't
manually override with a different background). Be careful about what you define in themes. As a general rule,
you should never define android:background in a theme. Go ahead and define android:background in
our current application giving it the @drawable/ic_launcher as the value and run the application. Behold the

android:windowBackground (drawable or color)
android:windowNoTitle (boolean)
android:buttonStyle (style)

android:tabWidgetStyle (style)
android:checkBoxStyle (style)

android:listViewStyle (style)

android:listDivider (style)
android:listPreferreditemHeight (dimension)
android:dialogTheme (style/theme)
android:textAppearance (style)
android:textAppearanceButton (style)
android:textColorPrimary (drawable or color)
android:textColorPrimarylnverse (drawable or color)
android:textColorSecondary (drawable or color)
android:textColorSecondarylnverse (drawable or color)

disastrous results!:

5554:smiller-android2.3.3

When you want to define a global background that shows up as the background of every Activity of your
application, but not every view component, use the android:windowBackground property instead. That way
you can be certain that your selected background shows up only as the background to your activity window,
and won't cascade to any view components in the view hierarchy.

Style Inheritance

The last concept | wantto discuss regarding themes.xml is inheritance:

/res/values/themes.xml

<resources>
<style name="MyTheme" parent="QRandroid:style/Theme">
<item name="android:buttonStyle">Q@style/MyButtonStyle</item>
</style>

</resources>

Styles and themes can inherititems from other styles in two different ways. The first way is demonstrated in
our theme with the parent attribute. Using the parent attribute on a style, we can inherit all of the elements of
a style defined in the Android SDK package. This is recommended, especially for themes, so that you receive
all the default styles that you are used to seeing, and then you can select which individual items to override.
The following are some of the more popular Android SDK themes you can use to parent your own themes:

e (@android:style/Theme

e (@android:style/Theme.Black

e (@android:style/Theme.Black.NoTitleBar

e (@android:style/Theme.Black.NoTitleBar.Fullscreen
e @android:style/Theme.Light

e (@android:style/Theme.Light.NoTitleBar

e (@android:style/Theme.Light.NoTitleBar.Fullscreen

The second method of inheriting from another style is demonstrated in the listabove. You can prefix the
name of your style with another style name and a period. You can use this method to create alternates ofa
style. For example, to create a sub-style of our earlier MyButtonStyle you could name it
MyButtonStyle.Large, and then have another style inheriting from that one named
MyButtonStyle.Large.Red, and so on.

Note Prefix inheritance only works for other styles that you have defined in your application. In order
' to inheritfrom Android SDK styles, you must use the parent attribute. '

Direct Theme References

While themes will style the default components with the styleable items available to the Theme class
automatically, on occasion you might wantto pull a value directly from a theme to be assigned to a different
View. We used this syntax in another lesson when we defined the style ofthe ProgressBar component. The
syntax for referencing a style item from a theme is written either, " ?attr/themeAttribute", or with the
Android SDK namespace, "?android:attr/themeAttribute”.

Let's practice using our button code. First, remove the theme reference that overrides the default button style
(and the one we added to create the ugly background)in themes.xml:

/res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="MyTheme" parent="Q@android:style/Theme">

. 11 <l 4l 1o e (el 1 11 L = 1 DA SmY Ao el 1 .
LT CCTIIT ITTTLT 7 IO T . OO CT 1TTOC . T T . T l_)\/ll_L,UiAuLYLC L CTTIT
. 11 <l 2l |~ 1 il Ll 1 2 | 1 .
T CCTTIT 1TTCIIT T aITTOLT J_LA.}JG.&I\%.L\J\AII\J\. C UL aOWaIT T [y TadlT 1T E. T CTTIT
</style>
</resources>

Next, make the following changes to activity_main.xml:

Ires/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:orientation="vertical"
tools:context=".MainActivity" >

<TextView
android:layout width="wrap_ content"
android:layout height="wrap content"
android:text="@string/hello world" />

<Button
android:layout width="fill parent"
android:layout height="wrap content”
android:text="My Sty+edPrimary Button" />

<Button
android:layout width="fill parent"
android:layout height="wrap content"
android:textColor="7?android:attr/textColorPrimary"
android:text="My Secondary Button" />

</LinearLayout>

Save and run itin the emulator or use the "Graphical Layout" view (though occasionally the "Graphical
Layout" view will struggle when using these resources). Your view will look something like this:

1 ackivity_main,xml &3 0 skyles,xml 7 themes.xml 7 Styling Manifest

‘} Palett:aIEttE - g - D Mexus One = E‘{ * | 4 MyTheme = | (& MainActivicy = | & = 13 -
| Form Widgets | =

| Text Fields

| Layouts

__| Composite

| Images & Media
| Time & Date

| Advanced ’
I Other

Here we made a second button and told itto load the text ColorPrimary theme value forits text color. The
textColor on the Button component uses a dark black or near black color by default; we can see thatin the first
button. When we define the style as ?android:attr/textColorPrimary, the color gets loaded as whatever is
assigned to the textColorPrimary item in the currenttheme. We can even override textColorPrimary in
ourtheme. Change themes.xml as shown:

/res/values/themes.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="MyTheme" parent="@android:style/Theme">
<item name="android:textColorPrimary">#00££f00</item>
</style>

</resources>

Here we gave the textColorPrimary item a hexidecimal color value of "#00ff00", which is a hideous bright
green color. Now when we testthe activity_main.xml view in the "Graphical Layout" or in the emulator, the
second button's textis thatcolor:

0| ackivity_main.xml &3) skyles.xml 1 themes.xml 1 Skyling Manifest

‘} Palett:aIEtte = - E] Mexus One - E‘{ * | 9r MyTheme ~ | (& MainActiviy - [& - 15 - :
__| Form Widgets (11 = I%*I
| Text Fields -
__| Layouts

__| Composite

Images & Media

Hello world!

Time & Date
(] Transitions My Primary Button

Advanced

_
| Other
Custom & ..rary Yiews
Y

= Befresh

While overriding properties in this manner can be convenient for changing a style property in your application
globally, do notrely on this technique. Changing a system property can have dramatic effects on your design
and unintended consequences in weird places!

Learning to Learn

The mostimportanttool you can have when it comes to styling may be the ability to look up what can and cannotbe
styled. The ADT plugin for Eclipse has come a long way and includes code hints for most XML properties. This may
help you discover new attributes, butit can only get you so far. The bestresource for learning about properties that can
be used in styles for a View is on the class reference page for the view on the Android developer documentation site.
Forexample, here is the XML attributes section for the TextView component.

Also, check the parent components of a view to learn about other attributes available to components. Take a look at
the (reference page for the Button component), for example. Even though there are many specific XML attributes
available to Button, the reference page doesn't show any. That's because itdoesn't have any specific unique styles
available. All of Button's styles are inherited from its parent components (TextView and its parent, View).

Another more concise list can be found on the (R.stylable resource page). This page actually lists the properties
available to every standard componentin the Android SDK, and is definitely worth putting in your bookmarks.

Wrapping Up

Having a good design for your Android application is crucial for its success on the Android market. As the platform has

http://developer.android.com/reference/android/widget/TextView.html#lattrs
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/R.styleable.html

matured, users have come to expect a high-quality look and feel in their applications. The Android styles and design
standards seem to change with each new release of the Android SDK, but the core methods to styling remain the
same. The skills you have now will help you keep current with the latest styling thechniques through each update to the

Android SDK.

You're almostdone! Greatwork so far. In the nextlesson, you'll be completing your final project for the course. You'll
have a chance to show your stuff there—I'm looking forward to seeing what you can do!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Android Final Project

Final Project

Congratulations on completing the lessons! For your final project you will create your very own Android application
(surprised?). The type of application you create is entirely up to you, butjustin case, here are some ideas you can use
for your project:

A basic note-taking application—supports creating multiple notes, editing notes, and deleting notes.

A"To Do" list application—slightly more involved than the note taking application, the "To Do" application
supports creating, editing, and deleting multiple "To Do" lists. Each list can be modified to add, edit, or
remove "To Do" items. The items can also be "checked" off when completed and the time the items were
completed is recorded (and displayed in the view).

Hangman!—the Hangman application will implement the game Hangman using the common view
components (no need for intense graphics here). The word used in the game is randomly chosen from a
string-array XML resource. Users guess letters to spell out the word, and lose points for each incorrect
guess. Use a simple points system, counting down from the appropriate number (usually 6, for a head,
torso, two arms, and two legs), to keep track of remaining guesses and/or get creative with the view
components or your own graphics which utimatelt lead to the drawing of a hanged stick figure.

Any type of internet data presentation application using a freely available public API (such as imgur, reddit, or
yahoo weather). There are many other publicly available APIs (such as Flickr, all Google APIs, and Twitter),
but they usually require you to sign up for an APl key (feel free to do thatif you like). This type of Application
will need to implement a data interpreter such as an XML or JSON parser. If you are unfamiliar with using
libraries for these interpreters, then you might not want to tackle this type of application right off the bat. If you
do choose this type of application, make sure you adhere to the policies for the APl and give proper
attribution to the source of the data.

Whichever you choose, you application must meet these requirements:

Functions on Android devices.

Implements at least three Activities, each with a unique view layout.

Atleasttwo Activities share data between each other using the proper Intent passing methods.
Implements atleastone ListView, with its own custom adapter and custom view layout for the listitems.
Implements atleastone Dialog using the new process with the support library.

Implements a SharedPreferences object (implementing a PreferenceActivity is optional, but can count
towards one of your three Activities).

Implements a SQLite database for caching data between application sessions.

All SQLiteDatabase usage (such as query, insert, and delete) should be used inside of an AsyncTask.
All internet usage (ifimplemented) is used inside of an AsyncTask.

All hard-coded strings are loaded from string XML resources.

Use themes and styles via XML resources for all appropriate styling properly.

Make an application that you are proud to have created! Keep your code clean, organized, and bug-free! You might
even consider publishing your work on the Android Market when you are finished. Thanks for taking the course and
good luck!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://en.wikipedia.org/wiki/Hangman_%28game%29
http://creativecommons.org/licenses/by-sa/3.0/legalcode

