
Java Programming 1: Introduction to Java and the Eclipse Development
Environment

Lesson 1: Int ro duct io n t o Java
Windows Settings

An Applet
Using Eclipse

Our Second Applet

Java is an Object-Oriented Language
Structured Programming

Lesson 2: Object -Orient ed Pro gramming
Introduction

What is Object-Oriented Programming?

Demystifying the Program
Reading Code
What About the Other One?
Hierarchy Structure in Eclipse

Lesson 3: Applet s
Applets

What Can Applets Do?
Getting Images

Applet Uses Other Classes

Lesson 4: An Applet 's Lif e Cycle
Applets Continued

Applet Life Cycle

Adding Methods
Contro l
Watching a Life

Lesson 5: Decisio ns, Decisio ns, Decisio ns
Program Contro l Using If Statements

If Statements
Placement o f Block Braces

Comparison Operators and Logic
Comparison Operators

Lesson 6 : Object s and Classes
Objects

What is an Object?
Classes
Java Data Types

Lesson 7: Classes and Inst ances
Object Design

Who gets what?

running.lab

Initialization and Constructors
Making an Applet fo r Dukes
Another Applet fo r Dukes

Lesson 8 : Using t he API: Int ro duct o ry Graphics
Using Java Provided Classes

java.awt.Graphics Class
Using the API
Methods, Parameters (or Arguments), and the Dot Operator
Sequencing
The java.awt.Co lor Class

Lesson 9 : Drawing wit h Graphics
Making Pictures

Back to Graphics

Lesson 10: Met ho ds and Met ho d Invo cat io n
Methods

Creating and Using Methods
Tracing method calls

Lesson 11: Writ ing Classes - Building Wit h Met ho ds
More on Methods

Local Variables
Results and Return
Building on methods

Overloading
How Does Java Find the Right Method?

Summary
Method Declarations
main: an important method

Lesson 12: Adding Int eract io n using Co mpo nent s and List eners
Revisiting the Dukes Class and Applet

A User Modification Example

Introduction to Interfaces

An Analogy: Antenna as an Interface

The Listener Interfaces

Lesson 13: Mo dularit y: Mo dif iers, Permissio ns, and Sco pe
Class Specifications

Modularity

Modifiers
Access Modifiers--Permissions
What Permissions Allow

Lesson 14: Class Members, Co nst ant s and main
Static Members

Static: Making Your Own

static and main

Constructors
Instantiation
Constants use the final modifier

Template and Summary

Lesson 15: All T o get her No w
Interaction and Playing Around

Putting It All Together
Using Inheritance on our Own

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Java

Welcome to the O'Reilly School o f Technology's Java Programming 1 course, Introduction to Java and the Eclipse Integrated
Development Environment (IDE).

Course Objectives
When you complete this course, you will be able to :

build Java applications and applets in the Eclipse IDE.
create contro l structures, classes, objects, and methods.
add interaction to programs using components and listeners.
apply the Java API to draw graphics.
demonstrate understanding o f modularity, modifiers, permissions, scope, and inheritance.

When you complete this lesson, you will be able to :

Lesson Objectives

access various O'Reilly School o f Technology too ls.
define and create an applet.

In this course, you'll learn the fundamental concepts and syntax o f the Java programming language. Throughout this course,
you will build examples using the Eclipse Java IDE, which is supplied as a Learning Sandbox. Completion o f this course will
give you a basic understanding o f Object-Oriented techniques in Java, as well as using the Eclipse IDE.

From beginning to end, you'll learn by do ing your own Java pro jects, within the Eclipse Learning Sandbox we affectionately call
"Ellipse." These pro jects will add to your portfo lio and provide needed experience. All you need is a browser and internet
connection we provide all the software you need online.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.

go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Windows Settings
If you like, you can set your own Windows mouse, keyboard, and region; fo r example, if you are left-handed, you can
switch the left and right button functionality on the mouse, or you can change date fields to use date formats for your
local region. Click the down arrow on the Windows Settings button at the top right o f the screen:

We won't discuss the details o f these dialog boxes, but feel free to ask your instructor if you have questions.

Now, before we get started programming in Java, let me show you how the material will be presented.

Lesson Format

We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

An Applet
If you're new to programming, allow me to introduce you to the "Hello World" example. Traditionally it's the first
program you write in any language. I would bet that a "Hello World" program has been written in every computer
language.

Using Eclipse

The program filling up your screen right now is an Integrated Development Environment (IDE) called Eclipse.
An IDE is essentially an editor that is customized to help you to program. Our IDE, Eclipse, is customized to
help you with Java.

We're inching ever closer to making something, but first we need to set up the environment fo r our first file. In
Eclipse, all files must be within projects. In this course, a project is the same thing as a folder.

To start our first pro ject, select File | New | Java Pro ject :

Name your pro ject. (We'll be making a whole lo t o f pro jects, so we'll choose names that will help us keep
them organized.) Call this one java1_Lesso n01, choose to Use def ault jre (Java Runtime Environment),
and be sure and put it in the Java1_Lesso ns Working Set.

If you see the dialog below, go ahead and check the Remember my decisio n box and then click No .

If you clicked Yes on the above dialog by mistake, select the Windo ws menu and click Pref erences. When
the dialog appears, click Java on the left, adn then click Clear as shown:

Now you can see the java1_Lesso n01 pro ject listed in the Package Explo rer panel on the lower-left corner
o f your screen:

This hierarchical view of the resources (directories and files) in Eclipse is commonly called the workspace.
You now have a pro ject named java1_Lesso n01 in your workspace.

You probably noticed items in the workspace like Java1_Lesso ns, Java1_Ho mewo rk, and so on. We put
them there to help you stay organized. These are called working sets. A working set is like a fo lder, but is
actually just an association o f files. The difference between a working set and a fo lder is that a working set
doesn't have any depth in the file system, so file and fo lder references don't even see them. You can turn
working sets on and o ff in Eclipse. You can either turn all working sets o ff o r turn only some of them off if

things get too cluttered. Try it! Click the white down arrow on the Package Explorer tab:

Now that you've played around with working sets, make sure they're all back in place. To easily show just the
working sets for this course, click the small black down arrow on the Sho w Wo rking Set s button in the
Package Explorer, then select Java, and then Java1:

We're about to create a new class file to put into our pro ject. We'll talk about classes in detail later, but right
now, let's get go ing and make one!

Select java1_Lesso n01 in the Package Explorer so it's highlighted. In the top OST Java - Eclipse SDK
menu bar, choose File | New | Class as shown (if the New submenu doesn't include Class, choose
Ot her..., then double-click on Class):

In your New Java Class window, if Source fo lder: does not already contain java1_Lesso n01/src, click
Bro wse... to look for and select the java1_Lesso n01/src fo lder (or type java1_Lesso n01/src). Give your
class the name Hello Wo rld as shown:

Click Finish. You see this content in the lower-right Editor Window:

This Editor Window allows you to create, write, and o f course, edit code.

Notice that the name of the file fo r the code is HelloWorld.java. Java source code always has the same name
as the class, fo llowed by the .java extension.

Okay, now let's add the code for our first Applet! Type the code in the editor below as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
 public void paint(Graphics g) {
 g.drawRect(0, 0, 100, 100);
 g.drawString("Hello World!", 5, 15);
 }
}

If you see one o f these beside the public class Hello Wo rld ext ends Applet { line, just ignore it. This
symbol is a warning that can be ignored for now; it won't affect the running o f your code.

Eclipse has a special way o f running Applets, but they usually need to be run on a web page. Now that we've
got that code typed, let's save and run it! Click in the Editor Window where your code is written (the
HelloWorld.java file). In the very top Eclipse menu bar (not the O'Reilly tab bar), select File | Save :

Note
There are a few different ways to save a file. You can select File | Save as above, or click the
Save icon in the Eclipse too lbar, o r you can press Ct rl+S . In the future, when we want you
to save a file, we'll show the Save icon.

Now, from the top menu bar, select Run | Run As | Java Applet . (If Java Applet isn't there, go back to the
Editor Window and click in the HelloWorld.java editor and try again.)

Tip
As with saving, there's more than one way to run your Java code; just use the one you like best.
When we want you to run a program, we'll show the Run icon ().

Now you have a small browser running in the upper-left corner o f your computer screen. The browser is
labeled Appletviewer and displays the output o f your Applet. It prints out Hello Wo rld! inside a box:

Sweet! You've o fficially created and run your first Java Applet! To close the Appletviewer, click the x in the
upper-right corner.

Our Second Applet
The next Applet we'll create is similar to the first one, but it uses different code. To begin, we'll create a new Class file in
java1_Lesson01, and name it Hello Wo rld2.

Here's another way to create a class. Right-click the java1_Lesso n01/src fo lder in the Package Explorer, and select
New | Class:

running.html

Name it Hello Wo rld2 in the dialog box:

Now let's give Hello Wo rld2 some code.

Type the code below (seriously, type the code, don't just cut and paste!) into the Hello Wo rld2 file as shown:

CODE TO TYPE:

import java.awt.*;
import javax.swing.*;

public class HelloWorld2 extends JApplet {
 public void init() {
 Container contentPane = getContentPane();
 JLabel label = new JLabel("Hello Again, World!", SwingConstants.CENTER);
 contentPane.add(label);
 }
}

 Now save and run it, using the Eclipse File and Run menus like we did earlier (or you can use the shortcut).

Yes, you've done it again! This Applet looks a little different from your first one, but it does roughly the same thing.
Good job! Again, click the upper-right x to close the Appletviewer.

Java is an Object-Oriented Language

Structured Programming

In order to appreciate object-oriented programming, let's take a look at its predecessors: procedural
languages, such as C and Fortran. They consist o f procedures o r routines which simply contain a series o f
computational steps to be fo llowed.

The very first construct o f computing is sequencing, which means the code fo llows the lines in sequence, one
after the o ther. If a programmer makes mistakes and a language isn't meticulously written, the steps could be
hard to figure out. Here's an example o f such a program in a procedural language:

OBSERVE:

10 i = 0
20 i = i + 1
30 if i <= 10 then goto 80
40 if i > 10 then goto 60
50 goto 20
60 print "Program Completed."
70 end
80 print i; " squared = "; i * i
90 goto 20

Let's trace (fo llow the execution o f) this program. We'll go through each o f the steps and see what they do:

http://en.wikipedia.org/wiki/Spaghetti_code#Examples

OBSERVE:

10: Set i to 0
20: Set i to i(0) + 1, or 1
30: Since i is now 1 and 1 is less than < 10, go to 80
80: Print the value of i (which here is 1), and the text " squared = ", and then
 the product of i * i (here, it is 1)
90: Go to line 20
20: Set i to i(now 1) + 1, or 2
30: Since i is now 2 and 2 is still less than < 10, go to 80 again
80: Print the value of i (which here is 2), and the text " squared = ", and then
 the product of i * i (now, it is 4)
90: Go to line 20
20: Set i to i(now 2) + 1, or 3
... It continues looping until i is 10 or more at line 30, at which point it pas
ses to...
40: Go to line 60
60: Print "Program Completed."
70: End the program

The same program in a structured programming language would look something like this:

OBSERVE:

for i = 1 to 10
 print i; " squared = "; i * i
next i
print "Program Completed."

Notice that you don't need to include the line numbers in your code. The code is structured in such a way that
it doesn't send you all over the place! Structured code is preferred because:

it's easier to fo llow.
it's easier to prove that it is correct.
it's easier to debug.
it's more concise.

Object-oriented programming was developed to avo id the common pitfalls o f procedural programming.

Let's create and run that program in Java to see how well Duke handles it!

Create a new class in the Java1_Lesso n01 pro ject named St ruct uredDemo .

Go ahead, we'll wait.

Now, type the code into St ruct uredDemo as shown:

CODE TO TYPE:

import java.awt.*;
import java.applet.Applet;

public class StructuredDemo extends Applet {

 public void paint(Graphics g){
 for (int i=1; i <10; i++)
 g.drawString(i + " squared = " + i*i, 10, 15*i);
 g.drawString("Program Completed", 10, 180);
 }
}

 Run it. It works great! When you finish, close the Appletviewer as before.

Nice! We have written not one, no t two, but three Java Applets, and we've run them in the Eclipse IDE!

If you haven't closed them already, you can still see a tab for each program at the bottom of your window. Click on the
x in each one's tab to close them, or Eclipse will close them for you when you Exit.

Good job so far, but we're just getting started!

Now, go back to the syllabus page by clicking the Back button and complete any Quizzes and Pro jects fo r this lesson.

See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Object-Oriented Programming

When you complete this lesson, you will be able to :

Lesson Objectives

determine which objects we have at our disposal.
use objects to make more objects to perform additional tasks.
access classes from the Java API.
use modifiers on Java classes.
use actions or met ho ds with classes.
pass objects to methods.
view the Java hierarchy structure.

Introduction

What is Object-Oriented Programming?

Every piece o f code that makes up an object-oriented program is known as an object. The code
representation o f an object is a class, and classes produce objects. Think o f an object like a cake that you
bake. A cake can have all kinds o f properties: shape, flavor, icing, and so on. To continue with this analogy, a
class is like a particular cake mold. Each instance o f cake made using that mold may be slightly different
because it has different properties. Other people can use your mold to make cakes that accomplish their own
tasks. Keep this cake metaphor in mind as we continue to discuss classes, objects, instances, and
properties.

A class is like
a cake mold for
making cake
objects.

Creating a
cake object

A cake object
with properties
Pink Icing and
Strawberry on Top.

In Java, every object has properties and methods. The properties determine an object's current state, while
methods are actions that can alter that state. Classes are nouns, and methods are verbs! For instance, we
might EAT a cake. So EAT could be a cake's method in Java.

To write an object-oriented program:

1. Determine which objects we already have at our disposal.
2. Use these objects to make more objects to perform additional tasks.

When we program in Java, we're telling objects what to do to each o ther. After a Java program is written, o ther
programmers can create new classes around the objects in the program, and then we can use those new
objects too. Objects in Java allow programmers to cooperate and share.

Along with Java, there is a library o f objects fo r everyone to use as a base. Over time, the library has grown.
Each new version o f Java not only fixes problems (bugs) found in previous versions, but provides us with
even more objects (classes) to use. In order to do object-oriented programming, you'll want to become
familiar with the library o f available classes. The library is provided online by Oracle, and is called the
Application Programming Interface (API).

Whenever we're looking at a class in the API, we'll give you a heads-up with one o f these API icons:

http://www.oracle.com/technetwork/java/javase/documentation/index.html

, API, o r

To see the API page, click the link. Closing the window or clicking on the Lesso n View tab will bring you back
here.

The API is also called the Class Library. Notice that the Oracle page has API documents for numerous
versions o f Java. Usually you'll want to run the newest version o f Java because the newer versions have
fixed more bugs and have made more classes available.

Look on your menu for the button in the row of icons under the Eclipse menu bar. Click this to see the API
for the most current Java version. The more you program with Java, the more you'll rely on the API.

Now that we know some OOP termino logy, let's look at the objects in your first program.

Demystifying the Program

Reading Code

Once again, go to the Package Explorer and open your java1_Lesso n01 pro ject. In the src fo lder, find
Hello Wo rld.java and open it in the editor.

For now, so we can work through the code, let's use line numbers next to the code. To make line numbers
visible, right-click the vertical frame bar at the left o f the editor window, and select Sho w Line Numbers:

It's possible that you have "co llapsed" blocks o f code in your program. If you see a + sign next to the number
1 line o f your code, click on it. If your + sign is on line 2, delete the empty line 1 by go ing to the beginning o f
line 2 in front o f impo rt and pressing the Backspace key. Now your line numbers should match up.

Eclipse was simply "co llapsing" a block o f code lines to focus on the o ther code. The lines are all still there,
though. The plus sign (+) means "expand" (indicating co llapsed code) and minus (-) means "co llapse"
(indicating there is a block o f code you can co llapse).

http://download.oracle.com/javase/6/docs/api/

Okay, now let's break the code down one line at a time:

OBSERVE:

1. import java.applet.Applet;

This line tells Java that something in your code is go ing to use one o f those classes from the Java API; Java
will import all the stuff fo r you so that you can use it. Here the object type (class) we want to use is called
Applet . Java can find this class in the package named java.applet .

Packages are directories that ho ld a co llection o f related objects (classes). The java.applet package
contains the Applet class (a really useful class).

 Go to the API page for the java.applet package. Click on the link. Scro ll down to the Class Summary and
click on the Applet class (we'll discuss the information that the API gives us later).

Let's see what would happen if we didn't import the Applet package. Try removing the import statement as
shown:

CODE TO TYPE:

 1 import java.applet.Applet;
 2 import java.awt.Graphics;
 3
 4 public class HelloWorld extends Applet {
 5 public void paint(Graphics g) {
 6 g.drawRect(0, 0, 100, 100);
 7 g.drawString("Hello World!", 5, 15);
 8 }
 9 }

Now you'll see this:

See the light bulb and X in the red box on the left panel? They're telling you that something's missing.

This means there's an error in our program. Eclipse will no t run with errors, but fo rtunately, it suggests a
remedy. See how the word Applet is underlined with a red zig-zag? Try moving your mouse over it. It says
Applet canno t be reso lved t o a t ype .

That means that Eclipse can't identify Applet because the package that contains the class Applet is not
known ("cannot be reso lved"), so the class information is not available.

If you click on the light bulb, it will suggest ways to fix the problem. When you click on one o f the suggested
remedies, Eclipse will implement it. For instance, click on the light bulb and then double-click on the cho ice
impo rt 'Applet ' (java.applet) to put it back in the code.

If the import statement fo r Applet is on line 2, delete the empty line 1, so the numbers line up again.

http://download.oracle.com/javase/6/docs/api/java/applet/package-summary.html

Note
The icon signifies errors. You must fix these in order to run your code.

The icon is only a warning—Java is uncomfortable with some part o f your code, but will
still run.

Now, back to our HelloWorld code:

OBSERVE:

 2 import java.awt.Graphics;

In line 2, we're importing another class. Can you tell from the syntax o f the line which part is the package and
which part identifies the class? By convention, package names begin with lower-case characters and classes
begin with upper-case letters. Our line o f code ends with a ; (semico lon). The semico lon in Java syntax tells
the compiler that it has arrived at the end o f a line o f code.

So in this case, java.awt is the package and Graphics is the class.

You can learn more about the Graphics class at:

1. API
2. java.awt
3. Graphics

We'll take a closer look at the Graphics class in future lessons as well.

OBSERVE:

 3

Line 3 is a blank line that helps make the code easier to read. Here, it separates the block o f import
statements from the class definition.

OBSERVE:

 4 public class HelloWorld extends Applet {

Line 4 signifies the beginning o f the definition o f our first class.

The first word, public, is a modifier. The modifier tells Java something about access—who can use the class
or method or variable. In this case, it's public. For this particular course, all o f our classes will be public, but
many o f our methods and variables will be privat e o r pro t ect ed. We'll explore access more later, but if
you're curious and want to know more right now, go ahead and Google "Java modifiers."

The next keyword in our code is class, which tells Java we're creating a class.

This particular class is called Hello Wo rld.

The keyword ext ends tells Java that we want HelloWorld to inherit all the Applet code—we are defining
HelloWorld to be an Applet. Another option is implement s, which we'll get into later too.

At the beginning o f this lesson, you ran an Applet. It opened a window on your computer with a nice frame
around it and typed in words for you. You didn't have to type them in yourself because Java already had a
class (Applet) written for you to implement. So, when you inherit a class that Java has already written (and
so is already present in the API), you get access to all o f its (the parent class's) properties.

The curly bracket, o r brace { at the end o f line 4 tells Java that instructions for the HelloWorld applet's task
begin there. We'll tell Java when our Hello Wo rld class definition is done by including a closing brace } on
line 9 .

You can see which pairs o f braces match up by clicking the mouse directly after an opening or closing brace
—the matching brace will be highlighted on the screen. In our example, if you try clicking right after the closing

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/java/awt/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

curly bracket on line 9 , the editor makes a little box around the { on line 4, so we know that those two brackets
match. This can be really handy in large programs!

Okay, so what's in the class? Take a look:

OBSERVE:

 5 public void paint(Graphics g) {
 6 g.drawRect(0, 0, 100, 100);
 7 g.drawString("Hello World!", 5, 15);
 8 }

In lines 5-8 , we define a component o f the Hello Wo rld class. We already know that classes may have
properties and actions. This particular class doesn't have properties yet, but it does have an action available
(starting at line 5) called paint . In OOP, the actions that a class can take are called met ho ds. In this code
you've defined the method paint () . Take another look at that block o f code:

OBSERVE:

 public void paint(Graphics g) {
 g.drawRect(0, 0, 100, 100);
 g.drawString("Hello World!", 5, 15);
 }

Similar to class definitions, all method definitions begin with a modifier. Here again we use the modifier
public. The next keyword in the method definition (vo id) tells us the type o f object the method will ret urn.
This particular object doesn't return anything, so we use the keyword vo id. We use this keyword on all
methods that don't return objects. Don't worry, we'll see some methods that do return objects in our
upcoming lessons.

This method is passed another object called a Graphics area. The code states that the Graphics area is
named g. We use methods from the Graphics object (conveniently, someone at Oracle has already created
that object). When we write so meNo un.so meVerb(), we are telling Java to access the method called
so meVerb() from the object so meNo un. In this case, we wrote g.drawRect (0, 0 , 100, 100) ; and
g.drawSt ring("Hello World!", 5, 15) ; because we knew the Graphics object has drawRect () and
drawSt ring() methods we can use. How did we know all o f that? We looked it up in the Java API!

This definition o f the paint () method creates a Graphics area for the Applet so you can "paint" or "draw" on it.
In this code, you are drawing two things:

g.drawRect (0, 0 , 100, 100) tells the Applet to draw a rectangle on the Graphics area g. The numbers in our
code indicate the four corners o f our rectangle in pixels. I'll leave it to you to experiment to figure out which
number corresponds to which corner! You can do that by changing the numbers and rerunning the Applet.

g.drawSt ring("Hello World!", 5, 15) is telling the Applet to draw the words "Hello World" on the Graphics
area g. The numbers indicate where you want to place the words (string) on the Graphics area. Again, I'll
leave it to you to experiment and play with the numbers.

Braces {} in Java are always matched with their nearest partner. The { at the end o f line 5 is closed with the }
at line 8 . Use the mouse click trick we learned earlier and see for yourself. The { at the end o f line 4 is closed
with the } at line 9 .

Now let's change the size o f the rectangle and write something different on the Applet.

If you don't already have Hello Wo rld.java in the Editor window, look for a Hello Wo rld.java tab in the Editor
window and click it. If there is no Hello Wo rld.java tab, open the java1_Lesso n01 fo lder and its default
package in the Package Explorer area, then double-click the Hello Wo rld.java file. Edit the code as shown
below:

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
 public void paint(Graphics g) {
 g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);
 g.drawString("On to new things!", 5, 15);
 }
}

 Save and run it. Use the mouse to resize the Appletviewer window and note how the box changes! Are
you impressed? (Remember to close the applet after running it.)

Let's change the line again to see what it does:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
 public void paint(Graphics g) {
 g.drawRect(0, 0, getSize().width - 50, getSize().height - 100);
 g.drawString("I'm not really impressed yet", 5, 15);
 }
}

 Save and run it again.

Changing the two lines o f code altered the size o f the surrounding rectangle and wrote different statements.

Close the Appletviewer, and try experimenting more with the rectangle size. Make sure to save and then run it.
You can always refer to the original code above, in case you really mess up!

Now let's go over class names. The class that we defined above with the name Hello Wo rld must have the
file name Hello Wo rld.java.

WARNING
Java is case-sensit ive and every character matters. The file must have the same name
as the class you define, plus the .java extension. So, if you change the class name, you
must change the file name as well.

In your HelloWorld class, try to change your name of Hello Wo rld to Hello Wo rld6 . You can view
suggestions by clicking once on the light bulb warning. This trick is really handy for correcting errors.

In our example, you'll be instructed to rename the type (class) HelloWorld, or rename the compilation unit
(file) to HelloWorld6.java.

The .java file is called the source code fo r the class. Eclipse calls it the "compilation unit" because Java
compiles source files to convert programs into something the machine understands. We'll look into the
compilation o f Java in greater detail in a future lesson.

For now, double-click on Rename t ype t o 'Hello Wo rld' to fix the name.

What About the Other One?

So what about the o ther Applet we made? How does it work? I'm happy you asked. We'll go over it now, but
don't panic if you don't quite understand the explanation in this section. By the end o f this course you will!
Open Hello Wo rld2 from your java1_Lesso n01/src fo lder and turn on line numbers as before:

OBSERVE:

 1 import java.awt.*;
 2 import javax.swing.*;
 3
 4 public class HelloWorld2 extends JApplet
 5 {
 6 public void init()
 7 {
 8 Container contentPane = getContentPane();
 9 JLabel label = new JLabel("Hello Again, World!", SwingConstants.CENTE
R);
10 contentPane.add(label);
11 }
12 }

When we look at the Applets resulting from these two classes, they look similar, but the code is very different.
As programmers, we choose from lo ts o f options that determine how our code will execute tasks. That's why
some code might look abso lutely beautiful, but o ther code might be nearly impossible to fo llow. While your
first prio rity when writing any code is to make sure it works porperly, you also want to keep in mind that o ther
programmers will use and edit the code you write. If your original code isn't well-written, that can become a
real burden to o thers in the community. Write good code in the first place, and make sure subsequent
programmers don't curse your name!

In this course, we want to instill principles o f good software engineering, so that your code will run correctly,
look beautiful, and be useful and clean for programmers who will use it in the future.

Now, as it turns out, the two Applets we wrote are both composed o f good, so lid code. But they're just two o f
the many ways we could have written them. I'll show you another one. In the Hello Wo rld2.java file, turn on
the line numbers again (right-click the vertical bar left o f the Editor window and select Sho w Line Numbers).
Expand any compressed lines. If you have a blank line at the top, remove that blank line. Here's how it works:

OBSERVE:

 1 import java.awt.*;
 2 import javax.swing.*;
 3

In the code above, the imports have an * (asterisk) at the end o f the package names. This tells Java that you
might want to use any o f the classes in the java.awt o r javax.swing packages. With the *, your code can then
use any class in the package. Java will retrieve the class at the same time, whether it used the import with the
* o r the specific class name.

OBSERVE:

 4 public class HelloWorld2 extends JApplet
 5 {

The code above is a JApplet ; our first was an Applet . The JApplet class is in the javax.swing package,
so we imported that package instead o f java.applet .

OBSERVE:

 6 public void init()
 7 {

The code above is the initial definition o f the init () method.

OBSERVE:

 8 Container contentPane = getContentPane();

The code above gets the Co nt ainer from the JApplet instead o f from the Graphics area used in Applet s.

OBSERVE:

 9 JLabel label = new JLabel("Hello Again, World!", SwingConstants.CENTE
R);

The code above creates a JLabel and then writes "Hello Again, World!" on the label, rather than into the
Graphics area.

OBSERVE:

10 contentPane.add(label);

The line above adds the label to the Container from the JApplet.

OBSERVE:

11 }
12 }

The lines o f code above end the definition o f the init () method, then end the definition o f the Hello Wo rld2
class. Notice the indentation that enables you to see the matching braces more easily:

The line 7 { matches up with line 11's } and
the line 5 { matches up with line 12's } .

This indentation is not required by Java, but it's good form for programming and allows better readability.

Though it may not seem like it, the biggest difference between these two Applets is that one is an Applet and
the o ther is a JApplet . Both classes are Applets because JApplet inherits from Applet . We know this is
the case by checking in the API. Look at the impo rt statements. They tell Java where to look for the classes
that you didn't write, and it's also where you can find the same information.

Clicking on the top left corner o f any class's API page will show you the class's inheritance tree.

 Go to the JApplet class in the API and check it out! The JApplet inheritance tree looks like this:

This tells you that the class JApplet inherits from the Applet class,
which inherits from Panel,
which inherits from Co nt ainer,
which inherits from Co mpo nent ,
which inherits from Object .

Everything located above a specific class in an inheritance tree is referred to as the class's super o r ancestor
(the one directly above it is referred to as its parent). Everything located below a specific class in an
inheritance tree is referred to as the class's sub o r subclass (also referred to as the class's child).

So, JApplet has a parent (o r super) o f Applet , and Applet has a subclass (o r child o f JApplet .

In future lessons, we'll explore the information in the API in more detail.

Hierarchy Structure in Eclipse

Another way to view the hierarchy o f classes is through the Eclipse hierarchy window.

http://download.oracle.com/javase/6/docs/api/javax/swing/JApplet.html

Make sure you have Hello Wo rld2.java open in Eclipse. Highlight the word JApplet in line 4. Right-click it
and select Open T ype Hierarchy from the pop-up menu:

A Hierarchy tab appears where the Package Explorer window used to be. It's the same inheritance hierarchy
tree that you saw in the API.

In the API you can see that every class inherits from the Object class. This is the essence o f object-oriented
programming.

Again, note that the imports have * at the ends o f the package names. This tells Java that you might want to use any o f
the classes in the java.awt o r javax.swing packages. The * is used commonly in Computer Science as a wildcard.
That means anything (that fits the circumstances) can replace it. In this case, the "circumstances" are that the package
must be java.awt o r javax.swing—for example, importing java.awt .* means you can use any object from the
java.awt package.

But note this exception: package wildcards only work for classes. Specifically, if you have two packages, say java.awt
and java.awt .event , impo rt java.awt .* does not get all o f the classes in the package java.awt .event . You would
need to import both java.awt .* and java.awt .event .* to get the classes from both packages.

Phew! That's it fo r this lesson 2! Wait a sec, let Duke take a picture o f you to capture this moment o f accomplishment!

You're looking great—I can't wait to see you in the next lesson!

You're looking great—I can't wait to see you in the next lesson!

Remember: once you finish the lesson, go back to the syllabus page by clicking the Syllabus tab above and complete
the Quiz(zes) and Pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Applets

When you complete this lesson, you will be able to :

Lesson Objectives

get an image and store it in the image fo lder.
work on the Duke image
import the Applet class.
use the wildcard and get the entire java.awt package.

Applets
We have already created and run a basic Applet. An Applet is a class that's provided for us by Java. All object-oriented
programming depends on classes. Specifically, we define Classes o f Object s so we can use them in our programs.
Programmers also create and define new classes for their own specific purposes. Still o ther classes are impo rt ed
from Java. You can check out the various types o f class functions in the API. In this lesson, we'll focus primarily on the
most commonly used Classes in Java—Applet s.

What Can Applets Do?

Our first Applet printed "Hello World." In Java, a string o f characters (In English, we would identify those
characters as words, phrases, or sentences) is defined within a Java Class o f its own called the St ring
Class. We create St rings in Java using double quotation marks: "T his is a st ring" . Whatever you put
inside the quotation marks is quoted exactly, becoming the String. (This is the only place in Java
programming where we can get away with a typo!)

So, in the paint () method o f our HelloWorld Applet, we to ld the Graphics Class (using g) to use methods
drawSt ring() and drawRect () to print a St ring ("Hello World") and draw a rectangle. Take a look at
HelloWorld's paint () method:

OBSERVE:

g.drawString("Hello World!", 5, 15); // put String "Hello World" at (x,y) loc
ation of (5,15)
and
g.drawRect(0, 0, 100, 100); // drew a Rectangle with top-left corner at (0,0)
 with width and height of 100

So, what else can Applets do? Let's create a new Eclipse pro ject and find out.

Generally, programmers put their code into source (src) fo lders, so Eclipse makes src fo lders for each Java
pro ject too. Go ahead and create an Eclipse pro ject to ho ld your classes for java1_Lesso n03. We did this
before in Lesson 1, but in case you need a little help remembering how, fo llow these steps:

Select File | New | Java Pro ject :

In the New Java Pro ject window, name your pro ject java1_Lesso n03, add it to the Java1_Lesso ns working
set, and click Finish:

If you see the option to "Open Associated Perspective," check the Remember my decisio n box and then
click No . We want to keep our own perspective environment.

If you forget to click No and your window goes crazy, remember you always have your "panic button":

This button will always bring you back to the proper perspective.

You should see java1_Lesso n03 in your Package Explorer Window.

Now, make a new Java Class in the java1_Lesson03 pro ject file.

1. Select java1_Lesso n03 in the Package Explorer so it's highlighted.
2. Right-click java1_Lesso n03 in the Package Explorer, o r select File from the Eclipse Menu, and
then choose New | Class.
3. Name it MyFirst Duke , make the Superclass java.applet .Applet , and click Finish.

You'll see this code in your Editor workspace window:

Because you specified that the Superclass was java.applet .Applet , the Eclipse code generator performed
these helpful tasks for you:

imported java.applet.Applet
extended Applet

Now, type the MyFirst Duke java Class as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MyFirstDuke extends Applet {

 public void paint(Graphics graph) {
 Image action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gi
f");
 graph.drawImage(action, 10, 10, Color.white, this);

 graph.drawString("I am a waving duke", 10, 130);
 }
}

 Save and run it.

Oops!

Hey, wait a minute! We to ld Java to get an image and draw it—we see "I am a waving Duke," but no Duke! Why
can't we see the image?

Sometimes Java will tell us about errors, and sometimes we have to catch them ourselves. Usually if Java
can run the code, it will. (For example, Java cannot run specific code if it's unable to find a Java class that you
to ld it to use.) In this situation, Java did what it could, but it didn't draw the image we to ld it to , because it was
unable to find it. Java probably couldn't find it because I hadn't given it to you yet.

Getting Images

Let me give that image to you now. Click here to get the image files you'll need for this lesson. When
prompted for a working set, select Java1_Lesso ns.

Now you have an /images fo lder that you can use for the entire course. It should be listed under
Java1_Lessons with your java1_Lesson01 and java1_Lesson03 pro jects in the Package Explorer view.

Open the /images fo lder to see the /duke subfo lder containing the images.
Go back to your java1_Lesson03 Pro ject and click on MyFirst Duke.java (in the default package).
Run the MyFirst Duke Applet again—right-click MyFirst Duke.java and select Run As | Java
Applet .

Now you'll see this:

Ahh, much better! Now, look at the code. Notice that the compiler finds the image using the fo llowing line:

OBSERVE:

Image action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif");

The t wo do t s are important. We need to direct Java to the right place. Each pair o f dots tells Java to go up
one directory. So Java goes up t wo direct o ries to java1_Lesso n03 and the main Java1_Lesso ns, then
down through the /images and /duke directories, to the dukeWave.gif file.

Fo llow the numbers 1 through 6 on this chart to see how Java finds the image from the MyFirstDuke.java
class:

com.oreilly.school.java1.images.zip

Now suppose you want to keep your duke images with your java1_Lesson03 pro ject. Let's try do ing that:

1. Go to the java1_Lesso n03/src fo lder and right-click it to see the popup menu.
2. Choose New | Fo lder.
3. Name it images.
4. Click Finish.

1. Right-click the new /images fo lder to see the popup menu.
2. Choose New | Fo lder (notice again, I said Fo lder).
3. Name it duke .
4. Click Finish.

You'll see images.duke . And now to make the copy:

1. Go to the images fo lder that we originally downloaded, then go into the duke subfo lder.
2. Right-click on dukeWave.gif and choose Co py.
3. Right-click your new images.duke fo lder and choose Past e .

You'll see the copy now. Finally, get rid o f the dots by giving the new path to the file you just placed:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MyFirstDuke extends Applet {

 public void paint(Graphics graph) {

 Image action = getImage(getDocumentBase(),"images/duke/dukeWave.gif");
 graph.drawImage(action, 10, 10, Color.white, this);

 graph.drawString("I am a waving duke", 10,130);
 }
}

 Save and run it.

Applet Uses Other Classes
There are a few more interesting characteristics for us to explore in the Class. Open your MyFirst Duke.java file in the
Package Explorer, if it's not already open.

In an earlier lesson, we learned that every class inherits from the Class Object . We also learned that we had to import
packages so Java could find classes. Another important accepted practice or convention when using Classes is that
they always begin with capital letters.

Look through the MyFirst Duke code in the Editor Workspace for words beginning with capital letters:

OBSERVE:

import java.applet.Applet;
import java.awt.*;

public class MyFirstDuke extends Applet {

 public void paint(Graphics graph) {

 Image action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif");
 graph.drawImage(action, 10, 10, Color.white, this);

 graph.drawString("I am a waving duke", 10,130);
 }
}

Okay, we cheated. drawSt ring does not begin with a capital letter, but it is using the St ring class.

We learned earlier that Java will no t run if it cannot find the Classes it needs. We to ld the MyFirst Duke class to
impo rt the Applet class and we are writing the MyFirst Duke class in the code, so Java can see them. We saw that
the Graphics class was imported if we used the wildcard import o f java.awt .*.

So, what about Image and Co lo r and St ring? Where are we importing them?

What if we specifically say impo rt java.awt .Graphics?

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Graphics;

public class MyFirstDuke extends Applet {

 public void paint(Graphics graph) {

 Image action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif");
 graph.drawImage(action, 10, 10, Color.white, this);

 graph.drawString("I am a waving duke", 10,130);
 }
}

Remember, if you see or in the imports,
click on the encircled + sign.

Do you see the and the wavy lines (/\/\/\/\) under Image and Co lo r?

Put your mouse over the . It says that Image canno t be reso lved t o a t ype and Co lo r canno t be reso lved.

Modify the import section as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Image;

public class MyFirstDuke extends Applet {

 public void paint(Graphics graph) {

 Image action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif");
 graph.drawImage(action, 10, 10, Color.white, this);

 graph.drawString("I am a waving duke", 10,130);
 }
}

Now the errors are on Graphics and Co lo r. Do you know what to do and the reason behind that so lution?

Modify the import section as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Image;

public class MyFirstDuke extends Applet {

 public void paint(Graphics graph) {

 Image action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif");
 graph.drawImage(action, 10, 10, Color.white, this);

 graph.drawString("I am a waving duke", 10,130);
 }
}

Ahh. All is well again. But it's easier to use the wildcard and get the entire java.awt package!

Let's give it a try just to make sure:

 See the API fo r the java.awt package.

Scro ll down to the Class Summary. (There are a lo t o f classes there.) Then, scro ll down to see that the package
specifically contains the Co lo r, Graphics, and Image classes.

The wildcard (*) can be very handy.

Finally, let's go over the St ring. There's one special package that you never need to import. Java imports it by default.
That package is java.lang. The class St ring is in the API in java.lang. Let's take a look at it.

 Go to the top-level API page. Notice this is the top-level API page to all o f the packages (Header o f Packages).
Scro ll down to the java.lang package and click it. Then, scro ll down to the Class Summary and find the St ring class.

Tip Classes in the java.lang package do not need to be imported.

As you scro lled down, you may have noticed the Syst em class as well (it's just below the St ring class). This may
help you to see why the java.lang package doesn't need to be imported. The Syst em class will always be needed
behind the scenes.

When programming with Java, the API will be your most useful too l, so definitely get friendly with it!

In the next lesson, we'll experiment with our MyFirst Duke class to see how Applets work. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

http://download.oracle.com/javase/6/docs/api/java/awt/package-summary.html
http://download.oracle.com/javase/6/docs/api/

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

An Applet's Life Cycle

When you complete this lesson, you will be able to :

Lesson Objectives

describe the life cycle o f an Applet.
create or override methods in an Applet.
encapsulate task into methods.

Applets Continued
In this lesson, we're go ing to examine the life cycle o f an Applet. We're also go ing to start encapsulating tasks into
methods we create ourselves, instead o f putting all o f them into the paint() method.

Applet Life Cycle

Let's get familiar with the Applet's life cycle. Applets are born, they live fulfilling lives, and then they die. In this
lesson, we'll delve into this cyber-miracle more deeply.

Every time you open an Applet, you're opening an instance, o r object, from the Applet class. I know, I keep
repeating this, but I will spare no redundancy if it helps you get this stuff down! Hence we'll address objects in
still greater detail in future lessons. But in this lesson, we want to look at instances by observing an Applet's
life cycle.

In order to create a new Applet, we write a class that extends the pre-existing Applet class. Your newly
defined Java class will be a subclass o f Applet and thus will inherit all o f its capabilities. When your Applet
loads (because you tell it to run), here's what happens:

An instance o f your Applet's class is created.
The Applet initializes itself.
The Applet starts running.

To get a visual representation o f this process, we'll incorporate more images. Since we already have an
/images fo lder, let's use the images in it fo r this lesson as well.

We'll start out by making an applet that did the same thing as the applet in the last lesson, but this time we'll
move some of the tasks that we put inside the paint() method into another method. This will be our first
attempt at modularity, which is a fancy word for making things more useful to o ther programs.

Make a new pro ject fo r Lesson 4, and name it java1_Lesso n04 . Make a new Class in this pro ject named
MySeco ndDuke (remember to name the Superclass java.applet .Applet). Now let's program!

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MySecondDuke extends Applet{

 public void init(){
 setBackground(Color.pink);
 }

 public void paint(Graphics g) {
 Image action = think(g);
 // get the action image for Duke
 g.drawImage(action, 10, 10, Color.white, this);
 }

 public Image think(Graphics graph){
 graph.drawString("I am a thinking Duke", 10,130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/thinking.
gif");
 return myAction;
 }
}

 Save and run it.

Let's break down this code to see what's go ing on here:

OBSERVE:

import java.applet.Applet;
import java.awt.*;

public class MySecondDuke extends Applet{

 public void init(){
 setBackground(Color.pink);
 }

 public void paint(Graphics g) {
 Image action = think(g);
 // get the action image for Duke
 g.drawImage(action, 10, 10, Color.white, this);
 }

 public Image think(Graphics graph){
 graph.drawString("I am a thinking Duke", 10,130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/thinking.
gif");
 return myAction;
 }
}

We're overriding the init () method from the Applet class and the paint () method from
java.awt.container.paint. We've also made a new method called t hink() , which isn't overriding any methods
from a superclass. It's called inside o f the paint() method, it prints "I am a thinking Duke" to the screen and
uses the get Image() method to grab the image "../../images/duke/thinking.gif." Then the graphics object
draws that graphic to the screen via the g.drawImage() method. Notice we stored the image in a variable
named act io n, which is o f variable type Image . Then the t hink() method returns the action using ret urn
myAct io n. Fo llow the arrows below to see a visual representation:

The Graphics Object we named g gets picked up by the t hink(g) method, which renames the object graph in
the method definition. The Graphics object graph then uses its drawString() method to write "I am a thinking
duke." Inside the definition o f the think() method, we store the variable called myAct io n. And inside o f the
variable myAction is an image called thinking.gif. The t hink() method returns the image to paint () , which
stores it in act io n. The Graphics object g inside the paint() method has a method named drawImage().
drawimage() draws the contents o f the variable act io n which is the dukewave.gif image. Got it? Good.

 See the API fo r the methods available to the Graphics object.

Now let's get back to the Applet's life cycle. When you exit the Applet, it stops and if necessary, Java will do a
"cleanup." Cleanup includes things like closing files and removing unnecessary memory access. Before
Java, programmers had to do this tedious cleanup work every time they wrote a program. The main steps in
an Applet life cycle are:

Initialize itself.
Start running.
Stop running.
Perform a final cleanup, in preparation for being unloaded (destroyed).

 Go to the Applet page, scro ll down to the Met ho d Summary, and look for methods (the second co lumn
has method names):
destroy()
init()
start()
stop()

These methods are a built- in part o f the Applet class and you inherit them when you ext end Applet .

As creator or implementer o f a new Class, you can override the parents just as we did with
MySeco ndDuke.java and all o f the classes we've written so far. This means that when you write a method in
your code with the same name as a method o f its parent (or any o ther superclass), the one that you wro te is
the one that Java will use instead o f the one in the parent. Java will use the most specific method—that is, the
one farthest down in the Applet's hierarchical family tree. In your program, you've actually overridden the
init () method by making your own method. Try removing the init method and see what happens. Your
program should still work, but you won't see the nice shocking pink background anymore.

Note

When you override a method, you're using one o f the major capabilities o f object-oriented
programming, polymorphism. Poly (more than one; many) and morphism (the condition o f having
a specified form)—in computer languages, this means that the same name can be used in
different places with different meanings. Although initially this can be confusing, ultimately it's a
very useful trait. Trust me.

Note that in our earlier Applets, we did not have an init () method, but in this one we do.

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html
http://download.oracle.com/javase/6/docs/api/java/applet/Applet.html

Look at your MySecondDuke class in the Workspace. See the icons in the left co lumn?

Move your mouse over those icons you see at the init() and the paint() methods. They tell you exactly which
of the superclasses has implemented the method before. So whose code are you overriding?

Hmm, init () says we are overriding java.applet .Applet .init , as we would expect, since we inherit from
Applet —but paint () says we are overriding java.awt .Co nt ainer.paint .

Let's look at our Applet's ancestral trail to learn more. Do an o pen t ype hierarchy on the Applet. Highlight
the word Applet , then right-click it and select Open t ype hierarchy.

You'll see the fo llowing on the left:

Notice that in the hierarchy tree (you might have to scro ll up a bit), Co nt ainer is a superclass o f Applet and
hence is a superclass o f any class that ext ends Applet .

So, even though we had not written an init () method earlier, we had one by default because our Applet
inherits the default init () from the parent Applet class.

 Find and click the Applet class (look for the word Applet in the left co lumn). You should see something like
this:

In the Applet class, scro ll down to the init () method and click its link.

You'll see (near the bottom of the description) a more detailed description o f the method:

"The implementation o f this method provided by the Applet class does nothing." Huh.

This must be the reason we didn't see anything special in our previous Applets. Not every Applet has to
override every method. In fact, some very simple Applets (like our Hello Wo rld) override no methods at all.
Later we'll add more graphical user interface components to our Applets in the init () method.

So what about that paint () method? How and when does it get started?

Well, after the Applet has completed initialization, it displays itself onscreen in the Graphics area o f the Applet
through the paint () method.

The paint () method is in the Co nt ainer class, so look in that class for information about it in the API. Since
Co nt ainer is a superclass of Applet , we have a link to it through the Applet class's hierarchy at the top o f
its API page.

 At the top o f the Applet API page, click on the link to the Co nt ainer class in the Applet's hierarchy. Scro ll
down under the Met ho d Summary provided in the Applet class. Notice the additional frames showing all o f
the methods that the Applet class inherits and from whom they inherit.

Any class that extends Applet gets the methods defined in the Applet class, and all o f those methods defined
in Applet's superclasses. This trait o f object-oriented languages is called modularization.

This page probably has more information than we need now, but it is good to know how to fo llow related
links.

Go back to the Applet class page, scro ll down to the Methods inherited from class java.awt.Container frame,
and click on the paint () method link there. .

Again, this is more information than we need at the moment, but notice that the method is passed a Graphics
object on which to paint .

We don't paint on the Applet, we paint on this Graphics area. One o f the things that the Applet does upon
initialization is create this Graphics area to give to us in the paint() method. Once the method is used, we can
access this Graphics object via the instance o f it that is passed to us.

Look at the code for MySeco ndDuke.java. Notice the first line o f the paint (Graphics g) method. Now look
at MyFirst Duke.java (in java1_Lesson03). Notice the first line o f the paint (Graphics graph) method there.
Now, look at the paint method specification in the API fo r Co nt ainer: public vo id paint(Graphics g).

Note

In all three methods above, Graphics appears first because the method must pass a Graphics
o bject . This specification tells us the t ype o f Object needed.

You can give whatever name you like to the instance o f the Graphics object that is passed, as
long as the same name is used throughout the block o f code within braces.

Hence one class may call the Graphics object g, while another might call it graph. This is another nice thing
about modularity. You don't have to worry about the name some other programmer gives to an object. Within
your own code, variable names are local, meaning your names will only be seen by the code that contains
them.

Open your MySeco ndDuke.java file in the Editor, if it's not still open. Edit it as shown:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class MySecondDuke extends Applet{

 public void init(){
 setBackground(Color.pink);
 }

 public void paint(Graphics graph) {
 Image action = think(g);
 // get the action image for Duke
 g.drawImage(action, 10, 10, Color.white, this);
 }

 public Image think(Graphics graph){
 graph.drawString("I am a thinking Duke", 10,130);
 Image action = getImage(getDocumentBase(),"../../images/duke/thinking.gi
f");
 return action;
 }
}

It looks like we have some errors to consider.

If you move your mouse over the error symbols, they both say "g cannot be reso lved."

To fix it, change the underlined gs to graph in the paint () method.

(You could also change the code back to the way it was initially—Java will accept either fix.)

 Save and run it, just to make sure everything still works.

Phew! I'm glad we fixed that. The issue there was one o f consistency. When we changed the parameter to
"graph," Java didn't know what "g" represented anymore. Notice, however, that the block o f code defined for
public Image t hink(Graphics graph){ can specify whatever variable name we want. The { } (braces)
designate the scope within which a variable name is known. In o ther words, o ther parts o f the program know
nothing about g because g is inside the paint() method's scope { }, which is inside o f the rest o f the program.

And o f course, the paint method does what it says: it paints.

Once the Applet is initialized, the Applet executes the start() method and any o ther methods you've written.

Note
When you draw something after the start o f the Applet, use the method repaint () rather than
paint . repaint () will clear the screen and then call the paint method so that it doesn't paint over
previous material.

Adding Methods
Let's work on an Applet that has more capabilities and learn more about the Applet life cycle. There were three actions
for Duke in MySeco ndDuke.java. Two o f them, init () and paint (Graphics g) , were inherited Applet methods. We
made the third method, t hink(Graphics graph) , from scratch, specifically fo r our Duke Applet.

This is another example o f modularity and good programming practice. We changed MyFirst Duke (which stored all o f
its tasks in the paint method) into a program with separate methods for separate actions. By incorporating this
modularity to methods, we increase our program's flexibility.

Control

While some things (methods, objects, attributes) are inherited from the Applet, you have the power to contro l
the action o f the Applet as well.

In MySeco ndDuke.java--> Now, we'll make a new class that defines more actions and hence allow Duke to
do more stuff. Don't worry if you don't understand all o f the code being used in this Applet. We'll explain it all
later.

In your java1_Lesso n04/src fo lder, create a new class named Duke , with the Superclass
java.applet .Applet .

Type the fo llowing into Duke.java:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Duke extends Applet {
 int test = 0;
 Image action;

 public void paint(Graphics g) {

 switch (test%3) {
 case 0: action= this.write(g); break;
 case 1: action= this.think(g); break;
 case 2: action= this.wave(g); break;
 }

 g.drawImage(action, 10, 10, Color.white, this);

 test = test + 1;
 // Show that Restart repaints to make a new action
 }

 public Image write(Graphics graph) {
 graph.drawString("I am a writing Duke", 10, 130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/penduke.g
if");
 return myAction;
 }

 public Image think(Graphics graph) {
 graph.drawString("I am a thinking Duke", 10, 130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/thinking.
gif");
 return myAction;
 }

 public Image wave(Graphics graph) {
 graph.drawString("I am a waving Duke", 10, 130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/dukeWave.
gif");
 return myAction;
 }
}

Before we run it, let's take a closer look at the code:

OBSERVE:

import java.applet.Applet;
import java.awt.*;

public class Duke extends Applet {
 int test = 0;
 Image action;

 public void paint(Graphics g) {

 switch (test%3) {
 case 0: action= this.write(g); break;
 case 1: action= this.think(g); break;
 case 2: action= this.wave(g); break;
 }

 g.drawImage(action, 10, 10, Color.white, this);

 test = test + 1;
 // Show that Restart repaints to make a new action
 }

 public Image write(Graphics graph){
 graph.drawString("I am a writing Duke", 10,130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/penduke.g
if");
 return myAction;
 }

 public Image think(Graphics graph){
 graph.drawString("I am a thinking Duke", 10,130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/thinking.
gif");
 return myAction;
 }

 public Image wave(Graphics graph){
 graph.drawString("I am a waving Duke", 10,130);
 Image myAction = getImage(getDocumentBase(),"../../images/duke/dukeWave.
gif");
 return myAction;
 }
}

Essentially, this Applet works like the one we did before, except now we have three methods instead o f one.
We also added a swit ch statement that takes an integer named t est (we know it's an integer because we
declared it using int t est = 0;. We mod out by 3 using test%3 (reads "test mod 3"). "Mod out" means to take
the remainder. In this case, it means to divide by 3 and take the remainder, so 5%3 = 5/3 = (1 with remainder 2)
= 2. Then the switch statement gets 0 , 1, o r 2 successively—if it's 0 , it calls the writ e() method, and so on.

 Save and run it.

Watching a Life

In the life-cycle o f an Applet, we see that it is initialized only once. So logically, the init () method would be run
only one time as well. However, Applets are usually seen in browsers. When the user leaves the page—for
example, to go to another page—the browser stops and destroys the applet. The state o f the applet is not
preserved. When the user returns to the page, the browser intializes and starts a new instance o f the applet.
Similarly, when another window on the computer covers the Applet, the Applet must be repainted when it's
fully uncovered again. When the Applet is started again, the st art () and paint (Graphics g) methods (via
repaint ()) are called.

Look for the first action (the one you see now) on the list that we have in our paint method. Notice what's next.
In our code, we made it so that each time the Applet is Restarted (and hence repainted), Duke's activity will
change in a specific order.

Click Applet (in the upper left corner) and select Rest art . Notice Duke's action and its location on the list.

Click Applet | Rest art again and observe the change.

Do it again.

The actions go in the sequence listed.

Now, note some other aspects o f the applet's life-cycle:

Select Applet | St o p (note activity—should be empty).

Select Applet | St art (note activity—should be next in sequence).

Select Applet | St o p (note activity—should be empty).

Select Applet | Rest art (note activity—should be next in sequence).

Keep the applet open for now.

Now, we'll Rest o re Do wn the lesson window so we can see the Appletview "behind" it. Click the Rest o re
Do wn icon at the upper right o f the lesson window:

Minimize the Appletviewer window:

Now get it back by clicking its Rest o re Up icon (note the activity—it should be updated—showing next in
sequence).

Now let's open another instance! Notice Duke's action and its location on the list. Move the Appletviewer to
the right so we can launch a new instance o f the Applet and you can still see it and this lesson.

 Click in the editor window and run the applet again. You now have two Appletviewers running. You can run
as many applets as you need in this fashion.

Restart the first one (note activity—should be next in sequence). Second applet does not change.

Restart on the second one (note activity—should be next in sequence). First applet does not change.

Stop on the second one (note activity—should be empty). First applet does not change.

Each time you run a new Applet, you get exactly that—a new instance o f an Applet. Later lessons will illustrate
this further and provide more information about writing Classes.

For more on the Applet life cycle, see the Oracle Tutorial.

Congratulations! Your Java skills are getting stronger and stronger.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://download.oracle.com/javase/6/docs/api/java/applet/Applet.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Decisions, Decisions, Decisions

When you complete this lesson, you will be able to :

Lesson Objectives

use if statements in your program.
use switch statements in your program.
use coparison operators.

Program Control Using If Statements
All algorithms are made up o f the fo llowing control constructs, which direct the flow o f the program:

sequences (assignment statements, IO calls)
repetitions/loops (while, fo r, do)
decisions/selections (if/then, switch)
method invocation

This lesson focuses specifically on contro l given decision statements (sometimes called conditionals). There are two
types o f decision statements:

if statements
switch statements

We actually used a switch statement in the last lesson, and we'll cover them again here. But first, let's discuss if
statements:

If Statements

An if statement consists o f three major parts:

OBSERVE:

if (boolean)
 {
 statements
 }
else
 {
 statements
 }

the if : the condition being tested (inside parentheses) must result in a boolean—a fancy word for
"true or false."
the st at ement (s) to be executed: if the condition is t rue—notice Java does not use the keyword
t hen (it is implied).
the else : (optional) if present, the st at ement (s) that fo llow it are executed if the condition is
f alse .

Note
Java uses parentheses () fo r:
- conditions in decision statements (if and swit ch).
- fo rmal and actual method parameters.
- precedence in math and logic expressions.

Here is an example o f the syntax used when only one statement is to be performed. In this example,
st at ement 1 is executed if the co ndit io n is true, OR st at ement 2 is executed if the co ndit io n is false. If,
after the if o r else , there is only one statement to execute, no braces {} are needed around the statement.

OBSERVE:

if (condition)
 statement1;
else
 statement2;

Below is a flow chart illustrating the flow o f contro l after an if statement. Inside the diamond-shaped figure, a
question is asked. Depending on whether the answer to the question is f alse o r t rue , contro l will go to the
left o r right respectively. (The rectangles indicate execution statements in the code.) When either one o f these
is completed, contro l will then continue sequentially down the remaining code statements.

The "Statements" in the flow chart above could also be blocks o f statements:

For the remainder o f this lesson, after if statements, we'll assume they are single statements or blocks o f
statements (in braces). The braces indicate a block, that is, that more than one statement needs to be
executed.

Note Java st at ement s end in semi-co lons (;). There is no ; after a block. The block simply groups
the statements within it.

An else statement may not even be needed, so a decision might look like this:

OBSERVE:

if (condition)
 statement1;

Remember that spaces and blank lines mean nothing to Java, so the previous code could also be written as
a one-liner:

OBSERVE:

if (condition) statement1;

Those two statements are equivalent and hence both have the same flow chart:

Okay, now let's try an example.

Make a new pro ject in the Java1_Lesso ns working set named java1_Lesso n05 . Make a new class for this
pro ject named T est Applet that extends java.applet.Applet (i.e. the SuperClass is java.applet.Applet). Type in
the code below:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {

 public void paint (Graphics g) {

 int myNumber = 1;

 if (myNumber == 1)
 {
 g.drawString("My number matches",10,20);
 }
 }
}

 Save and run it.

In the paint () method, we set the variable myNumber to 1. Then we asked if myNumber was equal to 1 in
the condition o f the if statement (myNumber == 1). In java, like in o ther languages, checking "is equal to" is
done using two equals signs == . A single equals sign = is used to assign values to variables. In this case,
since "1 == 1" is t rue , the statement g.drawString("My number matches", 10,10); was executed and we saw
"My number matches" printed to the screen.

Try changing myNumber = 0 and then run it again. This time it shouldn't print anything.

Now let's try this:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {

 public void paint (Graphics g) {

 int myNumber = 0;

 if (myNumber == 1)
 {
 g.drawString("My number matches",10,20);
 }
 else {
 g.drawString("My number doesn't match",10,20);
 }
 }
}

 Save and run it. This time, "My number doesn't match" prints.

Now, try this:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class TestApplet extends Applet {

 public void paint (Graphics g) {

 int myNumber = 0;

 if (myNumber == 1);
 {
 g.drawString("My number matches",10,20);
 }
 else {
 g.drawString("My number doesn't match",10,20);
 }
 }
}

Save it. Note the word else has a wavy underline and a red X in the left co lumn.

When you move the mouse over the else error, you see the description Synt ax erro r o n t o ken "else",
delet e t his t o ken. Since we added a ; at the end o f the if line, it thinks the else is there without an if .

And actually, if you remove the else , the error will go away. Try it. You'll get a "logical error" which means it
won't work the way you intended, but Java won't "yell" at you because, syntactically, it's okay to end the if
statement without do ing anything. A semi-co lon ; simply ends a statement. It seems a bit odd because it
won't actually DO anything, but it's okay according to Java.

Tip This may seem kind o f obvious, but when you get errors, only fo llow the suggestion if it makes
sense. Otherwise, look at your code until it does make sense before changing things!

Remove the ; so the line reads if (myNumber == 1) and save the program.

Placement of Block Braces

Indentations and new lines mean nothing to Java. Programmers use them to help make their code easier to

read. Semico lons, parentheses, and brackets make it possible for Java to read our code.

Let's look at some more examples.

Make a new Class in your java1_Lesso n05 pro ject named Driving that extends java.applet.Applet.

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
 int age = 15;

 public void paint(Graphics g) {
 if (age > 15)
 g.drawString("Age is " + age, 50, 50);
 g.drawString ("You may drive", 50, 70);
 }
}

 Save and run it. Now try some different ages to see what happens.

WARNING Before driving a motor vehicle, check the laws in your state!

Because the g.drawSt ring("Yo u may drive", 50, 70); line in the paint () method is not within an else o r
within a block defined by { and } fo r the if statement, it always prints. But is that what we meant to happen? We
want the if statement to determine whether we are o ld enough to drive or not and that should depend on the
value stored in age .

Notice again that indentation does not matter to Java. Java is interested only in the placement o f the braces.
Add braces as shown below:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
 int age = 15;

public void paint(Graphics g) {
 if (age >15)
 {
 g.drawString("Age is " + age, 50, 50);
 g.drawString ("You may drive", 50, 70);
 }
 }
}

 Save and run it.

Try some other numbers by changing the value o f the age variable. (Later in this course we'll take input from a
user and then change the value o f variables like age accordingly)

Let's make it so no matter what age we put into the age variable, we'll get the right output.

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
 int age = 15;

 public void paint(Graphics g) {
 if (age > 15)
 {
 g.drawString ("Congratulations!", 50, 50);
 g.drawString ("You may drive", 50, 70);
 }
 else
 {
 g.drawString ("Wait!", 50, 50);
 g.drawString ("You may not drive yet", 50, 70);
 }
 g.drawString("Age is " + age, 50, 90);
 }
}

 Run it.

Now, you might be wondering if we can simply get rid o f else and instead just use a sequence o f if
statements. Let's give it a try.

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
 int age = 15;

 public void paint(Graphics g) {
 if (age > 15)
 {
 g.drawString ("Congratulations", 50, 50);
 g.drawString ("You may drive", 50, 70);
 }
 if (age < 15)
 {
 g.drawString ("Wait a few years", 50, 50);
 g.drawString ("You may not drive yet", 50, 70);
 }
 g.drawString("Age is " + age, 50, 90);
 }
}

 Save and run it. What happened? It's an easy mistake to make.

If you have two if s, and you're using less than and greater than signs, make sure that one actually has the
value for equals as well, o therwise you'll miss the "edge case"—people who are exactly 15! Let's go ahead
and fix that:

CODE TO TYPE:

import java.applet.Applet;
import java.awt.*;

public class Driving extends Applet {
 int age = 15;

 public void paint(Graphics g) {
 if (age > 15)
 {
 g.drawString ("Congratulations", 50, 50);
 g.drawString ("You may drive", 50, 70);
 }
 if (age <= 15)
 {
 g.drawString ("Wait a few years", 50, 50);
 g.drawString ("You may not drive yet", 50, 70);
 }
 g.drawString("Age is " + age, 50, 90);
 }
}

NOW the two examples are equivalent. Why would we use elses rather than two if s? One reason is speed.
Java does not have to go back to the age variable in memory to see what its value is a second time if there is
an else . Or perhaps you, as a programmer, think that two if s will be more efficient or more clear than one.
This could be true, but you still need to be careful.

So now that we've talked about the last two parts o f the if statement, maybe we should discuss the first part a
little more!

Comparison Operators and Logic
The first component o f if statements is the conditional. Is something t rue o r f alse? Just like we have the arithmetic
operators (-, *, /, and %) to manipulate numbers and change variable values, we also have operators to determine how
variable values are related and to co mpare them.

Comparison Operators

We've already used some comparison operators in the examples above, such as <, >, and ==. Here's a more
complete list:

> greater than

< less than

== equal to (true when two objects are the same, o r two primitive data types have the same value)

!= not equal to

<= less than or equal to

>= greater than or equal to

(More operators exist that deal with comparisons o f single bits at a time, but that's beyond the scope o f this
class.)

Let's look more closely at the == . Remember that in computer languages, one equals sign tells the compiler
to put the value on the right into the address on the left, as we did with int age = 15 . For two equals signs,
when the variables on both sides are inst ances o f some Class, you're asking if the variable on the left side
points to the same object as the variable on the right side. If the variable has a value that is a primitive data
type, then the == is comparing to see if the value on the left is the same as the value on the right.

We often have more than one thing to compare when we make decisions. Given this, we need to use
additional logic. We'll cover computer logic in depth in the second course o f this series.

See you in the next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Objects and Classes

When you complete this lesson, you will be able to :

Lesson Objectives

define a class's Objects and present them logically.
declare a class and assign it some attributes.
declare variables.

Objects
In the last lesson, we created and ran Applets. To reiterate, a running Applet is an example o f an Object . In object-
oriented programming, everything is done through Objects. This lesson will focus on those Objects that people like us
in the programming have defined and created them for specific purposes.

What is an Object?

An Object is a combination o f dat a (pro pert ies, variables, f ie lds) and act io ns (f unct io ns, met ho ds).

An Object has a state o f being or at t ribut e such as co lo rOf Eyes, pro f essio n, lengt h, o r lo cat io n, and
behaviors or met ho ds it can perform to change its state o f being, like get NewJo b, payAt t ent io n, o r walk.

You may have noticed that we use some funky words. Well, they're created that way because computer
compilers/interpreters do not like spaces in variable and method names. When creating names for their
objects, programmers cram the words together without spaces, begin each name with a lower case letter, and
capitalize the first letter o f each subsequent word in the name, all according to convention.

Sometimes programmers will use more technical terms to describe state and behavior and refer to an Object
as a combination o f data (properties, variables, fields) and actions (functions, methods).

But it's useful to think o f Objects as real Objects when designing a program. That the characteristics and
capabilities o f Objects belong to the very objects that should possess them. In programming terms, the
methods and attributes that the Object is capable o f are contained within the Object definition.

Inexperienced programmers tend to put information in all kinds o f weird places. You want your Objects to be
organized clearly and contain the right information, since o ther programmers might use your Objects too.
Like we said, sharing is the greatest benefit o f Object Oriented programming!

For example, if I were to ask you what co lor my cat Missy's eyes were, in what Object might you look to find
the answer? (Pretend that we've created all o f these as Java Objects):

Me (since Missy is my cat)?
Humans (since she is mine and I am a human)?
Eyes?
Cats?
Missy?

All o f these things are Objects, but which one should have a value for the co lor o f her eyes? Hopefully you
recognized that information about the co lor o f the cat Missy's eyes belongs in the Object Missy. The Object
Missy should have an at t ribut e o f eyeCo lo r and the value o f that attribute would be green.

In object-oriented programming, the first thing we do is define Classes o f Objects. We define an instance o f
an Object by letting it have the characteristics and behaviors that belong to that Object.

Objects can also inherit from other Objects. For instance, Missy is a cat. She shares attributes in common
with o ther cats like fur and claws, and actions like purring and hacking up furballs. What does Missy inherit
from Cats? Certainly she inherits legs, a tail, whiskers, and such. But what makes Missy uniquely Missy? That
would be her specific fur co lor, eye co lor, some behaviors, and the like.

If we were to program Missy in Java we'd make a Missy class that creates instances o f Missy.

OBSERVE:

import java.cats.*

public class Missy extends cats {

 Color colorOfEyes = color.green;
 Color colorOfFur = color.gray;
 Boolean hungry = True;

 public Sound meow() {

 if (hungry) {

 Sound talk = "cry";
 }
 else
 {
 Sound talk = "purrrr";
 }

 return talk;
 }

}

What Java syntax did we use to specify inheritance? In fact, you may remember do ing something similar
before when you extended Applet. In our Duke Applet from the previous lesson:

OBSERVE:

public class Duke extends Applet

Since our Duke inherited from Applet , any Objects made from these class templates inherited all o f the
attributes and actions o f the Applet class too. Knowing the similarities and differences among Classes will
help you decide the best classes for your Objects to inherit from, and also help you define Classes.

Consider our friend Duke again. In the next section, we will enhance our earlier code and make a template for
Duke objects. (He is simply never go ing away!)

Classes

The declaration (or definition) o f the structure o f objects o f a certain kind is called a Class. A class is a
template or a blueprint fo r creating instances o f objects.

The Duke Class we made earlier is a template that creates instances which are specifically Duke Objects.
Think o f Class as a machine that creates Objects. You don't actually get an Object from a Class until the Java
code is executed, but as you'll see in the upcoming example, you can get different instances o f Objects from a
single Class. We can do that by setting attributes and calling methods that are made available to us by the
Class.

javascript:d1e192();

To define a Class, we give it attributes that define that particular type o f Object and thus provide its state (the
variables) and also the behaviors that the Object is capable o f performing (the methods).

Note The methods and fields o f a Class are sometimes called the Class Members

Let's take yet another look at Duke. So far in our program we haven't given Duke any attributes. We've simply
printed pictures o f Duke do ing different things. Let's change that. Let's start giving Duke some attributes. What
attributes should we give Duke?

What makes Duke a Duke? Well, Duke is an Applet because he extends Applet. But Duke isn't just an Applet—
he has some of his own attributes as well. You can see he always has a po inty head, two arms, a round
nose, and a tooth-shaped body. Hmm, does a Duke have to be a boy? Could there be a Duke with a blue
nose? It's really all up to you.

Our next task in Java will be to add a new attribute to our Duke. Every Duke has a nose. Let's suppose some
Dukes have different co lor noses. Let's make a Duke class that has an attribute o f no seCo lo r with two
possible nose co lors: red and blue. Before we pick Duke's nose (as it were), let's go over some effective
techniques to use when designing Objects:

When choosing o bject s/classes, look for no uns in the program. Our class is called Duke .
When choosing met ho ds, look for verbs in the program. Ours are wave() , writ e() , and t hink() .
When choosing a program's f ie lds and at t ribut e values look for persistent charact erist ics o f
the objects. Now we're about to add an attribute called no seCo lo r.

Let's make a new pro ject fo r Lesson 6 , named java1_Lesso n06 .

Let's build on the Duke class we created already. Copy the Duke.java file from java1_Lesson04 to
java1_Lesson06:

1. Select java1_Lesso n04 in the Package Explorer window.
2. Click the + sign to open the Pro ject; if the def ault package is closed, click on its + as well.
3. Right-click Duke.java and select Co py.
4. Right-click the java1_Lesso n06/src fo lder and choose Past e . You should see a def ault
package with Duke.java in it.

Now, let's edit our Duke.java and check out how Objects work:

Open the java1_Lesso n06/src subfo lder, and its def ault package . Then, double-click the Duke.java
program to open it in your Editor Window.

Remember, click the encircled + sign if you see this in the imports:

You should see:

Note
The forward slashes // in Java indicate comments. You can use them to provide helpful
information within your code. When Java runs the code, it ignores everything from the // to the
end o f the line.

This next example will be a little different from stuff we've done before. We won't look at the actions o f Duke
one at a time, but instead we'll observe them randomly.

Edit Duke.java as fo llows (adding code that looks like this and removing code like this):

CODE TO TYPE:

import java.awt.*;
import java.applet.Applet;

public class Duke extends Applet {

 int test = 0;
 Image action;
 Color noseColor = Color.red;

 public void paint(Graphics g) {
 // Next line randomly picks just to show that different noses are possib
le.
 int rint = (int)(Math.random() * 2); // Gives either a 0 or a 1.
 if (rint == 0) {
 noseColor = Color.red;
 } else {
 noseColor = Color.blue;
 }
 // Randomly let this duke do something - one of 3 choices.
 switch ((int)(Math.random() * 3)) // Gives a number between 0 and 2 in
clusive.
 {
 case 0: action= this.write(g); break;
 case 1: action= this.think(g); break;
 case 2: action= this.wave(g); break;
 }

 resize(300,300); // Resize the applet window.
 g.drawImage(action, 10, 10, Color.white, this);

 test = test + 1;
 // Show that Restart repaints to make a new action.

 if (noseColor != Color.red) {
 g.drawString("My nose feels funny", 10, 145);
 }
 }

 public Image write(Graphics graph){
 graph.drawString("I am a writing Duke", 10,130);
 if (noseColor == Color.red){
 action = getImage(getDocumentBase(),"../../images/duke/penduke.gif")
;
 } else {
 action = getImage(getDocumentBase(),"../../images/duke/penduke2.gif"
);
 }
 return action;
 }

 public Image think(Graphics graph){
 graph.drawString("I am a thinking Duke", 10,130);
 if (noseColor == Color.red){
 action = getImage(getDocumentBase(),"../../images/duke/thinking.gif"
);
 } else {
 action = getImage(getDocumentBase(),"../../images/duke/thinking2.gif
");
 }
 return action;
 }

 public Image wave(Graphics graph){
 graph.drawString("I am a waving Duke", 10,130);
 if (noseColor == Color.red){
 action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif"

);
 } else {
 action = getImage(getDocumentBase(),"../../images/duke/dukeWave2.gif
");
 }
 return action;
 }
}

Make sure you've typed it all correctly. You shouldn't see any errors; just the one warning about the
serializable class at the beginning o f the class definition.

 Save and run it.

Note Notice the applet window is larger. We set that with the statement resize(300,300) . The first
argument sets the window's width, the second sets the height.

 Restore down the lesson window. Keep the first Duke
Applet running and move it to the right.

 Run it again to make another one and move it to the right.

 Run it again and move it to the right.

And Run it yet again.

Now the Applets are all onscreen:

Notice that sometimes we get a Duke with a red no se and sometimes we get a Duke with a blue no se .

What have we done? This time we didn't Restart an existing Applet, but Ran a new one. Each time you run an
Applet, you're creating a new Applet and hence a new Duke Object. Notice in the code that Duke ext ends the
Class Applet, so Duke inherits from Applet and thus we say Duke is an Applet.

So, every time we run the Applet, we get a new Applet Object and we are getting a new and different Duke
(Note that because our algorithm is random, we might also get the same Duke twice). Each o f these windows
shows a new instance o f the Applet and hence a new instance o f Duke—with all o f the inherited characteristics
from Applet and all o f the characteristics specified in the Duke template.

Note Each time we use a Class to make one o f the things that are described by our Class template,
we are creating an instance o f the class (called an Object).

We call this instantiation.

Specifically, we have a class template named Duke which ext ends Applet . The code written describes the
class's attributes and methods. Each time we run the code, we generate a brand new Duke possessing all o f
those attributes and methods.

Since everything in Java is not an Applet, we don't always have Applets to make different instances for us. In
order to make instances o f Classes, Classes usually provide a special method (a Co nst ruct o r) that is
called o r invoked when someone wants to "construct" an instance o f that class. (More on this topic later.)

Let's look at the code in a bit more detail to get a thorough understanding o f each part:

OBSERVE:

import java.awt.*;
import java.applet.Applet;

public class Duke extends Applet {

 Image action;
 Color noseColor = Color.red;

 public void paint(Graphics graph) {

 // Next line randomly picks just to show that different noses are possible.
 int rint = (int)(Math.random() * 2); // Gives either a 0 or a 1.
 if (rint == 0) {
 noseColor = Color.red;
 } else {
 noseColor = Color.blue;
 }
 // Randomly let this duke do something - one of 3 choices.
 switch ((int)(Math.random() * 3)) // Gives a number between 0 and 2 in
clusive.
 {
 case 0: action= this.write(graph); break;
 case 1: action= this.think(graph); break;
 case 2: action= this.wave(graph); break;
 }
 graph.drawImage(action, 10, 10, Color.white, this);
 if (noseColor != Color.red){
 graph.drawString("My nose feels funny", 10,145);
 }
 }

 public Image wave(Graphics g) {
 g.drawString("I am a waving Duke", 10,130);
 if (noseColor == Color.red){
 action = getImage(getDocumentBase(),"../../images/duke/dukeWave.gif"
);
 } else {
 action = getImage(getDocumentBase(),"../../images/duke/dukeWave2.gif
");
 }
 return action;
 }

 public Image write(Graphics g){
 g.drawString("I am a writing Duke", 10,130);>
 if (noseColor == Color.red){
 action = getImage(getDocumentBase(),"../../images/duke/penduke.gif")
;
 } else {
 action = getImage(getDocumentBase(),"../../images/duke/penduke2.gif"
);
 }
 return action;
 }

 public Image think(Graphics g){
 g.drawString("I am a thinking Duke", 10,130);
 if (noseColor == Color.red){
 action = getImage(getDocumentBase(),"../../images/duke/thinking.gif"
);
 } else {
 action = getImage(getDocumentBase(),"../../images/duke/thinking2.gif
");
 }
 return action;
 }

}

Co lo r no seCo lo r = Co lo r.red; initially sets the noseColor attribute to red. The next couple o f references to
noseColor are within an if statement that checks a random integer we call rint , which can be 0 or 1. If it's zero .
the noseColor stays red; if it's 1 (that is, "else not 0"), we set the noseColor attribute to blue. The next
reference to noseColor appears where we check to see if t he no seCo lo r isn't red; if it isn't, we print "My
nose feels funny". The remaining references to noseColor all check to see if the attribute is set to red or not. If
it is, then we put up the picture o f Duke with a red nose, o therwise we put up the alternate picture o f Duke.

We also changed our switch statement to wo rk rando mly, rather than in sequence.

Notice in the example above, the variable rint is declared inside o f the paint (Graphics graph) method. This
is called a lo cal variable . Its scope is so lely within the block o f code (that is to say, within the curly braces {
}) in which it was declared. This means that if we were to try to access this variable from anywhere outside o f
the paint () method, we would get a compile error, because the rint variable only exists within the paint ()
method.

Local variables can be defined within any block o f code defined by curly braces or any conditional or loop that
does not need curly braces. However, defining them in a conditional or loop that does not need curly braces
would be useless, since they could only be accessed in that single line o f code.

Example

if(x > 10){
 int y = 30;
}
System.out.println(y);

In this short example, the variable y only exists within the if statement, so the System.out.println(y) statement
would cause a compile error.

Java Data Types

The Java programming language is strongly typed, which means that all variables must first be declared
before they can be used. This invo lves stating the variable's t ype and name, as you've already seen in these
lessons. Like:

Image Action;

and:

Co lo r noseColor = Color.red;

and:

int rint = (int)(Math.random() * 2);

Some of the types are primitive data types and some of them are Object Data Types. You can tell the
difference because Object data types are Capitalized and primitive data types start with a lowercase letter (like
int).

Declaring a variable tells your program that a field exists (with whatever name you choose, like no seCo lo r
or Act io n), it ho lds data, and has some initial value. If you don't give an initial value, most types have a
default initial value. A variable's data type determines the values it may contain, plus the operations that may
be performed on it. In addition to int, the Java programming language supports seven o ther primitive data
types. A primitive type is predefined and is named by a reserved keyword. The eight primitive data types
supported by the Java programming language are (you don't need to understand all o f this but read over it.
We'll be covering these in more detail in the second course o f this series. Pay particular attention to int,
double, and boo lean):

byte

An 8-bit signed two 's-complement integer. It has a minimum value o f -128 and a maximum
value o f 127 (inclusive). The byte data type can be useful fo r saving memory in large arrays,
where the memory savings actually matters. They can also be used in place o f int where their
limits help to clarify your code; the fact that a variable's range is limited can serve as a form of
documentation.

short
A 16-bit signed two 's-complement integer. It has a minimum value o f -32,768 and a maximum
value o f 32,767 (inclusive). As with byte, the same guidelines apply: you can use a short to save

memory in large arrays, in situations where the memory savings actually matters.

int

A 32-bit signed two 's-complement integer. It has a minimum value o f -2,147,483,648 and a
maximum value o f 2,147,483,647 (inclusive). For integral values, this data type is generally the
default cho ice unless there is a reason (like the above) to choose something else. This data
type will most likely be large enough for the numbers your program will use, but if you need a
wider range o f values, use long instead.

long
A 64-bit signed two 's-complement integer. It has a minimum value o f -
9 ,223,372,036,854,775,808 and a maximum value o f 9 ,223,372,036,854,775,807 (inclusive).
Use this data type when you need a range o f values wider than those provided by int.

float

A single-precision 32-bit IEEE 754 floating po int. Its range o f values is beyond the scope o f this
discussion, but is specified in section 4.2.3 o f the Java Language Specification. As with the
recommendations for byte and short, use a float (instead o f double) if you need to save
memory in large arrays o f floating po int numbers. This data type should never be used for
precise values, such as currency—for that, use the java.math.BigDecimal class instead.
Numbers and Strings cover BigDecimal and o ther useful classes provided by the Java platform.

double

A double-precision 64-bit IEEE 754 floating po int. Its range o f values is beyond the scope o f
this discussion, but is specified in section 4.2.3 o f the Java Language Specification. For decimal
values, this data type is generally the default cho ice. As mentioned above, this data type should
never be used for precise values, such as currency.

boo lean Has only two possible values: true and false. Use this data type for simple flags that track
true/false conditions. This data type represents one bit o f information.

char A single 16-bit Unicode character. It has a minimum value o f '\u0000 ' (or 0) and a maximum
value o f '\uffff' (o r 65,535 inclusive).

In this course we've been using int and boo lean a lo t.

The o ther kinds o f types we're using are Object types like Color and Image, when you declare a variable to be
of those types it really means that you're either go ing to create an instance o f that type with the variable name,
or you're go ing to set the variable to an object o f that type.

When we say Co lo r no seCo lo r = Co lo r.RED, we are setting noseColor to be a Color object. We could
also say Co lo r no seCo lo r = new Co lo r(255,0 ,0); ((255,0 ,0) is the RGB value o f red). In fact Co lor.RED is
defined in the co lor class exactly the same way using new Color(255,0,0). We'll cover this more later. For now,
I just want you to know what you are typing when you type in the variable declarations.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Classes and Instances

When you complete this lesson, you will be able to :

Lesson Objectives

use the constructor method.
create multiple instances o f an applet to execute different characteristics and actions.

Object Design
Okay kids, it's time to get serious about making things more Object Oriented. So far we've played around with an
Applet that executes actions and has characteristics, but everything we've done has been within a single Class. In this
lesson we'll put Duke into a class o f his own and let the Applet do what it's good at--grabbing stuff and putting it on the
screen. And we'll let the Duke Class do what it should be good at, which is creating instances o f Dukes that execute
different actions and characteristics.

Who gets what?

Since you know how to start a new pro ject now, let's create one. Call it java1_Lesso n07 and then give Duke
a nice clean Class o f his own that we'll call Dukes (plural). This time though, the class won't be extending
Applet. Instead we'll create a different Class for that. It will use the Class we're making now. You'll see how
this all works in a minute.

To
do

1. Start a new pro ject called java1_Lesso n07 .
2. Make a new class named Dukes (plural!).
3. The dialog should have So urce f o lder: java1_Lesson07 (or
java1_Lesson07/src).
4. Give it Name: Dukes.
5. This time DON'T change t he superclass: java.lang.Object .
6 . Click Finish.

.

Dukes will no t be an Applet, which is why its Superclass should remain java.lang.Object .

Type in the blue code below:

CODE TO TYPE

 public class Dukes {

 private Color noseColor = Color.red; // default Dukes have red noses
 private String action = "../../images/duke/dukeWave.gif"; //default Duke
s are friendly
 private String whatDoing = "Give me something to do";
 private String message= "";

 public Dukes()
 {
 int rint = (int)(Math.random() * 3); // randomly generates a 0, 1,
or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }
 }

 public String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

 public String write()
 {
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think()
 {
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }
 else

 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String wave()
 {
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 }

This is just a Java class and won't actually run, but you should SAVE it anyway. Only applications and
Applets will run. Go ahead and try to run it, just so you can observe the error.

Now let's break the code down bit by bit to see what this class is all about.

The first part o f the definition o f the Dukes Class is located on the first line. Immediately after that we have
some At t ribut es (variables) defined. Ignore the italicized text fo r now; we'll discuss that shortly. For now,
pay attention to the co lo red t ext :

OBSERVE: The co lored text below

 public class Dukes {

 private Color noseColor = Color.red; // default Duke's have red nose
s
 private String action = "../../images/duke/dukeWave2.gif"; //default
 dukes are friendly
 private String whatDoing = "Give me something to do";
 private String message = "";

 public Dukes()
 {
 int rint = (int)(Math.random() * 3); // randomly generates a 0,
 1, or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }
 }

 public String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

 public String write()
 {
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think()
 {
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }
 else

 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String wave()
 {
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;
 }
 }

If we had inherited from something o ther than the default o f java.lang.Object , we'd see the ext ends
keyword identifying the superclass on the first line, just like before when we extended the Applet class. You
don't need to extend Object because Java assumes every Class extends it. As soon as the Class is named
in the definition, we begin defining its attributes (no seCo lo r, what Do ing, act io n, and message).

Notice that not only did we define the t ype these attributes take, but we made them privat e . So what's this
public and privat e stuff all about, you ask? Well, when we make Classes, we usually make them for o ther
Classes to access and use. That's why we set permissions on the members o f a Class that o ther Classes
can access. Permissio ns can be public, privat e , o r pro t ect ed. (We'll discuss o ther important aspects o f
these modifiers in a later lesson.) For now we'll just study two permissions: public and privat e .

The Instance Variables (attributes) listed above are all privat e and the class definition and access met ho ds
are all public. The reserved wo rds o f public and privat e are modifiers present in order to indicate access
capabilities for Fields and Methods. Since Classes are made for o ther Classes to use, we use public and
privat e to determine the capabilities they can access. Public Methods usually only serve to get or change
the values o f privat e members, and are referred to as get t ers (gets) and set t ers (puts/changes). They are
sometimes referred to as accessors and mutators as well. The idea behind all o f this is fo r our code to be
encapsulat ed and our dat a/inf o rmat io n t o be hidden. That way we only allow the values o f the
variables to be changed or accessed t hro ugh t hese accesso r and mut at o r met ho ds. Thus the
variables themselves are private, but access to them may be public (o f course, these members are
accessible inside o f their own classes). Limiting access this way helps to prevent data corruption.

For example, in this Class we've got some accesso rs called get Act io n() , get Act io nImage() ,
get No seCo lo r() , and get Message() . These methods were made specifically to allow programmers to get
the values o f the variables what Do ing, act io n, no seCo lo r, and message , respectively, without accessing
them directly. So now we have two sets o f methods, one made up o f accessors { getAction(),
getActionImage(), getNoseColor(), and getMessage() } and the o ther made up o f actions that Dukes can
perform { write(), think(), and wave() }.

In the Dukes class, we allow each o f the Dukes to have characteristics. The Class defines attributes o f
noseColor (o f type Co lo r), an act io n this particular Duke can take (o f type St ring), and the message this
particular Duke can give us (o f type St ring).

Accessor Methods in Dukes

 public String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

The remaining methods are the now familar act io ns o f a Dukes object, that is, they are the things that Dukes
can do: write(), think(), wave().

Action Methods in Dukes

 public String write()
 {
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think()
 {
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String wave()
 {
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }
 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 }

Finally, there's one special method type called the Co nst ruct o r:

Dukes Constructor Dukes()

 public Dukes()
 {
 int rint = (int)(Math.random() * 3); // randomly generates a 0,
 1, or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }
 }

The italicized code from above defines this Class's Constructor. A constructor is the method that's called to
create an instance o f a Class. If you don't provide a constructor definition, a default constructor without
parameters is created automatically (we'll get to that later). Co nst ruct o rs always have t he same name as
t hat o f t he Class. That's why there is a method called Dukes() in this code. When we write another Class
that instantiates this Dukes Class, we'll have to call this method which then constructs Dukes instances for us
(we'll give this a try later in the lesson).

In this Dukes Class, the Constructor determines the no seCo lo r o f this Duke's nose, the act io n this
Duke takes, and the initial message to send from this Duke. The code in this particular constructor picks a
random number from among 0 , 1, and 2. Only if it selects 0 does it give Duke a blue nose, o therwise his nose
stays red.

It's important to be able to discern the various parts o f the definitions o f classes, although in essence, a class
only has met ho ds and variables. In the API they use the term Fields instead o f "Variables", so you might
see a Field Summary. Don't worry, it's just a variable.

In addition, a lo t o f code organization is done using blo cks. Java uses blo cks o f code to specify definitions
for classes, methods, and o ther groupings o f code. Brackets {} are used to begin and end blocks. Blocks are
also called co mpo und st at ement s because they can be used to define or group together more than one
statement.

To do 1. Let's match some blocks o f code.

Eclipse can help us identify blocks o f code. Click directly af t er an opening bracket { anywhere in the
Dukes.java class. Notice that there's a little rectangle around its closing bracket } . Eclipse will identify the
matching opening bracket when you click after the closing bracket.

Remember, the { } blocks help us identify the methods o f a class. The fields/variables will no t have blocks
of their own and should always be either at the very beginning o f the class definition block, after the opening {,
o r at the very end o f the class definition block, before the closing } . This will make your program more
readable.

Initialization and Constructors

Def ault s
Classes are the templates for Objects. The Class definition sets up the way Objects will look when they're
instantiated. Defaults can be used to give instances initial standard values. In our definition o f Dukes, Dukes
will "normally" have red noses, and then those Dukes willl have default actions.

Default values

 private Color noseColor = Color.red; // default Duke's have red noses
 private String action = "../../images/duke/dukeWave2.gif"; //default dukes a
re friendly
 private String whatDoing = "Give me something to do";
 private String message = ""; //initial message is blank

In addition to the above default values for the attributes, a Class's constructor is used to make a specific
instance o f the Class and is usually used to reset some of the Attributes for that instance. In our case, the
Dukes constructor is used to decide the co lor o f this particular Duke's nose. Normally Dukes will have a red
no seCo lo r by default, but our Constructor has code in it that can change that upon instantiation depending
on a random variable (rint). Similarly, we set the Dukes default act io n to wave. However, if you look in the
Dukes constructor, we are generating random numbers o f 0 , 1, and 2 that will ultimately determine which
characteristics an instantiated Duke will have. If the random number happens to be 0 , we are giving that
instance o f Dukes a blue nose. Since the blue-nosed, waving Duke must have a blue nose, we are also
changing the default waving red-nosed Duke (dukeWave.gif) to a waving blue-nosed Duke (image o f
dukeWave.gif).

Constructors have specific characteristics that differ from other methods. Remember, they always have the
same name (case-sensitive) as the class, and the programmer never specifies that they "return" anything,
since the constructor always returns exactly one thing--an instance o f this type o f class.

We're go ing to get Duke's fingers moving in the next sections by building some Applets that use the Dukes class we
created in this section. This might be a good time to take a break or maybe even take a nap.

.

Making an Applet for Dukes

If you haven't got it opened already, open up the Dukes.java file we worked on in the previous section. You
may notice that Eclipse is giving us some errors:

Double-click on those errors for suggestions for fixing them. Always try the first suggested fix first because it
might also fix some of the errors farther on down the chain. Go ahead and try the first suggestion. It worked,
didn't it? Did all o f your errors go away? Cool, huh? At the top o f your Dukes.java file you should see this:

At the top o f your Dukes.java file:

 import java.awt.Color;

That's because we're using the co lors from the Color object.

Since the class Dukes is not an Applet (remember--he is a java.lang.Object), we need to make an Applet that
will use instances o f Dukes and display them.

Start a new class called DukesApplet and make sure it extends Applet this time. Its superclass should be
java.applet .Applet .

CODE TO TYPE: DukesApplet

import java.awt.*;
import java.applet.Applet;

public class DukesApplet extends Applet{

 Dukes myDuke;

 public void init()
 {
 myDuke = new Dukes();
 }

 public void paint(Graphics g)
 {
 String action="";
 switch ((int)(Math.random() * 3))
 {
 case 0: action= myDuke.write(); break;
 case 1: action= myDuke.think(); break;
 case 2: action= myDuke.wave(); break;

 }
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,130);
 g.drawString(myDuke.getMessage(), 10,145);
 g.drawImage(myAction, 10, 10, Color.white, this);
 }
}

Run it.

The output is the same as before, but the code is much different this time. Let's look at what this code is do ing
differently.

Notice that this Class ext ends Applet . As we mentioned, the Java people already wrote the Class Applet
and the Class Graphics used by Applets. Now let's take a look at this Applet and see how we've
incorporated the Dukes class we made earlier.

DukesApplet

import java.awt.*;
import java.applet.Applet;

public class DukesApplet extends Applet{

 Dukes myDuke;

 public void init()
 {
 myDuke = new Dukes();
 }

 public void paint(Graphics g)
 {
 String action="";
 switch ((int)(Math.random() * 3))
 {
 case 0: action= myDuke.write(); break;
 case 1: action= myDuke.think(); break;
 case 2: action= myDuke.wave(); break;

 }
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,130);
 g.drawString(myDuke.getMessage(), 10,145);
 g.drawImage(myAction, 10, 10, Color.white, this);
 }
}

Here we instantiated and used an object from a Class we created. In do ing so, we created an Inst ance
Variable that has the type o f the object name. In this case we wrote: Dukes myDuke , thus the instance
variable myDuke is o f type Dukes. Now we need to give myDuke a value. That's where the Co nst ruct o r
Dukes() from the Dukes class comes in. When we write myDuke = new Dukes() , Java uses the constructor
to create an instance o f Dukes, which in turn sets any attributes we put into the Dukes() constructor. Now that
we have an instance o f Dukes on our hands (myDukes), we can use the methods o f Dukes however we wish.
To access methods o f Dukes, we simply use the syntax myDukes.met ho dName() .

Now instead o f having to write the think(), wave(), and write() methods, we can simply reuse the methods that
are in the Dukes() Class. We also used the getAction() and getMessage() methods to access the message
and action that were set in the Dukes class. Also, notice that the act io n variable in this Class is not the same
as the action variable in the Dukes Class.

This code is more modular and encapsulated than our first Applet. This new Applet specifies things to
perform using only Applet's native methods, such as init () and paint (Graphics g) . It's a better design.

Notice the init () method. It's in this method that we creat e o r inst ant iat e our inst ance o f the Dukes class.
Classes that are not Applets are instantiated with the new command.

Like all variables, you can declare and instantiate (give value) in one line:

Dukes myDuke = new Dukes();

In general, when you create a new object by invoking a constructor, you can do it in one or two lines.

OBSERVE: Declare and Instantiate

 Dukes myDuke;
 myDuke = new Dukes();

 or

 Dukes myDuke = new Dukes();

In the first case, Dukes myDuke is only declaring that myDuke is go ing to be o f t ype Dukes. Remember
when Eclipse said, "cannot reso lve the type" o f something? Everything in Java must be declared as a t ype

so Java knows where to look for it. The myDuke = new Dukes() creates an instance with the new command
and the Classes constructor Dukes() .

In the second case above, Dukes myDuke = new Dukes() bo th declares and creates the instance in one
line.

In the next section we'll see the difference between the two cases.

Another Applet for Dukes

We've been touting the power o f object-oriented design for a while now, so let's see how to take advantage o f
its capabilities by reusing the Dukes class in another Applet. In this Applet we'll create t wo instances o f
Dukes. Make a new Class called T wo DukesApplet , and remember t o make t he superclass
java.applet .Applet . Be sure to create this file in the Lesson07/src folder as well.

CODE TO TYPE: TwoDukesApplet

import java.applet.Applet;
import java.awt.*;

public class TwoDukesApplet extends Applet {

 Dukes myDuke, yourDuke; // two declarations for Duke instances
 String myAction, yourAction; // each will have their own action

 public void init() {

 myDuke =new Dukes(); // instantiate first Duke
 myAction = myDuke.getActionImage(); // his first action

 yourDuke =new Dukes(); // instantiate second Duke
 yourAction = yourDuke.think(); // his first action is to think

 resize(400,200); //resize the applet window so that we can see both duke
s

 }

 public void paint(Graphics g) {

 Image myChoice = getImage(getDocumentBase(), myAction); // get and show image
 for first Duke
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(myChoice, 20, 50, Color.white, this);

 Image yourChoice = getImage(getDocumentBase(), yourAction); // get and show
image for second Duke
 g.drawString(yourDuke.getAction(), 200,165);
 g.drawString(yourDuke.getMessage(), 200,180);
 g.drawImage(yourChoice, 200, 50, Color.white, this);
 }
}

Save and Run it.

Now you should see two instances o f Duke on this Applet. Notice that we used resize(400,200) to make the
Applet big enough so we could see both Dukes.

As the course progresses, yo u will implement and change Classes in many different ways. For now, the goal
is to understand the basics: Classes define variables and methods which help to define the Class itself and
specify its capabilities. In the next lesson we'll write our own Classes again, and we'll also use some of the
classes that Java has written for us to make coding easier.

But for right now, we're exactly where we want to be!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using the API: Introductory Graphics

When you complete this lesson, you will be able to :

Lesson Objectives

use the graphics class.
use the java.awt package (abstract window too lkit) that is found in the API.

Using Java Provided Classes
In this lesson we'll focus on using the Graphics class and its capabilities. This will serve two purposes: first we'll learn
how to do some drawing, and second we'll learn more about using pre-defined classes from the Java API.

java.awt.Graphics Class

In most o f the Classes we've created so far, we inherited from Applet . To do this, we imported using impo rt
java.applet .Applet ; so the Java compiler could find the class and retrieve its inherit ed properties and
methods. Most object-oriented programming is not about writing code from scratch, but using code that
o thers have already written. Java provides a large library o f code, as well as documentation to help us figure
out what's available in that library and how to use it. The documentation is located in the API. (And there's a
handy link on the menu too.)

You might recall that we used the Graphics Class in many o f the Classes we created in earlier lessons. In an
Applet, the Graphics area is passed to the paint (Graphics g) method when it gets instantiated. The
Graphics area is where you can "draw" or "print" things. For instance, in our HelloWorld Applet, we printed
some text. The Graphics class allows us to do stuff like that. In this lesson, we'll work with the Graphics
and Applet Classes to see some of the capabilities they o ffer.

Alright, you know the drill. St art a new pro ject called java1_Lesso n08. Just in case, I'll remind you how
to do it one more time:

To
do

1. Go to the File menu: File | New | Java Pro ject .
2. Give it the name java1_Lesso n08.
3. Click Finish.
(If it asks whether you'd like to "Open Associated Perspective", say "No"--we want to
keep our own perspective environment.)

Now start a new Class called First Line and make the superclass java.applet .Applet :

CODE TO TYPE: Simple Applet Using Graphics

import java.awt.*;
import java.applet.Applet;

 public class FirstLine extends Applet {

 public void paint(Graphics g)
 {
 g.drawLine(20,10,40,40);
 }
 }

Run this Applet. You should see a line. I guess that's kind o f coo l, huh? Now play around and change the
numbers in the drawline() method to see if you can get the line to move up from left to right.

If there were instance variables or class variables present, we'd put them either at the beginning o f the class,

http://download.oracle.com/javase/6/docs/api/

If there were instance variables or class variables present, we'd put them either at the beginning o f the class,
bef o re any method definitions, or at the end o f the class af t er all o f the method definitions.

In this class there is only one method defined. Method definitions are easy to find because they will have
parentheses for their parameters and then curly brackets to indicate their block o f code.

One o f the methods defined in the FirstLine class is the paint (Graphics g) method.

The Graphics g in the argument o f the paint method is called the method's f o rmal paramet er. It indicates
that this method must be given or passed an instance o f a Graphics object. The Graphics instance that is
passed to the method is called the act ual paramet er and has been given the variable name of g. Since g
now represents the Graphics o bject , we can execute "Graphics" actions on it.

As you can see from this little Applet we made, Graphics objects can draw lines. Manipulating pixels enables
us to determine the location and co lor o f our graphics. To contro l location, we consider horizontal and
vertical o r (x,y) coordinates, with (0 ,0) being defined as the top left corner.

In this example, we drew a line from pixel location (20,10) to pixel location (40,40) . So in the
g.drawline(20,10,40,40) method, the first two numbers are the coordinates o f the start o f the line and the
second two numbers are the end o f the line.

We see t wo methods in the FirstLine class:

1. paint(Graphics g) is a met ho d we are def ining fo r our new subclass FirstLine o f the class
Applet. The method paint () has one formal parameter o f t ype Graphics.

2. drawLine(20,10,40,40) is a pre-def ined met ho d (although we can enter any parameters we
wish) o f the class Graphics, o f which g is an inst ance . We are invo king (using o r calling) this
method. To do that, we need to look at the API in the Graphics class to see how it was defined so
that we know its fo rmal parameters and then when we use it, we can pass it the right things.

Using the API

As we've mentioned, the API contains the existing classes Java provides for programmers.

To do 1. Go to the API opening page here and locate the Packages header.

Note
Even though we o ften provide these links for you during lessons, try to get used to go ing to the

 button on the menu bar instead.

Packages are groupings o f Classes that are related in some fashion. These packages are put into different
direct o ries o r f o lders fo r us to access, but in order fo r Java to find them when we're running our programs,
they have grouped them into what they call packages.

The packages that we'll find particularly useful now are:

java.applet
java.awt
java.awt.event
java.lang

http://download.oracle.com/javase/6/docs/api/

But there are many more. In this lesson, we'll mainly focus on one class that lives in the java.awt package.
(By the way, awt stands for abst ract windo w t o o lkit .)

In the API page that opened:

To do

1. Click on the java.awt link.

2. Scro ll down until you see the header Class Summary.
3. Scro ll down to locate the Graphics Class and then click on it.

You should get a page that looks like this, although you may see more frames for o ther packages and
classes on the left. Let's take a closer look at some important aspects shown in the API. Keep one o f the
browsers with the Graphics class open so we can compare.

In the top left corner, the API tells us that the Graphics class is in the java.awt package. Notice Classes are
named with the package name first, and that package names are separated with periods and start with lower
case letters. Also note that Classes always start with capital letters. That makes it easy to differentiate
between the package and the class.

The API also displays an inherit ance t ree :

This indicates that Graphics is an Object.

It also indicates which package each o f the classes is in (Object is in java.lang and Graphics is in java.awt).
Remember from Lesson 2 that every o bject in Java inherits from the class java.lang.Object. That's one
reason you never need to import the package java.lang. Because it's always needed, Java imports it by
default.

Next the API tells us all o f the Classes that are provided in Java that have the Graphics class as a parent (a
superclass).

In the API page for the Graphics class:

javascript:d1e378();

To do

1. Click on the DebugGraphics Subclass link.
2. Note its inheritance chain. Its Superclass is java.awt.Graphics.
3. Go back to the Graphics page.
4. Click on the Graphics2D Subclass link.
5. Note its inheritance chain.

To reiterate and make abso lutely certain this will be emblazened into your memory banks for all eternity,
inheritance is an important part o f object-oriented programming because it allows us to use Classes that
have already been written.

Finally, let's look at the public abstract class Graphics extends Object. This is the first line o f code
that defines the class Graphics. It starts the definition o f the Class and tells us where this class belongs in an
inheritance tree. It tells us the most specif ic class from which it inherits. You can see all o f the o ther Classes
that it inherits from the description o f this Class in the API.

Note If you inherit from a specific Class, you inherit all o f the ancest o rs (the entire inheritance chain)
as well.

Let's take a look at o ther stuff the API o ffers us for the Graphics class.

To
do

1. Scro ll down the API page until you see a Header that says Co nst ruct o r
Summary.

It should look like this:

Constructors are methods as well, but they are special because we use them to create an instance o f the
Class (instantiation). And o f course, the Constructor has the same name as the Class.

In the Met ho d Summary you see many methods that are defined in the Graphics class. Except fo r the
Constructor method, all methods begin with lower-case letters.

To
do

1. Scro ll down through the methods o f the Graphics class to get a feel fo r what's
available.

The most commonly used Graphics methods are draw and f ill. You can find out more about each method
and its usage by clicking on them.

To
do

1. Go to the drawLine method--drawLine(int x1, int y1, int x2, int y2)-- in the API
Graphics listing and click on it.

Methods, Parameters (or Arguments), and the Dot Operator

Now let's look at the specifications o f the drawLine method in our class FirstLine. In defining the method
paint () fo r Applets, Java specifies that its method has a parameter that is passed. This parameter is a
Graphics object (you can see for yourself in the API). In our FirstLine class code for the paint method, we
name this Graphics object g. Since we are defining the method, we could name the variable that ho lds the
object whatever we like. But once you name it, you'll have to use the same name throughout your method
definition. This isn't hard to do here though, because we only have one line so far.

Because the paint () method is present fo r all Applet , the Graphics area is always created and given to us
through the Applet. This is another example o f inheritance. We have inherited all o f the traits o f Applets and the
Applet has provided this Graphics area by passing it to the paint method every time our Applet is displayed
and repainted.

We invo ked o r called the Graphics drawLine() method by typing g.drawLine(20,10,40,40);. This line uses
the do t o perat o r o f Java. In front o f a dot is the o bject and after the dot is either one o f that object's
variables/f ie lds o r a call to one o f that object's met ho ds. If you see parentheses, it is calling a method. If
you do not see parentheses, it is calling a variable. In this example, we are telling Java to go to the o bject we
named g and to use one o f its methods called drawLine() . Inside the parentheses are the "actual
parameters" we want Java to use.

To make sure we used this method correctly, we compare our method call and its act ual paramet ers to the
drawLine() method specification and the f o rmal paramet ers in the API.

On the API page, fo r the method drawLine() we see:

This definition lets us know that if we have a Graphics object, we can use the method drawLine() if we pass it
four integers (int). The method drawLine() will then assign the four integers as stated. The first two values will
be (x,y) fo r the first po int in the line, and the second two values will be the (x,y) fo r the second po int. Here are a
couple o f alternate illustrations o f parameters:

public abstract vo id drawLine(int x1,int y1,int x2,int y2) The method definition line (sometimes called
the method's signat ure) provides f o rmal paramet ers.
g.drawLine(20,10,40,40); Here we see the use o f specific numbers to send to the method for it to
use, hence it provides what are called act ual paramet ers.

We use the API to find method definitions and make sure we send the proper type and number o f parameters.

Sequencing

Let's use some of the methods in the Graphics class to draw something in an Applet.

We'll be using a programming construct called sequencing as well. Sequencing means that if you give Java
a list o f things to do, it will do them in order, one after another. After we get Java to draw our first line, we'll
have it do even more work for us.

Start another class called MyPicture that extends Applet:

CODE TO TYPE:

import java.awt.*;
import java.applet.Applet;

public class MyPicture extends Applet {

 public void init()
 {
 this.setBackground(Color.lightGray);
 }

 public void paint(Graphics g)
 {
 g.drawLine(0,0,100,100);
 g.setColor(Color.RED); // make a red ball
 g.fillOval(45, 15, 40, 40);

 g.setColor(Color.GREEN); // a couple of support beams
 g.fillRect(5, 5, 4, 95);
 g.fillRect(65, 65, 4, 35);

 g.setColor(Color.BLACK); // a landing strip
 g.drawLine(100,100,200,100);
 }
}

Run it.

There's lo ts fo r us to check out, even in this simple program. First, an Applet always starts by having its init
method called and then its paint method. Once inside the paint method, we see the use o f line
sequencing, particularly with use o f the Graphics object g. Notice the change o f co lor in the code and Applet,
and also that the co lors are specified by typing Color.lightGray, Co lor.Red, and so on.

To do

1. Go to the Graphics API and read the specifications o f the methods that start with:
draw (e.g. drawOval, drawPo lygo n, drawSt ring)
fill (e.g. f illRect , f illOval, f illArc)
get (e.g. get Co lo r)

The java.awt.Color Class

Shapes in a Graphics object can be filled in once a co lor is specified. By default the co lor o f the graphics
"pen" is black. The class java.awt.Co lor provides a list o f co lor possibilities.

Here are some of the Color classes used in the MyPicture.java class:

this.setBackground(Color.lightGray);
g.setColor(Color.red);

Look at the MyPicture.java class to check out these "method calls" in detail:

http://download.oracle.com/javase/6/docs/api/java/awt/Color.html

t his.set Backgro und(Co lo r.light Gray); Notice the word t his within the code. Because that line
is within the init() method o f a class that is an Applet, the t his means that you are telling t his
Applet to set its background. Thus we would look for the method in the Applet class.
g.set Co lo r(Co lo r.red); These method calls are all in the paint method o f the Applet. Note that
before the dot operator there is a g. g is a Graphics object/instance, so we are telling Java that we
want to use the Graphics method o f set Co lo r() on our g object.

To find more about set Backgro und(Co lo r.light Gray) , go to the Applet API and look for the method
set Backgro und(Co lo r c) . Applet inherits background co lor from Co mpo nent . Look in the met ho d
inherit ance sect io n -- about a third o f the way down the page you'll see:

To find out more about set Co lo r(Co lo r.red) , go to the Graphics API and look at its methods. Click on
set Co lo r(Co lo r c) fo r more detail.

Let's discuss the keyword t his a bit more. When we write the definition o f a Class, we don't know the name
the user will give to the instance when they use our class. Thousands o f programmers might end up using the
class, each one giving a different name for each instance. That's why we use the reserved wo rd this within
the code o f a class definition: to indicate that we are telling this object (the object that we are currently using) to
invoke the method given. In the above example, we are telling the instance o f the MyPicture Applet to have a
background co lor o f lightGray with the line: this.setBackground(Color.lightGray);.

Similarly, when we have an instance o f an object, sometimes we'll want to tell its parent to do something.
Since you won't always know the parent o f every instance inside the definition o f the class code, Java uses
the reserved wo rd super. So, this means "this one," "me," while super means "this instance class's
parent."

Okay, back to our discussion o f Co lor. Click on the Color API. Scro ll down the Color API page to see the
Field Summary. Now we'll get to see some Class Variables.

Note In the API, Java uses the term Fields fo r the Instance and Class Variables.

To do
1. Scro ll down to the Field Summary fo r Co lo r.
2. Look at the left co lumn.

This is a list o f the Variables that the class Co lo r provides for us. You can see the two words st at ic Co lo r
throughout the list.

Note
The reserved wo rd o f st at ic is a mo dif ier fo r the Field and indicates that the Variable (or
Method) is a Class Variable (o r a Class Met ho d when applied to methods). Static variables
will be covered in a later lesson.

Recall that Classes have two components: Variables and Met ho ds. However, they each come in two forms:
Inst ance and Class. So these are the four combinations available:

Instance Variables
Class Variables
Instance Methods
Class Methods

That's it! Once you've got this concept down, it's a whole lo t easier to read code.

So what are the differences between Instance Variables and Class Variables? Here are some important ones:

A Class Variable is shared by all o f the instances in a Class. For example, all members o f the

http://download.oracle.com/javase/6/docs/api/java/applet/Applet.html
http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html
http://download.oracle.com/javase/6/docs/api/java/awt/Color.html
http://download.oracle.com/javase/6/docs/api/java/awt/Color.html

A Class Variable is shared by all o f the instances in a Class. For example, all members o f the
Class "Human" have t wo eyes. But the co lo r o f eyes changes from one human to the next. So
numberOfEyes would be a Class Variable set to 2 in the Human class, but co lorOfEyes would be
an Inst ance Variable that changes with each instance.
Because the Class Variables are shared by all in the Class, their values are not stored in separate
places in the computer's memory. Values for Class Variables are in a single location in memory.
This means that if the value changes for one instance, it changes for all instances o f the Class.
A Class Variable (or Method) can be called from eit her the Class, or an instance o f the Class. For
example, the value o f the variable BLACK in the Color class is expected to be the same whenever
it is called, thus it does not need to be "created" each time it is used. This makes us happy. The
Color class will be used quite o ften, and it would be a pain, fr example, to have to make a new
instance o f Co lor every time we wanted to get the co lor black.

Let's look at the way we specified Colors in our code: Co lo r.light Gray o r Co lo r.RED.

Note that we have a do t o perat o r here, and that after the dot there can be either a method or a variable. And
we know it's not a method because methods always have parentheses.

Recall that convention dictates that Classes begin with capital letters. Look at how we accessed the co lors:
Color.RED
Here we're accessing Color's variable RED through its class name Co lo r. In o ther words we didn't create an
instance like this: Co lor myco lor = new Color(255,0 ,0); and call myColor.RED, instead we simply called
Color.RED.
We are able do this because the variable RED is a Class Variable.
We know that we can do this here because the keywo rd st at ic is in the Class's specification o f the variable
(look it up in the API!). We'll cover static variables more in Lesson 14, but basically static variables are
declared static because they aren't expected to change and we can access them through their Class name
instead o f their instance name (they aren't instance dependent instance variables.)

So what else was in the Field Summary fo r the class Co lo r?

1. The variables tell us that they are st at ic (which always means Class variables), and they also contain the
word "Color" and a link to the Color class. This is because each o f the Class Variables in the class Co lo r is
Colors:

black is a Color
BLACK is a Color
blue is a Color
BLUE is a Color

The description o f the Fields/Variables is telling you the t ype o f Object the Variable is.

2. Each o f the Class variables in the class Co lo r is either in all CAPITAL or all lower-case letters.

Look at some of the methods o f the Class Co lo r. You can make a co lor lighter or darker using these
methods. For example:

Color.red.darker();

Here Java goes to the Co lo r class, gets the Class Variable red, then invokes the method darker() on that
Co lo r.

But there is something tricky go ing on here. It turns out that Co lor.RED, is a Class variable AND an Object.
That's because the definition o f RED in the Class Color is Co lo r RED = new Co lo r(255,0 ,0);, so RED is an
instance o f the Color class. And so, we can call things like Co lo r.red.darker();, since Color.red is a Color
object itself. We could also simply call Co lo r no seCo lo r = new Co lo r(255,0 ,0); and then call
no seCo lo r.darker(); to make it darker.

To do
1. Open the MyPict ure class and Run it (don't close it).
2. Edit the MyPict ure class's paint method as shown below in blue .

CODE TO EDIT

import java.awt.*;
import java.applet.Applet;

public class MyPicture extends Applet {

 public void init()
 {
 this.setBackground(Color.lightGray.darker());
 }

 public void paint(Graphics g)
 {
 g.drawLine(0,0,100,100);
 g.setColor(Color.RED.darker()); // make a red ball
 g.fillOval(45, 15, 40, 40);

 g.setColor(Color.GREEN); // a couple of support beams
 g.fillRect(5, 5, 4, 95);
 g.fillRect(65, 65, 4, 35);

 g.setColor(Color.BLACK); // a landing strip
 g.drawLine(100,100,200,100);
 }
}

Save and Run it. Compare the two Applets' co lors.

Great work so far. We're really making progress. In the next lesson, we'll expand our artistic palette to include even
more Java capabilities. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Drawing with Graphics

When you complete this lesson, you will be able to :

Lesson Objectives

locate specific methods in the API to create a drawing.
use the Graphics Class to draw.

Making Pictures

Back to Graphics

In this section we'll use the Graphics Class to make drawings. First, let's make an Applet we can use to test
our drawings.

1. Make a new pro ject fo r Lesson 9 : File | New | Java Pro ject .
2. Name the Pro ject java1_Lesso n09 .
3. Click Finish. (If "Open Associated Perspective" appears, click "No." We want to keep our own
perspective environment.)
4. Make an Applet in this pro ject called DrawT est .

The code for the Applet is fairly simple:

CODE TO TYPE: DrawTest

import java.applet.*;
import java.awt.*;

public class DrawTest extends Applet
{
 public void init()
 {
 setBackground(Color.cyan);
 }

 public void paint(Graphics g)
 {
 // empty for now until we have made code of images to draw
 }
}

Okay, now we need to add a Class that draws something. This first drawing will use only ovals and lines.
Let's try to draw Cart man from the TV show South Park, using only the primitive shapes available in the Java
API.

1. Look in the Graphics API fo r some methods that draw.
2. Go to the Graphics API listing o f methods for the f illOval() method.
3. Click on the f illOval() link there.

You should see this:

Sometimes the API doesn't provide an exact method to help us execute a task, so we have to work around it,
but in this case it does. fo r our purpose here, a circle IS considered a type o f oval. A circle is in essence a
symmetrical oval, an oval that has the same height and width. So in order to draw circles, we use the same
methods that make ovals.

Alright, let's get to work! In the java1_Lesson09 pro ject, creat e a new Class called Cart man.

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html

CODE TO TYPE: Cartman

import java.awt.*;

 public class Cartman {

 Graphics g; // make the Graphics area an instance variable so the methods
can use it

 public Cartman(Graphics graph) // the class Constructor
 {
 this.g = graph; // give the graph instance to the Instance Variable we na
med g
 }

 public void drawMe()
 {

 g.setColor(Color.PINK);
 g.fillOval(10,30,180,150); //Cartman's face

 g.setColor(Color.white);
 g.fillOval(50,66,35,53); //Cartman's eyes
 g.fillOval(78,66,35,53);

 g.setColor(Color.black); //Cartman's eyeballs
 g.fillOval(63,86,10,10);
 g.fillOval(90,86,10,10);

 g.setColor(Color.black); //Cartman's mouth
 int [] xValues = {56,89,109};
 int [] yValues = {140,150,140};
 g.fillPolygon(xValues, yValues, 3);

 } // end drawMe method

 } // end Cartman class

Save it.

Okay, now we need the Applet to see this class. Go back to your DrawTest.java file. Edit the paint method you
find there by adding the code below:

CODE TO TYPE

import java.applet.*;
import java.awt.*;

public class DrawTest extends Applet
{
 public void init()
 {

 setBackground(Color.cyan);

 }

 public void paint(Graphics g)
 {
 Cartman myCartman = new Cartman(g);
 myCartman.drawMe();
 }
}

 Run it. Not a bad likeness if you ask me. In the pro jects fo r this lesson, you'll make him look even more
like Cartman.

Now let's take a look at the f illPo lygo n() method in Graphics in the API. Notice that this method is
o verlo aded - look at its two signatures:

Hold on a minute. There are t wo fillPo lygon() methods? In the previous lesson we mentioned the concept o f
po lymo rphism --that sometimes the same name is used in different places. On occasion, a method might
o verride its parent. Now in this Class we see an example o f another important fo rm of po lymorphism called
o verlo ad.

Overloading is when a specific class has more than one method with the same name. Hmm, this sounds like
it could get tricky. But Java figures out which one to use by reading the method's f ull signat ure . The
signature is a method's definition and is determined by its name and the number and types o f parameters it
takes. You can have methods with the same name, and even the same parameters, but they'll all have
different signatures.

A signat ure o f a method is much like the signature o f a human; each signature is unique. As such, in Java, a
signature can be used to identify a method, then decide which one to use. To accomplish this task, Java:

Indentifies the type o f class calling the method (i.e., the object in front o f the dot operator -- like g in
g.drawLine).
Observes the name of the method.
Observes the number and the t ype o f parameters (if there is more than one method with the
same name).
Ensures that the proper values for Java have been passed. In o ther words, the values passed
(actual parameters) are consistent with those defined in the class (fo rmal parameters).

So looking at the API again, the f illPo lygo n() method takes 3 parameters (int [] xpo int s, int [] ypo int s,
int npo int s) o r 1 parameter (Po lygo n p). In the Cartman example, we're using the method that takes 3
parameters. If we had a Po lygon object to pass to it, we could use the method with 1 parameter-- in fact we'll
try that a bit later, but fo r now let's go over what we've done here using the method that takes 3 parameters.
You can tell that the first 2 parameters are sets o f integers because they take an integer array int[] (Arrays are
sets and are indicated by square brackets. We'll study arrays in great detail in the next Java course).

Let's consider an example. Suppose you wish to fill these 4 po ints in the po lygon: (15,20) , (170,39) ,
(160,100) and (40,150) . The shape would be:

Go to the Graphics class and look at the spec for "drawPolygon(int[] xPo ints, int[] yPo ints, int nPoints)." See

http://download.oracle.com/javase/6/docs/api/java/awt/Graphics.html#drawPolygon(int[], int[], int)

how it indicates that the first parameter is an array o f x coordinates?
The array o f x coordinates would look like this: [15 ,170 ,160 ,40]
The array o f y coordinates would look like this: [20 ,39 ,100 ,150]
The method call to a graphics object g would be:

OBSERVE:

int [] xValues = {15,170,160,40}; // declare the arrays
int [] yValues = {20,39,100,150};;
g.fillPolygon(xValues, yValues, 4);

The number 4 in the argument o f the f illPo lygo n() method is the number o f po ints in the po lygon we're
drawing.

Now let's get back to our example. In our example we drew a triangle for Cartman's mouth. We passed the
f illPo lygo n() method two integer arrays (3 xValues and 3 yValues) and passed the number o f po ints (3). To
show the po lymorphism of the f illPo lygo n() method, let's create a Po lygon object and pass that to
f illPo lygo n() . Change the Cartman class as fo llows:

Change the code in blue in the Cartman Class

import java.awt.*;

public class Cartman {

 Graphics g; // make the Graphics area an instance variable so the methods c
an use it

 public Cartman(Graphics graph) // the class Constructor
 {
 this.g = graph; // give the graph instance to the Instance Variable we nam
ed g
 }

 public void drawMe()
 {
 g.setColor(Color.PINK);
 g.fillOval(10,30,180,150); //Cartman's face

 g.setColor(Color.white);
 g.fillOval(50,66,35,53); //Cartman's eyes
 g.fillOval(78,66,35,53);

 g.setColor(Color.black); //Cartman's eyeballs
 g.fillOval(63,86,10,10);
 g.fillOval(90,86,10,10);

 g.setColor(Color.black); //Cartman's mouth
 int [] xValues = {56,89,109};
 int [] yValues = {140,150,140};
 Polygon shapeThing = new Polygon(xValues, yValues, 3);
 g.fillPolygon(shapeThing);

 } // end drawMe method

} // end Cartman class

 Save and Run the Applet again.

You should see exactly the same thing. The only difference in the code here is that we passed f illPo lygo n()
a Polygon object. Not much o f a leap, but nevertheless an example o f po lymorphism. We'll see many more
examples o f this in the near future.

So to reiterate, as we are prone to do, the central ideas o f object-oriented programming are:

Inheritance
Polymorphism
Encapsulation

These characteristics allow us to use the API fo r large portions o f our programming. As the course continues,
we'll see more o f these principles o f object-oriented design in action.

Hopefully the API is fast becoming your new best friend. Officially API is an acronym for Applicat io n
Pro gramming Int erf ace , but we can think o f some better words! Let me try...

Abso lute Productivity Increase
Archived Programming Intelligence
Available Potential Ideas
Avo id Program Illiteracy
Arouse Programmer Insight
All Packed In

You're do ing great!
Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Methods and Method Invocation

When you complete this lesson, you will be able to :

Lesson Objectives

create and use your own methods, not found in the API.

In this lesson we'll get a chance to trace the steps o f an object-oriented program as it runs.

Methods
There are only two things in a Class:

Fields (data types)
Met ho ds

They are o ften called the Class Members.

The two kinds o f Fields (data types and variables to access these data types) that Java allows are:

Object s (instances o f Classes) and
Primit ive Dat a T ypes (numbers, characters, boo lean)

But right now, we're go ing to focus on Met ho ds. Specifically we want to learn how they're written, and how and when
they're invoked.

Creating and Using Methods

There are two ways to obtain methods to use when you're creating object-oriented programs. You can:

Write your own.
Import them from existing Classes.

We've been invoking o r calling methods from Classes we found in the API since Lesson 1. For example, we
used g.drawSt ring("Hello Wo rld", 50, 50); by invoking the method drawSt ring() on the instance g o f the
class Graphics.

Usually, a Java program consists o f both calls to methods from the API, and calls to methods that a
programmer has written specifically fo r her pro ject.

Below is code for a Class named T riangleClassDemo . The Graphics Class has a lo t o f methods available
to draw various geometric objects, but none for triangles. We know that drawing a triangle just means to draw
three lines, but if we wanted to draw 6 triangles, it would be easier to make 6 calls to a drawTriangle method
than 18 calls to a drawLine method where we have to think about where the lines meet each time!

If the API isn't go ing to hand us an easy method, that's fine. We can just make one ourselves. The API can't do
it all, but we can.

Make a new pro ject fo r Lesson 10 called java1_Lesso n10 . Also make a new class called
T riangleClassDemo that has java.applet.Applet as its superclass.

CODE TO TYPE: Triangles

import java.awt.*;
import java.applet.Applet;

public class TriangleClassDemo extends Applet {

 public void paint(Graphics g) {
 this.drawTriangle(g, 80, 120, 100, 110);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, int
 height){
 g.drawLine(bottomX, bottomY, bottomX+base, bottomY);
 g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);
 g.drawLine(bottomX+base/2, bottomY-height, bottomX, bottomY);
 }
}

 Run it.

Isn't that a nice triangle?

Let's look at the two methods that we see defined in the T riangleClassDemo class: paint () and
drawT riangle()

The first method we see in the class body is paint (Graphics g) . By now we're pretty familiar with paint () , so
the only concept we'll review now is the use o f this in the call. Take a look at this code:

this.drawT riangle(g, 80, 120, 100, 110);

We've seen the use o f this with Inst ance Variables before. In Lesson 4 we took the graph object that was
passed to us in the paint () method and gave it to the Instance Variable g this.g = graph;

The this in front o f the variable indicates that it's an IV (Instance Variable) or a CV (Class Variable) o f the
instance o f t his particular Class.

We also saw its use in Met ho ds when we set the background co lor o f our Applet in Lesson 4:

t his.set Backgro und(Co lo r.light Gray) ;

Its use here is similar. Using this, we are saying that there is a method drawT riangle() in t his class (or in a
class from which it inherits) and we want to invoke it. Sure enough, if you look at the next defined method in
our class, there it is:

privat e vo id drawT riangle(Graphics g, int bo t t o mX, int bo t t o mY, int base, int height)

Note The use o f the keyword this in front o f the dot operator fo r method calls within a given class is
optional.

Edit the T riangleClassDemo class's paint () method as shown:

CODE TO TYPE

import java.awt.*;
import java.applet.Applet;

public class TriangleClassDemo extends Applet {

 public void paint(Graphics g) {
 this.drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 // demonstrating we don't really NEED "this"
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, int
 height){
 g.drawLine(bottomX, bottomY, bottomX+base, bottomY);
 g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);
 g.drawLine(bottomX+base/2, bottomY-height, bottomX, bottomY);
 }
}

 Run it.

Tip
If a Field o r Met ho d is accessed without a dot operator (i.e., with no instance name preceding it),
then the Class Member being accessed is always one o f the current class or one o f its
ancestors.

The only o ther method defined in this class is one we wrote ourselves using method calls to drawLine in
Graphics. It has this declaration:

OBSERVE:

private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, int he
ight){
 g.drawLine(bottomX, bottomY, bottomX+base, bottomY);
 g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);
 g.drawLine(bottomX+base/2, bottomY-height, bottomX, bottomY);
}

The required elements o f a method declaration (most o f which are on the first line) are:

1. The method's ret urn t ype -- in this example, the return type is vo id which means nothing is
returned. (We'll discuss return type more later.)
2. The method's name--in this example, it's drawT riangle .
3. A pair o f parent heses ()-- in this example, (Graphics g, int bottomX, int bottomY, int base, int
height) .
4. A bo dy bet ween braces { } -- in this example, the body includes the three drawLine() calls.

In the body o f the drawTriangle method, the three lines for our triangle are being drawn. Our method draws an
iso sceles t riangle so it will have a base, a height, and equal sides. The formal parameters requested
(Graphics g, int bo t t o mX, int bo t t o mY, int base, int height) provide:

The Graphics area on which to draw the lines--Graphics g
The (x,y) location for the bottom left corner o f the triangle-- int bo t t o mX, int bo t t o mY
The length o f the base (bottom) and the length o f the height-- int base, int height

This diagram shows how the parameters passed will be used to draw the lines that make the triangle:

In the next section we'll begin our trace.

Tracing method calls

Recall that Applet s are started by the browser in which they're embedded. The browser gets the Applet
code, calls its init () and st art () methods (if they've been defined; o therwise it inherits these methods from
its superclasses). Then the Applet's paint (Graphics g) method is called.

Since this particular Applet does not have specified init and start methods, it inherits them from its
superclass Applet and then calls our paint (Graphics g) method.

Note that the paint (Graphics g) method is specified as public:

public vo id paint (Graphics g) {

Note also that the drawT riangle() method is specified as privat e :

privat e vo id drawT riangle(Graphics g, int bo t t o mX, int bo t t o mY, int base, int height){

So why does paint () have to be public you ask?

When a method is go ing to be called from outside o f an instance o f the Class itself, it must be made
accessible to o thers. Its permissio n must be made public. This Applet's paint method is called from the
browser so it needs to be accessible to the public.

When you want a method to be accessible o nly f ro m wit hin an inst ance o f t he Class (like when you use
this), you make the permission modifier o f the method privat e . Currently, our own method o f paint is calling
this method and we do not expect any o ther Class instances to use our drawT riangle method, so we made
it privat e .

In an earlier lesson, we saw the use o f public and privat e when we discussed accessors and mutators.
Permissions are an important too l fo r maintaining the integrity, usefulness, and encapsulation o f Classes,
Fields, and Methods. But let's not get distracted now, just when we're about to feel the POWER of method
writing!

So far, the T riangleClassDemo Applet has been started and the paint method has been called. Inside the
paint method body (between the {}) there was one line, then we added another to demonstrate that we can
use this o r not.

When Java runs into this statement:

t his.drawT riangle(g, 80, 120, 100, 110) ;

...it sees this in front o f the dot operator, so it knows to look inside the class to find the method that you want it
to run. Java finds the declaration o f the method and matches the actual parameters in the method call to the
formal parameters o f the method declaration. Here's a visual representation o f what's happening:

The actual parameters' types match all o f the formal parameters' types, so Java passes the values (a
reference to the g object):

g to g
80 to bo t t o mX
120 to bo t t o mY
100 to base
110 to height

Programming languages pass method parameters in two ways:

By value : Primitive data types are passed giving the value o f the variable, not the address o f the
variable.
Changing the value inside the method will no t change anything outside the method.

By ref erence : Object variables are passed by giving the address o f the instance po inted to by the
variable.
So if you change variables o f the object within the method, it changes them outside the scope o f
the method too,
because you gave the method the actual location o f the object's information.

WARNING
When objects are passed to a method and the method returns, the passed-in reference
still references the same object as before. However, the values o f the object's fields may
be changed in the method.

So, Java started the Applet, got into the paint method, then the paint method immediately sent us to the
drawTriangle method.

Hmm. Would it make a difference if in the code for our class, we switched the two method definitions? Does
paint have to be defined first since it is used first? Let's find out.

Move the block o f code that defines the paint () method so that it fo llows the drawTriangle method's body, but
is bef o re the closing } o f the entire class as shown below:

CODE TO EDIT

import java.awt.*;
import java.applet.Applet;

public class TriangleClassDemo extends Applet {

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, int
 height){
 g.drawLine(bottomX, bottomY, bottomX+base, bottomY);
 g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);
 g.drawLine(bottomX+base/2, bottomY-height, bottomX, bottomY);
 }

 public void paint(Graphics g) {
 this.drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 }
}

 Run it. If you placed everything according to the instructions, it shouldn't have made any difference at all to

the result.

Note The order in which the methods are defined within a class is irrelevant. It's the order in which
they're invo ked that counts.

Now that we are within the drawT riangle() method, the first thing Java sees is another method call:
g.drawLine(bo t t o mX, bo t t o mY, bo t t o mX+base, bo t t o mY); This time though, the instance variable in
front o f the method call is not this, but g. Since g is o f type Graphics, Java goes to the Graphics class next
to see if it has a method defined that matches the actual parameters in the call. Success.

Sweet. Because these are all int (integers), Java will give the value o f the actual parameter variables to the
method parameters:

x1 = bottomX
y1 = bottomY
x2 = bottomX + base
y2 = bottomY

Notice that the variable names you use in the actual call don't have to match the formal specifications'
names. The names don't matter because (for primitive data types) it's the value o f the variable being passed.
Also, when you pass Objects, you are passing the address o f the variable, but an address can have more
than one name. Sometimes this can cause undesired side-effects when more than one variable po ints to the
same object.

When Java sees the method call g.drawLine(bo t t o mX, bo t t o mY, bo t t o mX+base, bo t t o mY); it goes
to the Graphics class and its implementation o f drawLine() , and then executes that method.

When that line o f code is finished, Java goes to the next g.drawLine(bottomX+base, bottomY,
bottomX+base/2, bottomY-height); and matches up its parameters, then goes to the Graphics class and its
implementation o f drawLine() and executes that method.

Then Java executes that entire process again for the method call g.drawLine(bottomX+base/2, bottomY-
height, bottomX, bottomY);

When Java sees it's finished with the drawT riangle() method, it goes back to the original method that called
it, the paint () method. Since paint () has nothing else in it, Java is done. If you didn't remove the second
call to drawT riangle() though, Java would start the whole process again.

So far so good. Keep go ing, you're do ing a great job!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Writing Classes - Building With Methods

When you complete this lesson, you will be able to :

Lesson Objectives

declare a method using the six required comments in order.
use local variables, rather than instance variables.
define a method's return type.

More on Methods

Local Variables

In the last lesson, the parameters inside the drawTriangle method may have been a little hard to read,
especially in the drawLine() methods:

g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);

We generally think o f triangles as 3 lines connecting 3 po ints, not so much a set o f parameters like we've
been given here.

So let's use the parameters passed to us (g, bottomX, bottomY, base, and height) to create the 3 po ints o f the
triangle before using the drawLine() method.

We'll edit our code to use variables that are no t Instance Variables, Class Variables, or Method Parameters.
Instead we'll use Lo cal Variables. Local variables are variables that are only known within the sco pe o f their
blo ck o f co de . In this case, within the body o f a method.

Here's an illustration o f what we're do ing:

Because the bottom of the triangle is horizontal, the bottomY coordinate is used twice.
Once we have the formal parameters passed to the method drawT riangle() , we can use them to make three
new local variables:

int rightX = bottomX + base;
int topX = bottomX + base/2;
int topY = bottomY - height;

Then we can use these as coordinates for three po ints:

<topX, topY> , <bottomX, bottomY>, and <rightX, bottomY>

Now it'll be easier to decipher the parameters we send in the three drawLine() calls (as shown in the
diagram above).

Make a new pro ject fo r Lesson 11 called java1_Lesso n11, and make a new class called Met ho dDemo that
uses the super java.applet .Applet . Then, edit MethodDemo as fo llows:

CODE TO TYPE: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height) {
 int rightX = bottomX + base;
 int topX = bottomX + base/2;
 int topY = bottomY - height;
 //easier to read drawLine calls
 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }
}

 Run it. It should look familiar.

Two important things you should know about local variables:

Local variables do not get default values. You must give them initial values.
Local variables only exist within their block o f code. The same is true o f method parameters. That
is, the scope o f local variables and method parameters is so lely within the body o f the method in
which they are defined.

In your new Met ho dDemo Class, edit the Local Variables as fo llows:

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height) {
 rightX = bottomX + base;
 int topX = bottomX + base/2;
 int topY = bottomY - height;
 //easier to read drawLine calls
 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }
}

You should see this error: right X canno t be reso lved. The error occurs because we haven't declared the
variable t ype .

Now edit the code as fo llows and see what happens:

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height) {
 int rightX;
 int topX = bottomX + base/2;
 int topY = bottomY - height;
 //easier to read drawLine calls
 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }
}

Not surprisingly, because we just said that local variables do not get default values, we get the error: T he
lo cal variable right X may no t have been init ialized

Edit the code again so it looks like this:

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 rightX = 42;
 drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height) {
 int rightX = bottomX + base;
 int topX = bottomX + base/2;
 int topY = bottomY - height;
 //easier to read drawLine calls
 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }
}

This time you get the message: right X canno t be reso lved, because it's outside o f the scope o f the
method in which it was declared. Okay, but it's not initialized there. Go ahead and initialize it:

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 int rightX = 42;
 drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height) {
 int rightX = bottomX + base;
 int topX = bottomX + base/2;
 int topY = bottomY - height;
 //easier to read drawLine calls
 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }
}

Cool, all the errors go away. But, since both right X occurrences are individually declared in each method,
they have dif f erent values!

To prove this, edit it as fo llows:

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 int rightX = 42;
 g.drawString("rightX before the method call is " + rightX, 5,170);
 drawTriangle(g, 80, 120, 100, 110);
 drawTriangle(g, 125, 140, 60, 70);
 g.drawString("rightX after the method call is " + rightX, 5,200);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height) {
 int rightX = bottomX + base;
 g.drawString("rightX in the method is " + rightX, 5,185);
 int topX = bottomX + base/2;
 int topY = bottomY - height;
 //easier to read drawLine calls
 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }
}

 Run it.

And that's why they're called lo cal! Here's a diagram that shows how scope works:

Methods can have their own local variables. In the diagram above, the Class variable Cvariable can be
accessed by Met ho d A and Met ho d B. However, the method variable myVar1 is only accessible in
Met ho d A, while myVar2 is only accessible in Met ho d B.

Note For better readability and class design, limit the scope o f your variables, and keep them as small
as possible.

Of course local variables are not only fo r enhanced readability; sometimes they're used for computations o f
methods. If local variables are only needed for a given method, then they should only be present while that
method is being called.

WARNING Local variables are re-init ialized each time the method is called. Their previous value
will no t be present when the method is called again.

Results and Return

In the previous lesson, we mentioned that the only required elements o f a method declaration are the
method's return type, name, a pair o f parentheses, (), and a body between braces, {}. So far we have covered
everything except the ret urn type.

To get results from a method (some call these queries as opposed to commands), we need to use the
reserved word ret urn.

Methods that return information have two important traits:

The return t ype must be specified in the method declaration.
The method must use the reserved word ret urn fo llowed by an expression that matches the
specified return type.

Let's start a new class called Ret urnDemo that extends Applet. T ype into ReturnDemo as shown by the
code in blue below:

CODE TO TYPE: ReturnDemo.java

import java.awt.*;
import java.applet.Applet;

public class ReturnDemo extends Applet {

 public void paint(Graphics g) {
 int answer = areaRectangle(30,40);
 g.drawString("area of rectangle is " +answer, 20, 20);
 }

 private int areaRectangle(int side1, int side2) {
 int area = side1 * side2;
 return area;
 }
}

 Run it.

Notice that when a call to a method ret urns something, you can't just call the method with

areaRect angle(30,40);

Because we asked it to return something, we need a place in memory to put the answer that it returns.

Actually, we could make that call without choosing a destination for our result, and we wouldn't get any errors,
but it would pretty much be like do ing nothing at all. Java will execute the method, but then since it has no
place to put the returned result, Java will go on its merry way as if the method never existed.

Let's trace the code.

In the paint () , areaRectangle(30,40); is a call to a method which has a return type o f int . So we must
declare a variable to put the returned value into and declare it to be o f the same type that the method returns
(in this case int). We did that with int answer = areaRectangle(30,40);

Likewise, since areaRect angle() has an int return type, the variable area in the line ret urn area; must be
of type int . (That's why we have int area = side1 * side2;).

Edit the Ret urnDemo .java class as shown:

CODE TO EDIT: ReturnDemo.java

import java.awt.*;
import java.applet.Applet;

public class ReturnDemo extends Applet {

 public void paint(Graphics g) {
 int answer = 0;
 areaRectangle(30,40);
 g.drawString("area of rectangle is " +answer, 20, 20);
 }

 private int areaRectangle(int side1, int side2) {
 int area = side1 * side2;
 return area;
 }
}

 Run it. Of course! We to ld the computer that the answer was 0 and it stayed that way. This seems pretty
simple, but it's pretty important to remember: Co mput ers will do exact ly what yo u t e ll t hem t o do !

Okay, let's go over one more groovy aspect o f computer languages. Edit the paint () method as shown:

CODE TO EDIT: ReturnDemo.java

import java.awt.*;
import java.applet.Applet;

public class ReturnDemo extends Applet {

 public void paint(Graphics g) {
 g.drawString("area of rectangle is " + areaRectangle(30,40), 20, 20);
 }

 private int areaRectangle(int side1, int side2) {
 int area = side1 * side2;
 return area;
 }
}

Remember earlier when we said that anywhere you can put a value, you can put an expression? Well, we just
demonstrated that here. Java will go and do the method, and since it's in the St ring parameter fo r the
drawSt ring() method, it will automatically cast the returned int value to a St ring, concatenate it to the
previous St ring, "area o f rectangle is," and print the whole St ring with the concatenated result.

Go ahead and Run it.

Building on methods

Now that we have a handy drawT riangle() method, let's use it to build a house. Open the Met ho dDemo
class you worked on earlier in this lesson, and change the paint () method and add a drawHo use() method
as shown in blue (remove the code shown in red):

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void paint(Graphics g) {
 drawHouse(g, 10, 100, 70, 30);
 drawHouse(g, 100, 50, 60, 20);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height){
 int rightX = bottomX + base;
 g.drawString("rightX in the method is " + rightX, 5,185);
 int topX = bottomX + base/2;
 int topY = bottomY - height;

 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }

 private void drawHouse(Graphics g, int bottomX, int bottomY, int width, int
height){
 int rightX = bottomX + width;
 int topX = bottomX + width/2;
 int topY = bottomY - height;
 int halfHeight = height/2;

 g.drawRect(bottomX, topY, width, height);
 this.drawTriangle(g, bottomX, topY, width, halfHeight);
 }
}

 Run it. Hey, they kind o f look like envelopes, too. So go ahead and think o f them as houses or
envelopes.

After a method is finished, contro l returns to the method from which it was initially invoked. Let's t race this
program so we can see that more clearly.

OBSERVE: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void 1paint(Graphics g) {
 2drawHouse(g, 10, 100, 70, 30);

 9drawHouse(g, 100, 50, 60, 20);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height){
 7int rightX = bottomX + base;
 int topX = bottomX + base/2;
 int topY = bottomY - height;

 8g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }

 private void 3drawHouse(Graphics g, int bottomX, int bottomY, int width, int
 height){
 4int rightX = bottomX + width;
 int topX = bottomX + width/2;
 int topY = bottomY - height;
 int halfHeight = height/2;

 5g.drawRect(bottomX, topY, width, height);
 6this.drawTriangle(g, bottomX, topY, width, halfHeight);
 }
}

Let's check out the steps Java takes to execute this program in order:

1. The Applet calls its inherited init () and st art () , and then it calls paint () .

2. In the paint () method , drawHo use(g, 10, 100, 70, 30); is called.

3. Java sets the formal parameters to :

1. g = g
2. bottomX = 10
3. bottomY = 100
4. width = 70
5. height = 30

4. Inside o f the drawHo use() method, some local variables are set:

1. int rightX = bottomX + width;
2. int topX = bottomX + width/2;
3. int topY = bottomY - height;
4. int halfHeight = height/2;

5. Java sees g.drawRect (bo t t o mX, t o pY, widt h, height) , so it goes to the package java.awt ,
to the class Graphics, finds the method drawRect () , and uses the actual parameters passed to
run it and draw the rectangle.

run it and draw the rectangle.

6 . Java sees a call to this class's method named drawT riangle() , so Java goes to its definition
and sets its fo rmal parameters.

7. Some local variables, based on the actual parameters, are defined inside o f drawT riangle() :

1. int rightX = bottomX + base;
2. int topX = bottomX + base/2;
3. int topY = bottomY - height;

8 . Java encounters each o f the g.drawLine() methods one at a time, each time it goes to
java.awt and finds the drawLine() method in the Graphics class.

9 . Once Java is done with the drawT riangle() method, it's done with the first drawHo use()
method, but Java is not done with the paint () method. Because Java sees another call to
drawHo use() , it performs steps 2 through 8 above all over again, but this time with different
parameters.

We can see now that the order in which we def ine our methods makes no difference. (But the order in which
we call them can matter). Java will go where you tell it to go within the methods.

We've come a really long way, but let's not stop here. Let's add a little more and paint the houses.

Overloading

How Does Java Find the Right Method?
Edit Met ho dDemo to include the blue code below:

CODE TO EDIT: MethodDemo.java

import java.awt.*;
import java.applet.Applet;

public class MethodDemo extends Applet {
 public void start(){
 resize(400,200); // make it bigger so we do not have to expan
d
 }

 public void paint(Graphics g) {
 drawHouse(g, 50, 50, 70, 30);
 // for these, added another parameter for house color
 drawHouse(g, Color.red, 100, 50, 60, 20);
 drawHouse(g, Color.cyan, 150, 100, 160, 50);
 }

 private void drawTriangle(Graphics g, int bottomX, int bottomY, int base, in
t height){
 int rightX = bottomX + base;
 int topX = bottomX + base/2;
 int topY = bottomY - height;

 g.drawLine(bottomX, bottomY, rightX, bottomY);
 g.drawLine(rightX, bottomY, topX, topY);
 g.drawLine(topX, topY, bottomX, bottomY);
 }

 private void drawHouse(Graphics g, int bottomX, int bottomY, int width, int
height){

 int rightX = bottomX + width;
 int topX = bottomX + width/2;
 int topY = bottomY - height;
 int halfHeight = height/2;

 g.drawRect(bottomX, topY, width, height);
 this.drawTriangle(g, bottomX, topY, width, halfHeight);
 }

 // provide another drawHouse method that paints if passed a color
 private void drawHouse(Graphics g, Color paintMe, int bottomX, int bottomY,
int width, int height){
 int topY = bottomY - height;
 drawHouse(g, bottomX, bottomY, width, height); //draw the house using th
e original signature of drawHouse.
 g.setColor(paintMe); // set color to that passed
 g.fillRect(bottomX, topY, width, height);
 }
}

 Run it. How about that? We painted the side o f the houses. Good job! (We'll leave it to you to fill in the
roof! Maybe you'll want to overload drawTriangle?)

What? Two method definitions with the same name? Yep, but they have different parameters. In fact the
second definition has 6 parameters. The second parameter in the second definition is a Co lo r. How does
Java know which one to use?

Java takes these steps to find a method that has been invoked:

1. Methods are invoked with the dot operator, so Java always knows what kind o f Object is being
used to execute the method.
2. Once Java knows the object, it knows the Class the object is an instance o f because every
variable must be declared as a type.
3. Once Java knows the Class, it looks through that Class's methods for the proper method name.

4. If more than one method has the same name, we have overloading, so Java will check
parameters (number and type) to find the match. The number and type o f parameters determine the
method's signat ure .

Overloaded methods are differentiated by the number and type o f the arguments passed to them (their
signature). In a given Class, you can't declare more than one method with the same name and the same
number and type o f arguments, because the compiler can't tell them apart.

WARNING The compiler doesn't consider return type when differentiating methods, so you can't
declare two methods with the same signature, even if they have different return types.

Because the compiler does not consider return type, different sources have different definitions for the
signature o f a method.

For a language to distinguish between overloaded method calls (that is, when the class type and method
have the same name), it uses the method's name and the parameter number and types to prevent ambiguity.

Summary

Method Declarations

One more time: The only required elements o f a method declaration are the method's return type, name, a
pair o f parentheses, () , and a body between braces, {} .

Method declarations have six components, in order:

1. Modifiers--such as public o r privat e (permissions), and o thers we'll see in the next lesson.
2. Return type--the data type o f the value returned by the method, or vo id if the method does not
return a value.
3. Method name--similar to variable names, with the added recommendation that it begin with a
verb since methods are actions.
4. The parameter list in parentheses--a comma-delimited list o f input parameters, preceded by their
data types, and enclosed by parentheses () .

If there are no parameters, you still must use empty parentheses.
5. An exception list--we'll cover this later.
6 . The method body, enclosed between braces--the method's code, including the declaration o f
local variables, goes here.

main: an important method

We mentioned earlier that Java programs that do not run on a browser require a main method to get them
started. The main method is the top-level method that initiates execution o f a program that is not running on a
web browser. It looks like this:

public static void main (String[] args) { }

When we want to start an application, we need to find the Class that has the main method in it (call it
ClassWithMain), and use this command:

java ClassWithMain

Good design practice dictates that the main method should do nothing but instantiate and start the Classes o f
the application. Given this, some programmers define a class named Main.java and the only Member o f that
class is the main method. This makes it easy to know how to start Classes, because instead o f looking at all
o f the Classes to find the main, you can simply call
java Main every time.

Finally, note that if you do no t do this, and you have your main within a Class called ExampleClass, then the
main code needs to explicit ly instantiate the Class and call a method to get it started.

Start a new Class called ExampleClass. This time it doesn't extend Applet so leave the superclass as
java.lang.Object.

CODE TO TYPE: ExampleClass

public class ExampleClass
{
 int testInstanceVariable = 42;

 public static void main(String[] args)
 {
 System.out.println("The value of the instance variable is " + testInstanceV
ariable);
 }
}

Looks simple, huh? Although there are some errors generated in this Class that mention static, and indicate
Class Variables or Methods, we'll ho ld o ff on discussing them in depth until the next lesson. See you there...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Adding Interaction using Components and Listeners

When you complete this lesson, you will be able to :

Lesson Objectives

add a user interface.
Implement a listener interface.

Revisiting the Dukes Class and Applet
Let's revisit our o ld pal Duke (deep down you know you love him). Grab the Dukes class and the Dukes Applet we
made earlier.

To do

1. Start a new pro ject called java1_Lesson12.
2. Go to your java1_Lesso n7 pro ject and copy Dukes.java (right-click and Copy).
3. Go to your java1_Lesso n12 pro ject and paste Dukes.java into the src f o lder.
4. Now do the same thing with DukesApplet .java (copy and paste from java1_Lesson7/src).
5. Open up DukesApplet .java and Run it.

If you move the window around, Duke can get a little messed up. Try moving the Applet o ff o f the screen like this and
see:

Now, move it back on screen and notice any changes:

Do it a few more times.

The Applet gets messed up when we refresh the screen like that.

The problem is that Dukes only changes the part o f itself that needs to be repainted (in this case, the part that was
offscreen). The call to paint the Applet comes from the Applet itself, no t from the user. But Java is a language for
building software, and software is fo r humans to use. So let's give the users something to click on that makes Dukes
change upon user direction instead.

A User Modification Example
Now let's get the user to interact with our Applet. Again, using the power o f mo dularit y, we'll leave the Dukes class as
it is, and just present it differently, using a different Applet. The DukesApplet class will change because that's where
the "presentation" or Graphical User Interface (GUI) is located in Applets. In this example we're go ing to add a GUI
component called a "List" and use a "Listener" which is a type o f Interface. We'll refer to the example to explain these
new concepts in detail later in the lesson:

Start a new class called DukesApplet GUI. Make sure it has the java.applet.Applet Superclass.

CODE TO TYPE IN BLUE: DukesAppletGUI.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

 public class DukesAppletGUI extends Applet implements ActionListener{

 Dukes myDuke; // Instance Variable giving the instance name "myDuke"
 String action; // Instance Variable telling what action is being done

 public void init() // init method
 {
 List actionList = new List(3); // makes a list to choose from
 actionList.add("wave"); // give the list 3 choices
 actionList.add("think");
 actionList.add("write");

 actionList.addActionListener(this); // tell Java to listen for user input
 add(actionList); // add the list to the Applet

 myDuke =new Dukes(); // make an instance of Duke
 action = myDuke.getActionImage(); // see what Duke's current action is
 }

 public void paint(Graphics g) // paint method
 {
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(myAction, 20, 50, Color.white, this);
 }

 public void actionPerformed(ActionEvent evt)
 {
 String userChoice = evt.getActionCommand();
 if (userChoice == "write") action = myDuke.write();
 else if (userChoice == "think") action = myDuke.think();
 else if (userChoice == "wave") action = myDuke.wave();

 repaint(); // if a different choice has been made, call our paint through repai
nt()
 }
}

Run it. To pick a cho ice in the box, double-click on it. Scro ll fo r more cho ices.

Before we examine this code in detail, let's discuss int erf aces.

Introduction to Interfaces
Interfaces are quite simple to create and use, but they can still be tricky to understand. In this course we're just go ing to
learn the basics, but there's more to come on interfaces later in the Java course series. For Java programmers, the
word interface can have several meanings. For instance, there is a Graphical User Interface (GUI), which is an interface
between users and a piece o f so ftware. But that's not the definition we're using in this lesson, even though we're using
a Listener Interface to make a GUI for our program. We're using the term Int erf ace here to mean a t ype , sort o f like a
Class that defines methods, but doesn't implement them. The term int erf ace is used because this type is analogous
to an actual interface you're used to using, but it's more like an interface between Java objects.

So Java has a t ype called an Int erf ace that defines methods, but doesn't implement them. And when we say doesn't
implement the methods, we mean there are no brackets {} , and so no code between them to be implemented. So the
methods in an interface do n't do anyt hing--yet . Let's take a look. The ActionListener interface we're using in this
example looks like this in the API:

Definition o f the ActionListener Interface from the API

public interface ActionListener extends java.util.EventListener{

 public void actionPerformed(ActionEvent e);

}

We found the definition in the API entry on the interface ActionListener. What else do we know about this interface? In
addition to the definition, we know that methods aren't implemented in an interface.

This particular ActionListener interface only has one method, but an interface can have any number o f methods. Notice
that the act io nPerf o rmed() method doesn't have a body, so it doesn't do anything. It's set up to receive an object o f
type Act io nEvent , but because its return type is vo id, it isn't supposed to return anything. An interface's methods are
implemented when we implement them, when we define its methods. Once we do that, then our object can claim that
it's the same type o f object as the interface.

Why would anyone want to define an interface? Why would anyone want to define methods that aren't implemented?
Well, there are several reasons. It simulates multiple inheritance, and aids in po lymorphism. And once we implement
an interface, o ther objects know f o r sure that we are implementing a set o f methods, and we know that if we
implement these objects, that we can receive all that those objects have to o ffer us f o r sure . In fact, by rule o f
implement at io n we agree as programmers to implement all o f the methods defined in the interface we are
implementing. This concept is best illustrated in the List eners interface.

You can see that in our DukesApplet GUI we've obeyed the rules o f implementation by implementing all o f the
methods o f ActionListener:

http://download.oracle.com/javase/6/docs/api/java/awt/event/ActionListener.html

DukesAppletGUI implements ActionListeners Methods

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

 public class DukesAppletGUI extends Applet implements ActionListener{

 Dukes myDuke; // Instance Variable giving the instance name "myDuke"
 String action; // Instance Variable telling what action is being done

 public void init() // init method
 {
 List actionList = new List(3); // makes a list to choose from
 actionList.add("wave"); // give the list 3 choices
 actionList.add("think");
 actionList.add("write");

 actionList.addActionListener(this); // tell Java to listen for user input
 add(actionList); // add the list to the Applet

 myDuke =new Dukes(); // make an instance of Duke
 action = myDuke.getActionImage(); // see what Duke's current action is
 }

 public void paint(Graphics g) // paint method
 {
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(myAction, 20, 50, Color.white, this);
 }

 public void actionPerformed(ActionEvent evt)
 {
 String userChoice = evt.getActionCommand();
 if (userChoice == "write") action = myDuke.write();
 else if (userChoice == "think") action = myDuke.think();
 else if (userChoice == "wave") action = myDuke.wave();

 repaint(); // if a different choice has been made, call our paint through repai
nt()
 }
}

By implementing Act io nList ener's methods, we've actually given them something to do! Our DukesAppletGUI has
fo llowed the rules o f implemention, so now the ActionListener interface is not only an Applet, but an ActionListener as
well. And now our Dukes Applet can receive messages from objects that send them to ActionListener, and even our
Dukes Applet does something with those things.

An Analogy: Antenna as an Interface
Listeners are great examples o f interfaces and also lend themselves to a nice analogy. I like to think o f an interface as
a type o f antenna. An antenna is really an interface between something sending a signal and your radio , which receives
the signal and then does something with it. Taking our analogy a little further, your radio 's amplifier will implement an
antenna in order to receive signals. Of course, this amplifier will take signals and process them. Well, suppose each
type o f antenna has different kinds and numbers o f wires, which play the part o f methods in our example. So in the
analogy, the Amplif ier is a Class, the Ant ennas are interfaces, and the wires are met ho ds defined in each o f the
interfaces. Oh, and the Radio St at io n is an o bject that sends out different signals, o r parameters. Check out this
illustration:

In o ur analo gy, in o rder t o implement o ne o f t he Ant enna, o ur amplif ier must co nnect o r implement all
o f t he wires o f t hat Ant enna.

To take our analogy further still, if we want to play a radio station (a Radio St at io n object, if you will) on our Amplifier,
then we need to implement the Radio Ant enna interface by implementing all o f its methods (wires): purpleWire()
and blackWire() . The RadioAntenna interface has a blackWire() and a purpleWire() , but they don't actually do
anything until we implement them with our Amplifier. Once we do that, we can receive signals from the RadioStation
object.

Let's really get carried away with our Antenna analogy now and write down Java code that represents this situation.
First, let's define the RadioAntenna interface:

The RadioAntenna Interface

public interface RadioAntenna{

 public void purpleWire(Signal S);

 public void blackWire(Groud G);

}

Now suppose we have an Amplifier Class that implement s this interface and instantiates the RadioStation object
(which sends stuff to the interface).

Amplifier class instantiating the RadioAntenna

public Class Amplifier extends ElectronicDevice implements RadioAntenna{

 RadioStation Jazz = new RadioStation(103.4);
 Jazz.addRadioAntenna(this);

 public void purpleWire(LeftSignal l){

 Code that does something with l
 }

 public void blackWire(RightSignal r){

 Code that does something with r
 }
}

Now, the Amplifier Class has properly implemented the RadioAntenna interface, and the Radio St at io n is sending
signals. Since we have an Antenna interface, the RadioStation object has an addRadio Ant enna() method. So when
the RadioStation sends a signal, Java automatically calls the registered interface methods purpleWire() and
blackWire() as needed. (All o f that happens behind the scenes and we don't need to worry about it.) Those methods
would be defined in the RadioStation Class (remember this is an analogy).

The Listener Interfaces
Now let's examine this code and learn what's happening here. Even though it looks like we've done a lo t, in reality
we've only introduced two new things to this Applet. We've added a List Object which, when clicked, will send
messages to our interface. We've also implemented a type o f int erf ace called a List ener. Our particular "Listener"
is Act io nList ener (there are o thers). A listener's job is to "listen" fo r events that users can perform on a computer
like click, double-click, move the mouse, and so on. By implementing the ActionListener Interface, we've made our
DukesAppletGUI a Listener, and it's listening for particular events. Look at the co lor coding o f our code below so we
can discuss this further:

DukesAppletGUI.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

 public class DukesAppletGUI extends Applet implements ActionListener{

 Dukes myDuke; // Instance Variable giving the instance name "myDuke"
 String action; // Instance Variable telling what action is being done

 public void init() // init method
 {
 List actionList = new List(3); // makes a list to choose from
 actionList.add("wave"); // give the list 3 choices
 actionList.add("think");
 actionList.add("write");

 actionList.addActionListener(this); // tell Java to listen for user input
 add(actionList); // add the list to the Applet

 myDuke =new Dukes(); // make an instance of Duke
 action = myDuke.getActionImage(); // see what Duke's current action is
 }

 public void paint(Graphics g) // paint method
 {
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(myAction, 20, 50, Color.white, this);
 }

 public void actionPerformed(ActionEvent evt)
 {
 String userChoice = evt.getActionCommand();
 if (userChoice == "write") action = myDuke.write();
 else if (userChoice == "think") action = myDuke.think();
 else if (userChoice == "wave") action = myDuke.wave();

 repaint(); // if a different choice has been made, call our paint through repain
t()
 }
}

This example works just like our analogy! By implement ing the Act io nList ener interface, we've made it so that
objects like buttons and lists can call our act io nPerf o rmed(Act io nEvent evt) and pass it a parameter o f type
Act io nEvent . Then our implemented act io nPerf o rmed() method takes that event and processes it with the code
we added to our Applet. In this case, the ActionEvent object that was passed to us has its own method called
get Act io nCo mmand() , which grabs the item in the List that was clicked. Our code checks each possible
userChoice and calls our Dukes object with the corresponding method [write(), think(), o r wave ()].

Finally, let's talk about the List object. Like the o ther Components in AWT, such as buttons and check boxes, this List
is an Object that we create an instance o f using the new call. The List object takes a number as a parameter so that it
knows how many items are in the selection list (in this case, 3). We named this instance o f List, act io nList . The List
object has its own methods, one o f which is add() . We call add() from our instance as actionList.add("think"). That
way, we add all o f the cho ices ("think", "wave", and "write") to the List.

You might have wondered how the List object knows to call the act io nPerf o rmed() method at all. Well, if you look
in the API, the List component has a method called addAct io nList ener(Act io nList ener S) which takes an
ActionListener as its parameter. In this case, t his is DukesAppletGUI. We tell our ListObject to add t his by calling
act io nList .addAct io nList ener(t his) . And o f course DukesApplet GUI is an ActionListener because it
implemented the ActionListener interface. The call to addActionListener() tells Java to call all o f the appropriate
methods listed in the ActionListener interface which Java knows. As you'll see in a later lesson, these components
can add o ther listeners too, and we can implement o ther interfaces to capture their events.

Finally, we add the instantiated List act io nList to the Applet using the Applet's inherited add() method, a method

http://download.oracle.com/javase/6/docs/api/java/awt/package-summary.html

specifically for adding components to the Applet.

As the course progresses, yo u will implement and change many o f these Classes in all kinds o f ways. For now, the
goal is to understand the basics o f Classes--that they define variables and methods, which help to define the Class
itself and its capabilities. In the next lesson we'll write our own classes again, but we'll use some of the Classes that
Java has written for us to make coding easier. See you there! Cheers!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Modularity: Modifiers, Permissions, and Scope

When you complete this lesson, you will be able to :

Lesson Objectives

enhance the structure o f Classes using Access Modifiers, and Class Methods and Variables.
use Scope in your Classes.

Class Specifications
Programming styles and languages may differ, but the basic ideas behind object-oriented design remain the same:

mo dularit y
encapsulat io n (includes data-abstraction and information hiding)
inherit ance
po lymo rphism (overloading, overriding)

We'll return to our beloved Dukes class to illustrate how some aspects o f object-oriented design are used to
implement the Java language. And we'll get to play around and learn some more tricks. After all, programming really is
all about the tricks!

Modularity
Alright, let's get started with the Dukes class from Lesson 7. You remember Dukes, right? How could you forget?

So far we've re-designed our Dukes code a couple o f times to demonstrate modularity:

Our first Duke example (java1_Lesson3) was all in one Applet file. Here's the running Applet.
Later we edited Dukes to separate the Dukes information from the Applet information. The running Applet
didn't look any different, but the code was cleaner.
Then we edited our pro ject again to allow the user to choose what action for Duke to take. We kept the same
Dukes.java class, but only edited the GUI component cho ice in the Applet. Here is the running Applet.

One o f the great characteristics o f modular code (with unique Classes) is that it's much easier to edit, modify, and
reuse. In this lesson, we'll change our Applet's appearance by editing the Applet Class. Then we'll add aspects to our
Dukes by editing the Dukes Class.

First, let's add to our bucket o f tricks. We'll edit the Applet to make a dro p-do wn menu list to use instead o f the
scro llable list we did earlier. The easiest way to make these changes will be to edit stuff we already have. Let's grab a
copy o f the DukesApplet GUI.java file we made in the last lesson, and also reuse the Dukes.java we've been using
all along.

Once again, make a new pro ject f o r Lesso n 13 and call it java1_Lesso n13. Once you've done that, let's copy
some files we've already made.

To
do

1. Copy and Paste Dukes.java from the java1_Lesson7 pro ject to the java1_Lesson13 pro ject.
2. Copy and Paste DukesApplet GUI.java from the java1_Lesson12 pro ject to the
java1_Lesson13 pro ject.

Now let's edit DukesAppletGUI.java:

Lesson3/duke2.html
Lesson3/duke0.html
Lesson3/duke1.html
Lesson3/duke2.html

CODE TO EDIT IN BLUE: DukesAppletGUI.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

 Dukes myDuke;
 String action;

 public void init() {

 Choice actionList = new Choice();
 actionList.add("wave");
 actionList.add("think");
 actionList.add("write");

 actionList.addItemListener(this);
 add(actionList);

 myDuke =new Dukes();
 action = myDuke.getActionImage();
 }

 public void paint(Graphics g) // paint method
 {
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(myAction, 20, 50, Color.white, this);
 }

 public void itemStateChanged(ItemEvent evt){
 int whichOne = ((Choice)evt.getItemSelectable()).getSelectedIndex();
 switch (whichOne)
 {
 case 0: action= myDuke.wave(); break;
 case 1: action= myDuke.think(); break;
 case 2: action= myDuke.write(); break;
 }
 repaint();
 }
}

Now Run it. Notice that now we have a drop-down menu option rather than the scro ll cho ice box we had before.

The code in the it emSelect able() method implemented the It emList ener interface and made the code a little
cleaner. But really, there aren't a whole lo t o f changes happening here. Only about 4 lines needed to be edited to
change the GUI component into a Choice list. You can really see it here---modularity and reusable code mean less
work for us!

Modifiers

Access Modifiers--Permissions

Let's add some capabilities to our Duke and give him some angst. Like the rest o f us, Dukes can get quite
angry having to do all that thinking, writing, and waving constantly. Since we are changing a characteristic o f
Dukes, the Class that is changed is, o f course, Dukes.

We're go ing to have our Duke get angry in three ways: rando mly, via the Applet s Co nst ruct o r, o r by user
int eract io n. Lo ts o f things can make Duke angry, it seems!

If you want to allow characteristics o f an instance to be specified at the time o f instantiation, you should
provide code in that class for a Co nst ruct o r o f the class, with proper parameters that specify desired values
for the variables.

Edit the Dukes.java file as we have below:

CODE TO EDIT: Dukes.java

import java.awt.Color;

public class Dukes {

 private Color noseColor = Color.red; // default Dukes have red noses
 private boolean angry = false; // default Dukes aren't disgruntled
 private String action = "../../images/duke/dukeWave.gif";
 private String whatDoing = "Give me something to do";
 private String message= "";
 private String angryMessage= "";

 public Dukes() {
 // give Duke instance random values for traits

 int rint = (int)(Math.random() * 3); // randomly generates a 0, 1, or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }

 // randomly decide if Duke is angry
 rint = (int)(Math.random() * 3);
 if (rint == 1)
 {
 angry = true;
 angryMessage = "I QUIT!!";
 Dukes myDuke = new Dukes(noseColor, true);
 }
 }
 // Or, when the applet instantiates the Duke, let it say if he is
angry--a new Constructor.

 public Dukes(Color nose, boolean isMad) {
 // give Duke instance specified values for traits that are passed from the cl
ass that instantiated

 noseColor = nose;
 angry = isMad;
 }
 // Add methods to access new variables

 public String getAngryMessage()
 {
 return angryMessage;
 }

 public void setAngryMessage(String newMessage)
 {
 angryMessage = newMessage;
 }

 public boolean isAngry()
 {
 return angry;
 }

 public void setMood()
 { // toggle the boolean value. If it was true it becomes false; if false
it becomes true
 angry = !angry;
 if (angry == true)
 angryMessage= "I QUIT!!";

 else
 angryMessage= "";
 }

 public String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

 public String write(){
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }

 else {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think(){
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }
 public String wave(){
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;

 }
}

Go ahead and save this.

Again, notice that thanks to modularity, we only worry about the specific changes we want to make, and not
the o ther methods.

And notice we now have two Constructors, one with no paramet ers:

public Dukes()

and one with t wo paramet ers:

public Dukes(Co lo r no se, bo o lean isMad)

We use multiple constructors because sometimes, when you instantiate a class, you know the variables that
you want to have set in that instance and so pass them as parameters, and o ther times you simply want to
use the defaults, so no parameters need to be passed. In our Constructor with no parameters, the Dukes
decides randomly whether Duke is angry. If he is angry, then it calls the o ther constructor and sets the
parameters for us (the second one being t rue). If WE want to DECIDE whether Duke is angry, we instead call
the Constructor with parameters to specify as such (second parameter is t rue o r f alse).

Dukes myDuke = new Dukes(no seCo lo r, f alse);

We now are allowing someone else's applet to determine Dukes action and not necessarily deciding
randomly. That's pretty coo l.

WARNING
Do not use return types for Constructors--not even vo id!
Constructors always return an instance o f the type o f Object they are constructing, so they
do not need a return type.

Since we are allowing Duke to have a new characteristic (angry), and he's expressing this characteristic, we
added a variable so we can see what he says:

privat e St ring angryMessage= "";

Notice in the code that the inst ance variables are all privat e because we don't want them changed directly.
This is an example o f encapsulat io n (information hiding). (You'll see later why we want to hide variables
from others and make them accessible through methods only.)

We've also added methods the user can use to change the characteristics and/or see what they are (instead
of accessing them directly).

public St ring get AngryMessage()
public vo id set AngryMessage(St ring newMessage)
public bo o lean isAngry()
public vo id set Mo o d()

Notice that our access and change methods are public to allow o thers to use them to find and set attributes.
Users o f the code (access from other classes) cannot see the information unless we allow them to with
public methods, and they can only change variables by using the methods we provide.

Let's use this class, and then discuss access permissions in depth.

Now let's change the user interface in DukesAppletGUI.java to take advantage o f these new features in
Dukes.java.

CODE TO EDIT: DukesAppletGUI for new Variable access and Constructor

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

 Dukes myDuke;
 String action;

 public void init() {

 Choice actionList = new Choice();
 actionList.add("wave");
 actionList.add("think");
 actionList.add("write");

 actionList.addItemListener(this);
 add(actionList);

 myDuke =new Dukes();
 action = myDuke.getActionImage();

 Checkbox isAngry = new Checkbox("angry", myDuke.isAngry());
 add(isAngry);
 isAngry.addItemListener(this);
 }

 public void paint(Graphics g) {

 Image actionChoice = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(actionChoice, 20, 50, Color.white, this);
 g.drawString(myDuke.getAngryMessage(), 110,110);
 }

 public void itemStateChanged(ItemEvent evt){
 if (evt.getItem().toString() == "angry")
 myDuke.setMood();
 else
 {
 int which = ((Choice)evt.getItemSelectable()).getSelectedIndex();
 switch (which)
 {
 case 0: action= myDuke.wave(); break;
 case 1: action= myDuke.think(); break;
 case 2: action= myDuke.write(); break;

 }
 } // make sure you see the curly bracket here too!
 repaint();
 }
}

And Run it.

We've added a Checkbo x to allow us (the user) to decide whether the Duke is angry, and if he is, we let him
send a clear message.

Modularity is used in this class (DukeAppletGUI) and the Dukes class, and both contain the variable name
"isAngry". For the Applet, it's the name of a Checkbox instance (in the init() method); fo r the Dukes it's a
method to see if Duke IS angry. As long is there is an instance name in front o f the dot (e.g.,
myDuke.isAngry()), Java knows exactly where to get the right use o f "isAngry". If there is not a dot with an
instance name in front o f it, Java knows to look in the class itself (i.e., the code that uses it).

This is a nice feature o f object-oriented programming languages--you never have to worry about variables
that someone else used, because the compiler will know which variable should be used by its presence in a
certain class.

What Permissions Allow

Classes, instance and class variables, and instance and class methods can all have access mo dif iers.
Two commonly used permissions that promote encapsulation o f class information are:

public
privat e

We have already seen that variables defined in a method are local to the method and are not known outside
of the method (by variable sco pe). Method variables are implicitly private to the method in which they are
defined. In this section, we are not looking at the method variables, but access to the method itself.

First, within a Class, any instance or class variables o f a class are accessible by any method o f that class
since they are defined at the same level or "above" the methods themselves.

Modifiers fo r permissions indicate who o ut side t he class may access things. For example, the private
variables (and methods) can only be seen (or accessed) by o ther methods o f that same class; that's why we
call them private. Privat e variables require public "get" and "put" methods for "outside" access and changes.

Public means accessible by any class.

T he Ps f o r Permissio ns: public, privat e , pro t ect ed, package

public--any and all classes can access (as long as its package is visible (imported)).

public vo id AnyOneCanAccess() {}

privat e --accessible only to those within the class they are defined. They are not available to
subclasses.

privat e String CreditCardNumber;

pro t ect ed--all classes in package and subclasses o f the class inside and outside package.

pro t ect ed String FamilySecrets;

"friendly"--no specific declaration, the default, also known as "package" because it allows access
to any objects inside the same package. ("Package" will be covered in detail in a later course in this
series.)

vo id MyPackageMethod() {}

Modifier Visibility

public All classes where package is visible

privat e None (only within own class)

pro t ect ed Classes in package and subclasses inside or outside package

none (default) Classes in same package

To do
1. Open the DukesAppletGUI.java file in the Editor.
2. Look in the init () method, at the line:
Checkbo x isAngry = new Checkbo x("angry", myDuke.isAngry());

Within that line is a call to the "get" method o f the Dukes Class's isAngry() method through
myDuke.isAngry() .

Tip
As a naming convention, names o f methods that return boo leans (t rue o r f alse) start with is in
front o f the variable name. Accessor methods use get as seen in isAngry()). Getter methods
get values and start with get , setter methods set values and start with set .

Try to get the value o f the instance variable angry wit ho ut go ing through the accessor method: i.e., using:
myDuke.angry:

CODE TO EDIT IN BLUE:DukesAppletGUI.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

 Dukes myDuke;
 String action;

public void init() {

 Choice actionList = new Choice();
 actionList.add("wave");
 actionList.add("think");
 actionList.add("write");

 actionList.addItemListener(this);
 add(actionList);

 myDuke =new Dukes();
 action = myDuke.getActionImage();

 Checkbox isAngry = new Checkbox("angry", myDuke.angry);
 add(isAngry);
 isAngry.addItemListener(this);
 }

 public void paint(Graphics g) // paint method
 {
 Image myAction = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(myAction, 20, 50, Color.white, this);

 }

 public void itemStateChanged(ItemEvent evt){
 int whichOne = ((Choice)evt.getItemSelectable()).getSelectedIndex();
 switch (whichOne)
 {
 case 0: action= myDuke.wave(); break;
 case 1: action= myDuke.think(); break;
 case 2: action= myDuke.write(); break;

 }
 repaint();
 }
}

Now t ry to run this.

You should see this error:

T he f ie ld Dukes.angry is no t visible

Since you are "in" the DukesAppletGUI class and not the Dukes class, you can't see Dukes' private variables
or methods.

We could make the angry variable in the Dukes class public to fix the error:

To do

1. Open the Dukes.java class.
2. Change
privat e bo o lean angry = f alse;
to
public bo o lean angry = f alse;.
3. Save it.
4. Go back to the DukeAppletGUI class that had the errors.

All the errors are gone now because the variable is public (it's not illegal to expose our private parts in Java,
but it is rude--and it vio lates our data-hiding convention, too. Let's see if it mattered here (it can sometimes,
as we'll see later in this lesson):

To do
1. Save both classes and Run the applet.
2. Click the angry Checkbox over and over.

Whew, everything still works fine in this example, but there are cases where it could result in dat a
co rrupt io n. (We'll cover that in a later course in this series as well.)

Encapsulation and data-hiding prevent data corruption because they prevent users from changing one aspect
o f code without considering the consequences that change may have on o ther aspects.

Some of the great advantages o f modularity and encapsulation are:

Your code is safer from user corruption, because even when your classes allow changes, you get
to determine what users can and cannot access.
If your code has an error in it, you can easily trace it back to your encapsulated chunk o f code. This
way you only have to change it once--not throughout your program.

Be sure and put the Dukes.java and DukesAppletGUI.java back into their o rginal fo rm by making the angry
variable privat e in Dukes.java, and fixing the line Checkbo x isAngry = new Checkbo x("angry",
myDuke.isAngry()); in DukesAppletGUI.java.

Keep go ing, you're do ing great!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Class Members, Constants and main

When you complete this lesson, you will be able to :

Lesson Objectives

use Class members with static modifier.
use the main method.
use the f inal modifier.

Static Members
In previous lessons we used methods that use static variables such as Co lo r.red. Also called Class Variables (as
opposed to Instance Variables), st at ic variables don't change. We also used static Class Met ho ds when we used
methods like Mat h.rando m() .

Let's take a look at these in the API . Click on the API link provided in Eclipse, find the java.lang package , and scro ll
down to the Mat h class . Notice that the modifiers in the left co lumn all say static .

Now go back to the java.lang package. Get the Int eger class.

Notice that most o f the Fields and Methods in that Class also have the modifier static.

Recall that a Class can contain only:

Fields
Met ho ds

But Fields and Methods will be either:

Inst ance members o r
Class (keyword st at ic) members

Members o f a class (Fields and Methods) are generally only accessible once you have instantiated the class to make
an inst ance . Once you have the instance, you can use the dot operator to get the values o f the fields, or to invoke the
methods.

Members that have the st at ic modifier are Class variables o r met ho ds, so they're accessible eit her through the
dot operator o r through their Class name . As such, it isn't necessary to create an instance to use a Class Variable or
Class Method. Class variables and met ho ds o ften belong to Classes that are commonly used for auxiliary
purposes in your Classes (for example, java.lang.Mat h).

Okay, let's get crackin' and put our new knowledge to work. Create a new pro ject fo r this lesson called
java1_Lesso n14 , and copy and paste Dukes.java and DukesApplet GUI.java from the java1_Lesson13 pro ject to
java1_Lesson14 pro ject.

We're go ing to change an instance reference to a class reference and notice that Eclipse will yell at us, and make some
suggestions for fixing it.

Open Dukes.java and lo o k f o r Class ref erences:

OBSERVE: In Dukes.java, notice the use o f Class variables and methods.

import java.awt.Color;

public class Dukes {

 private Color noseColor = Color.red; // default Duke's have red noses
 private boolean angry = false; // default Duke's aren't usually disgruntled
 private String action = "../../images/duke/dukeWave.gif";
 private String whatDoing = "Give me something to do";
 private String message= "";
 private String angryMessage= "";

 public Dukes() {
 // give Duke instance random values for traits

 int rint = (int)(Math.random() * 3); // randomly generates a 0, 1, or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }

 // randomly decide if Duke is angry
 rint = (int)(Math.random() * 3);
 if (rint == 1)
 {
 angry = true;
 angryMessage = "I QUIT!!";
 Dukes myDuke = new Dukes(noseColor, true);
 }
 }
 // Or, when the applet instantiates the Duke, let it say if he is angry-
a new Constructor.

 public Dukes(Color nose, boolean isMad) {
 // give Duke instance specified values for traits which are passed from the class th
at instantiated

 noseColor = nose;
 angry = isMad;
 }
 // Add methods to access new variables

 public String getAngryMessage()
 {
 return angryMessage;
 }

 public void setAngryMessage(String newMessage)
 {
 angryMessage = newMessage;
 }

 public boolean isAngry()
 {
 return angry;
 }

 public void setMood()
 { // toggle the boolean value. If it was true it becomes false; if false it beco
mes true
 angry = !angry;
 if (angry == true)
 angryMessage= "I QUIT!!";

 else
 angryMessage= "";
 }

 public String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

 public String write(){
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }

 else {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think(){
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }
 public String wave(){
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;

 }
}

Tip According to convention, Classes start with capital letters and Instances start with lower-case letters. This
allows us to identify whether methods and variables are Class members (static).

Now, let's experiment on DukesAppletGUI.java. Try using the Class name instead o f the instance name (Dukes
instead o f myDuke) in a method call:

CODE TO TYPE: In the code below, change myDuke to Dukes.

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class DukesAppletGUI extends Applet implements ItemListener{

 Dukes myDuke;
 String action;

 public void init() {

 Choice actionList = new Choice();
 actionList.add("wave");
 actionList.add("think");
 actionList.add("write");

 actionList.addItemListener(this);
 add(actionList);

 myDuke =new Dukes();
 action = myDuke.getActionImage();

 Checkbox isAngry = new Checkbox("angry", myDuke.isAngry());
 add(isAngry);
 isAngry.addItemListener(this);
 }

 public void paint(Graphics g) {

 Image actionChoice = getImage(getDocumentBase(), action);
 g.drawString(Dukes.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(actionChoice, 20, 50, Color.white, this);
 g.drawString(myDuke.getAngryMessage(), 110,110);
 }

 public void itemStateChanged(ItemEvent evt){
 if (evt.getItem().toString() == "angry")
 myDuke.setMood();
 else
 {
 int which = ((Choice)evt.getItemSelectable()).getSelectedIndex();
 switch (which)
 {
 case 0: action= myDuke.wave(); break;
 case 1: action= myDuke.think(); break;
 case 2: action= myDuke.write(); break;

 }
 } // make sure you see the curly bracket here too!
 repaint();
 }
}

You'll get this error:

Canno t make st at ic ref erence t o no n-st at ic met ho d get Act io n() f ro m t ype Dukes

The problem here is that we've made a reference to a Class member that hasn't been declared static. Alright then, let's
fo llow Eclipse's advice and make the getAction() method static just to see what happens. In fact, let Eclipse do it fo r
you:

Or you can go to Dukes.java and add the st at ic modifier to the getAction() method yourself:

CODE TO TYPE: Make getAction() static in Dukes.java.

import java.awt.Color;

public class Dukes {

 private Color noseColor = Color.red; // default Duke's have red noses
 private boolean angry = false; // default Duke's aren't usually disgruntled
 private String action = "../../images/duke/dukeWave.gif";
 private String whatDoing = "Give me something to do";
 private String message= "";
 private String angryMessage= "";

 public Dukes() {
 // give Duke instance random values for traits

 int rint = (int)(Math.random() * 3); // randomly generates a 0, 1, or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }

 // randomly decide if Duke is angry
 rint = (int)(Math.random() * 3);
 if (rint == 1)
 {
 angry = true;
 angryMessage = "I QUIT!!";
 Dukes myDuke = new Dukes(noseColor, true);
 }
 }
 // Or, when the applet instantiates the Duke, let it say if he is angry-
a new Constructor.

 public Dukes(Color nose, boolean isMad) {
 // give Duke instance specified values for traits which are passed from the class th
at instantiated

 noseColor = nose;
 angry = isMad;
 }
 // Add methods to access new variables

 public String getAngryMessage()
 {
 return angryMessage;
 }

 public void setAngryMessage(String newMessage)
 {
 angryMessage = newMessage;
 }

 public boolean isAngry()
 {
 return angry;
 }

 public void setMood()
 { // toggle the boolean value. If it was true it becomes false; if false it beco
mes true
 angry = !angry;
 if (angry == true)
 angryMessage= "I QUIT!!";

 else
 angryMessage= "";
 }

 public static String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

 public String write(){
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }

 else {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think(){
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }
 public String wave(){
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;

 }
}

Now we get a different error:

Canno t make st at ic ref erence t o no n-st at ic f ie ld what Do ing

We are go ing to make what Do ing static to see if the reference to Dukes can then be made. We can do that either by
using the Eclipse trick or by typing it fo r ourselves:

CODE TO TYPE: In Dukes.java, make whatDoing static.

import java.awt.Color;

public class Dukes {

 private Color noseColor = Color.red; // default Duke's have red noses
 private boolean angry = false; // default Duke's aren't usually disgruntled
 private String action = "../../images/duke/dukeWave.gif";
 private static String whatDoing = "Give me something to do";
 private String message= "";
 private String angryMessage= "";

 public Dukes() {
 // give Duke instance random values for traits

 int rint = (int)(Math.random() * 3); // randomly generates a 0, 1, or 2
 if (rint == 0)
 {
 noseColor = Color.blue; // more often red by default
 action = "../../images/duke/dukeWave2.gif";
 message = "What's up with the blue nose!";
 }

 // randomly decide if Duke is angry
 rint = (int)(Math.random() * 3);
 if (rint == 1)
 {
 angry = true;
 angryMessage = "I QUIT!!";
 Dukes myDuke = new Dukes(noseColor, true);
 }
 }
 // Or, when the applet instantiates the Duke, let it say if he is angry-
a new Constructor.

 public Dukes(Color nose, boolean isMad) {
 // give Duke instance specified values for traits which are passed from the class th
at instantiated

 noseColor = nose;
 angry = isMad;
 }
 // Add methods to access new variables

 public String getAngryMessage()
 {
 return angryMessage;
 }

 public void setAngryMessage(String newMessage)
 {
 angryMessage = newMessage;
 }

 public boolean isAngry()
 {
 return angry;
 }

 public void setMood()
 { // toggle the boolean value. If it was true it becomes false; if false it beco
mes true
 angry = !angry;
 if (angry == true)
 angryMessage= "I QUIT!!";

 else
 angryMessage= "";
 }

 public static String getAction()
 {
 return whatDoing;
 }

 public String getActionImage()
 {
 return action;
 }

 public Color getNoseColor()
 {
 return noseColor;
 }

 public String getMessage()
 {
 return message;
 }

 public String write(){
 whatDoing = "I am a writing Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/penduke.gif";
 message = "";
 }

 else {
 action = "../../images/duke/penduke2.gif";
 message = "My nose feels funny";
 }
 return action;
 }

 public String think(){
 whatDoing = "I am a thinking Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/thinking.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/thinking2.gif";
 message = "My nose feels funny";
 }
 return action;
 }
 public String wave(){
 whatDoing = "I am a waving Duke";
 if (noseColor == Color.red)
 {
 action = "../../images/duke/dukeWave.gif";
 message = "";
 }

 else
 {
 action = "../../images/duke/dukeWave2.gif";
 message = "My nose feels funny";
 }
 return action;

 }
}

Now go back to DukesApplet GUI.java and run it.

Tip Eclipse uses italics to let you know when a method or field is static, like in "Co lor.red".

You shouldn't have any errors. Ho wever, we have co mplet e ly changed o ur Class! Eclipse's suggestions have
led us astray from the original intent o f the Dukes Class. So we can't always take Eclipse's advice. There is a reason
that that what Do ing WASN'T static in the first place -- because we wanted what Do ing to be an instance variable i.e.
we wanted it to be different fo r each instance. Now, when we change what Do ing, the change is applied to all
inst ances o f that Class. So now all o f instances o f Dukes will be do ing the SAME thing. That's not what we want. Let's
go ahead and change it back.

To do
1. Change the whatDoing back to an Instance Variable by removing the static keyword.
2. Remove the static keyword from getAction()
3. Change the Dukes.getAction() reference in the applet back to myDukes.getAction()

There, all is well again! The purpose o f this exercise was to give you a feel fo r static variables and references. In the
next section we'll make some class variables that should be class variables.

Static: Making Your Own

For normal, everyday Classes, Java has both Class Variables and Instance Variables.

Defining variables within a Class:

If a value changes for each instance o f a Class, t hen it should be an instance variable.
If a value remains the same for every instance o f a Class, t hen it should be a class variable.

Here are a couple o f examples to help illustrate this concept:

An employee's salary (instance variable), compared to the t o pSalary o f all employees (class variable).

A human's co lo rOf Eyes (instance variable), compared to the numberOf Eyes o f all humans (class
variable).

You'll understand the logic behind both kinds o f variables even better once you see how they're implemented
in Java:

Instance variables each occupy their own space in memory. Changes to a value for one instance
will have no effect on o ther instances.
Class variables all occupy the same space in memory. If the value ever changes, it changes for
every instance in the Class, because they share the same memory address location.

With this in mind, let's think about access. Instances have information about the class, but classes do not
have individual instance access. Instances should be able to access Class information, but unless you have
the reference or handle to the instance, you cannot access instance information.

Let's look at an example o f access to class and instance variables and methods:

Make a new Class called Emplo yee (that doesn't extend Applet).

CODE TO TYPE: Employee.java

class Employee {

 private static int topSalary = 195000;

 public static void setTopSalary (int s) {
 if (s > topSalary)
 topSalary = s;
 }
}

Notice that we have a class variable (denoted by static) that is changed through a class met ho d (also
denoted by static).

Now suppose another Class wants to create Emplo yees. To make testing easier, we'll add a main()
method to our Employee class. The main() method is used to create an application rather than an Applet. In
it, we will invoke the method from the Class (Emplo yee) as well as invoke it from an instance (e2). We'll
explain more about this later in the lesson.

Edit the Emplo yee class as shown:

CODE TO TYPE: Add a main method to the Employee Class to test static members.

class Employee {

 private static int topSalary = 195000;

 public static void setTopSalary (int s) {
 if (s > topSalary)
 topSalary = s;
 }

 public static void main(String[] args){
 Employee e1, e2;
 e1 = new Employee();
 e2 = new Employee();

 Employee.setTopSalary(199000);
 // calling by class; can we do this?
 e2.setTopSalary(199001);
 // calling by instance; can we do this?
 }
}

Notice that we get warnings, but no errors. Class variables and methods can be accessed from either
individual instances or the Class. This makes sense; if a member o f the Employee class gets a salary
increase, that Employee's new salary may change the existing top salary. Or, the top salary can be changed
by the "boss", the Class as a whole.

However, remember that if the Class variable is changed for (or by) one instance, it changes for all. Why?

The class variable is located at the same place in the computer memory for everyone. Changes made by
one affect all.

If a variable is an instance variable, there are copies in each object; if a variable is a class variable, there is
only one copy, which is shared.

Note If you declare a method static, that method can only access o ther variables o f the Class that are
declared static as well. Class methods cannot change instance variables.

Let's add an instance variable and a class method to our Employee class.

CODE TO TYPE:

class Employee {

 private static int topSalary = 195000;
 int hoursPerWeek;

 public static void setTopSalary (int s) {
 if (s > topSalary)
 topSalary = s; // will work (CM, CV)
 }

 public static void addMoreHours () {
 hoursPerWeek++; // won't work (CM, IV)
 }

 public static void main(String[] args){
 Employee e1, e2;
 e1 = new Employee();
 e2 = new Employee();

 Employee.setTopSalary(199000);
 // calling by class; can we do this?
 e2.setTopSalary(199001);
 // calling by instance; can we do this?
 }
}

There's that error again.

Canno t make a st at ic ref erence t o t he no n-st at ic f ie ld ho ursPerWeek

Okay, now remove the st at ic keyword from the addMo reHo urs() method, so it looks like this:

public void addMoreHours () {

Java is happy now.

Now, add two lines o f code to the main method as shown below:

CODE TO TYPE:

class Employee {

 private static int topSalary = 195000;
 int hoursPerWeek;

 public static void setTopSalary (int s) {
 if (s > topSalary)
 topSalary = s; // will work (CM, CV)
 }

 public static void addMoreHours () {
 hoursPerWeek++; // won't work (CM, IV)
 }

public static void main(String[] args){
 Employee e1, e2;
 e1 = new Employee();
 e2 = new Employee();

 Employee.setTopSalary(199000);
 // calling by class; can we do this?
 e2.setTopSalary(199001);
 // calling by instance; can we do this?
 e1.hoursPerWeek = 40;
 Employee.hoursPerWeek = 45;
}

Error again! Canno t make a st at ic ref erence t o t he no n-st at ic f ie ld Emplo yee.ho ursPerWeek

Why? Consider what the expression Emplo yee.ho ursPerWeek is do ing: it's trying to access the non-static
field o f ho ursPerWeek through the Emplo yee Class name, a st at ic reference. Instance variables belong
to individual instances. Classes cannot access them--it does not make sense. For instance, the Class o f
Humans cannot access the instance variable co lo rOf Eyes o f a specific Human, because the class name
"Human" does not specify which one o f its instances it's trying to access.

Consider the expression e1.ho ursPerWeek: It's trying to access the non-static (and therefore instance) field
of ho ursPerWeek, through the inst ance e1. There's no problem there. A specific employee wo uld work a
specific number o f hours in a week.

Now, change the line Emplo yee.ho ursPerWeek = 45; to e2.ho ursPerWeek = 45; That should work.

static and main

The example above used something new, the main() method.

The main() method is used for all Java programs that are applications and no t Applets. Specifically, if you
want a pro gram to Run, then you need either an applet or a Class that has a main() method to get the
application started.

The main() method is always st at ic. That's why Java can get into the Class where the method is located to
start the code before you ever have an instance o f the class.

Start a new Class called ExampleWit hMain (not an Applet).

CODE TO TYPE: ExampleWithMain

public class ExampleWithMain
{
 private int testInstanceVariable = 42;

 public static void main(String[] args)
 {
 System.out.println("The value of the instance variable is " + this.testInst
anceVariable);
 }
}

Darn, another error! Canno t use t his in a st at ic co nt ext

Let's remove t his from the expression t his.t est Inst anceVariable and make it:

Syst em.o ut .print ln("T he value o f t he inst ance variable is " + t est Inst anceVariable);

Grrrr. Another error. Canno t make a st at ic ref erence t o a no n-st at ic f ie ld t est Inst anceVariable

This error occurs because main() is a static method, and testInstanceVariable is an instance variable.

These specific problems illustrate some important stuff about the main() method. Including main() st at ic,
allows Java to get started, but we have not instantiated the class yet, so we do not have an instance.

Edit your code as fo llows:

CODE TO TYPE: ExampleWithMain

public class ExampleWithMain
{
 private int testInstanceVariable = 42;

 public static void main(String[] args)
 {
 ExampleWithMain myExample = new ExampleWithMain();
 System.out.println("The value of the instance variable is " + myExample.
testInstanceVariable);
 }
}

The main() method is not really associated with a f ie ld 's access, and it's not an action for the class. A
main method should only inst ant iat e and st art the top-level Class. And, that's good programming
practice.

Constructors

Instantiation

We've been using the terms inst ant iat e and init ialize o ften. So what is the difference?

Let's consider our Dukes example again. Instantiating makes an instance o f the Class. We made Dukes
instances in the DukeAppletGUI when we wrote myDuke =new Dukes();. In the process o f being
inst ant iat ed, our myDuke was init ialized. Initializing will set all the variables to the values for this
instance. This happens inside the Constructor (or in an Applet, in its init ()) method, and also through
defaults. And instances inherit variables from their ancestors.

The sequence to allocate memory and to default initialize is:

1. superclass initialization
2. instance variable initialization
3. constructor initialization

The order makes sense because the specific subclasses lower in a hierarchy o verride their parent and thus

their values (2) will "write over" the earlier default values set in (1). Then, since the constructor may be passed
specific parameters, they should "write over" any defaults that the particular Class initially got from (2).

Tip When a Class creates an instance o f itself (o r instantiates), it initializes its values.

Constants use the final modifier

Constants in a programming language are variables that the programmer wants to be accessible to everyone
and that remain the same for all time. The modifier keyword to make a variable remain the same is f inal .

. Go to the java.lang package. Scro ll again to the Mat h class. Now scro ll down to the Field Summary.
Finally, click on either o f the Fields (E o r PI) .

You see these modifiers:

public st at ic f inal do uble E
public st at ic f inal do uble PI

Good. We know what all o f these modifiers mean now, but the combination o f these public st at ic f inal
makes PI a do uble variable that is a co nst ant . Notice also , under the description in the API, it says
Co nst ant Fie ld Values. Click on it. It takes you to all o f the Field constants that Java has defined. Because
constants always have the static modifier, they can be accessed through the Class name java.lang.Math.PI or
for java.lang classes, simply through the class and the variable Mat h.PI.

Note
The f inal modifier indicates that once a field receives a value, it can never be changed. Using
commonly accepted naming conventions, fields marked as f inal should be UPPER_CASE with
words separated by the undersco re character.

Classes, met ho ds, f ie lds, o r variables may each have this modifier and it means essentially the same
thing--that it cannot change--though it might be said a bit differently:

Mo dif ier Used o n Meaning

final

class
method
field
variable

Cannot be subclassed
Cannot be overridden and dynamically looked up
Cannot change its value. static final fields are compile-time constants.
Cannot change its value.

Template and Summary
There are additional modifiers fo r Classes, Methods, and Fields, but they are beyond the scope o f this course.

For more information on modifiers, check out: Java Modifiers

The typical o rder fo r modifiers is (<access> cho ices specified above and the [] indicating 0 or 1 time)
<access> [st at ic] [f inal] ...

P>

Below is an example template for Class Structure (modifiers may vary for your use):

JavaModifiers.html

OBSERVE:

import packageName.ClassName.java

import packageName.*

 public class ClassName extends super {

 // Instance and Class Variable declarations: Declare and possibly set modifiers a
nd values for variables

 private int instanceVariable;
 private static int classVariable;

 // Define Constructors (if none - looks at supers. No return type)

 public ClassName (formal parameters) {

 code
 }

 // Define methods with no returned values

 public void methodName (formal parameters) {

 code
 }

 // Define methods with return values

 public returnType methodName (formal parameters) {

 code
 return ... // returnType of value returned must match method signature
 }
 }

Here's one more link to Java Modifiers from the online text o f tutorialspo int. Most o f the less commonly used Java
modifiers will be explored in future courses.

See you in the next and final lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://www.tutorialspoint.com/java/java_modifier_types.htm
http://creativecommons.org/licenses/by-sa/3.0/legalcode

All Together Now

When you complete this lesson, you will be able to :

Lesson Objectives

Make another Class and practice making graphical images like circles, hearts, up arrows, and o ther coo l stuff.
Give the Dukes class the ability to show these graphics If the specific instance o f a Duke is "angry".
Add a GUI component to our Applet Class so the user can specify whether Duke is in a good mood or if we should
show him some love by giving him a Pin.

Interaction and Playing Around
You've done a great job building some useful too ls during the course so far; now let's put them all together. Let's give
our Duke some love. It'll make him feel better and it'll give us a chance to practice using classes, objects, and
instantiation. Later, we'll make real applications that do more useful things, but fo r now, let's play!

Putting It All Together

The Graphics Class allows us to draw basic shapes. Let's use these capabilities and make a separate
Class that can draw figures.

Below is a class named MoreImages that adds some shapes to Java's Graphics Class. We'll use this Class
to allow our Dukes to make various graphics.

Let's make a new pro ject fo r lesson 15 called java1_Lesso n15 , and a new Class called PinImages.

After we have PinImages bug free, we'll make a simple Applet and demo some of the figures in the paint
method o f an Applet to see how they look. We'll also get to see the potential o f our ButtonImages. Ultimately,
you'll choose a method to make a Button, so pay attention as you type this in and notice the kinds o f shapes
it allows.

CODE TO TYPE: PinImages

// This class will be used by DukesMood which will inherit from Dukes
// It will give a Duke who can make Pins using hearts, crowns, stars, triangles,
 etc.

import java.awt.*;

public class PinImages
{
 public void drawHeart(Graphics g, Color col, int x, int y, int width){
 // I "heart" Duke
 g.setColor(col);
 g.fillArc(x,y,width/2,width/2,0,180);
 g.fillArc(x+ width/2,y,width/2,width/2,0,180);
 int [] xTriangle = {x, x+width, x+width/2};
 int [] yTriangle = {y+width/4, y+width/4, y+width};
 g.fillPolygon(xTriangle, yTriangle, 3);
 }

 public void fillTriangle(Graphics g, int bottomX, int bottomY, int base, int
 height){
 // isosceles base at bottom
 g.drawLine(bottomX, bottomY, bottomX+base, bottomY);
 g.drawLine(bottomX+base, bottomY, bottomX+base/2, bottomY-height);
 g.drawLine(bottomX+base/2, bottomY-height, bottomX, bottomY);
 int [] xTriangle = {bottomX, bottomX+base, bottomX+base/2};
 int [] yTriangle = {bottomY, bottomY, bottomY-height};
 g.fillPolygon(xTriangle, yTriangle, 3);
 }

 public void upArrow(Graphics g, Color col, int x, int y, int arrowbase){
 // Duke is movin' on UP
 g.setColor(col);
 fillTriangle(g, x, y, arrowbase, arrowbase/2);
 g.fillRect(x+ 3*arrowbase/8, y, arrowbase/4, arrowbase);
 }
}

Save your code for the PinImage Class.

Now we need an Applet so we can look at our artwork and demonstrate some of the things that the PinImage
class can draw. Make a new class called ImageMaker, so we can see these PinImages displayed.

CODE TO TYPE: Demo

import java.applet.*;
import java.awt.*;

public class ImageMaker extends Applet
{
 PinImages demo;

 public void init() {
 setBackground(Color.black);
 demo = new PinImages();
 }

 public void paint(Graphics g)
 {
 demo.drawHeart(g, Color.pink, 10,10, 25);
 demo.upArrow(g, Color.orange, 10, 70, 30);

 // an example Pin using a PinImage shape
 g.setColor(Color.red);
 g.fillOval(100,100, 80,80);
 g.setColor(Color.white);
 g.drawString("I",135,120);
 demo.drawHeart(g, Color.pink, 125,125, 25);
 g.setColor(Color.white);
 g.drawString("Duke!",125,170);
 }
}

Now Run it.

The first couple o f expressions in the paint () method use the instance demo , but the later ones use g.

That's because the drawHeart () , and upArro w() methods are defined in the class PinImages which has
an instance o f demo .

The set Co lo r() , f illOval() , and o ther methods are defined in the Class Graphics which has an instance o f
g.

So what else is interesting here?

We imported java.awt.* so that we could see the Graphics class. We don't need to import anything for the
PinImages class because Classes located in the same directory are in the same "default" package.

Using Inheritance on our Own

Because we are go ing to add more capabilities to our Dukes rather than editing to add them into the o ld
Dukes class, let's take advantage o f the concept o f inheritance. Dukes that can make Pins will be called
DukesPins and will be a subclass o f Dukes.

Create another new class in java1_Lesson15 called DukesPin.

It will inherit from Dukes, so let's just copy our Dukes class into java1_Lesson15:

Copy Dukes.java from java1_Lesson14 and paste it into java1_Lesson15/src.

We'll be adding Dukes, as well as things that relate to showing Pins, to our new Applet DukesPin. But we're
only giving Pins to angry Dukes; after all, they're the ones who really need love. So, if someone changes
whether Duke is angry, we have to change his ability to get Pins. We'll o verride Duke's set Mo o d() method.

Also notice how our Constructor calls super() . super() is a call to the parent's constructor.

We actually don't need to do this, because Java calls a parent's constructor by default, but it's here as an
example, in case you wanted to use the default constructor and add more to it. Anyway, Java will use
DukesPin 's methods first, and then will inherit all o f the o ther methods and variables from the Dukes class.

CODE TO TYPE: Type this into the DukesPin class

import java.awt.Color;

public class DukesPin extends Dukes {

 private boolean showingPin;

 public DukesPin() {
 super();
 // you could add more here and Java will do the parent's first and the
n come back for more
 }

 public DukesPin(Color nose, boolean love) {
 super(nose, love);
 }

 public boolean isShowingPin() {
 return showingPin;
 }

 public void switchShowingPin() {
 showingPin =!showingPin;
 if (showingPin && !angry)
 {
 angryMessage= "I don't get a Pin, I'm not angry";
 showingPin =!showingPin; // don't let them show Pins since not angry
 }
 }

 public void setMood() {
 super.setMood(); // let the parent do the work first, then do what we
 need in addition
 if (angry == false) showingPin = false;
 }
}

Hey, what is go ing on here? Why all the red in our new class?

All the errors are a result o f the access to the variables angry and angryMessage . We inherited these
variables from Dukes.java. Recall that we gave these variables the privat e permissions. And who can see
variables if the access is privat e? Only the instances o f the Class it self . Our new Class inherited from
Dukes, so Dukes is its parent/super. Our new Class is not the same Class as Dukes.

Can you fix this?

Since you are the author o f the code for the Class Dukes, you can change the permission to pro t ect ed.
Remember that pro t ect ed gives access to Classes in the package and subclasses inside or outside the
package (for now, just think o f a package as all the Classes you're currently using).

Note If you click once on the red "x", Eclipse will show the error and suggest ways to fix it.

In the Dukes Class, change the access permissions o f these two variables to :

protected boolean angry = false;

and

protected String angryMessage= "";

Now go back to your DukesPin class and all should be well.

That's nice, but if the Class you're using is from Java's API, you can't just go in and change that code.

But methods are o ften present within Classes in order to allow access to the variables. Does the Dukes

Class have such methods? Why yes, it does. Let's see if we can fix our new Class by using accessor
methods:

Change the permissions in the Dukes class back so they are all privat e again. Save it so your errors come
back in DukesPin.

Look in the Dukes Class and find the accessors and mutators for the needed variables.

Here are the accessor "get" methods (notice that the mutator "sets" values):

OBSERVE:

public String getAngryMessage()
 {
 return angryMessage;
 }

public boolean isAngry()
 {
 return angry;
 }

Sweet. Let's use them:

CODE TO TYPE: Type this into the DukesPin class

import java.awt.Color;

public class DukesPin extends Dukes {

 private boolean showingPin;

 public DukesPin() {
 super();
 // you could add more here and Java will do the parent's first and the
n come back for more
 }

 public DukesPin(Color nose, boolean love) {
 super(nose, love);
 }

 public boolean isShowingPin() {
 return showingPin;
 }

 public void switchShowingPin() {
 showingPin =!showingPin;
 if (showingPin && !isAngry())
 {
 setAngryMessage("I don't get a Pin, I'm not angry");
 showingPin =!showingPin; // don't let them show Pins when not angry
 }
 }

 public void setMood() {
 super.setMood(); // let the parent do the work first, then do what we
 need in addition
 if (isAngry() == false) showingPin = false;
 }
}

Excellent! All is well. Let's see what this guy looks like now.

Make a new Class in the java1_Lesson15 Pro ject called DukesPinApplet .

CODE TO TYPE: DukesPinApplet

import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class DukesPinApplet extends Applet implements ItemListener{

 DukesPin myDuke;
 String action;
 Checkbox showPin;
 Graphics g;

 public void init() {

 Choice actionList = new Choice();
 actionList.add("wave");
 actionList.add("think");
 actionList.add("write");

 actionList.addItemListener(this);
 add(actionList);

 myDuke =new DukesPin();
 action = myDuke.getActionImage();

 Checkbox changeMood = new Checkbox("Angry", myDuke.isAngry());
 add(changeMood);
 changeMood.addItemListener(this);

 showPin = new Checkbox("ShowPin");
 add(showPin);
 showPin.addItemListener(this);
 }

 public void paint(Graphics g) {
 this.g = g;
 Image actionChoice = getImage(getDocumentBase(), action);
 g.drawString(myDuke.getAction(), 10,165);
 g.drawString(myDuke.getMessage(), 10,180);
 g.drawImage(actionChoice, 20, 50, Color.white, this);

 g.drawString(myDuke.getAngryMessage(), 110,140);
 if (myDuke.isShowingPin())
 makePin();
 else clearPin();
 }

 public void itemStateChanged(ItemEvent evt){

 if (evt.getItem().toString() == "Angry")
 { myDuke.setMood();
 if (!myDuke.isAngry())
 showPin.setState(false);
 }
 else if (evt.getItem().toString() == "ShowPin")
 { myDuke.switchShowingPin();
 if (showPin.getState() && !myDuke.isAngry())
 showPin.setState(false);
 }
 else
 {
 int which = ((Choice)evt.getItemSelectable()).getSelectedIndex();
 switch (which)
 {
 case 0: action= myDuke.wave(); break;
 case 1: action= myDuke.think(); break;

 case 2: action= myDuke.write(); break;
 }
 }
 repaint();
 }

 public void makePin()
 {
 PinImages images =new PinImages();
 // make Pin
 g.setColor(Color.red);
 g.fillOval(120,50, 80,80);
 // put something in Pin
 g.setColor(Color.white);
 g.drawString("I",155,70);
 images.drawHeart(g, Color.pink, 145,75, 25);
 g.setColor(Color.white);
 g.drawString("Duke!",145,120);
 }

 public void clearPin()
 {
 g.setColor(Color.white);
 g.fillOval(120,50, 80,80);
 }
}

 Save and Run it.

Click the different checkbox cho ices to see how the GUI reacts.

 Go to the API java.awt package. Notice that the Classes Cho ice and Checkbo x bo th implement
It emSelect able . That's why you can then implement the It emList ener. However, since all three o f the
components the user can choose from cause It emEvent s, you need to tell Java which action to take
depending on which o f the Checkbo xes or Cho ice the user clicked. You do that in the It emList ener's
it emSt at eChanged method.

Great job! Now that you understand the concepts behind objects, you'll really be able to take o ff!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

javascript:d1e434();
http://creativecommons.org/licenses/by-sa/3.0/legalcode

