Java Programming 3: Java Programming Foundations

Lesson 1: SoftwareDesignUsingJava.lab
Quiz 1 Project 1

Lesson 2: The User Experience

User Friendly Coding

User Input: Command Line

Overloading the Constructor
A Closer Look at Main
Entering Command Line Arguments

Code Flexibility Revisited
Fooling the User

Finding the Max
Don't Letthe User Fool You

What's in store?

Lesson 3: Packages
You Have Great Potential

Why Packages?
Organization

Inside Packages

Your Own Java Package

Package Creation

Declaring a Package

Package Access
Accessing Packages Using import

The Classloader

When to Import
Naming Conflicts

Naming a Subpackage

Conventions: Case Usage for Package and Class Names

Conventions: Duplicate Member Names

Conventions: Company Names

Packages Highlights

Coming Attractions

Lesson 4: Software Design: Inheritance

Origins and Organization

Classification

Inheriting
Inheritance: Shadowing

Inheritance: Overriding

Working with Constructors
Chaining
Chain of Command

In a Nutshell

SoftwareDesignUsingJava.lab
SoftwareDesignUsingJava_quiz1.quiz.html
SoftwareDesignUsingJava_proj1.project.html

Java's Design
The API

Making Our Own: Early Design

Lesson 5: Software Design: Abstract Classes

The Power of Abstraction

Syntax: Abstract Classes
The APl and abstract

Making Your Own Figures and Shapes

Design Considerations for a Graphics Tool

Lesson 6:Interfaces: Listeners and Adapters
Interfaces in Java

Model-View-Controller Architecture

An Example: Drop-Down Lists (Choice Components)

Creating the Shape Drawing Project

Interfaces and Listeners

Building a Program

Lesson 7:Interfaces: Listeners and Adapters (continued)
Building the Shapes

Adapters
Button Panel

Controls Panel
Main Panel

Phew!

Lesson 8: Nested Classes

Maneuvering Around Classes

Nested Classes

Nested Top-Level Classes

Inner Classes
Local Classes

Anonymous Inner Classes

Deciding When to Use Nested Classes

Lesson 9:Interfaces and Inheritance

Interfaces and Classes

Shared Features of Classes and Interfaces

Differences Between Classes and Interfaces

Interfaces and Multiple Inheritance

Inheritance Design Conclusions

Casting
Interfaces as Types

Casting Back
Casting: instanceof

Listeners

Extending Interfaces

Generics

Lesson 10: Generics
The Dot Operator

Code Reuse and Flexibility
Checking Type

Generic Example

Vectors
Vectors Using Generics

Generals on Generics

Lesson 11: The Collection Framework

Collections
Empowered by Collections

ArrayList

LinkedList

Collections: Things Java Has Already Written for Us
Comparator

Wrapping Up the Collections Framework

Lesson 12: Enumeration and enum

Enumeration
Constants

Enum Types

Enum Example
Accessing Members ofthe Enumeration

More about Enum

Enum Inside of Classes

Static Initialization Blocks

A Bit More About Enum

Lesson 13:Image Mapping and Handling
Tving It All Together

Getting Images
Mapping with a Hashtable

Moving Images: Mouse Listener

Now Make It an Applet
Double Buffer

Graphics Project Examples

Lesson 14: Deploying Applets and Applications Using Eclipse
Java JAR Files

Deploying Applets in a JAR File

Deploying Applications in a Jar File

Creating an Application for Deployment

Deploving the Application in an Executable Jar File

Running an Executable Jar File

Lesson 15: Working With Files
Working With Files

The File Class

Writers and Readers
Writing to A File
Reading a File

You Are a Genius!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

The User Experience

Lesson Objectives

When you complete this lesson, you will be able to:

use the command line to gather userinput.
e use the main() method.

locate wrapper classes in the APL.
e use awrapper class to help in data conversion.

User Friendly Coding

In this lesson, we'll continue to work on our SalesReport application. We'll add features that make users happy by
allowing them greater control over their experience! Always keep your users in mind when creating code.

User Input: Command Line

Let's try letting users enter initial start-up information at the command line. Although this technique is not as
popular as it was pre-Web or pre-GUI days, it's still sometimes useful.

Edit Main.java from your java3_Lesson01 projectas shown in blue:

CODE TO TYPE:

public class Main {

public static void main(String[] args) {
if (args[0] '= null) {
SalesReport mySalesInfo = new SalesReport();
mySalesInfo.testMe();

Now, check out the changes we made:

OBSERVE: Adding Command Line Arguments to Main

public class Main{

public static void main(String[] args) {
if (args[0] != null) {
SalesReport mySalesInfo = new SalesReport () ;
mySalesInfo.testMe() ;

Some applications might not have a graphical user interface for userinput, so Java requires that we declare
the main method specifically with arguments, as public static void main(String[] args).

Java uses the formal parameter String[] args to allow the user to provide input. The input provided is cast
as a String and putinto the array args. The main () method in the class called receives these arguments, so
the programmer has to access the args array in order to getthose values. Specifically, args[0] (in the main
method) are made up of whatever is entered for the first argument. The argument variable type is String, so if
the user enters 5 for the first argument, args[0] will be equal to the String "5" (notthe numeral). In our
example, we check to see ifargs[0] is null. We generally assume that if there are no command line
arguments, the 0 element ofthe array is null.

Q’ Save and runit.

El consale i3

<kerminated = Main [Java Application] C:\Program Filest Javaljrel 5.0_0&ibintjavaw. exe (Sep 27, 2008 7:06:15 AM)
tExcept ion in thread "main™ java. lang. ArrayIndexOutOfBoundsException: O
at Main.main(Main. java:g)

The condition for the if is (args[0] != null), so Java wants to go to args[0] immediately. But since no
arguments were given, args[0] doesn't exist. In fact, even asking for args[0] is out of bounds. So, what
should we do? Consider checking the length of args instead.

Edit Main.java as shown in blue:

CODE TO TYPE:

public class Main {

public static void main (String[] args) {

if (args.length > 0) {
int argIn = Integer.parselnt(args[0]) ;
SalesReport mySalesInfo = new SalesReport (argln);
mySalesInfo.testMe();

}

else {
SalesReport mySalesInfo = new SalesReport();
mySalesInfo.testMe() ;

OBSERVE: Fixing Our Mistake

public class Main {
public static void main(String[] args) {

if (args.length > 0) {
int argIn = Integer.parselnt(args[0]):
SalesReport mySalesInfo = new SalesReport(argln);
mySalesInfo.testMe () ;

}

else {
SalesReport mySalesInfo = new SalesReport();
mySalesInfo.testMe () ;

Now, we check to see ifthe length ofthe args array is greater than 0. Ifitis, we setthe local variable argin to
the intvalue of the args[0] element. Then we create a SalesReport objectnamed mySalesinfo by passing
argln to the constructor of the new SalesReport object. This will produce an error because we have not yet
modified the SalesReport class. Next, we call the testMe() method of the SalesReport class.

If the args array length is not greater than 0, we create our SalesReport class justlike we did earlier. Then
we call the testMe () method of the SalesReport class.

5l Go ahead and save this program.

new SalesReport(argln) is underlined in red, because we haven't defined this additional constructor with a
parameter (SalesReport(int x)) yet. Java/Eclipse offers some suggestions, butignore them for now.

Here we give the user an opportunity to enter the number of salespeople before the code starts. If the user
doesn'tenter a number here, we'll prompt her to do so when the SalesReport class starts.

If the user does inputa number, we want to pass itto the SalesReport class through its Constructor, so we'll
need a new Constructor with the formal parameter of an int before we can test our new Main. That's why you
see Java's comment: Create constructor'SalesReport(int)'. If the user doesn'tenter a number, we'll
use our recently edited Constructor to prompt for it.

Overloading the Constructor

Let's write that Constructor, this time one that receives the number of salespeople. In object-oriented terms,
we'll overload the Constructor method. Overloading occurs when a Class has two methods with the same
name, but different signatures (numbers and/or types of parameters).

Edit SalesReport in your java3_Lesson01 project, as shown in blue:

CODE TO TYPE: SalesReport

import java.util.Scanner;

public class SalesReport{
int salespeople;
int sum;
int sales[];
Scanner scan = new Scanner (System.in);

public SalesReport(int howMany) {
this.salespeople = howMany;
this.sales = new int[salespeople];

}

public SalesReport () {
System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

}

public void testMe () {
getSalesInput () ;
provideSalesOutput () ;
}

public void getSalesInput () {
for (int i=0; i < sales.length; i++){
System.out.print ("Enter sales for salesperson " + i + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {
System.out.println ("\nSalesperson Sales");

System.out.println("----------————-——-—- ")
sum = 0;
for (int i=0; i < sales.length; 1i++) {
System.out.println (" "+ 1+ " " + sales[il]);

sum = sum + sales([i];

}

System.out.println ("\nTotal sales: " + sum);

=1 Save it, then go back to the Main class. The erroris gone now.

0 Run the application in the Main class. Since we didn't run it with input from the command line, Java
prompts us for this information.

OBSERVE: Overloaded Constructor

import java.util.Scanner;

public class SalesReport{
int salespeople;
int sum;
int sales[];
Scanner scan = new Scanner (System.in) ;

public SalesReport (int howMany) {
this.salespeople = howMany;
this.sales = new int[salespeople];

}

public SalesReport () {
System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt () ;
this.sales = new int[salespeople];

}

public void testMe () {
getSalesInput () ;
provideSalesOutput () ;
}

public void getSalesInput () {
for (int i=0; i < sales.length; i++){
System.out.print ("Enter sales for salesperson " + i + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {
System.out.println ("\nSalesperson Sales");
System.out.println("--—-----—--—-—---————- ")

sum = 0;
for (int i=0; i < sales.length; 1i++) {
System.out.println (" Wode a4 W " + sales[il]);

sum = sum + sales([i];

}

System.out.println ("\nTotal sales: " + sum);

This constructor lets us pass a parameter to the SalesReport class when we create it. The no-parameter
constructor works as it did before, allowing the user to select the number of salespeople atrun-time.

A Closer Look at Main

Take a look at the line we wrote in order to get the argumentto pass to the SalesReport constructor,
SalesReport(int howMany):

OBSERVE: main args

public class Main {
public static void main(String[] args) ({

if (args.length > 0) {
int argIn = Integer.parselnt(args[0]);
SalesReport mySalesInfo = new SalesReport (argln) ;
mySalesInfo.testMe() ;

}

else {
SalesReport mySalesInfo = new SalesReport();
mySalesInfo.testMe () ;

If we allow the user to specify an argumentinitially, and (args.length > 0) is true, what parameter is passed
to the constructor of SalesReport?

The code for the Constructor seems reasonable. argln is declared as an int, so passing it meets the formal
parameter requirements for the Constructor SalesReport(int howMany) in the SalesReport class. But
whatis this Integer.parselnt(args[0])?

The variable in the main() is (String [] args), so everything given to the method as an args[] is castto a
String. And because Java would interpret, for example, 5 as String "5" and notan int, we need to make
String into anint.

AP Go to the APl to see the java.lang.Integer class, then consider the two snippets of code below (keep in
mind that args[0] is a String):

e Integer.parseint(args[0])
e Integer.valueOf(args[0])

Ultimately, both techniques take a String argument and return an int value for it. Similar methods are used in
other wrapper classes in java.lang (also called convenience classes) to parse from Strings to other primitive
data types. These methods are particularly useful, because they allow Java to have a measure of conformity.
Because Java interprets all inputarguments as Strings, and is unable to anticipate userinput, it needs some
conformity. Butas a programmer, you know what to expect as input, and can convert the passed String to
any type you want. In our code, we have a constructor that receives an int, so we convert that passed String
argumentto an int.

Entering Command Line Arguments

So, how do we allow users to give arguments from the command line? Let's go over that from within Eclipse.
(Later, we'll show you how to do it when you're notin Eclipse.)

If you haven'tdone so already, save your Main class. Right-click it and select Run As | Run
Configurations:

m Main.java &3 m *3alesReport, java 1

public class Main {

= /7 < Unda Tvping Chrl+2
] Rewerh File
Save Chrl+5
= m
Cpen Declaration F3
Open Type Hierarchy F4
Cpen Call Hierarchy Chrl+alk+H
Show in Breadorumb Alk+Shift+E
CQuick Outline Chrl+
Quick Type Hierarchy Chrl+T
Show In AlE+Shift+iy *
3 Ut L s
} oy (] +iT
Copy Qualified Mame
Paste Chrl+Y
Quick Fix Chrl+1
SOLFCE Ale+shift+s #
Refactar Ale+Shift+T *
Lacal Hiskary L4
References L4
Declarations L4

|F=1 Add to Snippets. ..

gl =args)

arselfntiargs[0]):

fo = new ZalesReport (argln) !

fo|l = new ZalesReport () !

ff start the application

Debug As
Profile As
Yalidate

Team
Compare With
Replace With

2

7] 2 lava Application Ale+5hifk+, J

I -

Preferences...

Run Configurations. ..

f4 dinstantiate the

| Writable

| amart Insert

13: 36 |

Selectthe Arguments tab and enter 5 in the Program arguments: box. Then click Run:

& Run @

Create, manage, and run configurations —
Run a Java application { I ;)

= -+l
ﬂ??*_—nv

type filker bext

Marme: | Main (1)

® Main 9= Argurnents =i JRE | “%; Classpath 'E;_// Source E Ervvironment | =] Common
4 Eclipse Application
B4 Java applet

=-[3] Java Application
31 main Enter the argument. .)

Program arguments:

71 Main (1)
Ju Uik

JU It Plug-in Test

05 Framewark

WM argurnents:

‘working directary:
(%) Default:
() other:
C..and click Run. | apply || mevert |
Filter makched & of & itemns

Run J Cose |

El consale i3

Main [Jawva Application] C:4Program Files)Javaijrel.5.0_06ibinljavaw, exe (Oct 1, 2008 7:34:14 AM)
Enter sales for salesperson 0: 42507

Enter salesz for salesperson 1l: S2506
Enter sales for salesperson 2: 459206
Enter =sales for =salesperson 3: o0002
Enter salesz for salesperson 4: S5200

There's a promptin the Console to Enter sales for salesperson: for the number oftimes thatyou
specified. Now users can enter any number of salespeople they want, and we won't have to edit the code.
Users can provide their input either when they Run, or when prompted by the program. Sweet!

V] Run the program again with Run As | Java Application only. It still prompts for 5 salespeople. That's
because we didn'tremove the "5" argument. It's still setfor 5 in Eclipse.

Choose Run As | Run Configurations, selectthe Arguments tab, and delete the number you set earlier.
Now, Run As | Java Application again; it should promptyou as expected.

Code Flexibility Revisited

Fooling the User

Being diplomatic managers, we don'twant to identify anyone on our staffas "Salesperson 0," butO0 is
assigned automatically as Java's ID for the firstindex in the array. Fortunately, programmers have power.
While we can't change the way Java is written, we can change the way itlooks to the user. And we can do it
without going to all the trouble of manipulating programming structures, such as arrays. Instead, we can make
Java print a higher number to the user. Salesperson 1is still identified with the array element sales[0], but he

doesn't need to know that!

Let's give ita try. Edit SalesReport as shown in blue:

CODE TO TYPE:

import java.util.Scanner;

public class SalesReport{
int salespeople;
int sum;
int sales|[];
Scanner scan = new Scanner (System.in);

public SalesReport (int howMany) {
this.salespeople = howMany;
this.sales = new int[salespeople];

public SalesReport () {
System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

}

public void testMe () {
getSalesInput () ;
provideSalesOutput () ;
}

public void getSalesInput () {
Scanner scan = new Scanner (System.in);

for (int i=0; i < sales.length; i++)

{
System.out.print ("Enter sales for salesperson " + (i+l) + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {

System.out.println ("\nSalesperson Sales");

System.out.println("---——----------—--——~ ")

sum = 0;

for (int i=0; i < sales.length; i++)

{
System.out.println (" "4+ (i41) + " " 4+ sales[i]);
sum = sum + sales[i];

}

System.out.println ("\nTotal sales: " + sum);

Q Save and run it (as a Java Application from Main).

It's often easier to change the appearance of our output by changing print statements than by
changing programming structures.

Finding the Max

Suppose we want to find the maximum sales and the salesperson responsible for that number. We can do
that!

Edit SalesReport as shown in blue:

CODE TO TYPE:

import java.util.Scanner;

public class SalesReport{
int salespeople;
int sum;
int sales[];
Scanner scan = new Scanner (System.in);

public SalesReport (int howMany) {

this.salespeople = howMany;
this.sales = new int[salespeople];

public SalesReport () {

System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

}

public void testMe () {
getSalesInput() ;
provideSalesOutput () ;
findMax () ;

}

public void getSalesInput () {
Scanner scan = new Scanner (System.in);

for (int i=0; i < sales.length; i++)

{
System.out.print ("Enter sales for salesperson " + (i+1l) + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {

System.out.println ("\nSalesperson Sales");

System.out.println("---——------—---—--——- ")

sum = 0;

for (int i=0; i < sales.length; i++)

{
System.out.println (" "o+ (141) + " " 4+ sales[i]);
sum = sum + sales[i];

}

System.out.println ("\nTotal sales: " + sum);

}

public void findMax() {
int max = 0;
for (int i=0; i < sales.length; i++)
{
if (max < sales[i])
max = sales[i];
}

System.out.println("\nMaximum sales is " + max);

o Save and run it (as a Java Application from Main). The program works fine, but who has the maximum
(largest) sale?

Edit SalesReport by changing the findMax () method as shown in blue:

CODE TO TYPE:

import java.util.Scanner;

public class SalesReport{
int salespeople;
int sum;
int sales[];
Scanner scan = new Scanner (System.in);

public SalesReport (int howMany) {

this.salespeople = howMany;
this.sales = new int[salespeople];

public SalesReport () {

System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

public void testMe () {
getSalesInput () ;
provideSalesOutput () ;
findMax () ;

public void getSalesInput () {
Scanner scan = new Scanner (System.in);

for (int i=0; i < sales.length; i++)

{
System.out.print ("Enter sales for salesperson " + (i+1l) + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {
System.out.println ("\nSalesperson Sales");
System.out.println("---——------—---—--——- ")
sum = 0;
for (int i=0; i < sales.length; i++)
{

System.out.println (" "o+ (141) + " " 4+ sales[i]);
sum = sum + sales[i];

}

System.out.println ("\nTotal sales: " + sum);

public void findMax () {
int max = 0;
for (int i=0; i < sales.length; i++)
{
if (max < sales[i])
max = sales[i];
}
System.out.println("\nSalesperson " + (i+l) + " had the highest sale wit
h $" + max);
}

45 public void fincdMax() {

49 int max = 0;

L] for (int 1 = 0; i < zales.length; i++)
51 {

52 if (max < sales[i]}

53 max = sales[i]:

LS4 H

55 |icannot be resolvedin, cut.printlni™\ nSalesPerson ™ + (i+1) + " had the highest sale with 7 4+ max |
S& ¥
7

The i is underlined and Java tells us itcannot be resolved. That's because i is declared in the loop
initialization, so its scope is only within the loop. Notto worry, I'm confident we can fix this! Let's try moving i
outofthe loop. Edit SalesReport by changing the findMax() method as shown in blue:

CODE TO TYPE:

import java.util.Scanner;

public class SalesReport{
int salespeople;
int sum;
int sales[];
Scanner scan = new Scanner (System.in);

public SalesReport (int howMany) {

this.salespeople = howMany;
this.sales = new int[salespeople];

public SalesReport () {

System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

public void testMe () {
getSalesInput() ;
provideSalesOutput () ;
findMax () ;

public void getSalesInput () {
Scanner scan = new Scanner (System.in);

for (int i=0; i < sales.length; i++)

{
System.out.print ("Enter sales for salesperson " + (i+1l) + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {
System.out.println ("\nSalesperson Sales");
System.out.println("---——------—---—--——- ")
sum = 0;
for (int i=0; i < sales.length; i++)
{

System.out.println (" "o+ (141) + " " 4+ sales[i]);
sum = sum + sales[i];

}

System.out.println ("\nTotal sales: " + sum);

public void findMax () {
int max = 0;
int i;
for (i=0; i < sales.length; i++)
{
if (max < sales[i])
max = sales[i];

}

h $" + max);

}

System.out.println("\nSalesperson " + (i+1) + " had the highest sale wit

Q Save and run it (as a Java Application from Main).

Give it 3 salespeople with sales amounts of 3,4, and 5:

OBSERVE: Output from SalesReport Application

Enter
Enter
Enter
Enter

Total

the number of salespersons: 3

sales
sales
sales

Salesperson

sales:

Salesperson

for salesperson 1: 3
for salesperson 2: 4
for salesperson 3: 5

12

4 had the highest sales with $5

Hmm. That's better, but there's still a problem. Who is this Salesperson 4 and why are they outselling our

other salespeople?!

The real problem isn't where we declare the loop variable, but when the loop is done. The lastloop iteration
might not always be where max was set. When we come outofthe loop, i will always be the last value Java
saw in the loop. So, we need to remember who (which loop index) has the maximum sale by putting itin
memory (thatis, giving it a variable name and in doing so, a memory location).

EditSalesReport as shown in blue:

CODE TO TYPE:

import java.util.Scanner;

public class SalesReport{

int salespeople;

int sum;

int sales|[];

Scanner scan = new Scanner (System.in);

public SalesReport (int howMany) {
this.salespeople = howMany;
this.sales = new int[salespeople];

public SalesReport () {
System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

}

public void testMe () {
getSalesInput() ;
provideSalesOutput () ;
findMax () ;

}

public void getSalesInput () {
Scanner scan = new Scanner (System.in);

for (int i=0; i < sales.length; i++)

{
System.out.print ("Enter sales for salesperson " + (i+l1l) + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {

System.out.println ("\nSalesperson Sales");

System.out.println("--—-——---------—--——- ")

sum = 0;

for (int i=0; i < sales.length; i++)

{
System.out.println (" "o+ (141) + " " 4+ sales[i]);
sum = sum + sales[i];

}

System.out.println ("\nTotal sales: " + sum);

}

public void findMax () {
int max = 0;
int who = 0;
for (int i=0; i < sales.length; i++)
{
if (max < sales[i])
{
max = sales[i];
who = i;
}
}
System.out.println ("\nSalesperson " + (who+l) + " had the highest sale w
ith $" + max);
}

o Save and run it (as a Java Application from Main). We are still "fooling" the user by adding 1 to the index
who. (Nobody wants to be salesperson 0, right?)

Don't Let the User Fool You

Now, let's suppose our salespeople are having a bad year and they all lost money. Run the program (from
Main) and enter negative sales numbers for everyone. This gives 0 as the output for the max sold, even
though nobody actually sold 0.

Edit SalesReport as shown in blue:

CODE TO TYPE:

import java.util.Scanner;

public class SalesReport{

int salespeople;

int sum;

int sales|[];

Scanner scan = new Scanner (System.in);

public SalesReport (int howMany) {
this.salespeople = howMany;
this.sales = new int[salespeople];

public SalesReport () {
System.out.print ("Enter the number of salespersons: ");
this.salespeople = scan.nextInt();
this.sales = new int[salespeople];

}

public void testMe () {
getSalesInput () ;
provideSalesOutput () ;
findMax () ;

}

public void getSalesInput () {
Scanner scan = new Scanner (System.in);

for (int i=0; i < sales.length; i++)

{
System.out.print ("Enter sales for salesperson " + (i+1l) + ": ");
sales[i] = scan.nextInt();

public void provideSalesOutput () {

System.out.println ("\nSalesperson Sales");

System.out.println("---——------—---—--——- ")

sum = 0;

for (int i=0; i < sales.length; i++)

{
System.out.println (" "o+ (141) + " " + sales[i]):;
sum = sum + sales[i];

}

System.out.println ("\nTotal sales: " + sum);

}

public void findMax () {
int max = sales[0];
int who = 0;
for (int i=0; i < sales.length; i++)
{
if (max < sales[i])
{
max = sales[i];
who = 1i;
}
}
System.out.println ("\nSalesperson " + (who+l) + " had the highest sale w
ith $" + max);
}

o Save and run it (as a Java Application from Main), again with all negative sales numbers.

It's notreally fair to blame the user for such weird numbers. Something like this could really happen. Java
provides tools for its programmers to handle all kinds of errors. In later lessons, we'll look explicitly at
Exception and Error classes that will assist us in dealing with strange input.

What's in store?
Now we're ready to look at other Java capabilities Java and get even cozier with the API. We'll start by digging into the

top level of the APl—packages—and from there, we'll explore each structure (including classes, interfaces, exceptions,
and enumerations). Soon, you'll embrace Java and the APl will become your bestfriend! See you in the nextlesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Packages

Lesson Objectives

When you complete this lesson, you will be able to:

e use various classes in separate packages.
e demonstrate the OO principal of modularity.
e use package statements.

You Have Great Potential

Java provides lots of pre-written classes that we can access through a convenient class library known as the
Application Programming Interface (API).

Prciages of the Java Technology &P1

The more familiar you are with the API, the better Java programmer you'll be. The Java APl is huge, and as far as |
know, nobody has itmemorized. Butif we getto know its organizational structure and resources well, we'll be able to
wade through itfaster and be much more productive. Because the APl is essential to efficient Java programming, we
always provide a link to the newest version of the APl in your Eclipse menus.

API To view the API, click the APl icon under the Eclipse menu bar.

Why Packages?

Organization

Good resources have an organizational pattern that allows users to search them efficiently. Java uses an
organizational tool called packages to group together classes and interfaces that are related to each
other, and this in turn enables modular groups.

You're probably familiar with the concept of folders (or directories) for files on computers. Typically, we
organize our folders by putting related files into folders with appropriate names. Java's package conceptis
similar, but instead of folders, Java provides thousands of classes. lt uses the namespace (container) of
packages to organize related classes and interfaces into meaningful collections. The packages hold
classes and interfaces (compilation units), which have been created to assist programmers with common
tasks associated with general-purpose programming. Because these classes are already available, we can
focus on designing our own applications, and avoid doing all of our programming from scratch.

Inside Packages

The members of packages are:

e subpackages

e top-level Interfaces declared in the package

e top-level Classes declared in the package (note that Exceptions and Errors are Classes)
e Enumerations and Annotation Types (which are also special kinds of classes and interfaces)

Java provides more detailed information about packages and other specifications in the Java Language Specification.

Packages are often organized using subpackages. You can read more about subpackages and their hierarchies, as
well as other Java tools, in the Java Tutorial.

Related classes and interfaces (compilation units) are grouped together and declared with the same package
name. Packages and their subpackages are separated by a dot. The examples listed below have fully qualified names:

Sample Java subpackages:
e java.awt (contains interfaces such as: ActiveEvent, IltemSelectable; contains classes such as:
Button, Canvas, Color, Frame, Graphics, Image, and Window)
e java.applet
e java.io
e java.lang
e java.beans

e java.util
Sample subpackages of java.awt:

e java.awt.color (contains classes such as: ColorSpace and ICC_ColorSpace)

e java.awt.event (contains interfaces such as: ActionListener, AdjustmentListener, MouselListener;
contains classes such as: ActionEvent, AdjustmentEvent, MouseEvent)

e java.awt.image (contains interfaces such as:ImageConsumer,ImageProducer; contains classes such
as: Bufferedimage,ImageFilter, PixelGrabber,ImagingOpException)

AP Open the APl browser by clicking on the browser tab or the API menu icon. If this doesn't open the list of packages,
click the browser's back button until you getthere. You'll see a list of the subpackages of java (java.applet, java.awt,
java.beans, and so on.). Scroll up to the subpackages of java.awt (there are quite a few: java.awt.color,
java.awt.datatransfer, java.awt.event, and java.awt.font). Scroll all the way down; the only items in the Packages listing
are packages (there are no compilation units).

Scroll back up and click on the java.awt package. There are no packages inside ofits listing (there are only
compilation units).

Inside any given package, we see:

e Interface Summary
e Class Summary

e Enum Summary

e Exception Summary

e Error Summary

We'll go over each of these compilation units later in the course.

Your Own Java Package

Package Creation

Create a new java3_Lesson03 projectin the java3_Lessons working set. In this project, create a new
Class, using the package mine and the name Main:

http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#26535
http://download.oracle.com/javase/tutorial/java/package/usepkgs.html

== New Java Class H=]

Jawva Class

(D
Create a new lava class, '\-! - d

{ Source Folder: I java3_Lesson0s) s) Browse, ..
{ Package: | mine _) Browse, .,

- Enclosing type: | Erowse, ..

il

@;me: | Main _)

Modifiers: % public " default " private " protected

[abstrace [final ™| static
Supetclass: |java.lang.0bject Browse, ., |
Interfaces: add. ..

Remove

g

wehich method stubs would vou like to create?
[public static void mainString[] args)
[Construckars From superclass
¥ Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

|_ aenetate comments

(?) Finish I Cancel

OBSERVE: Main.java

package mine;
public class Main {

}

The firstline of the new Main.java file is package mine;.

In general, to create a package, you put a package statement with its chosen name atthe top of every source
file that contains the types (classes, interfaces, and enumerations) that you want to include in the package.

Declaring a Package

If a package declaration statement appears in a Java source file, it must be the firstitem in that file (with the
exceptions of comments and white space).

Because we did not specify package names in our earlier lessons, we used the default package. An unnamed
(default) package should only be used for small or temporary applications, or at the beginning of the
development process. You may remember Eclipse trying to talk you out of using unnamed packages earlier:

= Mew Java Class M=] B9

Jawva Class

II(/-—-.
{ /1, The use of the default package is discuurag@\ L\ .

Source Folder: |java3_Lessu:unDS,l'srn: \ Browse. ., |
{ Parckage: u“ {defaulty Browse.., |

I Enclosing type: | Browse, .. |
Mame: IMain
Modifiers: = public £~ defaul: £ private " protecked

[T abstract [Ffinal [T static

J

Superclass: | java.lang. Object Browse, ..

Interfaces: Add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

If no package name is specified at the beginning of a class, that class will be located in the

default package. If no package names are specified, all class files in the same directory (or
folder) will be in the same package, the default package. If you're working outside of Eclipse, the
default package will be located in the current directory (thatis, the directory where the class is

defined).

In Lesson 1, we didn't specify a package name for our classes, so the classes were located in the default
package. The (default package) you see in the Package Explorer appears in parentheses because it's not

really a package named default.

Let's see if we can create a default package now in java3_Lesson03 and also create a new Class. In the

Package field of the Create New Class window, enter default:

= Mew Java Class M=] B9

Java Class —
@ Package name is not valid, 'default’ is not a valid Java identifier] <Q

javad_|essonddfsrc Browse, .,

Source Folder;

[Package: ¢ def ault| _) Browse, .,

il

I Enclosing type: | Browse, ..
Mame: IMain
Modifiers: = public £~ defaul: £ private " protecked

[T abstract [Ffinal [T static

J

Superclass: | java.lang. Object Browse, ..

Interfaces: Add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Fimish I Cancel

Oh well, we tried. Click Cancel to getout.

Let's try to copy the files we made in Lesson 1overto Lesson 3 and give them package names to see how to
use packages in code. Go to the folder java3_Lesson01/src/(default package). Open the Main.java file.
Highlight all of its contents, right-click the mouse, and select Co py. Close this Main.java file and open the
Main.java we justcreated in java3_Lesson03/src/mine. Keeping the package specification at the
top, right-click and select Paste underneath. Notice it also automatically added import SalesReport;. The
code looks like this:

- { |
| Main.java 52 O

1 package mine; ﬂ!
2
£ 3 import SalesEeport:
4 =
S5 public class Main |
1]
TE Epu.hlic! static void mwain(3tring[] args) 1
=] if [args.length > 0) 1
a int argln = Integer.parselntiargs[0]]):
410 falesPeport mydalesInfo = new JalesPeport (argln):
. 1 my3alesInfo.testMe() ; -
2 } else {
3 SalesBeport myJalesInfo = new JalesHeport():
4 my3aleszInfo.testMe() ; -
5 h
& h
17
15

. , 8

We could setitup to importthe SalesReport class from our java3_Lesson01 project, butfor now, we'll
illustrate different packages using the same Eclipse project.

In the java3_Lesson03 project, create a new SalesReport Class as shown:

= Mew Java Class M=] B9

Jawva Class —
Create a new Java class, @

(. Source Folder: |java3_Lessu:unDS,l'srn: _) Browse. ., |
(Package: |';.ﬂ:uurs > Browse, ., |

- Enclosing type: | Browse, .. |
{ Mame: ISaIesRepDrt :)

Modifiers: = public £~ defaul: £ private " protecked

[T abstract I Final ™| skatic
Superclass: |java.lang.0bject Browse, .. |
Interfaces: add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

Now we'll copy from lesson 1. Go to java3_Lesson01/src/(default package) and open
SalesReport.java. Highlight all of its contents and right-click to choose Copy. Close this file and open the
SalesReport.java we justcreated in java3_Lesson03. Keep the package specification and paste the
SalesReport code justbelow it. The code should look like this:

K@ Main. java (m *SalesRepart java &4 =0
1 package yours; |E=
2
3 dmport Jjava.util.Zcanner:

4

S5 public class Saleskeport |

7] int =salespeaple;

7 int =um; ||

o int Sales[]d

a Joanner Scah = New Scahher (3vatem.in)

10

11 public ZalesPBeport(int howlMany) {

12 this.zsalespeople = howMany!

13 this.zsalez = new int[salezspeople]:;

14 h

15

16 public ZalesBeporti(){

17 SJystem. ort.print ("E . - . -

1g this.salespeople = (Thisis a Partial listing))

19 this.zsalez = new int [>ore—opoopreT=

20 h i
9 | of

Package Access

In order to use classes and interfaces located inside packages (other than java.lang or the package that contains the
class), we must tell the program where they're located.

Accessing Packages Using import

We direct programs to the location of packages that hold classes and interfaces using import statements.
We already have our classes set up in different packages (yours and mine). Now, we will let one access the
other. Since they are no longer in the same package (they were both in defaultin Lesson 1), we need to import
the class with its fully qualified name so that Java knows where to find it.

Go back to the newly created Lesson 3 Main.java class and modify the code as shown in blue:

CODE TO TYPE: mine.Main

package mine;
import yours.SalesReport;

public class Main {
public static void main(String[] args) {
if (args.length > 0) {
int argIn = Integer.parselnt (args[0]);
SalesReport mySalesInfo = new SalesReport (argln);
mySalesInfo.testMe();
}

else(
SalesReport mySalesInfo = new SalesReport(); //instantiate...
mySalesInfo.testMe(); //Start it

The fully qualified name now points to the class and its location (the package yours). This corrects all of the
previous errors.

=1 Save the SalesReport.java and Main.java files.

o Run it (from Main). It should work the same way it did before.

The Classloader

Okay, now let's look at the Eclipse Package Explorer directory's structure, to reinforce our understanding and
appreciate its coolness:

o

ftg Packa &% ?g Hierarw El Cu:unsuﬂ .;:'J Termiw = O

0 & <

i_.l laval _Lessons
i ﬂ;_.l Jawa3_Hormewark,
= H_]-I Javad_lessons

=8 IE- javad_Lessondl

%EE‘ (default packag@

FY
—

[+ [X] Main.java —
8 3] SalesReport. 3 & f—

E-.a JRE Svwstem Library [jred]
I'_—'II:‘.{- javad_Lesson03
E‘E sHC

- Main.java +__
- fH yours 2 |

‘ [#]- El SalesReport.java

I ‘B2, JRE Syskem Library [jrec]

[+ b javald_Lesson04

IE‘J- javas_Lesson0s

72 S | el [

I =L

In the same way that programmers use the package organization of the APl to look up information about
classes, programs use the structure (through the package namespace) to access the code for the classes that
we instructitto use. Specifically, Java transforms a package name into a path name by concatenating the
components of the package name and placing a file name separator between adjacent components.

Forexample, on a UNIX system, where the file name separatoris /:

The package name oreilly.school.java.courses would become the directory name
oreilly/schooll/java/lcourses/.

In Windows, where the file name separatoris \:

The package name oreilly.school.java.courses would become the directory name
oreilly\school\java\courses\.

Classloading can be a bit complicated, butdon't worry. We address itin greater detail later in the Java series.
Until then, here's a Java World article if you're interested in looking into the basics of Java class loaders right
now.

When to Import

The classes in the java package are available in any Java implementation. They are the only classes
guaranteed to be available across different platiorms and Java versions. Classes in other packages (Oracle,
Netscape) may be available only for specificimplementations.

Newer versions of Java include additional packages thatused to be plugins (for example, javax.swing and
org.omg.CORBA).

API Go to the Packages API page and scroll to the bottom. There are lists of packages and subpackages
available under javax, org.omg, and many other links you'll find in the API.

Although all of the classes in the java package are available by default, your Java classes have access only
to the classes in your current package (directory) and in the package java.lang. To use classes from any

http://www.javaworld.com/javaworld/jw-10-1996/jw-10-indepth.html

other package, you have to execute one of these actions:

e Referto them explicitly by package name. For example, java.util.Date today = new
java.util.Date();

e Importthem to your source file. For example, import java.util.*;, then use Date today = new
Date();. (This is usually the preferred method, because it requires less code to be written when
more than one class is being used in the package.)

You can only use the * wildcard to import multiple classes from a specific package. You cannotuse * to
import multiple packages. And import java.*; won'timport classes from multiple subpackages of java.
Using the * (wildcard) to import all classes for a given package has no negative impact on compile time or
code size, so go ahead and work it.

Note import does notwork the same way as #include does in C. Java uses dynamic class loading
' —thatis, itonly loads classes when they are actually instantiated.

Naming Conflicts

Nobody in their right mind wants to search the entire API to find outifa class name has already been used.
Fortunately, modularity and polymorphism allow you to replace existing class names with names tailored to
fit your class and your package.

This could resultin multiple packages with classes that share the same name, but that's not a problem.
Because of Java's inherent modularity, we can name classes in packages whatever we like. Modularity
allows you to specify exactly which class you want to use when there is more than one package with the
same class name. If two packages have classes with the same name, Java justwon'tletyou importthem
both.

Consider, for example, the class Date. In the java3_Lesson03 project, create a new TestDate Class:

= Mew Java Class M=] B3

Jawva Class —
Create a new Java class, @

—

[Source Falder: |java3_Lessu:unDS,l'srn:) Browse. ., |
|: Package: |I:ime) Browse, ., |

- Enclosing type: | Browse, .. |
{ Mame: iTestDate)

Modifiers: = public £~ defaul: £ private " protecked

[T abstract I Final ™| skatic
Superclass: |java.lang.0bject Browse, .. |
Interfaces: add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

In TestDate, type the blue code as shown:

CODE TO TYPE:

package time;

import java.sql.*;
import java.util.¥*;

public class TestDate ({
public static void main(String[] args) {

Date myDate = new Date() ;
System.out.println (myDate.toString()) ;

Move your cursor to the error marker by the line Date myDate = new Date();.

1 package time:

Z

J=import Java.sgl.*;

4 dmport Java.util.*;

5

& public class TestDate |

7 public static void main(3tring[] args)
g = [Mulkiple markers at this line = new Date():

o | [Jnefvpe Date i ambiuously s it 1n (myDate . toString ()) ;

10 T

11

1= '}

13

AP Go to the APl and into the java.sql package. Scroll down to the Class Summary and the Date class.
Okay, our Date class is there. Now, go back to the Packages Summary. Go into the java.util package. Scroll
down to the Class Summary and the Date class. Hmm, it's in there too! No wonder Java said it was
ambiguous. There are Date classes in both of the packages we tried to import.

Imported packages cannot allow ambiguity. If two packages have classes with the same name,

Note then use the fully qualified name of the class to disambiguate.

Editthe TestDate class as shown in blue:

CODE TO TYPE:

package time;

import java.sqgl.*;
import java.util.*;

public class TestDate {
public static void main(String[] args) {

java.util.Date myDate = new java.util.Date();
System.out.println (myDate.toString());

0 Save and runit.

Remove the line import java.util.*;. Because the class uses the fully qualified name: java.util.Date,
removing thatline has no impacton your result.

If you use fully qualified names for a class, then you don't need the import statement for the

Note class.

Packages eliminate the potential for conflicting class names in different groups.

Naming a Subpackage

To name packages, we enter the package declaration as the firstline of code. In Eclipse, we enter that
package name when we set up the class. So how do we name subpackages? I'm glad you asked!

In the java3_Lesson03 project, create a new AskMe class, with the package name mine.test, as shown:

= New Java Class H=]

Java Class (,——--
Create a new Java class, KQ
i Source folder: I java3_Lesson0s) s __) Browse, ..
{ Package: | mine, tesk) Browse, .,

[

- Enclosing type: | Erowse, ..
—
[Mame: |.ﬁ.skl"-“le)
Modifiers: % public " default " private " protected
[T abstract [Final ™| skatic
Supetclass: |java.lang.0bject Browse, ., |
Interfaces: add. ..

Remove

g

wehich method stubs would vou like to create?
[public skatic void maindSkring[] args)
[Construckars From superclass
¥ Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

|_ aenetate comments

(?) Finish I Cancel

Voilal Check out the files in your Package Explorer window:

F — 4
t8 Package E2 T: Hierarch} El Cnnsnle} L Terminaq O

=

iﬁ‘l Javal _Lessons
ﬂﬁl Jawa3_Homework,
Elff,‘.l Jawas_Lessans
'[E‘J javai_LessonOl
EIIE‘J javad_Lesson03
E- 2 sre
E|EE|l rmire
m Main.java
EIEE\l mine, tesk
El AskMe.java
= time
m TestDate. java
=3 yours
m SalesReport.java
[+-= JRE Swstem Library [jrea] —
EEI---I&J- javad_Lessonl4
TE"I javald_Lesson0S
:L:‘,J- javas_Lesson0s
F-72 Gawam ecennn? ll

F
—

Fackages
hold
classes.

0
It's all there and named properly: New class, package, and subpackage. Nice!

Conventions: Case Usage for Package and Class Names

Even with the freedom modularity allows us in naming, we Java programmers follow some hard conventions
in naming as well. Here are the two basic naming conventions that we adhere to:

e Packages names consistof all lowercase letters.
e Classes begin with uppercase letters.

Eclipse will allow you to break these conventions, butit complains mightily when you do.

In the java3_Lesson03 project, create a new Class. In the New Java Class window that opens, for Source
folder, enter (or accept) java3_Lesson03/src. For Package, enter MyPackage. Move to the Name field and
type t. See the warning:

= New Java Class H=]

Java Class —
I, This package name is discouraged, By convention, package names usually skart @
ith a lowercase letter =

Source Fol | javad_Lesson03fsrc Browse, ., |
Package: | MyPackage _) Browse, ., |
[Enclosing type: | Browse, .. |
Mame: |I:|

Modifiers: ' public " default | private " protected

[~ abstract [Final I~ | static

J

Supetclass: | java.lang. Object Browse. .,

Interfaces: Add...

Remaowve

d

Wehich method stubs would vou like to create?
[T public static void main{String[] args)
[Construckars From superclass
V' Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

I_ Generate comments

(7) Firish I Cancel

Go back and correct the Package name to myPackage, and then move again to the Name field, finish typing
testMe, and observe the warning:

= Mew Java Class M=] B9
Java Class /,___
I, Type name is discouraged, By convention, Java bype names usoally start withw

uppercase letker

| javad_Lessonl3)sic Browse. ..

| mvPackage Browse, .,

iy

[vpe: | Browse, ..

LY
———
[Mame: ItestMe)
Modifiers: = public £~ defaul: £ private " protecked
[T abstract I Final ™| skatic
Superclass: |java.lang.0bject Browse, .. |
Interfaces: add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

Change the class name to TestMe and click Finish.

Conventions: Duplicate Member Names
A package may not contain two members with the same name.

In the java3_Lesson03 project, create a new class. In the New Java Class window that opens, for Source
folder, enter java3_Lesson03/src. For Package, enter myPackage. For Name, enter TestMe. See the
warning:

= Mew Java Class M=] B9

Java Class —
@ Type already exists,) <Q

I

CSJHH:E Folder: I javad_Lessond3fsrc) Browse. .,

iy

|
Patkage: |m';.fF‘a|:kage) Browse, .,
r%nclusing [vpe: | Browse, ..

II .

(Marme: ITestMe| _)
Modifiers: = public £~ defaul: £ private " protecked
[T abstract [Final ™| skatic

Superclass: |java.lang.0bject Browse, .. |
Interfaces: add...

g

Remove

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Fimish I Cancel

Click Cancel.

Conventions: Company Names
One last convention to be aware of is that companies use their reversed internet domain names to begin their
package names. For example, com.oreilly.school.javal would be used for a package named java1 created by
a programmer at school.oreilly.com.

Packages Highlights

Object-oriented programs:

e allow modular groups of classes to be made available.
e eliminate potential conflicts between class names in different groups.

There are three ways you can use a public package member from outside of its package:

e Referto the member by its fully qualified name.
e Importthe package member.
e Importthe member's entire package using * (wildcard).

Uses for packages:

e Packages in Java are tools for grouping together related classes and interfaces.
e Aclass does notimport packages, itimports classes and interfaces in packages.
e Dots (for subpackages) are like subfolders or subdirectories to the classloader.

Rules for using packages:

e There can only be one package statementin each source file.

e Ifa package statementappears in a Java source file, it must come firstin that file (except for comments and
white space).

e Inimports, the * (wildcard) gets only the top-level compilation units in a package; it will not get classes and
interfaces in a package's subpackages.

e A package cannot contain two members with the same name (see the Java Language Specification).

e Files ofa package should be located in a subdirectory that matches the full package name.

Coming Attractions

Good job so far! Let's move on and learn about the stuff that's found inside of these packages: inheritance trees,
classes, interfaces, exceptions, errors, enum, and more! See you in the nextlesson...

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://docs.oracle.com/javase/specs/jls/se7/html/jls-7.html#jls-7.1
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Software Design: Inheritance

Lesson Objectives

When you complete this lesson, you will be able to:

e use asuper-class with its sub-classes.
e demonstrate the sequence for memory allocation and defaultinitialization of instances.
e use the shadow, override, and chain classes.

Origins and Organization

So far we've learned that packages contain lists of related classes and interfaces. We've also learned about
variables and fields and methods contained within classes.

A key design constructin object-oriented programming is inheritance. We've seen how inheritance works for individual
classes; now let's explore inheritance and how it works with other design elements.

Classification

Object-oriented programming borrows the practice of classification from the field of biology. You might
remember learning about classification back in the day, in a general biology class. It worked like this:

Example: Animal animal
class hierarchy

fizh reptile marmimal

triowt hisgfizh shark snake lizard gator human hiotse dog

I'm no biologist, but | think you get the picture. Using classification in programming is similar, with a few
differences. When we discuss class hierarchies and inheritance trees, it's not quite the same as biological
inheritance trees, or the nodes in those trees that depict, for example, ancestral inheritance:

Mo dad
me my lucky
spouse
baby
billy

In programming, a subclass must possess every trait of its parent class, as well as additional features. By
having additional features, it becomes specialized. The relationship between class and subclass works like
this:

javascript:d1e45();

+ indicates inheritance

E-|
a
a
super of arent of
super — P .
class] 4 = classl ancestors
class1 inherits from ALL
-~ & of its ancestors
class1
classl this = classi class is also the
child of its parent \'
i o descendents
~ siblings ™ siblings
a a -
- a a a all of clazsl's
subclass of = child of a a a descendents will inherit
classl classl from it

See also Superclasses and Subclasses: Java Language Specification.

Programmers often use whatis known as the /s-A testto confirm thata subclass is proper. As a programmer,
you'd ask yourself (quietly, on the inside, so as notto seem weird), "Is the subclass truly A special case of the
parent?" Thatis, "does the subclass contain all that the parent contains and more?" Hopefully, the answer is

"yes," and the only characteristics established in a subclass (child) are those traits that distinguish the class
from its parentand siblings.

Z
o
[
(1]
>
©
Q
=
[}
o
=N
o
Q
[
(2]
&
QO
«Q
]
>
[}
=
o
3
QO
[=o
o
2
QO
n
c
o
Q
QO
(]
(]
&
(V)
n
©
(9
Q,
L
N3
QO
=
o
>
o
-
—
>
D
©
QO
=
[
>
[

Because inheritance from the parentis a default activity, a subclass that does not possess every trait of the
parentshould not be a subclass.

Inheriting

In Java programming, a child may have only a single parent (super) class. However, a child may have many ancestors.
A child inherits every trait from every every ancestor unless that trait has been overridden by an ancestor between them

-
—

charlie extends limpet

I—I—l-I
P D o

flipper extends charlie

-
Note Only non-private traits (variables and methods) are directly inherited. A trait that is private can only be
' accessed by accessing the ancestor object.

Inheritance: Shadowing

If you don't want a child to inherit each and every trait of each and every ancestor, you can override the
methods or shadow the variables.

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#262560

The only way notto inherit from the parentis for the child to override the methods of the parent.
Note Overriding occurs when a class has a method with the same name, return type, and parameter
listings (signature) as its superclass.

Shadowing variables occurs when a field (instance variable or class variable) is defined in both a class and its
superclass.

Let's play with these concepts. Keep in mind thatin our example code:

e this refers to the currentinstance of the class thatis running the particular method at that time.
e superis the parentofthe currentclass.

Create a new java3_Lesson04 projectin the java3_Lessons working set, then in that project, create a new
MySuperClass class:

= New Java Class H=]

Jawva Class

Create a new lava class, @

CSDuru:e Falder: | javad_LessonDdfsrc _:} Browse, .,

G‘ackage: | I:est_) Browse. .,

| Enclosing tvpe: | Browse, ..

il

G‘-.Iame: | MySuperCIass:)

Madifiers: % public O default © private 0 prokecked

[~ abstract I Final ™| static
Supetclass: |java.lang.0bject Browse. ., |
Interfaces: add. ..

Remove

d

Wehich method stubs would wou like ko create?
{ W public static void main{String[] args))

[Constructars From superclass
¥ Inherited abstract methods

Do wou want ko add comments? (Configure templates and default walue hered

I_ Generate comments

(7) Firish I Cancel

Type MySuperClass as shown in blue:

CODE TO TYPE:

package test;
public class MySuperClass {
int i;

public static void main(String[] args) {
MySuperClass cl = new MySuperClass() ;
System.out.println("Value of cl is " + cl.i);
MySuperClass c2 = new MySuperClass(12) ;
System.out.println("Value of c2 is " + c2.i);
}

public MySuperClass() {
i = 10;
}
public MySuperClass (int value) {

this.i = value;

}

ﬁ Save and runit.

KFE Package Explorer lr?g Hierarchey (E Console E2 ."\:ﬂ Terminal 11 = ﬁ\

<terminated:= MyParentClass [Java Application] C:\Program Files) 1avaljres bintjawvan, ex
X % | Geel[EE| 2B -9 -

Value of ci is 10]

Value of c2 iz 12

Do you understand the result? ¢1's i value is derived from the constructor with no passed parameter, where i
is setto 10 in the constructor; c2 calls the constructor with an integer (12) passed, so its i is setto the passed
value.

In the two constructors, switch this.i with i, as shown, adding the code shown in blue and removing the code
showninred:

CODE TO TYPE:

package test;
public class MySuperClass {
int 1i;

public static void main(String[] args) {
MySuperClass cl = new MySuperClass();
System.out.println("Value of cl is " + cl.i);
MySuperClass c2 = new MySuperClass(12);
System.out.println ("Value of c2 is " + c2.1i);

}

public MySuperClass () {
this.i = 10;
}

public MySuperClass (int value) {
this.i = value;

}

ﬁ Save and runit.

rtg Fackage Explorer ﬁg Hierarchey (E Console 23 & Terminal 11 = 0|

<terminated = MyParentClass [Java Application] C:\Program Files Javaljregibinijawam. ex
X %| G bBlEE| 2 B -9

Value of cl is 10 -]

Value of o is 12

We gotthe same result. You can see that within a class, placing this in front of access to a class orinstance
variable (or method) is optional. Its presence is inferred. this should not, however, be placed in front of the
variable declaration as a field in the class. (Try it—Eclipse will let you know, in red, just how wrong thatis.)

Now, let's make a subclass. Click on the package test, and then right-click for the popup menu and choose
New | Class. Create the new class. For Superclass, replace java.lang.Object with MySuperClass. Use the
assist light bulb—press Ctrl and the space bar at the same time (Ctrl+space)—it will fill in
test.MySuperClass:

= New Java Class H=]

Jawva Class

Create a new lava class,

[e

@DUFEE Folder: | java3_Lesson0d)src _) Browse, ..
G‘ackage: | best __) Erowse. ..
- Enclosing type: | Erowse, ..
G.Iame: i MySubiClass _)
Modifiers: % public " default " private " protected

[T abstract [Ffinal [static

Guperclass: I test, MySuperClass) Browse, .,

Interfaces: Add...

|

Remove

g

wehich method stubs would vou like to create?
[public static void mainString[] args)
[Construckars From superclass
¥ Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

|_ aenetate comments

(?) Finish I Cancel

Type the code in blue into MySubClass as shown:

CODE TO TYPE:

package test;

public class MySubClass extends MySuperClass { // MySuperClass is now the pare
nt (super) of MySubClass
public static void main(String[] args) {
MySubClass testing = new MySubClass() ;
System.out.println ("From MySubClass, the value of testing.i is " + testi
ng.i);
System.out.println("Notice how this will not work " + testing.super.i);

}

Oops! We have an error.

OBSERVE:

package test;

public class MySubClass extends MySuperClass {
public static void main(String[] args) {
MySubClass testing = new MySubClass();
System.out.println ("From MySubClass, the value of testing.i is " + testi
ng.i);
System.out.println ("Notice how this will not work " + testing.super.i);

}

We did notdefine an instance variable i in MySubClass. Actually, MySubClass doesn't have any of its own
methods or variables;itonly has the main() method to getit started. The main() method is notconsidered a
method of MySubClass. MySubClass will need to inherit everything from its parent, MySuperClass.

In order to reference itself and its super, this and super must be contained within the code ofa class. Java
doesn'tlike the inclusion oftesting.super.iin your code. this and super do notpointto anything, except
when they are within a specific class's methods.

super.super.i wouldn'tbe able to access a superclass of a superclass either. super.super.iisn'tlegal
syntax.

Remove the line shown in red from your code:

CODE TO EDIT:

package test;
public class MySubClass extends MySuperClass {

public static void main (String[] args) {
MySubClass testing = new MySubClass();
System.out.println ("From MySubClass, the value of testing.i is " + testi
ng.i);
System.out.println("Notice how this will not work " + testing.super.i);

}

0 Save and Run it.

o

-
[% Package Explarer lr?g Hierarchy (E Console 23 & Terminal 11 =B
<terminated= MySubClass [Java Application] C:\Program Files)Jawaljres)bintjavaw. exe |

ﬁ&ﬁ| "HEIE'I:“;‘E"I.:‘ZT

From My3uhClass, the wvalue of testing.i i=s 10 ;I

Even though MySubClass did not have a variable defined for i, it was able to geta value for testing.i. So as
expected, the instance testing of class MySubClass inherited the variable i from its parent MySuperClass.

That's all well and good, but a little boring. Let's spice things up—Ilet's give the subclass a variable i too. Edit
MySubClass, adding the code shown in blue and removing the code shown in red:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {
int i = 42;

public static void main(String[] args) {
MySubClass testing = new MySubClass();
System.out.println("From MySubClass, the value of testing.i is " + testi
ng.i);
testing.whatsHere() ;

}

public void whatsHere () ({
System.out.println("From MySubClass, this.i is " + this.i + " and i is "
+ i);
System.out.println(" shadowing MySuperClass's value (super.i): " + super
Li);

}

Q Save and run it. Is this what you expected?

-

KFE Package Explorer lr?g Hierarchey (E Consale E2 ."\:ﬂ Terminal 11 =0
<terminated= MySubClass [Java Application] C:\Program Files)Jawaljres)bintjavaw. exe |
X % | GeplEeE| 2B -9
From My3uhClass, this.i is 42 and i1 is 42 ;I
shadowing MyParentClass's walue (super.ij: 10

E In MySubClass, click on the i in + this.i +. It displays int test.MySubclass.i—and it highlights
' Note theiininti=42atline 5. Then,click the i in + super.i. ltdisplays inttestMySuperClass.i. So,
' Eclipse knows the difference between the two variables and can help you figure it out as well!

In MySubClass, delete the line int i = 42 as shown in red:

CODE TO EDIT:

package test;
public class MySubClass extends MySuperClass {
int i = 42;

public static void main(String[] args) {

MySubClass testing = new MySubClass();

testing.whatsHere () ;
}
public void whatsHere () {

System.out.println ("From MySubClass, this.i is " + this.i + " and i is "
+ 1)

System.out.println (" shadowing MySuperClass's value (super.i): " + super

L1)

}

a Save and run it. Interesting, yes?

KFE Package Explorer ﬁg Hierarchy (E Console &3 .3'.3 Terminal 11 = EP
<terminated= MySubClass [Java &pplication] C:\Program Files)Javaljresibintjavaw. exe |
X %| 568 EE| 2B -5
From My3ubhClass, this.i is 10 and i is 10 ﬂ
shadowing My3upercClass's walue ([(super.ij: 10

All is as itshould be, because MySubClass inherits by default.

-
E We could also shadow (or mask) a variable in a superclass by having a variable in the subclass E
' with the same name, but of a different fype. For example, i could be declared in the super as int i '
» Tip anditcould also be declared in the subclass as double i. Use ofi in the subclass would access .
the double. If you wanted to access the int, you could do it via super.i Be aware that these are
' two distincti variables. ‘

Inheritance: Overriding

Now that we have some understanding of shadowing variables, let's look atoverriding. We'll give both
classes a method with the same signature. Edit MySuperClass, adding the code shown in blue and
removing the main() method as shown in red:

CODE TO TYPE:

package test;
public class MySuperClass {
int 1i;

public static void main(String[] args) {
MySuperClass cl = new MySuperClass() ;
System.out.println("Value of cl is " + cl.i);
MySuperClass c2 = new MySuperClass(12);
System.out.println("Value of c2 is " + c2.i);

}

public MySuperClass () {
this.i = 10;
}

public MySuperClass (int value) {
i = value;

}

public void addToI (int j) {
i=1i+3;
System.out.println ("After MySuperClass addToI, i is " + i);

L'll Save it.

Edit MySubClass, adding the code shown in blue and removing the whatsHere() code as shown in red:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {

public static void main (String[] args) {
MySubClass testing = new MySubClass();
testing.whatsHere() ;
testing.addToI (6) ;

}

public void whatsHere() {
System.out.println("From MySubClass, this.i is " + this.i + " and i is "
+ i),
System.out.println(" shadowing MySuperClass's value (super.i): " + super
.i);

}

public void addToI (int j) {
i=i+(3/2);
System.out.println ("After MySubClass addToI, i is " + i);

G Save and runit.

i — i
i Package Explorer ﬁg Hierarchy (E Console &3 .j;ﬂ Terminal 11 B
<terminated = MySubClass [Java dpplication] C:\Program Files)Javaljresibint javaw exe |

X %| BB EE B -9

After My3ubClass addTol, i is 13 ;I

Let's trace the code.

OBSERVE:

package test;
public class MySubClass extends MySuperClass {

public static void main(String[] args) {
MySubClass testing = new MySubClass() ;
testing.addToI (6) ;

}

public void addToI (int j) {
i=1i+ (3 / 2);
System.out.println ("After MySubClass addToI, i is " + 1i);

Rather than inheriting the method from MySuperClass, the addTol() method of MySubClass is used. The
subclass inherits the i value (10), then uses the passed j value (6); 10 + (6/2) is 13. Withoutan addTol()
method ofits own, MySubClass would need to inheritthe addTol() method from MySuperClass.

Edit MySubClass by commenting outthe addTol() method as shown in blue:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {
public static void main (String[] args) {

MySubClass testing = new MySubClass();
testing.addToI (6);

/*
public void addToI (int Jj) {
i=1+ (37 2);
System.out.println ("After MySubClass addToI, i is " + 1i);
}
*/

Q’ Save and runit.

i T
53 Package Explorer ﬁg Hierarchy (E Console &3 .;:ﬂ Terminal 11 = O
<terminated= MySubClass [Java &pplication] C:\Program Files)Javaljresibintjavaw. exe |

ﬁbﬁ| IImEIEl"‘S'Evl:‘_;v

Lfter MySuperClass addTol, i is 16 ﬂ

OBSERVE:

package test;

public class MySuperClass {
int 1i;

public MySuperClass () {
this.i = 10;
}

public MySuperClass (int value) {
i = value;

}

public void addToI (int j) {
i=1i+3;
System.out.println ("after MySuperClass addToI, i is " + 1);

The value ofi is 16, which means that MySuperClass's method added the inherited i value (10) to the
passed j value (6). At other times, we may wantour classes to do what's known as a wrap-around. Thatis, we
wantthem to inherit, and then do their own stuff as well. Let's check out an example.

Edit MySubClass, adding the code shown in blue, and uncommenting the addTol() method as shown in
red:

CODE TO TYPE:

/*

*/
}

package test;
public class MySubClass extends MySuperClass {

public static void main (String[] args) {

MySubClass testing = new MySubClass();
testing.addToI (6);

public void addToIl (int j) {

super.addToI (j):;
i=1i+ (37 2);
System.out.println ("After MySubClass addToI, i is " + 1i);

0 Save and runit.

In MySubClass, we inherit the i value (10). We use j's passed value (6), and pass this within super's call.
This produces i as a value of 16. Then we return to the local method in MySubClass, which adds i's current

-,

=

[% Package Explorer ﬁg Hierarchy (E Console 23 2 Terminal 11 =B

<terminated= MySubClass [Jawva spplication] C:\Program Files)Javal jresibind javaw. exe |
X % |G GBlE&[@| 2 B -5 -

Lfter MySuperClass addTol, i is 16 ;I
Lfter MyoubClass addTol, i is 19

value (16) to the 6/2 and we geta new i value of 19. Great!

Note

If the method that you want to wrap-around is a constructor, use this syntax: super(); If you want

to pass from one constructor to another within a class, use this syntax: this(values to be
passed); When the call is within a constructor itself, do not add the name of the constructor.

Working with Constructors

Chaining

We can never experimenttoo much, right? Edit MySuperClass as shown in blue:

CODE TO TYPE:

package test;

public class MySuperClass {
int 1i;

public MySuperClass () {
this (10);
}

public MySuperClass (int value) {
this.i = value;

}

public void addToIl (int j) {
i=1+3;

System.out.println ("after MySuperClass addToI, i is " + 1i);
}
}
&l Save it. Go to MySubClass and run it.
' ™y
55 Package Explorer ﬁg Hierarchy (E Console 3 E,'J Terminal 11 = B

<terminated= MySubClass [Java dpplication] C:\Program Files)Javaljresibint javaw exe |

ﬁ*ﬁ|uu3§'||=*&5'fl"
Lfter MySuperClass addTol, i is 16 ;I
Lfter MyoubClass addTol, i is 19

Nothing changed—perfect!

OBSERVE:

package test;

public class MySuperClass {
int i;

public MySuperClass () {
this (10) ;
}

public MySuperClass (int wvalue) {
this.i = value;

}

public void addToI (int j) {
i=1i+ 3;
System.out

}

.println ("after MySuperClass addToI, i is " + 1i);

We changed the MySuperClass() constructor to pass a default value of 10 to the other MySuperClass(int
value) constructor, which sets the instance variable i to that value.

This is called constructor chaining, and it allows us to build up a chain of constructors to accountfor various

ways of constructing an object when itis instantiated. When we call this(10), we are chaining the
MySuperClass() constructor to the MySuperClass(intvalue) constructor.

Now we know the syntax used in order to "chain" constructors that are within the same class. So, what's the
correct syntax to use to call a parent's constructor? Edit the code in MySubClass as shown:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {

public MySubClass (int x) {
super (x); // passes the desired value to the super.

}

public static void main(String[] args) {
MySubClass testing = new MySubClass();
testing.addToI (6);

}

public void addToI (int j) {
super.addTol (j);
i=1+ (G / 2);
System.out.println("after MySubClass addToI, i is " + 1i);

Java doesn'tseem to like the line where we instantiated MySubClass:

=
m MySuperClass.java (@ #MysubClass java &3

1 package test:
2
public class MyiubhClass extends MybuperClass |

3
4
= public MySubClass(int x){

& SUper (x) ; i passes the desired waluse to the super.
-

=1

=l

_ public static void main(3tring[] args){
£110 MySubhClass testing = new MvybubClassi)
11 testing.addToI (6] ;

£ The constructor MySubiClass() is undefined

3 quick fixes available:
14 public void =ddToI (int 3) ¢ =F Add argument to match ™My SubClassiink)’

15 super.addTol (J): = Change construckor 'MySubClassiint)': Remove parameter 'ink’
16 i=1i+ (3 2): & Create construckar T SubClassy

17 SJvstem. cut.println("After] s 12 [

So, why didn't Java complain about that before? Because, when there are no constructors defined, Java
provides an empty default constructor, a constructor containing no arguments. But, ifthere is a defined
constructor in your class, the default constructor will not be supplied, and the MySubClass() constructor does
notexist.

We'll add an empty default constructor to our code. We'll also test a restriction placed on the order in which
super's constructors are called. When a constructor calls another constructor, the call must be located within
the firstline of the constructor code. Check out what happens ifitisn't. Edit MySubClass as shown:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {

public MySubClass () {
}

public MySubClass (int x) {
System.out.println("Here I am passing " + x + " to my super for a value
of i");
super(x); // passes the desired value to the super.

public static void main (String[] args) {
MySubClass testing = new MySubClass();
testing.addToI (6);

public void addToI (int j) {
super.addToIl (3);
i=i+ (3/2);
System.out.println("after MySubClass addToI, i is " + 1i);

Progress! Now we have a new error message:

[J] MySuperClass java (@ MySubClass.java &2

1 package test:;
public class MySubClass extends MySuperClass

public MySubClassi)|
i

public MySubClassiint x){
Systenm, crt.princln("Here I am passing " + % + " to wy super for a wvalue of i");
super (x] : /Y passes the dezired walue to the =super.

H @ Canstruckar call musk be the First skabement in a conskruckar

public statTo vOId mEIn [oLPIngL] =Cg=] .
Hy3ubClass testing = new MNy3ubClass();
testing.addTol (&) !

&1a public void addToI (int j) {
19 super.addTol (j):
20 i=41+ {3/ 21:
21 Swvstem. cut.println("ifter MyiubClass addTol, i is ™ + i):
22 i
230}
Z4

If we call a super() constructor, it must be the first statementin the constructor. Switch the order of the
statements in the second constructor as shown in blue:

CODE TO TYPE:

package test;

public class MySubClass extends MySuperClass {
public MySubClass () {
}

public MySubClass (int x) {
super (x); // passes the desired value to the super.
System.out.println("Here I am passing " + x + " to my super for a value
of i");

}

public static void main (String[] args) {
MySubClass testing = new MySubClass();
testing.addToI (6);

}

public void addToI (int j) {
super.addTol (J);
i=i+ (3/2);
System.out.println("after MySubClass addToI, i is " + 1i);

ﬁ Save and runit.

ftg Package Explarer I,E Hieratchy rE Consale &3 ;.'J Terminal 11 = El-\

<terminated= MySubClass [Java Application] C:iProgram FileshJavaljresibintjavaw.exe |
X% Gellea| 8-

Lfter MySuperClass addTol, i is 16 ﬂ

Lfter MySubClass addTol, i1 iz 19

There is no change to our result. Because we still called with the default constructor, Java returned the default
value fori.

Edit the instantiation code in MySubClass as shown:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {

public MySubClass () {
}

public MySubClass (int x) {
super (x); // passes the desired value to the super.
System.out.println ("Here I am passing " + x + " to my super for a value
of i");

}

public static void main(String[] args) {
MySubClass testing = new MySubClass (50);
testing.addToI (6);

}

public void addToI (int Jj) {
super.addTol (j);
i=1i4+ 3/ 2);
System.out.println ("after MySubClass addToI, 1 is " + 1i);

0 Save and run it. Ahh, change!

' y
% Package Explorer ﬁg Hierarchy (E Console &3 & Terminal 11 =0
<terminated > My3ubClass [Java Application] C:\Program Files) Javal jresibin javam. exe ¢

X % |G iialE| 2B -5 -

Here I amm passing 50 to mwy super for a wvalue of i ;I
Lfter MySuperClass addTol, i is 56
Lfter MyoubClass addTol, i is 59

Chain of Command

When we inherit from our supers, we are in essence creating new instances of them because we are them.
That's deep, huh? Let's get a clear understanding of the way inheritance works during construction and make
this conceptless abstract. So whatis the "construction path" anyway? Thatis, which constructors are called
firstin the inheritance chain?

Variables are set from the top of the inheritance chain and work their way down, because as we go down the
chain, we get more specific. The sequence Java uses when instantiating an instance of a class is to allocate
memory and then initialize defaults in this order:

1. superclass initialization
2.instance variable initialization
3. constructor initialization

If the first statementin a constructor is not an explicit call to a constructor of the superclass with the super
keyword, then Java inserts the call super(). In other words, Java calls the constructor with no arguments.

If the firstline of a constructor (C1) uses the this() syntax to invoke another constructor (C2) of the class, this
is an exception to the default call to the super() forinitialization. Java relies on C2 to invoke the superclass
constructor and does notinserta super() call into C1. Java waits until it actually starts a constructor to either
implicitly or explicitly start the call to super().

So, upon instantiation, MySubClass inherits everything from its ancestors. Let's follow the path of this
instantiation by adding some System.out.printins. While we're atit, let's add some more constructors.

Edit MySuperClass. Add the blue code and delete the red code as shown:

CODE TO TYPE:

package test;

public class MySuperClass {
int i, otherVariable;

public MySuperClass () {

this (10);

System.out.println ("\nMySuperClass(): the default value is " + 10);
}

public MySuperClass (int value) {
this (value, 42);
System.out.println("\nMySuperClass (int value): value is " + value + " wi

th a new default of 42");
}

public MySuperClass (int value, int value2) {
this.i = value;
this.otherVariable = value2;
System.out.println("\nMySuperClass (int value, int value2): Something I i

" + this.toString());

" 4+ i 4+ " and otherVariable is " +otherVariab

nherit from Object:
System.out.println(" i is
le);
}

public void addToI (int j) {
i=1i+3;
System.out.println("after MySuperClass addToI, i is " + i);

(=] Save it. Edit MySubClass. Add the blue code and delete the red code as shown:

CODE TO TYPE:

package test;

public class MySubClass extends MySuperClass {
int j;

public MySubClass () {
// default of super() will first be called by Java
System.out.println("\nMySubClass (), returned after waiting for everythin
g to get done and come back to me");
System.out.println(" after supers are called by default, inherited i is
" +i + " and my own j is initialized to " +j);
System.out.println(" when all is done here, j is now " + ++j);

}

public MySubClass (int x) {
super (x) ;
System.out.println("\nMySubClass (int x), returned after passing value of
"+ x +

and then waiting for everything to get done and come back to me");

public static void main(String[] args) {
MySubClass testing = new MySubClass (50);
testing.addToI (6) ;
System.out.println("\nEnd of main after instantiation. Value of i is " +
testing.1i) ;

}

public void addToI (int j) {
super.addToI (j)
i=4i+ (3/ 2);
System.out.println ("After MySubClass addToI, i is " + 1i);

G Save and run it. Follow your output lines to verify the order of initialization.

OBSERVE: MySuperClass Code

public MySuperClass () {

this (10) ;

System.out.println ("\nMySuperClass(): the default value is " + 10);
}

public MySuperClass (int value) {

this (value, 42);

System.out.println ("\nMySuperClass (int value): value is " + value + " with a
new default of 42");
}

public MySuperClass (int value, int value2) {

this.i = value;

this.otherVariable = valueZ2;

System.out.println ("\nMySuperClass (int value, int value2): Something I inher
it from Object: " + this.toString())

System.out.println(i is " 4+ i + " and otherVariable is " +otherVariable) ;
}

OBSERVE: MySubClass Code

public class MySubClass extends MySuperClass {
int j;

public MySubClass () {
// default of super() will first be called by Java
System.out.println("\nMySubClass (), returned after waiting for everythin
g to get done and come back to me") ;
System.out.println(" after supers are called by default, inherited i is
" +i + " and my own j is initialized to " +j);
System.out.println(" when all is done here, j is now " + ++j);

}

public MySubClass (int x) {
super (x) ;
System.out.println("\nMySubClass (int x), returned after passing value of
"+ x +
" and then waiting for everything to get done and come back to me");

}

public static void main (String[] args) {
MySubClass testing = new MySubClass() ;
System.out.println ("End of main after instantiation. Value of i is " +
testing.i) ;
}
}

OBSERVE: MySubClass Output

MySuperClass (int value, int value2): Something I inherit from Object: test.MySub
Class@addbfl (Note: Address after @ may be different on various systems.)
i is 10 and otherVariable is 42

MySuperClass (int value): value is 10 with a new default of 42

MySuperClass () : the default value is 10

MySubClass () , returned after waiting for everything to get done and come back to
m:fter supers are called by default, inherited i is 10 and my own j is initiali
zed to 0

when all is done here, j is now 1

End of main after instantiation. Value of i is 10

Now, edit the main() method to again pass 50 as a parameter as shown:

CODE TO TYPE:

package test;
public class MySubClass extends MySuperClass {
int j;
public MySubClass () {
// default of super() will first be called by Java

System.out.println ("\nMySubClass (), returned after waiting for everythin
g to get done and come back to me");

System.out.println (" after supers are called by default, inherited i is
" +1i + " and my own j is initialized to " +j);
System.out.println(" when all is done here, j is now " + ++3j);

}

public MySubClass (int x) {
super (x); // passes the desired value to the super.
System.out.println ("\nMySubClass (int x), returned after passing value of
"+ ox +

" and then waiting for everything to get done and come back to me");

public static void main (String[] args) {
MySubClass testing = new MySubClass (50) ;
System.out.println ("\nEnd of main after instantiation. Value of i is " +
testing.i);

}

0 Save and runit.

% Parkage Explorer (Tg Hierarchy (E Consale &2 A5 Terminal 1] 9 |] u;| @| | #BE-r9-70
<terminated:> MySubClass [1ava Application] <:\Program Files\Javaljresibintjavaw.exe {Mar 3, 2010 6:01:40 PM)
=

NySupercClass(int wvalue, int walueZ): Something I inherit from Chject: test.My3ubClassE1932Z1f
i is 50 and otherVariahle is 42

MySuperClassi(int walue): walue is 50 with a new default of 42

HyZubhClass(int x), returned after passing value of 50 and then waiting for everything to get done and come back to me

End of wmain after instantiation. Value of i is 50

See how itworks? We go to the top, inherit our variables, and come back down. Play around with these and
make sure you understand the workings of inheritance.

In a Nutshell

Class Properties and Relationships:

e Aclass is defined by the members it defines and the members itinherits from its ancestors.
e Aclass only has one parent. That parentis its super.

e Aclass inherits every method from its parent and ancestors, unless the class overrides the
method (defines the method with the same signature).

e Aclass inherits every field from its parent and ancestors, unless the class shadows its ancestor's
field.

e Inheritance is transitive. If classA inherits from classB, and classB inherits from classC, then classA
also inherits from ClassC. A class inherits from all of its ancestors.

e Thereis no limitto the number of children a class can have.
e Two children with the same parent are siblings.

e Siblings are notrelated by inheritance (one is not derived from the other). They do share
characteristics passed down from the common parent and ancestors.

This table illustrates class (field or method) access and the use of access modifiers (an example of access
rights (permission) granted for a particular member's information):

Modifier Visibility
public All classes
private None (only within own class)

protected |Classes in package and subclasses inside or outside package

none (default) | Classes in same package (sometimes called package private)

Design considerations for classes and class hierarchies:

e Common features should be kept as high in the hierarchy as possible.
e Classes should be "as simple as possible and no simpler" (Gotta love that Einstein!).

e The only characteristics explicitly established in a child class should be those that make the class
distinctive from its parentand from its siblings.

e Thereis no single best hierarchical structure.

This figure illustrates that last bullet point:

‘peranmslvagaab\as‘ ‘annualvege‘ablgs‘ ‘pever\r\law\evbs H annual herbs ‘ ‘p eeeeeee i flowers | | annual flowvers

Which should it be?

Either one of these hierarchies could be useful. The specific requirements of your application will influence
your design choices. Try to be as class-conscious as possible and think carefully about your organization.
There are plenty of pitfalls out there that programmers might fall into when creating hierarchical structures, so
choose wisely grasshopper.

H

™

Good design of classes and the class hierarchy structure means your code will be reusable and easier to
maintain. These are signs of excellent programming, and will make you a hero to all programmers who
follow in your footsteps.

Java's Design

So enough already with the particulars! Let's look at an example of larger applications that work through inheritance

and well-planned class design. Where will we find such an example, you ask? In the API #¥1 within the Java
Programming Language itself. The Java Programming Language is a shining example of good design, code reuse, and
nice, clean use of inheritance. Somebody really smart put this language together.

The API

Applets don'trequire Windows of their own, because the web browser provides Applets with windows as
well as menus. But Applets do need Panels in their browser windows to display the Applet Java code.
Applications are different from Applets in that they require Frames which surround Windows. These frames
allow menu items to be added, which in turn enable the Java code to run. Panels and Windows are
Containers, which are Components with graphical representations (meaning they can be displayed on the
screen and interact with the user). These GUIs are Objects, the base class in Java.

Frames are the basic GUIs for applications (Java notrunning on the web), that require a GUI for interaction.
Applets are the basic GUIs for browsers (Java running on the web).

Click the APlicon #PI under the Eclipse menu bar, then click the JavaAPI Java link tab to show its content.

Click on the java.applet package. Scroll down and open the java.applet.Applet class, then look atits
inheritance tree:

java.applet

Class Applet

= [m
e |5
1.

w

TE
L - ava.awt.Fanel

L java.applet.Applet

Applet inherits everything defined in Panel, which inherits everything from Container, which inherits
everything from Component, which inherits everything from Object. So, Applet gets all of the fields and
methods from each ofthese ancestors.

Now, go back to the java.applet.Applet APl page. Scroll down to the Field Summary. Notice that Applet
does notdefine any ofits own fields, butinstead inherits fields from Component and ImageObserver.
Scroll down pastthe Method Summary. Notonly does Applet define a number ofits own methods, but
Applet also inherits the methods of Panel, Container, Component, and Object.

So why didn't Applet display any inherited fields from Panel, Container, and Object? You can find the
answer to this and many other befuddling Java-related questions in the APL.

Okay, now go back to the Packages page (you can get there by clicking the Back button twice). Click on the
java.awt package. Scroll down and open the java.awt.Frame class, then look atits inheritance tree:

java.awte

Class Frame

java.lang.Ckbject
|—"a'a awt.Component
java.awt.Container
|—"a'-: awt.Window

e
(I Jjava.awt.Frame

That's really cool. I'll go over the reasons | think it's so cool in a minute, but first, look at this:

java.applet java.awt

Class Applet Class Frame

java.lang.Object java.lang.Ckject
L - ava.awt.Component L - ava.awt.Component
I— Sava.awt.lontainer |_ zves.awh.oontainer
L - ava.awt.Fanel L - ava.awt.Window
(I java.applet.Applet L java.awt.Frame

Here the designers of Java show us how inheritance can be used in a powerful way. Classes like Object,
Component,and Container are defined classes with specialized capabilities and specific purposes. The
presence of such clearly defined classes with corresponding inheritance trees for both frames and applets,
means that GUIs can be defined the same way whether running on the web or not.

Go to the JavaAPI tab, open the java.awt.Frame class and its inheritance tree, and read its general
description. Now open the java.awt.Window class, and read its general description. Now click on
java.awt.Container, and read its general description. At the top of this page, click on
java.awt.Component, and read its general description. And finally, click on java.lang.Object, and read its
general description.

The "windowing" elements are in java.awt, while the ever-present Object class is within

Note java.lang (which is conveniently available withoutimporting). Now that's good packaging!

The APlis a warehouse of good Java program design. As we observed:

e Itdefines classes cleanly and succinctly so their use and potentials are clear and specific.
e lts classes are reusable for multiple related purposes.
e Because ofearly good design, its classes are easier to maintain.

e This low-maintenance style of design allows changes we make to a parentto be reflected
automatically in the descendants.

e In addition, because classes are succinct, it's clear where changes should be made.
When classes are made with clear and specific specifications and capabilities, it's easier to build applications

with them. The APl is a Java launch pad for programmers. It provides ready-made classes that can be
inherited and then extended right away for programmers' specific application requirements.

Making Our Own: Early Design

In our upcoming labs, we'll develop a tool for drawing graphical objects (squares, circles, ellipses, triangles, and
such). Butwe're notjustgoing to draw the figures and leave it at that; we're going to move them around, resize them,
and manipulate them in all sorts of ways. Each figure will be an Object, which will enable us to manipulate them
individually. Specifically, each figure drawn mustbe an instance of a class.

Click on this example (allow blocked content if necessary) to get a feel for the project we'll be working to create. Go
ahead and play around with it. You'll see in the example that:

e The appropriate action button must be chosen.
e There are only two graphical objects present.
e Ifyou draw a figure, you can specify which figure to move with your mouse.

e Each drawing is an individual instance.

In the nextlesson, Abstract Classes, we'll continue with this example and startimplementing code.

There's a lotto digest here. Hang in there. You're doing great so far, keep itup! See you in the nextlesson...

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

./GraphicsExample/BigProjectExample.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Software Design: Abstract Classes

Lesson Objectives

When you complete this lesson, you will be able to:

e use the 'abstract' keyword by making the super-class and draw method abstract.
e use abstractclasses and methods.

The Power of Abstraction
"There is nothing so prolific in utilities as abstractions."- Michael Faraday

Picture a mammal in your mind. Now, picture a dog. Did you imagine this particular mammal, or this particular dog?
Probably not. There are, of course, many different types of mammals, and many different types of dogs. And while all
dogs are mammals, notall mammals are dogs.

These familiar creatures will help us understand the concept of abstraction within hierarchies in Java. Mammals and
dogs are classes of objects. Often, some classes within a class hierarchy are more "abstract" than others. Each step
up in a hierarchy is broader and more abstract, than the one below. Using our example, "poodle" is more specific than
"dog," and "dog" is more specific than "mammal."

In programming, we use hierarchies in a similar way, depending on our design goals. For example, within the mammal
class, we have many subclasses (dogs, cats, giraffes) and each ofthose subclasses may have many more
subclasses (for example, the subclass "dogs" contains labradors, schnauzers, collies, poodles, and so on).

mammal
dog horse cat
lahrador retriever guarter horse siamese

Java allows us to create abstract classes, which have structures similar to interfaces. An interface is a class that has no
methods implemented. In an abstract class, some of the methods it contains may be implemented, others may not.
Abstract classes are "place holders" or intermediate steps within a classification tree. If a programmer specifically
names a class abstract, then the user cannot create instances of that class; the abstract class may only be extended as
a subclass, and then those subclasses can be instantiated. In object-oriented programming, a class is essentially
abstract. The template indicates which methods an instance will possess. But until you actually instantiate the class,
you don'thave a thing; you only have its template.

Abstract classes allow us to define classes that specify abstract methods. That s, to identify methods that any
subclass of that class will be able to do (which defines and differentiates the class). However, we do not specify how
the method will be used until Java gets to the subclass with a specificimplementation, because the different
subclasses will perform these actions in different ways. For example, the mammal class may have an abstract method
called walk(), and while both Dogs and Seals walk, they do so differently.

Syntax: Abstract Classes

Let's experiment with abstract classes. Create a new java3_Lesson05 projectin yourjava3_Lessons working set.
In your new project, create a new class. In the New Java Class window, enter the information as shown:

javascript:d1e21();
javascript:d1e24();

-

= Mew Java Class

B[]

Java Class

Create a new lava class,

[Source Folder: javad_Lessons)src
- .)
iJacﬁage. examples

[|Enclasing type:

Madifiers: (%) public

Interfaces:

Marne: Marnmal H

() defaulr

Superclass: java.lang. Object

Wehich method stubs would vou like to create?
[] public stakic waid mainiString[] args)

[]canstructars Fram superclass
Inherited abstract methods
Do wou want ko add comments? {Configure templates and default walue hered

[]Generate comments

Browse, ..

G

Browse. ..

Browse. ..

Einish

] [Cancel

Click Finish when you're done.

Type the Mammal class code, adding the code in blue as shown:

CODE TO TYPE: Mammal.java

package examples;
public abstract class Mammal {

public abstract void move(){ }
1

Hmm, Java didn't seem to like this:

1 package examples:

2
3 public abstract class Hammal |
4
£ 5= [abstract methods do nok specif';.fabnd';.flmgve[]
6 {v // an empty implementation
b
=

Java has a problem with the presence of those braces {} because even though they're empty, they really are
implementing the method—as a no-op (no operation). Java is disturbed because we are creating code thatdoes
nothing on purpose. Instead of confusing Java this way, we want the method to be specified (declared) as a method to
help define the class, but we do not wantthe method implemented. We can do that. Edit Mammal. Add the blue code
(the semicolon) and remove the red code as shown:

CODE TO EDIT: Mammal

package examples;
public abstract class Mammal {

//The semicolon in the next line is blue.
public abstract void move () ;{ }

Ah, that's better. To create an abstract method, we declare the method, butwe don'timplementit. So, what happens if
we have an abstract method, but notan abstract class? Let's find out. Remove the red code as shown:

CODE TO EDIT: Mammal

package examples;

public abstract class Mammal {
public abstract void move () ;

}

Java didn't like this either:

[J] *Marmal.java &3 =

package examples; i
public class Mammal |

public abstract woid move|[):

b The abstract method move in byvpe Mammal can only be defined by an abstract class
Prass 'F2' Far focus,

When a class thatis notabstract contains an abstract method, an error occurs. Alright then, what happens if we have
an abstract class without any abstract methods? Go ahead and edit Mammal. Remove the red code and add the blue
code as shown:

CODE TO TYPE:

package examples;

public abstract class Mammal {
//The semi-colon in the next line is RED
public abstract void move () ;{ }

We've solved one problem. An abstract class is one thatis declared abstract; it may or may notinclude abstract
methods. So, what are the ramifications of declaring the class abstract? Edit Mammal by adding the blue code as
shown:

CODE TO TYPE:

package examples;
public abstract class Mammal { // an abstract class
public void move () {} // no abstract methods
public static void main(String [] args) {

Mammal aMammal = new Mammal(); // try to instantiate

}
}

That's weird. Java didn't like that either:

[J] *Mammal java &2 —im

package examples; =
public abstract class Mammal |
public void move () {}

public static woid main(String [] args) i
Manmal aMammal = new Marmoal ()

H Cannot instantiate the type Mammal
}I Press 'F2' For Focus,

Return the class to its original condition by removing the main() method. Remove the red code as shown:

CODE TO MODIFY:

package examples;
public abstract class Mammal { // an abstract class
public void move () {} // no abstract methods
public static void main(String [] args){

Mammal aMammal = new Mammal(); // try to instantiate

}
}

Abstract classes cannot be instantiated, but they can be subclassed. Create a new class in the java3_Lesson05
project. In the New Java Class window, enter the information shown below:

f = T

= New Java Class . @

Java Class
Create a new lava class, @

A Source Folder: javad_LessonSisrc b
N Package: examples ¥

[|Enclasing type:

L Mame: Dog
Madifiers: (%) public () default
/_ Eu:\untent Bssist Available (Chrl4+-Space h

!\Euperclass: fﬁ Marmmal

Interfaces: add...
/_Clicl{the light bulb and press Ctrl+Space to
complete the Superclass specification.

Inherited abstract methods

Do wou want ko add comments? {Configure templates and default walue hered

[]Generate comments

(7 Einish H Cancel]

Now click Finish.

The Dog.java class that opens looks fine, butlet's play around with it a litle more. (We live to experiment!) EditDog by
adding the blue code as shown:

CODE TO TYPE:

package examples;

public class Dog extends Mammal ({
public abstract void move () ;
}

Java didn't like this:

[J] *Dog.java &2 =0

package examples: u

public class Dog extends Mammal ﬂ
public abstract void move[]:

‘Mulkiple markers at this line
- The abstract method move in kype Dog can only be defined by an abstract class
- implements examples . Mammal.move

If an abstract class is subclassed, the subclass must either implement all of the abstract methods ofits parent, or
declare itself abstract.

When we design the abstract mammal class, we include the variables and methods that define a mammal.
Determining which aspects to exclude from the mammal class depends on whether the superclass is
java.lang.Object, orif the superclass is part of the concept hierarchy (the set of concepts arranged in the tree
structure).

Let's take alook atsome sample code. Edit Mammal by adding the blue code as shown:

CODE TO TYPE:

package examples;

public abstract class Mammal {
boolean hasHair = true;
String breathes = "oxygen'";
String skeletalStructure = "backbone";
String gender;

public Mammal (String sex) {
gender = sex;
System.out.println("I am a " + gender + " dog");

}

// Depending on hierarchy, you might have this abstract method in "animal"

// Since we show inheritance from Object, we are safe here.

// Mammals move differently, so this is a differentiation (some 2 legs, some 4)
public abstract void move () ;

// all mammals give birth to live young, but the methods may be different.
// Shhh, we know about the platypus. Do you want to type more?
public abstract void liveBirth() ;

public void feedYoung(){ // this one is specific to mammals
String food = "milk";
System.out.println("Since I am " + gender + ", ");
if (gender =="female")
System.out.println("I provide my young with " + food) ;
// the content of the method could say how
// depending on your level of specificity, this could be abstract too
else
System.out.println("I need assistance to feed my young " + food) ;

}

public boolean hasMammaryGlands () {
return true;

}

public abstract void eat();

Now, let's go back to our subclass of Mammal. Edit Dog by adding the blue code as shown:

CODE TO TYPE:

package examples;

public class Dog extends Mammal {
private boolean domesticated = true;

public Dog(String sex) {
super (sex) ;

}

public void move () {
System.out.println("We move on all 4 legs.");

}

public boolean isDomesticated() {
return domesticated;

}

public void liveBirth() {
System.out.println("in litters, very cute");

}

public void eat() {
System.out.println("With my sharp teeth. Anything I can get—except lettuce");

}

In the examples package in the java3_Lesson05 project, create a new class and name it Main:

-

= Mew Java Class

BX]

Java Class

Create a new lava class,

i Source Folder: javad_LessonSisrte)
ey 0
|h_F'aclgage. examples)]
[|Enclasing type:
l: Mame: Main| :]
Modifiers: (%) public) defaulr
[]abstract []final
Superclass: java.lang. Object
Interfaces:

Which method stubs would wou like ko create?
[] public static waid mainiString[] args)
[] canstructars Fram superclass
Inherited abstract methods
Do wou want ko add comments? {Configure templates and default walue hered

[]Generate comments

Browse. ..

Browse. ..

e

Browse. ..

(7 Finish] [Cancel
Edit Main by adding the blue code as shown:
CODE TO TYPE:
package examples;
public class Main {
public static void main(String [] args) {
Dog myDog = new Dog("female") ;
System.out.println("I am domesticated: " + myDog.isDomesticated()) ;
myDog . feedYoung () ; // inherit from super
if (myDog.gender == "male")
System.out.print ("My offspring come: ");
else

System.out.print ("I give birth: ");

myDog.liveBirth() ; // implemented abstract method of super

Save Mammal, Dog, and Main, then run Main.

Modify Main by adding the blue code and removing the red code as shown:

CODE TO TYPE:

package examples;
public class Main {

public static void main(String [] args) {
Dog myDog = new Dog("male female");

System.out.println ("I am domesticated: " + myDog.isDomesticated());
myDog. feedYoung () ; // inherit from super
if (myDog.gender == "male")
System.out.print ("My offspring come: ");
else
System.out.print ("I give birth: ");

myDog.liveBirth() ; // implemented abstract method of super

o Save and run itagain. Your output should change accordingly.

The API and abstract

API Click the APl icon under the Eclipse menu bar, go to the java.awt package, and scroll down to the
Graphics class. The firstline looks like this:

public abstract class Graphics extends Object

Read through the description of the Graphics class. Now scroll down to its Method Summary. The left panel
beside the method signatures indicates that the methods are almost all abstract. Graphics methods are
implemented depending on context. And, as the API's Constructor Summary says, "Since Graphics is an
abstract class, applications cannot call this constructor directly. Graphics contexts are obtained from other
graphics contexts or are created by calling get Graphics on a component.”

Abstract classes provide programmers with conceptual power and control over subclasses. Classes may have
multiple uses (through subclasses), but stipulations in the abstract class definition provide core aspects of the
objects. These stipulations:

e make inheritance stronger.
e enhance each subclass ofa super.
e allow designers to focus on conceptual aspects ofa class.

Making Your Own Figures and Shapes

Okay, we're getting dangerously close to working on the project that you'll hand in to your instructor for this lesson.
Here's an example of the project you're about to create.

Familiarize yourself with the various action buttons here. This particular example has only two graphical objects. You'll
add more to your project later. Draw a figure and then move that figure around with your mouse. Each drawing is an
individual instance.

In the previous lesson's project, we asked you to create a Shape class and some other classes thatdescended from
it. As you make decisions about shapes you want to create, consider these questions: How would you draw a generic
Shape object? Whatis a Shape object? Can we actually define a Shape without knowing which kind of Shape itis?

We have a few ideas to share with you about a Shape class that we envision. Butwe won't put them into a listing now.
You'll decide later whether you want to use our design or keep your own. You might even decide to blend the two.

./GraphicsExample/BigProjectExample.html

OBSERVE: Our Shape class

package bigproject.shapes;

import java.awt.Color;
import java.awt.Graphics;

public abstract class Shape({

private int x, y;
private Color lineColor;

public Shape (int x, int y, Color lineColor)
this.x = x;
this.y = y;
this.lineColor = lineColor;

}

public int getX() {
return x;

}

public void setX (int x) {
this.x = x;

}

public int getY() {
return y;

}

public void setY (int y) {
this.y = y;
}

public Color getLineColor () {
return lineColor;

}

public void setLineColor (Color lineColor) {
this.lineColor = lineColor;

}

{

In our variables, we defined a Shape as only an x and y location and a lineColor. We envision that ALL of our
shapes will have a starting point and will have a line color. So, can we give a generic Shape object a width and a
height? We could if all descendants of this class had those attributes. But our Line object will have either width or
height, but notboth, so we cannot give a generic Shape object a width and a height here.

In the next project, you'll decide the kind of abstract attributes and/or methods to putinto your Shape class.

Note

For now, we'll show you how we envision a Rectangle and an Oval. Let's take a look at our Rectangle class first.

Whether itis abstract or not, a class should contain or inherit everything that ALL of its descendants will
have, but should not contain anything thatis not shared by ALL ofits descendants.

OBSERVE: Our Rectangle class

package bigproject.shapes;

import java.awt.Color;
import java.awt.Graphics;

public class Rectangle extends Shape {
private Color fillColor;
private int width, height;
private boolean fill;

public Rectangle (int x, int y, int w, int h, Color lineColor, Color fillColor, bool
ean fill) {
super (x, y, lineColor);
this.width = w;
this.height = h;
this.fillColor = fillColor;
this.fill = fill;
}

// Getters and setters.
public Color getFillColor () {
return fillColor;

}

public void setFillColor (Color fillColor) {
this.fillColor = fillColor;
}

public int getWidth () {
return width;

}

public void setWidth (int width) {
this.width = width;
}

public int getHeight () {
return height;

}

public void setHeight (int height) {
this.height = height;
}

public void setFill (boolean fill) {
this.fill = fill;
}

public boolean isFill () {
return fill;

}

/**
* Returns a String representing this object.
%y
public String toString () {
return "Rectangle: x = " + getX() + " y =" + get¥Y() + " w = " + getWidth() + "
h = " + getHeight();

}

How does our rectangle differ from our Shape class? We didn't repeat any information from our Shape class. In the
Shape class, we provided getters and setters for our sub-classes to use in getting and setting attributes inherited from
the Shape class. We could have made those attributes protected instead of private, but because we are creating highly
encapsulated objects here, we'll keep them private.

In the Rectangle constructor, we pass the x, y,and lineColor up to the Shape class object (the parent of this object),
and in doing so, setthose parameters.

OBSERVE: Our Oval Class

package bigproject.shapes;

import java.awt.Color;
import java.awt.Graphics;

/*
* In Java, the only difference between a Rectangle and an Oval is the drawing method.
Both are

* represented by an x, y, width, and height. Therefore, we can save typing by just ove
rriding the

* Rectangle's draw (Graphics g) method to draw an oval instead of a rectangle.

*/

public class Oval extends Rectangle {

/**
* Constructor. Just passes the params to the Rectangle constructor.
B/
public Oval (int x, int y, int w, int h, Color lineColor, Color fillColor, boolean f
i11) |
super (x, y, w, h, lineColor, fillColor, fill);
}

J**
* Returns a String that represents this object.
=/

public String toString () {

return "Oval: x = " + getX() + " y =" + get¥() + " w =" + getWidth() + " h =
" + getHeight () ;
}
}

In Java, there is no difference between an Oval and a Rectangle, except for the way they're drawn, so the Oval class
needs very minimal information, passing all of the parameters to the superclasses Rectangle and Shape. We've
purposely omitted the draw() method in these listings to give you a hintabout your next project.

Design Considerations for a Graphics Tool

We'll begin by using only two-dimensional figures, buteven so, we'll need to give serious consideration to
the hierarchy we'll create. Since we are going to represent graphical objects, let's go over a bit of the
mathematical terminology we'll be using as well:

e Inan open figure points, lines, and curves do not start and end atthe same point.

e Inaclosed figure, the geometric shape starts and ends at the same point, and there is no way into
the interior of the object from outside of the object without crossing the lines that comprise it.

Let's follow the upper levels (parent classes) as they move down to the lower levels (the specific objects).
This is known as a fop-down design. Draw (use a paint program on your computer) an inheritance hierarchy.
Be as thorough and specific as you can. Here's one possible hierarchy. You are notrequired to use this
particular hierarchy, it's just an example. Moving your mouse around in the drawing tool is called a squiggle,
although a better name might be freeStyle. And since the squiggle is located under Open Figures in the
example inheritance tree, we do notconnect the ends. In this case, even if the ends were connected, the
design of the class would treat the figure as an open figure.

The alternative to fop-down design is bottom-up. In bottom-up design, we begin with the Java classes already
available, the classes that we will actually use to draw the figures, and work our way up. And where will we find
those classes? In the API, of course!

APT Open the APl and go to the java.awt.Graphics class. Look over the methods available for drawing
figures. Mostofthem start with draw, but there is no drawCircle or drawSquare. Since those specific
methods don't exist, are there methods available that can be used to get the effect we want?

Before you continue, consider these questions:

javascript:d1e594();

e Do we have a candidate or candidates for an abstract class?

e Whataspects would be shared by all subclasses and so should be located within the abstract
class(es)?

e What kinds of shapes (subclasses) do we want to create?
e Where would methods such as getArea() and getCircumference() go?

Keep these questions in mind as you work through the project for this lesson. I'm looking forward to seeing
what you come up with for your project. Keep up the good work and see you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Interfaces: Listeners and Adapters

Lesson Objectives

When you complete this lesson, you will be able to:

e declare interface methods.
e create a ChoicePanel to control the model's current shape type by using interfaces.

Interfaces in Java

In previous lessons, we discussed classes and subclasses, and the way inheritance works within them. Java allows
only single inheritance, which means a class can inherit from just one parent class. Through interfaces though, we can
allow classes to provide capabilities beyond parental inheritance.

In this lesson as well as lesson 7, we'll continue to work on the drawing applet. We're going to enter plenty of code, so
settle in and get comfortable!

Model-View-Controller Architecture

Our drawing project, like any Java project, will require lots of code. We wantto make sure our code is easy to follow
and more importantly, easy to maintain. Ideally, we'll incorporate the separation of functionality in our code to keep it
clean and simple.

One tool that programmers use to accomplish those goals is the "Model-View-Controller" (MVC) architecture. It
separates the elements that users see from the logic that controls those elements. MVC architectural design separates
code functionality into three parts:

e Model: the business logic of the program.
e View: the GUIl oruserinterface.
e Controller: the partofthe program that tells the model what to do.

The model is the gateway. It contains information that determines the state of all elements in the program. The view
asks the model what to display. The controller tells the model how to change its state. Everything goes through the
model.

We'll discuss this more later, but at OST, we like to learn by doing, so let's start by creating a project to help illustrate
the MVC architecture.

An Example: Drop-Down Lists (Choice Components)

Our example will demonstrate how to create a GUI to use in conjunction with MVC architecture. One GUI
component option we have for our projectis the drop-down list, or java.awt.Choice component. When you
want the user to selectone from a number of options, the drop-down menu is a good choice because it uses
less space than radio buttons.

Create a new projectin the Java3_Lessons working set,named ChoiceExample. In the ChoiceExample
project, create a new package named view.

Create a new class in the view package named ChoiceApplet that extends java.applet.Applet. Add the
code shown in blue:

CODE TO TYPE: ChoiceApplet

package view;

import java.applet.Applet;
import java.awt.Graphics;

public class ChoiceApplet extends Applet({

public void init() {
}

public void paint (Graphics g) {
g.drawString("Message will go here.", 20,100);
}

O Save and run it. Our program doesn't do much yet.

Now we'll build a panel to puton the appletso we can add a Choice component. Then we'll be able to seta
message that will be put on the applet.

In the view package, create a new class named ChoicePanel that extends java.awt.Panel. Add the code
shown in blue:

CODE TO TYPE: ChoicePanel

package view;

import java.awt.Choice;

import java.awt.Panel;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;

public class ChoicePanel extends Panel/{
Choice selection;

public ChoicePanel () {
selection = new Choice() ;
selection.addItemListener (new ItemListener() {
public void itemStateChanged(ItemEvent e) {
}
});

this.add(selection) ;

OBSERVE: ChoicePanel

package view;

import java.awt.Choice;

import java.awt.Panel;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;

public class ChoicePanel extends Panel({
Choice selection;

public ChoicePanel() {
selection = new Choice();
selection.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
}
});
this.add (selection);

In our code, we setup a Choice componentand gave itan ItemListener via an anonymous inner class.
The listener method itemStateChanged() doesn'tdo anything yet. We'll get to that later. The
itemStateChanged() method will be part of the Controller in this applet's Model, View, Controller design
pattern.

5l save it. Now, we'll add a ChoicePanel instance to our ChoiceApplet, as shown in blue:

CODE TO EDIT: ChoiceApplet

package view;

import java.applet.Applet;
import java.awt.Graphics;

public class ChoiceApplet extends Applet{

public void init () {
ChoicePanel choicePanel = new ChoicePanel () ;
this.add (choicePanel) ;
}
public void paint (Graphics g) {
g.drawString ("Message will go here.", 20,100);
}

2 Save and run it. Now the applet has a drop-down box. Currently there are no choices there to select. We
have the View of the program, which consists of the appletand its GUl components. We have the beginnings
ofthe Controller in the ItemListener we added to the Choice componenton the ChoicePanel. Now, we'll build
the Model of the program and connect it to the View and the Controller.

In the ChoiceExample project, create a new package named model. In the model package, create a new
class named Model. Add the code shown in blue:

CODE TO TYPE: Model

package model;

import java.awt.Container;
import view.ChoiceApplet;

public class Model {

private Container view;
private String message;

public static String[] selections = {"The Beatles",

"Ringo"};

public Model (Container view) {
this.view = view;
message = selections[0];

}

public void setMessage (String msg) {
this.message = msg;

}

public String getMessage () {
return this.message;

}

public void repaint() {
view.repaint() ;

}

"John" ,

"pPaul" ,

"George"

Save it. Now, in your ChoicePanel, add the code shown in blue:

CODE TO EDIT: ChoicePanel

package view;

import java.awt.Choice;

import java.awt.Panel;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import model.Model;

public class ChoicePanel extends Panel{

Model model;
Choice selection;

public ChoicePanel (Model mdl) ({

model = mdl;

selection = new Choice();

for (String msg : Model.selections) {
selection.add (msg) ;

}

selection.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e)

model . setMessage (selection.getSelectedItem()) ;

model .repaint() ;

)
this.add (selection);

5l save it. Now, in your ChoiceApplet, add the code shown in blue and remove the code inred:

CODE TO EDIT: ChoiceApplet

package view;

import java.applet.Applet;
import java.awt.Graphics;
import model.Model;

public class ChoiceApplet extends Applet({
Model model;
ChoicePanel choicePanel;

public void init () {
model = new Model (this) ;
ChoicePanel choicePanel = new ChoicePanel (model) ;
this.add (choicePanel) ;

}

public void paint (Graphics g) {
g.drawString ("Message will go here.'"'model.getMessage(), 20,100);
}

0 Save and run it. Now the selection from the drop-down Choice component appears in the applet.

OBSERVE: ChoicePanel

package view;

import java.awt.Choice;

import java.awt.Panel;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import model.Model;

public class ChoicePanel extends Panel

Model model;
Choice selection;

public ChoicePanel (Model mdl) ({
model = mdl;
selection = new Choice();
for (String msg : Model.selections) {
selection.add (msg) ;
}
selection.addItemlListener (new ItemListener () ({
public void itemStateChanged (ItemEvent e) {
model . setMessage (selection.getSelectedItem()) ;
model.repaint () ;
}
}) i
this.add (selection) ;

We filled the Choice component, selection, using the enhanced for loop. ltlooks atthe Model class static
variable, selections, and gets each item in order, placing them in the loop's local msg variable. That
variable is added to the selection Choice component, within the loop.

Now, let's add the ability to resetthe Choice componentto its original state. We will use a facility commonly
called a "callback." We'll create an interface with a method that mostofour classes will implementto ensure

that they all have the same method available to resetthe component.

Unlike some other languages, Java does not have the ability to pass the memory address ofa
method to a method call. Instead, we implement an interface so we know that a method exists.
Other classes can then "call back” to that method when itis needed. That's why the facility is
referred to as a callback.

Z
o
-
[

Create a new package named interfaces in the ChoiceExample project. In the interfaces package, create a
new interface named Resettable. Add the code in blue as shown:

CODE TO TYPE: Resettable

package interfaces;
public interface Resettable ({

public void resetComponents() ;

L&l Save it.

In the view package, create a new class named ButtonPanel that extends java.awt.Panel. Then add the
code in blue as shown:

CODE TO TYPE: ButtonPanel

package view;

import java.awt.Button;

import java.awt.Panel;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import model.Model;

public class ButtonPanel extends Panel ({

Model model;
Button resetBtn = new Button("Reset");

public ButtonPanel (Model mdl) ({
model = mdl;
resetBtn.addActionListener (new ActionListener() ({
public void actionPerformed (ActionEvent e) {
model . resetComponents () ;
}
})
this.add (resetBtn) ;
}

5l save it. There will be an error present because we haven'timplemented the reset Components()
method in the Model class yet. We'll take care of thatin a minute.

Editthe ChoicePanel to implement the Resettable interface, adding the code in blue as shown:

CODE TO EDIT: ChoicePanel

package view;

import java.awt.Choice;

import java.awt.Panel;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import model.Model;

import interfaces.Resettable;

public class ChoicePanel extends Panel implements Resettable({

Model model;
Choice selection;

public ChoicePanel (Model mdl) {
model = mdl;
selection = new Choice();
for (String msg : Model.selections) {
selection.add (msqg) ;
}
selection.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
model.setMessage (selection.getSelectedItem()) ;
model.repaint () ;

1)
this.add(selection);

}

public void resetComponents () {
selection.select(0) ;
model . setMessage (selection.getSelectedItem()) ;

&l save it. Go ahead and edit the Model to implement Resettable in blue as shown:

CODE TO EDIT: Model

package model;

import java.awt.Container;
import view.ChoiceApplet;
import interfaces.Resettable;

public class Model implements Resettable({

private Container view;
private String message;

public static String[] selections = {"The Beatles", "John", "Paul", "George"
, "Ringo" } ;

public Model (Container view) {
this.view = view;
message = selections[0];

}

public void setMessage (String msg) {
this.message = msg;

}

public String getMessage () {
return this.message;

}

public void repaint () {
view.repaint () ;

}

public void resetComponents () {
//cast view to a Resettable type in order to see resetComponents() .
((Resettable)view) .resetComponents () ;
repaint() ;

ave it. We get an error now because we haven't made ChoiceAppletimplement the Resettable interface.
I—'lls it. Wi t b h 't made ChoiceAppletimpl tthe Resettable interf
Let's editChoiceApplet now to implement Resettable, as shown in blue:

CODE TO EDIT: ChoiceApplet

package view;

import java.applet.Applet;
import java.awt.Graphics;
import model.Model;

import interfaces.Resettable;

public class ChoiceApplet extends Applet implements Resettable({
Model model;
ChoicePanel choicePanel;
ButtonPanel buttonPanel;

public void init () {
model = new Model (this);
choicePanel = new ChoicePanel (model) ;
buttonPanel = new ButtonPanel (model) ;
this.add (choicePanel) ;
this.add (buttonPanel) ;

public void paint (Graphics g) {

g.drawString (model.getMessage (), 20,100);

public void resetComponents () {
choicePanel.resetComponents () ;

o Save and run it. Change the Choice componentto some other value. Click Reset. The model is resetto

its original state and the appletis repainted.

Chain of events: The reset button is pressed, activating the ActionListener's actionPerformed() method.
The actionPerformed() method calls the Model's resetComponent() method, which in turn calls the
ChoiceApplet's resetComponents() method, which in turn calls the ChoicePanel's resetComponents()
method, setting the Choice componentto its original state and telling the Model to setits message to its

original state. Everything we do goes through the Model.

Let's take a look at a diagram that shows how various elements in our example are connected to one
another. This is called a UML Class Diagram. UML is the Unified Modeling Language and the Class

Diagram illustrates the way various classes interact.

interfaces. Resettable

LYY Fal

«interface= Al

+ resetComponents{) b o

model.Model “view.ChoiceApplet

- view : Container
- message : String
+ selections : String[]

+ model : model.Model
| ~ choicePanel : ChoicePanel
~ buttenPanel : ButtonPanel

+ Model{view : Container)
+ setMessage(msg : String)
+ getMessage() : String

+ init(}
+ paint(g : Graphics)
+ resetComponentst)

Choicespplet and its
components are the
View in MVC, It asks the
model what the state is
and then displays it.

+ resetComponents()

view.ChoicePanel
+ model : model. Model
~ selection : Choice
+ ChoicePanellmdl : model.Model)
+ resetComponents()

ChoicePanel:selection:anonymous inner
class itemStateChanged() method is part of
the Controller in MVC. It tells the Model to
change the message and to repaint().

+ repaint{) \
—-_— e \(f

. S o \
The Model class is the Model —_— "
in MVC, It is the business logic ri view.ButtonPanel
of the programs. It represents S + model : model. Model
the state of the program. ~ resetBtn : Button

/ + ButtonPanel{mdl : model.Model)
r
b /

ButtonPanel:resetBtn:anonymous inner
class actionPerformed() method is part of
the Controller in MVC. It tells the Model to
resetComponents() and to repaint(),

Let's break down our diagram. First, the + symbol inside the class boxes means thatthe method or attribute
is public. The ~ symbol means that the attribute or method is private.

s

The red lines in the diagram have specific meanings as well. A solid line with an arrow at the end of it T
represents inheritance. The arrow points to a super class.

an
A dotted line with an arrow at the end of it indicates implementation of an interface. The arrow points to
the interface being implemented.
-l
Finally, the solid line with a diamond at the end of it indicates association, or "uses." The

diamond is on the end ofthe line closestto the class thatis using the other class.

So, our diagram shows us that ChoiceAppletinherits from Applet, implements Resettable, and uses Model,
ChoicePanel, and ButtonPanel.

All of the View components, ChoiceApplet, ButtonPanel, and ChoicePanel, use the Model. They either get
information from the Model to display it, or the Controller portion of those components tell the Model how to
change its state.

Creating the Shape Drawing Project

In the Java3_Lessons working set, create a new Java projectnamed java3_Lesson06. Add the following
packages to the project:

e event

e interfaces

e model
e shapes
e ui.applet

e ui.panels

We'll need these packages to modularize our code and make it easy to maintain. We'll talk about this in
greater detail later, but let's build something right now!

In the ui.applet package of yourjava3_Lesson06 project, create a new class named GUIDemo. The
superclass should be java.applet.Applet.

Edit GUIDemo in blue as shown:

CODE TO TYPE: GUIDemo

package ui.applet;
import java.applet.BApplet;
import java.awt.*;

public class GUIDemo extends Applet {
private final String DRAW = "Draw";
public void init() {

Checkbox draw = new Checkbox (DRAW) ;
add (draw) ;

-
2 save and run it (as a Java Applet). This sweet little applet opens:

Applet

Applet started.

=10l =]

Click the checkbox so the check mark appears. Let's examine that code:

OBSERVE: GUIDemo

package ui.applet;
import Jjava.applet.Applet;
import java.awt.*;

public class GUIDemo extends Applet {
private final String DRAW = "Draw";

public void init () {
Checkbox draw = new Checkbox (DRAW) ;
add (draw) ;

First, we declare a final String constant named DRAW to represent action, Draw. Using the upper-case

name DRAW, helps avoid confusion when we use the word "Draw" later.

Within the init() method, we create a Checkbox named draw as a local variable and give it the label
represented by the DRAW constant. Then we add the draw object to the applet.

When you click in the checkboXx, the check mark appears—but nothing else happens. Clicking in the box
component causes an ltemEvent, butno one is listening for it. If an ItemEvent takes place in the program,
butthere is no one there to hearit, does itreally happen at all? Nope. We need to delegate a listenerto listen

forthatltemEvent (in this case, a click in the checkbox).

Each Java GUlIcomponent allows a user to generate specific Events, which require relative
' Note listeners to "hear" them. The action taken in response to those events is part ofthe Controller

in the MVC design pattern.

Interfaces and Listeners

Your appletis an Interface. A Java interface is similar to the face of a car radio. Car radio faces have evolved

over the years:

Then:

Now:

But despite a more modern appearance, they still operate in essentially the same way they always have. Most

radio interfaces still have knobs for power, volume, and tuning. Good new design incorporates interfaces that
are familiar to users. While specific internal behavior that's triggered by the use of interfaces may vary,

interfaces themselves usually change only slightly.

In Java, Listeners are interfaces that listen for specific types of events to occur.

API Open the APl and go to the java.awt package. Scroll down to Checkbox and click it. Scroll down to its

methods and you'll see additemListener(ltemListenerl). Conveniently, in order to add a listener, we
always use the command addxxx(), where xxx is the name of the listener. So, if we need an
ActionListener, we would use the addActionListener() method.

Let's getthat Listener into our code! Edit GUIDemo as shown in blue:

CODE TO TYPE: GUIDemo

package ui.applet;

import java.applet.Applet;
import java.awt.*;
import java.awt.event.¥*;

public class GUIDemo extends Applet implements ItemListener {
private final String DRAW = "Draw";
Checkbox draw;

public void init () {
draw = new Checkbox (DRAW) ;
add (draw) ;
draw.addItemListener (this) ;
}

public void itemStateChanged (ItemEvent e) {
System.out.println("I see you now!");
if (e.getSource() == draw)
System.out.println("I know you clicked " + e.getItem().toString())

o Save and run it. Now, when you click the box you see outputin the console. How did we do that? Let's take
alook atthe code:

OBSERVE:

package ui.applet;

import Jjava.applet.BApplet;
import Jjava.awt.*;
import java.awt.event.*;

public class GUIDemo extends Applet implements ItemListener({
private final String DRAW = "Draw";
Checkbox draw;

public void init () {
draw = new Checkbox (DRAW) ;
add (draw) ;
draw.addItemListener (this);
}

public void itemStateChanged (ItemEvent e) {
System.out.println ("I see you now!");
if (e.getSource() == draw)
System.out.println ("I know you clicked " + e.getlItem().toString());

We make draw an instance variable so we can use itthroughout the class rather than justin the init()
method.

In the init () method, we add this instance ofthe GUIDemo class to the draw object with
addltemListener().

When the user changes the state ofthe draw Checkbox, the itemStateChanged() method is invoked,
because this instance of GUIDemo is the ItemListener for the draw Checkbox.

The if statementlooks atthe temEvent e parameter and checks to get the object that was the source of the
event. Ifthat source is our draw Checkbo x, we printa String to the console with the label of the Checkbo x

appended to it.
Here are a few guidelines for you to keep in mind when using a listener interface:
e Importjava.awt.event.* and java.awt.*.
e Be sure the class declaration implements the listener.
e Create the GUl component that you want to be heard.
e Add the GUlcomponentto the Applet.

e Add the listener to the GUI component.
e Implementall of the methods specified by the Interface/Listener.

Building a Program
So, where is all of this going? We'll use this information to start modularizing our code.

In the interfaces package of your java3_Lesson06 project, create a new interface named Resettable.

= New Java Interface H=] E3
Jawva Interface .-‘/

Create a new Java inkerface, | Q).‘

Gu:uuru:e Folder: |javaS_Less-:unElE-,l’sr|: T) Browse, ., |
Gackage: M—) Browse, ., |

I Enclosing bvpe: | Browse, .. |
(r'_-.lame: | Resettable| _)

Modifiers: % public " defaulk private € pratecked

Extended interfaces: add...

Remove

g

Do wou want ko add comments? (Configure templates and default walue hered

|_ Generate comments

(7) | Finish I Cancel

Type the Resettable interface as shown in blue:

CODE TO TYPE:

package interfaces;

public interface Resettable ({
public void resetComponents() ;

}

=l save it. We can't run this right now, butwe'll use it later.

OBSERVE: Required Method

package interfaces;

public interface Resettable ({
public void resetComponents () ;

}

Any class thatimplements Resettable mustimplementresetComponents(). Because we know
resetComponents() will be presentin those classes, we can call the method when it's needed. As we go through

the design process for our Big Project, you'll appreciate the importance of including the reset Components()
method.

Slsave and close the Resettable interface now; we won't need to edit itany more. Interfaces rarely need to be
changed once they are finalized.

So, we have an interface that guarantees we have the method necessary to clear components on panels for any class
thatimplements it. Now let's begin the division of our project by creating a panel to hold our GUl components. Usually,
GUIls are built by layering containers and components, and applying different Layout Managers to the containers.

In the ui.panels package of your java3_Lesson06 project, create a new class named ActionPanel. Its superclass
will be java.awt.Panel.

= Mew Java Class H=] E3
Java Class —
Create a new Java class, (\J
Guurce Folder: I javad_Lesson0o)src) Browse, .,
G‘ackage: | ui.panels :) Browse. .

[

I Enclosing type: | Erowse, ..
@ame: i ActionPanel _;}
Modifiers: %" public ™ default) private € protected

[abstract [Ffinal [T static

CSupern:Iass: java.awt.PaneI_} Browse, .,

|

Interfaces: add...

Remowe

g

Which method stubs would wou like to create?
™ public static void mainString[] args)
™ Construckars From superclass
¥ Inhetited abstract methods
Do wou want to add comments? (Configure templates and default value hered

|_ Generate comments

(7 | Finish I Cancel

Type the ActionPanel class in blue as shown:

CODE TO TYPE: ActionPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.Checkbox;
import java.awt.CheckboxGroup;
import java.awt.Panel;

public class ActionPanel extends Panel implements Resettable {

private CheckboxGroup actionGroup;
private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange, chkFill;

Do you know why we're seeing the error message? Ignore it for now; we'll fix it soon.

OBSERVE:

import interfaces.Resettable;
import java.awt.Checkbox;
import java.awt.CheckboxGroup;
import java.awt.Panel;

public class ActionPanel extends Panel implements Resettable{

private CheckboxGroup actionGroup;
private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange,

chkFill;

See thatfirstimport statement? This class mustimplementthe Resettable interface so that the components will

be resetto their original condition when the user clicks the Clear button (which we'll add later).

A CheckboxGroup allows us to group CheckBo x objects together, which has the effect of turning them into "radio
buttons." In a group of Checkbo x objects, only one may be in a true state ata time (although, at compile and run-
time, none of the objects needs to be in a true state). Once one Checkbox objectis setto true at run-time, one and

only one of the objects in the group can be true.

The CheckBox objects—chkDraw, chkMove, chkResize, chkRemove, chkChange, and chkFill—will be placed

on this panel.

Let's add those Checkbox objects to the panel now, as shown in blue:

CODE TO EDIT: ActionPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.Checkbox;
import java.awt.CheckboxGroup;
import java.awt.GridLayout;
import java.awt.Panel;

public class ActionPanel extends Panel implements Resettable({

private CheckboxGroup actionGroup;

private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange,
private final String DRAW = "Draw";

private final String MOVE = "Move";

private final String RESIZE = "Resize";

private final String REMOVE = "Remove';

private final String CHANGE = "Change";

private final String FILL = "Fill";

public ActionPanel () {
actionGroup = new CheckboxGroup () ;
chkDraw = new Checkbox (DRAW, actionGroup, true);
chkMove = new Checkbox (MOVE, actionGroup, false);
chkResize = new Checkbox (RESIZE, actionGroup, false);
chkRemove = new Checkbox (REMOVE, actionGroup, false);
chkChange = new Checkbox (CHANGE, actionGroup, false);
chkFill = new Checkbox (FILL, false);
setLayout (new GridLayout(1,6))
add (chkDraw) ;
add (chkMove) ;
add (chkResize) ;
add (chkRemove) ;
add (chkChange) ;
add (chkFill) ;

chkFill;

=1 Save it.

OBSERVE: ActionPanel Imports and Variables

package ui.panels;

import interfaces.Resettable;
import Jjava.awt.Checkbox;
import java.awt.CheckboxGroup;
import java.awt.GridLayout;
import java.awt.Panel;

public class ActionPanel extends Panel implements Resettable {
private CheckboxGroup actionGroup;

private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange, chkFill;
private final String DRAW = "Draw";

private final String MOVE = "Move";
private final String RESIZE = "Resize";
private final String REMOVE = "Remove";
private final String CHANGE = "Change";
private final String FILL = "Fill";

public ActionPanel () {
actionGroup = new CheckboxGroup () ;
chkDraw = new Checkbox (DRAW, actionGroup, true);
chkMove = new Checkbox (MOVE, actionGroup, false);
chkResize = new Checkbox (RESIZE, actionGroup, false);
chkRemove = new Checkbox (REMOVE, actionGroup, false);
chkChange new Checkbox (CHANGE, actionGroup, false);
chkFill = new Checkbox (FILL, false);
setLayout (new GridLayout(1l,6));
add (chkDraw) ;
add (chkResize) ;
add (chkMove) ;
add (chkRemove) ;
add (chkChange) ;
add (chkFill) ;

We added several final String fields. (We'll move them to the Model class in a bit, but we've added them here
temporarily so we can see them at work with the restof our code.)

In our example, we create and then add the Checkbo x objects to the ActionPanel. First, we create a new
CheckboxGroup object. The CheckboxGroup objectis a logical container for the first five Che ckbo x objects. This
container does not effect the way the objects are laid out on the screen, butit groups them into a setofradio buttons.
When we create the Checkbox objects, we pass this group to their constructors. The constructor parameters for the
firstfive Checkbo x objects take the label of the checkbox, the group to which the checkbox is attached, and the initial
state of the object—true for set, and false for unset. The last Checkbox object (chkFill) is not part of the group, so we
omitthe group parameter in its constructor call.

The setLayout(new GridLayout(1,6)) line instructs this panel to arrange components added to itin a grid thatis 1
row by 6 columns (1,6). Each componentadded to the panel will occupy the same amount of space in the grid.
Components will be arranged in a GridLayoutin the order in which they are added to the panel. The grid will be filled
from left to right, and from top to bottom.

Now we need to fulfill the promise we made when implementing the Resettable interface in creating the ActionPanel
class. We mustimplement the resetComponents() method. Edit your code as shown in blue:

CODE TO EDIT: ActionPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.Checkbox;
import java.awt.CheckboxGroup;
import java.awt.GridLayout;
import java.awt.Panel;

public class ActionPanel extends Panel implements Resettable{

private CheckboxGroup actionGroup;
private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange, chkFill;

private final String DRAW = "Draw";
private final String MOVE = "Move";
private final String RESIZE = "Resize";
private final String REMOVE = "Remove";
private final String CHANGE = "Change";
private final String FILL = "Fill";

public ActionPanel () {
actionGroup = new CheckboxGroup () ;
chkDraw = new Checkbox (DRAW, actionGroup, true);
chkMove = new Checkbox (MOVE, actionGroup, false);
chkResize = new Checkbox (RESIZE, actionGroup, false);
chkRemove = new Checkbox (REMOVE, actionGroup, false);
chkChange = new Checkbox (CHANGE, actionGroup, false);
chkFill = new Checkbox (FILL, false);
setLayout (new GridLayout (1l,6));
add (chkDraw) ;
add (chkMove) ;
add (chkResize) ;
add (chkRemove) ;
add (chkChange) ;
add (chkFill) ;

}

public void resetComponents () {
// For each component, set the state. Only one of the first five can be true.
chkDraw.setState (true) ;
chkMove.setState (false) ;
chkResize.setState (false) ;
chkRemove.setState (false) ;
chkChange.setState (false) ;
chkFill.setState (false) ;

=1 Save it.

This method sets appropriate default states for all of the components on the panel. We're getting close to being able
to run our program. But first, we need to modify our GUIDemo appletso itcan use this class. We have a lot more to do
still, but this will allow us to see results as we go. Edit GUIDemo, adding the code shown in blue and removing the
code shownin red:

CODE TO EDIT: GUIDemo

package ui.applet;

import java.applet.Applet;
import java.awt.*;

import java.awt.event.¥*;
import ui.panels.ActionPanel;

public class GUIDemo extends Applet implements ItemListener(
private final String DRAW = "Draw";
Checkbox draw;
ActionPanel actionPanel;

public void init () {
Checkbox draw = new Checkbox (DRAW) ;
add (draw) ;
draw.addItemListener (this) ;
resize (600,400) ;
actionPanel = new ActionPanel () ;
add (actionPanel) ;

}

public void itemStateChanged (ItemEvent e) {
System.out.println("I see you now!");
if (e.getSource() == draw)
System.out.println ("I know you clicked " + e.getItem().toString()):

OBSERVE: GUIDemo

package ui.applet;

import Jjava.applet.BApplet;
import ui.panels.ActionPanel;

public class GUIDemo extends Applet {
ActionPanel actionPanel;

public void init () {
resize (600,400) ;
actionPanel = new ActionPanel () ;
add (actionPanel) ;

Now our GUIDemo applet will look like the listing above. We created a new ActionPanel object, added it to the applet,
and named itactionPanel.

o Save all of your files and run the applet:

ghpplet Viewer: ui.applet.GUIDemo.class -0 x|
Applet

@iDrawi " Move {7 Resize Remowve ¢ Change [T Fill

Applet started.

You can click on any of the first five checkboxes (which are configured as radio buttons), but only one of them will be
selected at a time. The last checkbox (Fill) can be set and unsetregardless of the other checkbox states, because we
didn't add it to the CheckboxGroup object.

We'll incorporate a bitmore modularization now, to keep as much of the actual program operation as we can, outof
the appletcode. Let's create a MainPanel panel to hold the ActionPanel and any other panels we want to place.
Afterward, we can add this MainPanel to our applet and all of the other panels will be added automatically. Create a
new class named MainPanel in the ui.panels package. It should extend java.awt.Panel and implement the
Resettable interface, as shown:

= Mew Java Class M=] B9

Jawva Class

Create a new Java class,

CS:::urce Folder: | javaS_Lessu:unDEu,l'srn:__) Browse. .,

G‘ackage: | ui.panels) Browse, .,

I Enclosing type: | Browse, ..

i e

G.Iame: I MainPanel _:)

Modifiers: = public £~ defaul: £ private " protecked
[T abstract [Final ™| skatic

 Superclass: | java, awt,Panel)
interfaces Resettable _‘)‘

Interfaces:

Remove |

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

In MainPanel add the code in blue as shown:

CODE TO TYPE: MainPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.GridLayout;
import java.awt.Panel;

public class MainPanel extends Panel implements Resettable {
ActionPanel actionPanel;

public MainPanel() ({
actionPanel = new ActionPanel () ;
setLayout (new GridLayout(2,1));
add (actionPanel) ;

}

public void resetComponents () {
actionPanel.resetComponents () ;

}

OBSERVE: MainPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.GridLayout;
import java.awt.Panel;

public class MainPanel extends Panel implements Resettable {
ActionPanel actionPanel;

public MainPanel () {
actionPanel = new ActionPanel () ;
setLayout (new GridLayout(2,1));
add (actionPanel) ;

}

public void resetComponents() {
actionPanel . resetComponents () ;

}

Here we create a new ActionPanel objectnamed actionPanel and add itto this panel. We use a GridLayout that
sets our MainPanel to two rows by one column (2,1) in each row. This leaves room to add another panel later.

The resetComponents() method is a pass-through method that passes the message along to the ActionPanel
object. When this method is called, itin turn calls the ActionPanel's resetComponents() method.

5l Save the MainPanel class and then modify the GUIDemo class, adding the blue code and removing the red
code as shown:

CODE TO EDIT: GUIDemo

package ui.applet;

import interfaces.Resettable;
import java.applet.Applet;
import ui.panels.ActionPanel;
import ui.panels.MainPanel;

public class GUIDemo extends Applet implements Resettable({
ActionPanel actionPanel;
MainPanel mainPanel;

public void init () {
resize (600,400);
actionPanel = new ActionPanel () ;
add (actionPanel) ;
mainPanel = new MainPanel () ;
add (mainPanel) ;

}

public void resetComponents () {
mainPanel.resetComponents () ;

}

=1 Save it.

OBSERVE: GUIDemo

package ui.applet;

import interfaces.Resettable;
import Jjava.applet.Applet;
import ui.panels.MainPanel;

public class GUIDemo extends Applet implements Resettable({
MainPanel mainPanel;

public void init () {
resize (600, 400);
mainPanel = new MainPanel () ;
add (mainPanel) ;

}

public void resetComponents() {
mainPanel. resetComponents () ;

}

We replace ActionPanel with MainPanel and actionPanel with mainPanel. We implement the Resettable interface and
its required method, resetComponents(). This gives us the ability to tell the GUIDemo appletto have the
mainPanel resetits components whenever this method is called.

-
9 Save all of your files and run the GUIDemo applet. The appletlooks the same, but our structural changes make it
more modular and easier to maintain in the future.

Now let's create the Model class for this applet and start making the applet work for us!

In the model package, create a new class named Model. This class should implement the Resettable interface as
shown:

= New Java Class [_ O

Jawva Class —
Create a new lava class, @

CSDLIFEE Folder: I javad_Lesson0a)src D Browse, ., |
Gackage: I model __) Browse, .. |
r Enclosing bype: | Browse, .. |
(r'_«lame: iMn:ndeI _)
Modifiers: * public £ defaul: £ private € protected

[T abstract [Ffinal [static

Superclass: | java.lang. Object

.
@terfaces: (1] interfaces.Resettabl_eJx

Remove |

Which method stubs would wou like ko create?
[public skatic void maintSkring[] args)
[~ Constructors from superclass
I¥ Inherited abstract methods
Do wou want ko add comments? {Configure templates and default walue hered

[T Generate comments

(7) Finish I Cancel

When our Clear button is clicked, it will tell the model to call resetComponents() and then the model will distribute
that message as needed. Type Model in blue as shown:

CODE TO TYPE: Model

package model;

import java.awt.Container;
import interfaces.Resettable;

public class Model implements Resettable(
private Container container;

public final static String DRAW = "Draw";
public final static String MOVE = "Move";
public final static String REMOVE = "Remove";
public final static String RESIZE = "Resize";
public final static String CHANGE = "Change";
public final static String FILL = "Fill";

private String action = DRAW;
private boolean fill = false;

public Model (Container container) {
this.container = container;

}

public void repaint() {
container.repaint() ;

}

public void resetComponents () {
action = DRAW;
fill = false;
if (container instanceof Resettable) {
((Resettable) container) . resetComponents () ;

}

// Cut and paste these from the ActionPanel class, then make them public and static

=1 Save it.

OBSERVE: Model

package model;

import java.awt.Container;
import interfaces.Resettable;

public class Model implements Resettable ({
private Container container;

public final static String DRAW = "Draw";
public final static String MOVE = "Move";
public final static String REMOVE = "Remove";
public final static String RESIZE = "Resize";
public final static String CHANGE = "Change";
public final static String FILL = "Fill";

private String action = DRAW;
private boolean £fill = false;

public Model (Container container) {
this.container = container;

}

public void repaint() {
container.repaint() ;

}

public void resetComponents() {
action = DRAW;
£fill = false;
if (container instanceof Resettable) {
((Resettable) container) . resetComponents () ;

}

This is the beginning of the Model class. The container objectis an instance ofthe Container class, from which
Applet and Frame descend. This allows us to have a reference to either an Appletor a Frame, so we can use this class
with either an appletor a GUl application class. The Container class includes the repaint() method, so we can use
repaint() on the container variable.

The constructor takes in a Container object as a parameter and then we persist this reference into the instance
variable container.

We're moving the public final String objects from the ActionPanel class into the Model class, so thatany other class
can access them as well.

The String variable action will hold the current action being performed by the program (setto DRAW by default) and
the boolean fill variable will hold the current state of the shape we are aboutto draw or change (setfalse by default).

The repaint() method passes arepaint() message on to the container object, so no other class needs to know
aboutthe Container for the program. We pass any messages for the applet or application through the Model.

The implementation of the reset Components() method required by the Resettable interface, sets the action variable
to equal our DRAW constantfirst, so the default action is Draw. We also set the fill variable to its defaultof false.
Then the method tests the container variable to find outifit's a reference to a Resettable object (implements
Resettable).Ifso,itcalls the resetComponents() method ofthe container.

((Resettable)container).resetComponents(); casts the container to a Resettable object, so that
we can call its resetComponents() method. A Container objectdoes nothave a '
resetComponents() method, buta Container subclass thatimplements Resettable does. Pay :
attention to the position of the parentheses. We are casting the container objectto a Resettable E
Note object, which allows us to access the container object's Resettable methods for this statementin our !
code. Then we call the resetComponents() method on that object. If we did not have the outside setof |
parentheses, we would be trying to cast the returned value ofthe resetComponents() method and we
would getan error message at compile-time because resetComponents() returns void. Try removing !
the parentheses and see what happens.

We aren't quite finished working with this class. Let's add the setters and getters,and atoString() method to help
with debugging. Editthe code in Model as shown in blue:

CODE TO EDIT: Model

package model;

import java.awt.Container;
import interfaces.Resettable;

public class Model implements Resettable(
private Container container;

public final static String DRAW = "Draw";
public final static String MOVE = "Move";
public final static String REMOVE = "Remove";
public final static String RESIZE = "Resize";
public final static String FILL = "Fill";
public final static String CHANGE = "Change";

private String action = DRAW;
private boolean fill = false;

public Model (Container container) {
this.container = container;

}

public void repaint () {
container.repaint () ;

}

public void resetComponents () {
action = DRAW;
fill = false;
if (container instanceof Resettable) {
((Resettable) container) .resetComponents () ;

}

public String getAction() {
return action;

}

public void setAction(String action) ({
this.action = action;

}

public boolean isFill() {
return £fill;

}

public void setFill (boolean £fill) {
this.fill = £ill;
}

public String toString() {
return "Model:\n\tAction: " + action + "\n\tFill: " + £ill;
}

=1 Save the Model class. Now, we'll modify our other classes to take advantage of this one. Edit GUIDemo as
shown in blue:

CODE TO EDIT: GUIDemo

package ui.applet;

import interfaces.Resettable;
import java.applet.Applet;
import ui.panels.MainPanel;
import model.Model;

public class GUIDemo extends Applet implements Resettable(
MainPanel mainPanel;
Model model;

public void init () {
resize (600,400);
model = new Model (this) ;
mainPanel = new MainPanel (model) ;
add (mainPanel) ;

public void resetComponents () {
mainPanel.resetComponents ()

’

}

OBSERVE: GUIDemo

package ui.applet;

import interfaces.Resettable;
import java.applet.Applet;
import ui.panels.MainPanel;
import model.Model;

public class GUIDemo extends Applet implements Resettable {
MainPanel mainPanel;
Model model;

public void init() {
resize (600,400) ;
model = new Model (this) ;
mainPanel = new MainPanel (model) ;
add (mainPanel) ;

}

public void resetComponents () {
mainPanel.resetComponents () ;

}

We create an instance of our Model class named model. Then we pass the currentinstance ofthe GUIDemo class
(this) to it as the Container parameter required by the Mo del constructor. Thinking ahead, we'll also pass the model
variable to the MainPanel so thatitcan pass italong to the ActionPanel that we'll modify as well.

5l save GUIDemo. There are errors, but they'll be fixed as we modify the other classes.

Open the MainPanel class ifitis notalready opened. Modify itas shown in blue below:

CODE TO EDIT: MainPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.GridLayout;
import java.awt.Panel;

import model.Model;

public class MainPanel extends Panel implements Resettable {
ActionPanel actionPanel;

public MainPanel (Model model) ({
actionPanel = new ActionPanel (model) ;
setlLayout (new GridLayout(2,1));
add (actionPanel) ;

}

public void resetComponents () {
actionPanel.resetComponents () ;

}

5/ save the MainPanel class, even though it has errors—they'll vanish when we finish modifying the ActionPanel
class:

OBSERVE: MainPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.GridLayout;
import java.awt.Panel;

import model.Model;

public class MainPanel extends Panel implements Resettable {
ActionPanel actionPanel;

public MainPanel (Model model) ({
actionPanel = new ActionPanel (model) ;
setLayout (new GridLayout (2,1));
add (actionPanel) ;

}

public void resetComponents () {
actionPanel.resetComponents () ;

}

A Model objectis being accepted in the constructor of the MainPanel class and that objectis then passed to the
ActionPanel instance.

Open ActionPanel and edititas shown below, adding the blue code and removing the red code:

CODE TO EDIT: ActionPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.Checkbox;
import java.awt.CheckboxGroup;
import java.awt.GridLayout;
import java.awt.Panel;

import model.Model;

public class ActionPanel extends Panel implements Resettable({
private CheckboxGroup actionGroup;
private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange, chkFill;
// You may have already cut and pasted these into the Model class.
private final String DRAW = "Draw";
private final String MOVE = "Move";

private final String RESIZE = "Resize";
private final String REMOVE = "Remove';
private final String CHANGE = "Change";

private final String FILL = "Fill";

public ActionPanel (final Model model) {
actionGroup = new CheckboxGroup () ;
chkDraw = new Checkbox (Model.DRAW, actionGroup, true);
chkMove = new Checkbox (Model.MOVE, actionGroup, false);
chkResize = new Checkbox (Model.RESIZE, actionGroup, false);
chkRemove = new Checkbox (Model.REMOVE, actionGroup, false);
chkChange = new Checkbox (Model.CHANGE, actionGroup, false);
chkFill = new Checkbox (Model.FILL, false);
setlLayout (new GridLayout(1l,6));
add (chkDraw) ;
add (chkMove) ;
add (chkResize) ;
add (chkRemove) ;
add (chkChange) ;
add (chkFill) ;

}

public void resetComponents () {
chkDraw.setState (true);
chkMove.setState (false) ;
chkResize.setState (false);
chkRemove.setState (false);
chkChange.setState (false);
chkFill.setState(false);

In this class, we take a Model instance named model in through the constructor's parameter. We mark this parameter
as final because later we'll be adding ItemListeners via anonymous inner classes, and these kinds of classes
require any accessed local variables to be marked as final. Because this is the only method that needs access to
model, we don't need to create an instance variable for it.

And speaking of anonymous inner classes, we are about to give the ActionPanel Checkbox instances the ability to
effect the model. There will be many times when we use specific snippets of code over and over again. Check it out:

OBSERVE: Boilerplate code

chk.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
model.setAction (Model .REPLACE ME) ;
}
});

We will repeat the above code snippet six times (once for each of the checkboxes) with slight variations, in our
ActionPanel class. Rather than retyping all of that code, let's copy and paste it. We'll replace the bold elements above

with specific items after copying.

OBSERVE: About The Boilerplate

chkDraw.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
model.setAction (Model .DRAW) ;
}
});

We modified the code snippet for the chkDraw object. We replaced the chk placeholder with chkDraw and then
replaced the REPLACE_ME placeholder with DRAW, which sends a message to the model object to change its
action variable to equal the DRAW action. Copy/paste the code snippet six times in the listing below, and then modify

the copies for each of the objects. The chkFill object will need a litle more modification. Edit the code as shown in
blue:

CODE TO TYPE: ActionPanel

package ui.panels;

import interfaces.Resettable;
import java.awt.Checkbox;

import java.awt.CheckboxGroup;
import java.awt.GridLayout;

import java.awt.Panel;

import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import model.Model;

public class ActionPanel extends Panel implements Resettable {

private CheckboxGroup actionGroup;
private Checkbox chkDraw, chkMove, chkResize, chkRemove, chkChange, chkFill;

public ActionPanel (final Model model) {
actionGroup = new CheckboxGroup () ;
chkDraw = new Checkbox (Model.DRAW, actionGroup, true);
chkMove = new Checkbox (Model.MOVE, actionGroup, false);
chkResize = new Checkbox (Model.RESIZE, actionGroup, false);
chkRemove = new Checkbox (Model.REMOVE, actionGroup, false);
chkChange = new Checkbox (Model.CHANGE, actionGroup, false);
chkFill = new Checkbox (Model.FILL, false);

chkDraw.addItemListener (new ItemListener () {
public void itemStateChanged(ItemEvent e) ({
model.setAction (Model .DRAW) ;
}
})
chkMove.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
model.setAction (Model .MOVE) ;
}
}) s
chkResize.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
model.setAction (Model.RESIZE) ;
}
})
chkRemove.addItemListener (new ItemListener () {
public void itemStateChanged (ItemEvent e) {
model . setAction (Model.REMOVE) ;
}
});
chkChange.addItemListener (new ItemListener() {
public void itemStateChanged (ItemEvent e) {
model.setAction (Model.CHANGE) ;
}
})
chkFill.addItemListener (new ItemListener () ({
public void itemStateChanged(ItemEvent e) ({
model .setFill (chkFill.getState()) ;
}
})

setLayout (new GridLayout (1, 6));
add (chkDraw) ;

add (chkMove) ;

add (chkResize) ;

add (chkRemove) ;

add (chkChange) ;

add (chkFill) ;

public void resetComponents () {

chkDraw.setState (true) ;
chkMove.setState (false) ;
chkResize.setState (false);
chkRemove.setState (false);
chkChange.setState (false) ;
chkFill.setState (false);

The chkFill instance also needs an ItemListener, butitis changing the fill variable in the model object. We set this
variable to equal the state of the chkFill instance. So, if the chkFill instance is checked, then the fill variable of the
model instance will be true.

Ll Save the ActionPanel class and editthe GUIDemo class as shown in blue:

CODE TO EDIT: GUIDemo

package ui.applet;

import interfaces.Resettable;
import java.applet.Applet;
import ui.panels.MainPanel;
import model.Model;

import java.awt.Graphics;

public class GUIDemo extends Applet implements Resettable(
MainPanel mainPanel;
Model model;

public void init () {
resize (600,400);
model = new Model (this);
mainPanel = new MainPanel (model) ;
add (mainPanel) ;

}

public void paint (Graphics g) {
System.out.println (model) ;
}

public void resetComponents () {
mainPanel.resetComponents () ;

}

V] Save and run it. Change some of the checkboxes manually, then resize the applet. You can see in the console that
the model has changed states. Also, dragging the appletviewer window border to manually resize the appletforces a
repaint().

This has been along and lesson, so for now, justtake a look athow the pieces are tied together in the UML Class
Diagram for this partofthe lesson:

Resettable is the
interface that allows us

«interfacex»
interfaces.Resettable

to reset all components

across different parts of

+ resetComponents()

the applet with one
consistent method call
to resetComponents().

model.Model

- container : Container

+ DRAW : String

+ MOVE : String

+ REMOVE : String
+ RESIZE : String
+ FILL : String

+ CHANGE : String
- action : String

- fill : boolean

+ Model{container : Container)
+ repaint()

+ resetComponents()

+ getAction() : String

+ setAction(action : String)

+ isFill{) : boolean

+ setFill{fill : boolean)

+ toString() : String

panels.ActionPanel Panel
- actionGroup : CheckboxGroup —
- chkDraw : Checkbox i

- chkMove : Checkbox

- chkResize : Checkbox

- chkRemove : Checkbox
- chkChange : Checkbox
- chkFill : Checkbox

+ ActionPanel{model : model.Model)

+ resetComponents()

o]
]
=

&

ActionPanel and its
compenents are part of the
View. The anonymous inner
class, itemStateChanged()

*. | methods of the checkboxes

are part of the Controller.

applet.GUIDemo

+ mainPanel : panels.MainPanel
~ model : model.Model

panels.MainPanel

-

+ init()
+ paint(g : Graphics)
+ resetComponents()

+ actionPanel : ActionPanel

+ resetComponents()

laige—— + MainPanelimodel : model.Model)

Model is the Model of the
Applet. It stores the state of
the program. The View asks
it for the information to
display. The Controller tells it
how to change its state.

i

GUIDemo is part of the View.
The resetComponents()
methed is a call back method
that allows us to pass
information to the MainPanel.

other panels.

MainPanel and its components
are part of the View. The
resetComponents() method is
a callback methed that allows
us to pass information to the

Itlooks really similar to the example at the beginning of the lesson. That's because we're using the same MVC design

pattern.

Copyright © 1998-2014 O

‘Reijlly Media, Inc.

Greatwork so far. This was a really dense lesson, chock full ofinformation. Good job hanging with it. You are a Java beast! We
still have alot more work to do to make this applet fully functional, but let's take a break here and congratulate ourselves on
what we've accomplished! See you in the nextlesson, where we will give this applet a more functionality!

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Interfaces: Listeners and Adapters (continued)

Lesson Objectives

When you complete this lesson, you will be able to:

use the MVC pattern and interfaces.
e demonstrate the similarities between Oval and Rectangle classes.

implementinheritance.

demonstrate the advantages of using an Adapter class instead of a Listener interface.

Building the Shapes

In this section, we'll look again at our project from the previous lesson and trace the way our Java classes are
developing. In the lasthomework assignment, we asked you to think about abstract classes and abstract methods for
your Shape class, and then make adjustments to your classes based on what you had learned.

Take work with the Shape class that we modified earlier. It's now abstract. Again, you're notrequired to use our design
for this next project, but you can if you like. If you do use your own design, make sure itincludes all of the same
functionality thatis presentin ours. This might be a bittough, but, hey, you like a challenge, right? We encourage critical
thinking, experimentation, and exploration. If you getlostalong the way, you can always come back to this design.

Let's start by creating a new project named Java3_Lesson07. Copy the src folder from your Java3_Lesson06
projectinto this new project.

Note Be sure to incorporate the changes you made in your lasthomework project.

Create or modify a Shape class in the shapes package. It will look something like this:

CODE TO EDIT: Shape

package shapes;

import java.awt.Color;
import java.awt.Graphics;

public abstract class Shape {
private int x, y;
private Color lineColor;

public Shape(int x, int y, Color lineColor) ({
this.x = x;
this.y = y;
this.lineColor = lineColor;

}

public abstract void draw(Graphics g);
public abstract boolean containslLocation(int x, int y);

public int getX() {
return x;

}

public void setX(int x) {
this.x = x;

}

public int getY¥() {
return y;

}

public void setY¥(int y) {
this.y = y;
}

public Color getLineColor () {
return lineColor;

}

public void setlLineColor (Color lineColor) ({
this.lineColor = lineColor;

}

L'll Save it.

OBSERVE: Shape

package shapes;

import java.awt.Color;
import java.awt.Graphics;

public abstract class Shape {
private int x, y;
private Color lineColor;

public Shape(int x, int y, Color lineColor) ({
this.x = x;
this.y = y;
this.lineColor = lineColor;

}

public abstract void draw(Graphics g);
public abstract boolean containslLocation(int x, int y);

public int getX() {
return x;

}

public void setX(int x) {
this.x = x;

}

public int get¥Y () {
return y;

}

public void setY¥ (int y) {
this.y = y;
}

public Color getLineColor () {
return lineColor;

}

public void setlLineColor (Color lineColor) ({
this.lineColor = lineColor;

}

The class we're working on will continue to have relatively few properties and methods. All of the attributes are private,
so getters and setters are especially important; we've made sure that they're all present.

The Shape class only has the attributes x, y, and lineColor, because all of its subclasses will have these attributes.
Our constructor takes only these parameters, keeping the class clean.

We chose to make the draw() and containsLocation() methods abstract. The draw() method must be implemented
in a concrete subclass of the Shape class (Rectangle, Oval, line) and will be responsible for drawing the particular
shape. The containsLocation() method will take x and y locations as parameters and return frue if that location is
within the boundaries of the shape thatis tested. This will give the concrete Shape subclasses the ability to tell other
classes whether the x and y coordinate is within its boundaries.

This Shape class provides concrete subclasses with the minimum attributes they require. It also provides other
classes with the minimum actions that they can take on any object that descends from the Shape class.

Now let's take a look at a concrete subclass. Create or modify a Rectangle class that extends Shape as shown:

CODE TO TYPE: Rectangle

package shapes;

import java.awt.Color;
import java.awt.Graphics;

public class Rectangle extends Shape {

ean

t()

private Color fillColor;
private int width, height;
private boolean fill;

public Rectangle(int x, int y, int w, int h, Color lineColor, Color fillColor, bool
£ill) {

super (x, y, lineColor);

this.width = w;

this.height = h;

this.fillColor = fillColor;

this.fill = £ill;
}

public void draw(Graphics g) {
// Be nice. Save the state of the object before changing it.
Color oldColor = g.getColor()
if (isFill()) {
g.setColor (getFillColor()) ;
g.fillRect (getX (), getY (), getWidth(), getHeight()):;
}
g.setColor (getLineColor()) ;
g.drawRect (getX () , getY¥ (), getWidth(), getHeight());
// Set the state back when done.
g.setColor (oldColor) ;
}

// Override abstract method containsLocation in the Shape class.
public boolean containsLocation(int x, int y) {
if (getX() <= x && get¥() <=y && getX() + getWidth() >= x && get¥() + getHeigh
>=y) {
return true;

}

return false;

}

// Getters and setters.
public Color getFillColor () {
return fillColor;

}

public void setFillColor (Color fillColor) {
this.fillColor = fillColor;

}

public int getWidth() {
return width;

}

public void setWidth (int width) {
this.width = width;
}

public int getHeight() {
return height;

}

public void setHeight(int height) {
this.height = height;
}

public void setFill (boolean £ill) {
this.fill = £ill;
}

public boolean isFill () {
return fill;

}

/**
* Returns a String representing this object.
*/
public String toString() {
return "Rectangle: \n\tx = " + getX() + "\n\ty = " + get¥Y() +
"\n\tw = " + getWidth() + "\n\th = " + getHeight();

5l save it. Now we'll check out some aspects of this Rectangle class:

OBSERVE: Rectangle's Attributes

private Color fillColor;
private int width, height;
private boolean £fill;

Because the Rectangle class is a subclass of the Shape class, we only have to define the ways a Rectangle differs
from the Shape class. The Shape class already defines the x, y, and lineColor variables, so we don't need to redefine
them here. We only need to add the variables for the aspects of a Rectangle that are in addition to those that define a
Shape. That gives us a complete Rectangle definition with its x, y, width, height, fill (or notfill), lineColor, and
fillColor.

OBSERVE: Rectangle's Constructor

public Rectangle (int x, int y, int w, int h, Color lineColor, Color fillColor,
boolean £fill) {
super (x, y, lineColor):;
this.width = w;
this.height = h;
this.fillColor = f£illColor;
this.fill = £ill;

Here we provide required parameters (shown in orange) to the constructor to define a Rectangle. Some ofthese are
the same parameters taken in by our Shape class (super), so we pass those parameters up to itfirst. Because a
Rectangle is a Shape, the Rectangle has access to these variables already (via the Shape class getters and setters).
Next, we set our Rectangle instance variables equal to the parameters that were passed to it. Now we have a
Rectangle object with the properties that were passed in to the constructor.

OBSERVE: Rectangle's draw(Graphics g) Method

public void draw (Graphics g) {
// Be nice. Save the state of the object before changing it.
Color oldColor = g.getColor();
if (isFill()) {
g.setColor (getFillColor()) ;
g.fillRect (getX (), getY¥ (), getWidth(), getHeight()):
}
g.setColor (getLineColor()) ;
g.drawRect (getX() , getY (), getWidth(), getHeight()):
// Set the state back when done.
g.setColor (oldColor) ;

In the draw() method, we save the color ofthe Graphics objectto oldColor first. Whenever possible, as a courtesy
to other programmers (and ourselves!), we should return the basic state of the Graphics object to its original state,

less the changes we wantto make to this method.

Next, if the fill variable is true (via isFill()), we setthe color ofthe Graphics objectto the fillColor, then place a filled
rectangle on the Graphics objectin the location specified by this Rectangle object's state. We use the getters and
setters from both Shape and Rectangle. We must use the getters from the Shape class, because we made its variables
private. Even though it's not mandatory, in order to be consistent and to maintain the ability to copy and paste this code
later in the Oval class, we use the getters and setters from the Rectangle class.

Next, we use setColorand getLineColor to change the color of the Graphics object to the lineColor and draw an
unfilled rectangle on the Graphics objectin the location specified by this Rectangle object's state. Finally, we change
the Graphics object's color back to oldColor.

OBSERVE:

// Override abstract method containsLocation in the Shape class.
public boolean containsLocation (int x, int y) {
if (getX() <= x && get¥() <= y && getX() + getWidth() >= x
&& get¥ () + getHeight() >= y) {
return true;
}

return false;

The containsLocation() method takes in x and y coordinates and compares that point to this Rectangle's x, y,
width, and height values. Ifthe x and y pointis within the borders of this Rectangle (inclusive of the border itself), we
return true; otherwise, we return false.

An Oval differs from a Rectangle in Java only in the way itis drawn. So we can conserve some effort when we work on
the Oval class, by copying and pasting the constructor, draw(), and toString() methods from the Rectangle class,
and modifying them slightly. Create or modify the Oval class as shown:

CODE TO TYPE: Oval

package shapes;

import java.awt.Color;
import java.awt.Graphics;

public class Oval extends Rectangle {
[x*
* Constructor. Just passes the params to the Rectangle constructor.
*/
public Oval (int x, int y, int w, int h, Color lineColor, Color fillColor, boolean £
ill) {
super(x, y, w, h, lineColor, fillColor, £fill);

}

/*
* Override Rectangle draw(Graphics g) method.
*/
public void draw(Graphics g) {
// Be nice. Save the state of the object before changing it.
Color oldColor = g.getColor() ;
if (isFill()) {
g.setColor (getFillColor()) ;
g.fillOval (getX (), getY (), getWidth(), getHeight()):;
}
g.setColor (getLineColor()) ;
g.drawOval (getX() , getY (), getWidth (), getHeight()) ;
// Set the state back when done.
g.setColor (oldColor) ;

}

/**
* Returns a String that represents this object.
*/
public String toString() {
return "Oval: \n\tx = " + getX() + "\n\ty = " + getY() + "\n\tw = " + getWidth(
) + "\n\th = " + getHeight();

}

}

=1 Save it. There are only a few differences between Rectangle and Oval.

OBSERVE: Oval

package shapes;

import java.awt.Color;
import java.awt.Graphics;

public class Oval extends Rectangle {

/**

* Constructor. Just passes the params to the Rectangle constructor.

“f

public Oval (int x, int y, int w, int h, Color lineColor, Color fillColor, boolean f
i11) {

super(x, y, w, h, lineColor, fillColor, £fill);
}

/*
* Override Rectangle draw (Graphics g) method.
=Y
public void draw (Graphics g) {
// Be nice. Save the state of the object before changing it.
Color oldColor = g.getColor();
if (isFill()) {
g.setColor (getFillColor ()) ;
g.£fillOval (getX (), get¥ (), getWidth (), getHeight()):;
}
g.setColor (getLineColor ()) ;
g.drawOval (getX (), getY (), getWidth(), getHeight()):;
// Set the state back when done.
g.setColor (oldColor) ;
}

/**
* Returns a String that represents this object.
%)
public String toString () {
return "Oval: \n\tx = " + getX() + "\n\ty = " + getY() + "\n\tw = " + getWidth (
) + "\n\th = " + getHeight () ;

}
}

We modified the constructor to pass all of the parameters up to the super (the Rectangle constructor), and removed
everything else in the constructor.

In the draw() method, we replaced fillRect with fillOval and drawRect () with drawOval(). We don't need to
implement getters and setters in the Oval class because they already existin the Rectangle class. In the toString()
method, we changed the word Rectangle to the word Oval in the returned String.

Itisn't necessary to change the containsLocation() method from the implementation in the Rectangle class, so we

don't need to include it in the Oval class—it's inherited.

In Java, Ovals are defined by a bounding rectangle, so any pointin that bounding rectangle will register

rectangle.

Z
o
-
[

Now let's give our applet the ability to create a Shape (Rectangle or Oval) and display and size itusing the mouse. You

should now have usable Shape, Rectangle, and Oval classes in the shapes package of your java3_Lesson07

project. (Make sure the package statement of your classes is correct.) To have a common point of reference in creating

the next partofthe lesson, we'll use our version of these classes.

First, we'll give our Model class the ability to keep track of a single Shape object. Later, we'll add the capability to have
many different Shape objects displayed. For now, we'll illustrate the progress of program developmentone small step

atatime.

Open your Model class and make the changes shown in blue:

as being inside the Oval. If we needed finer control over this, we would change the containsLocation()
method to calculate whether the location is actually within the drawn Oval, rather than within the bounding

CODE TO EDIT: Model

package model;

import java.awt.Color;
import shapes.Rectangle;
import shapes.Shape;

import java.awt.Container;
import interfaces.Resettable;

public class Model implements Resettable {
private Container container;

public final static String DRAW = "Draw";
public final static String MOVE = "Move";
public final static String REMOVE = "Remove";
public final static String RESIZE = "Resize";
public final static String FILL = "Fill";
public final static String CHANGE = "Change";

public final static String RECTANGLE = "Rectangle";
public final static String OVAL = "Oval";

private String action = DRAW;
private boolean fill = false;

private String currentShapeType = RECTANGLE;
private Shape currentShape;

public Shape createShape() {
// If you changed this method in the previous homework project, you can include
those changes here.
if (currentShapeType == RECTANGLE) {
currentShape = new Rectangle(0, 0, 0, 0, Color.black, Color.red, £fill);
}
return currentShape;

}

public Shape getCurrentShape() {
return currentShape;

}

public String getCurrentShapeType () {
return currentShapeType;

}

public void setCurrentShapeType (String shapeType) {
currentShapeType = shapeType;
}

public Model (Container container) {
this.container = container;

}

public void repaint () {
container.repaint () ;

}

public void resetComponents () {
action = DRAW;
if (container instanceof Resettable) {
((Resettable) container) .resetComponents();

}

public String getAction() {
return action;

}

public void setAction (String action) {
this.action = action;

}

public boolean isFill () {
return fill;

}

public void setFill (boolean fill) {
this.fill = fill;
}

public String toString() {

return "Model:\n\tAction: " + action + "\n\tFill: " + fill;
}

|-'3'-| Save it.

OBSERVE:

package model;

import java.awt.Color;
import java.awt.Container;
import shapes.Rectangle;
import shapes.Shape;

import interfaces.Resettable;

public class Model implements Resettable ({
private Container container;

public final static String DRAW = "Draw";
public final static String MOVE = "Move";
public final static String REMOVE = "Remove";
public final static String RESIZE = "Resize";
public final static String FILL = "Fill";
public final static String CHANGE = "Change";

public final static String RECTANGLE = "Rectangle";
public final static String OVAL = "Oval";

private String action = DRAW;
private boolean fill = false;

private String currentShapeType = RECTANGLE;
private Shape currentShape;

public Shape createShape () {
// If you changed this method in the previous homework project, you can include
those changes here.
if (currentShapeType == RECTANGLE) {
currentShape = new Rectangle(0, 0, 0, 0, Color.black, Color.red, £fill);
}

return currentShape;

public Shape getCurrentShape () {
return currentShape;

}

public String getCurrentShapeType () {
return currentShapeType;

}

public void setCurrentShapeType (String shapeType) {
currentShapeType = shapeType;
}

public Model (Container container) {
this.container = container;

’

public void repaint () {
container.repaint ()

public void resetComponents () {
action = DRAW;
if (container instanceof Resettable) {
((Resettable) container) .resetComponents () ;

public String getAction() {
return action;

}

public void setAction (String action) {
this.action = action;

}

public boolean isFill () {
return f£ill;

}

public void setFill (boolean fill) {
this.fill = fill;
}

public String toString() {
return "Model:\n\tAction: " + action + "\n\tFill: " + fill;
}

We created the current Shape variable to hold a reference to the Shape object that the model is currently monitoring.
The createShape() method creates a new Rectangle object with no location, height, or width (we will remedy thatin
the mouse handler). We use the fill variable to tell the Rectangle whether to be filled or not. We assign this new
objectto the currentShape variable and then return the current Shape reference.

The getCurrentShape() method is a getter that provides a convenientway to getthe Shape object thatis being
monitored by the Model.

Now our Model class will keep track of a single Shape. Rightnow, we don't have a way for the user to determine which
Shape to draw. (That's part of your next homework project!)

We need a way for the applet to listen to the mouse. For now, let's just putour MouseListener class into the applet
itself. This is an example of a nested inner class, which we'll discuss in depth later.

Our mouse listener is going to interact with the Model, not the applet, so it will need a handle to the Model object that
the appletowns. Let's look at a basic mouse listener for this program. We could add the code to our GUIDemo applet,
but we want as little logic in our applet as possible, so we can use the code in an application later with little or no
modification. We'll add the code we need in a new file instead.

Create a new class named ShapeMouseHandler in the event package of your java3_Lesson07 projectand add
the code shown in blue:

CODE TO TYPE: ShapeMouseHandler

package event;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

import model.Model;
import shapes.Rectangle;
import shapes.Shape;

public class ShapeMouseHandler extends MouseAdapter {
private Model model;
//Start x and y location used to mark where the upper left corner of a
//shape is.
private int startX;
private int startY;
private Shape shape;

/**
* Constructor. Sets the model for this Listener.
*

* @param model
*/
public ShapeMouseHandler (Model model) {
//persist local variable model to this.model.
this.model = model;

}

/*
* Overrides MouseAdapter mousePressed method.
*/

public void mousePressed (MouseEvent e) {

if (model.getAction() == Model.DRAW) {
// original upper left x and y of the shape.
startX = e.getX();
startY = e.get¥();
// have the model create a new shape for us.
shape = model.createShape() ;
// if the shape was created.
if (shape '= null) {
//set its upper left x and y to where the mouse was pressed.
shape.setX(e.getX()) ;
shape.setY (e.get¥Y());
// We should set a default width and height or ending location in
// case the user does not drag the mouse.
// Currently we only have instances of Rectangle or its descendants.
if (shape instanceof Rectangle) {
((Rectangle) shape) .setWidth(50) ;
((Rectangle) shape) .setHeight (50) ;

}

}
// tell the model to repaint the applet or application.
model .repaint() ;

=1 Save it.

OBSERVE: ShapeMouseHandler

package event;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

import model.Model;
import shapes.Rectangle;
import shapes.Shape;

public class ShapeMouseHandler extends MouseAdapter ({
private Model model;
// Start x and y location used to mark where the upper left corner of a shape is.
private int startX;
private int startY;
private Shape shape;

/‘k‘k
* Constructor. Sets the model for this Listener.
*
* @param model
=/
public ShapeMouseHandler (Model model) {
//persist local variable model to this.model.
this.model = model;

}

/*
* QOverrides MouseAdapter mousePressed method.
%/

public void mousePressed (MouseEvent e) {

if (model.getAction() == Model .DRAW) ({
// original upper left x and y of the shape.
startX = e.getX();
startY = e.get¥();
// have the model create a new shape for us.
shape = model.createShape () ;
// 1if the shape was created.
if (shape != null) {
//set its upper left x and y to where the mouse was pressed.
shape.setX(e.getX());
shape.setY (e.get¥());
// We should set a default width and height or ending location in
// case the user does not drag the mouse.
// Currently we only have instances of Rectangle or its descendants.
if (shape instanceof Rectangle) {
((Rectangle) shape) .setWidth (50) ;
((Rectangle) shape) .setHeight (50) ;
}
}
}
// tell the model to repaint the applet or application.
model.repaint () ;

The mousePressed() method runs when the mouse is clicked on the applet. First, we testto see if we are in the
DRAW mode in the model. If we are, then we getthe x and y location ofthe mouse and setour start Xand startY
variables to this location. We'll need that location later in the mouseDragged() method.

Then we have the model create a shape. The model will track which shape to create. Right now, it will give us a new
Rectangle object. If the model gives us a good shape (not null), then we setthe shape's x and y location to the
location where the mouse was clicked.

In case the userjustclicks and does notdrag the mouse, we still want the shape to appear, so we give itdefault width
and height values (once we add the mouseDragged() method, these will be overwritten when they drag the mouse).
To make sure that the object being referenced has a width and height (a Line would not) we testto see if the shape

objectis an instanceofa Rectangle. [fitis, we castitto a Rectangle and setits width and height. If we had more
Shape types, we would add in code to testthem as well and do whatever cast was necessary. Forinstance, for a Line
shape, we would test to see ifthe shape was an instance of Line and then perhaps castitto a Line and give itsome
default ending x and ending y location.

Atthe end ofthe mousePressed() method, we tell the model to repaint(). Remember, the model will pass this
message on to its container—in this case, it's our applet.

Now, edit GUIDemo to enable our ShapeMouseHandler, as shown in blue:

CODE TO EDIT: GUIDemo

package ui.applet;

import interfaces.Resettable;
import java.applet.Applet;
import java.awt.Graphics;

import event.ShapeMouseHandler;
import shapes.Shape;

import ui.panels.MainPanel;
import model.Model;

public class GUIDemo extends Applet implements Resettable
MainPanel mainPanel;
Model model;

public void init () {
resize (600,400);
model = new Model (this);
mainPanel = new MainPanel (model) ;
add (mainPanel) ;
ShapeMouseHandler mouseHandler = new ShapeMouseHandler (model) ;
addMouselistener (mouseHandler) ;
addMouseMotionListener (mouseHandler) ;

}

public void paint (Graphics g) {
Shape shape;
shape = model.getCurrentShape () ;
if (shape != null) {

shape.draw(qg) ;

}
System.out.println (model) ;
System.out.println (shape) ;

}

public void resetComponents () {
mainPanel.resetComponents ()

’

}

O Save and run it. Click on the applet to draw the shape. Also, try clicking on the Fill check box and then clicking in the
applet again. We haven't added the mouseDragged() method yet, so when you click the mouse, the objectis drawn,
but nothing happens when you drag the mouse.

OBSERVE: GUIDemo with ShapeMouseHandler Enabled

import
import
import
import

import

import
import

public

}

}

}

package ui.applet;

interfaces.Resettable;
java.applet.Applet;
java.awt.Graphics;
event.ShapeMouseHandler;

shapes. Shape;

ui.panels.MainPanel;
model .Model;

class GUIDemo extends Applet implements Resettable ({

MainPanel mainPanel;
Model model;

public void init () {

resize (600,400) ;

model = new Model (this) ;
mainPanel = new MainPanel (model) ;
add (mainPanel) ;

ShapeMouseHandler mouseHandler = new ShapeMouseHandler (model) ;

addMouselistener (mouseHandler) ;
addMouseMotionListener (mouseHandler) ;

public void paint (Graphics g) {

Shape shape;

shape = model.getCurrentShape () ;

if (shape != null) {
shape.draw (g) ;

}

System.out.println (model) ;

System.out.println (shape) ;

public void resetComponents () {

mainPanel.resetComponents () ;

We created an instance of our ShapeMouseHandler class and added it to the appletas MouseListener and

MouseMotionListener.

The local Shape object, shape, is the Shape we will draw on the Graphics object. We get the current shape from the

The GUIDemo applet does nothing without referring to the Model, MainPanel, or Shape class. Keeping
Note the numberofitems that GUIDemo controls to a minimum in the program makes it easier to replace
them later if we like.

model and, ifitis not null, we tell itto draw itself on the Graphics object.

We did not need to castthe shape objectto a Rectangle. This is a good example of the potential power
of abstract classes. The Shape class defined the draw(Graphics g) method as abstract. This
guarantees that any concrete subclass of Shape has that method available. In Java, the object being
referenced, not the type of reference, determines which method will be run. So, since the objectin

Note memoryis a Rectangle object, Java runs the Rectangle's draw() method. Also, we did not need to call
the toString() method ofthe model and shape objects in the System.out.printin() methods. When
we reference an objectdirectly in a System.out.printin(), the toString() method is automatically
called. Because the base toString() method is defined in Object, all classes have atoString()
method.

Let's add thatmouseDragged() method now. Add the blue code to ShapeMouseHandler as shown:

CODE TO TYPE: ShapeMouseHandler

package event;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

import model.Model;
import shapes.Rectangle;
import shapes.Shape;

public class ShapeMouseHandler extends MouseAdapter ({
private Model model;
//Start x and y location used to mark where the upper left corner of a
//shape is.
private int startX;
private int starty;
private Shape shape;

/**
* Constructor. Sets the model for this Listener.
*
* @param model
*/
public ShapeMouseHandler (Model model) {
//persist local variable model to this.model.
this.model = model;

}

/*
* Overrides MouseAdapter mousePressed method.
*/
public void mousePressed (MouseEvent e) {
if (model.getAction() == Model.DRAW) ({

// original upper left x and y of the shape.

startX = e.getX();

startY = e.get¥();

// have the model create a new shape for us.

shape = model.createShape();

// 1f the shape was created.

if (shape != null) ({
//set its upper left x and y to where the mouse was pressed.
shape.setX (e.getX());
shape.setY (e.get¥Y());
// We should set a default width and height or ending location in
// case the user does not drag the mouse.
// Currently we only have instances of Rectangle or its descendants.
if (shape instanceof Rectangle) {

((Rectangle) shape) .setWidth (50);
((Rectangle) shape) .setHeight (50);

}
}
// tell the model to repaint the applet or application.
model.repaint () ;

}
/*

* Overrides MouseAdapter's mouseDragged method.
*/
public void mouseDragged (MouseEvent e) {
// get the current shape handled by the model.
shape = model.getCurrentShape () ;
// if there is a current shape in the model.
if (shape '= null) {
// if we are in DRAW mode.
if (model.getAction() == Model.DRAW) {
// set the x and y location of the shape (allows rubber banding).

shape.setX (Math.min (startX, e.getX()));
shape.setY (Math.min (startY, e.get¥()));
}
// if the shape is an instance of Rectangle or a descendant of Rectangle
if (shape instanceof Rectangle) {
// set its width and height.
// allows for rubber banding.
((Rectangle) shape) .setWidth (Math.abs (startX - e.getX())):
((Rectangle) shape) .setHeight(Math.abs(startY - e.get¥())):
}
}
// tell the model to repaint the applet or application.
model.repaint() ;

ave itand run the emo appletagain. Now you can draw the shape using the mouse. Try moving the mouse
i}S itand the GUID let in. N d the sh ing th Ti ing th
in all directions. Click the Fill check box and redraw the shape. Pretty cool, huh? Let's look at that code again:

OBSERVE: The mouseDragged(MouseEvent e) Method

package event;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

import model.Model;
import shapes.Rectangle;
import shapes.Shape;

public class ShapeMouseHandler extends MouseAdapter ({
private Model model;
//Start x and y location used to mark where the upper left corner of a
//shape is.
private int startX;
private int startyY;
private Shape shape;

/**
* Constructor. Sets the model for this Listener.
*
* @param model
4
public ShapeMouseHandler (Model model) {
//persist local variable model to this.model.
this.model = model;

}

/*
* Overrides MouseAdapter mousePressed method.
/)
public void mousePressed (MouseEvent e) {
if (model.getAction() == Model.DRAW) ({

// original upper left x and y of the shape.

startX = e.getX();

startY = e.get¥();

// have the model create a new shape for us.

shape = model.createShape () ;

// 1f the shape was created.

if (shape != null) ({
//set its upper left x and y to where the mouse was pressed.
shape.setX (e.getX()) ;
shape.setY (e.get¥Y())
// We should set a default width and height or ending location in
// case the user does not drag the mouse.
// Currently we only have instances of Rectangle or its descendants.
if (shape instanceof Rectangle) {

((Rectangle) shape) .setWidth (50) ;
((Rectangle) shape) .setHeight (50) ;

}
}
// tell the model to repaint the applet or application.
model.repaint () ;

}
/*

* Overrides MouseAdapter's mouseDragged method.
*/
public void mouseDragged (MouseEvent e) {
// get the current shape handled by the model.
shape = model.getCurrentShape () ;
// if there is a current shape in the model.
if (shape != null) ({
// if we are in DRAW mode.
if (model.getAction() == Model.DRAW) {
// set the x and y location of the shape (allows rubber banding) .

shape.setX (Math.min (startX, e.getX())):;
shape.setY (Math.min (start¥, e.get¥())):;
}
// if the shape is an instance of Rectangle or a descendant of Rectangle
if (shape instanceof Rectangle) ({
// set its width and height.
// allows for rubber banding.
((Rectangle) shape) .setWidth (Math.abs (startX - e.getX()));
((Rectangle) shape) .setHeight (Math.abs (startY - e.get¥())):;
}
}
// tell the model to repaint the applet or application.
model.repaint () ;

The mouseDragged() method runs when the user drags the mouse on the applet. Our program retrieves the current
shape being tracked by the model. Then, ittests to make sure shape is notnull. [fitis a valid shape, the program test
to see if we are in the DRAW action of the model object. If so, itdoes a litle math to setthe x and y location of the
shape. Then we can draw the shape moving left, right, up, or down using the mouse (this is known as "rubber-
banding" in Java). Now determine the smallest value between the shape's start X and the MouseEvent's X location
and setthe shape's x location to that. Do the same with the startY and MouseEvent's Y location.

Next, we perform an instance of test similar to the one we did in the mousePressed() method, to make sure we're
working with a Rectangle or Rectangle subclass. If we are, we castthe shape objectto a Rectangle and setits width
to the absolute value of the startX, minus the MouseEvent's X location. Then we do the same with the height,
using startY and the MouseEvent's Y location. Finally, we tell the model to repaint(), which passes that message
along to the applet.

Adapters

Some listeners have several methods, but we don't always need them all. When we implement an interface
though, we are also promising to implement all of its methods. Java provides a few options for getting this
done.

Alistenerin Java with more than one method to be implemented always has a corresponding adapfer class.
Adapter classes can be subclassed and they implement all of their corresponding listeners' required
methods. Forinstance, the Mouse Adapter class implements all of the methods required by the
MouseListener and MouseMotionListener interfaces. The Mouse Adapter implements these methods
as no-op or empty methods. They don'tdo anything.

The advantage in this is that we only have to implement the methods we need, rather than all of the listeners'
methods.

The ShapeMouseHandler class extends Mouse Adapter:

OBSERVE: ShapeMouseAdapter

public class ShapeMouseHandler extends MouseAdapter ({

This allows us to implementonly the mousePressed() and mouseDragged() methods, because those are the only
methods we actually need.

Button Panel
We still have one more task to take care of in this lesson. We need to create that Clear Button.

Create a new class named ButtonPanel in the ui.panels package of your java3_Lesson07 project. This
class should extend java.awt.Panel. Add the blue code as shown:

CODE TO TYPE: ButtonPanel

package ui.panels;

import java.awt.Button;

import java.awt.Panel;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import model.Model;

public class ButtonPanel extends Panel {
private Button btnClear;

public ButtonPanel (final Model model) ({
btnClear = new Button("Clear");
btnClear.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
model . resetComponents () ;
model.repaint() ;
}
|
add (btnClear) ;

L=l save it.

OBSERVE: ButtonPanel

package ui.panels;

import java.awt.Button;

import java.awt.Panel;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import model.Model;

public class ButtonPanel extends Panel ({
private Button btnClear;

public ButtonPanel (final Model model) ({
btnClear = new Button ("Clear"):;
btnClear.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
model . resetComponents () ;
model.repaint () ;
}
}) i
add (btnClear) ;

Here, we create a panel to hold a single Button object named btnClear. We create an anonymous inner class for the
btnClear Button. The actionPerformed() method calls the model object's reset Components() method, which
in turn calls the GUIDemo object's reset Components() method, which in turn calls the MainPanel object's
resetComponents() method, which then calls the ActionPanel object's resetComponents() method. Finally,
we tell the model to repaint() (which tells the GUIDemo objectto repaint()).

Controls Panel

Thinking ahead, we'll need additional controls that will allow us to select the Shape we wantto draw and the
colors we wantto use forlineColor and fillColor. So, let's take this ButtonPanel, save it, and putiton
another panel. Create a new class named ControlsPanel in the ui.panels package of your
java3_Lesson07 project. Add the blue code as shown:

CODE TO TYPE: ControlsPanel

package ui.panels;
import java.awt.Panel;

import interfaces.Resettable;
import model.Model;
import ui.panels.ButtonPanel;

public class ControlsPanel extends Panel implements Resettable(
private ButtonPanel btnPanel;

public ControlsPanel (Model model) {
btnPanel = new ButtonPanel (model) ;
add (btnPanel) ;

}

public void resetComponents () {

}

=1 Save it.

OBSERVE: ControlsPanel

package ui.panels;
import java.awt.Panel;

import interfaces.Resettable;
import model.Model;
import ui.panels.ButtonPanel;

public class ControlsPanel extends Panel implements Resettable(
private ButtonPanel btnPanel;

public ControlsPanel (Model model) {
btnPanel = new ButtonPanel (model) ;
add (btnPanel) ;

}

public void resetComponents () {

}

Here in our example, we create a ControlsPanel class that extends Panel and implements Resettable (we don't need
to implement Resettable yet, but we will later, so we might as well getitready now).

We create and add a ButtonPanel objectnamed btnPanel and create the constructor for the ControlsPanel.

Main Panel

Now, we need to add the ControlsPanel to our MainPanel. Add the blue code as shown:

CODE TO EDIT: MainPanel

package ui.panels;
import interfaces.Resettable;

import java.awt.GridLayout;
import java.awt.Panel;

import model.Model;

public class MainPanel extends Panel implements Resettable {
ActionPanel actionPanel;
ControlsPanel controlsPanel;

public MainPanel (Model model) {
actionPanel = new ActionPanel (model) ;
controlsPanel = new ControlsPanel (model) ;
setlLayout (new GridLayout (2,1));
add (controlsPanel) ;
add (actionPanel) ;

}

public void resetComponents () {
controlsPanel.resetComponents () ;
actionPanel.resetComponents () ;

5l save it.

OBSERVE: MainPanel

package ui.panels;
import interfaces.Resettable;

import java.awt.GridLayout;
import java.awt.Panel;

import model.Model;

public class MainPanel extends Panel implements Resettable {
ActionPanel actionPanel;
ControlsPanel controlsPanel;

public MainPanel (Model model) ({
actionPanel = new ActionPanel (model) ;
controlsPanel = new ControlsPanel (model) ;
setlLayout (new GridLayout (2,1)) ;
add (controlsPanel) ;
add (actionPanel) ;

}

public void resetComponents () {
controlsPanel.resetComponents () ;
actionPanel.resetComponents () ;

Here, we create a new instance ofthe ControlsPanel class, named controlsPanel. We pass the model, which we
gotfrom GUIDemo, to the ControlsPanel constructor.

We add the controlsPanel object to the MainPanel, then we add the actionPanel. Controls go in the layoutin the
order that they are added to the panel. Try reversing the order. It won't effect the operation of the applet, only the way it
appears.

We finalize this class by adding a call to the controlsPanel's resetComponents(). The ButtonPanel itself

doesn'tneed a call to the controlsPanel's resetComponents(), butwe will be adding other panels to the
ControlsPanel that will.

Finally, we need to add the reset value for currentShape to the Model class. Open your Model class. Modify the
resetComponents() method as shown in blue:

CODE TO EDIT: Model.java

package model;

import java.awt.Color;
import java.awt.Container;
import shapes.Rectangle;
import shapes.Shape;

import interfaces.Resettable;

public class Model implements Resettable {
private Container container;

public final static String DRAW = "Draw";

public final static String MOVE = "Move";

public final static String REMOVE = "Remove";
public final static String RESIZE = "Resize";
public final static String FILL = "Fill";

public final static String CHANGE = "Change";
public final static String RECTANGLE = "Rectangle";
public final static String OVAL = "Oval";

private String action = DRAW;
private boolean fill = false;

private String currentShapeType = RECTANGLE;
private Shape currentShape;

public Shape createShape () {
// If you changed this method in the previous homework project, you can include
those changes here.
if (currentShapeType == RECTANGLE) {
currentShape = new Rectangle(0, 0, 0, 0, Color.black, Color.red, fill);
}

return currentShape;

public Shape getCurrentShape () {
return currentShape;

public String getCurrentShapeType () {
return currentShapeType;

public void setCurrentShapeType (String shapeType) {
currentShapeType = shapeType;

public Model (Container container) {
this.container = container;

’

public void repaint () {
container.repaint ()

public void resetComponents () {
action = DRAW;
currentShape = null;
if (container instanceof Resettable) {
((Resettable) container) .resetComponents() ;

public String getAction() {

return action;

}

public void setAction(String action) {
this.action = action;

}

public boolean isFill () {
return fill;

}

public void setFill (boolean fill) {
this.fill = fil1l1l;
}

public String toString() {
return "Model:\n\tAction: " 4+ action + "\n\tFill: " + fill;

}

Adding in the reset value for current Shape keeps the paint() method ofthe GUIDemo class from drawing a
Rectangle when it repaints after the user clicks the Clear button.

5l save all of your files.

un the emo applet. When you press the Clear button, the Fill check box will clear if it was checked. Also, i
OR the GUID let. Wh the ClI button, the Fill check b ill clear ifit hecked. Al if
you press any of the other radio buttons and then clear the applet, it will revert to the Draw button.

Okay, now let's take alook atour example's UML class diagram:

Applet

applet::GUIDemo]
+ mainPanel : panels:MainPanel AN
. - ~ del : del::Model T] T p—
GUIDemo is part of the View. It T {:E()e Mmode-oce event::Shap 5N
gets its information from the + pai . : - model : model::Model
; paint(g : Graphics)) o ShapeMouseHandler
Model so that it knows what to + resetComponents() startX : int is part of the

Controller for this
program. It gets the
state of the model

- shape : shapes::Shape
+ ShapeMouseHandler(model : model::Model)

display. T - startY : int
| '

] panels::MainPanel + mousePressed(e : MouseEvent) S FEIE i
panels::ActionPanel + actionPanel : ActionPanel ~model + mouseDragged(e : MouseEvent) changing the
} f | b o s
- chkDraw : Checkbox 4 resetComponents-() N on user action.
- chkMove : Checkbox e

- chkResize : Checkbox 0 S
- chkRemove : Checkbox ey -
- chkChange : Checkbox ;cgrgfh::_ersir(i::‘}ntalner i shapes::Shape
- chkFill : Checkbox ntefaces THovES Strin“ - inE
+ ActionPanelimodel : model:Model) [--54-----~ I interfaces::Resettable [~"| + REMOVE : Ston (Y INE
+ resetComponents() — REGIZE . Stri 9 -lineColor : Color
+ resetComponents() + RESIZE : 5tring + Shape(x : int, y : Int, lineColor : Color)
7 +FILL : Str|_ng . + draw(g : Graphics)
+ CHANGE : Strin + containsLocation(x : int, y : int) : boolean
- action : 5tring + getX() : int
panels::ControlsPanel -fill : boolean + setx(x : int)
Panel - btnPanel : ButtonPanel - currentShape : shapes::Shape + get¥() : int
T ControlsPanellmodel : model::Model) | | + createShapel() : shapes::Shape + set¥(y : int)
+ resetComponents() + getCurrentshape() : shapes::Shape + getLineColor() : Color
) + Model(container : Container) + setLineColor{lineColor : Color)
+ repaint()
+ resetComponents() ;
The Model class is the b1 gemction?} - string Shapert anfdt;]ts :ﬂula-cllas%s
- S : Model in the MVC design + setAction(action : String) 3{;5:“(10 & Model. The
- — pattern for this program. + isFill() : boolean
- btnClear : Button P e ShapeMouseHandler do
It maintains the state of + setFill(fill : boolean) ; d
+ ButtonPanel(lmodel : model::Model) the program I interact with them
) + tostring() : String somewhat in order to know
All of the classes that extend Panel are ?r:]:: t: Sr:ngﬁgngr;iion of
part of the View. The listener methods shapes::Rectangle the S?]a e sub-clgss
for the Panel components are part of - fillColor : Color instanc:S
the Controller. They tell the Model how - width : int .
to change its state. - height : int
- fill : boolean

+ Rectangle(x : int, y : int, w : int, h : int, lineColor : Color, fillColor : Color, fill : boolean)
+ draw(g : Graphics)

+ containsLocation(x : int, y : int) : boolean
+ getFillColor() : Color

+ setFillColor(fillColor : Color)

+ getWidth() : int

+ setWidth{width : int}

+ getHeight() : int

+ setHeight(height : int)

+ setFill(fill : boolean)

+ isFill{) : boolean

+ toString() : String

T

+ Oval(x : int, y : int, w : int, h : int, lineColor : Color, fillColor : Color, fill : boolean)
+ draw(g : Graphics)
+ tostring() : 5tring

shapes::Oval

As we add new elements, the class diagram becomes more complex. Sometimes we'll break these diagrams up into
many smaller diagrams to make them easier to understand.

Phew!

Wow. We've gotlotto digest. As we review what we've accomplished in this lesson, pay special attention to the
structure of our work. The design we've been working with is model-centric. The business logic and the state of the
program are all in the model. The applet knows as littlle as possible and executes only the basic instantiation of the
model and the GUl components. Itinstantiates only what it needs in order to complete its task. Everything else is within
the model. Its paint() method does only whatis necessary to draw the shapes.

This design uses a push strategy. The listeners push changes to the model. The listeners do not have any data in
them, they simply tell the model to do something. The model never has to locate information, so it can concentrate on
using its state rather than figuring out where and when to update its state.

You're doing really well so far. Thatwas a long haul! You deserve a break and a reward, but come on back after that.
See you in the nextlesson!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Nested Classes

Lesson Objectives

When you complete this lesson, you will be able to:

e use nested classes and the three types ofinner classes.

Maneuvering Around Classes

In the lastlesson we used a MouseAdapter, which enabled us to exclude some ofthe mouse methods in the
MouseListener. We created our own class, ShapeMouseHandler, to extend Mouse Adapter, override one of the
methods, and then access only the methods we needed. Then we took the ShapeMouseHandler outof our applet.

An alternative way to designate which classes to use is to define a nested class, a class inside our Applet subclass.
Specific types of nested classes are also called inner classes. We've seen the anonymous inner class before, butin
this lesson we'll explore itthoroughly.

Nested Classes

Nested classes are classes that are contained within another class or interface. Sometimes we wantone class to be
tightly associated with another class. A particular class mightonly be used by one other specific class, so we want to
keep them connected. Or we may want a particular class to be accessible only through one other specific class. In
each of these circumstances, using nesting classes is a good option.

In mostcases, we wantclasses to be loosely coupled, meaning as litlle connection between classes
as possible, to make reuse easier. But, in some cases, classes are so tightly coupled, that we use
nested classes to keep the classes physically together to make maintenance easier. This is especially
true with anonymous inner classes.

4
(o)
-~
D

We have learned that classes can be defined to have two members: fields/variables and methods. But a class that
contains one or more nested classes will have the nested classes as members as well.

Nested classes can be static or non-static:
e Ifanested class is declared static, it's logically called a static nested class. Static nested classes are top-
level classes.

e Ifanested class is declared non-static, it's called an inner class. There are three types ofinner classes:

1. Member classes
2.Local classes
3. Anonymous classes

Nested Top-Level Classes

Nested classes aren't nearly as common as other constructs, so we don't see them in most classes within the API.

API Go to the java.applet.Applet class. Scroll down a bit. The first summary you'll see is the Nested Class
Summary, followed by Field Summary, Constructor Summary, and Method Summary.

A nested top-level class (also known as a static nested class) is a class (or interface) defined as a static member of
another class. Outer classes (like those we have already seen) may be declared only public or package private.
Package private means there is no modifier present that provides access within the same package. Nested classes
can be declared private, public, protected, or package private. The syntax for such nested classes looks like
this:

OBSERVE: static member class syntax

class OuterClass {
static class StaticNestedClass {

}

A static nested class is a top-level class thatis nested within another top-level class. Let's check it out!

Create a new java3_Lesson08 projectin the Java3_Lessons working set. If Java offers the option to "Open
Associated Perspective," click No; we want to keep our own perspective environment. Create a new class named
NestTest thatextends java.applet.Applet in the new project. Then type the blue code as shown:

CODE TO TYPE: NestTest

import java.applet.Applet;
import java.awt.Graphics;

public class NestTest extends Applet {
private int defaultBirthYear = 1958;
private int defaultBirthMonth = 12;
private int defaultBirthDay = 23;

private BirthDayClass birthDate;

public void init() {
birthDate = new BirthDayClass() ;
}

public void paint(Graphics g) {
g.drawString ("Default Birthdate: " + defaultBirthMonth + "/" + defaultBirthDay
+ "/ll
+ defaultBirthYear, 0, 20);
g.drawString ("Birthdate from birthDate object: " + birthDate.getBirthMonth() +
||/u
+ birthDate.getBirthDay() + "/" + birthDate.getBirthYear(), 0, 40);
}

public static class BirthDayClass{
private int birthYear;
private int birthMonth;
private int birthDay;

public int getBirthYear() {
return birthYear;

}

public void setBirthYear (int birthYear) ({
this.birthYear = birthYear;

}

public int getBirthMonth() {
return birthMonth;

}

public void setBirthMonth (int birthMonth) ({
this.birthMonth = birthMonth;

}

public int getBirthDay () {
return birthDay;

}

public void setBirthDay (int birthDay) {
this.birthDay = birthDay;

}

public BirthDayClass() {
birthYear = defaultBirthYear;
birthMonth = defaultBirthMonth;
birthDay = defaultBirthDay;

There are errors in the class. Nested classes do have access to the private data in the enclosing class, however, since
the nested BirthDateClass class is marked static, it cannot access non-static data in the enclosing Nest Test class.

Nested classes marked static are top-level classes, justlike Nest Test. They mustfollow the same rules as a top-
level class, except that they have direct access to their enclosing class' static data members and cannotaccess non-
static data or methods of their enclosing class without a local instance of that class.

Give ita try. Add the blue code as shown:

CODE TO TYPE: NestTest

import java.applet.Applet;
import java.awt.Graphics;

public class NestTest extends Applet {

private static int defaultBirthYear = 1958;

private
private

private

static int defaultBirthMonth =

static int defaultBirthDay =

BirthDayClass birthDate;

12;
23;

public void init () {
birthDate = new BirthDayClass();
}

public void paint (Graphics g) {
g.drawString ("Default Birthdate:
+ /"
+ defaultBirthYear, 0, 20);
g.drawString ("Birthdate from birthDate object:
ll/ll
+ birthDate.getBirthDay ()
}

public static class BirthDayClass({
private int birthYear;
private int birthMonth;
private int birthDay;

public int getBirthYear() {
return birthYear;

}

public void setBirthYear (int birthYear) {
this.birthYear = birthYear;

}

public int getBirthMonth () {
return birthMonth;

}

public void setBirthMonth (int birthMonth) {
this.birthMonth = birthMonth;

}

public int getBirthDay() {
return birthDay;

}

public void setBirthDay(int birthDay) {
this.birthDay = birthDay;

}

public BirthDayClass () {

birthYear = defaultBirthYear;
birthMonth = defaultBirthMonth;
birthDay = defaultBirthDay;

+ "/" + birthDate.getBirthYear (),

" + defaultBirthMonth + "/" + defaultBirthDay

" + birthDate.getBirthMonth() +

0, 40);

ﬁ Save and run it.

OBSERVE: NestTest

import java.applet.Applet;
import java.awt.Graphics;

public class NestTest extends Applet ({
private static int defaultBirthYear = 1958;
private static int defaultBirthMonth = 12;
private static int defaultBirthDay = 23;

private BirthDayClass birthDate;
public void init () {

resize (400, 200);

birthDate = new BirthDayClass () ;
}

public void paint (Graphics g) {

g.drawString ("Default Birthdate: " + defaultBirthMonth + "/" + defaultBirthDay
4L u/ll
+ defaultBirthYear, 0, 20);
g.drawString ("Birthdate from birthDate object: " + birthDate.getBirthMonth () +
"/u
+ birthDate.getBirthDay () + "/" + birthDate.getBirthYear (), 0, 40);

}

public static class BirthDayClass{
private int birthYear;
private int birthMonth;
private int birthDay;

public int getBirthYear() {
return birthYear;

}

public void setBirthYear (int birthYear) {
this.birthYear = birthYear;

}

public int getBirthMonth () ({
return birthMonth;

}

public void setBirthMonth (int birthMonth) {
this.birthMonth = birthMonth;

}

public int getBirthDay () {
return birthDay;

}

public void setBirthDay (int birthDay) {
this.birthDay = birthDay;

}

public BirthDayClass() {
birthYear = defaultBirthYear;
birthMonth = defaultBirthMonth;
birthDay = defaultBirthDay;

The BirthDayClass instance variables, birthYear, birthMonth, and birthDay, are being setin the BirthDayClass()
constructor. They are given the values of the private static data members, defaultBirthYear,
defaultBirthMonth, and defaultBirthDay, of the enclosing NestTest class.

Create a new class named NestTest2 in your project and type in the code below as shown:

CODE TO TYPE: NestTest2

import java.applet.Applet;
import java.awt.Graphics;

public class NestTest2 extends Applet {
NestTest.BirthDayClass birthDate;

public void init() {
birthDate = new NestTest.BirthDayClass() ;
}

public void paint(Graphics g) {
g.drawString ("Birthdate from birthDate object: "
+ birthDate.getBirthMonth() + "/" + birthDate.getBirthDay ()
+ "/" + birthDate.getBirthYear(), 0, 40);

P Save and runit.

OBSERVE:

import java.applet.Applet;
import java.awt.Graphics;

public class NestTest2 extends Applet {
NestTest.BirthDayClass birthDate;

public void init() {
birthDate = new NestTest.BirthDayClass();
}

public void paint (Graphics g) {
g.drawString ("Birthdate from birthDate object: "
+ birthDate.getBirthMonth() + "/" + birthDate.getBirthDay ()
+ "/" + birthDate.getBirthYear (), 0, 40);

We see here that a stafic nested class is a top-level class that can be used by other classes. In this case though, our
static nested class is getting its initial data from the NestTest class even though itis being instantiated by the
NestTest2 class. That' s because it has access to the static data ofthe Nest Test class.

When we wanted to access that data, we had to use the syntax OuterClass.InnerClass and
OuterClass.InnerConstructor().

OBSERVE: Static Nested Class Top-Level Access

NestTest.BirthDayClass birthDate;

public void init() {
birthDate = new NestTest.BirthDayClass();

-
Note A static nested class interacts with the instance members of its outer class (and other classes) just like
' any other top-level class—by having an instance of the outer class to work through. '

Finally, static nested classes do not have to be public. They can have any of the normal access modifiers.

Editthe NestTest class by adding the blue code and removing the red code as shown:

CODE TO EDIT:

import java.applet.Applet;
import java.awt.Graphics;

public class NestTest extends Applet {
private static int defaultBirthYear = 1958;
private static int defaultBirthMonth = 12;
private static int defaultBirthDay = 23;

private BirthDayClass birthDate;
public void init () {
resize (400, 200);

birthDate = new BirthDayClass();
}

public void paint (Graphics g) {

g.drawString ("Default Birthdate: " + defaultBirthMonth + "/" + defaultBirthDay
+ "/
+ defaultBirthYear, 0, 20);
g.drawString ("Birthdate from birthDate object: " + birthDate.getBirthMonth() +
"/!l

+ birthDate.getBirthDay () + "/" + birthDate.getBirthYear(), 0, 40);
}

publicprivate static class BirthDayClass{
private int birthYear;
private int birthMonth;
private int birthDay;

public int getBirthYear() {
return birthYear;

}

public void setBirthYear (int birthYear) {
this.birthYear = birthYear;

}

public int getBirthMonth () {
return birthMonth;

}

public void setBirthMonth (int birthMonth) {
this.birthMonth = birthMonth;

}

public int getBirthDay() {
return birthDay;

}

public void setBirthDay (int birthDay) {
this.birthDay = birthDay;

}

public BirthDayClass () {
birthYear = defaultBirthYear;
birthMonth = defaultBirthMonth;
birthDay = defaultBirthDay;

Save and run the NestTest class. Nothing has changed because the NestTest class has access to its private
members, even the BirthDayClass class. Butnow the NestTest2 class has errors, because it cannot access the
private members of the NestTest class.

We'll get rid of the errors by changing the private back to public in NestTest.

Inner Classes
To reiterate, non-static nested classes are called inner classes; there are three types:
e Memberclasses

e Localclasses

e Anonymous classes

Let's go over local and anonymous classes first.

Local Classes

Both static member classes and member classes are defined as members of a class. In contrast, local classes
are defined inside of a block of code, typically within a method. In Java, because all blocks of code are
located within classes, local classes will be nested within some outer or containing class.

The defining characteristic of a local class is thatitis local to a block of code. Like a local variable, a local
class is valid only within the scope defined by its enclosing block. This characteristic enables us to determine
which kind of inner class to use. Ifa member class is used only within a single method ofits containing class,
it's usually coded as a local class, rather than a member class.

Create a new class, named Nest Test3 thatextends java.applet.Applet, and add the blue code as shown:

CODE TO EDIT: NestTest3

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.List;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class NestTest3 extends Applet {

String[] listItems = { "John Lennon", "Paul McCartney", "George Harrison", "
Ringo Starr", "Pete Best" };

String msg = "";

public void init() {
List myList = new List();
for (String item : listItems) ({
myList.add (item) ;
}
myList.addActionListener (new ListListener());
add (myList) ;

class ListListener implements ActionListener ({
public void actionPerformed (ActionEvent e) {
msg = e.getActionCommand () ;
repaint() ;

}

public void paint(Graphics g) {
if (msg !'= "") {
g.drawString("Beatle " + msg + " selected.", 0, 100);
}

There's still an errorin our code. As with any lo cal variable, our local inner class must be defined prior to its
use in this block of code. Change the code by moving the class definition of ListListener written in blue
code, to the location as shown:

CODE TO EDIT: NestTest3

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.List;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class NestTest3 extends Applet {

String[] listItems = { "John Lennon", "Paul McCartney", "George Harrison", "
Ringo Starr", "Pete Best" };

String msg = "";

public void init () {
class ListListener implements ActionListener ({
public void actionPerformed (ActionEvent e) {
msg = e.getActionCommand () ;
repaint() ;

}

List myList = new List();

for (String item : listItems) {
myList.add(item) ;

}

myList.addActionListener (new ListListener());

add (myList) ;

public void paint (Graphics g) {
if (msg !'= "") {
g.drawString ("Beatle " + msg + " selected.", 0, 100);

Q Save and run it. Double-click on a listitem to show the message.

Inner local classes are subject to these rules and restrictions:

e Alocal class is visible only within the block that defines it.

e Alocal class and its members can never be used outside of the block that defines it. (Outsiders
cannotseein.)

e Instances oflocal classes, like instances of member classes, have an enclosing instance thatis
implicitly passed to all constructors of the local class. (It sees out.)

e Like member classes, local classes cannot contain static fields, methods, or classes, with one
exception: constants that are declared both static and final.

e Interfaces cannotbe defined locally. They can be implemented locally, but not defined.
e Local classes mustbe defined prior to their use within the block of code in which they are defined.

Anonymous Inner Classes

An anonymous class is a local class withouta name. Anonymous inner classes are the mostcommonly
used inner classes. While a local class definition is a statement within a block of Java code, an anonymous
class definition is an expression which can be included as part of a larger expression, such as a method call.
The mostcommon use of Anonymous Inner Classes is to define a Listener.

Create a new class named NestTest4 thatextends java.applet.Applet and modify itas shown in blue
below:

CODE TO EDIT: NestTest4

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

public class NestTest4 extends Applet {

int x, y;

Color myColor = Color.red;

public void init() {

this.addMouselistener (new MouseAdapter () ({
public void mousePressed (MouseEvent e) {

X = e.getX();
y = e.get¥();
repaint() ;

H

}

public void paint (Graphics g) {
g.setColor (myColor) ;
g.filloval(x, y, 25, 25);

V] Save and run it. Now experiment by clicking various places in the applet.

OBSERVE: NestTest4

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

public class NestTest4 extends Applet ({

int %, y;
Color myColor = Color.red;
public void init () {

this.addMouselListener (new MouseAdapter () {
public void mousePressed (MouseEvent e) {
x = e.getX();
y = e.get¥();
repaint () ;

1)

}

public void paint (Graphics g) {
g.setColor (myColor) ;
g.filloval (x, y, 25, 25);

Anonymous inner classes are used mostcommonly to create listeners for components. This is the typical
pattern used for anonymous inner class instantiation:

OBSERVE:

componentVariableName.addListenerClassName (new AdapterClassOrInterfaceCo
nstructor () {
public void methodThatNeedsToBeImplemented (EventClassName eventVaria
bleName) {
//what happens when the event is fired goes here.

});

Each Componentthatallows a Listener for events will have a method to add that listener to the component.

Look atthe Java API #1 and find the java.awt.Button class. Notice thatit has an addActionListener()
method. Now look atthe java.awt.Choice class and see thatithas an addltemListener() method. This is
a standard Java pattern. To add a listener to a component, the word add will be followed by the listener class
name to form the method name.

Inside the method call to add the listener, we are actually defining a class with the new keyword. We can
instantiate a subclass of an AdapterClass or we can instantiate an instance of a class thatimplements an
Interface. For instance, we can instantiate an anonymous (no name) subclass ofthe ActionListener
interface.

Create a class named NestTest5 that extends java.awt.Applet and add the blue code as shown:

CODE TO TYPE:

import java.applet.Applet;

import java.awt.Button;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class NestTest5 extends Applet {
private static int count = 0;
public void init() {
Button myButton = new Button("I've been pressed " + count + " times.");
// compare to the pattern above
myButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
count++;
myButton.setLabel ("I've been pressed " + count + " times.");
}
})
add (myButton) ;

Whoops! There seems to be an error. But, why can't we access myButton from inside of the listener?

As explained in the book Java in a Nutshell, 5th edition (O’Reilly):

"alocal class can use the local variables, method parameters, and even exception parameters that are in its
scope, butonlyifthose variables or parameters are declared final. This is because the lifetime of an instance
ofalocal class can be much longer than the execution of the method in which the class is defined. For this
reason, a local class must have a private internal copy of all local variables it uses (these copies are
automatically generated by the compiler). The only way to ensure that the local variable and the private copy
are always the same is to insistthat the local variable is final."

Some of that explanation is beyond the scope of this course, but eventually it will all make sense to you.

Modify the Nest Test5 class by adding the blue code as shown:

http://oreilly.com/catalog/9780596007737/

CODE TO TYPE:

import java.applet.Applet;
import java.awt.Button;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
public class NestTest5 extends Applet {
private static int count = 0;
public void init () |
final Button myButton = new Button("I've been pressed " + count + " time
s.");
// compare to the pattern above
myButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
count++;

myButton.setLabel ("I've been pressed " + count + " times.");

)
add (myButton) ;

0 Save and run it. Click on the button.

OBSERVE: NestTest5

import java.applet.Applet;
import java.awt.Button;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
public class NestTest5 extends Applet {

private static int count = 0;

public void init () {

final Button myButton = new Button("I've been pressed " + count + " time

s.");

// compare to the pattern above
myButton.addActionListener (new ActionListener ()
public void actionPerformed (ActionEvent e)

{
{

count++;
myButton.setLabel ("I've been pressed " + count + " times.");

1)
add (myButton) ;

Inournew ActionListener(), it seems like we are trying to instantiate an interface with a constructor. This is
notthe case. The compiler knows that we are creating an anonymous inner class by instantiating a new class
thatimplements the interface ActionListener.

OBSERVE: NestTest4

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

public class NestTest4 extends Applet {

int x, y;

Color myColor = Color.red;

public void init () {

this.addMouselListener (new MouseAdapter () {
public void mousePressed (MouseEvent e) {

x = e.getX();
y = e.get¥();
repaint () ;

});

}

public void paint (Graphics g) {
g.setColor (myColor) ;
g.fillOval (x, y, 25, 25);

In NestTest4, we are instantiating a new subclass of the Adapter Class, Mouse Adapter.

When we create an anonymous inner class this way, we (programmers), do nothave a handle to it. Butin
NestTest5, the Button object, myButton has a handle to the anonymous inner class in its listener queue.
In NestTest4, the applet has a handle to the Mouse Adapter subclass we created, in its listener queue. This
syntax places the definition and use of the class in exactly the same place, which allows for easier
maintenance.

Anonymous inner classes are preferred when creating listeners for unique components, such as a Button
with a single, well-defined purpose.

Anonymous inner classes perform some operations automatically:

e Animplicit call of the Constructor to the class's super().

e Instantiation of an subclass of the indicated class, or an instantiation of a new class that
implements the indicated interface.

Deciding When to Use Nested Classes

Every programmer has her own style and preferences. Nested classes are one of many options available in
Java. Programmers may find nested classes are particularly useful when they work on High-Level Design or
Low-Level Implementation.

High-Level Design Benefits

e Using a nested class is a logical way to group classes thatare used in only one place; ifa class is
only useful to one other class, then keep them together.

e Using a nested class increases encapsulation.

e Using a nested class makes code more readable and easier to maintain because its definition is
located nearer to where the class is executed.

Low-Level Implementation Benefits

e Anobjectofan innerclass can access the implementation of the object that created it—including
data that would otherwise be private.

e Aninnerclass can be hidden from other classes in the same package.
e And anonymous inner class is handy for defining an action "on the fly."

e Innerclasses are convenient for writing event-driven programs.
As with most programming choices, there are also some disadvantages to using nested classes:

e Anonymous classes may make code difficult to read.
e Separation of Model-View-Controller becomes invalidated.

e Classes contain a mixture of purposes and are therefore no longer specific and easily understood.

e Innerclasses may cause security concerns.

In the end it will be up to you to decide which features you need for your programs and how to achieve your goals.

Now thatyou have a grasp on nested classes, let's return to interfaces and see how the two impact one another.
See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Interfaces and Inheritance

Lesson Objectives

When you complete this lesson, you will be able to:

e use interfaces as well as instanceof properly.
e demonstrate the Class/Interface relationship.

Interfaces and Classes

In earlier lessons, we explored tools such as inheritance, abstract classes, interfaces, and nested classes, used to
design large applications. In this lesson, we'll investigate interfaces. While interfaces aren't part of a class hierarchy,
they do work in combination with classes.

Interfaces are used often by Java programmers to:

e actas listeners for graphical user interfaces.
e provide a type of multiple inheritance in Java.
e allow "callbacks."

So far we've used interfaces as listeners. Interfaces and classes are a similar. Like classes, when you define a new
interface, you're defining a new data type. You can use interface names anywhere you can use data type names. An
interface is like a class but with no implementation. So if you define a reference variable with a type that's an interface,
any object you assign to it mustbe an instance of a class thatimplements thatinterface.

Java only allows single inheritance; a class can extend only one other class. Buta class in Java can implementan
unlimited number of interfaces. If a class implements more than one interface, it mustimplement every method of
every interface itimplements (or else the class must be declared abstract). We saw this in previous examples when we
implemented a listener for the Buttons and the mouse.

Classes and interfaces share many of the same qualities, but they also differ significantly.

Shared Features of Classes and Interfaces

e Classes and interfaces are both types.

e Classes have fields (instance and class variables); interfaces can have fields, but only when they
are static and final (constants withoutinstance variables), and every field declaration in the body of
an interface is implicitly public, static, and final.

e Classes have methods; interfaces make method declarations. (All method declarations in the body
of an interface are implicitly public and abstract.)

e Classes can have subclasses; interfaces can have subinterfaces. A subinterface inherits all of the
abstract methods and constants of its superinterface, and can define new abstract methods and
constants.

Differences Between Classes and Interfaces

e Interfaces contain no implementation. For all interface methods, we use a semi-colon, butno
method body.

e All methods of an interface are public. Anyone can implement the interface.
e Interfaces cannotbe instantiated, so they cannot have constructors.

e Methods of an interface cannot be declared static (because static methods cannotbe abstract). All
ofthe methods of an interface must be instance methods.

e Interfaces can extend other interfaces. An interface can have an extends clause that lists more than
one superinterface. All of the methods specified in the given interface and all of its superinterfaces
mustbe implemented.

e Avariable with an interface thatis a declared type may have as its value a reference to any instance
ofa class thatimplements the specified interface. In these instances, the potential for "multiple
inheritance" arises.

Interfaces and Multiple Inheritance

Let's getto work on some examples. Create a new java3_Lesson09 project. If Java gives you the option to "Open
Associated Perspective," click No. Now create a new Sortable class in this project:

= New Java Class [_ O]

Jawva Class

Create a new lava class,

CScnurn:e Falder: | javad_Lesson09fsrc __D Browse. .,
Gackage: I utilities _)' Browse. .,

| Enclosing tvpe: | Browse, ..

i e

@ame: | Sorkable __)

Modifiers: * public £ defaul: £ private € protected

I abstrack Final ™| static
Superclass: I java.lang. Object Browse, .,
Interfaces: add...

J

Remove

g

Wehich method stubs would vou like ko create?
™ public static void mainString[] args)
[~ Constructors from superclass
I¥ Inherited abstract methods
Do wou want ko add comments? {Configure templates and default walue here)

[T Generate comments

(7) Firish I Cancel

In Sortable, type the blue code as shown:

CODE TO TYPE:

package utilities;
public abstract class Sortable {
public abstract int compareTo (Sortable b) ;
public static void shellSort(Sortable[] a){
int n = a.length;
int increment = n / 2;
while (increment >= 1) {

for (int i = increment; i < n; i++){
Sortable temp = a[i];

int j = i;
while (j >= increment && temp.compareTo(a[j - increment]) < 0){
a[j] = a[j - increment];
j = j - increment;
}
afj] = temp;
}
increment = increment/2;
}
}
}
5l save it.
OBSERVE:

package utilities;
public abstract class Sortable ({
public abstract int compareTo (Sortable b);
public static void shellSort (Sortable[] a) {
int n = a.length;

int increment = n / 2;

while (increment >= 1) {

for (int 1 = increment; i < n; i++) {
Sortable temp = a[i];
int §j = i;
while (j >= increment && temp.compareTo(a[j - increment]) < 0) {
al[j] = alj - increment];
J = j - increment;
}
al[j] = temp;
}
increment = increment/2;

In the Sortable abstract class, we define an abstract method, compareTo(), which takes a Sortable object. This
method must be implemented by any concrete class that extends from the Sortable abstract class. We cannot

implementthe compareTo() method here, because we have no way to determine which kind of object we will need to
compare.

Note A concrete class is a class that can be instantiated. In the example above, the compareTo() method has
to be implemented somewhere in the hierarchy before any subclass can become concrete.

In the static shellSort() method, we use the compareTo() method to compare atemp Sortable object with a
Sortable objectin the a[] array. We can implementthe compareTo() method here because a shell sort doesn't
require knowledge of the type of object we are comparing, as long as we have a way to compare it. We have the
compareTo() method, which descends from Sortable.

Now, let's define a Rectangle class for use in our graphics drawing project. And since we already have a perfectly good
Sortable class atour disposal, we can subclass it, and allow our users to sortthe Rectangles according to
location.

Do not use the Rectangle class from previous lessons or your homework projects in this lesson.
The Rectangle class we created in thatlesson is not compatible with our current project!

Create a new Rectangle class in the java3_Lesson09 projectas shown:

= New Java Class H=]
Java Class r/a—--

Create a new Java class, k\g
CEDLIFEE Falder: javad_Lesson09fsrc _} Browse, ., |
Gackage: Iutilities) Browse. ., |

| Enclosing tvpe: | Browse, .. |
(:r:.lame: IRectangle)

Madifiers: % public O default © private 0 prokecked

[™ abstract [Final [T static

J

Superclass: I utilities, Sortable Browse, .,

Interfaces: Add...

d

Remove

Wehich method stubs would vou like ko create?
[T public static void main{String[] args)
[Constructars From superclass
I¥ Inherited abstract methods
Do wou want ko add comments? {Configure templates and default walue hered

I_ Generate comments

(7) Firish I Cancel

Because we inherited from an abstract class, the template that appears prompts us to implement the abstract
method ofits parent.

[J] Rectangle.java 52

package utilities:;

public class Bectangle extends Sortable |

= ACrrerride
public int compare (Jortable b {

A Ito-generated method stuk

return 0O;

Fa
z

In Rectangle, type in the blue code as shown:

CODE TO TYPE:

package utilities;

public class Rectangle extends Sortable {
int ulX, ulY, 1RX, 1RY;
private int area;

public Rectangle (int upperLeftX, int upperlLeftY,

ulLX = upperLeftX;
ulY = upperLeftY;

1RX = lowerRightX;
1RY = lowerRightY;
setArea() ;

}

private void setArea() {
area = (1RX - ulX) * (1RY - ulY);
}

public int getArea() {
return area;

}

public int compareTo (Sortable b) {

Rectangle oneToCompare = (Rectangle)b;

int lowerRightX, int lowerRightY) {

if (getArea() < oneToCompare.getArea()) return -1; // this one is smaller
if (getArea() > oneToCompare.getArea()) return 1; // this one is larger

return 0;

// they are the same

OBSERVE:

package utilities;

public class Rectangle extends Sortable {
int ulLX, ulY, 1RX, 1RY;
private int area;

public Rectangle (int upperLeftX, int upperlLeftY, int lowerRightX, int lowerRightY) {
ulX = upperlLeftX;
ulY = upperLeftY;

1RX = lowerRightX;
1RY = lowerRightY;
setArea () ;

}

private void setArea () {
area = (1IRX - uLX) * (1RY - ulLY):;
}

public int getArea() {
return area;

}

public int compareTo (Sortable b) ({
Rectangle oneToCompare = (Rectangle)b;
if (getArea() < oneToCompare.getArea()) return -1; // this one is smaller
if (getArea() > oneToCompare.getArea()) return 1; // this one is larger
return 0; // they are the same

We define our Rectangle class with two sets of coordinates: an x and y for the upper left corner and an x and y for the
lower right corner. We'll be able to calculate Rectangle's area, because these coordinates define the length and
height of our rectangle. We'll also implement the code for the abstract method compareTo() so our rectangle will
no longer be abstract.

We'll focus primarily on the compareTo () method. We override the abstract method from the Sortable class. We
take the parameter b and store itin the oneTo Compare local variable, which is a Rectangle reference. We store b
by casting itto a Rectangle object.

Now that our objectis a Rectangle, we can call the Rectangle methods. We'll look at the area of the Rectangle
using the getArea() method. If the area of this Rectangle is less than the area of oneToCompare, then we return a -
1. Ifthe Rectangle object's area is larger than thatofthe oneTo Compare object, then we return a +1. If the two
objects' areas are the same, then we return a 0. This is the standard operation ofany compareTo() method.

Okay, now let's sort some rectangles according to their areas:

(60,30

(1on20 (30,125) (160,100)

(40,1:307)

(143,163

To testour work, create a TestRectangleSort class in java3_Lesson09 as shown:

= Mew Java Class M=] 3
Jawva Class —
Create a new Java class, @

CS:::uru:e Folder: I java3_Lesson0dysrc __;i Browse. .,

il

G‘ackage: | utilities) Browse, .,
- Enclosing type: | Browse, ..
G‘-.Iame: | TestReckangleSort -_:'i
Modifiers: {* public " default £ private £ protected

[~ abstract [Ffinal [T static

J

Superclass: | java.lang. Object Browse, .,

Interfaces: add...

Remoyve

|

Which method stubs would wou like to creater
[public static woid main{String[] args)
[Constructors from superclass
¥ Inherited abstract methods
Do wou want to add comments? (Configure templates and default value bere)

[Generate comments

(7) | Finish I Cancel

Type TestRectangleSort as shown in blue:

CODE TO TYPE:

package utilities;
public class TestRectangleSort {

public static void main(String[] args) {
TestRectangleSort newExample = new TestRectangleSort() ;
newExample.sortRectangles () ;

}

public void sortRectangles() {
Rectangle[] figures = new Rectangle[3];

figures[0] = new Rectangle(60,30,160,100) ;
figures[1] new Rectangle(10,120,40,150);
figures[2] = new Rectangle(90,125,143,163);

System.out.println ("Before shellSort:");
for (int i = 0; i < figures.length; i++)
System.out.println("Area is " + figures[i].getArea()):;

Sortable.shellSort (figures) ;
System.out.println("\nAfter shellSort:");

for (int i = 0; i < figures.length; i++)
System.out.println("Area is " + figures[i].getArea())

o Save and run it. Your output will look like this:

=
[% Package Explarer ﬁg Higrarchy (E Consale £3 <& Termir
<terminated= TestRectangleSort £17 [Java Applicatio 4 3& |

Eefore shell3ort:
Area iz VOO0

Area is 900

Lrea i= 2014

After shelllort:
Ares i=s 900
Area is Z014
Ares i=s 7000

OBSERVE:

package utilities;
public class TestRectangleSort {

public static void main (String[] args) {
TestRectangleSort newExample = new TestRectangleSort () ;
newExample.sortRectangles () ;

}

public void sortRectangles () {
Rectangle[] figures = new Rectangle[3];

figures[0] = new Rectangle(60,30,160,100) ;
figures[l] = new Rectangle(10,120,40,150);
figures[2] = new Rectangle(90,125,143,163);

System.out.println ("Before shellSort:");
for (int 1 = 0; 1 < figures.length; i++)
System.out.println ("Area is " + figures[i].getArea());

Sortable.shellSort (figures) ;
System.out.println ("\nAfter shellSort:");

for (int 1 = 0; i < figures.length; i++)
System.out.println ("Area is " + figures[i].getAreal()):

In order to make this testing application, we create an array of Rectangles, fill it with three Rectangle objects, and

then display their values, in order. Once that's done, we call the Sortable.shellSort() method, passing the array and

figures to the method. Then we display the array in order again.

ltworks great. Itlooks good. We are happy. Thatwas a lot of work to make a single, yetimportant point. Because our
Rectangle inherited from the abstract class Sortable, it cannotinheritfrom anything else, because Java has single

inheritance. Now, if we wanted our Rectangle to inherit from the abstract Shape class in order to access (inherit)
"Shape" kinds of things for our Rectangles, we couldn't do it, because Rectangle can only inherit from one class.

Interfaces specify which methods objects execute when they are implemented. Let's make our Sortable class an

interface (also, we want Objects thatimplement the interface to be able to compare items so that they can be sorted).

Create a Sorts class in the java3_Lesson09 projectas shown:

= Mew Java Class M=] B3
Java Class —.
Create a new Java class, (!' ; D
{ Source Folder: i javad_Lessonddfsrc) Browse. .,
(Package: iutilities) Browse, .,

il

- Enclosing type: | Browse, ..
G.Iame: iSu:urts _)
Modifiers: = public £~ defaul: £ private " protecked

[T abstract [Ffinal [static

J

Superclass: | java.lang. Object Browse, ..

Interfaces: Add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

EditSorts as shown in blue:

CODE TO TYPE:

package utilities;
public class Sorts {

public static void shellSort(Sortable[] a){
int n = a.length;
int increment = n / 2;

while (increment >= 1) {
for (int i = increment; i < n; i++) {
Sortable temp = a[i];
int j = i;
while (j >= increment && temp.compareTo(a[j - increment]) < 0){
a[j] = a[j - increment];
j = Jj - increment;
}
a[j] = temp;
}

increment = increment/2;

Look familiar? We lifted this code from the Sortable class. But we'll convert the Sortable class to an interface, so we
can't have an implemented method in there.

Edit Sortable to make it an interface, adding the blue code and removing the red code as shown:

CODE TO EDIT:

package utilities;
public abstract class interface Sortable {
public abstract int compareTo (Sortable b);
public static void shellSort(Sortable[] a){
int n = a.length;
int increment = n / 2;
while (increment >= 1) {

for (int i = increment; i < n; i++) {
Sortable temp = a[i];

int j = 1i;

while (j >= increment && temp.compareTo(a[j - increment]) < 0){
a[j] = a[j - increment];
j = j - increment;

}
al[j] = temp;
}

increment = increment/2;

L'll Save it. It will look like this:

OBSERVE:

package utilities;

interface Sortable {
int compareTo (Sortable Db);

The Sortable class is now the Sortable interface, with only one method, compareTo(), that needs to be implemented.

Edit Rectangle to implement the interface rather than extend it, deleting the code in red and adding the code in blue as
shown:

CODE TO EDIT:

package utilities;

public class Rectangle extends implements Sortable {
int ulX, ulY, 1RX, 1RY;
private int area;

public Rectangle (int upperLeftX, int upperLeftY, int lowerRightX, int lowerRightY) {
ulX = upperLeftX;
ulY = upperlLeftY;
1RX = lowerRightX;
1RY = lowerRightY;
setArea () ;

}

private void setArea() {
area = (1RX - ulX) * (1RY - ulY);
}

public int getArea () {
return area;

}

public int compareTo (Sortable b) {

Rectangle oneToCompare = (Rectangle)b;

if (getArea() < oneToCompare.getArea()) return -1; // this one is smaller
if (getArea() > oneToCompare.getArea()) return 1; // this one is larger
return 0; // they are the same

Edit TestRectangleSort to call the class method shellSort() from our new Sorts class rather than from Sortable,
adding the blue code and removing the red code as shown:

CODE TO EDIT:

package utilities;
public class TestRectangleSort {

public static void main(String[] args) {
TestRectangleSort newExample = new TestRectangleSort();
newExample.sortRectangles () ;

}

public void sortRectangles () {
Rectangle[] figures = new Rectangle[3];

figures[0] = new Rectangle(60,30,160,100);
figures[l] = new Rectangle(10,120,40,150);
figures[2] = new Rectangle(90,125,143,163);

System.out.println ("Before shellSort:");
for (int 1 = 0; 1 < figures.length; i++)
System.out.println ("Area is " + figures[i].getArea());

Sortsable.shellSort (figures) ;

System.out.println ("\nAfter shellSort:");
for (int i = 0; i < figures.length; i++)
System.out.println ("Area is " + figures[i].getAreal());

}

V] Save and run itfrom TestRectangleSort. You should see the same result as before. Now that the Rectangle class
doesn't extend anything, it can use Shape as a parent.

Let's go through the code in detail. We begin with the Rectangle class, which inherits from Sortable. Initially, because
Rectangles are Sortable, we inheritin order to be able to sort our Rectangles. The Sortable class is abstract, so we
implementits abstract compareTo() method.

But we'd really prefer for Rectangle to inherit from an abstract class named Shape instead, because Rectangles are,
after all, Shapes. We want Rectangle to retain its ability to sort as well, so we change our Sortable class into an
interface and then create a new Sorts class that can hold various sorting algorithms. There are many other types of
Objects that we may want to sortin the future, so this maneuver is pretty cool. Now any class can implement the
Sortable interface. And, if we include code for the compareTo() method, then we can sort arrays of its type using the
static methods of the Sorts class.

Inheritance Design Conclusions
Using interfaces allows us to specify various capabilities, without forcing our classes to inherit methods.

When considering the use ofinheritance in your design, ask yourself these questions:

e Does the subclass inherit everything from a parent?

e Is the class actually a subclass oris it simply sharing a common interface or common attributes
with another class?

Answering these questions will help you choose the design options that best suit your purposes. Class fields
present similar choices. A class may have member fields with values that serve as pointers to other class
instances. This allows an instance of a class to have its own variables, as well as variables in common with
and accessible from its member fields. For example, a user might have an instance variable named
myProfession, which which points to a class Profession, using that user's particular professional
information. Or, as we saw in the lastlesson, a Listener (Controller) class might have an instance variable
link to its Container (View), with its own specific members. These members do notinheritfrom each other,
they simply use one another.

When designing a class:

e The class's member fields should be of a class type that holds additional information aboutsome
specific aspect of the class.

e When a class has capabilities (methods) that are not actions inherited from a parent, but are
common types of actions for other types of classes, the class should implement an interface.

E Interfaces provide a specification for a set of established action types. Each class that E
' Note implements the interface writes its own code for the action. Classes can implement multiple '
' interfaces. '

An interfaces is often written to be used by multiple classes—many different types of classes will implement
thatinterface. Java cannot anticipate every possible use of an interface, so the amount ofinformation the
interface gets is limited to that which the interface defines. The next section will illustrate this further.

Casting

Interfaces as Types

A variable with an interface type as its declared type may have as its value, a reference to any instance ofa
class thatimplements the specified interface. When using multiple inheritance, an Object can be declared as
an instance of a class type or something thatimplemented an interface type. The difference is that a declared
interface type will only know about the interface methods. Let's experiment.

In the java3_Lesson09 project, create a new class named Test, as shown:

= Mew Java Class M=] 1
Java Class —.
Create a new lava class, (};)
@DUFEE Folder: | javad_Lessonddfsrc D Browse. .,

Gackage: utilities _) Browse, .,

I Enclosing type: | Browse, ..

il

G.Iame: I Test _:)

Modifiers: = public £ defaul: £ private " protected
[™ abstract [Final ™| skatic

J

Superclass: | java.lang. Object Browse, ..

Interfaces: Add...

Remove

g

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? (Configure templates and default value here)

[T Generate comments

(7) Finish I Cancel

In Test, type the blue code as shown:

CODE TO TYPE:

package utilities;
public class Test {

public static void main(String[] args) {
Test testMe = new Test();
testMe. tryTypes () ;

}

public void tryTypes () {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Sortable [] figures = {rectl, rect2};

System.out.println("rectl Area: " + rectl.getArea()):;
System.out.println("rectl Upper Left: (" + rectl.ulX + ","+ rectl.ulY +
ll)");

int compareTestl = rectl.compareTo (rect2) ;
int compareTest2 = rect2.compareTo (rectl) ;
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect2");
else
System.out.println("rect2 is bigger than rectl");

o Save and runit. You'll get this:

=
5] Package Explorer ﬁg Hierarchey (E Console &3 .;};'J Te
<terminated = Test (2] [Java Application] Z:\Program 4 55

rectl Ares: 7000
rectl Upper Left: (60,30)
rectl iz bigger than rectl

Let's see how we gotthere:

OBSERVE:

package utilities;
public class Test {

public static void main(String[] args) {
Test testMe = new Test();
testMe.tryTypes () ;

}

public void tryTypes () {
Rectangle rectl = new Rectangle (60,30,160,100) ;
Sortable rect2 = new Rectangle(10,120,40,150);
Sortable [] figures = {rectl, rect2};

System.out.println ("rectl Area: " + rectl.getArea()):;
System.out.println ("rectl Upper Left: (" + rectl.ulLX + ","+ rectl.ulLY +
H)");

int compareTestl = rectl.compareTo (rect2) ;
int compareTest2 = rect2.compareTo (rectl) ;
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect2");
else
System.out.println("rect2 is bigger than rectl");

In the tryTypes() method, we create Rectangle and Sortable local variables. Both of the variables, rect1
and rect 2, reference Rectangle objects. Because Rectangle implements Sortable, Rectangle isa
Sortable.Because the compareTo() method is a Sortable method, all Rectangles have that method. In
Java, the objectin memory that defines the method will be run, so we do notneed to castthe Rectangle to a
Sortable in orderto call its compareTo() method. This is an example of interface polymorphism.

Try to change the constructor ofrect2 to Sortable—remove the red code and add the blue code as shown:

CODE TO EDIT:

package utilities;
public class Test {

public static void main(String[] args) {
Test testMe = new Test();
testMe.tryTypes () ;

}

public void tryTypes () {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new RectangleSortable(10,120,40,150);

Sortable [] figures = {rectl, rect2};
System.out.println ("rectl Area: " + rectl.getAreal());
System.out.println("rectl Upper Left: (" + rectl.ulX + ","+ rectl.ulY +

ll)");

int compareTestl = rectl.compareTo (rect2);
int compareTest?2 = rect2.compareTo (rectl);
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect2");
else
System.out.println("rect2 is bigger than rectl");

We have an error:"Cannot instantiate the type Sortable." Interfaces cannotbe instantiated—they are

notclasses. Change the constructor back to Rectangle.

Because rect1 is declared as a Rectangle, we can see all of the members ofthe Rectangle class, and it's
possible to invoke its method rect1.get Area(), in order to get the public instance variables for its location
coordinates rect1.uLX and rect1.uLY.

Since both rect1 and rect2 are Sortable, we can invoke the method(s) of the Sortable interface on either
ofthem:

intcompareTest1 =rect1.compareTo(rect2);
intcompareTest2 =rect2.compareTo(rect1);

Butrect2is a Sortable variable, so that's all we can see. If an Objectis declared as a type of interface, then
you can only access the interface members. Since we can't see all of the members of the Rectangle class,
we can'tinvoke its method rect2.getArea(), so we can'tretrieve its instance variables to find outits location
coordinates rect1.uLX and rect1.uLY. Try it.

Edit Test as shown in blue:

CODE TO EDIT:

package utilities;
public class Test {

public static void main(String[] args) {
Test testMe = new Test();
testMe.tryTypes () ;

}

public void tryTypes () {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);

Sortable [] figures = {rectl, rect2};
System.out.println("rectl Area: " + rectl.getArea());
System.out.println ("rectl Upper Left: (" + rectl.ulX + ","+ rectl.ulY +

ll)");
System.out.println("rect2 Area: " + rect2.getlArea()):;
System.out.println("rect2 Upper Left: (" + rect2.ulX + ","+ rect2.ulY +

ll)");

int compareTestl = rectl.compareTo (rect2);
int compareTest2 = rect2.compareTo (rectl);
for (int i = 0; i < figures.length; i++)
System.out.println("Area is " + figures[i].getArea()):
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect2");
else
System.out.println ("rect?2 is bigger than rectl");

This code introduces more errors. The class members (variables and methods) of Rectangle are undefined
for objects declared as the type Sortable. Interfaces do not know which type ofinstance an object is;
interfaces only know which task the objectis contfracted to do. Don't change anything yet. We still have more to

see.
L
Casting Back

By declaring an object as a type of interface, you limit the scope of the object to the declarations of that

interface. The instance /s still whatever its constructor was though, and can be cast to that class type to
regain access to the class's information.

Edit Test as shown. Add the blue code and remove the red code:

CODE TO EDIT:

package utilities;
public class Test {

public static void main(String[] args) {
Test testMe = new Test();
testMe.tryTypes () ;

}

public void tryTypes () {
Rectangle rectl = new Rectangle (60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;

Sortable [] figures = {rectl, rect2 rect3};

System.out.println("rectl Area: " + rectl.getArea());

System.out.println ("rectl Upper Left: (" + rectl.ulX + ","+ rectl.ulY +
")"),.

System.out.println ("rect2rect3 Area: " + rect2rect3.getArea());

System.out.println ("rect2rect3 Upper Left: (" + rect2rect3.ulX + ","+ re
ct2 rect3.ulYy + ")");

int compareTestl = rectl.compareTo (rect2rect3);

int compareTest2 rect2rect3.compareTo (rectl) ;
for (int 1 = 0; 1 < figures.length; i++)
System.out.println ("Area is " + figures[i].getArea());
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect2rect3");
else
System.out.println ("rect2rect3 is bigger than rectl");

We still seem to have the problem with the for loop. That's because we declared the whole array figures as
Sortable so, like elements in the array, they only know Sortable. Change the for loop and cast the
elements of the array. Add the blue code and remove the red code:

CODE TO EDIT:

package utilities;
public class Test {

public static void main (String[] args) {
Test testMe = new Test();
testMe.tryTypes () ;

}

public void tryTypes () {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);

Rectangle rect3 = (Rectangle)rect2;

Sortable [] figures = {rectl, rect3};

System.out.println ("rectl Area: " + rectl.getArea());

System.out.println ("rectl Upper Left: (" + rectl.ulX + ","+ rectl.ulY +
")");

System.out.println("rect3 Area: " + rect3.getAreal());

System.out.println ("rect3 Upper Left: (" + rect3.ulX + ","+ rect3.ulY +

ll)ll);

int compareTestl rectl.compareTo (rect3) ;
int compareTest2 = rect3.compareTo (rectl);

for (int 1 = 0; i1 < figures.length; i++) {
Rectangle current = (Rectangle)figures[i];
System.out.println ("Area is " + figures[i]current.getArea());
}
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect3");
else
System.out.println ("rect3 is bigger than rectl");

Q’ Save and runit.

While atfirst glance it might seem like we've diminished the capacity of our code, we've really just limited our
code's access to certain elements to a specific time. This technique lets Java avoid using multiple inheritance

by enabling itto look atthe same elementin different ways. You may wantJava to look atinstances ofa
Rectangle asa Rectangle, and other times you might wantthem to be compared as Sortable items.
(You can always castthe objectto getall of its information again.)

Now let's try working not only with Rectangles, but with Squares, Ovals, Circles, and Triangles.
In this lesson, do notuse the Shape class from previous lessons or from your

' WARNING homework projects. The Shape class created in earlier projects is not compatible with
: this lesson.

In the java3_Lesson09 project, create a new class as shown:

== New Java Class H=]

Jawva Class

Create a new lava class,

@DUFEE Folder: | javaS_LessnnD?,l'src} Browse, ..

G‘ackage: utilities _) Browse, .,

I Enclosing type: | Erowse, ..
G.Iame: iShape __;I

Modifiers: % public " default " private " protected
@- Final ™| static

Supetclass: | jawa.lang. Object Browse, .,

i e

J

Interfaces: Add..,

Remove

g

which method stubs would vou like to create?
[public static void mainString[] args)
[Construckars From superclass
¥ Inherited abstract methods
Do wou want ko add comments? (Configure templates and default walue hered

|_ zenetate comments

(?) Finish I Cancel

In Shape, add the code shown in blue:

CODE TO TYPE: Shape

package utilities;

public abstract class Shape {
public abstract int getArea();
}

Our Shapes will be 2-D figures: they'll have area. We'll make sure that the items we compare in our example
have a method for getArea(). And we'll wantour Rectangle class to inherit from Shape.

Edit Rectangle as shown in blue:

CODE TO EDIT: Rectangle

package utilities;

public class Rectangle extends Shape implements Sortable {
int ulLX, ulY, 1RX, 1RY;
private int area;

public Rectangle (int upperLeftX, int upperLeftY, int lowerRightX, int lowerR
ightY) {
ulX = upperLeftX;
ulY = upperLeftY;
1RX = lowerRightX;
1RY = lowerRightY;
setAreal();

}

private void setArea() {
area = (1IRX - ulLX) * (1RY - ulY);
}

public int getArea () {
return area;

}

public int compareTo (Sortable b) {

Rectangle oneToCompare = (Rectangle)b;

if (getArea() < oneToCompare.getArea()) return -1; // this one is small
er

if (getArea() > oneToCompare.getArea()) return 1; // this one is large
r

return 0; // they are the s
ame

=l Save the Shape and Rectangle classes.

Casting: instanceof

Let's add an Oval class.

In this lesson, do notuse the Oval class from previous lessons or from your homework
projects! The Oval class created in earlier projects will notwork in this lesson.

| WARNING

In the java3_Lesson09 project, create a new class as shown:

= Mew Java Class M=] B9
Jawva Class —.
Create a new Java class, @

CSDurce Folder: I javaS_Lessu:unDEl,l'srn:__) Browse. .,
G‘ackage: | utilities __) Browse, .,

iy

- Enclosing type: | Browse, ..
G.Iame: ijaI ___)
Modifiers: = public £~ defaul: £ private " protecked
[T abstract I Final ™| skatic
CSupercIass: Shape _) Browse, .. |
(Interfaces: utltes. Sortable) Add...

Remove

i

W'hich method stubs would vou like to creater
[public skatic void maindSkring[] args)
[™ Constructors from superclass
Iv Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

[T Generate comments

(7) Finish I Cancel

In Oval, type the blue code as shown:

CODE TO TYPE:

package utilities;

public class Oval extends Shape implements Sortable {
int ulX, ulLY, 1RX, 1RY;
private int area;

public Oval (int upperLeftX, int upperLeftY, int lowerRightX, int lowerRightY
) {

ulX = upperLeftX;
ulY = upperLeftY;
1RX = lowerRightX;
1RY = lowerRightY;
setArea() ;

}

private void setArea() {
// not necessarily a circle, so rather than PI*r*r,
// we have for ellipses PI*a*b where a and b are half of width and heigh

int width = 1RX - ulX;

int height = 1RY - ulY;

area = (int) (Math.PI*.5*width * .5*height);
}

public int getArea() {
return area;

}

public int compareTo (Sortable b) {
Shape oneToCompare = null;

if (b instanceof Shape) {

oneToCompare = (Shape)b;

if (getArea() < oneToCompare.getArea()) return -1; // this one is s
maller

if (getArea() > oneToCompare.getArea()) return 1; // this one is 1
arger

return 0; // they are the
same

}

return 0;

=1 Save it.

OBSERVE:

package utilities;

public class Oval extends Shape implements Sortable
int ulLX, ulY, 1RX, 1RY;
private int area;

public Oval (int upperLeftX, int upperlLeftY, int

ulX = upperLeftX;
ulY = upperLeftY;
1RX = lowerRightX;
1RY = lowerRightY;
setArea () ;

}

private void setArea () {
// not necessarily a circle, so rather than

t
int width = 1RX - ulX;
int height = 1RY - ulY;
area = (int) (Math.PI*.5*width * .5*height);
}
public int getArea () {
return area;
}
public int compareTo (Sortable b) {
Shape oneToCompare = null;
if (b instanceof Shape) {
oneToCompare = (Shape)b;
if (getArea() < oneToCompare.getArea())
maller
if (getArea() > oneToCompare.getArea())
arger
return 0;
same
}
return 0;

lowerRightX,

PIT*E*E,

return -1;

return 1;

int lowerRightY

// we have for ellipses PI*a*b where a and b are half of width and heigh

// this one is s
// this one is 1

// they are the

We've seen most of this before. Oval is similar to Rectangle. We extended Rectangle in previous lessons, but

we aren'tdoing that here.

Let's examine the compareTo() method of the Oval class. Since Oval extends Shape, and the getArea()
method is defined in Shape, we can compare any Shape object to any other Shape object. But first, we need

to find outif the parameter b, is an instance of Shape.

Both the Rectangle and Oval classes extend Shape, which makes them both Shape objects as well, so we'll

only need to castour objectto Shape.

L5l save Shape, Rectangle, and Oval.

We have lots of changes to check out, so let's rewrite Test. Add the blue code and remove the red code as

shown:

CODE TO EDIT:

package utilities;
public class Test{

public static void main (String[] args) {
Test testMe = new Test();
testMe.tryTypes () ;

public void tryTypes () {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;
Sortable [] figures = {rectl, rect3};
Oval ovall = new Oval(60,30,160,100) ;
Sortable oval2 = new Oval(10,120,40,150);
Oval oval3 = (Oval)oval2;

System.out.println("rectl Area: " + rectl.getArea());
System.out.println("rectl Upper Left: (" + rectl.ulX + ","+ rectl.ulY +
" "
)"
System.out.println("rect3 Area: " + rect3.getArea());

System.out.println("rect3 Upper Left: (" + rect3.ulX + ","+ rect3.ulY +
ll)ll);

System.out.println("ovall Area: " + ovall.getArea()):;

System.out.println("oval3 Area: " + oval3.getArea()):;

System.out.println() ;

Sortable [] figures = {rectl, rect3, ovall, oval3};

int compareTestl = rectl.compareTo (rect3) ;
int compareTest2 = rect3.compareTo (rectl) ;

System.out.println("Before shellSort:");
for (int 1 = 0; i < figures.length; i++) {
Rectangle current = (Rectangle)figures[i];
System.out.println("Area is " + current.getArea()):;
}
if (compareTestl > compareTest2)
System.out.println("rectl is bigger than rect3");
else
System.out.println("rect3 is bigger than rectl");
Shape current = null;
if (figures[i] instanceof Rectangle)
current = (Rectangle)figures[i];
else
current = (Oval)figures[i];

System.out.println("Area is " + current.getArea()):;
}

Sorts.shellSort (figures) ;

System.out.println("\nAfter shellSort:");
for (int i = 0; i < figures.length; i++) {
Shape current = null;
if (figures[i] instanceof Rectangle)
current = (Rectangle)figures[i];
else
current = (Oval)figures[i];
System.out.println("Area is " + current.getArea()):;

Q Save and run it. Oops—we forgot to allow for comparison of Shapes in the Rectangle class's
compareTo() method:

& Package Explorer ﬁg Hierarchy (E Console &3 ‘;ﬂ Terminal 11 ® S& | H L)E| @| @' | = B - L=€j - =
<kerminated:> Test {2) [Java Application] C:\Program Files)Javaijresibintjavaw, exe (May 29, 2011 11:21:29 AM)

rectl Ares: 7000

recti Area: 9S00

Area of ovall is 5497

Area of owvali is 706

Before shellZort:
Area iz YOOO
Area is 500
Area iz 5497
Area iz 706
Exception in thread "main® java.lang.ClassCastException: utilities.Cwal cannot be cast to utilities.Rectangle
at utilities.Rectangle.compareTo(Rectangle. java:Z4)
at utilities.Z%orts.shelllort (Sorts.java:l)
at utilities.Test.tryTypes (Test.javarig)
at utilities.Test.mwain(Test.java:7?)

Edit the code in the Rectangle class for the compareTo() method. Add the blue code and remove the red
code as shown:

CODE TO EDIT:

package utilities;

public class Rectangle extends Shape implements Sortable {
int ulLX, ulY, 1RX, 1RY;
private int area;

public Rectangle (int upperLeftX, int upperLeftY, int lowerRightX, int lowerR
ightY) {
ulX = upperLeftX;
ulY = upperLeftY;
1RX = lowerRightX;
1RY = lowerRightY;
setArea () ;

private void setArea() {
area = (1RX - ulX) * (1RY - ulY);

public int getArea () {
return area;

public int compareTo (Sortable b) {
Rectangle oneToCompare = (Rectangle)b;
Shape oneToCompare = null;

if (b instanceof Shape) {
oneToCompare = (Shape)b;
if (getArea() < oneToCompare.getArea()) return -1; // this one is s

maller

if (getArea() > oneToCompare.getArea()) return 1; // this one is 1
arger

return 0; // they are the
same

}

return 0;

0 Now, go back to the Test class and Run it. Excellent! The final run will look like this:

s
t2 Package Explorer (Tg Hierarchy I,E Console £ ;,'J Termin:
<kterminated> Test (2) [Java Application] C:iProgram Files!Jawaljrestbi

X % | GeieeE =B -r9-
rectl Ares: 7000
rect3 Ares: 2900
owvall Ares: 5497
owald Ares: P06

Before shell3ort:
Area iz 7000
Area is 900
hrea i= 5497
Area is 706

After shellZort:
Area is 706
hArea i=s 900
Area iz 5497
hrea is 7000

Listeners

There are several different kinds of Components thatuse the ActionListener class. The
java.awt.event.ActionEvent instances that will be passed as the parameter, allow you to call
e.getSource() method, but this maneuver always returns something of type Object. As the programmer,
you need to castitback to a Button (or whichever selected Component you're using) to be able to use the
variables and methods of the actual instance.

Extending Interfaces
Interfaces can be extended as well. In fact, we can even extend interfaces with multiple interfaces.

For example, consider this example interface:

OBSERVE:

package utilities;
import java.awt.event.*;
public interface MoreSortables extends Sortable, ActionListener {

int contrast();

}

If your class implements MoreSortables, you need to write code for contrast() for MoreSortables AND
compareTo() for Sortable AND actionPerformed() for java.awt.event.ActionListener.

Generics

You're doing great work so far, but this lesson is getting pretty darn huge. Maybe you should take a short break and
we'll continue with Generics in the nextlesson. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Generics

Lesson Objectives

When you complete this lesson, you will be able to:

e use Vectors and ArrayLists.
e parameterize objects.

The Dot Operator

To fully appreciate the concept of callbacks in Java, we need to understand how Java works with the dotoperator. We
use the dotoperator in Java to access members of a class and to write expressions. Take a look at this code:

OBSERVE:

System.out.println("Hello") ;

java.lang.System has a class variable named out, which is of type PrintStream, which has a method named
printin(). The printin() method is overloaded; one of its definitions has a parameter of String, so when we type
System.out.printin("Hello"), and pass the String "Hello", Java goes to the System class, then to its out field,
and then to the out variable's printin(String s) method.

If a programmer tries to pass a method name as a parameter, the receiving method will be unable to use it, because
Java will not know which class the method came from originally. We can pass instances though, because we know
which types of objects they are and objects have locations in memory. If we pass a method call as a parameterin a
method, the result of that method call gets passed, notthe method itself.

Code Reuse and Flexibility

Earlier, we talked about using constructs (such as array.length) in place of supplying specific numbers forloops, so
that when the numbers change for different runs, we don't have to alter the code in multiple places to accommodate
those numbers that have changed. With version 1.5, Java provided a new construct, Generics, which also allows code
reuse without requiring multiple changes.

Interfaces allow us to pass parameters (a type of interface); the objects passed are actually instances of different types
of classes. Generics allow us flexibility with our interfaces and classes and at the same time, ensure accuracy.
Generics also help us to write code more efficiently, and that code will be more secure and easier to use than code
littered with Object variables and casts.

Checking Type

When we worked with Shapes in the past, we cast the Sortable interface type b to a temporary Shape
(oneToCompare) within the compareTo() method of Oval.

When we added Ovals and forgotto change the code in Rectangle, Eclipse did not warn us of any compiler
errors, because up until runtime, Eclipse didn't know what would be sent. At runtime, we found that we had
errors because Rectangle's compareTo() method expected Rectangle objects.

5] Package Explorer (Tg Hierarchy (E Console 22 ‘\? Terminal 11 ® £ | H u3| @| | = Bl - o - B
<kerminated:> Test (2) [Java Application] C:\Program Files)Javaijresibintjavaw. exe (May 29, 2011 11:21:29 AM)

rectl Area: 7000

recti Area: 900

Area of ovall is 5497

Ares of owvali is 706

Before shellZort:
Area is YOOO
Area is 500
Ares iz 5497
Area iz 706
Exception in thread "main® java.lang.ClassCastException: utilities.Cwal cannot be cast to utilities.Rectangle
at utilities.Rectangle.compareTo (Rectangle. java:zZ4)
at utilities.S3orts.shellSort (Sorcs. java:l2)
at utilities.Test.tryTypes (Test.javarig)
at utilities.Test.main(Test.java: 7|

Generic Example

Vectors

We don't want our applications to give runtime errors. Runtime bugs can be particularly tough to catch
because they aren't always readily visible near their source.

Generics provide stability to your code by making runtime bugs visible sooner—at compile time. Let's take a
look at generics using a common alternative to arrays, the class Vector.

Often we need our code to hold multiple objects. In mathematics, we would create a sefto hold those objects.
In Java, the only mechanism we have learned for this task so far, is the array. Arrays have two basic
limitations:

1. They must be declared with a specified size.

2. All of their elements must be of the same type.

We made the array for our figures of type Sortable, because we wanted to call the shellSort() method in
the Sorts class, and shellSort() had a parameter of type Sortable.

For our graphics drawing project, we want to allow different types of Shapes (and icon Images), but we don't
know the number of figures the user will draw or add to the screen, so we can't specify a size for an array.
One way to address these issues is to use a Vector. Vectors differ from arrays in that:

e They can grow dynamically.

e They can hold different types. Thatis, Java allows you to put different types into a Vector, butthen
it casts them all as Object.

e Primitive data types are notallowed unless wrapped into their wrapper classes (for example, int is
wrapped into java.lang.Integer).

APL |n the API, you can find outif Java will wrap these data types automatically. While you're there, go to
package java.util and read the description of the class Vector.

There's some information and terminology in that description that we haven't covered yet, but this part may
make sense: "the size ofa Vector can grow or shrink as needed to accommodate adding and removing
items after the Vector has been created." We'll explain the <E>s on this page later. But first, let's find out what
can go wrong when we can put multiple types in a collection like a Vector. We'll use the classes we created in
java3_Lesson9 for our example.

Create a new java3_Lesson10 project, and in that new project, create a utilities package. Copy all of the
classes from java3_Lesson9 and putthem into the new utilities folder. Go to java3_Lesson9/srclutilities,
select all of the classes there, right-click for the popup menu, and select Copy. Then, go to
java3_Lesson10/src/utilities folder, right-click, and select Paste.

In the java3_Lesson10 project, create a new class as shown:

= =1
A
< New Java Class - @
Java Class —
Create a new Java class, @
l:;cnurn:e Folder: javaS_LesscnnlD,l'sE} Browse, .,

1__F'au:|_tage. ukilities D Browse, .,

[]Enclasing twpe:

F
lh_Name. Test'-.-'ectn@
Modifiers: () public) deFault
[]abstract [final
Superclass: java.lang. Shijeck
Inketfaces: add. .

WWhich method skubs would wou like to create?
[] public static woid mainiString[] args)

[] Canstructars from superclass
Inherited abstract methods
Do you wank to add comments? {Configure kemplates and defaulk value here)

[] Generate camments

3] Eimish] [Cancel

Note This lesson does NOT use the Rectangle class from your projects. It uses the
java.awt.Rectangle class.

CODE TO TYPE: TestVectors

package utilities;

import java.awt.*;
import java.util.¥*;

public class TestVectors ({

public static void main(String[] args) {
TestVectors testMe = new TestVectors() ;
testMe. tryVectors() ;

}

public void tryVectors () {
Rectangle rectl = new Rectangle(60,30,160,100) ;
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;
Oval ovall = new Oval(60,30,160,100) ;
Sortable oval2 = new Oval(10,120,40,150);
Oval oval3 = (Oval)oval2;
Point myPoint = new Point (55,55);
Vector moreFigures = new Vector(2);
moreFigures.add(rectl) ;
moreFigures.add (rect2) ;
moreFigures.add (rect3) ;
moreFigures.add (ovall) ;
moreFigures.add(oval2) ;
moreFigures.add (oval3) ;
moreFigures.add (myPoint) ;

for (int i = 0; i < moreFigures.size(); i++)
{

System.out.println("Element "+ i + " is " + moreFigures.elementAt (i)

We see a few warnings, but no errors, so go ahead and Save and Run it. It seems to run fine, and the Vector
does actually hold different types of Objects:

OBSERVE: TestVectors

package utilities;

import Jjava.awt.*;
import java.util.*;

public class TestVectors {

public static void main(String[] args) {
TestVectors testMe = new TestVectors();
testMe.tryVectors () ;

}

public void tryVectors() {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;
Oval ovall = new Oval (60,30,160,100);
Sortable oval2 = new Oval (10,120,40,150);
Oval oval3 = (Oval)oval2;
Point myPoint = new Point (55,55);
Vector moreFigures = new Vector (2);
moreFigures.add (rectl) ;
moreFigures.add (rect2) ;
moreFigures.add (rect3) ;
moreFigures.add (ovall) ;
moreFigures.add (oval2) ;
moreFigures.add (oval3) ;
moreFigures.add (myPoint) ;

for (int i = 0; i < moreFigures.size(); i++)
{

System.out.println ("Element "+ 1 + " is " + moreFigures.elementAt (1)

The Vector named moreFigures is created to hold 2 objects initially. As we add objects to the vector, it
grows automatically to accommodate more objects. But this convenience comes at a price. Each time the
Vector is called upon to grow, itdoubles in size, so make sure to set the initial capacity of your vector a bit
higher than the maximum number of objects you anticipate it will hold.

When we loop through the moreFigures Vector, we are no longer dealing with an array, so we can'tuse the
length constant from an array. We have to use the Vector's size() method, which gives us the number of
objects in the Vector.

The elements at 1and 2, and at4 and 5, are exactly the same Object. Do you see why? When we made
rect3 and oval3, we did not make new objects. Instead, we cast an existing object to be seen differently
from how itwas declared earlier. They do pointto the same place though, so be careful making changes to
either.

Since each elementin the Vector is an Object, the method elementAt(i) for Vector can printout each
type. However, we didn't cast anything, so the Vector presents all of these elements as Objects, and we get
only Object information.

Let's castthe elements fo something.

Edit TestVectors by adding the blue code as shown:

CODE TO TYPE: TestVectors

package utilities;

import java.awt.*;
import java.util.*;

public class TestVectors {

public static void main(String[] args) {
TestVectors testMe = new TestVectors():;
testMe.tryVectors () ;

}

public void tryVectors() {

Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;

Oval ovall = new Oval(60,30,160,100);

Sortable oval2 = new Oval(10,120,40,150);

Oval oval3 = (Oval)oval2;

Point myPoint = new Point (55,55);

Vector moreFigures = new Vector (2);
moreFigures.add (rectl) ;
moreFigures.add (rect2) ;
moreFigures.add (rect3);
moreFigures.add(ovall);
moreFigures.add(oval2);
moreFigures.add (oval3) ;
moreFigures.add (myPoint) ;

for (int 1 = 0; 1 < moreFigures.size(); i++)
{

System.out.println ("Element "+ 1 + " is " + moreFigures.elementAt (i)

Point myBad =(Point)moreFigures.elementAt (i) ;
System.out.println("Vector Element "+ myBad) ;

<
o
=N
®
—
>
[}
=
D
QO
=
(0]
>
o
Q
o
3
C.
)
[
[=o
3
D
[}
=
=
o
=
(]
o
=
3
QO
=
2.
>
«Q
()
QO
—
—
>
]
(2
(0]
>
®
3
5
D
(2]

0 Save and Run it.

i Package Explorer ?g Hierarchy Bl console 52 % % ® 28 E = C =
<kerminated = TestWectors [Java Application] Z:\Program Filest Javaljrel.5.0_0&\binijavaw,exe (Feb 15, 2008 11:32:11 AM)
Element 0 is utilities.Rectanglelliféa?hs

Exception in thread "main™ java.lang.ClassCastException: utilities.Rectangle

at utilities.TestVectors.main(TestVectors. javat29)

Even though we can'tcasta Rectangle to a Point, we weren't given any errors. A problem like this may go
unnoticed until runtime. Fortunately, in version 1.5, Java made Vectors a Generic class, so ifwe use the
generics framework properly, we cannot castincorrectly.

Vectors Using Generics

There are cautions on each line of our TestVectors class, located wherever we try to add elements to the
Vector:

Z2

whi 3 Vector woreFigures = new Vector (2] /¢4 this time we will mwake a growa
Wi 3 moreFigures.addirectl) ; ff with =some Rectangle types
iz 5 morek J_.gures «2de u1, Type safety: The method add{Object) belongs to the raw bvpe Wector, References to generic type
W2 6 woreFigures.addil vector<E> should be parameterized ngs
W27 moreFigures.add(s ik fices avaisble:
2 moreFJ_.gures -agd @ Add bvpe parameters bo Weckar'
whi 9 moreFigures.add| i
i @ Infer Generic Type Arguments. ..
wia 0 moreFigures.add| a ah
- @ Add @Suppresswarnings 'unchecked' to trvWeckors(r
32 for (int i = 0O: Press 'F2' For forus| 7 ¢ |)

e r

Generic classes force us to specify a type by parameterizing the class. We specify a type thatis expected
within the Vector. In the past, Java used the class Object for parameterization by default, because all
classes in Java inheritfrom Object. This allowed programmers to remove elements and then castthem
incorrectly without being aware of potential errors until runtime. But now, Java demands that we specify a type,
so casting can be checked. We see these warnings in our code because we did not parameterize:

e Type safety: we may have a problem with the safety of our types when casting.

e The method add(Object) belongs to the rawtype Vector: we did not specify a type, so the
compiler will use the raw type, which by defaultis Object.

e Referencesto generictype Vector <E> should be parameterized: We should use the
generic type Vector <E> so checks can be done safely. Object is not specific enough.

Edit TestVectors as shown below (we are casting to Point, so we will parameterize it accordingly):

CODE TO TYPE: TestVectors

package utilities;

import java.awt.*;
import java.util.*;

public class TestVectors {
public static void main(String[] args) {

TestVectors testMe new TestVectors();
testMe.tryVectors () ;

public void tryVectors() {
Rectangle rectl new Rectangle (60,30,160,100);
Sortable rect2 new Rectangle(10,120,40,150);
Rectangle rect3 (Rectangle) rect?2;
Oval ovall new Oval (60,30,160,100);
Sortable oval2 new Oval(10,120,40,150);
Oval oval3 (Oval)oval2;
Point myPoint new Point (55,55);

Vector <Point> moreFigures
moreFigures.add(rectl);
moreFigures.add (rect2);
moreFigures.add (rect3);
moreFigures.add (ovall) ;
moreFigures.add(oval?2);
moreFigures.add(oval3);
moreFigures.add (myPoint) ;

new Vector <Point>(2);

for = 0;

{

(int 1 i < moreFigures.size(); i++)

System.out.println ("Element "+ 1 + " is " + moreFigures.elementAt (i)

Point myBad =(Point)moreFigures.elementAt (i) ;
System.out.println("Vector Element "+ myBad);

Well, that didn't help. Now we have lots of errors where we added rectangles and ovals:

L T S S W ALAAR R e e WML B e e

£z 5 moreFigures.addirectl) S with some Rectangle ty
£i]2 b woreFigures. 41 The method addiPaint) in the type Yector <Point = is not applicable for the arguments (Rectangle)
327 woreFigures.
25 mDreFigurES.2qm¢ﬂxﬁavmhma
gz moreFigures.| @ Chanoeto addall.)
30 moreFigures.| @ Change bype of fectl’ bo 'Point
31 moreFigures. Press 'F2 For ForusE
a2
] Far fAimt 4 = N+ i « woreFirmmres sdiea 0t 0 94440 A vAr oAan arvarnr amn e res

API Go back to the APl and look at Vector. See all of those <E>s? When we use Vector <Point>
moreFigures = new Vector <Point>(), we are telling the compiler that in this instance of Vector, we are
parameterizing <E> to <Point>. So, according to the API, each instance of <E> in this particular piece of
code, becomes <Point>. The method add(E e) will become add(Point e), the method elementAt will
return an element of type Point, and we will geterrors.

Let's fix those pesky errors. Edit TestVectors as shown. Remove the red code:

CODE TO TYPE: TestVectors

package utilities;

import java.awt.*;
import java.util.*;

public class TestVectors {

public static void main(String[] args) {
TestVectors testMe = new TestVectors():;
testMe.tryVectors () ;

}

public void tryVectors() {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;
Oval ovall = new Oval(60,30,160,100);
Sortable oval2 = new Oval(10,120,40,150);
Oval oval3 = (Oval)oval2;
Point myPoint = new Point (55,55);

Vector <Point> moreFigures = new Vector <Point> (2);
moreFigures.add(rectl) ;

moreFigures.add (rect2) ;

moreFigures.add (rect3) ;

moreFigures.add (ovall) ;

moreFigures.add(oval2) ;

moreFigures.add(oval3) ;

moreFigures.add (myPoint) ;

for (int 1 = 0; 1 < moreFigures.size(); i++)
{

System.out.println ("Element "+ 1 + " is " + moreFigures.elementAt (i)

Point myBad =(Point)moreFigures.elementAt (i) ;
System.out.println("Vector Element "+ myBad);

That clears the compile-time errors. G Save and Run it. Our code should be free of runtime errors too.

Now, we'll getrid of all of the cautions. They showed up because we didn't use the variables. So we'll use
them now—but notin the Vector:

Edit TestVectors. Add the blue code and remove the red code as shown:

CODE TO EDIT: TestVectors

package utilities;

import java.awt.*;
import java.util.*;

public class TestVectors {

public static void main(String[] args) {
TestVectors testMe = new TestVectors():;
testMe.tryVectors () ;

}

public void tryVectors() {
Rectangle rectl = new Rectangle(60,30,160,100);
Sortable rect2 = new Rectangle(10,120,40,150);
Rectangle rect3 = (Rectangle)rect2;
Oval ovall = new Oval(60,30,160,100);
Sortable oval2 = new Oval(10,120,40,150);
Oval oval3 = (Oval)oval2;
Point myPoint = new Point (55,55);

Sortable [] figures = {rectl, rect3, ovall, oval3};
Vector <Point> moreFigures = new Vector <Point>(2);
moreFigures.add (myPoint) ;

for (int 1 = 0; i1 < moreFigures.size(); i++)
{

System.out.println("Element " + i + " is " + moreFigures.elementAt (i

Point myBad = (Point)moreFigures.elementAt (i) ;
System.out.println ("Vector Element " + myBad);
}

System.out.println() ;

for (int i = 0; i < figures.length; i++)

{
System.out.println("Array Element " + i + " is " + figures[i]);
Shape myBad =(Shape) figures[i];
System.out.println("Array Element " + myBad) ;

Nice! No warnings and no errors. We were also able to remove the castto Point because our Vector,
moreFigures, can only hold Point objects now.

0 Save and Run it.

Generals on Generics

Now that you know what the <E>s represent, you'll probably take more notice of them in the Java API. By convention,
we use lowercase letters for variables for Class members. Parameter names for Types are comprised ofone
uppercase letter. We differentiate parameters for Class Types using various uppercase letters. The most commonly
used type parameter names are:

e E: Element (used extensively by the Java Collections Framework—we'll go overitin the nextlesson.)
e K:Key

e N:Number

e T:Type

e V:Value

e S,U,V,and so on: 2nd, 3rd, 4th types (methods can have multiple parameters of different types.)

Because the APl always illustrates the most general usage, we commonly see parameters of <T> for Type and <E>
for Element. And there are additional parameter type limitations in generics including:

e bounds (for example, <T extends Shape >)
e wildcards (for example, <? extends Shape >)

There's stillalot more to the Generic Framework, but much ofitis beyond the scope of this class. Ourfocus is on
using the classes that Java provides, so we won't be writing our own generic classes, or experience their full potential
justyet. Although in the nextlesson, we will look at the Collection Framework which is probably the most extensive
applied use of generics. Here are some links to more information on generics:

e Oracle's generics page with a link to the Generics guide (as a pdf), also available as html.

e Learning the Java Language, the Generics Tutorial.

Don't wrestle with this too much now. Like most new skills, the generics tool is best learned through many examples
and lots of practice over time.

Copyright © 1998-2014 QO'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://download.oracle.com/javase/6/docs/technotes/guides/language/generics.html
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://download.oracle.com/javase/tutorial/extra/generics/index.html
http://download.oracle.com/javase/tutorial/java/generics/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

The Collection Framework

Lesson Objectives

When you complete this lesson, you will be able to:

e use the ShapeMouseHandler's in the MVC pattern.
e use the addLast(), add(), pop(), push(), and removeFirst() methods.
e implementthe logic for performing all actions for every specific shape possibilities.

Collections

Computers hold and sort through collections of information continually, looking for specific items. We need efficient
ways to program and manipulate those collections. Java provides a Collection Framework that contains numerous
types to hold, access, and manipulate our collections. This Collection Framework saves programmers lots oftime
and effort because it allows them to avoid writing and rewriting code for tasks the Collection Framework already
manages. Collections are also a partofthe Generic Framework. Since we usually think of things in collections as
elements, the common parameter variable used to specify our elements' types is <E>.

So far, we have seen two constructs that hold collections: arrays (which are not classes) and Vectors. In this lesson,
we'll look at some additional constructs. We'll check out the similarities that cause a class to be included within the
framework, as well as some of the "concrete collections" that have been sitting in the APl just waiting for us to find
them.

Empowered by Collections

Using collections, we can:

e determine whether anything is in the collection.
e countthe items in the collection.

e search for specific items.

e order (sort) the items.

e store elements.

e retrieve elements.

e empty (clear) the collection.

Interfaces specify which tasks a collection is able to perform. Java provides multiple core collection
interfaces:

e Collection:the rootofthe collection hierarchy. It represents a group of objects we call elements.
e Set:a collection that cannot contain duplicate elements.
e List:an ordered collection. Lists may contain duplicates.

e Queue: acollection thatholds multiple elements awaiting processing (like a line at a bank).
Queues typically operate in a FIFO (First In First Out) order.

e Map: an object that maps keys to values (for example, common keys for the IRS would be social
security numbers). A Map cannot contain duplicate keys and each key can map atmost, to one
value.

Classes in the collections framework implement one or more ofthose interfaces. In addition, Collections
are also a part ofthe Generic Framework, and since we usually think of things in collections as elements,
the common parameter variable used to specify our elements' types is <E>.

ArraylList

The ArrayList class is similarto our Vector class. ArrayList allows the collection to grow dynamically, in the same
way thatthe Vector class does. You must specify a length for your arrays, and they must be large in order to avoid
"array outof bounds" errors. Empty array locations take up lots of space as well.

API Go to the APl package java.util. Read about the interfaces and their use of generics. Scroll down to the classes,
then click on ArrayList:

e ArraylList allows collections of different types of objects by implementing the generics framework.

e ArrayList implements the interfaces oflterable, Collection, List,and RandomAccess.

API Now take a look at each of those interfaces in the API. Use the Back button to return to the ArrayList API page each
time.

1.1terable means that you can iterate, thatis, you can go through the list, one item ata time.
2.Collection has useful methods such as add(), remove(),isEmpty(), and size().

3. List (which is a subinterface of Collection and Iterable), has methods of add(), get(), remove(), and
toArray().

4. RandomAccess files permit nonsequential, orrandom, access to a file's contents.

The classes in the collections framework have implemented the ArrayListinterfaces for us already! Let's write a couple
of examples to demonstrate the typical access methods available in collections.

Create a new java3_Lesson11 project. If you're given the option to "Open Associated Perspective", click No. In this
project, create a new Class as shown:

e T

= New Java Class @

Java Class —
{71

Create a new Java class,

II ¢
C

- .

l__Su:uuru:e Folder: javad_Lessonl 1,|'er Browse. .,
| —

l.‘__F‘aclgage: collections) Browse, .,

[]Enclosing kvpe:

1E~.Iame: .ﬁ.ccess.ﬁ.rrayListE)
Modifiers: (%) public) defaulr
[Jabstract []final
Superclass: java.lang. Object
Interfaces:

W'hich method stubs would vou like to creater
[] public static void mainString[] args)
[]constructars From superclass
Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

|:| aenerake comments

@ Finish l [Cancel

Type AccessArrayList as shown below in blue:

CODE TO TYPE: AccessArrayList

package collections;
import java.util.ArrayList;
public class AccessArrayList({

public static void main (String[] args) {
AccessArraylList testing = new AccessArrayLlist();
testing. tryThis() ;

}

public void tryThis() {
Arraylist <String> beatles = new ArrayList<String>();

System.out.println ("Size of beatles at start: " + beatles.size()):
beatles.add ("John") ;

beatles.add ("Paul");

beatles.add ("George") ;

beatles.add ("Ringo");

beatles.add ("MetamorphosisGuy") ;

System.out.println (beatles) ;
System.out.println ("Size of beatles after adding: " + beatles.size()):;

int location = beatles.indexOf ("MetamorphosisGuy") ;
beatles.remove (location);

System.out.println ("After removing location "
+ location + "\n beatles are " + beatles);
System.out.println ("At index 1 is " + beatles.get(l));

beatles.add (2, "Mick");
System.out.println ("After adding Mick at location 2 \n "

+ beatles) ;
System.out.println ("Size of beatles: " + beatles.size());

o Save and Run it. Compare the results in the console with the code to see how the methods worked. Everything
works pretty much as expected. Nice.

LinkedList

Let's try another similar example of a collection. Because it's common to look through lists (and in general,
collections), the classes in the Collections Framework implement the interface Iterable, which means the method
iterator() has been implemented. Using the Iterable interface is much easier than writing lots offor loops to go
through our lists and collections.

The tools we use mostoften to wade through collections are iterators and the for-each construct. We'll
demonstrate both.

In the java3_Lesson11 project, create another new class, as shown:

= Mew Java Class

1

@)

Java Class

Create a new Java class,

[]Enclasing tywpe:

f'_

l,_‘_ﬁn:nurn:e Folder: jawad_Lessonl lg'er
f_ N

ih‘__F'acl_tage. cullectlnna

Erowse, ..

g

Erowse...

Erowse, ..

L
ki'-lame: ﬂ.n:n:essLinkedList)
Modifiers: () public) deFault prakected
[]abstract [final
Superclass: java.lang. Shijeck
Inketfaces: add. .
Remove
WWhich method skubs would vou like to create?
[] public static woid mainiString[] args)
[] Canstructars from superclass
Inherited abstract methods
Do you wank o add comments? {Configure kemplates and defaolk value here)
|:| Generate comments
(7 Einish] [Zancel

Type AccesslLinkedList as shown in blue below:

CODE TO TYPE: AccessLinkedList

package collections;

import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

import java.util.ListIterator;

public class AccessLinkedList {

public static void main (String[] args) {
AccessLinkedList testing = new AccessLinkedList();
testing. tryThis() ;

}

public void tryThis() {
List<String> first = new LinkedList<String>() ;
first.add ("Mick");
first.add ("Keith");
first.add ("Charlie");
first.add ("Bill");
first.add ("Ron");
System.out.println ("First: " + first);

List<String> last = new LinkedList<String>();
last.add ("Jagger");

last.add ("Richards") ;

last.add ("Watts");

last.add ("Wyman");

last.add ("Wood") ;

System.out.println ("Last: " + last);

ListIterator<String> firstIter = first.listIterator();
Iterator<String> lastIter = last.iterator();

while (lastIter.hasNext()) {
if (firstIter.hasNext())
firstIter.next();
firstIter.add(lastIter.next())
}
System.out.println("\nMerged all into first:\n");
System.out.println(first);

List <String> temp = new LinkedList<String>() ;

lastIter = last.iterator();
while (lastIter.hasNext()) {
lastIter.next();
if (lastIter.hasNext()){
temp.add (lastIter.next());
lastIter.remove() ;

}

System.out.println("\nRemoved every other element in last\n");
System.out.println("Last has become: " + last);

first.removeAll (last) ;
System.out.println("First is now: " + first);

for (String each : temp)

{

int location = first.indexOf (each)

System.out.println(each) ;
first.remove (location);

System.out.println("First is back to: " + first);

G Save and Run it. Compare the results in the console with the code. The method next() is used to iterate through
the set/collection. The lastinstance of the for-each construct could have been performed using a collections bulk
operation, specifically, this code:

for [(3tring each : temp) ff the for-esach construct iz nice too
i
int location = first.index2f (each):; J/ find where each in last iz in first
System. cut.printlnieach) ;
first.rewowve [location): A remowe it from first
¥

With the exception of the println command, this code does exactly the same thing as first.removeAll(temp).

Collections: Things Java Has Already Written for Us

In the last couple oflessons we sorted elements in arrays and Vectors by writing the sorts ourselves. The classes
ArrayList and LinkedList used the interface methods to access their members. Sometimes we'll wantto arrange
our collections in a specific order as well. Sorting items in a collection is almostas common as searching for
elements in a collection. The collection framework not only provides methods to access elements, butit provides
algorithms to manipulate entire collections. These algorithms are made available through static methods in the
Collections class. Be aware that this is a class (thats on the end of Collections is significant).

APL | et's see what we can find in the API. Go to the java.util package. Scroll down to the Class Summary and choose
Collections. Take a look atits methods. They're all static, so we can access them using
Collections.methodName(). Also, they almost all have parameters of List. Most of the classes in the collections
framework implement the List interface, so they're relatively easy to use.

In the java3_Lesson11 project, create a new class as shown:

-

..
A
< New Java Class - @
Java Class —
Create a new Java class, @

1:S|:|urn:e Folder: javal_Lessonlljsrc) Browse, .,

e .
1__F'au:|_tage. collections D Browse, .,

[]Enclasing tywpe:

l:r_'-lame: Cnllectinns.ﬂ.lgnrithm®
Modifiers: () public) deFault
[labstract []Final
Superclass: java.lang. Shijeck
Inkerfaces: add. .

WWhich method skubs would wou like to create?
[] public static woid main{String[] args)

[] Canstructars Fram superclass
Inherited abstract methods
Do you wank to add comments? {Configure kemplates and defaulk value here)

[] Generate camments

7 Eimish] [Cancel

Type CollectionsAlgorithms as shown below in blue (we're not actually writing any Collections code ourselves,
exceptto generate the elements in a List. The main() method makes calls to the Collections class and then prints
results):

CODE TO TYPE: CollectionsAlgorithms

package collections;
import java.util.¥*;
public class CollectionsAlgorithms {

private Integer numberGenerator () {
int randomInt = (int) (Math.random() * 100);
return Integer.valueOf (randomInt) ;

}

public List<Integer> createAlList(int howMany) {
List <Integer> createdList = new ArrayList<Integer>(howMany) ;
for(int i =0; i < howMany; i++)
createdList.add (numberGenerator()) ;
return createdList;

}

public static void main (String[] args) {
CollectionsAlgorithms testMe = new CollectionsAlgorithms () ;
testMe. tryThis () ;

}

public void tryThis() {
List<Integer> myList = createAList(7);
System.out.println("Created list: " + myList);

List<Integer> myCopy = createAList(7);
System.out.println("Second list: " + myCopy)

Collections.fill (myCopy, Integer.valueOf(0));
System.out.println("Second list with Os: " + myCopy) ;

Collections.copy (myCopy, myList) ;
System.out.println("Copied first into second list so "
+ "we can mess with it: \n " + myCopy) ;

System.out.println() ;
Collections. sort (myCopy) ;
System.out.println("Sorted list: " +myCopy) ;

int foundFirst = Collections.binarySearch (myCopy, myList.get(0));
System.out.println("Found first in original list at index "
+ foundFirst + " in sorted list ");

Collections.reverse (myCopy) ;
System.out.println("Reversed order of list: " +myCopy) ;

Collections.shuffle (myCopy) ;
System.out.println("Shuffled list: " +myCopy) ;

Integer min = Collections.min (myCopy) ;
System.out.println("Min value is: " + min.intValue /()

+ ", Max value is: " + Collections.max (myCopy) .intValue()) ;

myCopy = Collections.emptyList() ;
System.out.println ("Emptied list: " +myCopy) ;

System.out.println("Still have original created list: " + myList);

i} Save and Run it. Compare the results in the console. Also, check outjava.util.Collections in the APl to see the
specifications of the methods used.

Comparator
Since we can specify our own way to compare elements by implementing the java.util.Comparator
interface, we have unlimited potential for sorting different types of elements, using different criteria. Suppose,
for example, we wantto compare various types of mammals using certain criteria.

In the java3_Lesson11 project, create a new class as shown:

-,

« New Java Class - @

Java Class —
Create a new Java class, @

*
L Source Folder: jawad_Lessonllfsrc) Browse. ..
l\h_l:'acliage: collections) Browse, .,

[]Enclasing type:

-

f_
I.J-Jame: Marmmal)
Modifiers: () public () default

abstract Y []Final
Superclass: java.lang. objeck

Interfaces: add. ..

which rmethiod skubs would wou like to create?
[] public static woid mainiString[] args)
[] Constructors from superclass
Inherited abstract methods
Do you wank to add comments? (Configure kemplates and defaulk value hered

|:| Generate comments

) Einish] [Zancel

Type Mammal as shown below in blue:

CODE TO TYPE: Mammal

package collections;

public abstract class Mammal {
protected String name;

public Mammal (String who) {
name = who;

}

public String getName () {
return name;

}

public abstract double getHeight() ;
public abstract double getSpeed() ;

Create another new class in the java3_Lesson11 project as shown:

-,

« New Java Class - @

Java Class —
Create a new Java class, @

"'— .
L__Su:uuru:e folder: javad_Lessonl 1,|'sr|::> Browse. ..

-

1:_T:'ac|5age: collections 7y Browse, .,

[]Enclasing type:

f'_
I.J-Jame. Hurnan)
Modifiers: (%) public () default
[]abstract []Ffinal
L
lh__guperclass. Marrnal }
Interfaces: Add. ..

which rmethod skubs would wou like to create?
[] public static woid mainiString[] args)
[] Constructors from superclass
Inherited abstract methods
Do you wank to add comments? (Configure templates and defaulk value herel

|:| Generate comments

) Einish] [Zancel

Type Human as shown below in blue:

CODE TO TYPE: Human

package collections;

public class Human extends Mammal {
private double runningSpeed = 10.00;
private double height = 1.6;

public Human (String who) {
super (who) ;

}

public double getHeight () {
return height;

}

public double getSpeed() {
return runningSpeed;

}

Create another new class in the java3_Lesson11 projectas shown:

~

= MNew Java Class

Java Class

Create a new Java class,

|-
IM__SDurce Folder: jawad_Lessonllfsic)
lrlz'acl_aage: collections

o >

[]Enclasing twpe:

L
{_Name: Three_t,':-edSIcn@
Modifiers: {+) public) default
[]abstract [final
f_
lhiuperclass: Mammal)
Inkerfaces:

Erowse. ..

56 <)

Browse, ..

Erowse...

Which method skubs would vou like to create?

Inherited abstract methods

|:| Generate comments

[] public static woid main{String[] args)

[] Constructors From superclass

Do you wank o add commentsy {Configure kemplates and defaulk value here)

Finish

J

Cancel

Type Three_toedSloth as shown below in blue:

CODE TO TYPE: Three_toedSloth

package collections;

public class Three toedSloth extends Mammal {
private double runningSpeed = 0.15;
private double height = 0.58;

public Three toedSloth(String who) {
super (who) ;

}

public double getHeight () {
return height;

}

public double getSpeed() {
return runningSpeed;

}

Create another new class in the java3_Lesson11 project as shown:

= Mew Java Class - @W

Java Class
Create a new Java class, @

-

- .

L__Su:uuru:e folder: javad_Lessonl lg'er
| —

)

L=~
| Mame: Zheetah)

Modifiers: () public () default
[|abstract []Final

| -
L__guperclass: Marrnal :) Browse, ..

Interfaces: add. ..

=
[w1]
m

which rmethod skubs would wou like to create?
[] public static woid mainiString[] args)
[] Constructors from superclass
Inherited abstract methods
Do you wank to add comments? (Configure templates and defaulk value herel

|:| Generate comments

(7 Finish] [Cancel

Type Cheetah as shown below in blue:

CODE TO TYPE: Cheetah

package collections;

public class Cheetah extends Mammal {
private double runningSpeed = 70.00; // in mph
private double height = 1.25; // shoulder height in meters

public Cheetah (String who) {
super (who) ;

}

public double getHeight () {
return height;
}

public double getSpeed() {
return runningSpeed;

}

Now, let's create a class to compare these three mammals. In the java3_Lesson11 project, create a new
class as shown:

— Mew Java Class

1

@)

Java Class

Create a new Java class,

{ Source Folder: javad_Lessonilfsrc)

- .
|_Package: collections __)

[]Enclasing tywpe:

Erowse, ..

Erowse...

e

Erowse, ..

f-
l_['-lame. MammalRace)
Modifiers: () public) deFault private prakected
[]abstract [final skakic
Superclass: java.lang. Shijeck
Interfaces: add. .
Remove
WWhich method skubs would vou like to create?
[] public static woid main{String[] args)
[] Canstructars from superclass
Inherited abstract methods
Do you wank o add comments? {Configure kemplates and defaolk value here)
|:| Generate comments
(7 Einish] [Zancel

Type MammalRace as shown below in blue:

CODE TO TYPE: MammalRace

package collections;
import java.util.¥*;
public class MammalRace {

public static void main (String[] args) {
MammalRace testing = new MammalRace() ;
testing.race() ;

}

public void race() {
Human me = new Human ("me (Human)") ;
Three_toedSloth frank = new Three_toedSloth("frank sloth");
Cheetah chester = new Cheetah("chester cheetah");

List<Mammal> critters = new ArrayList<Mammal>() ;
critters.add (me) ;

critters.add(frank) ;

critters.add (chester) ;
System.out.println("Original Objects: ");
System.out.println(critters) ;

ListIterator<? extends Mammal> crittersIter = critters.listIterator();

System.out.println("Elements of the list by their names: ");

while (crittersIter.hasNext()) {
System.out.print(crittersIter.next() .getName() + ", ");

}

System.out.println() ;

Collections.sort(critters, new Comparator<Mammal> () {
public int compare (Mammal a, Mammal b) {
if (a.getSpeed() < b.getSpeed()) return -1;
if (a.getSpeed() > b.getSpeed()) return 1;
return O;

)

System.out.println("\nSorted from slowest to fastest, "
+ "with speed information:");

for (Mammal each : critters) {
System.out.println("Name: " + each.getName() + " Speed: "
+ each.getSpeed() + " mph");
}

Collections.sort(critters, new Comparator<Mammal>() {
public int compare (Mammal a, Mammal b) {
if (a.getHeight() < b.getHeight()) return -1;
if (a.getHeight() > b.getHeight()) return 1;
return O;
h
System.out.println("\nSorted from shortest to tallest, "
+ "with height information:");
for (Mammal each : critters) {
System.out.println("Name: " + each.getName ()
+ " Height: " + each.getHeight()+ " m");

L'll Save all ofthe classes: Mammal, Human, Cheetah, Three_toedSloth,and MammalRace.

0 Run MammalRace. Compare the results in the console with the code and observe how the methods
worked. We have two different ways to sort and compare the elements. By creating an interface Comparator
within a Generic Framework, the Collections Framework allows us to sort various ways. Good stuffl

Wrapping Up the Collections Framework

Using the Collections Framework can save you a lotoftime. It may well be worthwhile for you to look at Java's tutorial
and become familiar with all of the capabilities these interfaces and classes provide. Why reinvent the wheel, right?

Here are just some of the benefits provided by the Java Collections Framework, as described in that tutorial we just
mentioned:

e Reduces programming effort: By providing useful data structures and algorithms, the Collections
Framework allows you to concentrate on the important aspects of your own program, rather than reinventing
things that have already been written (by experts). Two major contributions these collections have made in
the ongoing quest to simplify the writing of code can be seen in:

1. Enhanced forloops
2. Autoboxing

e Increases program speed and quality: The Collections Framework provides high-performance, high-
quality implementations of useful constructs and algorithms. The various implementations of each interface
are interchangeable, so programs can be tuned easily by switching collection implementations, depending
on your needs.

e Allows interoperability among unrelated APIs: The collection interfaces define how to pass
collections back and forth. If one individual's code furnishes a collection of node names and another's
toolkit expects a collection of certain column headings, the Collection APIs will interoperate seamlessly,
even though they were written independently.

e Reduces effort to learn and to use new APls: Many APIs naturally take collections as inputand furnish
them as output. With a set of standard collection interfaces, collection use is uniform.

e Reduceseffort to design new APIs: Designers and implementers don't have to reinvent the wheel each
time they create an API thatrelies on collections; instead, they can use standard collection interfaces.

e Fosters software reuse: If you use standard types and conform to the framework, others can use your
code without major changes. They will love you for this.

All'in all, Java provides some really handy tools!

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://java.sun.com/docs/books/tutorial/collections/index.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/foreach.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/autoboxing.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Enumeration and enum

Lesson Objectives

When you complete this lesson, you will be able to:

e declare and use enumerated data.
e implementobjectinstantiation and class initialization.
e useenum.

e apply default modifiers to fields of type enum.

Enumeration

Enumerate: To countoffor name one by one; list. This is the definition one finds in the American Heritage Dictionary.
Java's new reserved word enum comes from the use of enumeration.

Earlier in this series of courses, we learned that Java has two main types—primitive data types and classes. In
our currentcourse, we learned thatinterfaces are a types as well. Programming languages evolve all the time.
Since version 1.5, Java has provided a new types of object, the Enum. It's actually pretty cool that you're involved
right now, during this evolution of a programming language! If you go into the APl from Java Version 1.4 in java.lang,
you won'tfind the new Enum class.

Click on that link to the APl from Java Version 1.4 and scroll down. Look at the Class Summary between Double and
Float. There's nothing that starts with an E.

AP Now, click our link to the newest APl version and go to java.lang. Enum<E> extends Enum <E> .

All the enums that you define, by default, will inherit from java.lang.Enum. Let's take a closerlook at this new type.

Constants

In object-oriented programming, everything is in a class. There are pieces of information that should be
readily accessible to everyone, such as:

pI(T)

E

the speed oflight (cin E=mc
Avogadro's constant

2)

In Java, we make these pieces ofinformation constants by declaring them with public static final:

e public makes them accessible to everyone.
e static makes them accessible by using the class name (for example, Math.Pl).
e final makes sure thatno one can change them.

AP Go to the java.lang package. Scroll down to the Math class. Scroll to the Field Summary and click on E.

The convention in Java is to name constants with all capital letters; that's why you see Pl and E.

Enum Types

An enumerated type is a special kind of class. An enum type is a type with variables (fields) that consist of
a fixed setof constants. Common examples include: days of the week, months of the year, seasons ofthe
year (values of WINTER, SUMMER, FALL, and SPRING), compass directions (NORTH, SOUTH, EAST, and
WEST), and static Color or Action choices on a menu. Because they are constants, the names enum types'
fields conventionally use uppercase letters as well.

The values of the enumerated type are a fixed set of constants (by default) and are objects. The values are, in
fact, instances of their own enumeration type.

In our upcoming example, CHEET AH is an object/instance of the MammalEnum class. Specifically, the
enum declaration defines a class (called an enum type). The enum class body can include methods and

http://download.oracle.com/javase/1.4.2/docs/api/java/lang/package-summary.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/E_%28mathematical_constant%29
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Avogadro's_number

other fields. Interestingly, they have a static value s() method that returns an array containing all of the values
ofthe enum in the order that they are declared—so you can iterate through the enumeration.

Enum Example

The animal of type Mammal and the subclasses we used in the lastlesson's example are usually classes of their
own. But we'll make them of the class enum here, in order to demonstrate the use of enum.

Create a new java3_Lesson12 project. If you're given the option to "Open Associated Perspective," click No. Click on
java3_Lesson12 and then right-click for the popup menu. Select New | Enum (if no Enum option appears in this
popup, select New | Other | Java | Enum). Enum should appear in the popup from then on.

In the New Enum Type window that opens, enter the circled information:

-

= MNew Enum Type

Enum Type

@ Package name is not walid, 'enum’ is nok a valid Java identifier

|-
L__Su:uuru:e Folder: javaS_LessnnlE,l'er Browse. ..

g
4

1:I_:'ac|_tage: enum :) Erowse. ..

[]Enclasing tywpe:

o

{_Mame: I"-’IammaIEnum:D
Modifiers: () public () deFault
Inkerfaces:

Do you wank o add commentsy {Configure kemplates and defaulk value here)

|:| Gaenerate comments

Cancel

o)

Hey, what's going on here? Why can't you click Finish? Sorry about that—I wanted to demonstrate thatenum is a
reserved word. Change the name of the package to enumerable:

-

= MNew Enum Type @W

Enum Type

Creake a new enum tvpe.

Source Folder: jawad_Lessonlz)sec Browse, .,

TG

| -
lh__F'acl_tage: enumerable) Browse, .,

[]Enclasing tywpe:

Mame: MarnrnalEnurm
Modifiers: () public () deFault
Inkerfaces:

Do you wank o add commentsy {Configure kemplates and defaulk value here)

|:| Gaenerate comments

Cancel

@ Finish |

Create the MammalEnum class as shown in blue:

CODE TO TYPE: MammalEnum

package enumerable;

public enum MammalEnum {
CHEETAH,
HUMAN,
THREETOED_SLOTH;

public static void main(String[] args) {
for (MammalEnum each : MammalEnum.values())
System.out.println (each) ;

OBSERVE: MammalEnum

package enumerable;

public enum MammalEnum {
CHEETAH,
HUMAN,
THREETOED_SLOTH 2

public static void main (String[] args) {
for (MammalEnum each : MammalEnum.values())
System.out.println (each) ;

In the MammalEnum class, we create three constant objects: CHEET AH, HUMAN, and THREETOED_SLOTH. In the
main() method, we outputthose constants to the console.

o Save and Run it. It's good, but we can make it better. Remember, each of these are Objects of theirown.

Edit MammalEnum as shown below in blue:

CODE TO TYPE: MammalEnum

package enumerable;

public enum MammalEnum {
CHEETAH (70.00, 1.25),
HUMAN (27.89, 1.6),
THREETOED SLOTH (0.15, 0.58);

private double speed;
private double height;

MammalEnum (double howFast, double howTall) {
speed = howFast;
height = howTall;

}

public double getSpeed() {
return speed;

}

public double getHeight() {
return height;

}

public static void main(String[] args) {
for (MammalEnum each : MammalEnum.values())
System.out.println ("Mammal " + each + ": Speed " + each.getSpeed() + " and
Height " + each.getHeight())
}

OBSERVE: MammalEnum

package enumerable;

public enum MammalEnum {
CHEETAH (70.00, 1.25),
HUMAN (27.89, 1.6),
THREETOED SLOTH (0.15, 0.58);

private double speed;
private double height;

MammalEnum (double howFast, double howTall) {
speed = howFast;
height = howTall;

}

public double getSpeed() {
return speed;

}

public double getHeight () {
return height;
}

public static void main (String[] args) {
for (MammalEnum each : MammalEnum.values())
System.out.println ("Mammal " + each + ": Speed " + each.getSpeed()
+ " and Height " + each.getHeight());

Here, we take the three constant objects and give them data. Each of the three constants, CHEETAH (70.00, 1.25),
HUMAN (27.89,1.6), and THREETOED_SLOTH (0.15, 0.58), now take in parameters that will be passed to the
enum constructor. This single MammalEnum now represents three separate objects. The parameters of these
objects, represent the speed and height of the object.

Each of the MammalEnum objects have private variables named speed and height, as well as getters for those
values. Did you notice that there are no setters? That's because the objects in an enum are implicitly public static
final.

{2 save and Run it. Pretty cool, huh?

Of course, it might be better to use things that would actually be constants. Each of the things in our current example
is a class that we would want to instantiate with individuals from the class. The classes of Cheetah and Human are
certainly notfinal.

Enumerations should be objects that are constant, like the planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Uranus, Neptune, and Pluto...well, maybe constants are not always constant either. Poor Pluto!

Butjokes aside, if objects are constants, then we do notneed to instantiate them (there are not multiple instances of
Mars). If we have a collection of such objects, the enum type is a good option.

Be aware that constructors for enum are notthe same as constructors for classes. The constructor for an enum type
mustbe package-private or private access. (For mostclasses, thatwould be pretty strange.) An enum constructor
automatically creates the constants that are defined at the beginning of the enum body. You cannotinvoke an enum
constructor yourself.

Accessing Members of the Enumeration

Let's try an example to access one of our mammals from another class. Create a new class as shown:

http://news.nationalgeographic.com/news/2006/08/060824-pluto-planet.html

-

-,

« New Java Class - @

Java Class —
Create a new Java class, @

Gn:nurn:e Folder: javad_Lessonl2fsrc) Browse, .,

L=
Lh_F'au:I_tage: enumerable) Browse, .,

[]Enclasing tywpe:

1':__Tﬂame: GetOne_D
Modifiers: () public () deFault
[labstract []Ffinal
Superclass: java.lang. Shijeck
Inkerfaces:

WWhich method skubs would vou like to create?
[] public static woid mainiString[] args)

[] Canstructars from superclass
Inherited abstract methods
Do you wank o add comments? {Configure kemplates and defaolk value here)

[] Generate camments

(7 Einish] [Cancel

Add the code for GetOne as shown in blue:

CODE TO TYPE: GetOne

package enumerable;
public class GetOne {

public static void main(String[] args) {
MammalEnum test;
test = MammalEnum.CHEETAH;
System.out.println(test + " height is " + test.getHeight());

0 Save and Run it. Pretty cool, huh?

Now let's make a change. Add the blue code and remove the red code:

CODE TO EDIT: GETONE

package enumerable;
public class GetOne {

public static void main (String[] args) {
MammalEnum test;
test = MammalEnum.CHEETAHCOUGAR;
System.out.println(test + " height is " + test.getHeight());

You can'tdo itbecause COUGAR is notan object in the enumeration. You can change COUGAR back to
CHEETAH to return the code to a functional state.

More about Enum

APL In the API, go to java.lang.Enum (it's in java.lang, so no importis needed). Now, that is interesting. | think we get
the idea behind generics, but what does this Class Enum<E extends Enum<E>> mean? By default, any enum thatis
defined will inheritfrom java.lang.Enum. So Class Enum<E extends Enum<E>> indicates that any specification of

an enum will extend the class Enum. Let's try to extend Enum explicitly:

In java3_Lesson12, create a new Class as shown:

-

= Mew Java Class

=&

Java Class

Create a new Java class,

javaS_LesscnnlE,l'er

enumerable)

| —
lh__Scnurn:e Folder:

|
lh__F'acl_tage.

[]Enclasing tywpe:

F
lh_Name: Tr';.fExtend)
Modifiers: () public) deFault

[]abstract [final

javalang.Erum)

|-
N Superclass;
P

Inketfaces:

WWhich method skubs would wou like to create?
[] public static woid mainiString[] args)
[] Canstructars From superclass
Inherited abstract methods
Do you wank to add comments? {Configure kemplates and defaulk value here)

[] Generate camments

Browse, ..

(2 Einish

] [Cancel

We have an error:

1 Epac!kaqe enumerable;

2
B s public class TryExtend extends Enum |
4
5 %
&

3 The type TryExtend may nat subclass Enum explicity

Press 'F2' For Focus)

That's interesting too—if you read the class specification in the API, it says public abstract class Enum<E extends
Enum<E>>. Ithas an abstract modifier. If a class is abstract, it must be subclassed. However, java.lang.Enum is

highly specialized, and cannot be explicitly subclassed.

Enum Inside of Classes

Remember thatan enum is, for all intents and purposes, a set of constants. Itis notso specialized though, that its

classes become unusable. They can be defined inside of your regular classes.

To illustrate, let's play some cards. This code was inspired by the enum example in the Java Enum Guide. We'll work

with parts ofitand add more in the nextlesson.

In java3_Lesson12, create a new Class as shown:

http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

= New Java Class

=]

-\

Java Class

Create a new Java class,

-)
K_Source Folder:]avaS_LesscumZ,l'src__)

1:F‘a|:|_aage: enumerable)

[]Enclasing twpe:

Browse, ..

liigS

Erowse...

Browse, ..

I:__Tﬂame: Cardl)
Modifiers: {+) public) default private protecked
[]abstract [final skakic
Superclass: java.lang. Shijeck
Inkerfaces: add. .
Remove
Which method skubs would vou like to create?
[] public static woid main{String[] args
[] Constructors From superclass
Inherited abstract methods
Do you wank o add commentsy {Configure kemplates and defaulk value here)
|:| Generate comments
"'E’x' Finish] [Zancel

Create Card as shown below (you'll notice similarities to our MammalEnum class) in blue:

CODE TO TYPE: Card

package enumerable;
import java.util.¥*;
public class Card ({

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN,
KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;

}

public Face getFace() {
return face;

}

public Suit getSuit() {
return suit;

}

public String toString() {
return face + " of " + suit;

}

public static void demo () {
ArraylList<Card> aDeck = new ArrayList<Card>() ;
for (Suit suit : Suit.values())
for (Face face : Face.values())
aDeck.add (new Card(face, suit));
for (Card each : aDeck)
System.out.println (each) ;

}

public static void main(String [] args) {
Card.demo() ;
}

OBSERVE: Card

package enumerable;
import java.util.*;
public class Card {

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN,
KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;

}

public Face getFace() {
return face;

}

public Suit getSuit() {
return suit;

}

public String toString() {
return face + " of " + suit;

}

public static void demo () {
ArraylList<Card> aDeck = new ArrayList<Card> () ;
for (Suit suit : Suit.values())
for (Face face : Face.values())
aDeck.add (new Card(face, suit));
for (Card each : aDeck)
System.out.println (each) ;

}

public static void main (String [] args) {
Card.demo () ;
}

In the Card class, we define two enums, FACE and SUIT. We instantiate face and suit as instance variables of type
FACE and SUIT, our enums. Each instance of our Card class is going to representone FACE objectand one SUIT
object.

In the demo() method, we create an ArrayList named aDeck, which will hold our 52 Card objects. We loop through
the SUIT enum's values(), getone ofthe SUIT objects (HEARTS, CLUBS, etc.), and store itin the local variable
suit. For each Suit, we loop through the FACE enum's values(), getone ofthe FACE objects (KING, ACE, etc.) and
store itin the local variable face. Then we add() a new card to aDeck with the values of suit and face. Finally, we
loop through aDeck and printouteach Card object, implicitly invoking its toString() method.

€2 save and Run it. Notice that we listed out all of the cards one ata time. Since a deck of cards stays the same all of
the time, it would be smart to make up the deck and store itas a static (class) variable, so it's accessible from the
class.

A few things to keep in mind when considering static methods:
e Astatic method can be invoked though the class name, without any objects instantiated.

e Becauseitis notbound to any instance, it can access only other static members.
e lItcan be called by instances, butaccessed independently from the class.

Edit Card as shown below by adding the blue code and removing the red code:

CODE TO EDIT: Card

package enumerable;
import java.util.*;
public class Card {

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN,
KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;
private static final List<Card> theDeck = new ArrayList<Card>();

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;

}

private static List<Card> initializeDeck () {
for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Card(face, suit));
return theDeck;

}

public Face getFace () {
return face;

}

public Suit getSuit() {
return suit;

}

public String toString() {
return face + " of " 4+ suit;

}

public static void demo () {
ArrayList<Card> aDeck = new ArrayList<Card>() ;
for (Suit suit : Suit.values())
for (Face face : Face.values())
aDeck.add (new Card(face, suit));
for (Card each : aDeck)
System.out.println (each) ;

}

public static void main(String [] args) {
Card.demo () ;
List<Card> aDeck = Card.initializeDeck() ;
System.out.println (aDeck) ;
}

i} Save and Run it.

This is good—now we can getrid of the demo () method, which doesn't have much to do with a Card other than
showing it. It would be even better if we didn't have to call the method initialize Deck() either—especially since it's
private and we couldn't call it from outside the class anyway. But wait a minute— we want it to be private, because we
don'twant people messing with our deck and its contents! Maybe it would be best then, if we could always have the
deck of cards available from the class, through its class variable. But without the initialize De ck() method, the array
theDeck would be empty. Let's add the method to the Constructor to gettheDeck filled.

Edit Card as shown in blue:

CODE TO TYPE: Card

package enumerable;
import java.util.*;

public class Card f{

N, KING, ACE }
public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;
theDeck = initializeDeck() ;

}

private static List<Card> initializeDeck () {
for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Card(face, suit));
return theDeck;

}

public Face getFace () {
return face;

}

public Suit getSuit() {
return suit;

}

public String toString() {
return face + " of " + suit;

}

public static void main(String [] args) {
List<Card> aDeck = Card.initializeDeck():;
System.out.println (aDeck) ;

}

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,

private static final List<Card> theDeck = new ArrayList<Card>();

JACK, QUEE

We have a new error message:

17 this.suit = suit;
#1585 theleck = inpitializeleck();
15 ; 43 The final field Card.theDeck cannot be assigned
20
=1 privlqmﬂﬁxmmhmm Deck (] 1
e @ Remove final modifier of 'theleck!
23 Press 'F2' For Focusf (1)
24 thelaeck.add inew Card|face, =suit)):
25 return tkheleck:
Z6 ¥

Change the Card class by removing the red code as shown:

CODE TO EDIT: Card

package enumerable;
import java.util.*;
public class Card ({

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEE
N, KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;
private static final List<Card> theDeck = new ArrayList<Card>();

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;
theDeck = initializeDeck();

}

private static List<Card> initializeDeck () {
for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Card (face, suit));
return theDeck;

}

public Face getFace () {
return face;

}

public Suit getSuit () {
return suit;

}

public String toString() {
return face + " of " + suit;

}

public static void main(String [] args) {
List<Card> aDeck = Card.initializeDeck();
System.out.println (aDeck) ;

O Save and Run it. We still have a problem:

éj Hiskaory El console i3 é] Resulks ED Synchronize

<terminated> Card [Java Application] C:\Program FilesiJavaljrel.5.0_0&\bintjavaw, exe (Mow 24, 2008 2:55:23 PM)
IExcEpt ion in thread "main®™ Java. lang.3tackcrerflowError

at enumerable.Card.<init> (Card. java:13)

at enumerable.Card.initializeleck (Card. java:24)

at enumerable.Card.<init> [(Card. java:13)

e T T, L e Ty s e L)

Do you see why? We are trying to make a Deck of Card in the Card constructor. We need to have the Card before we
can make a Deck.

One solution for this would be to make a static initialization block. Read on.

Static Initialization Blocks

A static initialization block is a normal block of code enclosed in Curly brackets {} and preceded by the static
keyword. It's nota method, it's an initializer. Its basic purpose is to perform initialization of static variables that can't
be accomplished in a variable declaration.

Itis not"called" when an object of the class is instantiated; itis executed the first time the class itselfis referenced,
similar to static variable declarations. Here's an example:

static
A wode for initialization inside here

Key characteristics of static initialization blocks:

e Aclass can have any number of static initialization blocks.
e They can appear anywhere in the class body.

e Theruntime system guarantees that static initialization blocks are called in the order that they appear in the
source code. This is important because variables in one mightrely on the other having been instantiated.

Initializing the class is notthe same as instantiating an object. Initializing the class happens only once per
Note class perclassloader. So static initializers are run once per class, when the class is loaded, which '
occurs the firsttime your code references it.

Edit Card as shown. Add the code in blue and remove the code inred:

CODE TO EDIT: Card

package enumerable;
import java.util.*;
public class Card ({

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE,
N, KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;
private static final List<Card> theDeck = new ArrayList<Card>();

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;
initializeDeck() ;

private static List<Card> initializeDeck () {
for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Card (face, suit));
return theDeck;

public Face getFace () {
return face;

public Suit getSuit () {
return suit;

public String toString() {
return face + " of " + suit;

public static void main(String [] args) {
List<Card> aDeck = Card.initializeDeck() ;
System.out.println (aDecktheDeck) ;

TEN,

JACK, QUEE

OBSERVE: Card

package enumerable;
import java.util.*;
public class Card {

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEE
N, KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;
private static final List<Card> theDeck = new ArrayList<Card> () ;

private Card(Face face, Suit suit) ({
this.face = face;
this.suit = suit;

static {
for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Card(face, suit));

public Face getFace () {
return face;

public Suit getSuit () {
return suit;

public String toString() {
return face + " of " + suit;

}

public static void main (String [] args) {
System.out.println (theDeck) ;
}

We have three separate and distinct variables for face, face, and face, as well as for suit, suit, and suit. face and
suit are instance variables ofthe class Card. face and suit are parameters of the Card constructor. And, face and
suit are local variables to the for loop in which they were created.

-
L)) Save and Run it. Now let's provide a class method that will allow people access to the Deck from the Card class.

Edit the Card class as shown below in blue:

CODE TO TYPE:

package enumerable;
import java.util.*;
public class Card ({

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEE
N, KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;
private static final List<Card> theDeck = new ArrayList<Card>();

private Card(Face face, Suit suit) {
this.face = face;
this.suit = suit;

static {
for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Card (face, suit));

public Face getFace () {
return face;

public Suit getSuit () {
return suit;

public String toString() {
return face + " of " + suit;

}

public static ArrayList<Card> newDeck () {
return new ArrayList<Card> (theDeck) ;
}

public static void main(String [] args) {
List <Card> mine = Card.newDeck() ;
System.out.println (mine) ;

0’ Save and Run it. Awesome!

Now, usually switch statements need byte, short, char, orint primitive data types—but they also work with
enumerated types. Let's check that out. Edit Card as shown in blue:

CODE TO TYPE:

package enumerable;

import java.util.*;
import java.awt.Color;

public class Card ({

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEE
N, KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;

private final Suit suit;

private static final List<Card> theDeck = new ArrayList<Card>(); // declares theDe
ck

private Card(Face face, Suit suit) {
this.face = face;

this.suit = suit;
}
static {
for (Suit suit : Suit.values())
for (Face face : Face.values())

theDeck.add (new Card(face, suit));
}

public Face getFace () {
return face;

}

public Suit getSuit () {
return suit;

}

public String toString() {
return face + " of " + suit;

}

public static ArrayList<Card> newDeck () {
return new ArrayList<Card> (theDeck) ;

}

public Color testSwitch() {
Color result = null;
switch(suit) {
case SPADES:
case CLUBS: result = Color.black; break;
case HEARTS:
case DIAMONDS: result = Color.red; break;
}
return result;

}

public static void main(String [] args) {
List<Card> deck = Card.newDeck() ;
Card myCard = deck.get(20);
if (myCard.testSwitch() == Color.black)
System.out.println (myCard + " is black");
else System.out.println(myCard + " is red");

ﬁ' Save and Run it.

You may wonder why we had the testSwitch() method return a Color, rather than a String, which would have
enabled us to say "NINE of DIAMONDS is red" and thereby avoid using the if statement. You'll understand the reason
behind that choice when you get busy with the project for this lesson.

A Bit More About Enum

Enumerations can be declared as their own class (enum), but they can also be declared within classes and interfaces
as well (as we saw with the Cards). In this way, they behave like inner classes.

The enum object type is limited to the explicit set of values. That means that you can't call the constructor to create new
elements for the enum. The values have an established order, defined by the order in which they are declared in the
code. The values correspond to a string name, which is the same as their declared name in the source code.

We'll apply more of this information in the nextlesson. We'll refine our skills and the capabilities of Cards, associating
our Card class with specific card icons. See you there!

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Image Mapping and Handling

Lesson Objectives

When you complete this lesson, you will be able to:

e implementdouble buffering.
e selectan objectto Move or Resize, then setitback to its original state.

Tying It All Together

In the Java first course, we provided a file to download that created your first project. We'll do that again for this lesson
to create your final project, java3_Lesson13. You'll find some images in the new file that you'll need to complete the
lesson.

Click here to getjava3_Lesson13 and the image files. It contains an src directory with a games package and a
games.images folder to use for your work with cards. It should be listed with your other projects in the Package
Explorer view.

Open the src folder to see the games.images folder and make sure the images are there. Take a look at the Cards
class in the src folder and games package. Open itin the Editor and Run it. It's the same package we had in the last
lesson. We're going to create additional classes and then extend their functionality.

Our main objectives for this lesson are to:

e Give the Cards added functionality and view.
e Use Cards examples to add images, and then identify and move shapes and images within our graphics
project.

To reach those goals, we'll work on some examples and eventually complete our graphics drawing project. So far, we have:

e determined a class hierarchy for inheritance.
e created the abstract class Shape.
e created a panel for user choices.

e used interfaces as listeners:
e using adapter classes.

e using anonymous inner classes.

e incorporated a Collection Framework class to hold different Shapes.
e used enum to specify Color choices.

To complete our graphics drawing project, our planis to:

e |oadImages.
e determine which Shape has been selected.
e use amouse listenerto move the Shapes.

e putall of our pieces together.

We'll use the Cards class from the previous lesson and add images to demonstrate those last few tasks.

Getting Images

In this lesson we will use the initial Card class with the embedded enums from the example in Oracle's Java Enum
Guide. We'll add actual images in order to see the cards. It's most convenientthat someone has already created the
card images and putthem on the web with permissions for us to use them!

We found some code we can use for our task in the section on moving images here (thanks, Fred Swartz). To allow
you to follow the use terms, we included the open source initiative notice for the MIT license. The images are GPL
(GNU General Public License).

com.oreilly.school.java3.lesson13.zip
http://download.oracle.com/javase/1.5.0/docs/guide/language/enums.html
http://www.leepoint.net/notes-java/examples/graphics/cardDemo/cardDemo.html
http://www.opensource.org/licenses/mit-license.php
http://www.gnu.org/licenses/#GPL

We'll gradually add more functionality to our example, by adding utility classes. These utility classes will convertour
Cards (which are currently Strings) to Images. By working through examples, you'll learn how to display images,
identify which has been selected, then move itaround and complete your graphics project.

Your program will allow people to draw geometric figures, so | suggest you keep yourimages small
T ip (maximum widths and heights around 150 pixels) to save space. Below are two jokers that were not '
' included in the deck that you downloaded (the dimensions of each of these images are about 75x100). '

Here is the Cards class that was downloaded with the images:

OBSERVE: Cards

package games;
import java.util.*;
public class Cards {

public enum Face { TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEE
N, KING, ACE }

public enum Suit { HEARTS, DIAMONDS, CLUBS, SPADES }

private final Face face;
private final Suit suit;
private static final List<Cards> theDeck = new ArrayList<Cards> () ;

private Cards (Face face, Suit suit) {
this.face = face;
this.suit = suit;

static {

for (Suit suit : Suit.values())
for (Face face : Face.values())
theDeck.add (new Cards (face, suit));

public Face getFace () {
return face;

public Suit getSuit () {
return suit;

public String toString() {
return face + " of " + suit;

}

public static ArrayList<Cards> newDeck () {
return new ArraylList<Cards> (theDeck) ;

}

public static void main (String [] args) {
System.out.println (theDeck) ;
}

Mapping with a Hashtable
We want to have "real" cards, so we need images. You've actually already downloaded them, but we need to create a

mapping to match the Cards strings above with their corresponding images. For this example, we're going to use a
Hashtable, which is part of the Collections Framewaork.

AP Go to the java.util package. Scroll down to the Hashtable class; read and digest the information you find there.
Our keys will be the individual Cards and their values will be the associated card images.

In the java3_Lesson13 project, create a new class as shown:

— Mew Java Class

1

@)

Java Class

Create a new Java class,

l:Scnurn:e Folder: javaS_LesscnnlS,l'er
1:I_:'ac|_tage: games)

[]Enclasing twpe:

Erowse, ..

e

Erowse. ..

Erowse, ..

l:r_'-lame: CardImageD
Modifiers: () public) deFault prakected
[]abstract [final
Superclass: java.lang. Shijeck
Interfaces: add. .
Remove
WWhich method skubs would wou like to create?
[] public static woid mainiString[] args)
[] Canstructars From superclass
Inherited abstract methods
Do you wank to add comments? {Configure kemplates and defaulk value here)
|:| Generate comments
(7 Einish] [Zancel

Create Cardlmage by typing the blue code as shown:

CODE TO TYPE: Cardlmage

package games;

import javax.swing.*;
import java.util.*;
import java.net.URL;

public class CardImage {
private Hashtable<Cards, ImageIcon> cardIcons = new Hashtable<Cards, ImagelIcon>(52)

private ClasslLoader cldr;

public CardImage () {
cldr = this.getClass() .getClassLoader() ;
cardIcons = makeTable (Cards.newDeck()) ;

}

private Hashtable <Cards, ImageIcon> makeTable (List<Cards> theDeck) {
for (Cards each : theDeck)
{
String mySuit = suitMap (each.getSuit())
String myFace= faceMap (each.getFace()) ;
String imagePath = "games/images/" + myFace + mySuit + ".gif";
URL imageURL = cldr.getResource (imagePath) ;
ImageIcon img = new ImageIcon (imageURL) ;
cardIcons.put(each, img);
}
return cardIcons;

}

private String suitMap (Cards.Suit cardSuit) {
return cardSuit.toString() . toLowerCase () .substring(0,1) ;
}

private String faceMap (Cards.Face cardFace) {
String result = null;
switch (cardFace)
{
case TWO: result = "2"; break;
case THREE: result = "3"; break;
case FOUR: result = "4"; break;
case FIVE: result = "5"; break;

case SIX: result = "6"; break;
case SEVEN: result = "7"; break;
case EIGHT: result = "8"; break;
case NINE: result = "9"; break;
case TEN: result = "t"; break;
case JACK: result = "j"; break;

case QUEEN: result = "q"; break;
case KING: result = "k"; break;
case ACE: result = "a"; break;
}
return result;

}

public Hashtable<Cards, ImagelIcon> getTable () {
return cardIcons;

}

public static void main(String[] args) {
CardImage testMe = new CardImage() ;
List<Cards> myDeck = Cards.newDeck() ;
for (Cards each : myDeck)
{
System.out.print(each + ": ");
System.out.println (testMe.cardIcons.get (each)) ;

Whew! That was a lotto type. Let's break it down. (By the way, you aren't fooling anyone, we know you're using copy
and paste! Try to resist.)

OBSERVE: Cardimage

package games;

import javax.swing.*;
import java.util.*;
import java.net.URL;

public class CardImage {
private Hashtable<Cards, ImageIcon> cardIcons = new Hashtable<Cards, ImageIcon> (52)

private ClassLoader cldr;

public CardImage () {
cldr = this.getClass () .getClassLoader () ;
cardIcons = makeTable (Cards.newDeck ()) ;

}

private Hashtable <Cards, ImagelIcon> makeTable (List<Cards> theDeck) {
for (Cards each : theDeck)
{
String mySuit = suitMap (each.getSuit());
String myFace= faceMap (each.getFace()) ;
String imagePath = "games/images/" + myFace + mySuit + ".gif";
URL imageURL = cldr.getResource (imagePath) ;
ImageIcon img = new ImagelIcon (imageURL) ;
cardIcons.put (each, img);
}
return cardIcons;

}

private String suitMap (Cards.Suit cardSuit) {
return cardSuit.toString() .toLowerCase () .substring(0,1);

}

private String faceMap (Cards.Face cardFace) {
String result = null;
switch (cardFace)

{

case TWO: result = "2"; break;
case THREE: result = "3"; break;
case FOUR: result = "4"; break;
case FIVE: result = "5"; break;
case SIX: result = "6"; break;
case SEVEN: result = "7"; break;
case EIGHT: result = "8"; break;
case NINE: result = "9"; break;
case TEN: result = "t"; break;
case JACK: result = "j"; break;
case QUEEN: result = "g"; break;
case KING: result = "k"; break;
case ACE: result = "a"; break;

}

return result;

}

public Hashtable <Cards, ImageIcon> getTable () {
return cardIcons;

}

public static void main(String[] args) {
CardImage testMe = new CardImage () ;
List<Cards> myDeck = Cards.newDeck () ;
for (Cards each : myDeck)
{
System.out.print (each + ": ");
System.out.println (testMe.cardIcons.get (each)) ;

This class is represented by two instance variables. The firstis cardlcons, a Hashtable that maps Cards to
Imagelcons. The second is cldr, a Classloader that makes it easier to load the images from the disk.

Mostofthe work for this Cardimage class is done in the makeTable () method, which takes a List of Cards as a
parameter. We loop through the Cards objects in the List, using the local variable each. For each Cards, we getthe
first character of its suit (mySuit) by calling suitMap(), and we get a one character representation of its face (myFace)
by calling faceMap(). We use mySuit and myFace to build a path to an image file which we load into an Imagelcon
named img. Then we add each Cards object and its associated img Imagelcon, into the cardslcons Hashtable.

=1 Save it. We've included a main method so you can Run it. Check out the mapping in the console output. Each
card has its properimage file.

We could have used generics to create a deck of Cards orImagelcon cards, butinstead we made sure that the
Cards deck always has a corresponding matching Imagelcon "deck.” Now we wantto create a class for Deck that
allows us to do the stuff we like to do with Decks, like shuffle and deal hands.

In java3_Lesson13, create a new class as shown:

« Mew Java Class @-\

Java Class

Create a new Java class, (\J
e

e .

{_Source Folder: jawad_Lessonl3fsrc)
| —

T

[]Enclosing tyvpe:

r
{_Mame: Deck|)
Modifiers: {+) public) defaulk

[]abstract []final
Superclass: java.lang. Shijeck

-~

Inkerfaces:

Which method skubs would vou like to create?
[] public static woid main{String[] args
[] Constructors From superclass
Inherited abstract methods
Do you wank bo add commentsy {Configure kemplates and defaulk value here)

|:| Gaenerate comments

(7 Finish] [Zancel

Create Deck by typing the blue code as shown:

CODE TO TYPE: Deck

package games;

import java.util.¥*;
import javax.swing.*;

public class Deck {

private List<Cards> thisDeck;

private List<ImagelIcon> visualDeck;

private Cards [][] dealtHands;

private ImageIcon [][] visualHands;

private CardImage makeImages;

private Hashtable <Cards, ImageIcon> myMap;

public Deck() {

}

thisDeck = Cards.newDeck() ;
visualDeck = new ArrayList<ImageIcon>() ;
makeImages = new CardImage() ;
myMap = makeImages.getTable() ;
for (Cards each: thisDeck)
{
visualDeck.add (myMap.get (each)) ;
}

public List<Cards> getDeck () {

}

return thisDeck;

public List<ImageIcon> getVisualDeck () {

}

return visualDeck;

public Cards [] getHand(int player) {

}

return dealtHands[player];

public ImageIcon [] getVisualHand(int player) {

}

return visualHands[player];

public void shuffle() {

}

Collections.shuffle (thisDeck) ;
visualDeck.clear() ;
myMap = makeImages.getTable() ;
for (Cards each: thisDeck)
{

visualDeck.add (myMap.get (each)) ;
}

public void dealAllPlayers (int howManyPlayers, int cardsToDeal) {

dealtHands = new Cards[howManyPlayers] [cardsToDeal] ;
visualHands = new ImageIcon[howManyPlayers] [cardsToDeal];
this.shuffle() ;

System.out.println("We have " + howManyPlayers + " fine Players tonight.");
for (int i=0; i < howManyPlayers; i++)
{
System.out.println("Player " + (i+l)+ " is dealt an interesting hand of");
List<Cards> thisHand = dealHand (cardsToDeal) ;
for (int j=0 ; j < cardsToDeal; j++)
{
dealtHands[i] [j] = thisHand.get(j);
visualHands[i] [j] = myMap.get(thisHand.get(j))

for (Cards each : thisHand)

{
System.out.println (each) ;

}

public List<Cards> dealHand(int numCards) {
int deckSize = thisDeck.size() ;
List<Cards> aHand = thisDeck.subList (deckSize-numCards, deckSize) ;
List<ImageIcon> visualHand = visualDeck.subList (deckSize-numCards, deckSize)
List<Cards> hand = new ArrayList<Cards>(aHand) ;

aHand.clear() ;
visualHand.clear () ;
return hand;

}

public static void main(String[] args) {
Deck myDeck = new Deck() ;
int numPlayers = 2;
int numCards = 5;
myDeck.dealAllPlayers (numPlayers, numCards) ;

OBSERVE: Deck

package games;

import java.util.*;
import javax.swing.*;

public class Deck {

private List<Cards> thisDeck;

private List<ImagelIcon> visualDeck;

private Cards [][] dealtHands;

private ImageIcon [][] wvisualHands;

private CardImage makeImages;

private Hashtable <Cards, ImageIcon> myMap;

public Deck() {
thisDeck = Cards.newDeck () ;
visualDeck = new ArrayList<ImageIcon> () ;
makeImages = new CardImage () ;
myMap = makelImages.getTable () ;
for (Cards each: thisDeck)
{
visualDeck.add (myMap.get (each)) ;

}

public List<Cards> getDeck () {
return thisDeck;

}

public List<ImageIcon> getVisualDeck () {
return wvisualDeck;

}

public Cards [] getHand(int player) {
return dealtHands[player];
}

public ImageIcon [] getVisualHand (int player) {
return visualHands [player];

}

public void shuffle() {
Collections.shuffle (thisDeck) ;
visualDeck.clear () ;
myMap = makelImages.getTable () ;
for (Cards each: thisDeck)
{
visualDeck.add (myMap.get (each)) ;

}

public void dealAllPlayers (int howManyPlayers, int cardsToDeal) {
dealtHands = new Cards|[howManyPlayers] [cardsToDeal] ;
visualHands = new ImageIcon[howManyPlayers] [cardsToDeal];
this.shuffle () ;

System.out.println ("We have " + howManyPlayers + " fine Players tonight.");
for (int i=0; i < howManyPlayers; i++)
{
System.out.println ("Player " + (i+1)+ " is dealt an interesting hand of");
List<Cards> thisHand = dealHand (cardsToDeal) ;
for (int j=0 ; j < cardsToDeal; j++)
{
dealtHands[i] [j] = thisHand.get(j);
visualHands[i] [j] = myMap.get (thisHand.get(j)) ;

for (Cards each : thisHand)
{

System.out.println (each) ;

}

public List<Cards> dealHand (int numCards) {
int deckSize = thisDeck.size();
List<Cards> aHand = thisDeck.subList (deckSize—-numCards, deckSize):;
List<ImageIcon> visualHand = visualDeck.sublList (deckSize-numCards, deckSize);
List<Cards> hand = new ArrayList<Cards> (aHand) ;

aHand.clear () ;
visualHand.clear () ;
return hand;

}

public static void main(String[] args) {
Deck myDeck = new Deck () ;
int numPlayers = 2;
int numCards = 5;
myDeck.dealAllPlayers (numPlayers, numCards) ;

This is along class. Let's getright to work, breaking it down. First, we create a few instance variables that will represent
a Deck of Cards. The instance variable thisDeck represents the newDeck() of Cards objects. The visualDeck
variable will represent the Imagelcons associated with that deck. The dealtHands][][] array will hold the currently
dealthands of Cards. Each row will be a player. The visualHands][][] array will hold the Imagelcons of the currently
dealt hands, where the rows will be comprised of each player's card images. The makelmages variable will be a
reference to a Cardlmage class, which we will use to getthe images of the cards. And finally, the myMap variable will
be a Hashtable, which will give us the ability to map a Cards objectto an Imagelcon.

Okay, now let's take a look at the constructor. We create a newDeck() from the Cards class and store itin thisDeck.
We create a new ArrayList<Imagelcon> object to store the Imagelcons we will getfrom thisDeck. The
makelmages variable is setto a new Cardlmage objectand myMap is created using the makelmages.getTable()
method. Then we loop through each Cards objectin thisDeck and store its associated image into the visualDeck.

Next, we used the Collections class's shuffle() method to randomize the order of the Cards in thisDeck. We
clear() () the visualDeck and then recreate it using the newly shuffled thisDeck.

The dealAllPlayers() method uses the dealHand() method, so let's go over the dealHand() method first. We are
creating two local List<Cards> variables, ahand and visualHand. These will contain subList()s of the instance
variables, thisDeck and visualDeck. These are views of only portions ofthisDeck and visualDeck. If you clear()
them, you are in fact clearing that subList() in thisDeck and visualDeck as well. We can remove the hand dealtfrom
thisDeck and visualDeck by setting our local hand variable equal to new ArrayList with aHand's contents and then
clearing aHand and visualHand, which removes those Cards from both thisDeck and visualDeck. Finally, we return
the local hand variable, which gives us a hand of Cards from thisDeck.

Now let's move on to the dealAllPlayers() method. It needs to know howManyPlayers there are and how many
cardsToDeal to each player. We create the dealtHands and visualHands arrays using howManyPlayers for the
rows, and cardsToDeal for the columns. Then we shuffle() the Cards in thisDeck, and loop though each player.
We deal each player a hand and store itin the local variable, thisHand. Next, we loop though the number of
cardsToDeal and store each card in each column of that player's row, in dealtHands and the image of that card in
each column of that player's row in visualHands. Then for debugging, we printout each card in thisHand to the
console. In the end, we have set this object to have dealtHands to howManyPlayers, with each player having
cardsToDeal number of Cards in their hand. Then, from another class, we can use this object's getHand() method
to getthe hand of an individual player.

G Save and Run itand you'll see two players, each being dealt a hand of five cards. This is great, butit hurts my brain
to look atwords instead of cards! Let's test the visual images with an Applet.

In java3_Lesson13, create a new class as shown:

— Mew Java Class

1

@)

Java Class

Create a new Java class,

=)
l__Sn:nurn:e Folder:]avaS_LesscnnIS,l'er

{ Package: games)

[]Enclasing tywpe:

Erowse, ..

TigS

Erowse. ..

Erowse, ..

- -
K_MName: DlsplayHandDemD
Modifiers: () public) deFault private prakected
[]abstract [final skakic
Superclass: java.lang. Shijeck
Inkerfaces: add. .
Remove
WWhich method skubs would wou like to create?
[] public static woid main{String[] args)
[] Canstructars From superclass
Inherited abstract methods
Do you wank to add comments? {Configure kemplates and defaulk value here)
|:| Generate comments
7 Einish] [Zancel

Create DisplayHandDemo by typing the code as shown below in blue:

CODE TO TYPE: DisplayHandDemo

package games;

import java.applet.Applet;
import java.awt.*;
import javax.swing.*;

public class DisplayHandDemo extends Applet {

private Deck myDeck = new Deck() ;
int n;

int x, y;

int numPlayers;

int numCards;

public void init() {

numPlayers = 3;

numCards = 5;

myDeck.dealAllPlayers (numPlayers, numCards) ;
}

public void paint(Graphics g) {
int x = 0;
int y = 0;

int width = getWidth() ;

int height = getHeight();
g.setColor (Color.BLUE) ;
g.fillRect (0, 0, width, height);

for(int i = 0; i<numPlayers; i++) {
for (ImageIcon each: myDeck.getVisualHand(i))
{
Image justAWTimage = each.getImage() ;
g.drawImage (justAWTimage,x, y, this);

x += 15;
y += 14;
}
x =x + 75;
y =0;

V] Save and Run it. Change the numbers of players and cards in the init () method, then Save and Run it again. With
a little more work, you could even create a Blackjack game! Nice.

Moving Images: Mouse Listener
So now we can getimages to the Applet. That's good, but we want to be able to identify a specific card and move it.
We'll use the code from a web page we mentioned earlier. (Much of the code we're going to use here is from this web
page, so thanks again, Mr. Swartz!)

In java3_Lesson13, create a new class as shown:

= Mew Java Class

1

@)

Java Class

Create a new Java class,

[]Enclasing tywpe:

e .

{_Source Folder:]avaS_LesscnnIS,l'srn:D
| -

K_Package: Qames)

Erowse, ..

e

Erowse. ..

Erowse, ..

1:r_'-lame: ReaICardsD
Modifiers: () public () deFault prakected
[]abstract [final
Superclass: java.lang. Shijeck
Interfaces: add. .
Remove
WWhich method skubs would vou like to create?
[] public static woid main{String[] args)
[] Canstructars from superclass
Inherited abstract methods
Do you wank o add comments? {Configure kemplates and defaolk value here)
|:| Generate comments
7 Einish] [Zancel

Create RealCards by typing the blue code as shown:

CODE TO TYPE: RealCards

// File : GUI-lowlevel/cardsl/cards/Card.java

// Purpose: Represents one card.

// Author : Fred Swartz - February 19, 2007 - Placed in public domain.
//

// Enhancements:

// * Needs to have Suit and Face value.

package games;

import javax.swing.¥*;
import java.awt.*;

class RealCards {

private ImageIcon image;
private int x;
private int V'

public RealCards (ImageIcon image) {
this.image = image;

}

public void moveTo (int x, int y) {
this.x = x;
this.y = y;

}

public boolean contains(int x, int y) {
return (x > this.x && x < (this.x + getWidth()) &&
y > this.y && y < (this.y + getHeight())):;
}

public int getWidth() {
return image.getIconWidth() ;

}

public int getHeight() {
return image.getIconHeight() ;

}

public int getX() {
return x;

}

public int getY¥() {
return y;

}

public void draw(Graphics g, Component c) {
image.paintIcon(c, g, this.x, this.y);

}

We named this class RealCards to differentiate it from Cards. This class corresponds more directly to our "visual
deck." Its purpose is to put the RealCards on a user interface.

=1 Save it. We can'trun itthough, because there's really nothing to run yet. Let's create two more classes: one class
for a "table" to putthe cards on, and the other, an application to display and move them.

In java3_Lesson13, create a new class as shown:

— Mew Java Class

1

@)

Java Class

Create a new Java class,

=)
l__Sn:nurn:e Folder:]avaS_LesscnnIS,l'er

{ Package: games)

[]Enclasing tywpe:

Erowse, ..

e

Erowse. ..

Erowse, ..

l:r_'-lame: CardTable)
Modifiers: () public) deFault prakected
[]abstract [final
Superclass: java.lang. Shijeck
Interfaces: add. .
Remove
WWhich method skubs would vou like to create?
[] public static woid mainiString[] args)
[] Canstructars from superclass
Inherited abstract methods
Do you wank o add comments? {Configure kemplates and defaolk value here)
|:| Generate comments
7 Einish] [Zancel

Create CardTable by typing the blue code as shown:

CODE TO TYPE: CardTable

// File
// Purpose:
//
//
// Author :
//

: GUI-lowlevel/cardsl/cards/CardTable. java

This is just a JComponent for drawing the cards that are
showing on the table.

Fred Swartz - February 19, 2007 - Placed in public domain.

// Enhancements:

// *

Use model. Currently, it is initialized with a whole deck of cards,
but instead it should be initialized with a "model" which

it should interrogate (calling model methods) to find out what
should be displayed.

Similarly, actions by the mouse might be used to set things in the
model, Perhaps by where it's dragged to, or double-clicked, or
with pop-up menu, or ...

package games;

import java.
import java.

awt.*;
awt.event. *;

import javax.swing.*;

public class CardTable extends

{

private
private

private
private

private
private

Color.GREEN;

static final Color BACKGROUND_ COLOR

static final int TABLE_SIZE = 400;
int dragFromX = 0;
int dragFromY = 0O;

RealCards[] deck;
RealCards currentCard = null;

public CardTable (RealCards[] deck) {
this.deck = deck;

setPreferredSize (new Dimension (TABLE SIZE, TABLE_SIZE)) ;
setBackground (Color.blue) ;

addMouseListener (this) ;
addMouseMotionListener (this) ;

}

@Override
public void paintComponent (Graphics g) {

/7.

Paint background

int width = getWidth() ;

int height = getHeight() ;
g.setColor (BACKGROUND COLOCR) ;
g.fillRect (0, 0, width, height);

for

(RealCards c : this.deck) {

System.out.println(c.toString());

}

c.draw(g, this);

public void mousePressed (MouseEvent e) {

int x = e.getX(); // Save the x coord of the click
int y = e.getY(); // Save the y coord of the click
//. Find card image this is in. Check from top down.

this.currentCard = null; // Assume not in any image.
for (int crd=this.deck.length-1; crd>=0; crd--) {
RealCards testCard = this.deck[crd];

JComponent implements MouselListener, MouseMotionListener

if (testCard.contains(x, y)) {
//... Found, remember this card for dragging.
dragFromX = x - testCard.getX(); // how far from left
dragFromY = x - testCard.getY(); // how far from top
currentCard = testCard; // Remember what we're dragging.
break; // Stop when we find the first match.

}

public void mouseDragged (MouseEvent e) {
if (this.currentCard '= null) {

int newX = e.getX() - dragFromX;

int newY = e.getY¥() - dragFromY;

//--- Don't move the image off the screen sides

newX = Math.max (newX, O0);

newX = Math.min (newX, getWidth() - currentCard.getWidth()) ;
//--- Don't move the image off top or bottom

newY = Math.max (newY, 0);
newY = Math.min (newY, getHeight() - currentCard.getHeight());

this.currentCard.moveTo (newX, newY) ;

this.repaint(); // Repaint because position changed.

}

public void mouseExited (MouseEvent e) {
currentCard = null;

}

public void mouseMoved (MouseEvent e) {} // ignore these events
public void mouseEntered (MouseEvent e) {} // ignore these events
public void mouseClicked (MouseEvent e) {} // ignore these events
public void mouseReleased (MouseEvent e) {} // ignore these events

I—'ll Save it. We can't run this either, because it's justa component (actually, it's a JComponent that uses package
javax.swing). We need an applet or an application on which to put the component.

In java3_Lesson13, create another new class as shown:

-

= Mew Java Class

1

=)

Java Class

Create a new Java class,

:_Ti:nurn:e Fn:nlger: java3=Lesscnn13,l'er

|
[_Package: games:)

[]Enclasing tywpe:

Erowse, ..

e

Erowse. ..

Erowse, ..

| —
_Mame: CardDemu:D'
Modifiers: () public) deFault private prakected
[]abstract [final skakic
Superclass: java.lang. Shijeck
Inketfaces: add. .
Remove
WWhich method skubs would wou like to create?
[] public static woid mainiString[] args)
[] Canstructars From superclass
Inherited abstract methods
Do you wank to add comments? {Configure kemplates and defaulk value here)
|:| Generate comments
(7 Einish] [Zancel

Create CardDe

mo by adding the blue code as shown:

CODE TO TYPE: CardDemo

//File : GUI-lowlevel/cardsl/cards/CardDemo

//Purpose: Basic GUI to show dragging cards.

// Illustrates how to load images from files.

//Author : Fred Swartz - 2007-02-19 - Placed in public domain.
//

//Enhancements:

// * This really doesn't have a user interface beyond dragging.
// It doesn't do anything, and therefore has no model.

// Make it play a game.

// * Needs to have a Deck class to shuffle, deal, ... Cards.
// Presumably based on ArrayList<Card>.

// * Perhaps a Suit and Face class would be useful.

// * Like Deck, there would also be a class for Hand.

// * May need Player class too.

package games;

import java.util.List;
import javax.swing.*;

class CardDemo extends JFrame {
private static RealCards[] _deck = new RealCards[52];

public static void main(String[] args) {
CardDemo window = new CardDemo () ;
window.setTitle ("Card Demo") ;
window.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
window.setContentPane (new CardTable (_deck)) ;
window.pack() ;
window.setLocationRelativeTo (null) ;
window.setVisible (true) ;

}
public CardDemo () {

intn=0 // Which card.

n~.

int xPos 0; // Where it should be placed initially.
int yPos = 0;
//... Read in the cards using visualDeck from the mapping from Cards.

Deck myDeck = new Deck() ;
List<ImageIcon> aVisualDeck = myDeck.getVisualDeck() ;
for (ImageIcon each: aVisualDeck) {

RealCards card = new RealCards (each) ;

card.moveTo (xPos, yPos);

_deck[n] = card;

//... Update local vars for next card.

xPos += 5;
yPos += 4;
n++;

V] Save and Run it. Click on a card and drag it. Do thata few more times.

See how the mouse click can identify exactly which card has been chosen? Trace the code to see how this was done.
This is what you'll be doing for your final project.

Now Make It an Applet
Your final projectis an Applet.

In java3_Lesson13, create a new class as shown:

-

= Mew Java Class

Java Class

Create a new Java class,

jawad_Lessonl3)sic)
Qanmes Y

|~
{_Source Folder:

l:_T:'acl_tage:

[]Enclasing tywpe:

L

1~__Name. CardDemospplek)

Modifiers: () public) deFault
[]abstract [final

java.lang. Shijeck

Superclass:

- =23
Erowse, ..

Erowse. ..

Browse, ..

Inketfaces:

WWhich method skubs would wou like to create?
[] public static woid mainiString[] args)

[] Canstructars fram superclass
Inherited abstract methods

[] Generate camments

Do you wank to add comments? {Configure kemplates and defaulk value here)

Einish] [Zancel

Create CardDemo Applet by typing the blue code as shown:

CODE TO TYPE:

package games;

import java.util.List;
import javax.swing.*;
import java.applet.Applet;
import java.awt.Graphics;

public class CardDemoApplet extends Applet {

private static RealCards[] _deck = new RealCards[52];
CardTable table;

public void init() {
resize (400,400) ;
makeCards () ;
table = new CardTable (_deck) ;
add (table) ;
}

public void makeCards () {
int n =20
int xPos
int yPos

n o~

0;
0;

Deck myDeck = new Deck() ;
List<ImagelIcon> aVisualDeck = myDeck.getVisualDeck() ;
for (ImageIcon each: aVisualDeck)
{
RealCards card = new RealCards (each) ;
card.moveTo (xPos, yPos) ;
_deck[n] = card;

//... Update local vars for next card.
xPos += 5;

yPos += 4;

n++;

}

public void paint(Graphics g) {
table.paintComponent (g) ;
}

G Save and Run it. It works, but the flicker is nasty. All of the painting makes the graphics area flash each time
something is drawn and the graphics area is refreshed.

Swing improved on the java.awt package and fixed this flicker problem. We'll look more closely at the Swing package
in later Java courses. For now, since we're using java.awt for our GUI, we'll have to fix it ourselves.

Our problem occurs because of the many successive changes being made to the paint() method. The solution is to

paint() everything to a temporary buffer and then paint() the whole thing at once. This technique is called double -
buffering. In our case, our program paint()s to anotherimage and then drops the image onto the Applet all atonce,
to reduce the flicker.

Double Buffer
EditCardDemoApplet as shown in blue:

CODE TO TYPE:

package games;

import java.util.List;
import javax.swing.*;
import java.applet.Applet;
import java.awt.*;

public class CardDemoApplet extends Applet{
Graphics bufferGraphics;
Image doubleBuffer;
private static RealCards[] deck = new RealCards[52];
CardTable table;

public void init () {
resize (400,400);
makeCards () ;
table = new CardTable (_deck);
add (table) ;
}

public void makeCards () {

int n = 0;
int xPos = 0;
int yPos = 0;

Deck myDeck = new Deck () ;
List<ImageIcon> aVisualDeck = myDeck.getVisualDeck() ;
for (ImagelIcon each: aVisualDeck)
{
RealCards card = new RealCards (each);
card.moveTo (xPos, yPos);

_deck[n] = card;

//... Update local vars for next card.
xPos += 5;

yPos += 4;

n++;

}

public void update (Graphics g) {
if (doubleBuffer == null)
{
doubleBuffer = createImage (this.getSize () .width, this.getSize() .heig
ht) ;
bufferGraphics = doubleBuffer.getGraphics() ;
}

bufferGraphics.setColor (getBackground()) ;
bufferGraphics.fillRect (0,0, this.getSize () .width, this.getSize() .height)

bufferGraphics.setColor (getForeground()) ;

table.paintComponent (bufferGraphics) ;
g.drawImage (doubleBuffer, 0,0, this);
}

public void paint (Graphics g) {
update (g) ;
}

o Save and Run it. Thatlooks pretty good! With these resources available, you're all set for your project.

Graphics Project Examples

Here are a few last examples for you to check out that will help you with your own project. Open this
demonstration. Read the Readme to learn how it works. Run itto observe other interesting possibilities for
the program.

For your project, you are only required to meet the stated specifications, but feel free to include whatever
additional elements you like.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

./GraphicsExample2/GraphicsExample2.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Deploying Applets and Applications Using Eclipse

Lesson Objectives

When you complete this lesson, you will be able to:

e package an appletinto a JAR file.
e use External Tools in Eclipse.

Java JAR Files

Up until now, we've been using the built-in functionality in Eclipse to run our applets, but that's nothow we'll run our
Java applets or applications in the real world.

As you know, Eclipse is a pretty powerful Integrated Development Environment (IDE). We've explored very few of its
abilities so farin these courses. One of the most useful tasks that Eclipse has performed for us is to package our
applets and applications for deployment. In this lesson, we'll try something new. Instead of copying the .class files out
ofthe /bin directory, we'll deploy our applets and applications in .jar files. The jar file gets its name from the Java
ARchive file format. A JAR file is a ZIP file with an added directory for a MANIFEST file, which identifies the contents of
the JAR file.

We'll create a basic appletand application and deploy them using the built-in packaging facility in Eclipse.

Deploying Applets in a JAR File

Create a new Java projectnamed Lesson14_JarAppletExample in your Java3_Lessons working set. In that
project, create a new Java class named JarExampleApplet, with java.applet.Applet as its super class.

Editthe JarExample Applet as shown below:

CODE TO TYPE: JarExampleApplet

import java.applet.Applet;
import java.awt.Graphics;

public class JarExampleApplet extends Applet {
public void paint (Graphics g) {
g.drawString ("This Applet was read from a .jar file.", 0, 25);
}

The appletitselfisn't the focus of this lesson so we keptitshort. We just printa message out to the Graphics area to
make sure the applet has run.

SelectRun | Run Configurations.

= 04T lava - Lessonl4_larAppletExample/src/ larExampic Applet.java - Eclipse Platform

File Edit Source Refactor Mavigake Search Projed

—— . . - i . “nHun Ctr+-F1l e -
J - J ‘ J " J #‘i Q % Debug F11 L L

‘ Skark Page ‘ Swllabus 23

O!RE"-LY.‘ Debug History ’

Debug As 3

This dialog appears:

= Run Configurations

Create. manage. and run configurations .
Run a Java applet (I éi
UE X D3 -

Mame: IJarExampIe.ﬁ.pplet

|I:y|:ue filker text

(9 Main [(9= Parameters . ()= Arguments\| = JRE\I 54} Classpath\l E‘If’ 50urcew = Commun\|
[T] C/C++ Lacal Applicatior &

~-@" Tran Python Run “-\:\l'ldth: I 4EID|_) Mame: I

@ Tron Python unitkest Height: | Z00 {optional applet instance name)
=-F7] Java Applet
""" 4 Choiceapplet

P

Parameters:
----- G DrawTest | I | ad
""" 4] FirstLine lame Yalue add. .
-----] GUIDema ——— |
-----] GlUIDemo (1)
---- 4 GqUIDema (2) Remove |

""" 9 MethodDemo
""" | MyPicture

----- 4] MestTest
=[] Java application
----- [T crader b
----- [T Main (13

----- [T Main {2

----- 31 Main i4)

----- 3] Main (53

----- 3] MyClass

----- 3] MySubclass
----- [T MySuperClass

----- 77 studentl _|j
1] | Apply | Revert

Filter matched 143 of 145 items

| |

@) Run Close |
A

IfLesson14_JarApplet is notselected in the left column, selectit. Selectthe Parameters tab. Change the Width
parameterto 400 and select Apply or Run. Either selection will set the parameter for future runs of the applet, but Run
will also close the dialog box and run the applet.

Now let's getto the deployment of an applet using the built-in Export feature of Eclipse. Select File | Export:

== 05T Java - Lessonl4_JarAppletExample;src/JarExam
|:Iit Source Refactor Mawvigate Search Project Rur

e ale+shift+r #
Cpen File. ..
Close ChrlHn
Close &l Zkrl+Shift
Save Zhrl+5

L.:,_I Sawve As...
Save &l kel +5hift+5S
Reverk
[Move. ..
Rename. ..

2 | Refresh FS
Convetk Line Delimiters To L4
Primk. .. i =
Switch Workspace L
Restart

EHE ImEDrt. »
Properties alt+Enter

1 JarExamplespplet.java [Lessonld Jar...]
2 kestable.py [pythonl_Lesson0l]

3 final_project.cpp [final_project]

4 Zd-arrayv.cpp [2d-array]

Ezxik

This opens the Export Dialog:

Select A
Export resources into a JAR file on the local file system, | ? / 5

Select an export destination:

|t';.f|:|e Filker bk

Er izeneral
-2 CfC4++

L 8 Rurnable 18R file
[#-(=- Run/Debug

B[22 Tasks

-2 Team

(7) = Back I Mext = I Fiish Cancel

Expand the Java entry and select JAR file. Then, click Next to go to the nextdialog.

Select the project you want to export and also select the path where you want the .jar file exported. In our case, we want
to exportthe Lesson14_JarAppletExample project and we want the resulting .jar file in our Lesson14_JarApplet
directory. Click Finish to complete the export process.

= JAR Export [_ O
JAR File Specification

(:D The export destination will be relative to wour workspace,

1
Select the resources to expark:

DIDJ' javad_Lesson04 = 10O E .dasspath

DTE"I- javad_Lessonls O = .project

D‘_:‘f- javas_Lessonds
F-[]2 javad_Lessan?
DTDJ javad_Lessonds
Df_?d javas_Lesson0d
-] javad_LessanlD
DTDJ javald Lessonl4
f_?d Lessu:un14_Jar.ﬁ.ppletExampIe)

[V Export generated class files and resources
[Export all output Folders for checked projects
[Export Java source files and resources

[Export refactorings For checked projects. Select refactorings. ..

Select the export destination:

CJF'.F{ File: ILessu:unl4_Jar.ﬁ.ppletExampIe,l'JarExampIe.ﬁ.pplet.jar|) j Browse, ., |

Opkions:
W Compress the conktents of the JAR file
™ add directory entries

[~ overwrite existing files without warning

'3:?:1' < Back Mexk = (Finish h Zancel |
e -

We did not give our applet a SerialVersionUID constant, so we will have compiler warnings. The export process lets us
know that there were warnings. Click OK on the warning dialog:

= JAR Export _ O
JAR File Specification

(:D The export destination will be relative to wour workspace,

Select the resources to expark:

DIDJ' javad_Lessond4 = 10O E .dasspath
DTDJ' javal_Lesson0s O project

DL:‘J- javas_Lessonds
F-[]2 javad_Lessan?
DI[DJ javad_Lessonds
e

-7
B0 = JAR Export M=l E

D 14R. export Finished with warnings. See details For additional infarmation,
= !

v Exp
[~ Exp

I Exp O, i:::: Cetails I

I~ Exp Exported with compile warnings: Lessonld_JarappletExample)src) larExampleapplet.j.

Select th

18R File EEL |

Opkions: 1 | | _I*I

v caon
™ add directory entries

[~ overwrite existing files without warning

'3:?:1' < Back Mexk = | Finish I Zancel

The jar file now appears in your project in the Package Explorer.

Because this is an applet, we need to create an .html file to load the appletinto a browser. Right-click on the
Lesson14_JarAppletExample projectand select New | HTML file. If HTML File is noton the menu, select Other
and then go to the Web item.

Create a new HTML file named jarApplet Example.ht ml. Edit the new file as shown:

CODE TO TYPE: jarAppletExample.html

<html>

<head>

<title>Jar Applet Example</title>

</head>

<body>

<applet code="JarExampleApplet.class" archive="JarExampleApplet.jar" height="200" width
="400"></applet>

</body>

</html>

OBSERVE: jarAppletExample.html

<html>

<head>

<title>Jar Applet Example</title>

</head>

<body>

<applet code="JarExampleApplet.class" archive="JarExampleApplet.jar" height="200" width
="400"></applet>

</body>

</html>

In the .html file, the code attribute tells the browser which class to load as the applet. The archive attribute informs the
browser of the location the jar file that contains the code. The height and width attributes tell the browser how big to
make the Graphics area for the applet. In this case, the .html file and the JarExampleApplet.jar file are in the same
directory.

Unfortunately, Eclipse cannotrun applets on a web page within Eclipse itself. The workaround for this is to open a
system web browser, using the Web Browser button at the top of this tab. Then type:
V:\workspace\Lesson14_JarApplet\jarAppletExample.html into the browser location text box and you'll see the
applet at work.

The applet's HTML file loads into the browser. The browser's Java Plugin finds the Applettag and sets up a Graphics
area according to the specifications indicated by the tag. Then the browser's Java Plugin retrieves the indicated .class
file from the archive file and loads itas an applet.

This allows us to put the .html file and the .jar file into our web space and access that applet via the web.

Deploying Applications in a Jar File
Creating an Application for Deployment

The process for deploying a Java application is similar to that of deploying an appletfrom a JAR file. Create a
new projectin your Java3_Lessons working set, named Lesson14_JarApplication.

Create a new class in your project, named JarExample Application. This class should have
javax.swing.JFrame as its superclass.

Edit the class as shown in blue:

CODE TO TYPE: JarExampleApplication

import java.awt.Graphics;

import javax.swing.JFrame;
import javax.swing.WindowConstants;

public class JarExampleApplication extends JFrame {
public JarExampleApplication() {
//Make the X close the application.
setDefaultCloseOperation (WindowConstants.EXIT ON_CLOSE) ;
setSize (400, 400);
}
public void paint (Graphics g) {
//A good idea to call super.paint() to make sure all components get repa
inted.
super.paint(qg) ;
g.drawString ("This Application ran from a jar file", 10, 150);
}

public static void main(String[] args) {
JarExampleApplication app = new JarExampleApplication() ;
app.setVisible (true) ;

OBSERVE: JarExampleApplication

import java.awt.Graphics;

import javax.swing.JFrame;
import javax.swing.WindowConstants;

public class JarExampleApplication extends JFrame {
public JarExampleApplication() {
// Make the X close the application.
setDefaultCloseOperation (WindowConstants.EXIT ON CLOSE) ;
setSize (400, 400);
}

public void paint (Graphics g) {
// A good idea to call super.paint() to make sure all components get
// repainted.
super.paint (g) ;
g.drawString ("This Application ran from a jar file", 10, 150);
}

public static void main (String[] args) {
JarExampleApplication app = new JarExampleZpplication();
app.setVisible (true) ;

In this application, we use the Swing Framework and a JFrame, which is a GUl window for Java
applications. We'll learn more about the Swing Framework in Java 4.

In the constructor in the application above, we setDefaultCloseOperation(), passing the
WindowConstants.EXIT_ON_CLOSE constant. This tells the JFrame to close when the user clicks on the
X close icon of the Window. [fwe did notsetsetDefaultCloseOperation(), the JFrame would be hidden,
but continue running in memory.

We call super.paint(g) in the paint() method. This is to ensure any lightweight components (Swing
components) are redrawn correctly.

In the main() method, we create an instance of the JarExample Application class and make itdisplay itself.
While the GUl is visible, the application sits in an eventloop waiting for user input. When the X close icon is
clicked, the application will quit.

0 Save and run the application to make sure its Run Configuration is up to date.

To see the Run Configuration for this application, select Run | Run Configuration. The configuration for
this application will be used to create the self-executable JAR file in the next section.

Deploying the Application in an Executable Jar File

Despite some similarities, deploying an application is not exactly like deploying an applet. Select File |
Export, and selectthe Runnable Jar File option:

http://docs.oracle.com/javase/6/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/awt/Container.html

Select A
Export all resources required ko run an application into a JAR file on the local ? / 5
file syskem.

Select an export destination:

|I:';.f|:|e filker ket

F-[= General

2 G+

¢ E-=- Java
o L) AR file

it

e ,':g Runnable AR, file

== Fuon]Debug

= Tasks

H- (= Team

(7) = Back (Mexk = } Finish Cancel

I'.“'l-l_--l""""

Select Next to open a dialog box or go to the Run menu to selecta Run Configuration to use as a template
for running the application. Select the project directory as a path location where the JAR file will be stored. (It
could actually go anywhere on the file system.) Complete the dialog as shown:

= Runnable JAR File Export _ O]

Runnable JAR File Specification 7

@ The export destination will be relative to wour workspace,

Launch configuration:

@arExample.ﬁ.pplicatinn - Lessonl4_JlarApplication @

Export destination:

essonl4 JardpplicationfJarExampledpplication. jar

[~ save as ANT scripk

AT script lecation: j Browse, .. |

'3:':?:3' = Back extk = {l Finish I ' Zancel

S

Click Finish.

Running an Executable Jar File

Now that we have an executable JAR file, we'll want to know how to run it. Normally, we could justdrop itonto
the desktop and double-click it to see itrun; but, since our Terminal Servers do not have desktops, we'll have
to do a little more work.

First, let's setup an External Tool to run the Windows Command Line.

SelectRun | External Tools | External Tools Configurations....

ation/src/ JarExample Application.java - Eclipse Platform

ﬁ'i}'%' Sy Chrl+F11 . - S S . .
-, Debug Fi1
Run Histary: r
Run As 3
. | LLY" Run Configurations. ..
) Debug History r
Debug As k
Cebug Configurations. ..
&l References. . :
rage Java Programmin:
Al Imstances. . . ZEEIH-ShifE-H .
ges Watch oundations
PES Inspeck (CEr| - ShifET
Display Chrl+-ShifE+0
szt U Ner COUrses I Refresh |
Farce Return A+ Shift+F

Step Iotn Selecting

(.

kernal Tools

) (mio [Eumch Fistor

J::' Add Java Exception Breakpoint. ..
(9 add Class Load Breakpaint. ..

Tour suggesied Course Deadline: 15 UCt 20

Double-click the Program item in the left pane of the dialog:

= External Tools Configurations
Create, manage. and run configurations @
R —
un & program =
W e
= Configure launch settings From this dialog:
Itype filker keoxt - Press the Mew' button to create a configuration of the selected type,
; =| - Press the 'Duplicate’ button ko copy the selected configuration,
3 - Press the 'Delete’ button to remove the selected configuration,
}:D - Press the 'Filker' button ko configure filkering options.
- Edit or view an existing configuration by selecting i,
Configure launch perspective settings from the Perspectives preference page.
Filter makched 2 of 2 items
R Close

This opens a new pane on the right side of the dialog. In the Name text box, type CMD. In the Location text

box, type C:\windows\system32\cmd.exe, and click Run. This will run the Windows Command Line
interpreter in the Console window of Eclipse. It will also set the External Tool CMD in the External Tools

Menu.

= External Tools Configurations

Create, manage. and run configurations Q
o)
un a program 8 _=’__IJ
= — -~ T,
2 o (
AR, | g Name: | CMD)
M

Itype filker besxt

(=] Main ™1 ReFresh\I |aih Builu:n 2] Environmenq = Cc-mmc-nw
—

3 AnkBuid e ——
= ‘% Program : 3
j% cMD \ IC:'l,windows'l,system32'l,cmd.exe)
n Browse \Workspace. .. | Browse File System... | Variables... |
—\Working Directory:
Browse \Workspace. .. | Browse File System... | Variables... |
—Arguments:
I -
-

Yariables... |

Mote: Enclose an argument containing spaces using double-quotes ().

Aoy | Rewert |

Filter makched 3 of 3 items

Click in the Console view of Eclipse, type V:, and press Enter. This will switch us over to the V: drive.

Type cd \workspace\Lesson14_JarApplication to switch to the directory where JarExampleApplication.jar
file is located.

Type start JarExampleApplication.jar to startthe application. This will automatically run Java and load up
the application. You can see the application running in the image here (your inputfrom above is seen in light
green):

-

p
53 Package Explorer ﬁg Hierarchy (E Console &3 .j,'J Terminal 11 = B

CMD [Program] Cywindowshsystem3elomd, exe | N IE|@| = B - 5 -

Microsoft Windows [Version 5.2.3790] ;I
[C)] Copwyright 1955-2003 Microsoft Corp.

C:yProgram Filesieclipseieclipsesv:
e

V:hrod \workspacehLessonld Jardpplicacion
cd ‘workspacehLessonld Jarlpplication

Vi workspaceh, Lezsonld Jardpplicationrstart JarExsmplelpplication. jar
Etart JarExampleipplication. jar

Vi workspacehLessonld JardApplications

& =] B3

Thig Application ran fram a jar file

To stop the application, click the X close icon in the JFrame. To stop the Command Line Interpreter, click the
red square in the Console view.

Click on the Run | External Tools menu item. There is now a CMD entry in the sub-menu. This can be used
to run the Windows Command Line Interpreter at any time.

/JarExampleipplication.jaya - Eclipse Platform

| A

| - - M, Run Chrl+F11 . . jt:::l (::: - .
% Debug Fi1

Fun Hiskary k

Fun As k
re Run Configurations. .

Debug Hiskory L

Debug As b

Cebug Configurations. ..

&l References, .. H
Java Programming

&l Instances. .. L i o s] .

watch oundations

Imspeck Zhrl-Shift+T

Dismlay L o i e

EXECLE Ctri+U ner Courses | Refresh I

Force Return Alb+-Shif+E

Step Into Seleckion

—
ge
g S L,
13 &dd Java Exception Ereakpaint. .. Run As y 1
(9 2dd Class Load Breakpoint. .. External Tools Configurations... |——

TOUr suggested Lodrse Deadline: 15 Ockt 20 Organize Favatites. .,

Double-click on an executable JAR file in order to run it.

Greatjob today. Keep practicing and playing around with the examples until you are one with Java JAR files.
See you in the next and final lesson for Java 3!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Working With Files

Lesson Objectives

When you complete this lesson, you will be able to:

write a program that saves userinputto a file.

e read a textfile and display its contents to the user.

e use the PrintWriter, File, and FileWriter class.

e take advantage of the benefits of the BufferedReader.
e use exitcode.

Working With Files

There are lots of ways to manage files in Java. In this lesson, we'll go over options we have when working with text
files.

The File Class

The File class lets us create files and directories to use when we work with the various file streams, readers, and
writers, provided by the Java API.

Create a new Java project named Java3_FilelO. In that project, create a new class named FilelO. Edit the FilelO
class by adding the blue code as shown:

CODE TO TYPE: FilelO java

import java.io.File;
import java.io.IOException;

public class FileIO {
File myFile;

public FileIO(String path) {

myFile = new File (path);

try {
myFile.createNewFile();

} catch (IOException e) {
e.printStackTrace () ;
//exit with an exit code. Exit code 0 indicates normal exit.
System.exit (1) ;

}

public static void main(String [] args) {
FileIO fileTest = new FileIO("filetest.txt");
}

0 Save and run it. Right-click on the Package Explorer and select Refresh from the pop-up menu. Now the
filetest.txt file is in your project. If we use a file name as the path, the current directory will be used to create the file:

OBSERVE: FilelO java

import java.io.File;
import java.io.IOException;

public class FileIO {
File myFile;

public FileIO(String path) {

myFile = new File(path);

try {
myFile.createNewFile () ;

} catch (IOException e) {
e.printStackTrace () ;
//exit with an exit code. Exit code 0 indicates normal exit.
System.exit (1) ;

}

public static void main(String [] args) {
FileIO fileTest = new FileIO("filetest.txt");
}

Let's break down our example. In the FilelO class, we create a File reference variable, named myFile. In the
Constructor, we create a File object from the path String. The file itself does not yet exist. We try to
createNewFile();ifcreateNewFile() is unsuccessful, we catch (IOException e), and find out the reason the file
could notbe created. If printStackTrace()is in the IOException, the class will printa listing of the Exception in the
console. If the file can't be created, we exit () the program with an exit code. Exit codes that are non-zero, indicate that
there was a problem. Itis up to the programmer to define exit codes; there are no hard and fast rules. Exit codes
should be used anytime the program is exiting in an abnormal fashion. These codes can be read by batch processes.

 Note Remember, justcreating the File object does notactually create the file on the disk.

Now let's make our code more useful by adding the code in blue and removing the code in red:

CODE TO TYPE: FilelO.java

import java.io.File;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File(path);

i PP\ o \
My T creacerNewWr e
) ol ([TAD : \ 4
T aCCIT (TUm PTTIOIT T
it Ot il VA
PErTIfrcocacKrrace Ty
; LIS N . <l Theeo <l Fa NN I . k| L.
CXTITT WICIr ot ©XTrC Ccot TTXITC COoOOC U ITIriarcace TorMa T SXT T~
fa) (1
OYyoCCI-CXATC LT/ 7

public boolean deleteFile() {
return myFile.delete ()

}

public File getFile () {
return myFile;

}

public void setFile(String path) {
myFile = new File (path);
}

public void createFile () throws InvocationTargetException({
try {
myFile.createNewFile () ;
}
catch (IOException e) {
throw new InvocationTargetException (e);

}

public static void main(String [] args) {
String path = "myFile/filetest.txt";
int exitCode = 0;
FileIO fileTest = new FilelO (pathfitetestt=tl);
try {
fileTest.createFile();
} catch (InvocationTargetException e) {
e.getCause () .printStackTrace () ;
exitCode = 1;
}
finally {
System.exit (exitCode) ;

}

G Save and Run the program. There is an error in the Console. This is because the directory myFile does not exist.
The path String indicates that the full path is myFile/filetest.txt, butthe filetest.txt file cannotbe putinto a
directory that does not exist.

Let's fix that real quick before we look at all of the code. Add the blue code as shown:

CODE TO TYPE: FilelO.java

import java.io.File;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File(path);
}

public boolean deleteFile () {
return myFile.delete()

}

public File getFile() {
return myFile;

}

public void setFile(String path) {
myFile = new File (path);
}

public void createFile() throws InvocationTargetException({
try {
File dirFile = myFile.getParentFile();
dirFile.mkdirs () ;
myFile.createNewFile () ;
}
catch (IOException e) {
throw new InvocationTargetException (e);
}
}

public static void main(String [] args) {
String path = "myFile/filetest.txt";
int exitCode = 0;
FileIO fileTest = new FileIO(path);

try |
fileTest.createFile();

}

catch (InvocationTargetException e) {
e.getCause () .printStackTrace() ;
exitCode = 1;

}

finally {
System.exit (exitCode) ;

}

o Save and Run the program. Ah, it works now! Right-click the Java3_FilelO projectin the Package Explorer and
select Refresh to see the directory and file in your project.

There's alotgoing on in this little piece of code, so let's break it down:

OBSERVE: FilelO java

import java.io.File;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File (path);
}

public void deleteFile () {
myFile.delete () ;
}

public File getFile() {
return myFile;

}

public void setFile (String path) {
myFile = new File(path);
}

public void createFile () throws InvocationTargetException({
try {
File dirFile = myFile.getParentFile () ;
dirFile.mkdirs () ;
myFile.createNewFile () ;
}
catch (IOException e) ({
throw new InvocationTargetException (e) ;
}
}

public static void main(String [] args) {
String path = "myFile/filetest.txt";
int exitCode = O;
FileIO fileTest = new FileIO (path) ;
try {
fileTest.createFile () ;
}
catch (InvocationTargetException e) {
e.getCause () .printStackTrace () ;
exitCode = 1;
}
finally {
System.exit (exitCode) ;

}

First, we removed the file creation from the constructor. That's so we can separate the actions this program can take.
We make sure that myFile is not null, that way we can acton itin other methods later, without having to check to make
sure itis null then.

We've added the methods, deleteFile(), setFile(), getFile(), and createFile() to the program so that we can
perform those actions on the myFile object.

We are adding something new to the createFile() method: the throws clause at the end of the method header. It lets
us know that this method can throw an Exception. To be specific, it can throw the InvocationTargetException. The
InvocationTargetException is a checked exception that allows us to pass an exception along to another method.
We surround everything we are doing in the createFile() method within a try{} block, and catch() any
I0Exceptions that occur. The try{} block gets the prefix of the path in the myFile object, as a File object named
dirFile using the getParentFile() method ofthe File class (myFile object).

Then the getParentFile() method returns a File object that represents everything in the myFile object's path,
except for the last segment, which, in our example, is filetest.txt. After we get that file, we can use the dirFile.mkdirs()
method to create the directory structure we need to store the file represented by the myFile object. The mkdirs()
method will create all directories in the directory structure represented, if they do not already exist. We could also use
the mkdir() method to create a single directory. Typically, it's better to use the more comprehensive mkdirs() method.

Once the directory structure is built, we can then tell myFile to createNewFile(), in order to create the file on the disk.
Ifan IOException is encountered, the catch clause will catch it, and then throw a new
InvocationTargetException, passing the IOException objecte as its parameter. This allows us to pass the
I0OException to whichever method called our createFile() method, which prevents our createFile() method from
having to handle the exception. Since InvocationTargetException is checked by the compiler, any method that
uses our createFile() method must either handle the exception or throwiit.

Finally, we instantiate the FilelO class in the main() method. We create a path String, giving it the value of the
path/file we want to create. We also create an int exitCode variable to hold the exit code value we will use to
terminate the program.

then, in the try{} block, we tell our fileTest variable to create the file, using its createFile() method. Ifan
InvocationTargetException is caught, we use the exception object e and the get Cause () method to get the
original IOException thatoccurred in our createFile() method. Next, we tell that returned object to
printStackTrace(), which will print out the exception trace to the console. After that, we change the exitCode
variable to a non-zero value. The finally{} block will execute, regardless of whether there was an exception caught.
Then we tell the program to exit using the currentexitCode.

Before we move on to the next modification, let's make sure we are really catching IOExceptions. Right-click on the
filetest.txt file in the package explorer and delete it. Now, right-click on the myFile directory and select Properties.
Check the Read Only box in the properties dialog and select Apply and close the dialog:

|type filter text Resource -

Resource Path: jJava3_Filelo/myFilel [y
Run/Debug Settings Type: Folder

Location: /home/mlong/eclipse/course_review_workspace/java3_FilelO/myFile
Last modified: June 2, 2010 2:57:28 PM

< Read only

+ Executable

Derived

Note: Removing the executable flag on a directory
will cause its children to become unreadable.

Text file encoding
* Inherited from container (UTF-8)

Other:

Restore Defaults Apply

@ OK Cancel

There is an IOException in the console. Change the Read Only property back to whatitwas before on the myFile
directory.

There is a mysterious problem in our program. Modify the code by adding the blue code and removing the ree code
as shown:

CODE TO TYPE: FilelO.java

import java.io.File;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File(path);
}

public boolean deleteFile () {
return myFile.delete()

}

public File getFile() {
return myFile;

}

public void setFile(String path) {
myFile = new File (path);
}

public void createFile() throws InvocationTargetException({
try {
File dirFile = myFile.getParentFile();
dirFile.mkdirs () ;
myFile.createNewFile () ;
}
catch (IOException e) {
throw new InvocationTargetException (e);
}
}

public static void main(String [] args) {
String path = "myFite/filetest.txt";

int exitCode = 0;

FileIO fileTest = new FileIO(path);

try {
fileTest.createFile();

} catch (InvocationTargetException e) {
e.getCause () .printStackTrace() ;
exitCode = 1;

}

/*finally {

System.exit (exitCode) ;

1</

G Save and Run the program. Notice the exception in the console? It's there because our path String no longer
contains a parentdirectory for our file. If our parent directory isn't there, the createFile() method can't create the
dirFile objectusing the File class's getParentFile() method. dirFile is null and we can'tact on a null object. We
have to commentoutthe finally{} block because our code is inside of a try/catch block, butour code doesn'thandle
the NullPointerException, so itis ignored when we explicitly call System .exit(). We'll fix thatin a moment.

Modify the code by adding the blue code and removing the ree code as shown:

CODE TO TYPE: FilelO.java

import java.io.File;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File(path);
}

public boolean deleteFile () {
return myFile.delete()

}

public File getFile() {
return myFile;

}

public void setFile(String path) {
myFile = new File (path);
}

public void createFile() throws InvocationTargetException({
try {
File dirFile = myFile.getParentFile();
if (dirFile != null) {

dirFile.mkdirs () ;

}

myFile.createNewFile () ;
}
catch (IOException e) {

throw new InvocationTargetException(e);
}

}

public static void main(String [] args) {
String path = "filetest.txt";
int exitCode = 0;
FileIO fileTest = new FileIO (path);

try {
fileTest.createFile () ;

} catch (InvocationTargetException e) {
e.getCause () .printStackTrace() ;
exitCode = 1;

} catch (Exception e) {
e.printStackTrace () ;
exitCode = 2;

}

+=finally {

System.exit (exitCode) ;

}=

We added another catch clause to catch any other exceptions (NullPointerException, for example) that might
occur and to print out the stack trace. We also setthe exit Code to another non-zero value. By adding these small
changes, we've made our class more robust, enabling itto handle errors that we can foresee.

Before running the program, look in the package explorer and remove all files named filetest.txt from your project.

0‘ Save and Run the program. Right-click on the projectin the package explorer and select Refresh to see that the
filetest.txt file now exists in the project, butis not presentin the myFile directory.

+ Note Ifafile already exists, the File class createNewFile() method has no effect.

Writers and Readers
There are many ways to get your programs to read and write files. Here we'll use the Java APl classes, FileReader,

FileWriter and PrintWriter. These classes, in conjunction with BufferedReader, make handling of text files fairly
straightforward.

Writing to A File
Modify the FilelO class by adding the blue code and removing the red code as shown:

CODE TO TYPE: FilelO.java

import java.io.File;

import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {

myFile = new File (path);

public boolean deleteFile () {
return myFile.delete();

public File getFile() {
return myFile;

public void setFile(String path) {
myFile = new File (path);
}

public void createFile() throws InvocationTargetException {

try {
File dirFile = myFile.getParentFile();
if (dirFile != null) {

dirFile.mkdirs () ;
}
myFile.createNewFile () ;
} catch (IOException e) {
throw new InvocationTargetException(e);

public boolean printToFile (String text, boolean append, boolean autoFlush)

throws InvocationTargetException {

FileWriter fWriter;

PrintWriter pWriter;

boolean successFlag = true;

try {
fWlriter = new FileWriter (myFile, append);

} catch (IOException e) {
throw new InvocationTargetException (e);

}

pWriter = new PrintWriter (fWriter, autoFlush);

pWriter.println (text);
if (pWriter.checkError()) {

successFlag = false;
}
// The file streams should close and flush on method exit
// but to be safe, always explicitly close():
pWriter.close();

return successFlag;

public static void main(String[] args) {
final int NORMAL EXIT = 0;
final int FILE CREATION ERROR = 1;
final int FILE ERROR = 2;
final int FILE WRITE ERROR = 3;

String path = "filetest.txt";

int exitCode = HNORMAL EXIT;

FileIO fileTest = new FileIO(path);
boolean append = true;

boolean autoFlush = true;

try {
fileTest.createFile () ;
for (int i = 1; 1 <= 10; i++) {
if (!fileTest.printToFile("Line: " + 1, append, autoFlush)) {
System.out.println ("An error occurred writing to file: "
+ fileTest.getFile() .getPath());

exitCode = FILE WRITE ERROR;
break;

}

} catch (InvocationTargetException e) {
e.getCause () .printStackTrace() ;
exitCode = %FILE7CREATION7ERROR;

} catch (Exception e) {
e.printStackTrace () ;
exitCode = %FILE_ERROR;

} finally {

System.exit (exitCode) ;

OBSERVE: FilelO java

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File (path);
}

public boolean deleteFile() {
return myFile.delete () ;

}

public File getFile() {
return myFile;

}

public void setFile(String path) {
myFile = new File (path);

}

public void createFile () throws InvocationTargetException {

try {
File dirFile = myFile.getParentFile();
if (dirFile != null) {

dirFile.mkdirs() ;
}
myFile.createNewFile () ;
} catch (IOException e) {
throw new InvocationTargetException (e);

}

public boolean printToFile (String text, boolean append, boolean autoFlush)

throws InvocationTargetException {

FileWriter fWriter;

PrintWriter pWriter;

boolean successFlag = true;

try {
fWriter = new FileWriter (myFile, append) ;

} catch (IOException e) ({
throw new InvocationTargetException (e) ;

}

pWriter = new PrintWriter (fWriter, autoFlush);

pWriter.println (text) ;
if (pWriter.checkError()) ({

successFlag = false;
}
// The file streams should close and flush on method exit
// but to be safe, always explicitly close():
pWriter.close () ;

return successFlag;

}

public static void main (String[] args) {
final int NORMAL EXIT = 0;
final int FILE_CREATION ERROR = 1;
final int FILE ERROR = 2;
final int FILE WRITE_ERROR = 3;

String path = "filetest.txt";

int exitCode = NORMAL EXIT;

FileIO fileTest = new FileIO(path);
boolean append = true;

boolean autoFlush = true;

try {
fileTest.createFile() ;
for (int i = 1; i <= 10; i++) {
if (!fileTest.printToFile ("Line: " + i, append, autoFlush)) ({
System.out.println ("An error occurred writing to file: "
+ fileTest.getFile () .getPath());
exitCode = FILE WRITE ERROR;
break;
}
}
} catch (InvocationTargetException e) {
e.getCause () .printStackTrace () ;
exitCode = FILE CREATION ERROR;
} catch (Exception e) {
e.printStackTrace () ;
exitCode = FILE ERROR;
} finally {
System.exit (exitCode) ;

}

Okay, let's break this thing down, starting with the print ToFile() method. We are accepting three parameters
in this method, text, append, and autoFlush. The text parameter is the text we want to write to the file. The
append parameter lets us tell the method whether to append the text to the file or to replace the contents of
the file with the String text. The autoFlush parameter tells the system ifit should flush the data streams
each time something is printed to the file.

In the print ToFile() method, we create instances of FileWriter (fWriter)and PrintWriter (pWriter) which
will allow us to write data to the file. We create the fWriter instance, passing itour file, myFile, and the
append parameter, telling the FileWriter instance whether we wantto append or overwrite the data in the file.
We do this in a try{} block so that we can catch() any IOExceptions thatoccur.

The PrintWriter instance, pWriter, is created. We pass the fWriter object and the autoFlush parameter to
pWriter. The autoFlush parameter, when true, tells the pWriter object to completely write data to the file,
rather than letting it cache.

Now, we can write data to the file in exactly the same way we use System.out object. We pWriter.printin()
our text parameter to the file and then close() the file to make sure that all data streams are flushed and that
the system resources used by the file are closed. This should happen automatically, when the method exits,
but always do it manually. It's good practice.

o Save and run the file. Right-click on the project and select Refresh in order to refresh the display of the
project contents. Double-click on the filetest.txt file to display its contents in the editor. Close the file and
run the program again. Refresh the project and then open the filetest.txt file again. Observe that the
contents have been appended. Change the value of the append variable in main(), and run the file again.
You'll see thatonly the lastloop is saved in the file.

Reading a File

Reading a textfile is a bit easier than writing one. Let's add to our code to see how itis done. Add the blue
code as shown:

CODE TO TYPE: FilelO.java

import java.io.BufferedReader;
import java.io.File;

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File(path);

public boolean deleteFile () {
return myFile.delete();

public File getFile() {
return myFile;

public void setFile(String path) {
myFile = new File (path);

public void createFile() throws InvocationTargetException {

try {
File dirFile = myFile.getParentFile();
if (dirFile != null) {

dirFile.mkdirs () ;
}
myFile.createNewFile();
} catch (IOException e) {
throw new InvocationTargetException (e);

public boolean printToFile(String text, boolean append, boolean autoFlush)

throws InvocationTargetException {

FileWriter fWriter;

PrintWriter pWriter;

boolean successFlag = true;

try {
fWriter = new FileWriter (myFile, append);

} catch (IOException e) {
throw new InvocationTargetException(e);

}

pWriter = new PrintWriter (fWriter, autoFlush);

pWriter.println (text);
if (pWriter.checkError()) {

successFlag = false;
}
// The file streams should close and flush on method exit
// but to be safe, always explicitly close():
pWriter.close();

return successFlag;

public String readFile() throws InvocationTargetException ({
FileReader fReader;
BufferedReader bReader;
String txtLine = "";

String returnText = "";
try {
fReader = new FileReader (myFile);
bReader = new BufferedReader (fReader) ;
while ((txtLine = bReader.readLine()) != null) {
returnText += txtLine + "\n";
}
return returnText;
} catch (IOException e) {
throw new InvocationTargetException (e);

public static void main(String[] args) {
final int NORMAL EXIT = 0;
final int FILE CREATION ERROR = 1;
final int FILE ERROR = 2;
final int FILE WRITE ERROR = 3;

String path = "filetest.txt";

int exitCode = NORMAL EXIT;

FileIO fileTest = new FileIO (path);
boolean append = true;

boolean autoFlush = true;

try {
fileTest.createFile();
for (int 1 = 1; 1 <= 10; i++) {
if (!fileTest.printToFile("Line: " + i, append, autoFlush)) {
System.out.println ("An error occurred writing to file: "
+ fileTest.getFile () .getPath());

exitCode = FILE WRITE ERROR;
break;

}
System.out.println(fileTest.readFile());

} catch (InvocationTargetException e) {
e.getCause () .printStackTrace() ;
exitCode = FILE_CREATION_ERROR;

} catch (Exception e) {
e.printStackTrace () ;
exitCode = FILE ERROR;

} finally {

System.exit (exitCode) ;

OBSERVE: FilelO java

import java.io.BufferedReader;
import java.io.File;

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

import java.lang.reflect.InvocationTargetException;

public class FileIO {
File myFile;

public FileIO(String path) {
myFile = new File(path);

public boolean deleteFile () {
return myFile.delete() ;

public File getFile() {
return myFile;

public void setFile (String path) {
myFile = new File (path);

public void createFile () throws InvocationTargetException {

try {
File dirFile = myFile.getParentFile();
if (dirFile !'= null) {

dirFile.mkdirs () ;
}
myFile.createNewFile () ;
} catch (IOException e) {
throw new InvocationTargetException (e);

public boolean printToFile (String text, boolean append, boolean autoFlush)

throws InvocationTargetException {

FileWriter fWriter;

PrintWriter pWriter;

boolean successFlag = true;

try {
fWriter = new FileWriter (myFile, append) ;

} catch (IOException e) {
throw new InvocationTargetException (e) ;

}

pWriter = new PrintWriter (fWriter, autoFlush);

pWriter.println (text);
if (pWriter.checkError()) {

successFlag = false;
}
// The file streams should close and flush on method exit
// but to be safe, always explicitly close():
pWriter.close() ;

return successFlag;

public String readFile () throws InvocationTargetException {
FileReader fReader;
BufferedReader bReader;
String txtLine = "";

String returnText = "";
try {
fReader = new FileReader (myFile) ;
bReader = new BufferedReader (fReader) ;
while ((txtLine = bReader.readLine()) != null) {
returnText += txtLine + "\n";
}
return returnText;
} catch (IOException e) {
throw new InvocationTargetException (e) ;

public static void main (String[] args) {
final int NORMAL EXIT = 0;
final int FILE CREATION ERROR = 1g
final int FILE ERROR = 2.8
final int FILE WRITE ERROR = 35

String path = "filetest.txt";

int exitCode = NORMAL EXIT;

FileIO fileTest = new FileIO (path) ;
boolean append = true;

boolean autoFlush = true;

try {
fileTest.createFile();
for (int 1 = 1; i <= 10; i++) {
if (!fileTest.printToFile ("Line: " + i, append, autoFlush)) {
System.out.println ("An error occurred writing to file: "
+ fileTest.getFile () .getPath()) ;

exitCode = FILE WRITE ERROR;
break;

}
System.out.println (fileTest.readFile()) ;

} catch (InvocationTargetException e) {
e.getCause () .printStackTrace () ;
exitCode = FILE_CREATION_ERROR;

} catch (Exception e) {
e.printStackTrace () ;
exitCode = FILE ERROR;

} finally {

System.exit (exitCode) ;

}

In the readFile() method, we create a FileReader object, named fReader, and a BufferedReader object named
bReader. ABufferedReader allows us to read more efficiently from files, because data from the file is stored in a
buffer (a separate piece of RAM) and read there, instead of being read from the file for each read.

A really interesting part of the readFile () method is the while loop condition. In this condition,
txtLine=bReader.readLine() assigns the nextline of text from the textfile to txtLine.readLine() fetches the next
line of text, until it reaches the line terminator and returns it. It does notreturn the line terminator. Next, it compares
txtLine to null. [ftxtLine is not null, the line of text has been read from the file. In the body of the loop, we
concatenate that line of textto returnText.

You Are a Genius!

Well done! We've just covered one of the many ways there are to read data from a Java text file. There are more
complex and powerful ways to read text from a file (beyond the scope of this course), but this is a great start.

Congratulations! You've stuck with itand completed our Java 3 course lessons. We're glad we had a chance to work

with you in the course, and to help you to achieve your Java goals. Java 4 continues with more useful and
empowering Java topics, including Swing GUI Building, Databases, and Multi-Threaded Programs. We hope to see
you there.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

	High-Level Design Benefits
	Low-Level Implementation Benefits

