Java Programming 1: Introduction to Java and the Eclipse Development
Environment

Lesson 1:Introduction to Java

Windows Settings

An Applet
Using Eclipse

Our Second Applet

Java is an Object-Oriented Language

Structured Programming

Lesson 2: Object-Oriented Programming

Introduction
Whatis Object-Oriented Programming?

Demystifying the Program

Reading Code
What About the Other One?

Hierarchy Structure in Eclipse

Lesson 3: Applets

Applets
What Can Applets Do?

Getting Images

Applet Uses Other Classes

Lesson 4: An Applet's Life Cycle

Applets Continued
Applet Life Cycle

Adding Methods
Control

Watching a Life

Lesson 5: Decisions, Decisions, Decisions

Program Control Using If Statements

If Statements
Placement of Block Braces

Comparison Operators and Logic

Comparison Operators

Lesson 6:Objects and Classes

Objects
Whatis an Object?

Classes

Java Data Types

Lesson 7: Classes and Instances

Object Design
Who gets what?

running.lab

Initialization and Constructors

Making an Applet for Dukes

Another Applet for Dukes

Lesson 8:Using the API: Introductory Graphics
Using Java Provided Classes

java.awt.Graphics Class
Using the API
Methods, Parameters (or Arguments), and the Dot Operator

Sequencing
The java.awt.Color Class

Lesson 9: Drawing with Graphics

Making Pictures
Back to Graphics

Lesson 10: Methods and Method Invocation
Methods
Creating and Using Methods

Tracing method calls

Lesson 11: Writing Classes - Building With Methods
More on Methods
Local Variables

Results and Return

Building on methods

Overloading
How Does Java Find the Right Method?

Summary
Method Declarations

main: an important method

Lesson 12: Adding Interaction using Components and Listeners
Revisiting the Dukes Class and Applet

A User Modification Example

Introduction to Interfaces

An Analogy: Antenna as an Interface

The Listener Interfaces

Lesson 13: Modularity: Modifiers, Permissions, and Scope
Class Specifications

Modularity
Modifiers
Access Modifiers--Permissions

What Permissions Allow

Lesson 14: Class Members, Constants and main

Static Members
Static: Making Your Own

static and main

Constructors
Instantiation

Constants use the final modifier

Template and Summary

Lesson 15: All Together Now

Interaction and Playing Around
Putting It All Together

Using Inheritance on our Own

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Java

Welcome to the O'Reilly School of Technology's Java Programming 1 course, Introduction to Java and the Eclipse Integrated
Development Environment (IDE).

Course Objectives

When you complete this course, you will be able to:

e build Java applications and applets in the Eclipse IDE.

e create control structures, classes, objects, and methods.

e add interaction to programs using components and listeners.

e apply the Java API to draw graphics.

e demonstrate understanding of modularity, modifiers, permissions, scope, and inheritance.

When you complete this lesson, you will be able to:

Lesson Objectives

e access various O'Reilly School of Technology tools.

e define and create an applet.

In this course, you'll learn the fundamental concepts and syntax of the Java programming language. Throughout this course,
you will build examples using the Eclipse Java IDE, which is supplied as a Learning Sandbox. Completion of this course will
give you a basic understanding of Object-Oriented techniques in Java, as well as using the Eclipse IDE.

From beginning to end, you'll learn by doing your own Java projects, within the Eclipse Learning Sandbox we affectionately call
"Ellipse." These projects will add to your portfolio and provide needed experience. All you need is a browser and internet
connection we provide all the software you need online.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means thatyou
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to /learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
ao completely off the rails.

e Accept guidance, but don't depend on it. Try to solve problems on yourown. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fairgame.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Yourinstructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so cool! | did it!" feeling. And you'll have
some projects to show off when you're done.

Windows Settings

If you like, you can set your own Windows mouse, keyboard, and region; for example, if you are left-handed, you can
switch the left and right button functionality on the mouse, or you can change date fields to use date formats for your
local region. Click the down arrow on the Windows Settings button at the top right of the screen:

- 0 X

[=] B3

|3-0-Q- |- 5 | dfw OST Python >
B osTc++ g ofc++

P

Windows Setkin ~ Batk FRefresh File Google

= 0
Mouse -
kKeyboard
Fegion and Language Click the arrow and
select an option.

We won'tdiscuss the details of these dialog boxes, but feel free to ask your instructor if you have questions.

"

& Mouse Properties Ed |

Buttons |F‘uinters] F‘uintﬂl:lptiurtsl Wheel |

~ Butbon configuration
[Switch pimany and secondary butions

5~
Select this check box bo make the button on the
fight the ane you use for primary funchions such
a3 selectng and diagging 9
.

Double-click speed

Double-click the folder bo test yowr satting, [the
lolder does not open ar claze, by using a slower
selting

Speed Slow — |_ Fast

ClickLock

[Tusnon ClickLock G ethings |

E nables you o keghlight or drag wathout holding doswn the mouss
button. To set, brefly prezs the mouze button, To releaze, click the
mouse bulton again.

= Keyboard Properties Ed

Speed '|

— Character repeat

| Repeat delay:
,

Long } Sihuoat
i i i I
Repeat rate;
5 Sl | Fast

Chck. hese and hold down a key bo ezt repeal rate:

~ Curzor birk iate

Maone I Fast

0K | camest | epon |

Fomats | Location | Keyboards and Languages | Administiative |

Format:

English (United States)

—Date and tirme formats
Short date: de.rrmy j
Long date: [dddd, MMMM dd, yyyy -
Short tirme: Ih:mm t j
Long time: Ih:mm:55 tt :]
First day of week: ISundar;,.f j

What does the notation mean?
—Examples
Short date: 1/31/2012
Long date: Tuesday, lanuany 31, 2012
Short time: 2:19 PM
Lang tirme: 2:19:36 PrA

Additional settings... |
G | | el e

[ok] caneel | e |

Now, before we get started programming in Java, let me show you how the material will be presented.

Lesson Format

We'll try out lots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).
If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove witt

k] h] 121 I
TOOK —TIRX TITT

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes 1is

provided by the system (not for you to type). The commands we want you to type look 1lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:

An Applet

If you're new to programming, allow me to introduce you to the "Hello World" example. Traditionally it's the first

program you write in any language. | would bet that a "Hello World" program has been written in every computer
language.

Using Eclipse

The program filling up your screen right now is an Integrated Development Environment (IDE) called Eclipse.

An IDE is essentially an editor thatis customized to help you to program. Our IDE, Eclipse, is customized to
help you with Java.

We're inching ever closer to making something, but first we need to set up the environment for our first file. In
Eclipse, all files must be within projects. In this course, a projectis the same thing as a folder.

To startour first project, select File | New | Java Project:

= 5T Java - Eclipse SDK

GEie J

dit Mawvigate Search Project Fun Window Help

Ale+-5hift 4

r.

Open File. .. = Proiec
Clase ZEF 3 7 Packags
Close Al Rl - SR @ Class
Save Crl+5 €4 Interface
SEVE fify . & Enum
Save Al Chrl+5hift+5 (& Annotation
Revert & Source Folder
Mave. . [Falder
{} .

REREMmE. . Fz2 File
Fraar F5 = Untitled Text File

: e =
Converk Line Delimiters Tao = Example. ..
Fririt. .. CErl+R 4 Other... N

Name your project. (We'll be making a whole lot of projects, so we'll choose names that will help us keep
them organized.) Call this one javal_Lesson01, choose to Use default jre (Java Runtime Environment),
and be sure and putitin the Java1_Lessons Working Set.

& Mew Java Project [_ O

Create a Java Project

Create a Java project in the workspace or in an external location,

T,

(Er-:uject Mame: | javal _Lesson0l)

¥ Use default location

Location: I Wihworkspaceijaval Lesson0l Browse. ., |

—JRE
™ lse an execution environment JRE: IJavaSE-l B j
- Use a project specific JRE; IjreEu j
£+ Use default JRE {currently ‘irec') Configure JREs. ..

~Project layout

™ Use project Folder as root for sources and class files

(¥ Create separate folders For sources and class Files Configure default, ..

T,

~—Warking sets

v add project ko working sets

Warking sets: |NECEERRN=EE S Select. .. |

-~

'-f?:l = Back | Mext = | Einish I Cancel |

If you see the dialog below, go ahead and check the Remember my decision box and then click No.

= Open Associated Perspective? E

This kind of project is associaked with the Java perspective,

pective is designed to suppart Java
kplorer, a Type Hierarchy, and Ja _and then click:

oo o] wank ko open this perspective now?

IV Remember my decision;

If you clicked Yes on the above dialog by mistake, select the Windows menu and click Preferences. When
the dialog appears, click Java on the left, adn then click Clear as shown:

& Preferences M=l E

|type filker bexk

- General
- Android
- Ant

B ClCH+
[+ EMF Facet
-- Help

Code Coverage
- Code Style

- Compiler

- Debug

- Edikor

- Installed JREs

- OCL
- 5T Preferences
[#- Papyrus

[+~ Plug-in Developrment
[+ PryDoe

[+~ Remaote Sywskems

[+#- Run/Debug

[+ Team

- Terminal

Properties Files Editor

Java

.

w

-

General sektings For Java development:

—Action on double click in the Package Explarer

{” Gointo the selected element

%" Expand the selected element

—When opening a Tvpe Hierarchy

8 Qpen a new Tvpe Hierarchy Perspective

%" show the Type Hierarchy Yiew in the current perspective

—Refactaring Java code

[Save all modified resources automatically prior ko refa

¥ Rename in editor without dialog

cboring

—Search
¥ Use reduced search menu

— lawa dialogs

again

Clear all 'do not show again' settings and show all hidden dialogs

Clear |

- UmiCallaborationUse
-
‘Eil..l (I P | _}I—I Restore Defaults | apply |
g
I\‘?JI 0K I Zancel |

Now you can see the javal_Lesson01 projectlisted in the Package Explorer panel on the lower-left corner

ofyour screen:

7
55 Package Expla &3 El Eunsule} ;.'J Terminal 11 T =

-,

Show Working Sets i

-

1 5

'E]_,J Cther Projects
----- 141 Javal_Handback
jl'_,J Javal_Communiky
A5 Javal_Homework
] Javal | essons

- 1=> ja;a 1_Lesson0l

Waorking set)

Froject

D,

This hierarchical view of the resources (directories and files) in Eclipse is commonly called the workspace.
You now have a projectnamed java1l_Lesson01 in your workspace.

You probably noticed items in the workspace like Javal_Lessons, Javal_Homework, and so on. We put
them there to help you stay organized. These are called working sets. A working setis like a folder, butis
actually justan association of files. The difference between a working set and a folder is that a working set
doesn't have any depth in the file system, so file and folder references don't even see them. You can turn
working sets on and offin Eclipse. You can either turn all working sets off or turn only some of them off if

things gettoo cluttered. Try it! Click the white down arrow on the Package Explorer tab:

ft B Toemi =
2 Package Explo &3 = Eunsule} ! Terminal 11 ek T i arruw}

Show Working Sets -~ = =

é"j.l Other Projects Top Level Elements »
451 Javal_Handback DG A Do o
: onfigure Working Sets. ..
i J.f,‘.l Jawal _Community ~ : :
‘e 151 Javal_Homework, . L Filkers...
=450 Javal Lessons Play with these to

- iaval Lessendl turn off all ar some Fackage Presentation L

working sets. v Show 'Referenced Libraries' Mode
“. Link with Editor

Now that you've played around with working sets, make sure they're all back in place. To easily show justthe

working sets for this course, click the small black down arrow on the Show Working Sets button in the
Package Explorer, then select Java, and then Java1:

i = T
55 Package Expla &3 El Eunsule} @ Terminal 11 B
Show WWorking Set@ Q% =

[#-¢§7 Other Projects Al |

----- 150 Javal_Handback MD

..... Jlf,‘.l Javal Community

= 150 Javal_Homewark tH+ b Javad

=450 Javal_Lessons Android » Javad

B2 javal_Lessondl — Javas

Jawvak
Java?

We're about to create a new class file to putinto our project. We'll talk about classes in detail later, but right
now, let's get going and make one!

Selectjava1l_Lesson01 in the Package Explorer so it's highlighted. In the top OST Java - Eclipse SDK
menu bar, choose File | New | Class as shown (if the New submenu doesn'tinclude Class, choose
Other..., then double-click on Class):

& OST Java - courses/javal/javal01.xml - Eclipse SDK

#=8 Edit Mavigate Search Projectk Run #ML Window Help

A S 2 Java Project

% Open LRL... Alk+5hift+0 = Project...
Cpen File. .,
B Package
Close Chel+

€ Class
€V Interface

Close all Ckrl+Shift+F4

In your New Java Class window, if Source folder: does notalready contain javal_Lesson01/src, click
Browse... to look for and select the java1l_Lesson01/src folder (or type javal_Lesson01/src). Give your
class the name HelloWorld as shown:

& Mew Java Class =]

Jawva Class
I, The use of the defaulk package is discouraged.

o
@urce Folder: | javal Lesson0l)src _)

Browse, .

Package: |

(default)y Browse,..

™ Enclosing type: |

Erowse, .,

Ml

GEIITIE:

-
| Hellu:u'n.u'u'u:url-:l|)

J

Browse, .

Modifiers: 5 public " default = private " protected
[abstract [Ffinal | static

Superclass: | java.lang. Object

Interfaces:

Wehich method stubs would vou like ko create?
[T public static void main{String[] args)

[Construckors From superclass

¥ Inherited abstract methods

Do wou want ko add comments? (Configure templates and default walue hered

I_ Generate comments

Add. .

Remaove

d

(2

Finish I

Zancel

Click Finish. You see this contentin the lower-right Editor Window:

n HelloWiorld, java X

I
1

public class HelloWorld ¢

This Editor Window allows you to create, write, and of course, edit code.

Notice that the name of the file for the code is HelloWorld java. Java source code always has the same name

as the class, followed by the .java extension.

Okay, now let's add the code for our first Applet! Type the code in the editor below as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint (Graphics g) {
g.drawRect (0, 0, 100, 100);
g.drawString ("Hello World!", 5, 15);

If you see one ofthese - beside the public class HelloWorld extends Applet { line, justignore it. This

symbol is a warning that can be ignored for now; it won't affect the running of your code.

Eclipse has a special way of running Applets, but they usually need to be run on a web page. Now that we've

gotthat code typed, let's save and run it! Click in the Editor Window where your code is written (the
HelloWorld.java file). In the very top Eclipse menu bar (not the O'Reilly tab bar), selectFile | Save:

£ DST Java - javal_Lessonl/srefHelloWerld. java -
Fila I; b Source Refackor Mawvigabe Search Project Ru
vy AR+ShEtHN

Close e
Closs All Chrl+Shift -+

=] %H‘E !;...

) Save al Ch4+5hift+3
Rewvert

Refresh F5
Cornett Line Debmikers To L

(4 Prinit... Chl+F
Swkch Workspace L

g#g Impoet...
.y Export...

Froperties BR+Enter

1 Helo'Wwaorld java [javal _Lessond fsec]

Z jawalnl =ml [coursesfiaval]
Fjavail.zml [coursesfiavaZ]

4 Cards.java [jawas_Lessonl 3fsrc/games]

Exit

There are a few different ways to save a file. You can select File | Save as above, or click the

Note saveicon [Iﬁ'] in the Eclipse toolbar, or you can press Ctrl+S. In the future, when we want you
to save a file, we'll show the Save icon.

Now, from the top menu bar, select Run | Run As | Java Applet. (If Java Applet isn't there, go back to the

Editor Window and click in the HelloWorld.java editor and try again.)

a - ELlip=ze Platform

Sek Mexk Staterment CErlH-AlER J e J B @& - J . 7 - J T
L Run Chr+F11
| %, Debug F11
Buin Hiskor
ava spplet BlE+Shift+i, &
Ions. ..,
Convett Ling Dalmkers To
Debug Hiskory 3
Prinit...
Debug As 3 —
Debug Configurations. .. Swibch Workspace
i*g Import...
40 Add Java Exception Breakpoint... "i ee
= ¢y Export...
(3 Add Class Load Breakpoint, .. 4
Froperties F
Manage Python Exception Breakpoints f
_ ; _ 1 Helo'world. java [javal _Lessond fsic)
Lisable Step into propetties Z javal0l.xml [coursesijavall
Fjava0i.eml [courses/javaZ]
All References. .. 4 Cards.java [java3_Lessonl3fsrc/games] ®
Al Imst - (Zhr{ 4+ ShEh b . -~

As with saving, there's more than one way to run your Java code; justuse the one you like best.

When we wantyou to run a program, we'll show the Run icon (G).

Now you have a small browser running in the upper-left corner of your computer screen. The browser is
labeled Appletviewer and displays the output of your Applet. It prints out HelloWorld! inside a box:

& Applet Viewer:._ .. [Z”E|EI

Applet
Hella Warld!

Applet started.

Sweet! You've officially created and run your first Java Applet! To close the Appletviewer, click the x in the
upper-right corner.

Our Second Applet

The next Applet we'll create is similar to the first one, butit uses different code. To begin, we'll create a new Class file in
javal_Lesson01, and name it HelloWorld2.

Here's another way to create a class. Right-click the java1_Lesson01/src folder in the Package Explorer, and select
New | Class:

running.html

- = —
_ |:E_ Package Explorer 3 El console ,ﬂﬂ Tetminal 11 Show Working Sets = [Q:b it m|
Right-click the Isrc folder ...

r @ lava Project
= Project. ..
Cpen in Mew Window
alo Open Type Hierarchy F4
I:d laval_ showIn Alk+Shift+
:p javal _
:,:ﬂ' jawal ;;_:%, Copry Chrl4+C
-T2 javal_ == Copy Qualified Mame @ Annatation
||z Paste Chrl+y &1 Source Folder
¥ Delete Delete % Falder
Build Path b | File
Source Alt+ShIfE+S P = Untitled Text File
Refactor AlE+shifk+T F
T Example, ..
g Import, .. 0
o2 Export. . 7] Other... CErl+M

Name it HelloWorld2 in the dialog box:

= Mew Java Class [_ | O

Jawva Class

15, The use of the default package is discouraged, I\Q
Source Folder: | | javal _Lesson0lsrc } Browse. ..

Package: I {default) Browse..,

I Enclosing bype: | Erowse. ..

il

Mame: | Hellotorldz|
Modifiers: * public £ default £ private " protected
[T abstract [final ™ static
Superclass: | java.lang. Object Browse. ..
Interfaces:

Bemove

Il

‘Wehich rmethod stubs would wou like to creake?
™ public static void mainString[] args)
[Constructars From superclass
W Inhetited abstract methods
Do wou wank o add comments? (Configure templates and default value hered

[aenerate comments

Y .
l\‘? ') Einish I Cancel

Now let's give HelloWorld2 some code.

Type the code below (seriously, type the code, don'tjust cut and paste!) into the HelloWorld2 file as shown:

CODE TO TYPE:

import java.awt.*;
import javax.swing.*;

public class HelloWorld2 extends JApplet {
public void init () {
Container contentPane = getContentPane();
JLabel label = new JLabel ("Hello Again, World!", SwingConstants.CENTER) ;
contentPane.add (label) ;

L} Now save and run it, using the Eclipse File and Run menus like we did earlier (or you can use the L) shortcut).

npplet ¥iewer: Hello... =] E3

Applet

Applet started.

Hello Again, World!

Yes, you've done it again! This Appletlooks a little different from your first one, but it does roughly the same thing.
Good job! Again, click the upper-right x to close the Appletviewer.

Java is an Object-Oriented Language

Structured Programming

In order to appreciate object-oriented programming, let's take a look atits predecessors: procedural
languages, such as C and Fortran. They consist of procedures or routines which simply contain a series of
computational steps to be followed.

The very first construct of computing is sequencing, which means the code follows the lines in sequence, one
after the other. If a programmer makes mistakes and a language isn't meticulously written, the steps could be
hard to figure out. Here's an example of such a program in a procedural language:

OBSERVE:

10
20
30
40
50
60
70
80
90

i=0

i=1i+1

if i <= 10 then goto 80

if i > 10 then goto 60
goto 20

print "Program Completed."
end

print i; " squared = "; i
goto 20

ol

Let's trace (follow the execution of) this program. We'll go through each of the steps and see what they do:

http://en.wikipedia.org/wiki/Spaghetti_code#Examples

OBSERVE:

10: Set i to O

20: Set i to 1(0) + 1, or 1

30: Since i is now 1 and 1 is less than < 10, go to 80

80: Print the value of i (which here is 1), and the text " squared = ", and then
the product of i * 1 (here, it is 1)

90: Go to line 20

20: Set 1 to i(now 1) + 1, or 2

30: Since i is now 2 and 2 is still less than < 10, go to 80 again

80: Print the value of i (which here is 2), and the text " squared = ", and then
the product of i * 1 (now, it is 4)

90: Go to line 20

20: Set i1 to i(now 2) + 1, or 3

... It continues looping until i is 10 or more at line 30, at which point it pas
@8 €Oso o

40: Go to line 60

60: Print "Program Completed."

70: End the program

The same program in a structured programming language would look something like this:

OBSERVE:

for i = 1 to 10

print i; " squared = "; i * 1
next i
print "Program Completed."

Notice that you don't need to include the line numbers in your code. The code is structured in such a way that
itdoesn't send you all over the place! Structured code is preferred because:

e it's easierto follow.
e it's easierto prove thatitis correct.
e it's easierto debug.

e it's more concise.
Object-oriented programming was developed to avoid the common pitfalls of procedural programming.
Let's create and run that program in Java to see how well Duke handles it!
Create a new class in the Javal_Lesson01 projectnamed StructuredDemo.
Go ahead, we'll wait.

Now, type the code into StructuredDemo as shown:

CODE TO TYPE:

import java.awt.*;
import java.applet.Applet;

public class StructuredDemo extends Applet {

public void paint (Graphics g) {
for (int i=1; 1 <10; i++)
g.drawString (i + " squared = " + i*i, 10, 15%i);
g.drawString ("Program Completed", 10, 180);

o Run it. It works great! When you finish, close the Appletviewer as before.

Nice! We have written not one, not two, but three Java Applets, and we've run them in the Eclipse IDE!

If you haven't closed them already, you can still see a tab for each program at the bottom of your window. Click on the
x in each one's tab to close them, or Eclipse will close them for you when you Exit.

Good job so far, but we're just getting started!
Now, go back to the syllabus page by clicking the Back button and complete any Quizzes and Projects for this lesson.
See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Object-Oriented Programming

When you complete this lesson, you will be able to:

Lesson Objectives

determine which objects we have at our disposal.

use objects to make more objects to perform additional tasks.
access classes from the Java API.

use modifiers on Java classes.

use actions or methods with classes.

pass objects to methods.

view the Java hierarchy structure.

Introduction

What is Object-Oriented Programming?

Every piece of code that makes up an object-oriented program is known as an object. The code
representation of an objectis a class, and classes produce objects. Think of an object like a cake that you
bake. A cake can have all kinds of properties: shape, flavor, icing, and so on. To continue with this analogy, a
class is like a particular cake mold. Each instance of cake made using that mold may be slightly different
because it has different properties. Other people can use your mold to make cakes that accomplish their own
tasks. Keep this cake metaphorin mind as we continue to discuss classes, objects, instances, and
properties.

Aclass is like A cake object

a cake mold for - with properties
making cake Creating a Pink Icing and
objects. cake object Strawberry on Top.

In Java, every object has properties and methods. The properties determine an object's current state, while
methods are actions that can alter that state. Classes are nouns, and methods are verbs! For instance, we
might EAT a cake. So EAT could be a cake's method in Java.

To write an object-oriented program:

1. Determine which objects we already have atour disposal.
2. Use these objects to make more objects to perform additional tasks.

When we program in Java, we're telling objects what to do to each other. After a Java program is written, other
programmers can create new classes around the objects in the program, and then we can use those new
objects too. Objects in Java allow programmers to cooperate and share.

Along with Java, there is a library of objects for everyone to use as a base. Over time, the library has grown.
Each new version of Java not only fixes problems (bugs) found in previous versions, but provides us with
even more objects (classes) to use. In order to do object-oriented programming, you'll want to become
familiar with the library of available classes. The library is provided online by Oracle, and is called the
Application Programming Interface (API).

Whenever we're looking at a class in the API, we'll give you a heads-up with one ofthese APlicons:

http://www.oracle.com/technetwork/java/javase/documentation/index.html

Pl, or API

To see the APl page, click the link. Closing the window or clicking on the Lesson View tab will bring you back
here.

The APlis also called the Class Library. Notice that the Oracle page has APl documents for numerous
versions of Java. Usually you'll want to run the newest version of Java because the newer versions have
fixed more bugs and have made more classes available.

Look on your menu for the #*I button in the row of icons under the Eclipse menu bar. Click this to see the API
for the most current Java version. The more you program with Java, the more you'll rely on the API.

Now that we know some OOP terminology, let's look at the objects in your first program.

Demystifying the Program
Reading Code

Once again, go to the Package Explorer and open your javal_Lesson01 project. In the src folder, find
HelloWorld.java and open itin the editor.

For now, so we can work through the code, let's use line numbers nextto the code. To make line numbers
visible, right-click the vertical frame bar at the left of the editor window, and select Show Line Numbers:

1] HelloWorld, java 22
Fimport java.applet.ipplet;[]

Right-click anywhere in the £t i
vertical bar, and then select
Show Line Humbers.

add Bookmark... i
Add Task. ..

W Show Quick Diff / Ckrl+Shift+0

ch

5, 15):

heRekation

e Mumbers

'Il []

Preferences...

Breakpoint Properties. ..

\

It's possible that you have "collapsed” blocks of code in your program. If you see a + sign next to the number
1line of your code, click on it. If your + sign is on line 2, delete the empty line 1 by going to the beginning of
line 2 infrontofimport and pressing the Backspace key. Now your line numbers should match up.

Eclipse was simply "collapsing" a block of code lines to focus on the other code. The lines are all still there,
though. The plus sign (+) means "expand" (indicating collapsed code) and minus (-) means "collapse"
(indicating there is a block of code you can collapse).

A #Helloworld java =08

A *Helloworld java X

1=import java.applet.lipplet; (]
Z import java.avt.Graphics:

3

4 public class HelloWorld extends Applet

5= public void paint (Graphics g) {

G g.drawRect (0, 0, 100, 100);

7 g.drawv3tring ("Hello World!®™, 5, 15);:

1#¥import java.applet.ipplet:[] m]
3
4! public class HelloWorld extends Applet {
= public void paint (Graphics g) {
g.dravRect (0, 0O, 100, 100):
g.drawvitring ("Hello World!®™, 5, 15):

El
10|

http://download.oracle.com/javase/6/docs/api/

Okay, now let's break the code down one line ata time:

OBSERVE:

1. import java.applet.Applet;

This line tells Java that something in your code is going to use one ofthose classes from the Java API; Java
will import all the stuff for you so that you can use it. Here the object type (class) we want to use is called
Applet. Java can find this class in the package named java.applet.

Packages are directories thathold a collection of related objects (classes). The java.applet package
contains the Applet class (a really useful class).

API Go to the API page for the java.applet package. Click on the link. Scroll down to the Class Summary and
click on the Applet class (we'll discuss the information that the API gives us later).

Let's see whatwould happen if we didn'timport the Applet package. Try removing the import statementas
shown:

CODE TO TYPE:

1 import—avea—appret—Apptets

2 import java.awt.Graphics;

3

4 public class HelloWorld extends Applet {

5 public void paint (Graphics g) {

6 g.drawRect (0, 0, 100, 100);

7 g.drawString ("Hello World!", 5, 15);
8
9

Now you'll see this:

e
4 | Helloworld. java 23

]'_.]n[]urt Java.awt.raphics:

£ public class HelloWorld extends Lpplet |
public void paint (Graphics o) |
g.drawREectc(0,0,100,100) ;
g.drawitring("Hello World!'™, L&, 15):

See the light bulb and X in the red box on the left panel? They're telling you that something's missing.

This means there's an errorin our program. Eclipse will not run with errors, but fortunately, it suggests a
remedy. See how the word Appletis underlined with a red zig-zag? Try moving your mouse over it. It says
Applet cannot be resolved to atype.

That means that Eclipse can'tidentify Applet because the package that contains the class Appletis not
known ("cannotbe resolved"), so the class information is not available.

If you click on the light bulb, it will suggest ways to fix the problem. When you click on one of the suggested
remedies, Eclipse will implementit. For instance, click on the light bulb and then double-click on the choice
import 'Applet’ (java.applet) to putitback in the code.

Ifthe import statement for Appletis on line 2, delete the empty line 1, so the numbers line up again.

http://download.oracle.com/javase/6/docs/api/java/applet/package-summary.html

E The ‘4 icon signifies errors. You must fix these in order to run your code. :
. Note |
The “* iconis only a warning—Java is uncomfortable with some part of your code, but will
' still run. '

Now, back to our HelloWorld code:

OBSERVE:

2 import java.awt.Graphics;

Inline 2, we're importing another class. Can you tell from the syntax of the line which partis the package and
which partidentifies the class? By convention, package names begin with lower-case characters and classes
begin with upper-case letters. Our line of code ends with a ; (semicolon). The semicolon in Java syntax tells
the compiler thatit has arrived atthe end of a line of code.

So in this case, java.awt is the package and Graphics is the class.
You can learn more aboutthe Graphics class at:

1.API

2. java.awt
3. Graphics

We'll take a closer look atthe Graphics class in future lessons as well.

OBSERVE:

3

Line 3 is a blank line that helps make the code easier to read. Here, it separates the block ofimport
statements from the class definition.

OBSERVE:

4 public class HelloWorld extends Applet {

Line 4 signifies the beginning of the definition of our first class.

The firstword, public, is a modifier. The modifier tells Java something about access—who can use the class
or method or variable. In this case, it's public. For this particular course, all of our classes will be public, but
many of our methods and variables will be private or protected. We'll explore access more later, but if
you're curious and wantto know more right now, go ahead and Google "Java modifiers."

The next keyword in our code is class, which tells Java we're creating a class.
This particular class is called HelloWorld.

The keyword extends tells Java that we want HelloWorld to inherit all the Applet code—we are defining
HelloWorld to be an Applet. Another option is implements, which we'll getinto later too.

At the beginning of this lesson, you ran an Applet. It opened a window on your computer with a nice frame
around it and typed in words for you. You didn't have to type them in yourself because Java already had a
class (Applet) written for you to implement. So, when you inherit a class that Java has already written (and
so is already presentin the API), you get access to all ofits (the parentclass's) properties.

The curly bracket, or brace { atthe end ofline 4 tells Java thatinstructions for the HelloWorld applet's task
begin there. We'll tell Java when our HelloWorld class definition is done by including a closing brace } on
line 9.

You can see which pairs of braces match up by clicking the mouse directly after an opening or closing brace
—the matching brace will be highlighted on the screen. In our example, if you try clicking right after the closing

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/java/awt/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

curly bracket on line 9, the editor makes a little box around the { on line 4, so we know that those two brackets
match. This can be really handy in large programs!

Okay, so what's in the class? Take a look:

OBSERVE:

5 public void paint(Graphics g) {

) g.drawRect (0, 0, 100, 100);

7 g.drawString ("Hello World!", 5, 15);
8

In lines 5-8, we define a componentofthe HelloWorld class. We already know that classes may have
properties and actions. This particular class doesn't have properties yet, butitdoes have an action available
(starting atline 5) called paint. In OOP, the actions that a class can take are called methods. In this code
you've defined the method paint (). Take another look at that block of code:

OBSERVE:

public void paint (Graphics g) {
g.drawRect (0, 0, 100, 100);
g.drawString("Hello World!", 5, 15);

Similar to class definitions, all method definitions begin with a modifier. Here again we use the modifier
public. The next keyword in the method definition (void) tells us the type of object the method will return.
This particular object doesn't return anything, so we use the keyword void. We use this keyword on all
methods thatdon'treturn objects. Don't worry, we'll see some methods that do return objects in our
upcoming lessons.

This method is passed another object called a Graphics area. The code states thatthe Graphics area is
named g. We use methods from the Graphics object (conveniently, someone at Oracle has already created
that object). When we write someNoun.someVerb(), we are telling Java to access the method called
someVerb() from the object someNoun. In this case, we wrote g.drawRect (0,0, 100, 100); and
g.drawString("Hello World!", 5, 15); because we knew the Graphics object has drawRect() and
drawString() methods we can use. How did we know all of that? We looked itup in the Java API!

This definition of the paint() method creates a Graphics area for the Applet so you can "paint" or "draw" on it.
In this code, you are drawing two things:

g.drawRect (0, 0,100, 100) tells the Appletto draw a rectangle on the Graphics area g. The numbers in our
code indicate the four corners of our rectangle in pixels. I'll leave itto you to experiment to figure out which
number corresponds to which corner!l You can do that by changing the numbers and rerunning the Applet.

g.drawString("Hello World!", 5, 15) is telling the Applet to draw the words "Hello World" on the Graphics
area g. The numbers indicate where you want to place the words (string) on the Graphics area. Again, I'll
leave itto you to experiment and play with the numbers.

Braces {} in Java are always matched with their nearest partner. The { atthe end ofline 5 is closed with the }
atline 8. Use the mouse click trick we learned earlier and see for yourself. The { at the end ofline 4 is closed
with the } atline 9.

Now let's change the size of the rectangle and write something different on the Applet.

If you don't already have HelloWorld.java in the Editor window, look for a HelloWorld.java tab in the Editor
window and click it. If there is no HelloWorld.java tab, open the javal_Lesson01 folder and its default
package in the Package Explorer area, then double-click the HelloWorld.java file. Edit the code as shown
below:

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint (Graphics g) {
g.drawRect (0, 0, getSize().width - 1, getSize() .height - 1);
g.drawString ("On to new things!", 5, 15);

'} Save and run it. Use the mouse to resize the Appletviewer window and note how the box changes! Are
you impressed? (Remember to close the applet after running it.)

Let's change the line again to see whatitdoes:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint (Graphics g) {
g.drawRect (0, 0, getSize().width - 50, getSize().height - 100);
g.drawString ("I'm not really impressed yet", 5, 15);
}

P] Save and run itagain.
Changing the two lines of code altered the size of the surrounding rectangle and wrote different statements.

Close the Appletviewer, and try experimenting more with the rectangle size. Make sure to save and then run it.
You can always refer to the original code above, in case you really mess up!

Now let's go over class names. The class that we defined above with the name HelloWorld must have the
file name HelloWorld.java.

Java is case-sensitive and every character matters. The file must have the same name
 WARNING as the class you define, plus the .java extension. So, if you change the class name, you '
: must change the file name as well. :

In your HelloWorld class, try to change your name of HelloWorld to HelloWorld6. You can view
suggestions by clicking once on the light bulb warning. This trick is really handy for correcting errors.

In our example, you'll be instructed to rename the type (class) HelloWorld, or rename the compilation unit
(file) to HelloWorld6 .java.

The .java file is called the source code for the class. Eclipse calls it the "compilation unit" because Java
compiles source files to convert programs into something the machine understands. We'll look into the
compilation of Java in greater detail in a future lesson.

Fornow, double-clickon Rename type to 'HelloWorld' to fix the name.

What About the Other One?

So what about the other Applet we made? How does itwork? I'm happy you asked. We'll go over it now, but
don't panicif you don't quite understand the explanation in this section. By the end of this course you will!
Open HelloWorld2 from your javal_Lesson01/src folder and turn on line numbers as before:

OBSERVE:
1 import java.awt.*;
2 import javax.swing.*;
3
4 public class HelloWorld2 extends JApplet
5 {
6 public void init ()
7 {
8 Container contentPane = getContentPane() ;
9 JLabel label = new JLabel ("Hello Again, World!", SwingConstants.CENTE
R);
10 contentPane.add (label) ;
11 }
12 }

When we look at the Applets resulting from these two classes, they look similar, but the code is very different.
As programmers, we choose from lots of options that determine how our code will execute tasks. That's why
some code mightlook absolutely beautiful, but other code might be nearly impossible to follow. While your
first priority when writing any code is to make sure it works porperly, you also want to keep in mind that other
programmers will use and edit the code you write. If your original code isn't well-written, that can become a
real burden to others in the community. Write good code in the first place, and make sure subsequent
programmers don't curse your name!

In this course, we want to instill principles of good software engineering, so that your code will run correctly,
look beautiful, and be useful and clean for programmers who will use itin the future.

Now, as itturns out, the two Applets we wrote are both composed ofgood, solid code. But they're just two of
the many ways we could have written them. I'll show you another one. In the HelloWorld2.java file, turn on

the line numbers again (right-click the vertical bar left of the Editor window and select Show Line Numbers).
Expand any compressed lines. If you have a blank line at the top, remove that blank line. Here's how it works:

OBSERVE:

1 import java.awt.*;
2 import javax.swing.*;
3

In the code above, the imports have an * (asterisk) at the end of the package names. This tells Java thatyou
might wantto use any of the classes in the java.awt or javax.swing packages. With the *, your code can then
use any class in the package. Java will retrieve the class atthe same time, whether it used the import with the
* or the specific class name.

OBSERVE:

4 public class HelloWorld2 extends JApplet
5 {

The code above is a JApplet; ourfirstwas an Applet. The JApplet class is in the javax.swing package,
so we imported that package instead of java.applet.

OBSERVE:
6 public void init ()
7 {

The code above is the initial definition of the init() method.

OBSERVE:

8 Container contentPane = getContentPane () ;

The code above gets the Container from the JApplet instead of from the Graphics area used in Applets.

OBSERVE:

9 JLabel label = new JLabel ("Hello Again, World!", SwingConstants.CENTE
R);

The code above creates a JLabel and then writes "Hello Again, World!" on the label, rather than into the
Graphics area.

OBSERVE:

10 contentPane.add (label) ;

The line above adds the label to the Container from the JApplet.

OBSERVE:
11 }
12 }

The lines of code above end the definition of the init() method, then end the definition of the HelloWorld2
class. Notice the indentation that enables you to see the matching braces more easily:

The line 7 { matches up with line 11's } and
the line 5 { matches up with line 12's }.

This indentation is notrequired by Java, butit's good form for programming and allows better readability.
Though itmay notseem like it, the biggest difference between these two Applets is thatone is an Applet and
the otheris a JApplet. Both classes are Applets because JApplet inherits from Applet. We know this is
the case by checking in the API. Look atthe import statements. They tell Java where to look for the classes
that you didn't write, and it's also where you can find the same information.

Clicking on the top left corner of any class's API page will show you the class's inheritance tree.

AP Go to the JApplet class in the APl and check it out! The JAppletinheritance tree looks like this:

Class JApplet

Jawva. lang.Chiject

L Jawva.awvt . Component

L Jjava.awt . Container

L Java.awt.Panel

(I Java.applet.ipplet

L jJavax.swing.JApplet

This tells you that the class JApplet inherits from the Applet class,
which inherits from Panel,

which inherits from Container,

which inherits from Component,

which inherits from Object.

Everything located above a specific class in an inheritance tree is referred to as the class's super or ancestor
(the one directly above itis referred to as its parent). Everything located below a specific class in an
inheritance tree is referred to as the class's sub or subclass (also referred to as the class's child).

So, JApplet has a parent (or super) of Applet, and Applet has a subclass (or child of JApplet.

In future lessons, we'll explore the information in the APlin more detail.

Hierarchy Structure in Eclipse

Another way to view the hierarchy of classes is through the Eclipse hierarchy window.

http://download.oracle.com/javase/6/docs/api/javax/swing/JApplet.html

Make sure you have HelloWorld2.java open in Eclipse. Highlight the word JApplet in line 4. Right-click it
and select Open Type Hierarchy from the pop-up menu:

|n HelloborldZ java X

“import Jjava.awc. ¥ ;

import javax.swing.*; <) Undo Typing Chr+Z
Wi public class HelloWorld:Z extends Jipplet
i
S public void init () Cpen Declaration
[Dpen Type Hierarchy F4
Container contentPane = getContentPar OPen CallHierarchy ChrirAl+H
JLabel lakel = new JLabel ("Hello Worl Quick Outline O TNTER] ;
contentPane.add(label) ; Quick. Type Hierarchy Crrl+T
H Show In Ale+Shift+w »
}
Paste Chrl+y
SourCe Al4Shift+5 P pr—

A Hierarchy tab appears where the Package Explorer window used to be. It's the same inheritance hierarchy
tree that you saw in the API.

% Package Explarer E Higrarchy &2 =T O | U] *Helloworkdz.java 52 =0
Japplet, working set: Window 'Working Set Tlcimport jeva.awt.
“E‘ :[2 j',k | - Japple %: T = ‘\s\s -} 2 import javax.swing.*:
¢ accessbleContext Al #

rponent % rootPane 4 public class HelloWorldZ extends [QFRGEEES

Container % rootPaneCheckingEnabled 5) o
1@ Parel o transferHandler o public void init ()

2@ Applet OcJApp\Et() 7 i

a8 Container contentPane = getContentPane():

JLabel label = new JLabel("Hello World again®™, SwingConstants.CENTER)
contentPane.add(label) ;

=59 @ @ waddImpl{Component, Obiject, i
12 HeloWor <@ createRootPane()
@ wgetAccessibleContext()
@ wgetContentPanel)

@ .getiGlassPaned)
H @ getiGraphics()
@ getIvenuBar()
@ .getlayeredrane()
@ ~getRootPanel)
@ getTransferHandler()
< isRootPaneCheckingEnabled()

& wparamstring()

@ aremovel Comoonent)
< Bl

-~

javax.swing. JApplet - C:\Program Files)Javaljret.6.0_03\birt. jar

In the APl you can see that every class inherits from the Object class. This is the essence of object-oriented
programming.

Again, note that the imports have * at the ends of the package names. This tells Java that you might wantto use any of
the classes in the java.awt or javax.swing packages. The * is used commonly in Computer Science as a wildcard.
That means anything (that fits the circumstances) can replace it. In this case, the "circumstances" are that the package
mustbe java.awt or javax.swing—for example, importing java.awt.* means you can use any object from the
java.awt package.

But note this exception: package wildcards only work for classes. Specifically, if you have two packages, say java.awt
and java.awt.event,import java.awt.* does not get all of the classes in the package java.awt.event. You would
need to import both java.awt.* and java.awt.event.* to get the classes from both packages.

Phew! That's it for this lesson 2! Wait a sec, let Duke take a picture of you to capture this moment ofaccomplishment!

0

You're looking areat—I can't waitto see vou in the nextlesson!

Remember: once you finish the lesson, go back to the syllabus page by clicking the Syllabus tab above and complete
the Quiz(zes) and Project(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Applets

When you complete this lesson, you will be able to:
Lesson Objectives

e getanimage and store itin the image folder.
e workon the Duke image
e importthe Appletclass.

e use the wildcard and get the entire java.awt package.

Applets

We have already created and run a basic Applet. An Appletis a class that's provided for us by Java. All object-oriented
programming depends on classes. Specifically, we define Classes of Objects so we can use them in our programs.
Programmers also create and define new classes for their own specific purposes. Still other classes are imported
from Java. You can check out the various types of class functions in the APL. In this lesson, we'll focus primarily on the
mostcommonly used Classes in Java—Applets.

What Can Applets Do?

Our first Applet printed "Hello World." In Java, a string of characters (In English, we would identify those
characters as words, phrases, or sentences) is defined within a Java Class ofits own called the String
Class. We create Strings in Java using double quotation marks: "This is a string”. Whatever you put
inside the quotation marks is quoted exactly, becoming the String. (This is the only place in Java
programming where we can get away with a typo!)

So, in the paint() method of our HelloWorld Applet, we told the Graphics Class (using g) to use methods

drawString() and drawRect () to printa String ("Hello World") and draw a rectangle. Take a look at
HelloWorld's paint() method:

OBSERVE:

g.drawString ("Hello World!", 5, 15); // put String "Hello World" at (x,y) loc
ation of (5,15)
and

g.drawRect (0, 0, 100, 100); // drew a Rectangle with top-left corner at (0,0)
with width and height of 100

So, whatelse can Applets do? Let's create a new Eclipse project and find out.

Generally, programmers put their code into source (src) folders, so Eclipse makes src folders for each Java
projecttoo. Go ahead and create an Eclipse projectto hold your classes for javal_Lesson03. We did this
before in Lesson 1, butin case you need a little help remembering how, follow these steps:

SelectFile | New | Java Project:

£ OST Java - coursesfjaval/javal03.xml - Eclipse SDK

Open URL. ..

Cpen File. ..

Close
Close all

|H Save As...

Refresh

Convert Line Delimiters To

r=h Print.

el
Ctrl+Shift+F4

FS
2

Ctr4+P

B Package
(& Class

€4 Interface

(& Enum

(@ Annotation
&Y Source Folder
("% Folder
{}. -
| 7 File
= Untitled Tesxt File

[Other...

|

|y

In the New Java Project window, name your projectjaval_Lesson03, add itto the Javal_Lessons working

set, and click Finish:

& New Java Project

Create a Java Project

Create a Java project in the workspace or in an external location,

et
Grnject Namnme: | javal_Lesson03 ‘)

VW Use default lacation

Location: | Wiworkspacetjaval Lesson3 Browse, , . |

—JRE
% Use an execution environment JRE: IJavaSE-l B j
i Use a project specific JRE: IjreEu j
£~ Use default JRE {currently ‘re") Confiqure JREs. ..

~Project layout

™ Use project Folder as rook For sources and class Files

¥ Create separate folders For sources and class Files Configure defaulk. ..

e}

arking sets

v add project to waorking sets

Working sets: |Javal _Lessons j Select. ..

P
'\3 J < Back. Mexk = | Finish I Cancel

If you see the option to "Open Associated Perspective," check the Remember my decision box and then
click No. We wantto keep our own perspective environment.

= Open Associated Perspective?

This kind of project is associaked with the Java perspective.

pective is designed to support Java
keplorer, a Type Hierarchy, and Ja _and then click:

Cowod want to open this perspective now?

¥ Remember ry decision:

If you forget to click No and your window goes crazy, remember you always have your "panic button": ‘

This button will always bring you back to the proper perspective.
You should see java1l_Lesson03 in your Package Explorer Window.
Now, make a new Java Class in the javal_Lesson03 projectfile.

1. Selectjaval_Lesson03 in the Package Explorer so it's highlighted.

2. Right-click java1_Lesson03 in the Package Explorer, or select File from the Eclipse Menu, and
then choose New | Class.

3. Name it MyFirst Duke, make the Superclass java.applet.Applet, and click Finish.

You'll see this code in your Editor workspace window:

[J] MyFirstDuke.java 52 =0

impurt Java.applet. ipplet;

iy, public class MyFirstDuke extends Applet |

ILessunZ

Because you specified that the Superclass was java.applet.Applet, the Eclipse code generator performed
these helpful tasks for you:

e imported java.applet.Applet
e extended Applet

Now, type the MyFirst Duke java Class as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MyFirstDuke extends Applet ({
public void paint (Graphics graph) {
Image action = getImage (getDocumentBase(),"../../images/duke/dukeWave.qgi
£");

graph.drawImage (action, 10, 10, Color.white, this);

graph.drawString ("I am a waving duke", 10, 130);

i-} Save and run it.

@

Oops!
Hey, wait a minute! We told Java to get an image and draw it—we see "l am a waving Duke," but no Duke! Why
can'twe see the image?

\

Sometimes Java will tell us about errors, and sometimes we have to catch them ourselves. Usually if Java
can run the code, it will. (For example, Java cannot run specific code ifit's unable to find a Java class thatyou
told itto use.) In this situation, Java did what it could, but it didn't draw the image we told it to, because itwas
unable to find it. Java probably couldn't find it because | hadn't given itto you yet.

Getting Images

Let me give thatimage to you now. Click here to get the image files you'll need for this lesson. When
prompted for a working set, select Javal_Lessons.

Now you have an limages folder that you can use for the entire course. It should be listed under
Javal_Lessons with yourjaval_Lesson01and javal_Lesson03 projects in the Package Explorer view.

e Open the images folder to see the /duke subfolder containing the images.

e Go backto yourjaval_Lesson03 Projectand click on MyFirst Duke.java (in the default package).

e Run the MyFirstDuke Applet again—right-click MyFirst Duke.java and select Run As | Java
Applet.

Now you'll see this:

ré’ Applet Viewer:... E]@ﬁ

Applet

vV

| arm & waving duke

Applet started.

Ahh, much betterl Now, look at the code. Notice that the compiler finds the image using the following line:

OBSERVE:

Image action = getImage (getDocumentBase(),"../../images/duke/dukeWave.gif") ;

The two dots are important. We need to direct Java to the right place. Each pair of dots tells Java to go up
one directory. So Java goes up two directories to javal_Lesson03 and the main Javal_Lessons, then
down through the /images and /duke directories, to the duke Wave.gif file.

Follow the numbers 1through 6 on this chartto see how Java finds the image from the MyFirstDuke.java
class:

com.oreilly.school.java1.images.zip

[# Package Explorer £ ?g Higrarchy

=0 tod *avallg.=ml

5 <

J] *MyFirstDuke java £2
import java.applet.ipplet;

import java.awtc.®;

= E’ images

get into images folder

A H duke
U dukeCamera.jpg
= dukeCamera2.jpg
Ei] dukeHandstand, gif
B_] dukeHandstandz. gif

L, public class MyFirstDuke extends Applet{ ' and.’thenmto subfolder

public void paint (Graphics graph) {

B_] dukewwave. gif
B_] dukewave? gif
@ penduke. gif
(5] penduksz. gif
Ei] thinking gif
B_] thinking2.gif
B8 JRE System Library [jrel.6.0_03]

* E javal_Lessonl

Image action = getImage (getDopuwentBase(),". . . .,fimages/duké/dukemsve.glf") :
; and then file

graph.dravIimage (action, 10,10, Color.whatg, thi

back out of javal Lesson3 folder T

g 5=+ javal_Lessond <

-
back out of sre folder L/

2538 src

ko]
=
=11 {default package} - nota fﬂl%uly a2 "package" - see its package ieon - doesn't count)
1 #)| MyFirstDuke java 1 herewe are -
& B8 JRE System Library [jrel.6.0_03] DooumeniBase
v
»

wiritable Smart, Insert, 13:3

Now suppose you want to keep your duke images with your javal_Lesson03 project. Let's try doing that:

1. Go to the java1l_Lesson03/src folder and right-click it to see the popup menu.

2.Choose New | Folder.
3.Nameitimages.
4. Click Finish.

L dava Project

File Edit
J . a0 Into = Praject. .. J
i a
W CIpen in ke Window £ Package -
Syllabs i
i Dpen Type Hierarchy F4 @, Class |
- Show In alk+Shift+w * —
E &4 Interface fen
—— = Copy Chrl+C {5 Enum
. Zopy Gualified Mame (@ Annotation it
- Pashe Chrl+ "7 Source Falder
3 Delete Delete & Folder |~-
Build Path | LIFile
Source Al+shife+s b = Untided Text File
i o
Refactar AlE+Shift+T =4 Other. .. "
fxg Import... e, we generate a brand 1
=7 Export...
e
' Refresh = L pplet, we do not always
Assign Warking Jets. .. r provide a spectal metho
S e v | to this soon.
- Debug &s »
B — — ~
i Packag Teanm » | O m MySecondDuke. java
Comnpare With F = import java
Restore From Local History. .. i -
...b:' i ¥ N import java
Elf_jJ ja Properties Ble+Enter

ay, public clas:

. _'35‘ (default package)
-8, JRE Syskem Library [irel,6.0_03]

Image ac

Do BT)

£ New Folder H=] E3

Folder R

Create a new Folder resource, .-“ Ty

Enter or seleck the parent Folder: \
| javal Lesson03fsre|)

L= n

L

F

IEJ javad_Projectll
TE"I javaZ_Projectd
'[E'J javaZ_Projects
IEJ java3_HomeworkDl
TEJ java3_HomeworkDz
IEJ' javad_Hormework)3
IE"I java3_HomeworkDd
'[EJ java3_HomeworkdS
IEJ' javad_Hormeworks
TE:'JI javad_Homeworkd?

1= java3_LessonOl j

P! P o

.
G:ulder nane: |images)
Advanced »x |

i

@:I | Finish I Cancel

1. Right-click the new /images folder to see the popup menu.
2.Choose New | Folder (notice again, | said Folder).
3.Name itduke.

4. Click Finish.

& New Folder H=] B3

Folder

) . b J_|
Create a new folder resource, :' S

Enter or select the parent Folder: \
jawal _Lesson03)srcfimages _‘/’

i

s

L

I TE javaz_FlowZonkral_Original

I b javaZ_Project1l J
[+ b javaz_Projectd

I TE javaz_Projects

I '[5 javad_Homeworkol

I b javad_Homeworkoz

I '[E jawad_HomeworkD3

I b javad_Horneworkd

I b javad_Homeworkis

I b jawad_HomeworkDs

I b javad_Hormework]?

I TE javad_Lessondl j

ol - e

6Ider name: ||:IukE| 1)

advanced =

@:l | Firish I Cancel

You'll see images.duke. And now to make the copy:

1. Go to the images folder that we originally downloaded, then go into the duke subfolder.
2. Right-click on dukeWave.gif and choose Copy.

3. Right-click your new images.duke folder and choose Paste.

You'll see the copy now. Finally, getrid of the dots by giving the new path to the file you just placed:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MyFirstDuke extends Applet {
public void paint (Graphics graph) {

Image action = getlImage (getDocumentBase (), "images/duke/dukeWave.gif");
graph.drawImage (action, 10, 10, Color.white, this);

graph.drawString ("I am a waving duke", 10,130);

i-} Save and runit.

Applet Uses Other Classes

There are a few more interesting characteristics for us to explore in the Class. Open your MyFirstDuke.java file in the
Package Explorer, ifit's not already open.

In an earlier lesson, we learned that every class inherits from the Class Object. We also learned that we had to import
packages so Java could find classes. Another important accepted practice or convention when using Classes is that
they always begin with capital letters.

Look through the MyFirst Duke code in the Editor Workspace for words beginning with capital letters:

OBSERVE:

import java.applet.Applet;
import java.awt.*;

public class MyFirstDuke extends Applet ({
public void paint (Graphics graph) {

Image action = getImage (getDocumentBase(),"../../images/duke/dukeWave.gif") ;
graph.drawImage (action, 10, 10, Color.white, this);

graph.drawString ("I am a waving duke", 10,130);

Okay, we cheated. drawString does notbegin with a capital letter, butitis using the String class.

We learned earlier that Java will notrun if it cannot find the Classes it needs. We told the MyFirst Duke class to
import the Applet class and we are writing the MyFirst Duke class in the code, so Java can see them. We saw that
the Graphics class was imported if we used the wildcard importof java.awt.*.

So, whataboutlmage and Color and String? Where are we importing them?

What if we specifically say import java.awt.Graphics?

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class MyFirstDuke extends Applet {
public void paint (Graphics graph) {

Image action = getlImage (getDocumentBase(),"../../images/duke/dukeWave.gif");
graph.drawImage (action, 10, 10, Color.white, this);

graph.drawString ("I am a waving duke", 10,130);

T = - . “Hi 5 .
Remember, ifyou see timport java.applet.ipplet;[j *import java.awt. H e in the imports,
click on the encircled + sign.

Do you see the “d and the wavy lines (M) under Image and Color?

Putyour mouse over the «d .ltsays thatImage cannot be resolved to atype and Color cannot be resolved.

Modify the import section as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Image;

public class MyFirstDuke extends Applet {
public void paint (Graphics graph) {

Image action = getImage (getDocumentBase(),"../../images/duke/dukeWave.gif") ;
graph.drawImage (action, 10, 10, Color.white, this);

graph.drawString ("I am a waving duke", 10,130);

Now the errors are on Graphics and Color. Do you know what to do and the reason behind that solution?

Modify the import section as shown:

CODE TO TYPE:

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

public class MyFirstDuke extends Applet {
public void paint (Graphics graph) {

Image action = getImage (getDocumentBase(),"../../images/duke/dukeWave.gif") ;
graph.drawImage (action, 10, 10, Color.white, this);

graph.drawString ("I am a waving duke", 10,130);

Ahh. All is well again. Butit's easier to use the wildcard and get the entire java.awt package!

Let's give ita try justto make sure:

API See the API for the java.awt package.

Scroll down to the Class Summary. (There are a lotof classes there.) Then, scroll down to see that the package
specifically contains the Color, Graphics, and Image classes.

The wildcard (*) can be very handy.

Finally, let's go over the String. There's one special package that you never need to import. Java imports it by default.
That package is java.lang. The class String is in the APl in java.lang. Let's take a look at it.

API Go to the top-level APl page. Notice this is the top-level APl page to all of the packages (Header of Packages).
Scroll down to the java.lang package and click it. Then, scroll down to the Class Summary and find the String class.

-
©
)
©
9
1%
o
o
=5
—
5
5]
-
o
<
o
)
5
«Q
ke
)
Q
o
o
Q
[
o
o
>
o
~—
>
o
o
o
—
o
o
o
3
©
O
=3
o)
o

As you scrolled down, you may have noticed the System class as well (it's just below the String class). This may
help you to see why the java.lang package doesn't need to be imported. The System class will always be needed
behind the scenes.

When programming with Java, the APl will be your most useful tool, so definitely get friendly with it!

In the nextlesson, we'll experiment with our MyFirst Duke class to see how Applets work. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

http://download.oracle.com/javase/6/docs/api/java/awt/package-summary.html
http://download.oracle.com/javase/6/docs/api/

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

An Applet's Life Cycle

When you complete this lesson, you will be able to:

Lesson Objectives

e describe the life cycle of an Applet.
e create oroverride methods in an Applet.
e encapsulate task into methods.

Applets Continued

In this lesson, we're going to examine the life cycle of an Applet. We're also going to start encapsulating tasks into
methods we create ourselves, instead of putting all of them into the paint() method.

Applet Life Cycle

Let's get familiar with the Applet's life cycle. Applets are born, they live fulfilling lives, and then they die. In this
lesson, we'll delve into this cyber-miracle more deeply.

Every time you open an Applet, you're opening an instance, or object, from the Applet class. | know, | keep
repeating this, but | will spare no redundancy if it helps you get this stuff down! Hence we'll address objects in
still greater detail in future lessons. Butin this lesson, we want to look atinstances by observing an Applet's
life cycle.

In order to create a new Applet, we write a class that extends the pre-existing Applet class. Your newly
defined Java class will be a subclass of Applet and thus will inherit all of its capabilities. When your Applet
loads (because you tell itto run), here's what happens:

e Aninstance of your Applet's class is created.
e The Appletinitializes itself.
e The Applet starts running.

To geta visual representation of this process, we'll incorporate more images. Since we already have an
limages folder, let's use the images in it for this lesson as well.

We'll start out by making an applet that did the same thing as the appletin the lastlesson, but this time we'll
move some of the tasks that we putinside the paint() method into another method. This will be our first
attempt at modularity, which is a fancy word for making things more useful to other programs.

Make a new projectfor Lesson 4, and name itjaval_Lesson04. Make a new Class in this project named
MySecondDuke (remember to name the Superclass java.applet.Applet). Now let's program!

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MySecondDuke extends Applet{

public void init () {
setBackground (Color.pink) ;
}

public void paint (Graphics g) {

Image action = think(qg);

// get the action image for Duke

g.drawImage (action, 10, 10, Color.white, this);
}

public Image think (Graphics graph) {
graph.drawString ("I am a thinking Duke", 10,130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/thinking.
gif");
return myAction;

}

'} Save and run it.

Let's break down this code to see what's going on here:

OBSERVE:

import java.applet.Applet;
import java.awt.*;

public class MySecondDuke extends Applet({

public void init() {
setBackground (Color.pink) ;
}

public void paint(Graphics g) {
Image action = think(g);
// get the action image for Duke
g.drawImage (action, 10, 10, Color.white, this);

}

public Image think (Graphics graph) {
graph.drawString ("I am a thinking Duke", 10,130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/thinking.
gif");
return myAction;

}

We're overriding the init () method from the Applet class and the paint() method from
java.awt.container.paint. We've also made a new method called think(), which isn't overriding any methods
from a superclass. It's called inside of the paint() method, it prints "l am a thinking Duke" to the screen and
uses the getimage() method to grab the image "../..images/duke/thinking.gif." Then the graphics object
draws that graphic to the screen via the g.drawlmage () method. Notice we stored the image in a variable
named action, which is of variable type Image. Then the think() method returns the action using return
myAction. Follow the arrows below to see a visual representation:

Breaking down the Applet

import jawa.applet Applet:
import jawva . awt %*;

public clas=s MySecondDuke extends Applet{

public void imit{){
szetBackground{Color . pink):

t
public void paint()y £
Inage action = think{-):
M 7 gt thegetion image for Duke
.IdrawImﬁe(ac on, 10, 10, Color. white, this=):
} |
|I |
public Imagel think(3
', .d rawString("I am a thinking Duke". 10,130):
Inage myAction = getImnage(getDocumentBase()."..~. . inages~duke-thinking. gif":
return myaAction:
I

i

The Graphics Object we named g gets picked up by the think(g) method, which renames the object graph in
the method definition. The Graphics object graph then uses its drawString() method to write "l am a thinking
duke." Inside the definition of the think() method, we store the variable called myAction. And inside of the
variable myAction is an image called thinking.gif. The think() method returns the image to paint(), which
stores itin action. The Graphics object g inside the paint() method has a method named drawlmage().
drawimage() draws the contents of the variable action which is the dukewave.gifimage. Gotit? Good.

API See the API for the methods available to the Graphics object.

Now let's get back to the Applet's life cycle. When you exit the Applet, it stops and if necessary, Java will do a
"cleanup." Cleanup includes things like closing files and removing unnecessary memory access. Before
Java, programmers had to do this tedious cleanup work every time they wrote a program. The main steps in
an Applet life cycle are:

e Initialize itself.
e Startrunning.
e Sfop running.
e Perform a final cleanup, in preparation for being unloaded (destroyed).

AP Go to the Applet page, scroll down to the Method Summary, and look for methods (the second column
has method names):

destroy()

init()

start()

stop()

These methods are a built-in part of the Applet class and you inheritthem when you extend Applet.

As creator orimplementer of a new Class, you can override the parents just as we did with
MySecondDuke.java and all of the classes we've written so far. This means that when you write a method in
your code with the same name as a method of its parent (or any other superclass), the one that you wrote is
the one that Java will use instead of the one in the parent. Java will use the most specific method—that is, the
one farthestdown in the Applet's hierarchical family tree. In your program, you've actually overridden the
init() method by making your own method. Try removing the init method and see what happens. Your
program should still work, but you won't see the nice shocking pink background anymore.

When you override a method, you're using one of the major capabilities of object-oriented
' programming, polymorphism. Poly (more than one; many) and morphism (the condition of having !
. Note a specified form)—in computer languages, this means that the same name can be used in '
different places with different meanings. Although initially this can be confusing, ultimately it's a
' very useful trait. Trust me. '

Note thatin our earlier Applets, we did nothave an init() method, butin this one we do.

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html
http://download.oracle.com/javase/6/docs/api/java/applet/Applet.html

Look atyour MySecondDuke class in the Workspace. See the E icons in the left column?

‘ o
£ﬂ MySecondDuke. java &3 ="

Fimport java.applet.ipplet;[]
s public oclass MylecondDuke extends Applet |

<l public void init{){
1

Seg setbackground(Color. pizk): b
¥

public void paint (Graphics graph) |
Image action = wave (graph); // get the action image for Duke
graph.drawImage (action, 10, 10, Color.white, this):

| -
1| | b

Move your mouse over those icons you see at the init() and the paint() methods. They tell you exactly which
ofthe superclasses has implemented the method before. So whose code are you overriding?

-,

=
Console — O m MySecondDuke.java &3

- =
e 3 &
| import Jjava.applet.hpplet:
import Jjava.awt.)

_3 public class My3econdDuke exl

J ||:u\ferri|:|es java.applet..ﬁ.pplet.inith 11

Mouseover setBackground (Color.;

}

||:u\ferri|:|es java.awt.Cu:untainer.painthr aphit
Immage awtion = think
g.drawImage (action,

<

Hmm, init() says we are overriding java.applet.Applet.init, as we would expect, since we inheritfrom
Applet—but paint() says we are overriding java.awt.Container.paint.

Let's look atour Applet's ancestral trail to learn more. Do an open type hierarchy on the Applet. Highlight
the word Applet, then right-click itand select Open type hierarchy.

?' J@ Q.:. Jl &J{-’!?I Tii} "':t:]:":::l"' adyE |
Cpen Declaration F3 B
Open Type Hierarchy F4 I_
a.useractive, comjcert/javaljiaval 03, himl Open Call Hierarchy Crri+-Alb+H B
Quick, Cutline Chrl4+0 L
Cuick Tyvpe Hierarchy Chrl+T
Shows I Alb+Shifk+i *
ik Chrl4x
Copy Chrl4+C
Paste el =
Source Alb+3hifk+5 #
Refactor Ale+5Shift+T #
Surround Yith Alb+3hifk+z #
are a lot of classes there. Local Histary »
zally has the fallowing classes: References .
Ceclarations L =
Run As LN
lySecondDuke.java 3 Debug As g
Team I
i 3
import java.applet.lpplet: il s W|th .
import Jjava.awt.¥: Replace With
Preferences...

public class MySecondDuke extends Mm i

You'll see the following on the left:

P = iy
[E Package Explore ﬁ!g Hierarchy &3 El consale B8

Applet, warking set; Window Working Set =
|'LE 1l T E - & applet

2 © object 2| % 1%

E----G'ﬁ' amponent s—
EG Container W oW e

=@ panel serialiers &

=KD Applek & " newaudic
------ C] Japplet & accessible
MyFirstDuke 2 7 stub
My3econdD @ . Applet)
WSLTProces @ deskroy()
@ agekicces
@ getApplel
@ getapplel
@ getaudion ™

a fomlinin B

Notice thatin the hierarchy tree (you might have to scroll up a bit), Containeris a superclass of Applet and
hence is a superclass of any class thatextends Applet.

So, even though we had not written an init () method earlier, we had one by default because our Applet
inherits the defaultinit() from the parent Applet class.

APL Find and click the Applet class (look for the word Appletin the left column). You should see something like
this:

‘ Syllabus ‘ JavadPl &3
| Back. | | Refresh | | Faorward | | Stop | Laocation: I http:/fiava. sun.comjavase 6 docs) apifiavalapplet) Applet. bkl
ﬂ PREW CLA55 HEXT CLASS ERAMES MO FRAMES
Ja\."aTM Platform SUmMMARY: NESTED | FIELD | COMSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Standard Ed. 6 _ILI See
4 I I 3
AnySeqHolder a|| javaapplet i |
AppConfigurationEntry — —J C]mAp‘pTet \
AppConfigurationEntry Lol 4+—"" I'H.
4 E"ﬂﬁafa{i_i"________—-"' java. lang. thiect \
Applet — [- ||
AnnieiConiesd java.avt.Component \
Apnletinitializer I—java.awt..Cc\ntainer "-,
AppietSiun L java.awt.Panel ".,
ApplicationException _|;| L java.applet.hApplet
4 I I 3

[£ Package Explorer | T2 Hierarchy 33 B consale| = B[[5] MysecondDuke.java 35 _fuh Container.class |
In the Applet class, scroll down to the init() method and click its link.

You'll see (near the bottom of the description) a more detailed description of the method:
"The implementation of this method provided by the Applet class does nothing." Huh.

This must be the reason we didn't see anything special in our previous Applets. Not every Applet has to
override every method. In fact, some very simple Applets (like our HelloWorld) override no methods atall.
Later we'll add more graphical user interface components to our Applets in the init() method.

So what about that paint() method? How and when does it get started?

Well, after the Applet has completed initialization, it displays itself onscreen in the Graphics area of the Applet
through the paint() method.

The paint() method is in the Container class, so look in that class forinformation aboutitin the API. Since

Containeris a superclass of Applet, we have a link to it through the Applet class's hierarchy at the top of
its APl page.

APL At the top of the Applet API page, click on the link to the Container class in the Applet's hierarchy. Scroll

down under the Method Summary provided in the Applet class. Notice the additional frames showing all of
the methods that the Applet class inherits and from whom they inherit.

Methods inherited from class java.awt.Panel

addiotify

Methods inherited from class java.awt.Container

add, =dd, add, add, add, addContainerlListener, addImpl, addPropertyChangelistener, addPropertyChangelistener, applyComponentOrientation,
areFocusTraversalKeysSet, countComponents, deliverEvent, dolayout, findComponentit, findComponentit, gethlignment¥, getilignment¥, getComponent,
getComponentit, getComponentit, getComponentCount, getComponents, getComponentZOrder, getContainerlisteners, getFocusTraversalKeys,
getFocusTraversalPolicy, getlInsets, getlayout, getlisteners, getMaxiwumSize, getMinimuawSize, getMousePosition, getPreferredfize,
invalidate, isdncestorQf, isFocusCyoleRoot, isFocusCyoleRoot, isFocusTrawversalPolicyProvider, isFocusTraversalPolicySet, layout,
locate, winimwwSize, paint, paintComponents, paramScring, preferredSize, print, princComponents, processContainerEvent,
remove, removedll, removeContainerlistener, removelNotify, setComponentiZOrder, setFocusCycleRoot, setFocusTraversalKewys,
setFocusTraversalPolicyProvider, setFont, setlayout, transferFocusBackward, transferFocusownCycle, update,

insets,

iiet. . lisn;
processEvent, remove,
setFocusTraversalPolicy,
wvalidate, wvalidateTrees

Any class that extends Applet gets the methods defined in the Applet class, and all of those methods defined
in Applet's superclasses. This trait of object-oriented languages is called modularization.

This page probably has more information than we need now, butitis good to know how to follow related
links.

Go back to the Applet class page, scroll down to the Methods inherited from class java.awt.Container frame,
and click on the paint() method link there. .

Again, this is more information than we need at the moment, but notice that the method is passed a Graphics
object on which to paint.

We don't paint on the Applet, we paint on this Graphics area. One of the things that the Appletdoes upon
initialization is create this Graphics area to give to us in the paint() method. Once the method is used, we can
access this Graphics object via the instance of it thatis passed to us.

Look atthe code for MySecondDuke.java. Notice the firstline of the paint (Graphics g) method. Now look
at MyFirstDuke.java (in javal_Lesson03). Notice the firstline of the paint(Graphics graph) method there.
Now, look at the paint method specification in the APl for Container: public void paint(Graphics g).

In all three methods above, Graphics appears first because the method must pass a Graphics
object. This specification tells us the type of Object needed.

You can give whatever name you like to the instance of the Graphics object thatis passed, as
long as the same name is used throughout the block of code within braces.

Hence one class may call the Graphics object g, while another might call it graph. This is another nice thing
about modularity. You don't have to worry about the name some other programmer gives to an object. Within
your own code, variable names are local, meaning your names will only be seen by the code that contains
them.

Open your MySecondDuke.java file in the Editor, ifit's not still open. Edititas shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MySecondDuke extends Applet({

public void init () {
setBackground (Color.pink) ;
}

public void paint (Graphics graph) {

Image action = think(g);

// get the action image for Duke

g.drawImage (action, 10, 10, Color.white, this);
}

public Image think (Graphics graph) {
graph.drawString ("I am a thinking Duke", 10,130);
Image action = getImage (getDocumentBase(),"../../images/duke/thinking.gi
f");
return action;

Itlooks like we have some errors to consider.

public void paint (Graphics graphb {
Tmage action = EE}QELQ];

\\\X\\ ____J__,f——¥¥—gef_fﬁg_action image for Duke

g.drawlmage (action, 10, 10, Color.wkite, this):

1

See Errors public Image think (Graphics graph) {
graph.draw3tring ("I am o thinking Duke®™, 10,130):
Image action = getlmage (getDocumentBase [, "images/duke/thinking. gif™) ;
return action;

If you move your mouse over the error symbols, they both say "g cannot be resolved."

To fix it, change the underlined gs to graph in the paint() method.

(You could also change the code back to the way it was initially—Java will accept either fix.)

@ Save and run it, justto make sure everything still works.

Phew! I'm glad we fixed that. The issue there was one of consistency. When we changed the parameter to
"graph," Java didn't know what "g" represented anymore. Notice, however, that the block of code defined for
public Image think(Graphics graph){ can specify whatever variable name we want. The {} (braces)
designate the scope within which a variable name is known. In other words, other parts of the program know

nothing about g because g is inside the paint() method's scope {}, which is inside of the rest of the program.
And of course, the paint method does whatitsays: it paints.

Once the Appletis initialized, the Applet executes the start () method and any other methods you've written.

When you draw something after the start of the Applet, use the method re paint () rather than
' Note paint.repaint() will clear the screen and then call the paint method so thatitdoesn't paintover !
' previous material. '

Adding Methods

Let's work on an Applet that has more capabilities and learn more about the Applet life cycle. There were three actions
for Duke in MySecondDuke.java. Two ofthem, init() and paint(Graphics g), were inherited Applet methods. We
made the third method, think(Graphics graph), from scratch, specifically for our Duke Applet.

This is another example of modularity and good programming practice. We changed MyFirst Duke (which stored all of
its tasks in the paint method) into a program with separate methods for separate actions. By incorporating this
modularity to methods, we increase our program's flexibility.

Control

While some things (methods, objects, attributes) are inherited from the Applet, you have the power to control
the action ofthe Applet as well.

In MySecondDuke.java--> Now, we'll make a new class that defines more actions and hence allow Duke to
do more stuff. Don't worry if you don't understand all of the code being used in this Applet. We'll explain it all
later.

In yourjaval_Lesson04/src folder, create a new class named Duke, with the Superclass
java.applet.Applet.

Type the following into Duke.java:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Duke extends Applet {
int test = 0;
Image action;

public void paint (Graphics g) {

switch (test%3) {

case 0: action= this.write(qg); break;
case 1l: action= this.think(qg); break;
case 2: action= this.wave(g); break;

}

g.drawImage (action, 10, 10, Color.white, this);

test = test + 1;
// Show that Restart repaints to make a new action

}

public Image write (Graphics graph) {
graph.drawString ("I am a writing Duke", 10, 130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/penduke.qg
if");
return myAction;

}

public Image think (Graphics graph) {
graph.drawString ("I am a thinking Duke", 10, 130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/thinking.
gif");
return myAction;

}

public Image wave (Graphics graph) {
graph.drawString ("I am a waving Duke", 10, 130);
Image myAction = getlImage (getDocumentBase(),"../../images/duke/dukeWave.
gif");
return myAction;

}

Before we run it, let's take a closer look at the code:

OBSERVE:

import Jjava.applet.Applet;
import java.awt.*;

public class Duke extends Applet {
int test = 0;
Image action;

public void paint (Graphics g) {

switch (test%3) {
case 0: action= this.write(g); break;
case 1l: action= this.think(g); break;
case 2: action= this.wave(g); break;

}

g.drawImage (action, 10, 10, Color.white, this);

test = test + 1;
// Show that Restart repaints to make a new action

}

public Image write(Graphics graph) {
graph.drawString ("I am a writing Duke", 10,130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/penduke.g
aLiEtih)
return myAction;

}

public Image think (Graphics graph) {
graph.drawString ("I am a thinking Duke", 10,130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/thinking.
gif");
return myAction;

}

public Image wave (Graphics graph) {
graph.drawString ("I am a waving Duke", 10,130);
Image myAction = getImage (getDocumentBase(),"../../images/duke/dukeWave.
gif");
return myAction;

}

Essentially, this Applet works like the one we did before, except now we have three methods instead of one.
We also added a switch statement that takes an integer named test (we know it's an integer because we
declared itusing int test = 0;. We mod out by 3 using test%3 (reads "testmod 3"). "Mod out" means to take
the remainder. In this case, it means to divide by 3 and take the remainder, so 5%3 = 5/3 = (1 with remainder 2)
= 2. Then the switch statementgets 0, 1, or 2 successively—ifit's 0, it calls the write() method, and so on.

i-} Save and runit.

o] <

case 0: actio: = this . writeigraph): break :
caze 1: actior= this.thinki{graph); break :
casze 2 action: this. wave({graph): breal:

['arm awriting Duke

Applet started.

Watching a Life
In the life-cycle of an Applet, we see thatitis initialized only once. So logically, the init() method would be run
only one time as well. However, Applets are usually seen in browsers. When the user leaves the page—for
example, to go to another page—the browser stops and destroys the applet. The state of the appletis not
preserved. When the user returns to the page, the browser intializes and starts a new instance of the applet.
Similarly, when another window on the computer covers the Applet, the Applet must be repainted when it's
fully uncovered again. When the Appletis started again, the start() and paint(Graphics g) methods (via
repaint()) are called.

Look for the first action (the one you see now) on the list that we have in our paint method. Notice what's next.
In our code, we made it so that each time the Appletis Restarted (and hence repainted), Duke's activity will
change in a specific order.

Click Applet (in the upper left corner) and select Restart. Notice Duke's action and its location on the list.
Click Applet | Restart again and observe the change.

Do itagain.

The actions go in the sequence listed.

Now, note some other aspects of the applet's life-cycle:

Select Applet | Stop (note activity—should be empty).

Select Applet | Start (note activity—should be nextin sequence).

Select Applet | Stop (note activity—should be empty).

Select Applet | Restart (note activity—should be nextin sequence).

Keep the appletopen for now.

Now, we'll Restore Down the lesson window so we can see the Appletview "behind" it. Click the Restore
Down icon at the upper right of the lesson window:

Restore down

ST Java ‘ o5 ®

SE

o

Back FRefresh File Google = O

=

z user leaves the page-—for example,
Spplet must be repainted when it's fully

Minimize the Appletviewer window:

FRlY R R R R - R I R e AL R - I [l oot e il

(@150 s i s rton)

g-dcawlsags [wckiss, L0, L0, Color.whits, thia); =

text = bexk & L7
& showing ThaT BESTATT FepailGs T Balie & Bew SOLiom

prblic Insge writaiGeaphica graphfQ
graph_deawSerang("L s & writing Tuka”, L0,130]:

ion = gerlusgedpechormencieae(i ~, . f AAwapes/ S pendule . pif*|)
Minimized Appletviewer |'
loa graphk(
“T &k & chinkiey [eke”, 10,1300

Insqu myActinn = gutlmsge(pathocmmantAsne(),”. /- . fisages, ouksthinking. gLE”) ;
EATULN WA AT

b

prolic Insqe warm{Graphics graph] |
graph.doaetring("T a8 wering Duke”, 10,1300
Ingye BPAOTLON = JeTIRATE(PECDOTmMEnTEBIE() 1.t e ARSI Ak e erE, JLE™) ¢
catumn aylbctise;

= B[] b e 2T] Dlahew |
1 1< dmport jmvm.mpplet. hpplek;:
Amport Jave,aun, =

T4 public class Duke ewtends Applec i
int ceae = 0:
Ieage sonions

public void painc (Graphics g 4
mwitch (tmacid) |
aaae N1 anrcians Phia.uriceio) hvsak

Now getit back by clicking its Restore Up icon (note the activity—it should be updated—showing nextin
sequence).

Now let's open anotherinstance! Notice Duke's action and its location on the list. Move the Appletviewer to
the right so we can launch a new instance of the Applet and you can still see it and this lesson.

P Click in the editor window and run the applet again. You now have two Appletviewers running. You can run
as many applets as you need in this fashion.

Restart the first one (note activity—should be nextin sequence). Second appletdoes notchange.
Restart on the second one (note activity—should be nextin sequence). First appletdoes not change.
Stop on the second one (note activity—should be empty). First applet does not change.

Each time you run a new Applet, you get exactly that—a new instance of an Applet. Later lessons will illustrate
this further and provide more information about writing Classes.

For more on the Applet life cycle, see the Oracle Tutorial.

Congratulations! Your Java skills are getting stronger and stronger.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://download.oracle.com/javase/6/docs/api/java/applet/Applet.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Decisions, Decisions, Decisions

When you complete this lesson, you will be able to:

Lesson Objectives

e use if statements in your program.
e use switch statements in your program.

e use coparison operators.

Program Control Using If Statements

All algorithms are made up of the following control constructs, which direct the flow of the program:

e sequences (assignment statements, 1O calls)
e repetitions/loops (while, for, do)

e decisions/selections (ifithen, switch)

e method invocation

This lesson focuses specifically on control given decision statements (sometimes called conditionals). There are two
types of decision statements:

e ifstatements
e switch statements

We actually used a switch statementin the lastlesson, and we'll cover them again here. But first, let's discuss if
statements:

If Statements

An if statement consists of three major parts:

OBSERVE:

if (boolean)

{

statements

else

{

statements

}

e the if:the condition being tested (inside parentheses) mustresultin a boolean—a fancy word for
"true or false."

o the statement(s) to be executed: if the condition is true—notice Java does not use the keyword
then (itis implied).

e the else: (optional)if present, the statement(s) thatfollow it are executed if the condition is
false.

Java uses parentheses () for:

- conditions in decision statements (if and switch).
- formal and actual method parameters.

- precedence in math and logic expressions.

Z
o
-
®

Here is an example of the syntax used when only one statementis to be performed. In this example,
statement1 is executed ifthe condition is true, OR statement2 is executed if the condition is false. If,
after the if orelse, there is only one statement to execute, no braces {} are needed around the statement.

OBSERVE:

if (condition)
statementl;

else
statement2;

Below is a flow chartillustrating the flow of control after an if statement. Inside the diamond-shaped figure, a
question is asked. Depending on whether the answer to the question is false or true, control will go to the
left or right respectively. (The rectangles indicate execution statements in the code.) When either one of these
is completed, control will then continue sequentially down the remaining code statements.

false

Lﬂ?hd H':H:In

5431‘?“;,;‘!

The "Statements" in the flow chart above could also be blocks of statements:

For the remainder of this lesson, after if statements, we'll assume they are single statements or blocks of
statements (in braces). The braces indicate a block, thatis, that more than one statement needs to be
executed.

Java statements end in semi-colons (;). There is no ; after a block. The block simply groups
the statements within it.

An else statement may noteven be needed, so a decision mightlook like this:

OBSERVE:

if (condition)
statementl;

Remember that spaces and blank lines mean nothing to Java, so the previous code could also be written as
aone-liner:

OBSERVE:

if (condition) statementl;

Those two statements are equivalent and hence both have the same flow chart:

Okay, now let's try an example.

Make a new projectin the Java1l_Lessons working setnamed javal_Lesson05. Make a new class for this
projectnamed Test Applet that extends java.applet.Applet (i.e. the SuperClass is java.applet.Applet). Type in
the code below:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {
public void paint (Graphics g) {
int myNumber = 1;
if (myNumber == 1)
{

g.drawString ("My number matches",10,20);
}

i-} Save and runit.

In the paint() method, we setthe variable myNumber to 1. Then we asked if myNumber was equal to 1in
the condition of the if statement (myNumber == 1). In java, like in other languages, checking "is equal to" is
done using two equals signs ==. A single equals sign = is used to assign values to variables. In this case,
since "1==1"is true, the statement g.drawString("My number matches", 10,10); was executed and we saw
"My number matches" printed to the screen.

Try changing myNumber = 0 and then run it again. This time it shouldn't print anything.

Now let's try this:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {
public void paint (Graphics g) {

int myNumber = 0;
if (myNumber == 1)
{
g.drawString ("My number matches",10,20);
}
else {
g.drawString ("My number doesn't match",10,20);
}

P Save and run it. This time, "My number doesn't match" prints.

Now, try this:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {
public void paint (Graphics g) {
int myNumber = 0;

if (myNumber == 1);
{

g.drawString ("My number matches",10,20);
}

else {
g.drawString ("My number doesn't match",10,20);
}

Save it. Note the word else has a wavy underline and a red X in the left column.

When you move the mouse over the else error, you see the description Syntax erroron token "else",
delete this token. Since we added a ; atthe end of the if line, it thinks the else is there without an if.

And actually, if you remove the else, the error will go away. Try it. You'll get a "logical error" which means it
won'twork the way you intended, but Java won't "yell" at you because, syntactically, it's okay to end the if
statement without doing anything. A semi-colon ; simply ends a statement. It seems a bitodd because it
won't actually DO anything, butit's okay according to Java.

This may seem kind of obvious, but when you get errors, only follow the suggestion if it makes
sense. Otherwise, look at your code until it does make sense before changing things!

Remove the ; so the line reads if (myNumber == 1) and save the program.

Placement of Block Braces

Indentations and new lines mean nothing to Java. Programmers use them to help make their code easier to

read. Semicolons, parentheses, and brackets make it possible for Java to read our code.
Let's look atsome more examples.

Make a new Class in your javal_Lesson05 project named Driving that extends java.applet.Applet.

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
int age = 15;

public void paint (Graphics g) {
if (age > 15)
g.drawString ("Age is " + age, 50, 50);
g.drawString ("You may drive", 50, 70);

P Save and run it. Now try some different ages to see what happens.

+ WARNING Before driving a motor vehicle, check the laws in your state!

Because the g.drawString("You may drive"”,50,70); line in the paint() method is not within an else or
within a block defined by { and } for the if statement, it always prints. Butis that what we meant to happen? We
want the if statementto determine whether we are old enough to drive or not and that should depend on the
value stored in age.

Notice again thatindentation does not matter to Java. Java is interested only in the placement of the braces.
Add braces as shown below:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
int age = 15;

public void paint (Graphics g) {
if (age >15)
{
g.drawString ("Age is " + age, 50, 50);
g.drawString ("You may drive", 50, 70);

i-} Save and run it.

Try some other numbers by changing the value of the age variable. (Later in this course we'll take inputfrom a
user and then change the value of variables like age accordingly)

Let's make it so no matter what age we putinto the age variable, we'll get the right output.

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
int age = 15;

public void paint (Graphics g) {

if (age > 15)

{
g.drawString ("Congratulations!", 50, 50);
g.drawString ("You may drive", 50, 70);

}

else

{
g.drawString ("Wait!", 50, 50);
g.drawString ("You may not drive yet", 50, 70);

}

g.drawString ("Age is " + age, 50, 90);

i} Run it.

Now, you might be wondering if we can simply getrid of else and instead just use a sequence of if
statements. Let's give ita try.

CODE TO TYPE:

import java.applet.BApplet;
import java.awt.*;

public class Driving extends Applet {
int age = 15;

public void paint (Graphics g) {

if (age > 15)

{
g.drawString ("Congratulations", 50, 50);
g.drawString ("You may drive", 50, 70);

}

if (age < 15)

{
g.drawString ("Wait a few years", 50, 50);
g.drawString ("You may not drive yet", 50, 70);

}

g.drawString ("Age is " + age, 50, 90);

P Save and run it. What happened? It's an easy mistake to make.

If you have two ifs, and you're using less than and greater than signs, make sure that one actually has the
value for equals as well, otherwise you'll miss the "edge case"—people who are exactly 15! Let's go ahead
and fix that:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
int age = 15;

public void paint (Graphics g) {
if (age > 15)
{
g.drawString ("Congratulations", 50, 50);
g.drawString ("You may drive", 50, 70);

if (age <= 15)

g.drawString ("Wait a few years", 50, 50);
g.drawString ("You may not drive yet", 50, 70);
}
g.drawString ("Age is " + age, 50, 90);

NOW the two examples are equivalent. Why would we use elses rather than two ifs? One reason is speed.
Java does not have to go back to the age variable in memory to see whatits value is a second time if there is
an else. Or perhaps you, as a programmer, think that two if s will be more efficientor more clear than one.
This could be true, but you still need to be careful.

So now that we've talked about the lasttwo parts of the if statement, maybe we should discuss the first parta
littte more!

Comparison Operators and Logic
The first component of if statements is the conditional. Is something true or false? Justlike we have the arithmetic

operators (-, *,/, and %) to manipulate numbers and change variable values, we also have operators to determine how
variable values are related and to compare them.

Comparison Operators

We've already used some comparison operators in the examples above, such as <, >, and ==. Here's a more
complete list:

> |greater than

< |less than

==]equal to (true when two objects are the same, or two primitive data types have the same value)

I= | notequal to

<=|less than or equal to

>=| greater than or equal to

(More operators exist that deal with comparisons of single bits at a time, but that's beyond the scope of this
class.)

Let's look more closely at the ==. Remember thatin computer languages, one equals sign tells the compiler
to put the value on the rightinto the address on the left, as we did with int age = 15. For two equals signs,
when the variables on both sides are instances of some Class, you're asking if the variable on the left side
points to the same object as the variable on the right side. If the variable has a value thatis a primitive data
type, then the == is comparing to see if the value on the leftis the same as the value on the right.

We often have more than one thing to compare when we make decisions. Given this, we need to use
additional Jogic. We'll cover computer logic in depth in the second course of this series.

See you in the nextlesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Objects and Classes

When you complete this lesson, you will be able to:

Lesson Objectives

e define a class's Objects and present them logically.
e declare a class and assign itsome attributes.
e declare variables.

Objects

In the lastlesson, we created and ran Applets. To reiterate, a running Appletis an example of an Object. In object-
oriented programming, everything is done through Objects. This lesson will focus on those Objects that people like us
in the programming have defined and created them for specific purposes.

What is an Object?
An Objectis a combination ofdata (properties, variables, fields) and actions (functions, methods).

An Object has a state of being or attribute such as colorOfEyes, profession,length,orlocation, and
behaviors or methods it can perform to change its state ofbeing, like getNewJob, payAttention, or walk.

You may have noticed that we use some funky words. Well, they're created that way because computer
compilers/interpreters do notlike spaces in variable and method names. When creating names for their
objects, programmers cram the words together without spaces, begin each name with a lower case letter, and
capitalize the first letter of each subsequentword in the name, all according to convention.

Sometimes programmers will use more technical terms to describe state and behavior and refer to an Object
as a combination of data (properties, variables, fields) and actions (functions, methods).

Butit's useful to think of Objects as real Objects when designing a program. That the characteristics and
capabilities of Objects belong to the very objects that should possess them. In programming terms, the
methods and attributes that the Object is capable of are contained within the Object definition.

Inexperienced programmers tend to putinformation in all kinds of weird places. You want your Objects to be
organized clearly and contain the rightinformation, since other programmers might use your Objects too.
Like we said, sharing is the greatest benefit of Object Oriented programming!

For example, if | were to ask you what color my cat Missy's eyes were, in what Object might you look to find
the answer? (Pretend that we've created all of these as Java Objects):

e Me (since Missy is my cat)?
e Humans (since she is mine and lam a human)?

e Eyes?
e Cats?
e Missy?

All of these things are Objects, but which one should have a value for the color of her eyes? Hopefully you
recognized thatinformation about the color of the cat Missy's eyes belongs in the Object Missy. The Object
Missy should have an attribute ofeyeColor and the value of that attribute would be green.

In object-oriented programming, the first thing we do is define Classes of Objects. We define an instance of
an Object by letting it have the characteristics and behaviors that belong to that Object.

Objects can also inherit from other Objects. For instance, Missy is a cat. She shares attributes in common
with other cats like fur and claws, and actions like purring and hacking up furballs. What does Missy inherit
from Cats? Certainly she inherits legs, a tail, whiskers, and such. But what makes Missy uniquely Missy? That
would be her specific fur color, eye color, some behaviors, and the like.

If we were to program Missy in Java we'd make a Missy class that creates instances of Missy.

OBSERVE:

import java.cats.*

public class Missy extends cats {
Color colorOfEyes = color.green;
Color colorOfFur = color.gray;
Boolean hungry = True;

public Sound meow () {

if (hungry) {

Sound talk = "cry";
}

else

{

Sound talk = "purrrr";

}

return talk;

What Java syntax did we use to specify inheritance? In fact, you may remember doing something similar
before when you extended Applet. In our Duke Applet from the previous lesson:

OBSERVE:

public class Duke extends Applet

Since our Duke inherited from Applet, any Objects made from these class templates inherited all of the
attributes and actions ofthe Applet class too. Knowing the similarities and differences among Classes will
help you decide the best classes for your Objects to inherit from, and also help you define Classes.

Consider our friend Duke again. In the next section, we will enhance our earlier code and make a template for
Duke objects. (He is simply never going away!)

Classes

The declaration (or definition) of the structure of objects of a certain kind is called a Class. A class is a
template or a blueprint for creating instances of objects.

The Duke Class we made earlier is a template that creates instances which are specifically Duke Objects.
Think of Class as a machine that creates Objects. You don't actually get an Object from a Class until the Java
code is executed, but as you'll see in the upcoming example, you can get different instances of Objects from a
single Class. We can do that by setting attributes and calling methods that are made available to us by the
Class.

javascript:d1e192();

To define a Class, we give it attributes that define that particular type of Object and thus provide its state (the
variables) and also the behaviors that the Objectis capable of performing (the methods).

Z
o
PN
(1]
—
>
(0]
3
D
—
>
o
[oX
(2]
V)
>
o
=h
o
[oX
(]
o
-
[V}
@)
QO
2]
(]
(V)
=
]
n
o
3
[
(=2
3
(]
(2]
Q
L
)
o
==
=0
(0]
o
[V}
n
(2]
=
@
3
(=2
(1]
=
(]

Let's take yetanother look at Duke. So farin our program we haven't given Duke any attributes. We've simply
printed pictures of Duke doing different things. Let's change that. Let's start giving Duke some attributes. What
attributes should we give Duke?

What makes Duke a Duke? Well, Duke is an Applet because he extends Applet. But Duke isn'tjustan Applet—
he has some of his own attributes as well. You can see he always has a pointy head, two arms, a round
nose, and a tooth-shaped body. Hmm, does a Duke have to be a boy? Could there be a Duke with a blue
nose? It's really all up to you.

Our next task in Java will be to add a new attribute to our Duke. Every Duke has a nose. Let's suppose some
Dukes have different color noses. Let's make a Duke class that has an attribute of nose Color with two
possible nose colors: red and blue. Before we pick Duke's nose (as itwere), let's go over some effective
techniques to use when designing Objects:

e When choosing objects/classes, look for nouns in the program. Our class is called Duke.

e When choosing methods, look for verbs in the program. Ours are wave (), write(), and think().

e When choosing a program's fields and attribute values look for persistent characteristics of
the objects. Now we're about to add an attribute called noseColor.

Let's make a new projectfor Lesson 6, named javal_Lesson06.

Let's build on the Duke class we created already. Copy the Duke java file from javal_Lesson04 to
javal_Lesson06:

1. Selectjaval_Lesson04 in the Package Explorer window.
2. Click the + sign to open the Project; if the default package is closed, click on its + as well.
3. Right-click Duke.java and select Co py.

4. Right-click the java1_Lesson06/src folder and choose Paste. You should see a default
package with Duke.javain it.

Now, let's edit our Duke.java and check out how Objects work:

Open the javal_Lesson06/src subfolder, and its default package. Then, double-click the Duke.java
program to open itin your Editor Window.

Remember, click the encircled + sign if you see this in the imports:
Himport Jjava.awvc.]
You should see:

“import Jjava.awt., ¥;
import Jjava.applet.hpplet;

The forward slashes I/ in Java indicate comments. You can use them to provide helpful
' Note information within your code. When Java runs the code, itignores everything from the // to the
' end of the line.

This next example will be a little different from stuff we've done before. We won'tlook at the actions of Duke
one atatime, butinstead we'll observe them randomly.

Edit Duke.java as follows (adding code thatlooks like this and removing code like this):

CODE TO TYPE:

import java.awt.*;
import java.applet.Applet;

public class Duke extends Applet {

rE—test——0+
Image action;
Color noseColor = Color.red;

public void paint (Graphics g) {
// Next line randomly picks just to show that different noses are possib

le.
int rint = (int) (Math.random() * 2); // Gives either a 0 or a 1.
if (rint == 0) {
noseColor = Color.red;
} else {
noseColor = Color.blue;
}
// Randomly let this duke do something - one of 3 choices.
switch ((int) (Math.random() * 3)) // Gives a number between 0 and 2 in
clusive.

case 0: action= this.write(g); break;
case 1l: action= this.think(g); break;
case 2: action= this.wave(g); break;

resize (300,300); // Resize the applet window.
g.drawImage (action, 10, 10, Color.white, this);

= 4 Lot i 1 s
eSTartT repaTiIc CO— MoK o IrewW—acT IO

if (noseColor != Color.red) {
g.drawString ("My nose feels funny", 10, 145);

}

public Image write (Graphics graph) {
graph.drawString ("I am a writing Duke", 10,130);

if (noseColor == Color.red) {

action = getImage (getDocumentBase(),"../../images/duke/penduke.gif")
} else {

action = getImage (getDocumentBase(),"../../images/duke/penduke2.gif"

}

return action;

}

public Image think (Graphics graph) {
graph.drawString ("I am a thinking Duke", 10,130);
if (noseColor == Color.red) {
action = getImage (getDocumentBase(),"../../images/duke/thinking.gif"

} else {
action = getImage (getDocumentBase(),"../../images/duke/thinking2.gif

}

return action;

public Image wave (Graphics graph) {
graph.drawString ("I am a waving Duke", 10,130);
if (noseColor == Color.red) {
action = getImage (getDocumentBase(),"../../images/duke/dukeWave.gif"

} else {
action = getImage (getDocumentBase(),"../../images/duke/dukeWave2.gif

return action;

Make sure you've typed it all correctly. You shouldn't see any errors; just the one warning about the
serializable class at the beginning of the class definition.

{} Save and run it.

Note Notice the applet window is larger. We set that with the statement resize(300,300). The first
argument sets the window's width, the second sets the height.

Restore down

Back Refresh File Googe = O

= user leaves the page-—for example,
pplet must be repainted when it's fully

Restore down the lesson window. Keep the first Duke
Appletrunning and move it to the right.

& Run itagain to make another one and move it to the right.
P Run itagain and move itto the right.

And P Run it yet again.

Now the Applets are all onscreen:

B Applet Viewer: Duke.class JS[=] E3 I P Applet Yiewer: Duke.class =101]
Applet P B Applet Viewer: Duke.class B hpplct Yiewer: Duke.class
% Applet
| am & writing Duke 1am athinking Duke > i
My NOSE TRals Ry I am a thinking Duke | am a waving Duke
Wy nose Teels funmy My nose faels funny
13
Applet started. Applet started.

T T e " Applet started Applet started
action = getImage (getDocumentBase(),"../../images/duke/dukenave.gif") ; T

Notice that sometimes we get a Duke with a red nose and sometimes we geta Duke with a blue nose.

What have we done? This time we didn't Restart an existing Applet, but Ran a new one. Each time you run an
Applet, you're creating a new Applet and hence a new Duke Object. Notice in the code that Duke extends the
Class Applet, so Duke inherits from Applet and thus we say Duke is an Applet.

So, every time we run the Applet, we geta new Applet Object and we are getting a new and different Duke
(Note that because our algorithm is random, we might also get the same Duke twice). Each of these windows
shows a new instance of the Appletand hence a new instance of Duke—with all of the inherited characteristics
from Applet and all of the characteristics specified in the Duke template.

Each time we use a Class to make one of the things that are described by our Class template,

E Note we are creating an instance of the class (called an Object).

We call this instantiation.

Specifically, we have a class template named Duke which extends Applet. The code written describes the
class's attributes and methods. Each time we run the code, we generate a brand new Duke possessing all of
those attributes and methods.

Since everything in Java is notan Applet, we don't always have Applets to make differentinstances for us. In
order to make instances of Classes, Classes usually provide a special method (a Constructor) thatis
called or invoked when someone wants to "construct’ an instance of that class. (More on this topic later.)

Let's look atthe code in a bit more detail to get a thorough understanding of each part:

OBSERVE:

import java.awt.*;
import java.applet.Applet;

public class Duke extends Applet {

Image action;
Color noseColor = Color.red;

public void paint (Graphics graph) {

// Next line randomly picks Jjust to show that different noses are possible.

int rint = (int) (Math.random() * 2); // Gives either a 0 or a 1.
if (rint == 0) {

noseColor = Color.red;
} else {

noseColor = Color.blue;
}
// Randomly let this duke do something - one of 3 choices.
switch ((int) (Math.random() * 3)) // Gives a number between 0 and 2 in
clusive.
{
case 0: action= this.write(graph); break;
case 1l: action= this.think(graph); break;
case 2: action= this.wave (graph); break;
}
graph.drawImage (action, 10, 10, Color.white, this);
if (noseColor != Color.red) {
graph.drawString ("My nose feels funny", 10,145);

public Image wave (Graphics g) {
g.drawString ("I am a waving Duke", 10,130);

if (noseColor == Color.red) {
action = getImage (getDocumentBase(),"../../images/duke/dukeWave.gif"
)i
} else {
action = getImage (getDocumentBase(),"../../images/duke/dukeWave?.gif

return action;

}

public Image write (Graphics g) {
g.drawString ("I am a writing Duke", 10,130);>

if (noseColor == Color.red) {
action = getImage (getDocumentBase(),"../../images/duke/penduke.gif")
} else {

action = getImage (getDocumentBase(),"../../images/duke/penduke2.gif"

}

return action;

}

public Image think (Graphics g) {
g.drawString ("I am a thinking Duke", 10,130);
if (noseColor == Color.red) {
action = getImage (getDocumentBase(),"../../images/duke/thinking.gif"

} else {
action = getImage (getDocumentBase(),"../../images/duke/thinking2.gif

return action;

ColornoseColor = Color.red; initially sets the noseColor attribute to red. The next couple of references to
noseColor are within an if statement that checks a random integer we call rint, which can be 0 or 1. Ifit's zero.
the noseColor stays red; ifit's 1 (thatis, "else not0"), we setthe noseColor attribute to blue. The next
reference to noseColor appears where we check to see if the noseColorisn't red;ifitisn't, we print "My
nose feels funny". The remaining references to noseColor all check to see if the attribute is setto red or not. If
itis, then we put up the picture of Duke with a red nose, otherwise we put up the alternate picture of Duke.

We also changed our switch statementto work randomly, rather than in sequence.

Notice in the example above, the variable rint is declared inside of the paint (Graphics graph) method. This
is called a local variable. Its scope is solely within the block of code (thatis to say, within the curly braces {
})in which itwas declared. This means that if we were to try to access this variable from anywhere outside of
the paint() method, we would geta compile error, because the rint variable only exists within the paint ()
method.

Local variables can be defined within any block of code defined by curly braces or any conditional or loop that
does notneed curly braces. However, defining them in a conditional orloop that does not need curly braces
would be useless, since they could only be accessed in that single line of code.

Example
if(x > 10) {
int y = 30;

}
System.out.println(y) ;

In this short example, the variable y only exists within the if statement, so the System.out.printin(y) statement
would cause a compile error.

Java Data Types

The Java programming language is strongly typed, which means that all variables must first be declared
before they can be used. This involves stating the variable's type and name, as you've already seen in these
lessons. Like:

Image Action;
and:
ColornoseColor=Color.red;
and:
int rint = (int)(Math.random() * 2);

Some of the types are primitive data types and some of them are Object Data Types. You can tell the
difference because Object data types are Capitalized and primitive data types start with a lowercase letter (like
int).

Declaring a variable tells your program that a field exists (with whatever name you choose, like noseColor
orAction), itholds data, and has some initial value. Ifyou don't give an initial value, most types have a
defaultinitial value. A variable's data type determines the values it may contain, plus the operations that may
be performed on it. In addition to int, the Java programming language supports seven other primitive data
types. A primitive type is predefined and is named by a reserved keyword. The eight primitive data types
supported by the Java programming language are (you don't need to understand all of this butread over it.
We'll be covering these in more detail in the second course of this series. Pay particular attention to int,
double, and boolean):

An 8-bitsigned two's-complementinteger. It has a minimum value of-128 and a maximum
value of 127 (inclusive). The byte data type can be useful for saving memory in large arrays,
byte where the memory savings actually matters. They can also be used in place of int where their
limits help to clarify your code; the fact that a variable's range is limited can serve as a form of
documentation.

A 16-bit signed two's-complementinteger. It has a minimum value 0f-32,768 and a maximum
short value 0of 32,767 (inclusive). As with byte, the same guidelines apply: you can use a shortto save

memory in large arrays, in situations where the memory savings actually matters.

A 32-bit signed two's-complementinteger. It has a minimum value of-2,147,483,648 and a
maximum value of2,147,483,647 (inclusive). For integral values, this data type is generally the
int default choice unless there is a reason (like the above) to choose something else. This data
type will most likely be large enough for the numbers your program will use, butif you need a
wider range of values, use long instead.

A 64-bitsigned two's-complementinteger. It has a minimum value of -
long 9,223,372,036,854,775,808 and a maximum value 0f9,223,372,036,854,775,807 (inclusive).
Use this data type when you need a range of values wider than those provided by int.

A single-precision 32-bit IEEE 754 floating point. Its range of values is beyond the scope of this
discussion, butis specified in section 4.2.3 of the Java Language Specification. As with the
recommendations for byte and short, use a float (instead of double) if you need to save
memory in large arrays of floating point numbers. This data type should never be used for
precise values, such as currency—for that, use the java.math.BigDecimal class instead.
Numbers and Strings cover BigDecimal and other useful classes provided by the Java platform.

float

A double-precision 64-bit IEEE 754 floating point. lts range of values is beyond the scope of
this discussion, butis specified in section 4.2.3 of the Java Language Specification. For decimal
values, this data type is generally the default choice. As mentioned above, this data type should
never be used for precise values, such as currency.

double

Has only two possible values: true and false. Use this data type for simple flags that track

boolean true/false conditions. This data type represents one bit ofinformation.

A single 16-bit Unicode character. It has a minimum value of"\u0000' (or 0) and a maximum

char 1 alue of \uffff (or 65,535 inclusive).

In this course we've been using intand boolean a lot.

The other kinds of types we're using are Object types like Color and Image, when you declare a variable to be
ofthose types itreally means that you're either going to create an instance of that type with the variable name,
oryou're going to set the variable to an object of that type.

When we say Color noseColor = Color.RED, we are setting noseColor to be a Color object. We could
also say ColornoseColor=newColor(255,0,0); ((255,0,0) is the RGB value ofred). In fact Color.RED is
defined in the color class exactly the same way using new Color(255,0,0). We'll cover this more later. For now,
| justwantyou to know what you are typing when you type in the variable declarations.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Classes and Instances

When you complete this lesson, you will be able to:

Lesson Objectives

e use the constructor method.
e create multiple instances of an appletto execute different characteristics and actions.

Object Design

Okay kids, it's time to get serious about making things more Object Oriented. So far we've played around with an
Applet that executes actions and has characteristics, but everything we've done has been within a single Class. In this
lesson we'll put Duke into a class of his own and let the Applet do whatit's good at--grabbing stuff and putting iton the
screen. And we'll let the Duke Class do whatitshould be good at, which is creating instances of Dukes that execute
different actions and characteristics.

Who gets what?

Since you know how to starta new project now, let's create one. Call itjava1l_Lesson07 and then give Duke
a nice clean Class of his own that we'll call Dukes (plural). This time though, the class won't be extending
Applet. Instead we'll create a different Class for that. It will use the Class we're making now. You'll see how
this all works in a minute.

1. Start a new project called javal_Lesson07.
2. Make a new class named Dukes (plural!).
3. The dialog should have Source folder: javal_Lesson07 (or

To javal_LessonQ7/src).

do 4.Give itName: Dukes.
5. This time DON'T change the superclass: java.lang.Object.
6. Click Finish.

Dukes will not be an Applet, which is why its Superclass should remain java.lang.Object.

Type in the blue code below:

CODE TO TYPE

public class Dukes {

private Color noseColor = Color.red; // default Dukes have red noses

private String action = "../../images/duke/dukeWave.gif"; //default Duke
s are friendly

private String whatDoing = "Give me something to do";

private String message= "";

public Dukes ()
{

int rint (int) (Math.random() * 3); // randomly generates a 0, 1,
or 2
if (rint == 0)

{

noseColor = Color.blue; // more often red by default
action = "../../images/duke/dukeWave2.gif";
message = "What's up with the blue nose!";

}

public String getAction()
{

return whatDoing;

}

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

public String write()
{

whatDoing = "I am a writing Duke";

if (noseColor == Color.red)

{

action = "../../images/duke/penduke.gif";
message = "";

}

else

{

action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}

return action;

}

public String think()
{

whatDoing = "I am a thinking Duke";

if (noseColor == Color.red)

{

action = "../../images/duke/thinking.gif";
message = "";

}

else

{

action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave ()
{

whatDoing = "I am a waving Duke";

if (noseColor == Color.red)

{

action = "../../images/duke/dukeWave.gif";
message = "";

}

else

{

action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

This is justa Java class and won't actually run, but you should SAVE it anyway. Only applications and
Applets will run. Go ahead and try to run it, just so you can observe the error.

Now let's break the code down bit by bitto see what this class is all about.
The first part of the definition of the Dukes Class is located on the firstline. Inmediately after that we have

some Attributes (variables) defined. Ignore the italicized textfor now; we'll discuss that shortly. For now,
pay attention to the colored text:

OBSERVE: The colored text below

public class Dukes {

private Color noseColor = Color.red; // default Duke's have red nose

s
private String action = "../../images/duke/dukeWave2.gif"; //default
dukes are friendly
private String whatDoing = "Give me something to do";
private String message = "";
public Dukes ()
{
int rint = (int) (Math.random() * 3); // randomly generates a 0,
1, or 2
if (rint == 0)
{
noseColor = Color.blue; // more often red by default
action = "../../images/duke/dukeWavel.gif";
message = "What's up with the blue nose!';

}

public String getAction()
{

return whatDoing;

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

public String write()
{

whatDoing = "I am a writing Duke";

if (noseColor == Color.red)

{

action = "../../images/duke/penduke.gif";
message = "";

}

else

{

action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}

return action;

}

public String think ()
{

whatDoing = "I am a thinking Duke";

if (noseColor == Color.red)

{

action = "../../images/duke/thinking.gif";
message = "";

}

else

{

action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave ()
{

whatDoing = "I am a waving Duke";

if (noseColor == Color.red)

{

action = "../../images/duke/dukeWave.gif";
message = "";

}

else

{

action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

If we had inherited from something other than the defaultofjava.lang.Object , we'd see the extends
keyword identifying the superclass on the firstline, justlike before when we extended the Applet class. You
don'tneed to extend Object because Java assumes every Class extends it. As soon as the Class is named
in the definition, we begin defining its attributes (noseColor, whatDoing, action,and message).

Notice that not only did we define the type these attributes take, but we made them private. So what's this
public and private stuff all about, you ask? Well, when we make Classes, we usually make them for other
Classes to access and use. That's why we set permissions on the members of a Class that other Classes
can access. Permissions can be public, private, or protected. (We'll discuss other important aspects of
these modifiers in a later lesson.) For now we'll just study two permissions: public and private.

The Instance Variables (attributes) listed above are all private and the class definition and access methods
are all public. The reserved words of public and private are modifiers presentin order to indicate access
capabilities for Fields and Methods. Since Classes are made for other Classes to use, we use public and
private to determine the capabilities they can access. Public Methods usually only serve to getor change
the values of private members, and are referred to as getters (gets) and setters (puts/changes). They are
sometimes referred to as accessors and mutators as well. The idea behind all of this is for our code to be
encapsulated and our data/information to be hidden. That way we only allow the values ofthe
variables to be changed or accessed through these accessor and mutator methods. Thus the
variables themselves are private, but access to them may be public (of course, these members are
accessible inside of their own classes). Limiting access this way helps to prevent data corruption.

For example, in this Class we've gotsome accessors called getAction(), getActionlmage(),
getNoseColor(),and getMessage(). These methods were made specifically to allow programmers to get
the values of the variables whatDoing, action, noseColor, and message, respectively, without accessing
them directly. So now we have two sets of methods, one made up of accessors { getAction(),
getActionimage(), getNoseColor(), and getMessage() } and the other made up of actions that Dukes can
perform { write(), think(), and wave() }.

In the Dukes class, we allow each of the Dukes to have characteristics. The Class defines attributes of
noseColor (oftype Color), an action this particular Duke can take (of type String), and the message this
particular Duke can give us (of type String).

Accessor Methods in Dukes

public String getAction()
{

return whatDoing;

}

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

The remaining methods are the now familar actions of a Dukes object, thatis, they are the things that Dukes
can do: write(), think(), wave().

Action Methods in Dukes

public String write()
{

whatDoing = "I am a writing Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/penduke.gif";
message = "";
}
else
{
action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}
return action;

}

public String think ()
{

whatDoing = "I am a thinking Duke";

if (noseColor == Color.red)

{
action = "../../images/duke/thinking.gif";
message = "";

}

else

{
action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave ()

{

whatDoing = "I am a waving Duke";

if (noseColor == Color.red)

{
action = "../../images/duke/dukeWave.gif";
message = "";

}

elsge

{
action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

Finally, there's one special method type called the Constructor:

Dukes Constructor Dukes()

public Dukes ()

{
int rint = (int) (Math.random() * 3); // randomly generates a 0,
1, or 2

if (rint == 0)

{
noseColor = Color.blue; // more often red by default
action = "../../images/duke/dukeWave2.gif",;
message = "What's up with the blue nose!';

}

The italicized code from above defines this Class's Constructor. A constructor is the method that's called to
create an instance ofa Class. If you don't provide a constructor definition, a default constructor without
parameters is created automatically (we'll get to that later). Constructors always have the same name as
that of the Class. That's why there is a method called Dukes() in this code. When we write another Class
thatinstantiates this Dukes Class, we'll have to call this method which then constructs Dukes instances for us
(we'll give this a try later in the lesson).

In this Dukes Class, the Constructor determines the noseColor of this Duke's nose, the action this
Duke takes, and the initial message to send from this Duke. The code in this particular constructor picks a
random number from among 0, 1, and 2. Only ifit selects 0 does it give Duke a blue nose, otherwise his nose
stays red.

It's important to be able to discern the various parts of the definitions of classes, although in essence, a class
only has methods and variables. In the APl they use the term Fields instead of "Variables", so you might
see a Field Summary. Don'tworry, it's justa variable.

In addition, a lot of code organization is done using blocks. Java uses blocks of code to specify definitions
for classes, methods, and other groupings of code. Brackets {} are used to begin and end blocks. Blocks are
also called compound statements because they can be used to define or group together more than one

statement.
e |
: To do 1. Let's match some blocks ofcode. |

Eclipse can help us identify blocks of code. Click directly after an opening bracket { anywhere in the
Dukes .java class. Notice that there's a little rectangle around its closing bracket}. Eclipse will identify the
matching opening bracket when you click after the closing bracket.

Remember, the { } blocks help us identify the methods of a class. The fields/variables will not have blocks
oftheir own and should always be either at the very beginning of the class definition block, after the opening {,
or atthe very end of the class definition block, before the closing } . This will make your program more
readable.

Initialization and Constructors

Defaults

Classes are the templates for Objects. The Class definition sets up the way Objects will look when they're
instantiated. Defaults can be used to give instances initial standard values. In our definition of Dukes, Dukes
will "normally" have red noses, and then those Dukes willl have default actions.

Default values

private Color noseColor = Color.red; // default Duke's have red noses

private String action = "../../images/duke/dukeWave2.gif"; //default dukes a
re friendly

private String whatDoing = "Give me something to do";

private String message = ""; //initial message is blank

In addition to the above default values for the attributes, a Class's constructoris used to make a specific
instance of the Class and is usually used to reset some of the Attributes for thatinstance. In our case, the
Dukes constructoris used to decide the color of this particular Duke's nose. Normally Dukes will have a red
noseColor by default, but our Constructor has code in it that can change that upon instantiation depending
on arandom variable (rint). Similarly, we set the Dukes defaultaction to wave. However, if you look in the
Dukes constructor, we are generating random numbers of 0, 1, and 2 that will ultimately determine which
characteristics an instantiated Duke will have. If the random number happens to be 0, we are giving that
instance of Dukes a blue nose. Since the blue-nosed, waving Duke must have a blue nose, we are also
changing the default waving red-nosed Duke (dukeWave.gif) to a waving blue-nosed Duke (image of
dukeWave. gif).

Constructors have specific characteristics that differ from other methods. Remember, they always have the
same name (case-sensitive) as the class, and the programmer never specifies that they "return" anything,
since the constructor always returns exactly one thing--an instance of this type of class.

We're going to get Duke's fingers moving in the next sections by building some Applets that use the Dukes class we
created in this section. This might be a good time to take a break or maybe even take a nap.

=3

H%E

Making an Applet for Dukes

If you haven't gotitopened already, open up the Dukes.java file we worked on in the previous section. You
may notice that Eclipse is giving us some errors:

=
“lBg T
dDUb|e public class Dukes |
private Color noseColor = .red; // default Duke's have red
import java.awt.Color; 4

B rnpott 'Color (java, awk)

(& Create class 'Color’

€9 Create interface 'Color’
o Create constant 'Color'

@ Create enum 'Color’

@ Change to 'Collator' (java,bext)
@ Change to 'ColorModel’ (java. avt image) tes

w Change ko 'ColorSpace’ {java.awt, color)

public class Dukes {

l

@ Change to 'ColorType' (java.awt.Pageﬂ.ttrib_uliLl
»

message = "What's up with the blue nose!™:

public 53tring getlctioni)
{

Double-click on those errors for suggestions for fixing them. Always try the first suggested fix first because it
might also fix some of the errors farther on down the chain. Go ahead and try the first suggestion. It worked,
didn't it? Did all of your errors go away? Cool, huh? At the top of your Dukes java file you should see this:

Atthe top of your Dukes .java file:

import java.awt.Color;

That's because we're using the colors from the Color object.

Since the class Dukes is notan Applet (remember--he is a java.lang.Object), we need to make an Applet that

will use instances of Dukes and display them.

Starta new class called DukesApplet and make sure it extends Applet this time. Its superclass should be

java.applet.Applet.

CODE TO TYPE: DukesApplet

import java.awt.*;
import java.applet.Applet;

public class DukesApplet extends Applet{
Dukes myDuke;

public void init()
{

myDuke = new Dukes () ;

}

public void paint (Graphics g)
{
String action="";
switch ((int) (Math.random() * 3))
{
case 0: action= myDuke.write(); break;
case 1: action= myDuke.think(); break;
case 2: action= myDuke.wave () ; break;

}

Image myAction = getImage (getDocumentBase(), action);
g.drawString (myDuke.getAction(), 10,130);
g.drawString (myDuke.getMessage (), 10,145);
g.drawImage (myAction, 10, 10, Color.white, this);

i} Run it.

The outputis the same as before, butthe code is much different this time. Let's look at what this code is doing
differently.

Notice that this Class extends Applet. As we mentioned, the Java people already wrote the Class Applet
and the Class Graphics used by Applets. Now let's take a look at this Applet and see how we've
incorporated the Dukes class we made earlier.

DukesApplet

import java.awt.*;
import java.applet.Applet;

public class DukesApplet extends Applet{
Dukes myDuke;

public void init ()
{
myDuke = new Dukes () ;

}

public void paint (Graphics g)
{
String action="";
switch ((int) (Math.random() * 3))
{
case 0: action= myDuke.write(); break;
case 1: action= myDuke.think(); break;
case 2: action= myDuke.wave (); break;

}
Image myAction = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction(), 10,130);
g.drawString (myDuke.getMessage (), 10,145);
g.drawImage (myAction, 10, 10, Color.white, this);

Here we instantiated and used an object from a Class we created. In doing so, we created an Instance
Variable that has the type of the object name. In this case we wrote: Dukes myDuke, thus the instance
variable myDuke is of type Dukes. Now we need to give myDuke a value. That's where the Constructor
Dukes() from the Dukes class comes in. When we write myDuke = new Dukes(), Java uses the constructor
to create an instance of Dukes, which in turn sets any attributes we putinto the Dukes() constructor. Now that
we have an instance of Dukes on our hands (myDukes), we can use the methods of Dukes however we wish.
To access methods of Dukes, we simply use the syntax myDukes.methodName().

Now instead of having to write the think(), wave(), and write() methods, we can simply reuse the methods that
are in the Dukes() Class. We also used the getAction() and getMessage() methods to access the message
and action that were setin the Dukes class. Also, notice that the action variable in this Class is notthe same
as the action variable in the Dukes Class.

This code is more modular and encapsulated than our first Applet. This new Applet specifies things to
perform using only Applet's native methods, such as init() and paint(Graphics g). It's a better design.

Notice the init() method. It's in this method that we create orinstantiate ourinstance ofthe Dukes class.
Classes thatare not Applets are instantiated with the new command.

Like all variables, you can declare and instantiate (give value) in one line:
Dukes myDuke = new Dukes();

In general, when you create a new object by invoking a constructor, you can do itin one or two lines.

OBSERVE: Declare and Instantiate

Dukes myDuke;
myDuke = new Dukes();

or

Dukes myDuke = new Dukes () ;

In the first case, Dukes myDuke is only declaring that myDuke is going to be oftype Dukes. Remember
when Eclipse said, "cannotresolve the type" of something? Everything in Java mustbe declared as a type

so Java knows where to look for it. The myDuke = new Dukes() creates an instance with the new command
and the Classes constructor Dukes().

In the second case above, Dukes myDuke = new Dukes() both declares and creates the instance in one
line.

In the next section we'll see the difference between the two cases.

Another Applet for Dukes

We've been touting the power of object-oriented design for a while now, so let's see how to take advantage of
its capabilities by reusing the Dukes class in another Applet. In this Applet we'll create two instances of
Dukes. Make a new Class called TwoDukesApplet,and rememberto make the superclass
java.applet.Applet. Be sure to create this file in the Lesson07/src folder as well.

CODE TO TYPE: TwoDukesApplet

import java.applet.Applet;
import java.awt.*;

public class TwoDukesApplet extends Applet {

Dukes myDuke, yourDuke; // two declarations for Duke instances
String myAction, yourAction; // each will have their own action

public void init() {

myDuke =new Dukes|() ; // instantiate first Duke
myAction = myDuke.getActionImage(); // his first action

yourDuke =new Dukes() ; // instantiate second Duke
yourAction = yourDuke.think() ; // his first action is to think

resize (400,200); //resize the applet window so that we can see both duke

}
public void paint(Graphics g) {

Image myChoice = getImage (getDocumentBase (), myAction); // get and show image
for first Duke

g.drawString (myDuke.getAction(), 10,165);

g.drawString (myDuke.getMessage (), 10,180) ;

g.drawImage (myChoice, 20, 50, Color.white, this);

Image yourChoice = getImage (getDocumentBase (), yourAction) ; // get and show
image for second Duke

g.drawString (yourDuke.getAction (), 200,165) ;

g.drawString (yourDuke.getMessage (), 200,180) ;

g.drawImage (yourChoice, 200, 50, Color.white, this);

}
}

i-}Save and Run it.

Now you should see two instances of Duke on this Applet. Notice thatwe used resize(400,200) to make the
Applet big enough so we could see both Dukes.

As the course progresses, you willimplement and change Classes in many different ways. For now, the goal
is to understand the basics: Classes define variables and methods which help to define the Class itself and
specify its capabilities. In the nextlesson we'll write our own Classes again, and we'll also use some of the
classes that Java has written for us to make coding easier.

But for right now, we're exactly where we want to be!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using the API: Introductory Graphics

When you complete this lesson, you will be able to:

Lesson Objectives

e use the graphics class.
e use the java.awt package (abstract window toolkit) thatis found in the API.

Using Java Provided Classes

In this lesson we'll focus on using the Graphics class and its capabilities. This will serve two purposes: firstwe'll learn
how to do some drawing, and second we'll learn more about using pre-defined classes from the Java API.

java.awt.Graphics Class

In mostofthe Classes we've created so far, we inherited from Applet. To do this, we imported using import
java.applet.Applet; so the Java compiler could find the class and retrieve its inherited properties and
methods. Mostobject-oriented programming is not about writing code from scratch, but using code that
others have already written. Java provides a large library of code, as well as documentation to help us figure
outwhat's available in that library and how to use it. The documentation is located in the API. (And there's a

handy #"1 link on the menu too.)

You mightrecall that we used the Graphics Class in many of the Classes we created in earlier lessons. In an
Applet, the Graphics area is passed to the paint(Graphics g) method when it gets instantiated. The
Graphics areais where you can "draw" or "print" things. For instance, in our HelloWorld Applet, we printed
some text. The Graphics class allows us to do stufflike that. In this lesson, we'll work with the Graphics
and applet Classes to see some of the capabilities they offer.

Alright, you know the drill. Start a new project called java1l_Lesson08. Justin case, I'll remind you how
to do itone more time:

1. Go to the File menu: File | New | Java Project.
2.Give itthe name javal_Lesson08.

, To o :
! do 3. Click Finish. !
' (Ifitasks whether you'd like to "Open Associated Perspective", say "No"--we want to '
' keep our own perspective environment.) '

Now starta new Class called FirstLine and make the superclass java.applet.Applet:

CODE TO TYPE: Simple Applet Using Graphics

import java.awt.*;
import java.applet.Applet;

public class FirstLine extends Applet ({

public void paint (Graphics g)
{

g.drawLine (20,10,40,40) ;
}

i-}Run this Applet. You should see a line. | guess that's kind of cool, huh? Now play around and change the
numbers in the drawline() method to see if you can get the line to move up from left to right.

If there were instance variables or class variables present, we'd put them either at the beainning of the class,

http://download.oracle.com/javase/6/docs/api/

before any method definitions, or at the end ofthé class éfter éll ofthe method deﬁnitic;ns.

In this class there is only one method defined. Method definitions are easy to find because they will have
parentheses for their parameters and then curly brackets to indicate their block of code.

One of the methods defined in the FirstLine class is the paint(Graphics g) method.

The Graphics ginthe argumentofthe paint method is called the method's formal parameter. Itindicates
that this method mustbe given or passed an instance of a Graphics object. The Graphics instance thatis
passed to the method is called the actual parameter and has been given the variable name ofg. Since g
now represents the Graphics object, we can execute "Graphics" actions on it.

As you can see from this little Applet we made, Graphics objects can draw lines. Manipulating pixels enables
us to determine the location and color of our graphics. To control location, we consider horizontal and
vertical or (x,y) coordinates, with (0,0) being defined as the top left corner.

o

0D 25 4p X
|
|
|
|

7)1 SR

g.drawline(20,10,40,40)

X
v

In this example, we drew a line from pixel location (20,10) to pixel location (40,40). So in the
g.drawline(20,10,40,40) method, the firsttwo numbers are the coordinates of the start of the line and the
second two numbers are the end of the line.

We see two methods in the FirstLine class:
1. paint(Graphics g) is amethod we are defining for our new subclass FirstLine ofthe class
Applet. The method paint() has one formal parameter oftype Graphics.

2. drawLine(20,10,40,40) is a pre-defined method (although we can enter any parameters we
wish) of the class Graphics, of which gis an instance. We are invoking (using or calling) this
method. To do that, we need to look at the API in the Graphics class to see how it was defined so
that we know its formal parameters and then when we use it, we can pass it the right things.

Using the API

As we've mentioned, the API contains the existing classes Java provides for programmers.

-
o
o
o
-_—
®
o
g
—
>
o
>
3
o
©
(]
=
>
«
o
D
«Q
(]
>
[0]
=]
[v]
V)
]
o
o
Q
2
(0]
-
>
(0]
U
Y]
(2]
>
Q)
«Q
o
(7]
>
0]
QD
Q.
0]
o

Even though we often provide these links for you during lessons, try to getused to going to the

Note .
API hutton on the menu bar instead.

Packages are groupings of Classes that are related in some fashion. These packages are putinto different
directories orfolders for us to access, butin order for Java to find them when we're running our programs,
they have grouped them into what they call packages.

The packages thatwe'll find particularly useful now are:

e java.applet
e java.awt
e java.awtevent

e javalang

http://download.oracle.com/javase/6/docs/api/

But there are many more. In this lesson, we'll mainly focus on one class thatlives in the java.awt package.
(By the way, awt stands for abstract window toolkit.)

In the API page that opened:

1. Click on the java.awt link.
To do 2. Scroll down until you see the header Class Summary.
3. Scroll down to locate the Graphics Class and then click on it.

You should get a page thatlooks like this, although you may see more frames for other packages and
classes on the left. Let's take a closerlook atsome important aspects shown in the API. Keep one of the
browsers with the Graphics class open so we can compare.

java.awt

Class Graphics

java.lang.Object

L java.awt.Graphics

Direct Known Subclasses:

DebugGraphics, Graphics2D)

public abstract class Graphics
extends Cbhbject

In the top left corner, the APl tells us that the Graphics class is in the java.awt package. Notice Classes are
named with the package name first, and that package names are separated with periods and start with lower
case letters. Also note that Classes always start with capital letters. That makes it easy to differentiate
between the package and the class.

The APl also displays aninheritance tree:

java.lang.Object

(I java.awt.Graphics

This indicates that Graphicsis an Object.

It also indicates which package each of the classes is in (Objectis in java.lang and Graphics is in java.awt).
Remember from Lesson 2 thatevery object in Java inherits from the class java.lang.0Object. That's one
reason you never need to import the package java.lang. Because it's always needed, Java imports it by
default.

Next the APl tells us all of the Classes that are provided in Java that have the Graphics class as a parent (a
superclass).

Direct Known Subclasses:
DebugGraphics, Graphics2D

In the API page for the Graphics class:

javascript:d1e378();

1. Click on the DebugGraphics Subclass link.

2. Note its inheritance chain. Its Superclass is java.awt.Graphics.
To do 3. Go back to the Graphics page.

4. Click on the Graphics2D Subclass link.

5. Note its inheritance chain.

To reiterate and make absolutely certain this will be emblazened into your memory banks for all eternity,
inheritance is an important part of object-oriented programming because itallows us to use Classes that
have already been written.

Finally, let's look atthe public abstract class Graphics extends Object. This is the firstline of code
that defines the class Graphics. It starts the definition of the Class and tells us where this class belongs in an
inheritance tree. It tells us the most specific class from which itinherits. You can see all of the other Classes

thatitinherits from the description of this Class in the API.

If you inherit from a specific Class, you inherit all of the ancestors (the entire inheritance chain)
Note as well.

To 1. Scroll down the API page until you see a Header that says Constructor
Summary.

It should look like this:

Constructor Summary

protected

Graphiecs ()
Constructs a new Graphics object.

Method Summary

abstract

R clearRect (int X, int ¥y, int width, int height)

Clears the specified rectangle by filling it with the background color of the current drawing surface.

‘b’““: clipRect (int %, int y, int width, int height)

Intersects the current clip with the specified rectangle.

wodi

Constructors are methods as well, but they are special because we use them to create an instance of the
Class (instantiation). And of course, the Constructor has the same name as the Class.

In the Method Summary you see many methods that are defined in the Graphics class. Except for the
Constructor method, all methods begin with lower-case letters.

To 1. Scroll down through the methods of the Graphics class to get a feel for what's
do available.

The mostcommonly used Graphics methods are draw and fill. You can find out more about each method

and its usage by clicking on them.

To 1. Go to the drawLine method--drawLine(intx1, inty1, intx2, int y2)--in the API
Graphics listing and click on it.

‘b"’::‘i; drawLinesssnt x1, int yl, int x2, int yZ)
—MWOL between the points (31, v1) and (=2, v2) mthis graphics
context's coordinate system. Click on drawline

abstrace
woid

drawlval (int x, int ¥, int width, int height)

Dirawrs the outline of an oval.

ab=strace
woid

drawPolygon (int[] =xFoints, int[] vyFoints, int nFoints)
Draws a closed polygon defined by arrays of x and y coordinates.

void| gy amDnlrrann (DA lrremm i

Methods, Parameters (or Arguments), and the Dot Operator

Now let's look at the specifications of the drawLine method in our class FirstLine. In defining the method
paint() for Applets, Java specifies thatits method has a parameter thatis passed. This parameteris a
Graphics object (you can see for yourselfin the API). In our FirstLine class code for the paint method, we
name this Graphics object g. Since we are defining the method, we could name the variable that holds the
object whatever we like. But once you name it, you'll have to use the same name throughout your method
definition. This isn't hard to do here though, because we only have one line so far.

Because the paint() method is presentfor all Applet, the Graphics area is always created and given to us
through the Applet. This is another example of inheritance. We have inherited all of the traits of Applets and the
Applet has provided this Graphics area by passing it to the paint method every time our Appletis displayed
and repainted.

We invoked or called the Graphics drawLine() method by typing g.drawLine(20,10,40,40);. This line uses
the dot operatorofJava. Infrontofa dotis the object and after the dotis either one of that object's
variables/fields or a call to one ofthat object's methods. If you see parentheses, itis calling a method. If
you do not see parentheses, itis calling a variable. In this example, we are telling Java to go to the object we
named g and to use one of its methods called drawLine(). Inside the parentheses are the "actual
parameters" we want Java to use.

To make sure we used this method correctly, we compare our method call and its actual parameters to the
drawLine() method specification and the formal parameters in the APL.

On the API page, for the method drawLine() we see:

-‘ JavafPl &3

Location: |http:,l’,l’java.sun.com,l’javase,f&,fdocs,l’api,l’java,l’awt,l’Graphics.html#drawLine(int,%2tlint,%ZDint,%ZDint]l

Platform :I drawLine
«Ed.6
e - public ahstract woid drawline (int =1,

| 3 int ¥i,

= int =2,
es 3 int y2)
sction)) . o . . .
\nnotationyalueyi Draws a line, using the current color, between the points (x1, v1) and (x2, v2) in this graphics context's coordinate
jorder system.
Jutton
ZellEditor Parameters:
:D:IE%Ith 5 x1 - the first point's x coordinate.
W w1 - the first pomt's y coordmate.
Socument Aftribui %2 - the second point's x coordmnate.
SneUment Confer vz - the second point's ¥ coordmate.
3

This definition lets us know that if we have a Graphics object, we can use the method drawLine() if we pass it
four integers (int). The method drawLine() will then assign the four integers as stated. The firsttwo values will
be (x,y) for the first pointin the line, and the second two values will be the (x,y) for the second point. Here are a
couple of alternate illustrations of parameters:

e public abstract void drawLine(int x1,int y1,int x2,int y2) The method definition line (sometimes called
the method's signature) provides formal parameters.

e g.drawLine(20,10,40,40); Here we see the use of specific numbers to send to the method foritto
use, hence it provides what are called actual parameters.

We use the API to find method definitions and make sure we send the proper type and number of parameters.

Sequencing
Let's use some of the methods in the Graphics class to draw something in an Applet.
We'll be using a programming construct called sequencing as well. Sequencing means thatif you give Java
a list of things to do, it will do them in order, one after another. After we get Java to draw our firstline, we'll
have itdo even more work for us.

Start another class called MyPicture that extends Applet:

CODE TO TYPE:

import java.awt.*;
import java.applet.Applet;

public class MyPicture extends Applet {

public void init()

{
this.setBackground (Color.lightGray) ;

}

public void paint(Graphics gq)

{
g.drawLine (0,0,100,100) ;
g.setColor (Color.RED); // make a red ball
g.filloval (45, 15, 40, 40);
g.setColor (Color.GREEN) ; // a couple of support beams
g.fillRect (5, 5, 4, 95);
g.fillRect (65, 65, 4, 35);
g.setColor (Color.BLACK) ; // a landing strip
g.drawLine (100,100,200,100) ;

}

i-} Run it.

There's lots for us to check out, even in this simple program. First, an Applet always starts by having its init
method called and then its paint method. Once inside the paint method, we see the use ofline
sequencing, particularly with use of the Graphics object g. Notice the change of color in the code and Applet,
and also that the colors are specified by typing Color.lightGray, Color.Red, and so on.

1. Go to the Graphics APl and read the specifications of the methods that start with:
e draw (e.g.drawOval, drawPolygon, drawString)

To do o fill (e.g.fillRect, fillOval, fillArc)
e get(e.g.getColor)

The java.awt.Color Class

Shapes in a Graphics object can be filled in once a color is specified. By default the color of the graphics
"pen" is black. The class java.awt.Color provides a list of color possibilities.

Here are some ofthe Color classes used in the MyPicture.java class:

e this.setBackground(Color.lightGray);
e g.setColor(Color.red);

Look at the MyPicture.java class to check outthese "method calls" in detail:

http://download.oracle.com/javase/6/docs/api/java/awt/Color.html

e this.setBackground(Color.lightGray); Notice the word t his within the code. Because thatline
is within the init() method of a class thatis an Applet, the this means thatyou are telling this
Applet to setits background. Thus we would look for the method in the Applet class.

e g.setColor(Color.red); These method calls are all in the paint method of the Applet. Note that
before the dot operator there is a g. g is a Graphics objectiinstance, so we are telling Java that we
wantto use the Graphics method ofsetColor() on our g object.

To find more aboutsetBackground(Color.lightGray), go to the Applet APl and look for the method
setBackground(Color c). Appletinherits background color from Component. Look in the method
inheritance section -- about a third of the way down the page you'll see:

.]'w[etlmds inherited from class java.awt.Component

To find outmore aboutsetColor(Color.red), go to the Graphics APl and look at its methods. Click on
setColor(Color c) for more detail.

Let's discuss the keyword this a bit more. When we write the definition of a Class, we don't know the name
the user will give to the instance when they use our class. Thousands of programmers might end up using the
class, each one giving a different name for each instance. That's why we use the reserved word this within
the code of a class definition: to indicate that we are telling this object (the object that we are currently using) to
invoke the method given. In the above example, we are telling the instance of the MyPicture Appletto have a
background color of lightGray with the line: this.setBackground (Color.lightGray) ;.

Similarly, when we have an instance of an object, sometimes we'll want to tell its parent to do something.
Since you won't always know the parent of every instance inside the definition of the class code, Java uses
the reserved word super. So, this means "this one," "me," while super means "this instance class's
parent."

Okay, back to our discussion of Color. Click on the Color API. Scroll down the Color API page to see the
Field Summary. Now we'll getto see some Class Variables.

Note Inthe API, Java uses the term Fields for the Instance and Class Variables.

1. Scroll down to the Field Summary for Color.
Todo 2.Look atthe left column.

This is a list of the Variables that the class Color provides for us. You can see the two words static Color
throughout the list.

The reserved word of static is a modifier for the Field and indicates that the Variable (or
' Note Method)is a Class Variable (ora Class Method when applied to methods). Static variables '
' will be covered in a later lesson. '

Recall that Classes have two components: Variables and Methods. However, they each come in two forms:
Instance and Class. So these are the four combinations available:

e Instance Variables
e Class Variables
e Instance Methods
e Class Methods

That's it Once you've got this conceptdown, it's a whole lot easier to read code.

So what are the differences between Instance Variables and Class Variables? Here are some important ones:

e AClass Variable is shared by all of the instances in a Class. For example, all members of the

http://download.oracle.com/javase/6/docs/api/java/applet/Applet.html
http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html
http://download.oracle.com/javase/6/docs/api/java/awt/Color.html
http://download.oracle.com/javase/6/docs/api/java/awt/Color.html

Class "Human" have two eyes. Butthe color of eyes changes from one human to the next. So
numberOfEyes would be a Class Variable setto 2 in the Human class, but colorOfEyes would be
an Instance Variable that changes with each instance.

e Because the Class Variables are shared by all in the Class, their values are notstored in separate
places in the computer's memory. Values for Class Variables are in a single location in memory.
This means thatif the value changes for one instance, it changes for all instances of the Class.

e AClass Variable (or Method) can be called from either the Class, or an instance of the Class. For
example, the value of the variable BLACK in the Color class is expected to be the same whenever
itis called, thus itdoes notneed to be "created" each time itis used. This makes us happy. The
Color class will be used quite often, and it would be a pain, fr example, to have to make a new
instance of Color every time we wanted to get the color black.

Let's look at the way we specified Colors in our code: Color.light Gray or Color.RED.

Note thatwe have a dot operator here, and that after the dot there can be either a method or a variable. And
we know it's nota method because methods always have parentheses.

Recall that convention dictates that Classes begin with capital letters. Look at how we accessed the colors:
Color.RED

Here we're accessing Color's variable RED through its class name Color. In other words we didn't create an
instance like this: Color mycolor = new Color(255,0,0); and call myColor.RED, instead we simply called
Color.RED.

We are able do this because the variable RED is a Class Variable.

We know that we can do this here because the keyword static is in the Class's specification of the variable
(look itup in the API!). We'll cover static variables more in Lesson 14, but basically static variables are
declared static because they aren't expected to change and we can access them through their Class name
instead of their instance name (they aren'tinstance dependent instance variables.)

So whatelse was in the Field Summary for the class Color?

1. The variables tell us that they are static (which always means Class variables), and they also contain the
word "Color" and a link to the Color class. This is because each ofthe Class Variables in the class Coloris
Colors:

e blackis a Color
e BLACKis aColor
e blueis aColor

e BLUEis aColor

The description of the Fields/Variables is telling you the type of Object the Variable is.
2. Each ofthe Class variables in the class Color is eitherin all CAPITAL or all lower-case letters.

Look atsome ofthe methods ofthe Class Color. You can make a color lighter or darker using these
methods. For example:

Color.red.darker();

Here Java goes to the Color class, gets the Class Variable red, then invokes the method darker() on that
Color.

But there is something tricky going on here. It turns out that Color.RED, is a Class variable AND an Object.
That's because the definition of RED in the Class Coloris Color RED = new Color(255,0,0);,so RED is an
instance ofthe Color class. And so, we can call things like Color.red.darker();, since Color.red is a Color
objectitself. We could also simply call Color noseColor=new Color(255,0,0); and then call
noseColor.darker(); to make itdarker.

1. Open the MyPicture class and Run it (don't close it).
E To do 2. Edit the MyPicture class's paint method as shown below in blue. .

CODE TO EDIT

import java.awt.*;
import java.applet.Applet;

public class MyPicture extends Applet {

public void init ()
{

this.setBackground (Color.lightGray.darker()) ;
}

public void paint (Graphics g)

{

.drawLine (0,0,100,100) ;

.setColor (Color.RED.darker()); // make a red ball
.fillOval (45, 15, 40, 40);

Q Q Q

g.setColor (Color.GREEN); // a couple of support beams
.fillRect (5, 5, 4, 95);
g.fillRect (65, 65, 4, 35);

«Q

g.setColor (Color.BLACK) ; // a landing strip
g.drawLine (100,100,200,100) ;

i-}Save and Run it. Compare the two Applets' colors.

Great work so far. We're really making progress. In the nextlesson, we'll expand our artistic palette to include even
more Java capabilities. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Drawing with Graphics

When you complete this lesson, you will be able to:
Lesson Objectives

e |ocate specific methods in the API to create a drawing.
e use the Graphics Class to draw.

Making Pictures
Back to Graphics

In this section we'll use the Graphics Class to make drawings. First, let's make an Applet we can use to test
our drawings.

1. Make a new projectfor Lesson 9: File | New | Java Project.
2.Name the Projectjaval_Lesson09.

3. Click Finish. (If"Open Associated Perspective" appears, click "No." We want to keep our own
perspective environment.)

4. Make an Appletin this project called DrawT est.

The code for the Appletis fairly simple:

CODE TO TYPE: DrawTest

import java.applet.*;
import java.awt.*;

public class DrawTest extends Applet
{

public void init()

{

setBackground (Color.cyan) ;

}

public void paint (Graphics g)
{
// empty for now until we have made code of images to draw

}

Okay, now we need to add a Class that draws something. This first drawing will use only ovals and lines.

Let's try to draw Cartman from the TV show South Park, using only the primitive shapes available in the Java
API.

1. Look in the Graphics APl for some methods that draw.
2. Go to the Graphics APl listing of methods for the fillOval() method.
3. Click on the fillOval() link there.

You should see this:

fillOval

public abstract woid fillOwval (int =x,
int v,
int width,
int height)

Fills an oval bounded by the specified rectangle with the current color.

Parameters:
x - the x coordinate of the upper left corner of the oval to be filled.
v - the v coordinate of the upper left corner of the oval to be filled.
width - the width of the oval to be filled.
height - the height of the oval to be filled.

See Also:

drawCval (int, int, int, int)

Sometimes the APl doesn't provide an exact method to help us execute a task, so we have to work around it,
butin this case itdoes. for our purpose here, a circle IS considered a type of oval. A circle is in essence a
symmetrical oval, an oval that has the same height and width. So in order to draw circles, we use the same
methods that make ovals.

Alright, let's getto work! In the javal_Lesson09 project, create a new Class called Cartman.

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

CODE TO TYPE: Cartman

import java.awt.*;
public class Cartman ({

Graphics g; // make the Graphics area an instance variable so the methods
can use it

public Cartman (Graphics graph) // the class Constructor
{
this.g = graph; // give the graph instance to the Instance Variable we na
med g

}

public void drawMe ()
{

g.setColor (Color.PINK) ;
g.fillOval(10,30,180,150); //Cartman's face

.setColor (Color.white) ;
.filloval (50,66,35,53); //Cartman's eyes
.filloval (78,66,35,53) ;

Q QW

g.setColor (Color.black); //Cartman's eyeballs
g.filloval (63,86,10,10) ;
g.filloval (90,86,10,10) ;

g.setColor (Color.black); //Cartman's mouth
int [] xValues = {56,89,109};
int [] yValues = {140,150,140};
g.fillPolygon (xValues, yValues, 3);

} // end drawMe method

} // end Cartman class

Save it.

Okay, now we need the Appletto see this class. Go back to your DrawTest.java file. Edit the paint method you
find there by adding the code below:

CODE TO TYPE

import java.applet.*;
import java.awt.*;

public class DrawTest extends Applet
{
public void init()

{
setBackground (Color.cyan) ;
}

public void paint (Graphics qg)

{
Cartman myCartman = new Cartman(g) ;
myCartman.drawMe () ;

(P Run it. Not a bad likeness if you ask me. In the projects for this lesson, you'll make him look even more
like Cartman.

Now let's take a look at the fillPolygon() method in Graphics in the API. Notice that this method is
overloaded - look atits two signatures:

- L e

ab=trace

fillPolygon (int[] =xPoints, int[] wPoints, int nFoints)
Fills a closed polygon defined by arrays of x and v coordinates.

woid

woid

fillPolvygon (Folygon pl
Fills the polygon defined by the specified Polygon object with the graphics context's current color.

Hold on a minute. There are two fillPolygon() methods? In the previous lesson we mentioned the concept of
polymorphism--that sometimes the same name is used in different places. On occasion, a method might
override its parent. Now in this Class we see an example of another important form of polymorphism called
overload.

Overloading is when a specific class has more than one method with the same name. Hmm, this sounds like
it could get tricky. But Java figures out which one to use by reading the method's full signature. The
signature is a method's definition and is determined by its name and the number and types of parameters it
takes. You can have methods with the same name, and even the same parameters, but they'll all have
different signatures.

A signature ofa method is much like the signature of a human; each signature is unique. As such, in Java, a
signature can be used to identify a method, then decide which one to use. To accomplish this task, Java:

e Indentifies the type of class calling the method (i.e., the objectin front of the dot operator -- like g in
g.drawLine).

e Observes the name of the method.

e Observes the number and the type of parameters (if there is more than one method with the
same name).

e Ensures thatthe proper values for Java have been passed. In other words, the values passed
(actual parameters) are consistent with those defined in the class (formal parameters).

So looking at the APl again, the fillPolygon() method takes 3 parameters (int[] xpoints,int[] ypoints,
int npoints)or 1 parameter (Polygon p). In the Cartman example, we're using the method that takes 3
parameters. If we had a Polygon objectto pass to it, we could use the method with 1 parameter--in fact we'll
try that a bit later, but for now let's go over what we've done here using the method that takes 3 parameters.
You can tell that the first 2 parameters are sets of integers because they take an integer array int[] (Arrays are
sets and are indicated by square brackets. We'll study arrays in great detail in the next Java course).

Let's consider an example. Suppose you wish to fill these 4 points in the polygon: (15,20), (170,39),
(160,100) and (40,150). The shape would be:

B3 Applet Viewer: Polyg... M=l E3

Applet
(15,20)

(40,150)

Applet started.

Go to the Graphics class and look at the spec for "drawPolygon(int[]] xPoints, int[]] yPoints, int nPoints)." See

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html#drawPolygon(int[], int[], int)

how itindicates that the first parameter is an array of x coordinates?
The array of x coordinates would look like this: [15,170,160,40]
The array of y coordinates would look like this: [20,39,100,150]
The method call to a graphics object g would be:

OBSERVE:

int [] xValues = {15,170,160,40}; // declare the arrays
int [] yValues = {20,39,100,150};;
g.fillPolygon (xValues, yValues, 4);

The number 4 in the argumentofthe fillPolygon() method is the number of points in the polygon we're
drawing.

Now let's getback to our example. In our example we drew a triangle for Cartman's mouth. We passed the

fillPolygon() method two integer arrays (3 xValues and 3 yValues) and passed the number of points (3). To

show the polymorphism ofthe fillPolygon() method, let's create a Polygon object and pass that to
fillPolygon(). Change the Cartman class as follows:

Change the code in blue in the Cartman Class

import java.awt.*;
public class Cartman {

Graphics g; // make the Graphics area an instance variable so the methods ¢
an use it

public Cartman (Graphics graph) // the class Constructor
{

this.g = graph; // give the graph instance to the Instance Variable we nam
ed g
}

public void drawMe ()

{

.setColor (Color.PINK) ;

g.fillOval (10,30,180,150); //Cartman's face

Q

g.setColor (Color.white);
g.filloval (50,66,35,53); //Cartman's eyes
g.filloval(78,66,35,53);

g.setColor (Color.black); //Cartman's eyeballs
g.fillOval (63,86,10,10);
g.fill0Oval (90,86,10,10);

g.setColor (Color.black); //Cartman's mouth

int [] xValues = {56,89,109};

int [] yValues = {140,150,140};

Polygon shapeThing = new Polygon (xValues, yValues, 3);
g.fillPolygon (shapeThing) ;

} // end drawMe method

} // end Cartman class

@ Save and Run the Applet again.

You should see exactly the same thing. The only difference in the code here is thatwe passed fillPolygon()
a Polygon object. Not much of a leap, but nevertheless an example of polymorphism. We'll see many more

examples of this in the near future.

So to reiterate, as we are prone to do, the central ideas of object-oriented programming are:

e Inheritance
e Polymorphism
e Encapsulation

These characteristics allow us to use the APl for large portions of our programming. As the course continues,
we'll see more of these principles of object-oriented design in action.

Hopefully the APl is fast becoming your new best friend. Officially APl is an acronym for Application
Programming Interface, but we can think of some better words!Let me try...

e Absolute Productivity Increase

e Archived Programming Intelligence
e Available Potential Ideas

e Avoid Program llliteracy

e Arouse Programmer Insight

e AllPackedIn

%earning éurue

You're doing great!
Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Methods and Method Invocation

When you complete this lesson, you will be able to:
Lesson Objectives

e create and use your own methods, notfound in the APL.

In this lesson we'll get a chance to trace the steps of an object-oriented program as itruns.

Methods

There are only two things in a Class:

e Fields (data types)
e Methods

They are often called the Class Members.

The two kinds of Fields (data types and variables to access these data types) that Java allows are:

e Objects (instances of Classes) and
e Primitive Data Types (numbers, characters, boolean)

Butright now, we're going to focus on Methods. Specifically we want to learn how they're written, and how and when
they're invoked.

Creating and Using Methods

There are two ways to obtain methods to use when you're creating object-oriented programs. You can:

e Write your own.

e Importthem from existing Classes.

We've been invoking or calling methods from Classes we found in the API since Lesson 1. For example, we
used g.drawString("Hello World",50,50); by invoking the method drawString() on the instance g of the
class Graphics.

Usually, a Java program consists of both calls to methods from the API, and calls to methods thata
programmer has written specifically for her project.

Below is code for a Class named TriangleClassDemo. The Graphics Class has a lotof methods available
to draw various geometric objects, but none for triangles. We know that drawing a triangle just means to draw
three lines, but if we wanted to draw 6 triangles, itwould be easier to make 6 calls to a drawTriangle method
than 18 calls to a drawLine method where we have to think about where the lines meet each time!

If the APlisn'tgoing to hand us an easy method, that's fine. We can just make one ourselves. The API can'tdo
it all, but we can.

Make a new projectfor Lesson 10 called java1l_Lesson10. Also make a new class called
TriangleClassDemo that has java.applet.Applet as its superclass.

CODE TO TYPE: Triangles

import java.awt.*;
import java.applet.Applet;

public class TriangleClassDemo extends Applet {

public void paint(Graphics g) {
this.drawTriangle(g, 80, 120, 100, 110);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, int
height) {
g.drawLine (bottomX, bottomY, bottomX+base, bottomY) ;
g.drawLine (bottomX+base, bottomY, bottomX+base/2, bottomY-height) ;
g.drawLine (bottomX+base/2, bottomY-height, bottomX, bottomY) ;
}

i} Run it.

Isn'tthat a nice triangle?

Let's look at the two methods that we see defined in the TriangleClassDemo class: paint() and
drawTriangle()

The first method we see in the class body is paint(Graphics g). By now we're pretty familiar with paint (), so
the only concept we'll review now is the use of this in the call. Take a look at this code:

this.drawTriangle(g, 80,120,100,110);

We've seen the use of this with Instance Variables before. In Lesson 4 we took the graph object that was
passed to us in the paint() method and gave itto the Instance Variable g this.g = graph;

The this in front of the variable indicates thatit's an IV (Instance Variable) or a CV (Class Variable) of the
instance of this particular Class.

We also saw its use in Methods when we set the background color ofour Appletin Lesson 4:
this.setBackground(Color.light Gray);

Its use here is similar. Using this, we are saying that there is a method drawTriangle() in this class (orina
class from which itinherits) and we want to invoke it. Sure enough, if you look at the next defined method in
ourclass, there itis:

private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, int height)

The use of the keyword this in front of the dot operator for method calls within a given class is

Note optional.

Editthe TriangleClassDemo class's paint() method as shown:

CODE TO TYPE

import java.awt.*;
import java.applet.Applet;

public class TriangleClassDemo extends Applet {

public void paint (Graphics g) {
this.drawTriangle (g, 80, 120, 100, 110);
drawTriangle(g, 125, 140, 60, 70);
// demonstrating we don't really NEED "this"
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, int
height) {
g.drawLine (bottomX, bottomY, bottomX+base, bottomY);
g.drawLine (bottomX+base, bottomY, bottomX+base/2, bottomY-height);
g.drawLine (bottomX+base/2, bottomY-height, bottomX, bottomY) ;

Ifa Field or Method is accessed withouta dotoperator (i.e., with no instance name preceding it),

Tip thenthe Class Member being accessed is always one of the current class orone ofiits
i ancestors.

The only other method defined in this class is one we wrote ourselves using method calls to drawLine in
Graphics. It has this declaration:

OBSERVE:

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, int he
ight) {
g.drawLine (bottomX, bottomY, bottomX+base, bottomY) ;
g.drawLine (bottomX+base, bottomY, bottomX+base/2, bottomY-height) ;
g.drawlLine (bottomX+base/2, bottomY-height, bottomX, bottomY) ;

The required elements of a method declaration (mostof which are on the firstline) are:
1. The method's return type--in this example, the return type is void which means nothing is
returned. (We'll discuss return type more later.)
2. The method's name--in this example, it's drawTriangle.

3. Apairofparentheses ()--in this example, (Graphics g, intbottomX, intbottomY, int base, int
height).

4. Abody between braces { }--in this example, the body includes the three drawLine() calls.

In the body of the drawTriangle method, the three lines for our triangle are being drawn. Our method draws an

isosceles triangle so it will have a base, a height, and equal sides. The formal parameters requested
(Graphics g, int bottomX, int bottomY, int base, int height) provide:

e The Graphics area on which to draw the lines--Graphics g
e The (x,y) location for the bottom left corner of the triangle--int bottomX, int bottomY

e The length of the base (bottom) and the length of the height--int base, int height

This diagram shows how the parameters passed will be used to draw the lines that make the triangle:

gdrawlimelbottom=, bottom¥, bottomE + base, hottom¥),
g.drawlinel bottom + hase, bottomT, bottomE + base/2, hottom¥ - height 1,
gdrawlinel bottorm® + based2 | bottom¥ - height | bottomE, bottom™);

bottomz + bases2
bottom¥ - height

&
v
-7
height
hottomE . base hottomE + hase
bottom¥ T bottom¥

In the next section we'll begin our trace.

Tracing method calls

Recall that Applets are started by the browser in which they're embedded. The browser gets the Applet
code, calls its init () and start() methods (if they've been defined; otherwise itinherits these methods from
its superclasses). Then the Applet's paint(Graphics g) method is called.

Since this particular Appletdoes not have specified init and start methods, itinherits them from its
superclass Applet and then calls our paint(Graphics g) method.

Note that the paint(Graphics g) method is specified as public:
public void paint(Graphics g) {
Note also thatthe drawTriangle() method is specified as private:
private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, int height){
So why does paint() have to be public you ask?

When a method is going to be called from outside of an instance of the Class itself, it must be made
accessible to others. lts permission mustbe made public. This Applet's paint method is called from the
browser so it needs to be accessible to the public.

When you wanta method to be accessible only from within an instance of the Class (like when you use
this), you make the permission modifier of the method private. Currently, our own method of paintis calling
this method and we do notexpect any other Class instances to use our drawTriangle method, so we made
it private.

In an earlier lesson, we saw the use of public and private when we discussed accessors and mutators.
Permissions are an important tool for maintaining the integrity, usefulness, and encapsulation of Classes,
Fields, and Methods. But let's not get distracted now, just when we're about to feel the POWER of method

writing!

So far, the TriangleClassDemo Applet has been started and the paint method has been called. Inside the
paint method body (between the {}) there was one line, then we added another to demonstrate that we can
use this or not.

When Java runs into this statement:
this.drawTriangle(g,80,120,100,110);

..itsees this in front of the dot operator, so it knows to look inside the class to find the method that you want it
to run. Java finds the declaration of the method and matches the actual parameters in the method call to the
formal parameters of the method declaration. Here's a visual representation of what's happening:

Actual values
this. drawTrangle(g, B0, 120, 100, 1107,

drawTrangle(Graphics g, int bottoncd, int bottomY, int base, int height)
Formal specification

The actual parameters'types match all of the formal parameters' types, so Java passes the values (a
reference to the g object):

e gtog

e 80 to bottomX
e 120 to bottomY
e 100 to base

e 110 to height

Programming languages pass method parameters in two ways:

e By value: Primitive data types are passed giving the value of the variable, not the address ofthe
variable.

Changing the value inside the method will not change anything outside the method.

e Byreference: Objectvariables are passed by giving the address of the instance pointed to by the
variable.
So if you change variables of the object within the method, it changes them outside the scope of
the method too,
because you gave the method the actual location of the object's information.

When objects are passed to a method and the method returns, the passed-in reference
' WARNING still references the same object as before. However, the values of the object's fields may
' be changed in the method. '

So, Java started the Applet, gotinto the paint method, then the paint method immediately sent us to the
drawTriangle method.

Hmm. Would it make a difference if in the code for our class, we switched the two method definitions? Does
paint have to be defined first since itis used first? Let's find out.

Move the block of code that defines the paint() method so thatit follows the drawTriangle method's body, but
is before the closing } ofthe entire class as shown below:

CODE TO EDIT

import java.awt.*;
import java.applet.Applet;

public class TriangleClassDemo extends Applet {

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, int
height) {
g.drawLine (bottomX, bottomY, bottomX+base, bottomY) ;
g.drawLine (bottomX+base, bottomY, bottomX+base/2, bottomY-height) ;
g.drawLine (bottomX+base/2, bottomY-height, bottomX, bottomY) ;
}

public void paint (Graphics g) {
this.drawTriangle(g, 80, 120, 100, 110);
drawTriangle(g, 125, 140, 60, 70);

}

P Run it. If you placed everything according to the instructions, it shouldn't have made any difference at all to

the result.

The order in which the methods are defined within a class is irrelevant. It's the order in which

Note they're invoked that counts.

Now that we are within the drawTriangle() method, the first thing Java sees is another method call:
g.drawLine(bottomX,bottomY,bottomX+base, bottomY); This time though, the instance variable in
front of the method call is not this, but g. Since g is of type Graphics, Java goes to the Graphics class next
to see ifithas a method defined that matches the actual parameters in the call. Success.

Actual values
g drawline(bottomi, bottom¥, bottonc{+hase, bottom™);

drawlineint x1, int 71, int 22, int 72
Formal spectication

Sweet. Because these are all int (integers), Java will give the value of the actual parameter variables to the
method parameters:

e Xx1=bottomX

e yl1=bottomY

e Xx2=bottomX + base

e y2=bottomY
Notice that the variable names you use in the actual call don't have to match the formal specifications’
names. The names don't matter because (for primitive data types) it's the value of the variable being passed.
Also, when you pass Objects, you are passing the address of the variable, but an address can have more

than one name. Sometimes this can cause undesired side-effects when more than one variable points to the
same object.

When Java sees the method call g.drawLine(bottomX, bottomY, bottomX+base, bottomY);itgoes
to the Graphics class and its implementation of drawLine(), and then executes that method.

When thatline of code is finished, Java goes to the next g.drawLine(bottomX+base, bottomY,
bottomX+base/2, bottomY-height); and matches up its parameters, then goes to the Graphics class and its
implementation of drawLine() and executes that method.

Then Java executes that entire process again for the method call g.drawLine(bottomX+base/2, bottomY-
height, bottomX, bottomY);

When Java sees it's finished with the drawT riangle() method, it goes back to the original method that called
it, the paint() method. Since paint() has nothing else in it, Java is done. If you didn't remove the second
call to drawTriangle() though, Java would start the whole process again.

So far so good. Keep going, you're doing a great job!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Writing Classes - Building With Methods

When you complete this lesson, you will be able to:
Lesson Objectives

e declare a method using the six required comments in order.
e use local variables, rather than instance variables.

e define a method's return type.

More on Methods

Local Variables

In the lastlesson, the parameters inside the drawTriangle method may have been a little hard to read,
especially in the drawLine () methods:

g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);

We generally think of triangles as 3 lines connecting 3 points, notso much a setof parameters like we've
been given here.

So let's use the parameters passed to us (g, bottomX, bottomY, base, and height) to create the 3 points of the
triangle before using the drawLine() method.

We'll edit our code to use variables that are not Instance Variables, Class Variables, or Method Parameters.
Instead we'll use Lo cal Variables. Local variables are variables that are only known within the scope of their
block of code. In this case, within the body of a method.

Here's an illustration of what we're doing:

mt nghtZ = bottom + base;
it topX = bottomE + baseld;
int top¥ = bottom¥ - height;

gdrawLine(bottom, bottom¥, nghtX, bottam¥ 1,

gdrawline(rightX, bottom¥, topX, top¥,
gdrawline(topX, top¥, bottomi, bottom¥],
topX
top¥
L]
N
-
height
bottomx ® . ® ez
bottom¥ ase T bottom¥

Because the bottom of the triangle is horizontal, the bottomY coordinate is used twice.
Once we have the formal parameters passed to the method drawTriangle(), we can use them to make three
new local variables:

intrightX = bottomX + base;
inttopX =bottomX + base/2;
inttopY =bottomY - height;

Then we can use these as coordinates for three points:

<topX,topY>, <bottomX, bottomY>, and <rightX, bottomY>

Now it'll be easier to decipher the parameters we send in the three drawLine() calls (as shown in the
diagram above).

Make a new projectfor Lesson 11 called java1l_Lesson11, and make a new class called MethodDemo that
uses the super java.applet.Applet. Then, edit MethodDemo as follows:

CODE TO TYPE: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
drawTriangle(g, 80, 120, 100, 110);
drawTriangle (g, 125, 140, 60, 70);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {

int rightX = bottomX + base;

int topX = bottomX + base/2;

int topY = bottomY - height;

//easier to read drawline calls

g.drawLine (bottomX, bottomY, rightX, bottomY) ;

g.drawLine (rightX, bottomY, topX, topY);

g.drawLine (topX, topY, bottomX, bottomY) ;

i} Run it. It should look familiar.

Two important things you should know aboutlocal variables:

e Local variables do not get default values. You must give them initial values.

e Local variables only exist within their block of code. The same is true of method parameters. That
is, the scope oflocal variables and method parameters is solely within the body of the method in
which they are defined.

In your new MethodDemo Class, editthe Local Variables as follows:

CODE TO EDIT: MethodDemo .java

import Jjava.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
drawTriangle (g, 80, 120, 100, 110);
drawTriangle (g, 125, 140, 60, 70);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
rightX = bottomX + base;
int topX = bottomX + base/2;
int topY = bottomY - height;
//easier to read drawLine calls
g.drawLine (bottomX, bottomY, rightX, bottomY);
g.drawLine (rightX, bottomY, topX, topY):
g.drawLine (topX, topY, bottomX, bottomY);

You should see this error: right X cannot be resolved. The error occurs because we haven't declared the
variable type.

Now edit the code as follows and see what happens:

CODE TO EDIT: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
drawTriangle (g, 80, 120, 100, 110);
drawTriangle (g, 125, 140, 60, 70);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
int rightX;
int topX = bottomX + base/2;
int topY = bottomY - height;
//easier to read drawLine calls
g.drawLine (bottomX, bottomY, rightX, bottomY) ;
g.drawLine (rightX, bottomY, topX, topY):;
g.drawlLine (topX, topY, bottomX, bottomY);

Not surprisingly, because we just said that local variables do not get default values, we get the error: The
local variable rightX may not have been initialized

Edit the code again so itlooks like this:

CODE TO EDIT: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
rightX = 42;
drawTriangle (g, 80, 120, 100, 110);
drawTriangle (g, 125, 140, 60, 70);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
int rightX = bottomX + base;
int topX = bottomX + base/2;
int topY = bottomY - height;
//easier to read drawLine calls
g.drawLine (bottomX, bottomY, rightX, bottomY);
g.drawLine (rightX, bottomY, topX, topY):;
g.drawlLine (topX, topY, bottomX, bottomY) ;

This time you getthe message:right X cannot be resolved, because it's outside of the scope of the
method in which it was declared. Okay, butit's notinitialized there. Go ahead and initialize it:

CODE TO EDIT: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
int rightX = 42;
drawTriangle (g, 80, 120, 100, 110);
drawTriangle (g, 125, 140, 60, 70);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
int rightX = bottomX + base;
int topX = bottomX + base/2;
int topY = bottomY - height;
//easier to read drawLine calls
g.drawLine (bottomX, bottomY, rightX, bottomY) ;
g.drawLine (rightX, bottomY, topX, topY):;
g.drawLine (topX, topY, bottomX, bottomY);

Cool, all the errors go away. But, since both right X occurrences are individually declared in each method,
they have different values!

To prove this, edititas follows:

CODE TO EDIT: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
int rightX = 42;
g.drawString ("rightX before the method call is " + rightX, 5,170);
drawTriangle (g, 80, 120, 100, 110);
drawTriangle (g, 125, 140, 60, 70);
g.drawString ("rightX after the method call is " + rightX, 5,200);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
int rightX = bottomX + base;
g.drawString("rightX in the method is " + rightX, 5,185);
int topX = bottomX + base/2;
int topY = bottomY - height;
//easier to read drawLine calls
g.drawLine (bottomX, bottomY, rightX, bottomY) ;
g.drawLine (rightX, bottomY, topX, topY):;
g.drawLine (topX, topY, bottomX, bottomY) ;

i-} Run it.

And that's why they're called local! Here's a diagram that shows how scope works:

Class

String Cvariable ="I'm a class var";

Method A

String myWarl = "inside A”;

Method B

String myWar2 = "inside B";

Methods can have their own local variables. In the diagram above, the Class variable Cvariable can be
accessed by Method A and Method B. However, the method variable myVar1 is only accessible in
Method A, while myVar2 is only accessible in Method B.

; For better readability and class design, limit the scope of your variables, and keep them as small
E Note as possible.

Of course local variables are not only for enhanced readability; sometimes they're used for computations of
methods. Iflocal variables are only needed for a given method, then they should only be present while that
method is being called.

WARNING Local variables are re-initialized each time the method is called. Their previous value
will not be present when the method is called again.

Results and Return

In the previous lesson, we mentioned that the only required elements of a method declaration are the
method's return type, name, a pair of parentheses, (), and a body between braces, {}. So far we have covered
everything exceptthe return type.

To getresults from a method (some call these queries as opposed to commands), we need to use the
reserved word return.

Methods that return information have two important traits:

e Thereturn type mustbe specified in the method declaration.
e The method mustuse the reserved word return followed by an expression that matches the
specified return type.

Let's start a new class called ReturnDemo that extends Applet. Type into ReturnDemo as shown by the
code in blue below:

CODE TO TYPE: ReturnDemo .java

import java.awt.*;
import java.applet.Applet;

public class ReturnDemo extends Applet {

public void paint(Graphics g) {
int answer = areaRectangle(30,40)
g.drawString("area of rectangle is " +answer, 20, 20);

}

private int areaRectangle(int sidel, int side2) ({
int area = sidel * side2;
return area;

i-} Run it.
Notice that when a call to a method returns something, you can'tjust call the method with

areaRectangle(30,40);

Because we asked it to refurn something, we need a place in memory to put the answer that it returns.

Actually, we could make that call without choosing a destination for our result, and we wouldn't get any errors,
butitwould pretty much be like doing nothing at all. Java will execute the method, but then since it has no
place to put the returned result, Java will go on its merry way as if the method never existed.

public void paint (Graphics g){
int answer = areaRectangle(30,40): é ————
g.drawitring | "area of rectangle iz " + answer, 20, 20):

private int areaFectangle{int =idel, int =ideZ) {
int area = =idel * =ideZ;
keturn area;

Let's trace the code.

In the paint(), areaRectangle (30, 40) ; is a call to a method which has a return type of int. So we must
declare a variable to put the returned value into and declare itto be of the same type that the method returns
(in this case int). We did that with int answer = areaRectangle(30,40);

Likewise, since areaRectangle() has an int return type, the variable area in the line return area; mustbe
oftype int. (That's why we have int area = side1 * side2;).

Editthe ReturnDemo.java class as shown:

CODE TO EDIT: ReturnDemo .java

import java.awt.*;
import java.applet.Applet;

public class ReturnDemo extends Applet {

public void paint (Graphics g) {
int answer = 0;
areaRectangle (30,40) ;
g.drawString ("area of rectangle is " +answer, 20, 20);

}

private int areaRectangle (int sidel, int side2) {
int area = sidel * side2;
return area;

i} Run it. Of course! We told the computer that the answer was 0 and it stayed that way. This seems pretty
simple, butit's pretty importantto remember: Computers will do exactly what you tell them to do!

Okay, let's go over one more groovy aspect of computer languages. Edit the paint() method as shown:

CODE TO EDIT: ReturnDemo .java

import java.awt.*;
import java.applet.Applet;

public class ReturnDemo extends Applet {

public void paint (Graphics g) {
g.drawString("area of rectangle is " + areaRectangle(30,40), 20, 20);
}

private int areaRectangle (int sidel, int side2) {
int area = sidel * side?2;
return area;

Remember earlier when we said that anywhere you can put a value, you can put an expression? Well, we just

demonstrated that here. Java will go and do the method, and since it's in the String parameter for the
drawString() method, it will automatically cast the returned int value to a String, concatenate itto the
previous String, "area of rectangle is," and print the whole String with the concatenated result.

Go ahead and '} Run it.

Building on methods

Now that we have a handy drawTriangle() method, let's use itto build a house. Open the MethodDemo

class you worked on earlier in this lesson, and change the paint() method and add a drawHo use () method

as shown in blue (remove the code shown in red):

CODE TO EDIT: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void paint (Graphics g) {
drawHouse (g, 10, 100, 70, 30);
drawHouse (g, 100, 50, 60, 20);

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
int rightX = bottomX + base;
g.drawString("rightX in the method is " + rightX, 5,185);
int topX = bottomX + base/2;
int topY = bottomY - height;

g.drawLine (bottomX, bottomY, rightX, bottomY) ;
g.drawLine (rightX, bottomY, topX, topY):;
g.drawlLine (topX, topY, bottomX, bottomY) ;

}

private void drawHouse (Graphics g, int bottomX, int bottomY, int width, int
height) {
int rightX = bottomX + width;
int topX = bottomX + width/2;
int topY = bottomY - height;
int halfHeight = height/2;

g.drawRect (bottomX, topY, width, height);
this.drawTriangle (g, bottomX, topY, width, halfHeight) ;

@ Run it. Hey, they kind of look like envelopes, too. So go ahead and think of them as houses or
envelopes.

After a method is finished, control returns to the method from which it was initially invoked. Let's trace this
program so we can see thatmore clearly.

OBSERVE: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
public void 1paint(Graphics g) {
2drawHouse (g, 10, 100, 70, 30);

SdrawHouse (g, 100, 50, 60, 20);
}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {

7int rightX = bottomX + base;
int topX = bottomX + base/2;
int topY = bottomY - height;

8g.drawLine(bottomX, bottomY, rightX, bottomY) ;
g.drawLine (rightX, bottomY, topX, topY):;
g.drawlLine (topX, topY, bottomX, bottomY) ;

}

private void 3drawHouse(Graphics g, int bottomX, int bottomY, int width, int
height) {

4int rightX = bottomX + width;
int topX = bottomX + width/2;
int topY = bottomY - height;
int halfHeight = height/2;

5g.drawRect(bottomX, topY, width, height);
6this.drawTriangle(g, bottomX, topY, width, halfHeight) ;

Let's check out the steps Java takes to execute this program in order:
1. The Applet calls its inherited init() and start(), and then it calls paint().
2.In the paint() method ,drawHouse(g,10,100,70, 30); is called.

3. Java sets the formal parameters to:

1.9=¢g

2. bottomX =10
3. bottomY =100
4. width =70

5. height=30

4.Inside of the drawHouse() method, some local variables are set:

1.intrightX = bottom X + width;
2.inttopX = bottomX + width/2;
3.inttopY =bottomY - height;
4.inthalfHeight = height/2;

5. Java sees g.drawRect(bottomX,topY, width, height), so itgoes to the package java.awt,
to the class Graphics, finds the method drawRect(), and uses the actual parameters passed to
run it and draw the rectanale.

6.Java sees a call to this class's method named drawT riangle(), so Java goes to its definition
and sets its formal parameters.

7.Some local variables, based on the actual parameters, are defined inside of drawTriangle():

1.intrightX = bottomX + base;
2.inttopX =bottomX + base/2;
3.inttopY =bottomY - height;

8. Java encounters each of the g.drawLine() methods one ata time, each time itgoes to
java.awt and finds the drawLine() method in the Graphics class.

9. Once Java is done with the drawTriangle() method, it's done with the first drawHouse()
method, but Java is not done with the paint() method. Because Java sees another call to
drawHouse(), it performs steps 2 through 8 above all over again, but this time with different
parameters.

We can see now that the orderin which we define our methods makes no difference. (But the order in which
we call them can matter). Java will go where you tell it to go within the methods.

We've come a really long way, butlet's not stop here. Let's add a little more and paint the houses.

Overloading
How Does Java Find the Right Method?

Edit MethodDemo to include the blue code below:

CODE TO EDIT: MethodDemo .java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {

public void start() {
resize (400,200) ; // make it bigger so we do not have to expan

}

public void paint (Graphics g) {
drawHouse (g, 50, 50, 70, 30);
// for these, added another parameter for house color
drawHouse (g, Color.red, 100, 50, 60, 20);
drawHouse (g, Color.cyan, 150, 100, 160, 50);

}

private void drawTriangle (Graphics g, int bottomX, int bottomY, int base, in
t height) {
int rightX = bottomX + base;
int topX = bottomX + base/2;
int topY = bottomY - height;

g.drawLine (bottomX, bottomY, rightX, bottomY);
g.drawLine (rightX, bottomY, topX, topY):;
g.drawLine (topX, topY, bottomX, bottomY);

private void drawHouse (Graphics g, int bottomX, int bottomY, int width, int
height) {

int rightX = bottomX + width;
int topX = bottomX + width/2;
int topY = bottomY - height;
int halfHeight = height/2;

g.drawRect (bottomX, topY, width, height);
this.drawTriangle (g, bottomX, topY, width, halfHeight);

}

// provide another drawHouse method that paints if passed a color
private void drawHouse (Graphics g, Color paintMe, int bottomX, int bottomY,
int width, int height) {
int topY = bottomY - height;
drawHouse (g, bottomX, bottomY, width, height); //draw the house using th
e original signature of drawHouse.
g.setColor (paintMe) ; // set color to that passed
g.fillRect (bottomX, topY, width, height);

un it. How about that? We painted the side of the houses. Good job! (We'll leave itto you to fill in the
i-}R it. H bout that? W inted the side ofthe h Good job! (We'll | itt to fill in th
roofl Maybe you'll want to overload drawTriangle?)

What? Two method definitions with the same name? Yep, but they have different parameters. In fact the
second definition has 6 parameters. The second parameter in the second definition is a Color. How does
Java know which one to use?

Java takes these steps to find a method that has been invoked:

1. Methods are invoked with the dot operator, so Java always knows what kind of Objectis being
used to execute the method.

2. Once Java knows the object, it knows the Class the objectis an instance of because every
variable must be declared as a type.

3. Once Java knows the Class, itlooks through that Class's methods for the proper method name.

4. If more than one method has the same name, we have overloading, so Java will check
parameters (number and type) to find the match. The number and type of parameters determine the
method's signature.

Overloaded methods are differentiated by the number and type of the arguments passed to them (their
signature). In a given Class, you can't declare more than one method with the same name and the same
number and type of arguments, because the compiler can't tell them apart.

WARNING The compiler doesn't consider return type when differentiating methods, so you can't
declare two methods with the same signature, even if they have different return types.

Because the compiler does not consider return type, different sources have different definitions for the
signature of a method.

For a language to distinguish between overloaded method calls (thatis, when the class type and method
have the same name), ituses the method's name and the parameter number and types to prevent ambiguity.

Summary

Method Declarations

One more time: The only required elements of a method declaration are the method's return type, name, a
pair of parentheses, (), and a body between braces, {}.

Method declarations have six components, in order:

1. Modifiers--such as public or private (permissions), and others we'll see in the nextlesson.

2. Return type--the data type of the value returned by the method, or void if the method does not
return a value.

3. Method name--similar to variable names, with the added recommendation that it begin with a
verb since methods are actions.

4. The parameter listin parentheses--a comma-delimited list of input parameters, preceded by their
data types, and enclosed by parentheses ().

If there are no parameters, you still must use empty parentheses.
5. An exception list--we'll cover this later.

6. The method body, enclosed between braces--the method's code, including the declaration of
local variables, goes here.

main: an important method

We mentioned earlier that Java programs thatdo notrun on a browser require a main method to getthem
started. The main method is the top-level method that initiates execution of a program thatis notrunningon a
web browser. It looks like this:

public static void main (String[] args) { }

When we want to start an application, we need to find the Class that has the main method in it (call it
ClassWithMain), and use this command:

java ClassWithMain

Good design practice dictates that the main method should do nothing but instantiate and start the Classes of
the application. Given this, some programmers define a class named Main.java and the only Member of that
class is the main method. This makes it easy to know how to start Classes, because instead oflooking at all
ofthe Classes to find the main, you can simply call

java Main every time.

Finally, note thatif you do not do this, and you have your main within a Class called ExampleClass, then the
main code needs to explicitly instantiate the Class and call a method to get it started.

Starta new Class called ExampleClass. This time itdoesn't extend Applet so leave the superclass as
java.lang.Object.

CODE TO TYPE: ExampleClass

public class ExampleClass

{
int testInstanceVariable = 42;

public static void main(String[] args)
{
System.out.println("The value of the instance variable is " + testInstanceV
ariable) ;
}
}

Looks simple, huh? Although there are some errors generated in this Class that mention sfafic, and indicate
Class Variables or Methods, we'll hold off on discussing them in depth until the nextlesson. See you there...

¥

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Adding Interaction using Components and Listeners

When you complete this lesson, you will be able to:

Lesson Objectives

e add auserinterface.

e Implementa listenerinterface.

Revisiting the Dukes Class and Applet

Let's revisitour old pal Duke (deep down you know you love him). Grab the Dukes class and the Dukes Applet we
made earlier.

1. Start a new project called javal_Lesson12.

2.Go to your javal_Lesson7 project and copy Dukes.java (right-click and Copy).

4.Now do the same thing with DukesApplet.java (copy and paste from javal_Lesson7/src).

To do 3. Go to yourjaval_Lesson12 project and paste Dukes.java into the src folder.
5. Open up DukesApplet.java and Run it.

If you move the window around, Duke can get a litle messed up. Try moving the Applet off of the screen like this and
see:

E-0ST Java - javal_lesson5,src/duke.java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Rum window Help
| £ - || |[-0-Q- | EBEHFG- @ | |0 G E-

. Syllabus

| File | | Back, | | Refresh | | Forward | | Skop | | G0 | Location: |http:,l',l'www.useractive.n:-:nm,l'u:ert,l'javalg'javaIDS.htmI

Keeping the first one running, Hun it again to make another ane

[applet viewer: IjLIkE: ::lass|uur mouse to drag one window off the top of the aother so you see bath
Move off screen a little.

Run it again -
window 50 you see all three

then again ma

e yvou done? This time we are not Restarting an exsting applet but Running

wtiting Duke

ERVE: Creation of Ifnstatices

h time wou run an applet,. vou are creating a new applet and
aned. ice 1n the code that Dulke extends the Clas= Applet

=0 Duke inherits from Applet
=mAd thius wma ozt Thilre TEA Arnlat

Now, move itback on screen and notice any changes:

.

q - | |m [-0-&- | EHFG-|®F| |0 - -B5E -
.Syllabus Bro

| File | | Back | | Refresh | | Forward | | Skop | Location: |http:,l',l'www.useractive.cnm,l'cert,l'javal,fjavaIDS.htmI

|

1. keeping the first one running, Bun 1t again to make another one

2. UJsze your mouse to drag one wigdow off the top of the other s0 you see both

B applet Viewer: duke.... [H[=] [E3 ove DacCK on screen.
AL 3 window so you see all three

i. his time we are not Restarting an exsting applet but Rumung & NEW OfE.

Notice that t' M d
otce that ILS Iviesse up
Instances

| am awating Duke

eels funny un an applet, you are creating a new applet and hence a 1

ode that Duke extend= the Class Applet

tz from Applet
sz Thilba TOA Arelot

— Applet started.

HE s e —

a1 = P T maem e oo am e e At (T8 aode e wa

Do ita few more times.
The Applet gets messed up when we refresh the screen like that.

The problem is that Dukes only changes the part of itself that needs to be repainted (in this case, the part that was
offscreen). The call to paintthe Applet comes from the Appletitself, notfrom the user. ButJava is a language for
building software, and software is for humans to use. So let's give the users something to click on that makes Dukes

change upon user direction instead.

A User Modification Example

Now let's getthe user to interact with our Applet. Again, using the power of modularity, we'll leave the Dukes class as
itis, and just present it differently, using a different Applet. The DukesApplet class will change because that's where
the "presentation" or Graphical User Interface (GUI) is located in Applets. In this example we're going to add a GUI
component called a "List" and use a "Listener" which is a type of Interface. We'll refer to the example to explain these
new concepts in detail later in the lesson:

Start a new class called DukesApplet GUI. Make sure it has the java.applet.Applet Superclass.

CODE TO TYPE IN BLUE: DukesAppletGUl.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.¥*;

public class DukesAppletGUI extends Applet implements ActionListener{

Dukes myDuke; // Instance Variable giving the instance name "myDuke"
String action; // Instance Variable telling what action is being done

public void init() // init method

{
List actionList = new List(3); // makes a list to choose from
actionList.add ("wave") ; // give the list 3 choices
actionList.add ("think") ;
actionList.add ("write") ;

actionList.addActionlListener (this); // tell Java to listen for user input

add (actionlist) ; // add the list to the Applet
myDuke =new Dukes () ; // make an instance of Duke
action = myDuke.getActionImage () ; // see what Duke's current action is
}
public void paint(Graphics g) // paint method

{
Image myAction = getImage (getDocumentBase(), action);
g.drawString (myDuke.getAction(), 10,165);
g.drawString (myDuke.getMessage (), 10,180);
g.drawImage (myAction, 20, 50, Color.white, this);

}

public void actionPerformed (ActionEvent evt)
{
String userChoice = evt.getActionCommand() ;
if (userChoice == "write") action = myDuke.write();
else if (userChoice == "think") action = myDuke.think() ;
else if (userChoice == "wave") action = myDuke.wave() ;

repaint(); // if a different choice has been made, call our paint through repai
nt ()

'}Run it. To pick a choice in the box, double-click on it. Scroll for more choices.

Before we examine this code in detail, let's discuss interfaces.

Introduction to Interfaces

Interfaces are quite simple to create and use, but they can still be tricky to understand. In this course we're justgoing to
learn the basics, butthere's more to come on interfaces later in the Java course series. For Java programmers, the
word interface can have several meanings. For instance, there is a Graphical User Inferface (GUI), which is an interface
between users and a piece of software. But that's not the definition we're using in this lesson, even though we're using
a Listener Interface to make a GUI for our program. We're using the term Interface here to mean a type, sortoflike a
Class that defines methods, but doesn'timplementthem. The term interface is used because this type is analogous
to an actual interface you're used to using, butit's more like an interface between Java objects.

So Java has a type called an Interface thatdefines methods, butdoesn'timplementthem. And when we say doesn't
implement the methods, we mean there are no brackets {}, and so no code between them to be implemented. So the
methods in an interface don't do anything--yet. Let's take a look. The ActionListener interface we're using in this
example looks like this in the API:

Definition of the ActionListener Interface from the API

public interface ActionListener extends java.util.EventListener{

public void actionPerformed (ActionEvent e);

We found the definition in the APl entry on the interface ActionListener. What else do we know about this interface? In
addition to the definition, we know that methods aren'timplemented in an interface.

This particular ActionListener interface only has one method, but an interface can have any number of methods. Notice

thatthe actionPerformed() method doesn'thave a body, so itdoesn'tdo anything. It's set up to receive an object of
type ActionEvent, but because its return type is void, itisn't supposed to return anything. An interface's methods are

implemented when we implement them, when we define its methods. Once we do that, then our object can claim that
it's the same type of object as the interface.

Why would anyone want to define an interface? Why would anyone wantto define methods thataren'timplemented?
Well, there are several reasons. It simulates multiple inheritance, and aids in polymorphism. And once we implement
an interface, other objects know for sure that we are implementing a set of methods, and we know thatif we
implement these objects, that we can receive all that those objects have to offer us for sure. In fact, by rule of
implementation we agree as programmers to implement all of the methods defined in the interface we are
implementing. This conceptis bestillustrated in the Listeners interface.

You can see thatin our DukesApplet GUI we've obeyed the rules ofimplementation by implementing all of the
methods of ActionListener:

http://download.oracle.com/javase/6/docs/api/java/awt/event/ActionListener.html

DukesAppletGUIl implements ActionListeners Methods

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ActionlListener{

Dukes myDuke; // Instance Variable giving the instance name "myDuke"
String action; // Instance Variable telling what action is being done
public void init () // init method

{

List actionList = new List(3); // makes a list to choose from
actionList.add ("wave") ; // give the list 3 choices
actionList.add ("think") ;

actionlList.add ("write") ;

actionList.addActionListener (this); // tell Java to listen for user input
add (actionList) ; // add the list to the Applet
myDuke =new Dukes () ; // make an instance of Duke
action = myDuke.getActionImage () ; // see what Duke's current action is
}
public void paint (Graphics g) // paint method

{
Image myAction = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction (), 10,165);
g.drawString (myDuke.getMessage (), 10,180);
g.drawImage (myAction, 20, 50, Color.white, this);

}

public void actionPerformed (ActionEvent evt)
{
String userChoice = evt.getActionCommand () ;
if (userChoice == "write") action = myDuke.write() ;
else if (userChoice == "think") action = myDuke.think() ;
else if (userChoice == "wave") action = myDuke.wave() ;

repaint(); // if a different choice has been made, call our paint through repai
nt ()
}

}

By implementing ActionListener's methods, we've actually given them something to do! Our DukesAppletGUI has
followed the rules ofimplemention, so now the ActionListener interface is not only an Applet, but an ActionListener as
well. And now our Dukes Applet can receive messages from objects that send them to ActionListener, and even our
Dukes Appletdoes something with those things.

An Analogy: Antenna as an Interface

Listeners are great examples of interfaces and also lend themselves to a nice analogy. | like to think of an interface as
a type of antenna. An antenna is really an interface between something sending a signal and your radio, which receives
the signal and then does something with it. Taking our analogy a little further, your radio's amplifier will implement an
antenna in order to receive signals. Of course, this amplifier will take signals and process them. Well, suppose each
type of antenna has different kinds and numbers of wires, which play the part of methods in our example. So in the
analogy, the Amplifier is a Class, the Antennas are interfaces, and the wires are methods defined in each of the
interfaces. Oh, and the RadioStation is an object that sends out different signals, or parameters. Check out this
illustration:

TVantenna RadioAntenna SateliteAntenna

ﬁ \ / -

§

blueWire() / blackWire()

redWire() . - : aaquaWirel)

Amplifier

In our analogy,in orderto implement one of the Antenna, our amplifier mustconnect orimplement all
of the wires of that Antenna.

To take our analogy further still, if we want to play a radio station (a RadioStation object, if you will) on our Amplifier,
then we need to implement the Radio Antenna interface by implementing all of its methods (wires): purpleWire()
and blackWire(). The RadioAntenna interface has a blackWire() and a purpleWire(), but they don't actually do
anything until we implement them with our Amplifier. Once we do that, we can receive signals from the Radio Station
object.

Let's really get carried away with our Antenna analogy now and write down Java code that represents this situation.
First, let's define the Radio Antenna interface:

The RadioAntenna Interface

public interface RadioAntenna {
public void purpleWire (Signal S);

public void blackWire (Groud G) ;

Now suppose we have an Amplifier Class thatimplements this interface and instantiates the Radio Station object
(which sends stuff to the interface).

Amplifier class instantiating the RadioAntenna

public Class Amplifier extends ElectronicDevice implements RadioAntenna {

RadioStation Jazz = new RadioStation (103.4) ;
Jazz.addRadioAntenna (this) ;

public void purpleWire (LeftSignal 1) {

Code that does something with 1
}

public void blackWire (RightSignal r) {

Code that does something with r

Now, the Amplifier Class has properly implemented the RadioAntenna interface, and the RadioStation is sending
signals. Since we have an Antenna interface, the RadioStation object has an addRadio Antenna() method. So when
the RadioStation sends a signal, Java automatically calls the registered interface methods purpleWire() and
blackWire() as needed. (All of that happens behind the scenes and we don't need to worry aboutit.) Those methods
would be defined in the Radio Station Class (remember this is an analogy).

The Listener Interfaces

Now let's examine this code and learn what's happening here. Even though itlooks like we've done a lot, in reality
we've only introduced two new things to this Applet. We've added a List Object which, when clicked, will send
messages to ourinterface. We've also implemented a type of interface called a Listener. Our particular "Listener”
is ActionListener (there are others). A listener's job is to "listen" for events that users can perform on a computer
like click, double-click, move the mouse, and so on. By implementing the ActionListener Interface, we've made our
DukesAppletGUI a Listener, and it's listening for particular events. Look at the color coding of our code below so we
can discuss this further:

DukesAppletGUl.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.¥*;

public class DukesAppletGUI extends Applet implements ActionlListener{

Dukes myDuke; // Instance Variable giving the instance name "myDuke"
String action; // Instance Variable telling what action is being done

public void init () // init method

{
List actionList = new List(3); // makes a list to choose from
actionList.add ("wave") ; // give the list 3 choices
actionList.add ("think") ;
actionList.add ("write") ;

actionList.addActionListener (this); // tell Java to listen for user input
add (actionList) ; // add the list to the Applet
myDuke =new Dukes () ; // make an instance of Duke
action = myDuke.getActionImage () ; // see what Duke's current action is
}
public void paint (Graphics g) // paint method

{
Image myAction = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction (), 10,165);
g.drawString (myDuke.getMessage (), 10,180);
g.drawImage (myAction, 20, 50, Color.white, this);

}

public void actionPerformed (ActionEvent evt)

{
String userChoice = evt.getActionCommand () ;
if (userChoice == "write") action = myDuke.write();
else if (userChoice == "think") action = myDuke.think() ;
else if (userChoice == "wave") action = myDuke.wave() ;
repaint(); // if a different choice has been made, call our paint through repain
t()
}

This example works justlike our analogy! By implementing the ActionListener interface, we've made it so that
objects like buttons and lists can call our actionPerformed(ActionEvent evt) and pass ita parameter of type
ActionEvent. Then ourimplemented actionPerformed() method takes that eventand processes it with the code
we added to our Applet. In this case, the ActionEvent object that was passed to us has its own method called
getActionCommand(), which grabs the item in the List that was clicked. Our code checks each possible
userChoice and calls our Dukes object with the corresponding method [write(), think(), or wave ()].

Finally, let's talk about the List object. Like the other Components in AWT, such as buttons and check boxes, this List
is an Object that we create an instance of using the new call. The List object takes a number as a parameter so that it
knows how many items are in the selection list (in this case, 3). We named this instance of List, actionList. The List
object has its own methods, one of which is add(). We call add() from our instance as actionList.add("think"). That
way, we add all of the choices ("think", "wave", and "write") to the List.

You might have wondered how the List object knows to call the actionPerformed() method atall. Well, if you look
in the API, the Listcomponenthas a method called addActionListener(ActionListener S) which takes an
ActionListener as its parameter. In this case, this is DukesAppletGUI. We tell our ListObject to add this by calling
actionList.addActionListener(this). And of course DukesAppletGUI is an ActionListener because it
implemented the ActionListener interface. The call to addActionListener() tells Java to call all of the appropriate
methods listed in the ActionListener interface which Java knows. As you'll see in a later lesson, these components
can add other listeners too, and we can implement other interfaces to capture their events.

Finally, we add the instantiated ListactionList to the Applet using the Applet's inherited add() method, a method

http://download.oracle.com/javase/6/docs/api/java/awt/package-summary.html

specifically for adding components to the Applet.

As the course progresses, you will implement and change many ofthese Classes in all kinds of ways. For now, the
goal is to understand the basics of Classes--that they define variables and methods, which help to define the Class
itself and its capabilities. In the nextlesson we'll write our own classes again, but we'll use some of the Classes that
Java has written for us to make coding easier. See you there! Cheers!

=

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Modularity: Modifiers, Permissions, and Scope

When you complete this lesson, you will be able to:

Lesson Objectives

e enhance the structure of Classes using Access Modifiers, and Class Methods and Variables.
e use Scope inyour Classes.

Class Specifications
Programming styles and languages may differ, but the basic ideas behind object-oriented design remain the same:
e modularity
e encapsulation (includes data-abstraction and information hiding)

e inheritance
e polymorphism (overloading, overriding)
We'll return to our beloved Dukes class to illustrate how some aspects of object-oriented design are used to

implement the Java language. And we'll get to play around and learn some more tricks. After all, programming really is
all about the tricks!

Modularity

Alright, let's get started with the Dukes class from Lesson 7. You remember Dukes, right? How could you forget?

So far we've re-designed our Dukes code a couple oftimes to demonstrate modularity:

e Ourfirst Duke example (javal_Lesson3) was all in one Appletfile. Here's the running Applet.

e Later we edited Dukes to separate the Dukes information from the Appletinformation. The running Applet
didn'tlook any different, but the code was cleaner.

e Then we edited our project again to allow the user to choose whataction for Duke to take. We keptthe same
Dukes .java class, but only edited the GUl component choice in the Applet. Here is the running Applet.

One of the great characteristics of modular code (with unique Classes) is thatit's much easier to edit, modify, and
reuse. In this lesson, we'll change our Applet's appearance by editing the Applet Class. Then we'll add aspects to our
Dukes by editing the Dukes Class.

First, let's add to our bucket of tricks. We'll edit the Appletto make a drop-down menu listto use instead of the
scrollable list we did earlier. The easiest way to make these changes will be to edit stuff we already have. Let's grab a
copy ofthe DukesApplet GUl.java file we made in the lastlesson, and also reuse the Dukes.java we've been using
all along.

Once again, make a new project for Lesson 13 and call itjaval_Lesson13. Once you've done that, let's copy
some files we've already made.

1. Copy and Paste Dukes.java from the java1_Lesson7 projectto the javal_Lesson13 project.
To 2. Copy and Paste DukesApplet GUIl.java from the javal_Lesson12 project to the
+do java1l_Lesson13 project. :

Now let's edit DukesAppletGUl.java:

Lesson3/duke2.html
Lesson3/duke0.html
Lesson3/duke1.html
Lesson3/duke2.html

CODE TO EDIT IN BLUE: DukesAppletGUl.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener({

Dukes myDuke;
String action;

public void init() {

Choice actionList = new Choice() ;
actionList.add ("wave") ;
actionList.add ("think");
actionList.add ("write");

actionList.addItemListener (this) ;
add (actionList);

myDuke =new Dukes() ;
action = myDuke.getActionImage () ;

}

public void paint (Graphics g) // paint method

{
Image myAction = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction (), 10,165);
g.drawString (myDuke.getMessage (), 10,180);
g.drawImage (myAction, 20, 50, Color.white, this);

}

public void itemStateChanged (ItemEvent evt) {
int whichOne = ((Choice)evt.getItemSelectable()) .getSelectedIndex()
switch (whichOne)
{
case 0: action= myDuke.wave(); break;
case 1: action= myDuke.think(); break;
case 2: action= myDuke.write(); break;
}
repaint() ;

}

Now Run it. Notice that now we have a drop-down menu option rather than the scroll choice box we had before.

The code intheitemSelectable() method implemented the ItemListener interface and made the code a little
cleaner. Butreally, there aren'ta whole lot of changes happening here. Only about 4 lines needed to be edited to
change the GUl componentinto a Choice list. You can really see it here---modularity and reusable code mean less
work for us!

Modifiers

Access Modifiers--Permissions

Let's add some capabilities to our Duke and give him some angst. Like the rest of us, Dukes can get quite
angry having to do all that thinking, writing, and waving constantly. Since we are changing a characteristic of
Dukes, the Class thatis changed is, of course, Dukes.

We're going to have our Duke get angry in three ways: randomly, via the Applets Constructor, or by user
interaction. Lots of things can make Duke angry, it seems!

If you wantto allow characteristics of an instance to be specified at the time of instantiation, you should
provide code in that class fora Constructor of the class, with proper parameters that specify desired values
for the variables.

Edit the Dukes java file as we have below:

CODE TO EDIT: Dukes.java

import java.awt.Color;
public class Dukes {

private Color noseColor = Color.red; // default Dukes have red noses
private boolean angry = false; // default Dukes aren't disgruntled

private String action = "../../images/duke/dukeWave.gif";
private String whatDoing = "Give me something to do";
private String message= "";
private String angryMessage= "";

public Dukes () {
// give Duke instance random values for traits

int rint = (int) (Math.random() * 3); // randomly generates a 0, 1, or 2
if (rint == 0)

{

noseColor = Color.blue; // more often red by default

action = "../../images/duke/dukeWave2.gif";

message = "What's up with the blue nose!";

}

// randomly decide if Duke is angry
rint = (int) (Math.random() * 3);
if (rint == 1)
{
angry = true;
angryMessage = "I QUIT!!";
Dukes myDuke = new Dukes (noseColor, true);

}

// Or, when the applet instantiates the Duke, let it say if he is
angry-—a new Constructor.

public Dukes (Color nose, boolean isMad) {
// give Duke instance specified values for traits that are passed from the cl
ass that instantiated

noseColor = nose;
angry = isMad;
}

// Add methods to access new variables

public String getAngryMessage ()
{
return angryMessage;

}

public void setAngryMessage (String newMessage)
{
angryMessage = newMessage;

}

public boolean isAngry ()
{
return angry;

}

public void setMood ()
{ // toggle the boolean value. If it was true it becomes false; if false
it becomes true
angry = 'angry;
if (angry == true)
angryMessage= "I QUIT!!";

else
angryMessage= "";

}

public String getAction ()
{

return whatDoing;

}

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

public String write () {

whatDoing = "I am a writing Duke";

if (noseColor == Color.red)
{

action = "../../images/duke/penduke.gif";
message = "";
}

else {
action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}

return action;

}

public String think () {

whatDoing = "I am a thinking Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/thinking.gif";
message = "";
}
else
{
action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave () {

whatDoing = "I am a waving Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/dukeWave.gif";
message = "";
}
else
{
action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

Go ahead and save this.

Again, notice that thanks to modularity, we only worry about the specific changes we want to make, and not
the other methods.

And notice we now have two Constructors, one with no parameters:
public Dukes()

and one with two parameters:

public Dukes(Color nose, boolean isMad)

We use multiple constructors because sometimes, when you instantiate a class, you know the variables that
you wantto have setin thatinstance and so pass them as parameters, and other times you simply want to
use the defaults, so no parameters need to be passed. In our Constructor with no parameters, the Dukes
decides randomly whether Duke is angry. If he is angry, then it calls the other constructor and sets the
parameters for us (the second one being true). If WE wantto DECIDE whether Duke is angry, we instead call
the Constructor with parameters to specify as such (second parameter is true or false).

Dukes myDuke = new Dukes(noseColor, false);

We now are allowing someone else's appletto determine Dukes action and not necessarily deciding
randomly. That's pretty cool.

Do notuse return types for Constructors--noteven void!
' WARNING Constructors always return an instance of the type of Object they are constructing, so they !
' do notneed a return type. '

Since we are allowing Duke to have a new characteristic (angry), and he's expressing this characteristic, we
added a variable so we can see what he says:

private String angryMessage="";
Notice in the code thatthe instance variables are all private because we don'twantthem changed directly.
This is an example of encapsulation (information hiding). (You'll see later why we want to hide variables
from others and make them accessible through methods only.)

We've also added methods the user can use to change the characteristics and/or see what they are (instead
of accessing them directly).

public String get AngryMessage()

public void setAngryMessage(String newMessage)
public boolean isAngry()

public void setMood()

Notice that our access and change methods are public to allow others to use them to find and set attributes.
Users ofthe code (access from other classes) cannot see the information unless we allow them to with
public methods, and they can only change variables by using the methods we provide.

Let's use this class, and then discuss access permissions in depth.

Now let's change the user interface in DukesAppletGUIl.java to take advantage of these new features in
Dukes .java.

CODE TO EDIT: DukesAppletGUI for new Variable access and Constructor

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

Dukes myDuke;
String action;

public void init() {

Choice actionlList = new Choice();
actionList.add ("wave") ;
actionList.add ("think");
actionList.add ("write");

actionList.addItemListener (this);
add (actionList);

myDuke =new Dukes();
action = myDuke.getActionImage () ;

Checkbox isAngry = new Checkbox ("angry", myDuke.isAngry());
add (isAngry) ;
isAngry.addItemListener (this) ;
}

public void paint (Graphics g) {

Image actionChoice = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction(), 10,165);

g.drawString (myDuke.getMessage (), 10,180);

g.drawImage (actionChoice, 20, 50, Color.white, this);
g.drawString (myDuke.getAngryMessage (), 110,110);

}

public void itemStateChanged (ItemEvent evt) {

if (evt.getItem().toString() == "angry")
myDuke . setMood () ;
else
{
int which = ((Choice)evt.getItemSelectable()) .getSelectedIndex();

switch (which)

{

case 0: action= myDuke.wave (); break;
case 1: action= myDuke.think(); break;
case 2: action= myDuke.write(); break;

}
} // make sure you see the curly bracket here too!
repaint () ;

And Run it.

We've added a Checkbox to allow us (the user) to decide whether the Duke is angry, and if he is, we lethim
send a clear message.

Modularity is used in this class (DukeAppletGUI) and the Dukes class, and both contain the variable name
"isAngry". For the Applet, it's the name of a Checkbox instance (in the init() method); for the Dukes it's a
method to see if Duke IS angry. As long is there is an instance name in front of the dot (e.g.,
myDuke.isAngry()), Java knows exactly where to getthe right use of "isAngry". If there is nota dot with an
instance name in front of it, Java knows to look in the class itself (i.e., the code that uses it).

This is a nice feature of object-oriented programming languages--you never have to worry about variables
thatsomeone else used, because the compiler will know which variable should be used by its presence in a
certain class.

What Permissions Allow

Classes, instance and class variables, and instance and class methods can all have access modifiers.
Two commonly used permissions that promote encapsulation of class information are:

e public
e private

We have already seen that variables defined in a method are /ocal to the method and are notknown outside
ofthe method (by variable scope). Method variables are implicitly private to the method in which they are
defined. In this section, we are notlooking atthe method variables, but access to the method itself.

First, within a Class, any instance or class variables of a class are accessible by any method of that class
since they are defined atthe same level or "above" the methods themselves.

Modifiers for permissions indicate who outside the class may access things. For example, the private
variables (and methods) can only be seen (or accessed) by other methods of that same class; that's why we
call them private. Privat e variables require public "get" and "put" methods for "outside" access and changes.

Public means accessible by any class.

The Ps for Permissions: public, private, protected, package

public--any and all classes can access (as long as its package is visible (imported)).

public void AnyOneCanAccess() {}

e private--accessible only to those within the class they are defined. They are not available to
subclasses.

private String CreditCardNumber;

e protected--all classes in package and subclasses of the class inside and outside package.

protected String FamilySecrets;

e "friendly"--no specific declaration, the default, also known as "package" because itallows access
to any objects inside the same package. ("Package" will be covered in detail in a later course in this

series.)
void MyPackageMethod() {}
Modifier Visibility
public All classes where package is visible
private None (only within own class)

protected |Classes in package and subclasses inside or outside package

none (default) | Classes in same package

1. Open the DukesAppletGUl.java file in the Editor.

To do 2.Lookin the init() method, atthe line:
Checkbox isAngry = new Checkbox("angry", myDuke.isAngry());

Within thatline is a call to the "get" method of the Dukes Class's isAngry() method through
myDuke.isAngry().

As a naming convention, names of methods that return booleans (true or false) start with is in
» Tip frontofthe variable name. Accessor methods use get as seen in isAngry()). Getter methods :
get values and start with get, setter methods set values and start with set.

__

Try to get the value of the instance variable angry without going through the accessor method:i.e., using:
myDuke.angry:

CODE TO EDIT IN BLUE:DukesAppletGUl.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

Dukes myDuke;
String action;

public void init () {

Choice actionlList = new Choice();
actionList.add ("wave") ;
actionList.add ("think") ;
actionList.add ("write");

actionList.addItemListener (this);
add (actionList);

myDuke =new Dukes();
action = myDuke.getActionImage () ;

Checkbox isAngry = new Checkbox ("angry", myDuke.angry)
add (isAngry) ;
isAngry.addItemListener (this);
}

public void paint (Graphics qg) // paint method
{
Image myAction = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction (), 10,165);
g.drawString (myDuke.getMessage (), 10,180);
g.drawImage (myAction, 20, 50, Color.white, this);

}

public void itemStateChanged (ItemEvent evt) {
int whichOne = ((Choice)evt.getItemSelectable()) .getSelectedIndex()
switch (whichOne)

{

case 0: action= myDuke.wave (); break;
case 1l: action= myDuke.think(); break;
case 2: action= myDuke.write(); break;
}

repaint () ;

Now try to run this.

You should see this error:

The field Dukes.angry is not visible

Since you are "in" the DukesAppletGUI class and notthe Dukes class, you can't see Dukes' private variables
ormethods.

We could make the angry variable in the Dukes class public to fix the error:

1. Open the Dukes java class.

2.Change
private boolean angry = false;
to

Todo public boolean angry = false;.
3. Save it.

4. Go back to the DukeAppletGUI class that had the errors.

All the errors are gone now because the variable is public (it's notillegal to expose our private parts in Java,
butitisrude--and it violates our data-hiding convention, too. Let's see if it mattered here (it can sometimes,
as we'll see later in this lesson):

1. Save both classes and Run the applet.

—
o
Q
o

2. Click the angry Checkbox over and over. .

Whew, everything still works fine in this example, but there are cases where it could resultin data
corruption. (We'll cover thatin a later course in this series as well.)

Encapsulation and data-hiding prevent data corruption because they prevent users from changing one aspect
of code without considering the consequences that change may have on other aspects.

Some of the great advantages of modularity and encapsulation are:

e Yourcode is safer from user corruption, because even when your classes allow changes, you get
to determine what users can and cannot access.

e Ifyourcode has an errorin it, you can easily trace it back to your encapsulated chunk of code. This
way you only have to change it once--not throughout your program.

Be sure and put the Dukes.java and DukesAppletGUl.java back into their orginal form by making the angry
variable private in Dukes.java, and fixing the line Checkbox isAngry = new Checkbox("angry",
myDuke.isAngry()); in DukesAppletGUl java.

Keep going, you're doing great!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Class Members, Constants and main

When you complete this lesson, you will be able to:

Lesson Objectives

e use Class members with static modifier.
e use the main method.
e use the final modifier.

Static Members

In previous lessons we used methods that use static variables such as Color.red. Also called Class Variables (as
opposed to Instance Variables), static variables don't change. We also used static Class Methods when we used
methods like Math.random().

Let's take a look at these in the API #F1_Click on the API link provided in Eclipse, find the java.lang package, and scroll
down to the Math class . Notice that the modifiers in the left column all say static .

Now go back to the java.lang package. Get the Integer class.
Notice that most of the Fields and Methods in that Class also have the modifier static.
Recall that a Class can contain only:

e Fields
e Methods

But Fields and Methods will be either:

e Instance members or

e Class (keyword static) members

Members ofa class (Fields and Methods) are generally only accessible once you have instantiated the class to make
an instance. Once you have the instance, you can use the dot operator to get the values of the fields, or to invoke the
methods.

Members that have the static modifier are Class variables or methods, so they're accessible either through the
dotoperator or through their Class name. As such, itisn't necessary to create an instance to use a Class Variable or
Class Method. Class variables and methods often belong to Classes that are commonly used for auxiliary
purposes in your Classes (for example, java.lang.Math).

Okay, let's get crackin' and put our new knowledge to work. Create a new project for this lesson called
javal_Lesson14, and copy and paste Dukes.java and DukesApplet GUl.java from the javal_Lesson13 project to
javal_Lesson14 project.

We're going to change an instance reference to a class reference and notice that Eclipse will yell at us, and make some
suggestions for fixing it.

Open Dukes.javaand look for Class references:

OBSERVE: In Dukes.java, notice the use of Class variables and methods.

import java.awt.Color;

public class Dukes {

private Color noseColor = Color.red; // default Duke's have red noses
private boolean angry = false; // default Duke's aren't usually disgruntled
private String action = "../../images/duke/dukeWave.gif";
private String whatDoing = "Give me something to do";
private String message= "";
private String angryMessage= "";

public Dukes () {
// give Duke instance random values for traits

int rint = (int) (Math.random() * 3); // randomly generates a 0, 1, or 2
if (rint == 0)

{

noseColor = Color.blue; // more often red by default

action = "../../images/duke/dukeWave2.gif";

message = "What's up with the blue nose!";

}

// randomly decide if Duke is angry
rint = (int) (Math.random() * 3);
if (rint == 1)
{
angry = true;
angryMessage = "I QUIT!!";
Dukes myDuke = new Dukes (noseColor, true);

}

// Or, when the applet instantiates the Duke, let it say if he is angry-

a new Constructor.

public Dukes (Color nose, boolean isMad) ({
// give Duke instance specified values for traits which are passed from the class th

at instantiated

noseColor = nose;
angry = isMad;

}

// Add methods to access new variables

public String getAngryMessage ()
{

return angryMessage;

public void setAngryMessage (String newMessage)

{

angryMessage = newMessage;

public boolean isAngry ()
{

return angry;

public void setMood ()
{ // toggle the boolean value. If it was true it becomes false; if false it beco
mes true
angry = langry;
if (angry == true)
angryMessage= "I QUIT!!";

else
angryMessage= "";

public String getAction ()
{

return whatDoing;

}

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

public String write () {

whatDoing = "I am a writing Duke";

if (noseColor == Color.red)
{

action = "../../images/duke/penduke.gif";
message = "";
}

else {
action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}

return action;

}

public String think () {

whatDoing = "I am a thinking Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/thinking.gif";
message = "";
}
else
{
action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave () {

whatDoing = "I am a waving Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/dukeWave.gif";
message = "";
}
else
{
action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

allows us to identify whether methods and variables are Class members (static).

Now, let's experiment on DukesAppletGUljava. Try using the Class name instead of the instance name (Dukes
instead of myDuke) in a method call:

According to convention, Classes start with capital letters and Instances start with lower-case letters. This

CODE TO TYPE: In the code below, change myDuke to Dukes.

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

Dukes myDuke;
String action;

public void init () {

Choice actionList = new Choice();
actionList.add ("wave") ;
actionList.add ("think") ;
actionList.add ("write");

actionList.addItemListener (this);
add (actionList);

myDuke =new Dukes();
action = myDuke.getActionImage () ;

Checkbox isAngry = new Checkbox ("angry", myDuke.isAngry());
add (isAngry) ;
isAngry.addItemListener (this);
}

public void paint (Graphics g) {

Image actionChoice = getlImage (getDocumentBase (), action);
g.drawString (Dukes.getAction (), 10,165);

g.drawString (myDuke.getMessage (), 10,180);

g.drawImage (actionChoice, 20, 50, Color.white, this);
g.drawString (myDuke.getAngryMessage (), 110,110);

}

public void itemStateChanged (ItemEvent evt) {

if (evt.getlItem().toString() == "angry")
myDuke.setMood () ;
else
{
int which = ((Choice)evt.getItemSelectable()) .getSelectedIndex();

switch (which)

{

case 0: action= myDuke.wave (); break;
case 1l: action= myDuke.think(); break;
case 2: action= myDuke.write(); break;

}

} // make sure you see the curly bracket here too!
repaint () ;

You'll get this error:
Cannot make staticreference to non-static method getAction() from type Dukes

The problem here is that we've made a reference to a Class member that hasn't been declared static. Alright then, let's
follow Eclipse's advice and make the getAction() method static justto see what happens. In fact, let Eclipse do it for
you:

{_m Dukes.java [@ Dukestppletz java &3

Lol Y AL LEINL LS LEIIEL | LILL=] -

H

public woid paint (Sraphics o) A4 paint method

{
Image mybhcoction = getlmage (getDocumentBase (), action):
. draw3tr it (IR (= o Tl s Au) dl 10, 1685) ;
g.drawdtring (| & Change modifier of 'getaction()’ o 'stakic"
o . drawImage (m public static String getaction()
g.drawitringi {

B

= public void item3 Click to fix

if (evt.getlt
myDuke.an
} else |
int which
switch (w

Oryou can go to Dukes .java and add the static modifier to the getAction() method yourself:

CODE TO TYPE: Make getAction() static in Dukes .java.

import java.awt.Color;

public class Dukes {

private Color noseColor = Color.red; // default Duke's have red noses
private boolean angry = false; // default Duke's aren't usually disgruntled
private String action = "../../images/duke/dukeWave.gif";
private String whatDoing = "Give me something to do";
private String message= "";
private String angryMessage= "";

public Dukes () {
// give Duke instance random values for traits

int rint = (int) (Math.random() * 3); // randomly generates a 0, 1, or 2
if (rint == 0)

{

noseColor = Color.blue; // more often red by default
action = "../../images/duke/dukeWave2.gif";
message = "What's up with the blue nose!";

}

// randomly decide if Duke is angry
rint = (int) (Math.random() * 3);
if (rint == 1)
{
angry = true;
angryMessage = "I QUIT!!"™;
Dukes myDuke = new Dukes (noseColor, true);

}

// Or, when the applet instantiates the Duke, let it say if he is angry-

a new Constructor.

public Dukes (Color nose, boolean isMad) {
// give Duke instance specified values for traits which are passed from the class th

at instantiated

noseColor = nose;
angry = isMad;

}

// Add methods to access new variables

public String getAngryMessage ()
{

return angryMessage;

}

public void setAngryMessage (String newMessage)

{

angryMessage = newMessage;

}

public boolean isAngry ()
{

return angry;

}

public void setMood ()

{ // toggle the boolean value. If it was true it becomes false; if false it beco
mes true
angry = langry;
if (angry == true)

angryMessage= "I QUIT!!";

else
angryMessage= "";

public static String getAction|()
{

return whatDoing;

}

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

public String write () {

whatDoing = "I am a writing Duke";

if (noseColor == Color.red)
{

action = "../../images/duke/penduke.gif";
message = "";
}

else {
action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}

return action;

}

public String think () {

whatDoing = "I am a thinking Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/thinking.gif";
message = "";
}
else
{
action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave () {

whatDoing = "I am a waving Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/dukeWave.gif";
message = "";
}
else
{
action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

Now we get a different error:
Cannot make staticreference to non-static field whatDoing

We are going to make whatDoing static to see if the reference to Dukes can then be made. We can do that either by
using the Eclipse trick or by typing it for ourselves:

CODE TO TYPE: In Dukes java, make whatDoing static.

import java.awt.Color;

public class Dukes {

private Color noseColor = Color.red; // default Duke's have red noses
private boolean angry = false; // default Duke's aren't usually disgruntled
private String action = "../../images/duke/dukeWave.gif";
private static String whatDoing = "Give me something to do";
private String message= "";
private String angryMessage= "";

public Dukes () {
// give Duke instance random values for traits

int rint = (int) (Math.random() * 3); // randomly generates a 0, 1, or 2
if (rint == 0)

{

noseColor = Color.blue; // more often red by default
action = "../../images/duke/dukeWave2.gif";
message = "What's up with the blue nose!";

}

// randomly decide if Duke is angry

rint = (int) (Math.random() * 3);
if (rint == 1)
{
angry = true;
angryMessage = "I QUIT!!"™;
Dukes myDuke = new Dukes (noseColor, true);

}

// Or, when the applet instantiates the Duke, let it say if he is angry-

a new Constructor.

public Dukes (Color nose, boolean isMad) {
// give Duke instance specified values for traits which are passed from the class th

at instantiated

noseColor = nose;
angry = isMad;

}

// Add methods to access new variables

public String getAngryMessage ()
{

return angryMessage;

public void setAngryMessage (String newMessage)

{

angryMessage = newMessage;

public boolean isAngry ()
{

return angry;

public void setMood ()

{ // toggle the boolean value. If it was true it becomes false; if false it beco

mes true
angry = langry;
if (angry == true)
angryMessage= "I QUIT!!";

else
angryMessage= "";

public static String getAction|()
{

return whatDoing;

}

public String getActionImage ()
{

return action;

}

public Color getNoseColor ()
{

return noseColor;

}

public String getMessage ()
{

return message;

}

public String write() {

whatDoing = "I am a writing Duke";

if (noseColor == Color.red)
{

action = "../../images/duke/penduke.gif";
message = "";
}

else {
action = "../../images/duke/penduke2.gif";
message = "My nose feels funny";

}

return action;

}

public String think () {

whatDoing = "I am a thinking Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/thinking.gif";
message = "";
}
else
{
action = "../../images/duke/thinking2.gif";
message = "My nose feels funny";

}

return action;

}

public String wave () {

whatDoing = "I am a waving Duke";
if (noseColor == Color.red)
{
action = "../../images/duke/dukeWave.gif";
message = "";
}
else
{
action = "../../images/duke/dukeWave2.gif";
message = "My nose feels funny";

}

return action;

Now go back to DukesAppletGUIl.java and run it.

You shouldn'thave any errors. However, we have completely changed our Class! Eclipse's suggestions have
led us astray from the original intent of the Dukes Class. So we can't always take Eclipse's advice. There is a reason
thatthat whatDoing WASN'T static in the first place -- because we wanted whatDoing to be an instance variable i.e.
we wanted it to be different for each instance. Now, when we change whatDoing, the change is applied to all
instances ofthat Class. So now all ofinstances of Dukes will be doing the SAME thing. That's not what we want. Let's
go ahead and change it back.

1. Change the whatDoing back to an Instance Variable by removing the static keyword.

To do 2.Remove the static keyword from getAction()
3. Change the Dukes.getAction() reference in the applet back to myDukes.getAction()

There, all is well again! The purpose of this exercise was to give you a feel for static variables and references. In the
next section we'll make some class variables that should be class variables.

Static: Making Your Own
For normal, everyday Classes, Java has both Class Variables and Instance Variables.

Defining variables within a Class:

e If a value changes for each instance ofa Class, then it should be an instance variable.

e If a value remains the same for every instance of a Class, then it should be a class variable.

Here are a couple of examples to help illustrate this concept:
An employee's salary (instance variable), compared to the topSalary of all employees (class variable).

Ahuman's colorOfEyes (instance variable), compared to the numberOfEyes of all humans (class
variable).

You'll understand the logic behind both kinds of variables even better once you see how they're implemented
in Java:

e Instance variables each occupy their own space in memory. Changes to a value for one instance
will have no effect on other instances.

e Class variables all occupy the same space in memory. If the value ever changes, it changes for
every instance in the Class, because they share the same memory address location.

With this in mind, let's think about access. Instances have information about the class, but classes do not
have individual instance access. Instances should be able to access Class information, but unless you have
the reference or handle to the instance, you cannot access instance information.

Let's look atan example of access to class and instance variables and methods:

Make a new Class called Employee (thatdoesn't extend Applet).

CODE TO TYPE: Employee.java

class Employee {
private static int topSalary = 195000;
public static void setTopSalary (int s) {

if (s > topSalary)
topSalary = s;

Notice that we have a class variable (denoted by static) thatis changed through a class method (also
denoted by static).

Now suppose another Class wants to create Employees. To make testing easier, we'll add a main()

method to our Employee class. The main() method is used to create an application rather than an Applet. In

it, we will invoke the method from the Class (Employee) as well as invoke it from an instance (e2). We'll
explain more about this later in the lesson.

Editthe Employee class as shown:

CODE TO TYPE: Add a main method to the Employee Class to test static members.

class Employee {
private static int topSalary = 195000;

public static void setTopSalary (int s) {
if (s > topSalary)
topSalary = s;
}

public static void main(String[] args) {
Employee el, e2;
el = new Employee() ;
e2 = new Employee() ;

Employee.setTopSalary (199000) ;

// calling by class; can we do this?
e2.setTopSalary(199001) ;

// calling by instance; can we do this?

Notice that we get warnings, but no errors. Class variables and methods can be accessed from either
individual instances or the Class. This makes sense; ifa member of the Employee class gets a salary

increase, that Employee's new salary may change the existing top salary. Or, the top salary can be changed

by the "boss", the Class as a whole.
However, remember that if the Class variable is changed for (or by) one instance, it changes for all. Why?

The class variable is located at the same place in the computer memory for everyone. Changes made by
one affectall.

If a variable is an instance variable, there are copies in each object; if a variable is a class variable, there is
only one copy, which is shared.

Note declared static as well. Class methods cannot change instance variables.

Let's add an instance variable and a class method to our Employee class.

If you declare a method static, that method can only access other variables of the Class that are

CODE TO TYPE:

class Employee {

private static int topSalary = 195000;
int hoursPerWeek;

public static void setTopSalary (int s) {
if (s > topSalary)
topSalary = s; // will work (CM, CV)
}

public static void addMoreHours () {
hoursPerWeek++; // won't work (CM, IV)
}

public static void main(String[] args) {
Employee el, e2;
el = new Employee();
e2 = new Employee();

Employee.setTopSalary (199000) ;

// calling by class; can we do this?
e2.setTopSalary(199001) ;

// calling by instance; can we do this?

There's that error again.
Cannot make astaticreference to the non-static field hoursPerWeek

Okay, now remove the static keyword from the addMoreHours() method, so itlooks like this:

public void addMoreHours () {

Java is happy now.

Now, add two lines of code to the main method as shown below:

CODE TO TYPE:

class Employee {

private static int topSalary = 195000;
int hoursPerWeek;

public static void setTopSalary (int s) {
if (s > topSalary)
topSalary = s; // will work (CM, CV)
}

public static void addMoreHours () {
hoursPerWeek++; // won't work (CM, IV)
}

public static void main(String[] args) {
Employee el, e2;
el = new Employee();
e2 = new Employee();

Employee.setTopSalary (199000) ;

// calling by class; can we do this?
e2.setTopSalary(199001) ;

// calling by instance; can we do this?
el .hoursPerWeek = 40;
Employee.hoursPerWeek = 45;

Error again! Cannot make a static reference to the non-static field Employee.hoursPerWeek

Why? Consider what the expression Employee.hoursPerWeek is doing: it's trying to access the non-static
field of hoursPerWeek through the Employee Class name, a static reference. Instance variables belong
to individual instances. Classes cannotaccess them--itdoes not make sense. Forinstance, the Class of
Humans cannotaccess the instance variable colorOfEyes of a specific Human, because the class name
"Human" does notspecify which one ofits instances it's trying to access.

Consider the expression e1.hoursPerWeek: I's trying to access the non-static (and therefore instance) field
ofhoursPerWeek, through the instance e1. There's no problem there. A specific employee would work a
specific number of hours in a week.

Now, change the line Employee.hoursPerWeek = 45; to e2.hoursPerWeek = 45; Thatshould work.

static and main
The example above used something new, the main() method.
The main() method is used for all Java programs that are applications and not Applets. Specifically, if you
wanta program to Run, then you need either an appletor a Class thathas a main() method to get the
application started.

The main() method is always static. That's why Java can getinto the Class where the method is located to
start the code before you ever have an instance of the class.

Starta new Class called ExampleWithMain (notan Applet).

CODE TO TYPE: ExampleWithMain

public class ExampleWithMain
{

private int testInstanceVariable = 42;

public static void main(String[] args)
{
System.out.println("The value of the instance variable is " + this.testInst
anceVariable) ;
}
}

Darn, another errorl Cannot use this in astatic context

Let's remove this from the expression this.testIinstanceVariable and make it:
System.out.printin("The value of the instance variable is " + testinstanceVariable);

Grrrr. Another error. Cannot make a staticreference to anon-static field testinstanceVariable
This error occurs because main() is a static method, and testinstanceVariable is an instance variable.

These specific problems illustrate some important stuffabout the main() method. Including main() static,
allows Java to get started, but we have notinstantiated the class yet, so we do nothave an instance.

Edit your code as follows:

CODE TO TYPE: ExampleWithMain

public class ExampleWithMain
{

private int testInstanceVariable = 42;

public static void main(String[] args)
{
ExampleWithMain myExample = new ExampleWithMain() ;
System.out.println ("The value of the instance variable is " + myExample.
testInstanceVariable) ;
}
}

The main() method is notreally associated with a field's access, and it's notan action for the class. A
main method should only instantiate and start the top-level Class. And, that's good programming
practice.

Constructors

Instantiation
We've been using the terms instantiate and initialize often. So whatis the difference?

Let's consider our Dukes example again. Instantiating makes an instance of the Class. We made Dukes
instances in the DukeAppletGUlI when we wrote myDuke =new Dukes();. In the process ofbeing
instantiated, our myDuke was initialized. Initializing will set all the variables to the values for this
instance. This happens inside the Constructor (orin an Applet, in its init()) method, and also through
defaults. And instances inherit variables from their ancestors.

The sequence to allocate memory and to defaultinitialize is:

1. superclass initialization
2.instance variable initialization
3. constructor initialization

The order makes sense because the specific subclasses lower in a hierarchy override their parent and thus

their values (2) will "write over" the earlier default values setin (1). Then, since the constructor may be passed
specific parameters, they should "write over" any defaults that the particular Class initially got from (2).

-
©
=
@
S
)
)
)
»
»
)
=
®
©
=4
(93
»
)
=]
5
»
2
)
>
Q
®
o
=
—
17
®
=
Py
o
-
5
»
2
)
=]
=
)
=4
®
»
—
=
=
=
o
=
D
»
=
7
<
o)
c
(03
»

Constants use the final modifier

Constants in a programming language are variables that the programmer wants to be accessible to everyone
and thatremain the same for all ime. The modifier keyword to make a variable remain the same is final .

API Go to the java.lang package. Scroll again to the Math class. Now scroll down to the Field Summary.
Finally, click on either of the Fields (E or PI).

You see these modifiers:

e public static final double E
e public static final double PI

Good. We know what all of these modifiers mean now, but the combination of these public static final
makes Pl a double variable thatis a constant . Notice also, under the description in the API, it says
Constant Field Values. Click on it. It takes you to all of the Field constants that Java has defined. Because
constants always have the static modifier, they can be accessed through the Class name java.lang.Math.Pl or
for java.lang classes, simply through the class and the variable Math.PI.

E The final modifier indicates that once a field receives a value, it can never be changed. Using E
' Note commonly accepted naming conventions, fields marked as final should be UPPER_CASE with !
' words separated by the underscore character. '

Classes, methods, fields, or variables may each have this modifier and it means essentially the same
thing--that it cannot change--though it might be said a bit differently:

Modifier |Used on |Meaning

class Cannot be subclassed
final method | Cannotbe overridden and dynamically looked up
field Cannot change its value. static final fields are compile-time constants.

variable |Cannotchange its value.

Template and Summary

There are additional modifiers for Classes, Methods, and Fields, but they are beyond the scope of this course.

For more information on modifiers, check out: Java Modifiers

The typical order for modifiers is (<access> choices specified above and the []indicating 0 or 1time)
<access> [static] [final] ...

P>

Below is an example template for Class Structure (modifiers may vary for your use):

JavaModifiers.html

OBSERVE:

import packageName.ClassName. java
import packageName. *
public class ClassName extends super {

// Instance and Class Variable declarations: Declare and possibly set modifiers a
nd values for variables

private int instanceVariable;
private static int classVariable;

// Define Constructors (if none - looks at supers. No return type)
public ClassName (formal parameters) {

code

}
// Define methods with no returned values
public void methodName (formal parameters) {

code

}
// Define methods with return values
public returnType methodName (formal parameters) {

code
return ... // returnType of value returned must match method signature

Here's one more link to Java Modifiers from the online text of tutorialspoint. Most of the less commonly used Java
modifiers will be explored in future courses.

See you in the next and final lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://www.tutorialspoint.com/java/java_modifier_types.htm
http://creativecommons.org/licenses/by-sa/3.0/legalcode

All Together Now

When you complete this lesson, you will be able to:

Lesson Objectives

Make another Class and practice making graphical images like circles, hearts, up arrows, and other cool stuff.
Give the Dukes class the ability to show these graphics If the specific instance of a Duke is "angry".

Add a GUlcomponentto our Applet Class so the user can specify whether Duke is in a good mood or if we should
show him some love by giving him a Pin.

Interaction and Playing Around

You've done a great job building some useful tools during the course so far; now let's putthem all together. Let's give
our Duke some love. It'll make him feel better and it'll give us a chance to practice using classes, objects, and
instantiation. Later, we'll make real applications that do more useful things, butfor now, let's play!

Putting It All Together

The Graphics Class allows us to draw basic shapes. Let's use these capabilities and make a separate
Class that can draw figures.

Below is a class named Morelmages that adds some shapes to Java's Graphics Class. We'll use this Class
to allow our Dukes to make various graphics.

Let's make a new projectforlesson 15 called javal_Lesson15, and a new Class called Pinlmages.

After we have Pinlmages bug free, we'll make a simple Appletand demo some of the figures in the paint
method of an Appletto see how they look. We'll also getto see the potential of our Buttonimages. Ultimately,
you'll choose a method to make a Button, so pay attention as you type this in and notice the kinds of shapes
itallows.

CODE TO TYPE: Pinlmages

// This class will be used by DukesMood which will inherit from Dukes
// It will give a Duke who can make Pins using hearts, crowns, stars, triangles,
etc.

import java.awt.*;

public class PinImages
{
public void drawHeart (Graphics g, Color col, int x, int y, int width) {
// I "heart" Duke
g.setColor (col) ;
g.fillArc(x,y,width/2,width/2,0,180) ;
g.fillArc(x+ width/2,y,width/2,width/2,0,180) ;
int [] xTriangle = {x, x+width, x+width/2};
int [] yTriangle = {y+width/4, y+width/4, y+width};
g.fillPolygon (xTriangle, yTriangle, 3);
}

public void fillTriangle (Graphics g, int bottomX, int bottomY, int base, int
height) {
// isosceles base at bottom
g.drawLine (bottomX, bottomY, bottomX+base, bottomY) ;
g.drawLine (bottomX+base, bottomY, bottomX+base/2, bottomY-height) ;
g.drawLine (bottomX+base/2, bottomY-height, bottomX, bottomY) ;
int [] xTriangle = {bottomX, bottomX+base, bottomX+base/2};
int [] yTriangle = {bottomY, bottomY, bottomY¥-height};
g.fillPolygon (xTriangle, yTriangle, 3);

public void upArrow (Graphics g, Color col, int x, int y, int arrowbase) {
// Duke is movin' on UP
g.setColor (col) ;
fillTriangle(g, x, y, arrowbase, arrowbase/2);
g.fillRect (x+ 3*arrowbase/8, y, arrowbase/4, arrowbase);

Save your code for the Pinlmage Class.

Now we need an Appletso we can look atour artwork and demonstrate some of the things that the Pinimage
class can draw. Make a new class called Image Maker, so we can see these Pinlmages displayed.

CODE TO TYPE: Demo

import java.applet.*;
import java.awt.*;

public class ImageMaker extends Applet
{

PinImages demo;

public void init() {
setBackground (Color.black) ;
demo = new PinImages() ;

}

public void paint (Graphics g)

{
demo .drawHeart (g, Color.pink, 10,10, 25);
demo.upArrow (g, Color.orange, 10, 70, 30);

// an example Pin using a PinImage shape
g.setColor (Color.red) ;
g.fillOval (100,100, 80,80);
g.setColor (Color.white) ;
g.drawString("I",135,120) ;
demo.drawHeart (g, Color.pink, 125,125, 25);
g.setColor (Color.white) ;
g.drawString ("Duke!",125,170) ;

Now Run it.
The first couple of expressions in the paint() method use the instance demo, but the later ones use g.

That's because the drawHeart(), and upArrow() methods are defined in the class Pinlmages which has
an instance ofdemo.

The setColor(), fillOval(), and other methods are defined in the Class Graphics which has an instance of
g.

So what else is interesting here?

We imported java.awt.* so that we could see the Graphics class. We don't need to import anything for the
PinImages class because Classes located in the same directory are in the same "default" package.

Using Inheritance on our Own

Because we are going to add more capabilities to our Dukes rather than editing to add them into the old
Dukes class, let's take advantage of the concept of inheritance. Dukes that can make Pins will be called
DukesPins and will be a subclass of Dukes.

Create another new class in javal_Lesson15 called DukesPin.

ltwill inherit from Dukes, so let's just copy our Dukes class into javal_Lesson15:

Copy Dukes.java from javal_Lesson14 and paste itinto javal_Lesson15/src.

We'll be adding Dukes, as well as things that relate to showing Pins, to our new Applet DukesPin. Butwe're
only giving Pins to angry Dukes; after all, they're the ones who really need love. So, if someone changes
whether Duke is angry, we have to change his ability to get Pins. We'll override Duke's setMood() method.

Also notice how our Constructor calls super(). super() is a call to the parent's constructor.

We actually don't need to do this, because Java calls a parent's constructor by default, butit's here as an
example, in case you wanted to use the default constructor and add more to it. Anyway, Java will use
DukesPin's methods first, and then will inherit all of the other methods and variables from the Dukes class.

CODE TO TYPE: Type this into the DukesPin class

import java.awt.Color;
public class DukesPin extends Dukes {
private boolean showingPin;

public DukesPin() {
super () ;
// you could add more here and Java will do the parent's first and the
n come back for more

}

public DukesPin (Color nose, boolean love) ({
super (nose, love) ;

}

public boolean isShowingPin() {
return showingPin;

}

public void switchShowingPin () {
showingPin =!showingPin;
if (showingPin && !angry)
{
angryMessage= "I don't get a Pin, I'm not angry";
showingPin =!showingPin; // don't let them show Pins since not angry

public void setMood() {
super . setMood () ; // let the parent do the work first, then do what we
need in addition
if (angry == false) showingPin = false;

Hey, whatis going on here? Why all the red in our new class?

All the errors are a result of the access to the variables angry and angryMe ssage. We inherited these
variables from Dukes.java. Recall that we gave these variables the private permissions. And who can see
variables if the access is private? Only the instances of the Class itself. Our new Class inherited from
Dukes, so Dukes is its parent/super. Our new Class is notthe same Class as Dukes.

Can you fix this?

Since you are the author of the code for the Class Dukes, you can change the permission to protected.
Remember that protected gives access to Classes in the package and subclasses inside or outside the
package (for now, just think of a package as all the Classes you're currently using).

Note Ifyouclickonce on the red "x", Eclipse will show the error and suggest ways to fix it.

In the Dukes Class, change the access permissions ofthese two variables to:

protected boolean angry = false;

and

protected String angryMessage= "";

Now go back to your DukesPin class and all should be well.

That's nice, butifthe Class you're using is from Java's API, you can'tjustgo in and change that code.

But methods are often present within Classes in order to allow access to the variables. Does the Dukes

Class have such methods? Why yes, itdoes. Let's see if we can fix our new Class by using accessor
methods:

Change the permissions in the Dukes class back so they are all private again. Save itso your errors come
back in DukesPin.

Look in the Dukes Class and find the accessors and mutators for the needed variables.

Here are the accessor "get" methods (notice that the mutator "sets" values):

OBSERVE:

public String getAngryMessage ()
{

return angryMessage;

}

public boolean isAngry ()
{

return angry;

Sweet. Let's use them:

CODE TO TYPE: Type this into the DukesPin class

import java.awt.Color;
public class DukesPin extends Dukes {
private boolean showingPin;

public DukesPin() {
super () ;
// you could add more here and Java will do the parent's first and the
n come back for more

}

public DukesPin(Color nose, boolean love) {
super (nose, love);

}

public boolean isShowingPin () {
return showingPin;

}

public void switchShowingPin () {
showingPin =!showingPin;
if (showingPin && !isAngry())
{
setAngryMessage ("I don't get a Pin, I'm not angry"):;
showingPin =!showingPin; // don't let them show Pins when not angry

public void setMood () {
super.setMood () ; // let the parent do the work first, then do what we

need in addition
if (isAngry() == false) showingPin = false;

Excellent! All is well. Let's see what this guy looks like now.

Make a new Class in the java1l_Lesson15 Project called DukesPinApplet.

CODE TO TYPE: DukesPinApplet

import java.awt.*;
import java.awt.event.¥*;
import java.applet.Applet;

public class DukesPinApplet extends Applet implements ItemListener{

DukesPin myDuke;
String action;
Checkbox showPin;
Graphics g;

public void init() {

Choice actionlist = new Choice();
actionlList.add ("wave") ;
actionList.add("think") ;
actionList.add ("write") ;

actionlList.addItemListener (this) ;
add (actionList) ;

myDuke =new DukesPin() ;
action = myDuke.getActionImage() ;

Checkbox changeMood = new Checkbox ("Angry", myDuke.isAngry()) ;
add (changeMood) ;
changeMood . addItemListener (this) ;

showPin = new Checkbox ("ShowPin") ;
add (showPin) ;
showPin.addItemListener (this) ;

}

public void paint (Graphics g) {
this.g = g;
Image actionChoice = getImage (getDocumentBase (), action);
g.drawString (myDuke.getAction (), 10,165) ;
g.drawString (myDuke.getMessage (), 10,180);
g.drawImage (actionChoice, 20, 50, Color.white, this);

g.drawString (myDuke.getAngryMessage (), 110,140);
if (myDuke.isShowingPin())
makePin() ;
else clearPin();

public void itemStateChanged (ItemEvent evt) {

if (evt.getItem().toString() == "Angry")
{ myDuke.setMood() ;
if ('myDuke.isAngry())
showPin.setState (false) ;
}
else if (evt.getItem().toString() == "ShowPin")
{ myDuke. switchShowingPin () ;
if (showPin.getState() && !myDuke.isAngry())
showPin.setState (false) ;

else

int which = ((Choice)evt.getItemSelectable()) .getSelectedIndex() ;
switch (which)
{
case 0: action= myDuke.wave(); break;
case 1: action= myDuke.think(); break;

case 2: action= myDuke.write(); break;

}
}
repaint() ;

}

public void makePin ()
{
PinImages images =new PinImages() ;
// make Pin
g.setColor (Color.red) ;
g.filloval (120,50, 80,80);
// put something in Pin
g.setColor (Color.white) ;
g.drawString("I",155,70) ;
images.drawHeart (g, Color.pink, 145,75, 25);
g.setColor (Color.white) ;
g.drawString ("Duke!",145,120) ;
}

public void clearPin()

{
g.setColor (Color.white) ;
g.filloval (120,50, 80,80);

'} Save and Run it.

Click the different checkbox choices to see how the GUI reacts.

API Go to the APljava.awt package. Notice thatthe Classes Choice and Checkbox both implement
ItemSelectable. That's why you can then implement the ItemListener. However, since all three of the
components the user can choose from cause ItemEvents, you need to tell Java which action to take
depending on which ofthe Checkboxes or Choice the userclicked. You do thatin the ItemListener's
itemStateChanged method.

Great job! Now that you understand the concepts behind objects, you'll really be able to take offl

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

javascript:d1e434();
http://creativecommons.org/licenses/by-sa/3.0/legalcode

