
Java 5: Distributed Java Applications
Lesson 1: Int ro duct io n t o Dist ribut ed Co mput ing

Introduction to Distributed Computing
Testing
Code Coverage
Socket Abstraction

Sample Client/Server Application
Testing
Adding in Computation Logic
Eclipse Concepts

Doing Your Homework

Pro ject 1 Quiz 1
Lesson 2: Server Essent ials

Image Annotation Repository Application

Multi-Threaded Server Application
Client/Server Pro toco l
Testing and Code Coverage
Performance Tests

Pro ject 1 Quiz 1
Lesson 3: Client Essent ials

Preparing an Inter-Process Communication Layer

Preparing a Standalone Client GUI
Writing a Java Splash Screen

Pro ject 1 Quiz 1
Lesson 4: Writ ing Yo ur Swing Applicat io n

Writing a Swing Application Skeleton
Persistent User Preferences
Testing

Pro ject 1 Quiz 1
Lesson 5: Server-side Applicat io n Mo del

Server-Side Application Model
Repository Selection
Option 1:Access a Hidden Class
Option 2: Install a Free Open-Source Class
TestAddBehavior Test Case
Completing Repository Functionality

Pro ject 1 Quiz 1
Lesson 6 : Java Object Serializat io n

Java Object Serialization

Pro ject 1 Quiz 1
Lesson 7: XML f o r Pro t o co l

XML as Protoco l Specification
Status Messages

Pro ject 1 Quiz 1
Lesson 8 : XML Implement at io n

Homework/Projects/introToDistributedComputing_proj.project.html
Homework/Quizzes/introToDistributedComputing_quiz.quiz.html
Homework/Projects/serverEssentials_proj.project.html
Homework/Quizzes/serverEssentials_quiz.quiz.html
Homework/Projects/clientEssentials_proj.project.html
Homework/Quizzes/clientEssentials_quiz.quiz.html
Homework/Projects/swingSkeleton_proj.project.html
Homework/Quizzes/swingSkeleton_quiz.quiz.html
Homework/Projects/applicationModel_proj.project.html
Homework/Quizzes/applicationModel_quiz.quiz.html
Homework/Projects/serialization_proj.project.html
Homework/Quizzes/serialization_quiz.quiz.html
Homework/Projects/xmlProtocol_proj.project.html
Homework/Quizzes/xmlProtocol_quiz.quiz.html

XML Protoco l Implementation

Extending Protoco l Implementation with Status Messages

Pro ject 1 Quiz 1
Lesson 9 : User Aut hent icat io n

User Authentication

Pro ject 1 Quiz 1
Lesson 10: Server Sessio ns

Server Sessions
Testing

Pro ject 1 Quiz 1
Lesson 11: Client Lo gin

Supporting Client Login with Improved Client-Side Inter-Process Communication (IPC)
Client Login Window

Testing

Pro ject 1 Quiz 1
Lesson 12: Client Server Menu

Client Server Menu

Pro ject 1 Quiz 1
Lesson 13: Image Bro wsing

Image Browsing
Testing
Browse Repository

Pro ject 1 Quiz 1
Lesson 14: Navigat ing Repo sit o ry Images

Navigating Images in the Repository

Pro ject 1 Quiz 1
Lesson 15: Delet ing Images in t he Repo sit o ry

Deleting Images in the Repository
Upgrade Protoco l to Display Metadata
Preventing Multiple Login Requests

Pro ject 1 Quiz 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

Homework/Projects/xmlImplementation_proj.project.html
Homework/Quizzes/xmlImplementation_quiz.quiz.html
Homework/Projects/userAuthentication_proj.project.html
Homework/Quizzes/userAuthentication_quiz.quiz.html
Homework/Projects/serverSessions_proj.project.html
Homework/Quizzes/serverSessions_quiz.quiz.html
Homework/Projects/clientLogin_proj.project.html
Homework/Quizzes/clientLogin_quiz.quiz.html
Homework/Projects/clientServerMenu_proj.project.html
Homework/Quizzes/clientServerMenu_quiz.quiz.html
Homework/Projects/imageBrowsing_proj.project.html
Homework/Quizzes/imageBrowsing_quiz.quiz.html
Homework/Projects/imageNavigating_proj.project.html
Homework/Quizzes/imageNavigating_quiz.quiz.html
Homework/Projects/imageDeleting_proj.project.html
Homework/Quizzes/imageDeleting_quiz.quiz.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Distributed Computing

Welcome to the O'Reilly School o f Technology Java 5: Distributed Java Applications Course!

Course Objectives
When you complete this course, you will be able to :

extend your stand-alone Graphical User Interfaces to communicate with a remote server.
develop a multi-threaded server that simultaneously supports a number o f connected clients.
design a pro toco l using an XML XSD specification.
develop client- and server-side contro llers that fo llow the pro toco l.
develop effective JUnit test cases to validate the execution o f these contro llers.
develop a testing framework that maximizes code coverage o f JUnit test cases.

In this Java course, you will develop a client/server distributed Java application from the ground up. Here you will exercise all o f
your Java skills to implement a graphical client that communicates with a remote back-end server using XML messages. You
will learn the tradeoffs that are common in client/server systems and gain valuable insights into how to design your own
distributed, multi-threaded applications.

From the very first lab, you will be developing a client/server application, adding new features and functionality with each
successive lab. You will learn by fo llowing the design and implementation o f the application in the lab. Each quiz will validate
that you learned the key information and the pro jects, performed at your pace, will describe useful extensions to the main
development o f the overall pro ject.

Lesson Objectives

When you complete this lesson, you will be able to :

create a ComputationServer application.
create the ComputationClient.
make the client send command requests and process the response.
use JUnit test cases together with the EclEmma code coverage plugin to identify the code that runs during testing.

Welcome to the O'Reilly School o f Technology's Advanced Java course. Although it's unlikely that this fifth course in the Java
series is your first OST course, we like to include a description o f how OST works in all o f our courses, just in case. Feel free to
skip these first sections if you know you've got a so lid understanding o f our too ls and methods, and instead start at the
"Introduction to Distributed Computing" section.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

Introduction to Distributed Computing
In this course, you'll implement a complex client/server application from start to finish.

You'll learn how an application is developed. When you look at so ftware code, it's almost impossible to determine the
order in which the code was developed. There are many different approaches you might take to develop a particular
application. In this coures, we're go ing develop an application under these constraints:

As you add each new capability to the application, you will always have working code to demonstrate. By
verifying that the code works at every step, you can be reasonably sure that the final application will work.
As you develop new functionality fo r the application, you will validate the proper execution using JUnit test
cases. Unit test cases are essential fo r working on any large system; they become the baseline against
which you measure your progress.

Testing

A good programmer delivers high-quality code that has been tested using a set o f unit tests. Depending on
the programming language, there are a number o f unit testing frameworks available. For this course, we'll use
JUnit, the industry standard for Java. The original JUnit (version 3.0) will suffice for this pro ject, but we
encourage you to review the capabilities o f version 4.0 on your own as well.

One o f the best practices to fo llow is to separate the code being built from the testing code. Eclipse provides
an extremely useful capability to support this practice. Each Java pro ject in Eclipse has a source fo lder
labeled /src. You can add any number o f source fo lders to a Java pro ject and the classes contained within
these fo lders are overlaid with each o ther. You will create a source fo lder /t est to store all JUnit tests; the
package hierarchy o f this /t est source fo lder is identical to the /src fo lder. This allows you to write test cases
that validate pro tected and package private methods o f Java classes without running the risk o f exposing
either data or methods to o ther classes unnecessarily. In fact, none o f the attributes or methods developed in
this course are labeled privat e fo r just this reason.

Code Coverage

While testing is essential to confirming the quality o f your code, you must use o ther means to validate the
implementation, and you must always be concerned about the quality o f your test cases. Specifically, how do
you know that your test cases truly exercise the code you are writing? There are many code coverage too lkits
available that let you determine whether an individual line o f Java code has been executed. For this course,
you'll use the freely available EclEmma Eclipse plugin. EclEmma identifies which Java statements execute.
Based on this information, you can either write additional test cases or validate (with a code review) that the
non-executed code is still correct. In many cases, there are some exceptional scenarios that are nearly
impossible to automate using a test case; however, upon inspecting the code manually, you can determine
that the code would operate properly if these exceptional scenarios happen to occur.

Socket Abstraction

The client/server architecture depends on a reliable connection-oriented communication such as internet
sockets. Think o f a socket as the endpoint o f communications between processes across a network. Take a
look at the figure below; because the connection is bidirectional, there is both an input channel and an output
channel:

http://www.junit.org/
http://www.eclemma.org/

Let's assume this socket is on the client to represent the communication to the server. You write information
onto the Input Channel to be transmitted to the server, then the client reads information from the Output
Channel, that was written to the socket by the server. The socket abstraction can break down though. For
example, the client can be delayed indefinitely when writing to the input channel if the output channel is
overloaded. One way this can happen is if your client only sends information to the socket without retrieving
any information from the Output Channel. You can predict when that will happen by using getSendBufferSize()
on your socket to determine the size o f its buffer. In practice, with well-written clients and servers, you won't
encounter this problem.

Note To view the Java API, click the API icon () in the too lbar at the top o f the screen. From there,
you can find detailed information about any classes or methods we talk about in this course.

Sample Client/Server Application
Let's walk through a stripped-down client/server system to review its fundamental elements. We'll start with a system
where the server echoes a string back to the client. You'll upgrade the client (and server) to enable remote users to
submit small computation requests for processing, such as addition (+), multiplication (*), subtraction (-), o r division (/)
o f two integer values.

We'll incorporate these key features o f the client/server architecture in our ComputationServer application:

Once the server runs, it awaits incoming requests from a client.
The client performs rudimentary "error checking" o f requests sent to the server. For example,
ComputationClient sends only well-fo rmed requests to process integers.
The server must be robust in the case o f ill- fo rmed requests (even though the client should perform error
checking) and degrade gracefully.
The pro toco l between the client and server must be specified clearly and understood by both parties.

Create a Java pro ject in Eclipse, name it Dist ribut edApp, and assign it to the Java5_Lesso ns working set. Eclipse
creates a /src fo lder fo r you.

 Create a Co mput at io nServer class in the default package o f the /src fo lder as shown:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html#getSendBufferSize()

CODE TO TYPE: /src/ComputationServer.java

import java.io.*;
import java.net.*;

public class ComputationServer {

 public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = new ServerSocket(7434);
 System.out.println("Server awaiting client connections");

 Socket client = serverSocket.accept();
 BufferedReader fromClient = new BufferedReader(new InputStreamReader(client.getInpu
tStream()));
 PrintWriter toClient = new PrintWriter (client.getOutputStream(), true);

 while (true) {
 try {
 String str = fromClient.readLine();
 if (str == null) { break; }

 toClient.println(str);
 } catch (IOException ioe) {
 // should any interruption occur, stop server
 break;
 }
 }

 client.close();
 serverSocket.close();
 System.out.println("Server done.");
 }
}

 To run ComputationServer, right-click the Co mput at io nServer.java file in the /src source fo lder and select Run
As | Java Applicat io n (o r click the icon).

The message, "Server awaiting client connections" appears in the Conso le tab at the bottom of your Eclipse window.

Take a closer look at the first part o f the main method:

OBSERVE:

public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = new ServerSocket(7434);
 System.out.println("Server awaiting client connections");

 Socket client = serverSocket.accept();
 BufferedReader fromClient = new BufferedReader(new InputStreamReader(client.getInpu
tStream()));
 PrintWriter toClient = new PrintWriter(client.getOutputStream(), true);

ComputationServer receives a client connection request using the ServerSocket.accept method that listens for a
connection to be made to the socket and accepts it. The ComputationServer implementation forms the minimal
possible implementation o f a server. This server checks in at just 30 lines. Once a connection is established, the
server creates an object, toClient, to communicate with the connecting client.

In the call to the Print Writ er constructor, the second parameter (t rue) ensures that strings written using print ln are
flushed automatically. If you didn't do this, you'd need to flush the bytes in the PrintWriter manually to make sure the
socket received the data properly.

Note Throughout this course, any classes created in the default package are assumed to be throw-away code
or code whose only purpose is to demonstrate an idea or principle.

Let's take a closer look at the main while loop:

http://docs.oracle.com/javase/6/docs/api/java/net/ServerSocket.html#accept%28%29

OBSERVE:

 while (true) {
 try {
 String str = fromClient.readLine();
 if (str == null) { break; }

 toClient.println(str);
 } catch (IOException ioe) {
 // should any interruption occur, stop server
 break;
 }
 }

f ro mClient is a BufferedReader associated with the input stream of the client socket; the server reads String lines
from f ro mClient that represent the commands from the client. This simple server does nothing more than echo input
strings back to the client using the t o Client PrintWriter associated with the output stream of the client socket. Printing
strings to the PrintWriter sends the text back to the remote client.

In the examples in this lab, you will run all applications on the virtual server, so the host name will always be
"localhost." The first question you might have is about how to make sense o f the So cket client =
serverSo cket .accept (); code fragment. Does it return the server's socket? If no t, what socket is returned? The key
idea to remember is that a socket is merely a convenient networking abstraction. In o ther words, the socket
constructed and returned by the accept method invocation is used by the server to manage the communication (both
input and output) with the specific remote client communicating with the server. The server will create such a socket
object fo r each connected client.

In this basic first example, ComputationServer can service just a single client at a time. Even worse, once that client
has completed its use o f the server, the server exits. The code was written this way intentionally so we could first focus
on the essential socket structures necessary for client/server communication. Now you're ready to complete the
sample application.

 Create a Co mput at io nClient class in the default package o f the /src fo lder as shown:

/src/ComputationClient.java

import java.io.*;
import java.net.*;
import java.util.*;

public class ComputationClient {

 public static void main(String[] args) throws Exception {
 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server.getInp
utStream()));

 System.out.println("Type string to be echoed back by server");
 Scanner sc = new Scanner(System.in);
 while (sc.hasNextLine()) {
 String str = sc.nextLine();
 toServer.println(str);

 String value = fromServer.readLine();
 System.out.println("Server sends: " + value);
 }

 server.close();
 }
}

Let's look closer:

http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/6/docs/api/java/io/PrintWriter.html

OBSERVE:

 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server.getInp
utStream()));

 System.out.println("Type string to be echoed back by server");
 Scanner sc = new Scanner(System.in);
 while (sc.hasNextLine()) {
 String str = sc.nextLine();
 toServer.println(str);

 String value = fromServer.readLine();
 System.out.println("Server sends: " + value);
 }

The client code communicates with the server by opening up a socket to " lo calho st " on the pre-arranged port
number 7434 . This server object is the client-side abstraction by which the client communicates with the server. We
create a PrintWriter object (t o Server) by connecting to t he o ut put st ream o f t he server so cket . The client sends
requests to the server by writing to this PrintWriter. We use a BufferedReader object (f ro mServer) to receive output
from the server.

It seems odd to say that we're receiving output when you see that an InputStreamReader object is being created, but
remember that on the client we're reading input from the server, which is creating the output.

ComputationClient contains an inner while loop that reads input from the keyboard and sends the text strings to the
server. Assuming that you still have ComputationServer running, run ComputationClient and type t est ing as shown:

INTERACTIVE SESSION:

Type string to be echoed back by server
testing
Server sends: testing

The PrintWriter masks all exceptions that might arise. To know for sure whether the println command sent the
communication properly, you need to invoke manually checkError() as shown:

CODE TO TYPE: /src/ComputationClient.java

import java.io.*;
import java.net.*;
import java.util.*;

public class ComputationClient {

 public static void main(String[] args) throws Exception {
 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server.getInp
utStream()));

 System.out.println("Type string to be echoed back by server");
 Scanner sc = new Scanner(System.in);
 while (sc.hasNextLine()) {
 String str = sc.nextLine();
 toServer.println(str);
 if (toServer.checkError()) {
 System.err.println("Server communication no longer available.");
 break;
 }

 String value = fromServer.readLine();
 System.out.println("Server sends: " + value);
 }

 server.close();
 }
}

Note
The AutoFlush feature o f the PrintWriter ensures that strings written are immediately flushed onto the
communication channel whenever the print ln() method is invoked. If you use the print method and
include a "\n" character in the string being written (t o Server.print (st r + " \n")), it won't trigger the flush
automatically (t o Server.f lush()).

ComputationServer reads a string from the connecting client using the BufferedReader object. If null is returned, then
the client has disconnected from the server. When ComputationServer is done with the client, we close the client
socket; if the client tries to read input from the (now disconnected) server, null is returned.

Terminate the client, either by typing Ct rl-z in the conso le window or clicking the Terminate icon. To observe that
process in Eclipse, click the down-po inting arrow on the Display Select ed Co nso le icon () in the Conso le panel.
You can switch the selected conso le to review the output o f both processes.

Validate that ComputationServer prints "Server done." as its final output, which demonstrates that it terminates
normally. Both ComputationServer and ComputationClient should stop executing. This simplified client contains less
than 30 lines o f Java code.

Testing

When you develop applications, always maintain a working implementation. To help with this process you'll
develop JUnit test cases with each lab. For this first lab, there is a T est Lo ngRunning test case that
demonstrates one way to validate the server's proper behavior automatically.

Create a source fo lder in which to place your JUnit test case classes. To do that, right-click on your top-level
(Dist ribut edApp) pro ject and select New | So urce Fo lder.

When prompted, enter t est as the fo lder name.

Create the T est Lo ngRunning class by right-clicking on the /t est source fo lder icon and selecting New |
Ot her. In the dialog that appears, open Java | Junit | JUnit T est Case and click Next . Then, select the
New JUnit 3 t est radio button, enter T est Lo ngRunning as the test case name, and click Finish.

Eclipse will prompt you to add the JUnit 3 library to the build path. Click OK.

Type T est Lo ngRunning as shown:

CODE TO TYPE: /test/TestLongRunning.java

import java.io.*;
import java.net.*;
import junit.framework.TestCase;

/** Validate that server processes a succession of client requests. */
public class TestLongRunning extends TestCase {

 public void test1000() throws Exception {
 // open up a server in its own thread of execution.
 new Thread(){
 public void run() {
 try {
 ComputationServer.main(new String[]{});
 } catch (IOException ioe) {
 fail("Unable to start server.");
 }
 }
 }.start();

 // connect away and retrieve input
 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));

 for (int i = 0; i < 1000; i++) {
 System.out.println(i);
 toServer.println(i);

 int value = Integer.valueOf(fromServer.readLine());
 assertEquals (i, value);
 }

 server.close();
 }
}

If this code doesn't compile, make sure you've added JUnit 3 libraries to your build path. The simplest way to
configure your pro ject is to hover your mouse over the word T est Case , which may have a wavy red line
unerneath it. Eclipse has many self-help features to increase your productivity. The next image we'll see
shows the Eclipse pop-up window that appears just below the code in question. Move your mouse to select
the first option, Add JUnit 3 library t o t he build pat h. All compiler errors will disappear:

Let's look more closely at this test case, which illustrates the full sequence o f actions required to demonstrate
a typical client/server interaction:

OBSERVE:

 // open up a server in its own thread of execution.
 new Thread(){
 public void run() {
 try {
 ComputationServer.main(new String[]{});
 } catch (IOException ioe) {
 fail("Unable to start server.");
 }
 }
 }.start();

The Java threading model allows you to spawn a new thread o f contro l any time. While the syntax looks a bit
obscure, the above code shows how you create a new anonymous (which meaning that the name of the
class isn't necessary) subclass o f Thread whose run() method executes the ComputationServer main
method. As you know, this main method requires an array o f String objects, which is handled by creat ing an
empt y St ring array. Next, the test case "simulates" a client connection:

OBSERVE:

 // connect away and retrieve input
 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));

The connecting server Socket opens a connection to the ComputationServer executing in its own thread. The
t o Server PrintWriter is the object used to communicate to the server, while the f ro mServer BufferedReader
is the object fo r reading responses back from the server. Everything comes together in the final loop, which
issues requests to the server, one at a time, and closes the socket when it's done:

OBSERVE:

 for (int i = 0; i < 1000; i++) {
 System.out.println(i);
 toServer.println(i);

 int value = Integer.valueOf(fromServer.readLine());
 assertEquals (i, value);
 }

 server.close();

This code loops 1000 times, each time sending a number to the server using t o Server and then reading
back from the server a string to verify (using assert Equals) that the value returned is the same as the value
sent. Once that's done, the server is closed.

Run this test case by right-clicking the T est Lo ngRunning.java file and selecting Run As | JUnit T est . This
test case spawns the server in a separate thread and then opens up a socket communication to this server
and initiates a sequence o f 1000 operation requests. This test case contains both the instantiation o f the
server and client—both useful and necessary for testing a client/server application. The conso le will show the
output (numbers from 0 to 999). Eclipse will switch to the JUnit tab:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html

Once you have your test case running correctly (note the green bar), switch back to the Package Explorer tab,
right-click this file again, and select Co verage As | JUnit T est to rerun all tests cases to generate a report
o f the code that ran. The summary code appears at the bottom of Eclipse in a Coverage tab, as shown below
(your numbers may vary slightly depending on how you typed in the code):

In this summary report, the ComputationClient has no associated test cases because it has no lines that
executed. Since our goal is to achieve 80% coverage o f each individual Java file within a lab, it seems clear
that we need more test cases. As you work through the labs in this course, you'll find that we o ften design and
implement code in specific ways to make sure that it can be tested using JUnit test cases. For this simple
server, we left out a lo t o f error-handling code, which means that the code coverage was quite high (91.8%)

with just a single test case.

To review individual files and find out which lines o f code executed, open the Java files and review the co lor-
coding for each line. For example, you can see in our example that the IOException exception handler did not
execute in ComputationServer. Exceptional cases are hard to test, so we want to make an effort to implement
code that can be tested automatically.

EclEmma co lor-codes your source files like this:

Red shaded regions did not execute. For example, this test did not exercise any code from the
ComputationClient class, which registers a coverage o f 0 .0%.
Green shaded regions executed. Review the ComputationServer class to see the code that
executed. As you can see, none o f the exception or error handling code executed. This is o ften the
hardest code to test.
Yellow shaded regions indicate code that could execute under various conditions.

A yellow line suggests that there was a logical conditional contained in that line that was not evaluated under
all possible values. This usually happens when you execute only one side o f a logical conditional statement
(such as if o r case).

Note
To turn o ff the shaded co lor after running EclEmma, place your cursor in the Java code file and
make a change. I o ften just place my cursor at the end o f any row, or within a documentation
block, and add a space.

One weakness o f the EclEmma plugin is that no coverage data is recorded if youterminate an application
manually that you have launched using the Co verage As feature. Additionally, it may o ften be difficult to
determine why some lines o f code remain marked in red even though you are pretty sure that the code did
execute. We'll use EclEmma to validate that 80% of the written code is executed by the JUnit test cases
developed throughout this course. Setting the thresho ld at 80% keeps you honest as a programmer and
keeps you from having to write lo ts o f test code to validate strange exceptional situations (but note that you
must still review all non-executed code to make sure it functions properly). Ultimately, we are concerned with
the code coverage reported for classes in the src source fo lder.

Adding in Computation Logic

You are now ready to complete this lab by making ComputationServer a functional calculator. First, specify
the pro toco l between the client and server. Let's have the client send three string lines o f input. The first line
contains the operator to be performed, the second line contains an integer operand1, and the third line
contains an integer operand2. Thus the ComputationServer only needs to read three lines o f input (assuming
they are all present) and then compute the answer. Then, ComputationServer writes two string lines o f output
to the client. The first line contains a zero (0) or a negative one (-1) declaring the success or failure o f the
operation. The second line contains either a result (if successful) o r an error string (if failure). Here are two
scenarios with examples:

scenarios with examples:

Client co mmunicat io n t o server Server respo nse

+
6
9

0
15

/
1
0

-1
Unable to process request: (/ 1 0)

Make these changes to ComputationServer:

CODE TO TYPE: /src/ComputationServer.java

import java.io.*;
import java.net.*;

public class ComputationServer {

 public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = new ServerSocket(7434);
 System.out.println("Server awaiting client connections");

 Socket client = serverSocket.accept();
 BufferedReader fromClient = new BufferedReader(new InputStreamReader(client.
getInputStream()));
 PrintWriter toClient = new PrintWriter (client.getOutputStream(), true);

 while (true) {
 try {
 String str = fromClient.readLine();
 if (str == null) { break; }

 toClient.println(str);
 } catch (IOException ioe) {
 // should any interruption occur, stop server
 break;
 }
 String op=null, s1=null, s2=null;

 try {
 op = fromClient.readLine();
 s1 = fromClient.readLine();
 s2 = fromClient.readLine();
 } catch (Exception e) {
 System.err.println("Closing Client connection.");
 break;
 }

 // communication terminated prematurely
 if (op == null || s1 == null || s2 == null) {
 System.err.println("Closing Client connection.");
 break;
 }

 Integer int1=null, int2=null;
 try {
 int1 = Integer.valueOf(s1);
 int2 = Integer.valueOf(s2);

 // support four operations (multiply, divide, add, subtract).
 if (op.equals("*")) { output(toClient, int1 * int2); }
 else if (op.equals("/")) { output (toClient, int1 / int2); }
 else if (op.equals ("+")) { output (toClient, int1 + int2); }
 else if (op.equals ("-")) { output (toClient, int1 - int2); }
 else { outputError (toClient, "Bad Operator:" + op); }
 } catch (NumberFormatException nfe) {
 String errMsg = "Unable to interpret integer:" + nfe.getMessage();
 System.err.println(errMsg);
 outputError(toClient, errMsg);
 break;
 } catch (Exception e) {
 // internal server error. Try to continue and keep processing
 String errMsg = "Unable to process request: (" + op + " " + int1 + " " +
 int2 + ")";
 System.err.println(errMsg);
 outputError(toClient, errMsg);
 }
 }

 client.close();
 serverSocket.close();
 System.out.println("Server done.");
 }

 static void output(PrintWriter toClient, int value) {
 toClient.println(0);
 toClient.println(value);
 }

 static void outputError(PrintWriter toClient, String error) {
 toClient.println(-1);
 toClient.println(error);
 }
}

The while loop has been expanded to process a few operations.

The helper methods, o ut put and o ut put Erro r, properly encapsulate the pro toco l needed to respond to the
client's requests. The primary server loop is changed to read three strings from the client, and exit
immediately if all three are not present; three variables record the operation and the two values:

OBSERVE:

 String op=null, s1=null, s2=null;

 try {
 op = fromClient.readLine();
 s1 = fromClient.readLine();
 s2 = fromClient.readLine();
 } catch (Exception e) {
 System.err.println("Closing Client connection.");
 break;
 }

 // communication terminated prematurely
 if (op == null || s1 == null || s2 == null) {
 System.err.println("Closing Client connection.");
 break;
 }

To process the request, a dense if ... t hen statement considers a number o f alternatives. In each pre-
arranged case (that is, "*", "/", "+", and "-") the server sends the computed result back to the client with
o ut put . If an unexpected operator is requested, it uses o ut put Erro r to describe the failed attempt:

OBSERVE:

 Integer int1=null, int2=null;
 try {
 int1 = Integer.valueOf(s1);
 int2 = Integer.valueOf(s2);

 // support four operations (multiply, divide, add, subtract).
 if (op.equals("*")) { output(toClient, int1 * int2); }
 else if (op.equals("/")) { output (toClient, int1 / int2); }
 else if (op.equals ("+")) { output (toClient, int1 + int2); }
 else if (op.equals ("-")) { output (toClient, int1 - int2); }
 else { outputError (toClient, "Bad Operator:" + op); }
 } catch (NumberFormatException nfe) {
 String errMsg = "Unable to interpret integer:" + nfe.getMessage();
 System.err.println(errMsg);
 outputError(toClient, errMsg);
 break;
 } catch (Exception e) {
 // internal server error. Try to continue and keep processing
 String errMsg = "Unable to process request: (" + op + " " + int1 + " " + i
nt2 + ")";
 System.err.println(errMsg);
 outputError(toClient, errMsg);
 }

With a similar set o f changes to ComputationClient, you can now have the client send command requests
and process the response. The response consists o f two lines containing strings. The first value is a 0
(success) or -1 (failure) and the ComputationClient outputs the result o r the error message.

CODE TO TYPE: /src/ComputationClient.java

import java.io.*;
import java.net.*;
import java.util.*;

public class ComputationClient {

 public static void main(String[] args) throws Exception {
 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));

 System.out.println("Type string to be echoed back by server");
 Scanner sc = new Scanner(System.in);
 while (truesc.hasNextLine()) {
 String str = sc.nextLine();
 toServer.println(str);
 if (toServer.checkError()) {
 System.err.println("Server communication no longer available.");
 break;
 }

 try {
 System.out.println("Command> ");
 String op = sc.nextLine();
 Integer int1 = Integer.valueOf(sc.nextLine());
 Integer int2 = Integer.valueOf(sc.nextLine());

 toServer.println(op);
 toServer.println(int1);
 toServer.println(int2);

 Integer response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();
 System.out.println("Server sends: " + value);
 if (response == 0) {
 System.out.println(value);
 } else if (response == -1) {
 System.err.println(value);
 } else {
 System.err.println("Received unknown response from server:" + response
);
 }
 } catch (Exception e) {
 System.err.println("error: " + e.getMessage());
 break;
 }
 }

 server.close();
 }
}

Let's see how this revised code performs. Execute ComputationServer and then ComputationClient. Type
three lines o f input from the earlier table ("+", "6", and "9") and observe that 15 appears as output. Then type
three more lines o f input ("/", "1", "0") and observe the error that appears. Also, try to submit invalid numbers,
such as ("+", "6 .4", "13.2"), to see the server's response. Oh wait! If you try this case, the client will detect the
error first and immediately exit, so the server never gets the invalid command in the first place. Understanding
this concept is important in client/server systems because the client should pre-process commands before
they are sent to the server (to make sure they are valid). Even so, the server must have defensive logic in
place to deal with invalid input as you saw in the above code.

You must now update TestLongRunning to reflect the updated logic. Modify the f o r loop to test all four o f the
mathematical operators, as shown:

CODE TO TYPE: /test/TestLongRunning.java

import java.io.*;
import java.net.*;
import junit.framework.TestCase;

/** Validate that server processes a succession of client requests. */
public class TestLongRunning extends TestCase {

 public void test1000() throws Exception {
 // open up a server in its own thread of execution.
 new Thread(){
 public void run() {
 try {
 ComputationServer.main(new String[]{});
 } catch (IOException ioe) {
 fail("Unable to start server.");
 }
 }
 }.start();

 // connect away and retrieve input
 Socket server = new Socket ("localhost", 7434);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));

 String[] ops = { "+", "-", "/", "*" };
 for (int i = 0; i < 1000; i++) {
 System.out.println(i);
 toServer.println(ops[i%4]);
 toServer.println(i);
 toServer.println(1);

 int response = Integer.valueOf(fromServer.readLine());
 int value = Integer.valueOf(fromServer.readLine());
 assertEquals (i, value);
 assertEquals (0, response);
 switch (i%4) {
 case 0: assertEquals (i+1, value); break;
 case 1: assertEquals (i-1, value); break;
 case 2: assertEquals (i, value); break;
 case 3: assertEquals (i, value); break;
 }
 }

 server.close();
 }
}

Terminate any conso le sessions that are running, and verify that your code works by running the revised
JUnit test case. And that's it fo r this lab. Let's review:

You developed a stripped-down client/server application.
You learned how to use JUnit test cases together with the EclEmma code coverage plugin to
identify the code that runs during testing. With this information, you can make informed decisions
about additional test cases to write.

Eclipse Concepts

This lab included screenshots showing how to use Eclipse to perform common tasks, such as creating new
source fo lders, packages, and classes. For the rest o f this course, we'll assume that you can complete those
tasks without specific guidance. For the record, here are the Eclipse tasks you will use for the duration o f this
course:

Create a new source fo lder.

Create a new package in a source fo lder.
Create a new class.
Create a new interface.
Execute a Java class.
Launch the EclEmma plugin.
Launch all JUnit test cases.
Launch individual JUnit test case.

Doing Your Homework
For each lab, there are quiz questions and pro ject objectives for you to complete to demonstrate your understanding
of the lab material.

Most o f the homework objectives in this course will require you to modify the example pro jects from the lab, but the
next lab will continue with the example pro ject as we left it in the previous lab, so you'll want to copy the example
pro jects to a new "branch" pro ject to submit to your instructor fo r each lab's homework assignment.

To copy the DistributedApp pro ject to another pro ject, in the Package Explorer, click the down-po inting white arrow and
select T o p Level Element s | Pro ject s:

Find your Dist ribut edApp pro ject in the list, right-click it, and select Co py.

Select Edit | Past e from the Eclipse top menu, and give the copy a new name, such as Int ro Dist ribut edApp.

Right-click the new Int ro Dist ribut edApp pro ject and assign it to the Java5_Ho mewo rk working set.

Click the downward-po inting white arrow again and select T o p Level Element s | Wo rking Set s:

And just like that you're on your way! See you in the next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Server Essentials
Lesson Objectives

In this lesson you will:

use threads within a server to support multiple connecting clients.
identify exceptional problems that occur in the communication between clients and servers.
write code to exercise the performance o f a client/server system.

Image Annotation Repository Application
Our goal fo r this course is to construct a software system that enables groups o f users to upload image files to a
shared repository and browse through those images.

When you start a pro ject, you'll want to identify your specific requirements in advance. Often though, pro ject
requirements change midstream, so you need to learn to build systems with designs that are flexible enough to
support unexpected change.

One way to think about this aspect o f the application is to compare your process to the process an architect uses
when building an arch. An architect couldn't build an arch without first assembling a scaffo lding to support the arch as it
is being built. Of course, once the scaffo lding is removed, your average person won't know exactly how the arch was
built and is left to wonder at how such an amazing structure was built! A similar situation exists fo r users o f the
application that you're about to build. They'll use it, but they probably won't understand how was built. After you
conquer the labs in this course, you'll be a kind o f architect and you'll know exactly how ths particular client/server
system was built.

This table illustrates the requirements o f the application you'll be developing:

R# Descript io n

R1 Server must allow up to 30 concurrent users to connect and browse the images stored there.

R2 Client must be able to support any o f the standard built- in Java image formats (such as PNG or JPG).

R3 Server can be configured to limit the maximum size o f any individual image file (default: 5MB).

R4 Server can be configured to limit the to tal number o f files stored on the shared repository (default: 1,000).

R5 A user connecting to a server must provide a user name and password.

R6 A user can upload up to a fixed number o f images to the repository (default: 100).

R7 A user can delete any image that he has added to the repository; a user cannot delete images added by
another user.

R8 A user can self-register an account with the server.

R9 During the client-server communication, the user's password never appears in plaintext fo rmat.

R10 A user account is considered inactive if the user has not connected to the server within a fixed time period
(default: 14 days).

R11 Each user account has a unique string identifier composed o f alphanumeric characters (a-zA-Z0-9). The
server only stores the hashed value o f the password and therefore does not know it.

With this set o f established requirements as your blueprint, you will implement a core set o f Java classes to construct
a fully functioning server and client. Instead o f just reading the code for a fully implemented and constructed system,
you are go ing to build the system, step by step. Throughout the process, you will maintain a working system that o ffers
a subset o f the desired functionality. Of course, the proposed set o f labs is just one way to build this so ftware
application, but it will give you insight into the overall development o f an application. As you work through the labs, you
may even question the design decisions that have been made along the way—this is good! Your skepticism is a sign
of your expanding knowledge and ability to come up with all kinds o f different ways to so lve problems. We want to ask
questions, experiment and make mistakes. The essence o f becoming a pro fessional is learning from those mistakes.
We'll always explain why the code was designed in the way that it was and ultimately you can determine for yourself
which way works best fo r your needs.

Multi-Threaded Server Application
Given our current knowledge o f single-threaded servers, we know we need to satisfy requirement R1 to ensure that the
server application can allow up to 30 concurrent users to connect and browse the images stored there. Your first task
then, is to write a multi-threaded server and test its execution using JUnit. The Java threading model will help you to
accomplish that. Let's break this task into smaller units o f work:

Construct a server object from the prio r lab's standalone server. (This will simplify how servers are coded
and tested.)
Extract the server code that processes requests so it can be executed within its own Repo sit o ryT hread
class.
Write a separate ServerLauncher class to launch the server.

In your Dist ribut edApp pro ject's /src fo lder, create a new package named server.

 In the server package, create a Repo sit o ryServer class as shown:

CODE TO TYPE: /src/server/RepositoryServer.java

package server;

import java.io.*;
import java.net.*;

public class RepositoryServer {
 ServerSocket serverSocket = null;
 int state = 0;

 public void bind() throws IOException {
 serverSocket = new ServerSocket(9172);
 state = 1;
 }

 public void process() throws IOException {
 while (state == 1) {
 Socket client = serverSocket.accept();

 new RepositoryThread(client).start();
 }

 shutdown();
 }

 void shutdown() throws IOException {
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state = 0;
 }
 }
}

This class represents a server object that responds to client requests for the Image Repository. The primary methods
of this object are bind() (which initializes a ServerSocket object to listen to client requests), process() (which spawns
threads to respond to client requests), and shutdown (which has the server shut down so it no longer processes
requests). You'll see a compilation error because you have not yet created the Repo sit o ryT hread class.

RepositoryServer manages a ServerSocket object that is associated with a specific port number on the machine on
which it executes. A network port number is like a post o ffice box number used to direct mail to a specific recipient.
Clients seeking to connect to a specific server must know both the hostname and the specific port number used by that
server.

http://docs.oracle.com/javase/6/docs/api/java/net/ServerSocket.html

OBSERVE:

 public void process() throws IOException {
 while (state == 1) {
 Socket client = serverSocket.accept();

 new RepositoryThread(client).start();
 }

 void shutdown() throws IOException {
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state> = 0;
 }
 }

RepositoryServer constructs a ServerSocket to listen for client requests; when pro cess() is invoked, it responds to
client requests to connect, as long as the st at e variable is 1. Once shut do wn() is invoked, st at e is set to 0 and the
pro cess() method can terminate. Note that the only way for the server to exit is to have one o f the instantiated
RepositoryThreads call shut do wn() . Of course, you can still terminate RepositoryServer execution externally, in
Eclipse.

The pro cess() method loops repeatedly while RepositoryServer is accepting connections (while st at e == 1). The call
to serverSo cket .accept () blocks until client code requests a socket connection, at which po int it constructs and
returns a Socket object representing the communication channel to /from that client. Finally, when shut do wn() is
invoked, the socket is closed and st at e is reset t o 0 .

Client/Server Protocol

Next, we'll define the pro toco l between the client and the server. To start, we'll set it up so the client sends a
request as a single string on a line by itself, and the server responds with two string lines: the first line
contains 0 for success or -1 for failure. The second line contains the results o f the request (fo r success) or an
error message (for failure). Admittedly, this pro toco l structure is not go ing to last in the long run, but rather
than getting bogged down in developing complex pro toco ls right away, we can start with this basic concept
and then figure out later how to improve it.

The first client request will be to return the number o f images in the repository. Since you're starting with an
empty repository (right?), the response will be 0 until you add functionality to upload images. This lab focuses
on changes that are made to the server, so the client code we see will be intentionally artificial (we haven't
constructed the client code yet, so we have "pretend" code that looks like it comes from a client, which
doesn't yet exist). In the next listing, the client makes three SIZE requests, sleeping for a second in between
each request. The Thread.sleep invocations are introduced to demonstrate that the server is able to handle
multiple client requests simultaneously.

In the /t est fo lder, create a client package, and in it, create a Repo sit o ryClient class. This class is in the
/t est fo lder because it will serve as "scaffo lding" to use during testing:

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep(long)

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import java.net.*;

public class RepositoryClient {

 public static void main(String[] args) throws Exception {
 Socket server = new Socket ("localhost", 9172);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));

 for (int num = 0; num < 3; num++) {
 toServer.println("SIZE");
 if (!toServer.checkError()) {
 int response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();
 if (response == 0) {
 System.out.println(num + ": Number of Images: " + value);
 } else if (response == -1) {
 System.err.println(value);
 } else {
 System.err.println("Received unknown response:" + response);
 }
 }
 }

 server.close();
 }
}

Let's look closer at the client/server communication pattern.

OBSERVE:

 public static void main(String[] args) throws Exception {
 Socket server = new Socket ("localhost", 9172);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));

 toServer.println("SIZE");
 if (!toServer.checkError()) {
 int response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();
 if (response == 0) {
 System.out.println(num + ": Number of Images: " + value);
 } else if (response == -1) {
 System.err.println(value);
 } else {
 System.err.println("Received unknown response:" + response);
 }
 }

After validating that a SIZE request was sent to the server properly using checkErro r, the code reads two
consecutive String lines from the server (respo nse and value).

The main met ho d is declared t o t hro w an Except io n, which simplifies the method by avo iding the need
to write exception handlers; to see what you were able to avo id, temporarily eliminate the t hro ws Except io n
declaration and you'll see that the code contains six compiler errors. It's common to take shortcuts like this in
such scaffo lding code. Put the throws declaration back in place. Now you're ready to complete the server.

 In the /src fo lder server package, create the Repo sit o ryT hread class as shown:

CODE TO TYPE: /src/server/RepositoryThread.java

package server;

import java.io.*;
import java.net.*;

public class RepositoryThread extends Thread {

 Socket client;
 BufferedReader fromClient;
 PrintWriter toClient;

 RepositoryThread (Socket s) throws IOException {
 fromClient = new BufferedReader(new InputStreamReader(s.getInputStream()));
 toClient = new PrintWriter (s.getOutputStream(), true);
 client = s;
 }

 public void run() {
 try {
 while (true) {
 String request = fromClient.readLine();
 if (request == null) {
 break;
 }

 if (request.equals("SIZE")) {
 output("0");
 } else {
 // internal server error. Try to continue and keep processing
 outputError("Unable to process request: " + request);
 continue;
 }
 }
 } catch (IOException ioe) {
 System.err.println("Thread processing terminated:" + ioe.getMessage());
 }

 try {
 fromClient.close();
 toClient.close();
 client.close();
 } catch (IOException ioe) {
 System.err.println("Unable to close connection:" + ioe.getMessage());
 }
 }

 void output(String result) {
 toClient.println(0);
 toClient.println(result);
 }

 void outputError(String error) {
 toClient.println(-1);
 toClient.println(error);
 }
}

You will recognize most o f this class from the prio r lab—it's repackaged here as a standalone class that
extends the java.lang.Thread class. Subclasses o f T hread provide a run() method that executes once the
thread starts. In the case o f Repo sit o ryT hread, the run() method retrieves the request from the client as a
single string on a line by itself. Currently, the class only understands SIZE requests, in which case it returns
"0" as the value for the result.

In our example, each Repo sit o ryT hread object maintains its own state: a Socket object is used to
communicate with the client, a BufferedReader object is used to retrieve String input from the client, and a
PrintWriter object is used to send String responses to the client.

OBSERVE:

 public void run() {
 try {
 while (true) {
 String request = fromClient.readLine();
 if (request == null) {
 break;
 }
 ...

The run() method contains logic that you've already seen. In Java, calling the start() method on a thread (as is
done by RepositoryServer) causes that thread to execute its run() method. As long as the thread is reading
requests from the client, it will continue to execute. However, once f ro mClient .readLine() returns null, the
loop will break and the thread will close the socket, thereby closing communication to the client. The
RepositoryThread class maintains the three class variables necessary to process it. Finally, it has two helper
output methods.

OBSERVE:

 RepositoryThread (Socket s) throws IOException {
 fromClient = new BufferedReader(new InputStreamReader(s.getInputStream()));
 toClient = new PrintWriter (s.getOutputStream(), true);
 client = s;
 }

When the RepositoryThread object is constructed, it sets up the Buf f eredReader and Print Writ er objects.
Its run() method executes repeatedly, fetching request strings from the remote client and returning output,
using the output() and outputError() helper methods. The thread terminates when it receives null as input
from the client (which happens when the client severs the connection).

Several suboptimal decisions have been made in the implementation o f RepositoryThread. One o f them will
cause you to have to modify this class every time a new request is added to the client/server pro toco l. This
would be like having to upgrade the circuit box in your house whenever you bought a new appliance. In later
labs, you'll eliminate this problem in your code. A second issue arises because the pro toco l is overly
simplistic, and as such, you will need to upgrade the way requests and responses are issued between the
client and the server. You have to do this because image data sent from the server to the client will be in
binary format, and you will be unable to confine the bytes o f an image to a single line o f text sent to the client.
Still, there is no easy way to completely implement any application, so it's o ften best to chart a slow and
steady path towards your end goal.

 In the /src fo lder server package, create a ServerLauncher class as shown to instantiate and configure
the RepositoryServer object:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/6/docs/api/java/io/PrintWriter.html

CODE TO TYPE: /src/server/ServerLauncher.java

package server;

public class ServerLauncher {

 public static RepositoryServer create() throws Exception {
 RepositoryServer server = new RepositoryServer();
 server.bind();
 return server;
 }

 public static void main(String[] args) throws Exception {
 RepositoryServer server = create();

 System.out.println("Server awaiting client connections");
 server.process();
 System.out.println("Server shutting down.");
 }
}

This class contains logic that should be separate from the code that makes up the server.

Can this code handle thirty concurrent requests? The Java documentation for the ServerSocket class
confirms that its ServerSocket(int) constructor supports up to 50 incoming connections, well above that
requirement.

Which classes should have main methods? I recommend extracting all public st at ic vo id main(St ring[]
args) methods so they exist in "launching" classes such as ServerLauncher, o therwise they will be buried
too deep within your code base. Note that the main() method is allowed to throw an Exception, which
simplifies the code. Finally, the creat e() method does everything while setting up a server, except fo r
initiating processing; this method will be useful during testing.

Testing and Code Coverage

Now that the server has been properly restructured, you can write test cases to validate the code's
implementation. The primary test case to review is testMultipleClients() because it demonstrates three clients
connecting to the same server. These test cases will exist within the /t est fo lder, so you need to create a
server package under that source fo lder.

 In the /t est fo lder server package, create the T est Server JUnit test case as shown:

http://docs.oracle.com/javase/6/docs/api/java/net/ServerSocket.html#ServerSocket(int)

CODE TO TYPE: /test/server/TestServer.java

package server;

import java.io.*;
import client.*;
import junit.framework.TestCase;

public class TestServer extends TestCase {
 public void testMultipleClients() throws Exception {
 RepositoryServer server = launchServer();

 launchClient();
 launchClient();
 launchClient();

 // wait until everything done.
 Thread.sleep(10000);

 server.shutdown();
 assertEquals (0, server.state);
 }

 public static void launchClient() {
 new Thread() {
 public void run() {
 try {
 RepositoryClient.main(new String[]{});
 } catch (Exception e) {
 System.err.println("Unable to launch test client.");
 }
 }
 }.start();
 }

 public static RepositoryServer launchServer() throws Exception {
 final RepositoryServer server = ServerLauncher.create();
 assertEquals (1, server.state);
 new Thread() {
 public void run() {
 try {
 server.process();
 } catch (IOException ioe) {
 System.err.println("Server completed.");
 }
 }
 }.start();

 // wait until server is ready.
 Thread.sleep(2000);

 return server;
 }
}

Make sure you understand the two helper methods in this test case, because you'll use them in all o f your
future test cases.

The launchServer() method builds on the the creat e met ho d in ServerLauncher to instantiate and bind a
RepositoryServer object. However, you can't just run the pro cess met ho d, because that "blocks" all activity
while it waits fo r client requests; you need to execute pro cess within its own T hread, as shown below. This
logic instantiates a new T hread and executes its st art method, which ultimately fo rces the run method to
execute, thus having this thread block while the remainder o f the launchServer() method can continue. So the
method has to wait fo r two seconds (we chose this amount o f time arbitrarily), fo r the server to be properly
instantiated.

OBSERVE:

 public static RepositoryServer launchServer() throws Exception {
 final RepositoryServer server = ServerLauncher.create();
 assertEquals (1, server.state);
 new Thread() {
 public void run() {
 try {
 server.process();
 } catch (IOException ioe) {
 System.err.println("Server completed.");
 }
 }
 }.start();

 // wait until server is ready.
 Thread.sleep(2000);
 assertEquals(1, server.state);

 return server;
 }

In similar fashion, launchClient spawns a new t hread that executes Repo sit o ryClient in its own thread o f
contro l:

OBSERVE:

 public static void launchClient() {
 new Thread() {
 public void run() {
 try {
 RepositoryClient.main(new String[]{});
 } catch (Exception e) {
 System.err.println("Unable to launch test client.");
 }
 }
 }.start();
 }

When you run the TestServer test case, each o f the three clients sends its first request to the server fo r
processing, after which each sleeps for a second. You can see the requests are intermingled in the output, but
each client still has three requests. Thus, these requests are all being handled concurrently. You need to wait
10 seconds for the entire test case to complete:

OBSERVE: Output from TestServer

0: Number of Images: 0
0: Number of Images: 0
1: Number of Images: 0
1: Number of Images: 0
0: Number of Images: 0
2: Number of Images: 0
2: Number of Images: 0
1: Number of Images: 0
2: Number of Images: 0
Server Completed.

 Generate EclEmma code coverage for the TestServer test case. You will have to wait the full ten seconds
until the test case completes sleeping, but then you will see that you have increased code coverage o f
RepositoryServer to over 80% (our target thresho ld). RepositoryThread is still stuck at less than 60% and
you can see that all o f the non-executed code blocks occur in error handling situations. The only way to
demonstrate their execution is to refine the client code (as you did in this lab with the server). You will do that
in the next lab.

Because the t est Mult ipleClient s test case depends on the proper execution o f Thread.sleep() statements,
such a test case is not ideal. We differentiate between several different types o f test cases: those that validate

proper execution, those that are performance tests that evaluate the execution time o f given functionality, and
those that create error or exceptional situations to determine the robustness o f the implementation.

Performance Tests

Is it possible to write a JUnit test case to validate requirement R1? Well, it's not entirely appropriate to do so.
The R1 requirement is best validated using a performance stress test rather than a JUnit test case, because
the purpose o f a JUnit test case is to validate the correct execution o f the code.

 Create a new source fo lder named perf o rmance , and in it, create a server package. In this fo lder, you'll
place code that validates performance (not correctness) tests. Another reason to separate these classes
from JUnit test cases is that Eclipse o ffers a convenient capability to run "All JUnit test cases" quickly fo r a
pro ject or a source code fo lder; these performance classes should not be executed every time.

 In the /perf o rmance fo lder server package, create the Co ncurrent UserPerf o rmance class. This is
not a JUnit test case, but you can take advantage o f the helper static methods you have already written.

CODE TO TYPE: /performance/server/ConcurrentUserPerformance.java

package server;

import java.io.*;
import java.net.*;

public class ConcurrentUserPerformance {
 public static void main(String[] args) throws Exception {
 Socket[] connections = new Socket[40];
 PrintWriter[] writers = new PrintWriter[40];
 BufferedReader[] readers = new BufferedReader[40];

 RepositoryServer server = TestServer.launchServer();

 for (int i = 0; i < connections.length; i++) {
 connections[i] = new Socket ("localhost", 9172);
 writers[i] = new PrintWriter (connections[i].getOutputStream(), true);
 readers[i] = new BufferedReader (new InputStreamReader(connections[i].getI
nputStream()));
 }

 for (int i = 0; i < connections.length; i++) {
 for (int j = 0; j < connections.length; j++) {
 writers[j].println("SIZE");
 String rc = readers[j].readLine();
 String val = readers[j].readLine();
 System.out.println("C" + j + " communicates (" + rc + ":" + val + ")");
 }
 }

 for (int i = 0; i < connections.length; i++) {
 connections[i].close();
 }
 server.shutdown();
 }
}

ConcurrentUserPerformance does not use threads (aside from the thread executing the RepositoryServer),
rather it makes a fixed number o f client connections (in this case 40) and exercises these connections in
serial fashion:

OBSERVE:

 Socket[] connections = new Socket[40];
 PrintWriter[] writers = new PrintWriter[40];
 BufferedReader[] readers = new BufferedReader[40];

 RepositoryServer server = TestServer.launchServer();

 for (int i = 0; i < connections.length; i++) {
 connections[i] = new Socket ("localhost", 9172);
 writers[i] = new PrintWriter (connections[i].getOutputStream(), true);
 readers[i] = new BufferedReader (new InputStreamReader(connections[i].getIn
putStream()));
 }

This code inst ant iat es a Repo sit o ryServer, then constructs and connects 40 sockets to that server. The
writ ers[] and readers[] arrays store the PrintWriter and BufferedReader objects used to communicate
requests to the server and read responses back from the server.

After the socketsset o f sockets comes two nested f o r loops that generate 40 * 40 = 1600 SIZE requests to
be processed by the server. Each request consists o f printing "SIZE" to writ ers[j] , fo llowed by reading two
string responses from readers[j] :

OBSERVE: How to generate and process 1,600 requests

 for (int i = 0; i < connections.length; i++) {
 for (int j = 0; j < connections.length; j++) {
 writers[j].println("SIZE");
 String rc = readers[j].readLine();
 String val = readers[j].readLine();
 System.out.println("C" + j + " communicates (" + rc + ":" + val + ")");
 }
 }

Run ConcurrentUserPerformance to verify that each o f the 40 connections was able to submit repeated SIZE
requests.

Most excellent work! That's the end o f this lesson. Go ahead and work through the homework and pro ject like
you always do, and I'll see you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Client Essentials
Lesson Objectives

In this lesson you will:

design an inter-process communication (IPC) layer from the existing classes on top o f which to design a Java Swing
client to connect to remote server.

Preparing an Inter-Process Communication Layer
So far, we've developed a multi-threaded RepositoryServer and a command-line RepositoryClient that issues
requests to that server. Now, we'll design a Graphical User Interface (GUI) client that provides capabilities users
expect. If you review the full set o f capabilities that you'll need for the final application, you'll know where to start! (The
list o f requirements can be found in a table at the beginning o f the serverEssentials lesson.) In this lab you'll implement
only the primary window and splash screen. In the process, you'll restructure your code to encapsulate the client's
interactions to the server in an Inter-Process Communication (IPC) layer.

The IPC layer is the infrastructure used to communicate between the client and server. We won't need to change that
code much once it's created, and it's helpful to know that it's stable code. To guard against unexpected changes,
modify the existing classes to encapsulate and hide their implementation.

 In the /src fo lder, create a package named server.ipc, and move the Repo sit o ryT hread and
Repo sit o ryServer classes into this package. To move the classes, ho ld down the Ct rl key, click on the two classes
(Repo sit o ryT hread and Repo sit o ryServer), then drag both classes into the new server.ipc package. The action
on the screen will look like this:

When prompted by Eclipse, check the Updat e ref erences t o 2 mo ved element (s) box.

Ideally, you'll design interfaces against which to program, and then you can forget the underlying implementation

details and get to the business o f making the application "do stuff." Instead o f thinking about sockets and input/output
streams, you'll work with an interface that encapsulates all pro toco l behavior into a single interface. Before you move
on, fix the code that broke because o f the refactoring. Not surprisingly, your test case and performance test no longer
compile.

 Create server.ipc subpackages in the /t est and /perf o rmance fo lders. Now move T est Server into the
/t est /server.ipc package and Co ncurrent UserPerf o rmance into the /perf o rmance/server.ipc package.

Before continuing, take some time to clean up some code that you won't need in the future, specifically, the classes
that were placed in the default package. Delete Co mput at io nClient and Co mput at io nServer in the /src fo lder,
and T est Lo ngRunning in the /t est fo lder.

 Create the IPro t o co lHandler interface in the /src/server.ipc package as shown:

/src/server.ipc/IPro toco lHandler.java

package server.ipc;

import java.io.*;

public interface IProtocolHandler {

 /** Process the protocol using socket's input and output. Return false to terminate,
true to continue. */
 boolean process(BufferedReader fromSocket, PrintWriter toSocket);
}

As is common in object-oriented pro jects, the name of the interface starts with a capital I to clearly identify that it is an
interface. This interface enables the real logic o f the pro toco l to be "outsourced" to a handler class that you're about to
design. In this way, the IPC layer is responsible only fo r making the initial connection; after that, a pro toco l handler will
know when to read and write from the socket invo lved in the communication.

Note
Eclipse o ffers a helpful layout when you have multiple packages using a hierarchical naming pattern. To
"nest" packages in the Package Explorer properly, click the white drop-down arrow and select Package
Present at io n | Hierarchical.

 In the /src/server package, create a class named Pro t o co lHandler, that implements IPro t o co lHandler. You'll
recognize most o f this code from the Repo sit o ryT hread class that you wrote in the last lab:

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import java.io.BufferedReader;
import java.io.PrintWriter;
import server.ipc.IProtocolHandler;
import java.io.*;
import server.ipc.*;

public class ProtocolHandler implements IProtocolHandler {

 @Override
 public boolean process(BufferedReader fromSocket, PrintWriter toSocket) {
 // TODO Auto-generated method stub
 return false;
 try {
 String request = fromSocket.readLine();
 if (request == null) {
 return false;
 }

 if (request.equals("SIZE")) {
 output(toSocket, "0");
 } else {
 // internal server error. Try to continue and keep processing
 outputError(toSocket, "Unable to process request: " + request);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 return false;
 }

 return true;
 }

 void output(PrintWriter toSocket, String value) {
 toSocket.println(0);
 toSocket.println(value);
 }

 void outputError(PrintWriter toSocket, String error) {
 toSocket.println(-1);
 toSocket.println(error);
 }
}

Look over the pro cess() method. It reads a single line o f input f ro m t he Buf f eredReader associated with the
connecting client's socket. Then, based on the input received, the server generates a successf ul respo nse using
o ut put o r a f ailed respo nse using o ut put Erro r:

OBSERVE:

 public boolean process(BufferedReader fromSocket, PrintWriter toSocket) {
 try {
 String request = fromSocket.readLine();
 if (request == null) {
 return false;
 }

 if (request.equals("SIZE")) {
 output(toSocket, "0");
 } else {
 // internal server error. Try to continue and keep processing
 outputError(toSocket, "Unable to process request: " + request);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 return false;
 }

 return true;
 }

Currently, pro cess() only handles SIZE requests. While the core logic o f Pro toco lHandler is identical to the former
RepositoryThread implementation, it should be encapsulated in its own class as shown, because you don't want the
logic needed to process messages from the client to be buried deeply within low-level IPC code.

For your final modification, you need to tell the RepositoryThread about your Pro toco lHandler object. Start by
modifying ServerLauncher as shown below. (You will modify the RepositoryServer constructor to take in an instance
of the Protoco lHandler class to be used to interpret the pro toco l):

CODE TO TYPE: /src/server/ServerLauncher.java

package server;

import server.ipc.*;

public class ServerLauncher {

 public static RepositoryServer create() throws Exception {
 RepositoryServer server = new RepositoryServer(new ProtocolHandler());
 server.bind();
 return server;
 }

 public static void main(String[] args) throws Exception {
 RepositoryServer server = create();

 System.out.println("Server awaiting client connections");
 server.process();
 System.out.println("Server shutting down.");
 }
}

The code will result in a compiler error until you make a few modifications to the Repo sit o ryServer class. Until then,
RepositoryServer will ho ld onto the Protoco lHandler object and use it whenever a client connects. You need to add a
constructor to take the pro toco l object and then update the code that launches the RepositoryThread objects fo r
processing:

CODE TO TYPE: /src/server.ipc/RepositoryServer

package server.ipc;

import java.io.*;
import java.net.*;

public class RepositoryServer {
 ServerSocket serverSocket = null;
 int state = 0;
 IProtocolHandler protocolHandler;

 public RepositoryServer(IProtocolHandler ph) {
 protocolHandler = ph;
 }

 public void bind() throws IOException {
 serverSocket = new ServerSocket(9172);
 state = 1;
 }

 public void process() throws IOException {
 while (state == 1) {
 Socket client = serverSocket.accept();

 new RepositoryThread(client, protocolHandler).start();
 }

 shutdown();
 }

 void shutdown() throws IOException {
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state = 0;
 }
 }
}

The final change will be to the Repo sit o ryT hread class:

CODE TO TYPE: /src/server.ipc/RepositoryThread

package server.ipc;

import java.io.*;
import java.net.*;

public class RepositoryThread extends Thread {
 Socket client;
 BufferedReader fromClient;
 PrintWriter toClient;
 IProtocolHandler handler;

 RepositoryThread (Socket s, IProtocolHandler h) throws IOException {
 fromClient = new BufferedReader(new InputStreamReader(s.getInputStream()));
 toClient = new PrintWriter (s.getOutputStream(), true);
 client = s;
 handler = h;
 }

 public void run() {
 try {
 while (true) {
 String request = fromClient.readLine();
 if (request == null) {
 break;
 }

 if (request.equals("SIZE")) {
 output("0");
 } else {
 // internal server error. Try to continue and keep processing
 outputError("Unable to process request: " + request);
 continue;
 }
 }
 } catch (IOException ioe) {
 System.err.println("Thread processing terminated:" + ioe.getMessage());
 }
 // have handler manage the protocol until it decides it is done.
 while (handler.process(fromClient, toClient)) {

 }

 try {
 fromClient.close();
 toClient.close();
 client.close();
 } catch (IOException e) {
 System.err.println("Unable to close connection:" + e.getMessage());
 }
 }

 void output(String result) {
 toClient.println(0);
 toClient.println(result);
 }

 void outputError(String error) {
 toClient.println(-1);
 toClient.println(error);
 }
}

You deleted all o f the logic that had previously processed the pro toco l and replaced it with a simple loop to use the
new pro toco l handler code. The RepositoryThread class recognizes the Protoco lHandler object as an instance o f a
class that implements IPro toco lHandler, which insulaties the IPC layer from the actual business logic further.

Validate that all test cases and performance tests operate properly. You can do this in two ways: to run all test cases
associated with your pro ject, right click on the Dist ribut edApp pro ject and select menu item Run As | JUnit T est .
Alternatively, you can right-click, one by one, on the test and performance packages, and select the Run As | JUnit
T est menu item.

Preparing a Standalone Client GUI
The clients we've written so far are not very useful. We need to add a Graphical User Interface (GUI). You are already
familiar with the Java Swing approach for developing Java GUIs. You only need to understand part o f the full Swing API
to develop reasonably usable client applications. To design the skeleton o f a client application, we'll:

1. write a splash screen that flashes briefly when the application launches.
2. write a Menu-based Swing application with all commands in place.
3. write code to read from (and write to) the user directory to store preferences to use whenever the
application runs.

Let's get started!

Writing a Java Splash Screen

The Java Virtual Machine (VM) can be cumbersome at startup, which makes it challenging to write a splash
screen. Fortunately, with the Java SE 6 release, the Java VM added a command-line argument to immediately
display a pre-selected image in a centered window when launching a Java application. If that were the only
capability we had though, it would be a poor splash screen; modern applications o ften show configuration
information or the status o f initialization routines as well. You will be able to add logic to manipulate the
splash screen. As you can see in the SplashScreen documentation, you can provide an image file (either GIF,
JPEG, or PNG) that is displayed immediately upon execution. Even better, once your real windows start
appearing, the splash screen automatically hides itself.

 In your Dist ribut edApp pro ject, create an /images fo lder. Then, download the image abelow s
repo sit o rySplash.png in the new /images fo lder. (You can modify the image as you like, as long as you
keep the same dimensions, especially o f the inner rounded rectangle):

To download the image, right-click it, click Save pict ure as..., and navigate to your /images fo lder (in
Co mput er/V:/wo rkspace/Dist ribut edApp/images). To confirm that the image was saved properly, right
click on the /images fo lder and select menu item Ref resh; Eclipse will now show this file within the /images
fo lder.

 Create a client package in the /src fo lder.

 Create a SplashScreenLo gic class in the /src fo lder client package. Type the code below, which
demonstrates the ability to post messages to the gray space below the "Image Repository" rounded
rectangle:

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/6/docs/api/java/awt/SplashScreen.html

CODE TO TYPE: /src/client/SplashScreenLogic.java

package client;

import java.awt.*;

public class SplashScreenLogic {

 public static void update (String s) {
 Graphics g = null;
 SplashScreen splash = SplashScreen.getSplashScreen();
 if (splash != null) {
 g = splash.createGraphics();
 }

 // no splash screen? Well, at least we record the message to stdout.
 if (g == null) {
 System.out.println (s);
 return;
 }

 g.setColor(new Color(195, 195, 195));
 g.fillRect(60, 180, 300, 30);

 g.setColor(Color.black);
 g.drawString(s, 60, 190);
 splash.update();

 g.dispose();
 }
}

Swing application programmers o ften fail to properly dispose o f Graphics objects that they have constructed.
While this is most common with the getGraphics() method, it can also happen with the creat eGraphics()
method as shown here. Here, we invoke dispo se() o n Graphics o bject g so it doesn't waste system
resources.

OBSERVE:

 public static void update (String s) {
 Graphics g = null;
 SplashScreen splash = SplashScreen.getSplashScreen();
 if (splash != null) {
 g = splash.createGraphics();
 }

 // no splash screen? Well, at least we record the message to stdout.
 if (g == null) {
 System.out.println (s);
 return;
 }

 g.setColor(new Color(195, 195, 195));
 g.fillRect(60, 180, 300, 30);

 g.setColor(Color.black);
 g.drawString(s, 60, 190);
 splash.update();

 g.dispose();
 }

Now, modify Repo sit o ryClient so it will write messages to the splash screen:

CODE TO TYPE: /test/client/RepositoryClient

package client;

import java.io.*;
import java.net.*;

public class RepositoryClient {

 public static void main(String[] args) throws Exception {
 SplashScreenLogic.update ("connecting to localhost::9172");
 delay(250);
 Socket server = new Socket ("localhost", 9172);

 SplashScreenLogic.update ("connected to localhost::9172");
 delay(250);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server
.getInputStream()));
 SplashScreenLogic.update ("initializing with server...");
 delay(250);

 for (int num = 0; num < 3; num++) {
 toServer.println("SIZE");
 if (!toServer.checkError()) {
 Integer response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();
 if (response == 0) {
 System.out.println((num+1) + ": Number of Images: " + value);
 } else if (response == -1) {
 System.err.println(value);
 } else {
 System.err.println("Received unknown response:" + response);
 }
 }
 }

 server.close();
 SplashScreenLogic.update ("closing");
 delay(250);
 }

 /** Delay for a time. */
 static void delay(int ms) {
 try { Thread.sleep(ms); } catch (InterruptedException ie) { }
 }
}

Run the ServerLauncher, and then the Repo sit o ryClient . (We inserted delays to make it possible to read
the messages.) If you weren't running a server, you will get an exception, but nothing "graphical" happened.
That's because there is still one more step we need to take. To activate the splash screen feature, you need to
supply a specific command line argument to the Java VM. This is a bit awkward, but the designers o f Java
recognized that it would be the best way to avo id the lengthy initialization sequence o f the Java VM. From the
Run menu in Eclipse, select Run Co nf igurat io ns... and, under the Java Applicat io n grouping, locate the
Repo sit o ryClient entry (which should be the last one executed). Switch to the Argument s tab and enter -
splash:images\repo sit o rySplash.png in the VM Arguments section:

Click Apply and then Run. The splash screen should appear; if you see an exception, you might need to run
ServerLauncher and then relaunch Repo sit o ryClient to see the subsequent steps. Of course this is just
an example; the whole application lives "within the splash screen," but you get the po int.

After a long coding session, be sure to run all existing JUnit test cases to verify that they all pass. (First, make
sure to terminate the execution o f any RepositoryServer that may be running.) Now, take a break, stretch your
legs, then move on to the homework for this lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Writing Your Swing Application
Lesson Objectives

In this lesson you will:

design a Java Swing client to connect to a remote server.

Writing a Swing Application Skeleton
Now let's get down to the business o f writing a GUI with a menu bar to access commands, and a window where the
user will browse the images stored on the server. For the layout, we'll take advantage o f the GroupLayout class. This
is the go-to class when designing Swing GUIs. After years o f fumbling around with AWT layouts and third-party layout
libraries, I was amazed at the versatility o f GroupLayout; you'll be amazed too! The basic premise o f this layout
manager is that GUI layouts are fundamentally composed o f symmetric rectangular regions; by treating each axis
independently (horizontal and vertical), the code is both clear and concise, that is, once you get used to reading the
code fragments.

Based on the requirements we set fo r this lab, we'll write a GUI that allows users to browse through the images in a
repository. Let's assume that we need standard navigation ability where the user can advance to the next image, return
to the previous image, go to the very first image, or to the very last image. You will display each image in the largest
section o f the GUI, and you'll reserve space to include metadata about the image. All o f these GUI elements apply to
the entire application, not just this particular lab. You'll include a status widget at the bottom of the window as well.
Ultimately, the GUI will look like this:

http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html

You'll build this GUI incrementally over the next few labs.

 In the /src fo lder, create the client .gui package.

 In the /src/client .gui package, create an ImageRepo sit o ryClient class that extends javax.swing.JFrame
(which is needed for any Swing window-based GUI) as shown:

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

package client.gui;

import java.awt.*;
import javax.swing.*JFrame;
import javax.swing.GroupLayout.Alignment;

/** Primary GUI window for the client application. */
public class ImageRepositoryClient extends JFrame {
 JScrollPane imgPanel;
 JTextArea imgMetaData;
 JTextField status;

 public ImageRepositoryClient() {
 super("Image Repository Client");
 initMenuBar();
 initLayout();
 }

 void initMenuBar() {
 JMenuBar mb = new JMenuBar();

 JMenu server = new JMenu ("Server");
 mb.add(server);

 JMenu image = new JMenu ("Image");
 mb.add(image);

 setJMenuBar(mb);
 }

 void initLayout() {
 setSize (600, 600);

 JPanel p = new JPanel();
 GroupLayout layout = new GroupLayout(p);
 p.setLayout(layout);
 layout.setAutoCreateGaps(true);
 layout.setAutoCreateContainerGaps(true);

 layout.setHorizontalGroup(layout.createParallelGroup(Alignment.CENTER).
 addGroup(layout.createSequentialGroup().
 addComponent(imagePanel()).
 addComponent(imageMetaData(), GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT
_SIZE, GroupLayout.PREFERRED_SIZE)).
 addComponent(statusBar()));

 layout.setVerticalGroup(layout.createSequentialGroup().
 addGroup(layout.createParallelGroup(Alignment.CENTER).
 addComponent(imagePanel()).
 addComponent(imageMetaData())).
 addComponent(statusBar(), GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE,
 GroupLayout.PREFERRED_SIZE));

 add(p);
 }

 JScrollPane imagePanel() {
 if (imgPanel == null) {
 imgPanel = new JScrollPane();
 imgPanel.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS
_NEEDED);
 imgPanel.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEE
DED);
 imgPanel.setPreferredSize(new Dimension(416, 520));
 }

 return imgPanel;
 }

 JTextArea imageMetaData() {
 if (imgMetaData == null) {
 imgMetaData = new JTextArea();
 imgMetaData.setEditable(false);
 imgMetaData.setPreferredSize(new Dimension(160, 520));
 }

 return imgMetaData;
 }

 JTextField statusBar() {
 if (status == null) {
 status = new JTextField(132);
 status.setEditable(false);
 }

 return status;
 }
}

This class is responsible for constructing the GUI elements, including the menu bar and the frame's contents. We had
to type a lo t o f code there, and we need to go over one tricky bit o f logic. Pay particular attention to the widgets created
here: imgPanel, which will present the images in the repository imgMet aDat a, which represents the textual metadata
for the image being viewed, and st at us, which contains status information about the execution o f the application.

Let's talk about the methods in this class. It's standard practice to have imagePanel() and imageMet aDat a()
methods that either create or return the widget created earlier, which simplifies ordering constraints that may be present
in initialization code. By creating a class attribute to store the widgets being created, you can reference these objects
later. Note how the specialized logic fo r each widget is encapsulated; fo r example, imgMet aDat a is constructed to be
non-editable. The initMenuBar() method is pretty self-explanatory. Let's move on and take a look at initLayout():

OBSERVE:

void initLayout() {
 setSize (600, 600);

 JPanel p = new JPanel();
 GroupLayout layout = new GroupLayout(p);
 p.setLayout(layout);
 layout.setAutoCreateGaps(true);
 layout.setAutoCreateContainerGaps(true);

 layout.setHorizontalGroup(layout.createParallelGroup(Alignment.CENTER).
 addGroup(layout.createSequentialGroup().
 addComponent(imagePanel()).
 addComponent(imageMetaData(), GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT
_SIZE, GroupLayout.PREFERRED_SIZE)).
 addComponent(statusBar()));

 layout.setVerticalGroup(layout.createSequentialGroup().
 addGroup(layout.createParallelGroup(Alignment.CENTER).
 addComponent(imagePanel()).
 addComponent(imageMetaData())).
 addComponent(statusBar(), GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE,
 GroupLayout.PREFERRED_SIZE));

 add(p);
 }

The initLayout() method fo llows common Swing practice by constructing a JPanel object that is added to the enclosing
ImageRepositoryClient class. Every JPanel object needs a LayoutManager; in this case you'll use GroupLayout. The
key method invocations are setHorizontalGroup and setVerticalGroup. GroupLayout divides the layout by considering
these two axes independently. This enables you to write sophisticated layouts that automatically stretch and shrink as
the window is resized; if you've ever written a Java GUI using the default Abstract Windowing Too lkit (AWT), you'll

http://docs.oracle.com/javase/6/docs/api/javax/swing/JPanel.html
http://docs.oracle.com/javase/6/docs/api/java/awt/LayoutManager.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html#setHorizontalGroup(javax.swing.GroupLayout.Group)
http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html#setVerticalGroup(javax.swing.GroupLayout.Group)

recognize that this is a major upgrade to AWT's earlier layout managers.

Together, setHorizontalGroup and setVerticalGroup constrain the layout o f widgets in the JPanel. As you look at the
horizontal grouping o f the widgets above, note that there is a sequential group = {imgPanel ; imgMet aDat a } from
left to right. This group (from left to right) parallels st at us since the group is "on top o f" st at us. In describing this
horizontal layout, we have started from the inside and worked our way out. In the layout invocation above, you can see
that we start with the outermost parallel group and work our way in. The indentation is critical to understanding. Each
group starts a new indentation level, and all components in the same group have the same indentation. Note that a
group itself can be considered just another component. The only further constraint is that imgMet aDat a must
maintain a fixed width based on its preferred size, as determined by the three extra parameters.

In the vertical grouping o f the widgets above, there is a parallel inner group = {imgPanel || imgMet aDat a } from top to
bottom. This group is fo llowed by st at us at the bottom. The final constraint is that the height o f st at us must remain
fixed. These visual cues allow you to understand the invocation to setVerticalGroup. If you view the proposed image
from top to bottom, you'll see that there are parallel groupings; imgPanel and imgMet aDat a are side by side, and
both are on top o f st at us.

Because you don't know the size o f the images to be stored in the repository (and you don't know how the user will
choose to resize the window), we instantiate the JScro llPane object in imagePanel(). It will use scro llbars to display
whatever image is placed in it, automatically.

GroupLayout allows fine-grained contro l fo r resizing. In the invocation to setHorizontalGroup, when adding the
imgMet aDat a widget, you add three optional parameters. Specifically, in the final application, you want to ensure that
when you resize the application frame, the size o f the metadata panel on the right size remains a fixed horizontal
width. The three parameters reflect the minimum allowed size, the preferred size, and the maximum size. Here,
minimum=maximum guarantees a fixed width.

 Create the Client Launcher class in the /src/client package to launch the GUI application:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import client.gui.*;

public class ClientLauncher {
 public static void main(String[] args) {
 ImageRepositoryClient irc = new ImageRepositoryClient();
 irc.setVisible(true);
 }
}

Our launcher will become more complex, but this is a good start. The launcher constructs an instance o f the
ImageRepositoryClient and makes it visible. This is how Swing applications are run.

When you run Client Launcher, the widgets appear as expected; when you resize the frame, the image panel on the
left grows while the metadata panel on the right remains fixed in width, and the status field maintains a fixed height.
Close the Frame by clicking on the red X in the upper right corner. What happened to the nice splash screen? That's
right, you also need to update the run configuration for Client Launcher (as you did in a prio r lab) by adding -
splash:images/repo sit o rySplash.png to the VM arguments used when executing that class. Now when you launch
the Client Launcher, the splash screen flashes momentarily before the main application launches. The splash screen
may be visible for only a fraction o f a second. As your application becomes more complex, the time to launch will
increase and the splash screen will remain visible longer.

If you've been running the client examples above, and you haven't closed the client frames, do that now. Notice in
Eclipse that you still have processes executing! You can see this in the conso le window, which still has a red box icon,

http://docs.oracle.com/javase/6/docs/api/javax/swing/JScrollPane.html

which allows you to terminate the recently launched application. Switch to the Debug perspective (Windo w | Open
Perspect ive | Debug); you'll see an entry in the Debug tab for every launched client. Use the Eclipse icon to
terminate each o f these applications, one by one. Select each Client Launcher instance and click on the red
T erminat e icon until all executables are terminated:

How did this happen? The answer lies within ClientLauncher. The Swing GUI takes contro l once you make your first
JFrame window visible. Until further action is taken, however, it will no t relinquish contro l. Fix that now by giving the
Swing GUI the ability to (a) ask the user to confirm the close window request, and (b) ask the user whether they want to
remember this as default behavior in the future.

Switch back to the Java perspective (Windo w | Open Perspect ive | Java) and modify the ClientLauncher class as
shown:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import java.awt.event.*;
import javax.swing.*;
import client.gui.*;

public class ClientLauncher {

 public static void main(String[] args) {
 final ImageRepositoryClient irc = new ImageRepositoryClient();
 irc.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 final ImageIcon icon = new ImageIcon("images/help_32.png");
 irc.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 String[] choices = { "Confirm", "Confirm and don't ask me again" };
 String s = (String) JOptionPane.showInputDialog (irc,
 "Do you wish to exit Image Repository?\n ",
 "Confirm Exit", JOptionPane.PLAIN_MESSAGE,
 icon, choices, choices[0]);
 if (s == null) {
 return;
 }
 irc.dispose();
 }
 });

 irc.setVisible(true);
 }
}

This code depends on an icon loaded from an external file. We recommend you store all o f the images for your
application in a central location like the /images fo lder; in this case, download and save the icon file there. I've used a
free 32x32 icon, but you can use any 32x32 image:

http://docs.oracle.com/javase/6/docs/api/javax/swing/JFrame.html
http://www.gettyicons.com/free-icons/112/must-have/png/32/help_32.png

The second argument to the showInputDialog() invocation ends in /n, which creates extra space to make the dialog
box appear less cluttered. If you don't include the trailing space, the extra line is trimmed away. Go figure!

Right now you're interested in windowClosing actions; note how this code uses an anonymous class to extend
WindowAdapter to override just the one method needed. The irc variable is marked final so the anonymous class can
access this object. When you override the windowClosing method, you can deny the user's request by returning. To
confirm the user request, dispose o f the ImageRepositoryClient frame manually by calling dispose() on it. Make sure
to tell Swing that the irc frame is not to be closed automatically; you do that by invoking the setDefaultCloseOperation
with the JFrame.DO_NOTHING_ON_CLOSE argument.

Now when the user closes the ImageRepositoryClient window, the windowClosing method is executed, using a
standard JOptionPane method to display a dialog that reqires the user to act.

If the user clicks cancel (or closes the dialog), showInputDialog returns null and the windowClosing method returns
without disposing o f the irc frame, o therwise the irc frame is disposed. In Swing, once the last visible window is
disposed, the Java VM can exit, so there is no need to invoke System.exit() here. There are no lingering processes
when you close the window.

We've made some nice progress. Now we'll give our application the ability to store user preferences persistently, and
give the user a chance to quit the ImageRepositoryClient application without requiring any confirmation.

Persistent User Preferences

You can store application-specific information in the user's home directory, which is the most efficient way to
ensure that the file is stored in a user-accessible location, regardless o f platform. Using the Java API, you can
determine the user's home directory through the System property user.ho me . It is common to create file
names that begin with a period (.), which makes these files "hidden." The Preferences helper class provides
the necessary functionality fo r your client. It isn't clear which package should ho ld this class, because we
could use preferences on either the client or the server side o f the final application. While the class is dealing
with client-based preferences now, we might want to use it fo r server-based preferences later. We'll create a
new package named "util," and create the Preferences class there, so it's not tied to client or server, but
placed in its own neat little utility package.

 In the /src fo lder, create a ut il package, and in that package, create a Pref erences class. As you type in
this class, pay special attention to the methods you're writing, because they define the minimal behavior
required for this class:

http://docs.oracle.com/javase/6/docs/api/javax/swing/JOptionPane.html#showInputDialog%28java.awt.Component, java.lang.Object, java.lang.String, int, javax.swing.Icon, java.lang.Object[], java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/awt/event/WindowListener.html#windowClosing(java.awt.event.WindowEvent)
http://docs.oracle.com/javase/6/docs/api/java/awt/event/WindowAdapter.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/JFrame.html#setDefaultCloseOperation%28int%29
http://docs.oracle.com/javase/6/docs/api/javax/swing/WindowConstants.html#DO_NOTHING_ON_CLOSE
http://docs.oracle.com/javase/6/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#exit(int)
http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#getProperties()

CODE TO TYPE: /src/util/Preferences.java

package util;

import java.io.*;
import java.util.*;

public class Preferences {
 static Properties props = null;
 static String propFileName = ".imageRepository.properties";
 static String homedir = "user.home";

 public static String get(String name) {
 if (props == null) { load(); }
 return (String) props.get(name);
 }

 public static String set(String name, String value) {
 if (props == null) { load(); }
 String oldValue = (String) props.put(name, value);
 persist();
 return oldValue;
 }

 public static String remove(String name) {
 if (props == null) { load(); }
 String oldValue = (String) props.remove(name);
 persist();
 return oldValue;
 }

 static boolean load() {
 File file = new File (System.getProperty(homedir), propFileName);

 // silently accept first time if preferences file can't be found
 props = new Properties();
 if (!file.exists()) { return true; }

 try {
 props.loadFromXML(new FileInputStream(file));
 return true;
 } catch (Exception e) {
 System.err.println("Unable to load preferences from:" + file);
 return false;
 }
 }

 static void persist() {
 File file = new File (System.getProperty(homedir), propFileName);
 try {
 FileOutputStream fos = new FileOutputStream (file);
 props.storeToXML(fos, "Saved on " + new Date().toString());
 } catch (Exception e) {
 System.err.println("Unable to save preferences to:" + file);
 }
 }
}

This class manages a Properties object, pro ps. The first three methods manipulate this object, as shown:

OBSERVE:

public class Preferences {
 static Properties props = null;
 static String propFileName = ".imageRepository.preferences";
 static String homedir = "user.home";

 public static String get(String name) {
 if (props == null) { load(); }
 return (String) props.get(name);
 }

 public static String set(String name, String value) {
 if (props == null) { load(); }
 String oldValue = (String) props.put(name, value);
 persist();
 return oldValue;
 }

 public static String remove(String name) {
 if (props == null) { load(); }
 String oldValue = (String) props.remove(name);
 persist();
 return oldValue;
 }

 ...

Preferences persists the stored Properties object whenever the set o r remo ve method is called. These
methods each load() the Properties object from disk first, whenever pro ps is null. This somewhat lazy form
of evaluation ensures that pro ps is properly configured when needed. After set and remo ve update pro ps,
the persist() method is called to store the information persistently to disk. Let's look at the load() code first:

OBSERVE:

 static boolean load() {
 File file = new File (System.getProperty(homedir), propFileName);

 // silently accept first time if preferences file can't be found
 props = new Properties();
 if (!file.exists()) { return true; }

 try {
 props.loadFromXML(new FileInputStream(file));
 return true;
 } catch (Exception e) {
 System.err.println("Unable to load preferences from:" + file);
 return false;
 }
 }

load() reads a set o f preferences using the built- in loadFromXML() method o f the Properties class. The
location o f the persistent file is computed using the global Java property user.ho me , which always tells you
the current user's home directory on the file system. The method returns true when it loads the information
successfully. When there is no stored file, load() handles the situation properly, because your program has
never been run. The final piece o f this class is the persist() method:

Storing Properties object to disk

 static void persist() {
 File file = new File (System.getProperty(homedir), propFileName);
 try {
 FileOutputStream fos = new FileOutputStream (file);
 props.storeToXML(fos, "Saved on " + new Date().toString());
 } catch (Exception e) {
 System.err.println("Unable to save preferences to:" + file);
 }
 }

This method complements the load() method. Note how a FileOutputStream object is created for storing the
XML representation o f the Properties object.

Because many preferences are boo lean values, we'll add two helper methods to the class, and take
advantage o f java.lang.Boolean:

CODE TO TYPE: src/util/Preferences.java

...
 public static String set(String name, boolean b) {
 return set(name, Boolean.toString(b));
 }

 public static boolean isTrue(String name) {
 if (props == null) { load(); }
 return Boolean.parseBoolean((String)props.get(name));
 }
...

Now let's integrate this logic with ClientLauncher. The updated listing below shows you just what needs to be
changed. As you can see, this code checks whether the preference already exists, and ensures that the
ConfirmOnExit preference is set if the user chooses that option:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import java.awt.event.*;
import javax.swing.*;
import client.gui.*;
import util.*;

public class ClientLauncher {
 static final String preference_confirmOnExit = "ConfirmOnExit";

 public static void main(String[] args) {
 final ImageRepositoryClient irc = new ImageRepositoryClient();
 irc.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 final ImageIcon icon = new ImageIcon("images/help_32.png");
 irc.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 if (!Preferences.isTrue(preference_confirmOnExit)) {
 String[] choices = { "Confirm", "Confirm and don't ask me again" };
 String s = (String) JOptionPane.showInputDialog (irc,
 "Do you wish to exit Image Repository?\n ",
 "Confirm Exit", JOptionPane.PLAIN_MESSAGE,
 icon, choices, choices[0]);
 if (s == null) {
 return;
 } else if (s.equals (choices[1])) {
 // remember this in the future.
 Preferences.set(preference_confirmOnExit, true);
 }
 }
 irc.dispose();
 }
 });
 irc.setVisible(true);
 }
}

 Run Client Launcher and close it; when closing the main window, choose the Co nf irm and do n't ask
me again option and press the OK button. After execution, check your home directory and look over the XML
file named .imageRepo sit o ry.pref erences (click File in the upper right and navigate to your "V:" drive;
right-click the file and select Open; if prompted, browse to and select No t epad as the viewer):

OBSERVE:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>Saved on Sun Feb 10 15:09:00 EST 2013</comment>
<entry key="ConfirmOnExit">true</entry>
</properties>

If you execute the application again and close the frame, you will no longer be prompted for a confirmation
and the application will exit cleanly. To reinstate the requirement to request confirmation, delete the
.imageRepo sit o ry.pref erences file in your home directory.

Note

The JDK has a powerful java.util.prefs.Preferences class that allows "applications to store and
retrieve user and system preference and configuration data. This data is stored persistently in an
implementation-dependent backing store. Typical implementations include flat files, OS-specific
registries, directory servers and SQL databases. The user o f this class needn't be concerned
with details o f the backing store." On a Linux machine, user preferences would be stored in
$HOME/.java/.userPref s/pref s.xml; on a Windows desktop, information would be stored in
the Windows registry. We have shown how to write your own preferences functionality.

http://docs.oracle.com/javase/6/docs/api/java/util/prefs/Preferences.html

Testing

Everything looks great, but before we consider this lab a success, let's write some tests. The one way to feel
entirely confident about your code is to write test cases that demonstrate proper behavior. The Preferences
class makes testing a challenge because it works with persistent information. In addition, if you aren't careful,
testing the Preferences class will overwrite the image repository preferences file stored in the user's directory!
What is a tester to do? Well, you can take advantage o f the way the Eclipse workspace is set up, where test
cases are stored in the /t est fo lder. In particular, you can "rename" the preferences file so that all test cases
are processed independently o f the normal running code.

 Create a ut il package in the /t est source fo lder.

 In the /t est fo lder ut il package, create a T est Pref erences JUnit test case as shown:

CODE TO TYPE: /test/util/TestPreferences.java

package util;

import java.io.*;
import junit.framework.TestCase;

public class TestPreferences extends TestCase {
 File propFile;
 static String oldPropName;
 static String testPropName = ".testProps";
 final static String librarySize = "LibrarySize";

 // ensure preferences file will be in test location
 protected void setUp () {
 oldPropName = Preferences.propFileName;
 Preferences.propFileName = testPropName;
 Preferences.props = null;
 propFile = new File (System.getProperty(Preferences.homedir), testPropName);
 if (propFile.exists()) {
 assertTrue (propFile.delete());
 }
 }

 // delete test location file and restore original name
 protected void tearDown() {
 if (propFile.exists()) {
 assertTrue (propFile.delete());
 }
 Preferences.propFileName = oldPropName;
 }

 public void testSinglePreference() {
 assertFalse (propFile.exists());
 assertNull (Preferences.get(librarySize));

 Preferences.set(librarySize, "1000");
 assertTrue (propFile.exists());

 assertEquals ("1000", Preferences.get(librarySize));
 assertEquals ("1000", Preferences.set(librarySize, "1500"));
 assertEquals ("1500", Preferences.remove(librarySize));
 assertNull (Preferences.get(librarySize));
 }
}

setUp() and tearDown() are used to rename the Pref erences.pro pFileName value, so these test case
methods can execute independently o f the production code:

OBSERVE:

...
 // ensure preferences file will be in test location
 protected void setUp () {
 oldPropName = Preferences.propFileName;
 Preferences.propFileName = testPropName;
 Preferences.props = null;
 propFile = new File (System.getProperty(Preferences.homedir), testPropName);
 if (propFile.exists()) {
 assertTrue (propFile.delete());
 }
 }

 // delete test location file and restore original name
 protected void tearDown() {
 if (propFile.exists()) {
 assertTrue (propFile.delete());
 }
 Preferences.propFileName = oldPropName;
 }
...

Before each test case method, setUp() ensures that there is no preferences file, pro pFile , on disk.
tearDown() will also delete the file on disk at the completion o f each test case method, so you can be sure
that each test case method will start with a pristine file system. Now let's take a closer look at the
testSinglePreference test case method:

OBSERVE:

 public void testSinglePreference() {
 assertFalse (propFile.exists());
 assertNull (Preferences.get(librarySize));

 Preferences.set(librarySize, "1000");
 assertTrue (propFile.exists());

 assertEquals ("1000", Preferences.get(librarySize));
 assertEquals ("1000", Preferences.set(librarySize, "1500"));
 assertEquals ("1500", Preferences.remove(librarySize));
 assertNull (Preferences.get(librarySize));
 }

This test case method covers two cases. First, when t here is no t yet a pref erences f ile (t hat is, t he
pro pFile inst ant iat ed in set Up do es no t exist o n disk) . In this case, returning the librarySize
preference must return null. Second, o nce a pref erence is set (in t his case, librarySize), t he
pro pert ies f ile is creat ed o n disk; t hereaf t er, t his pref erence can be updat ed and
Pref erences.get () will ret rieve it s current value . This test case also confirms that the value o f an
unknown (or removed) preference is returned as null.

In addition, this test case confirms that you can add a single preference to an empty preferences file, verify that
it exists, change its value, and then verify that it no longer exists once it has been deleted. Run this test case to
verify that your code works. What's this? The test case fails? The test case fails in the tearDown() method
when you're trying to delete the preferences file on disk. You can check to make sure that this file exists on
your computer, so why can't you delete it? This is one o f the most common mistakes Java programmers
make when using OutputStream objects. There seems to be no easy to way to figure out what's go ing wrong,
but if you don't close an output stream then it will remain open until the Java VM exits. Normally this isn't a
problem, but it becomes one when you try to delete the underlying file from disk. Where did you open an
output stream? Go to the persist() method in Preferences and you will see the subtle defect as shown below.
This method creates a FileOutputStream, but fails to close it! Add the single line o f code to close the
FileOutputStream, and the test case passes:

http://docs.oracle.com/javase/6/docs/api/java/io/OutputStream.html

CODE TO TYPE: /src/util/Preferences.java

...
 static void persist() {
 File file = new File (System.getProperty(homedir), propFileName);
 try {
 FileOutputStream fos = new FileOutputStream (file);
 props.storeToXML(fos, "Saved on " + new Date().toString());
 fos.close();
 } catch (Exception e) {
 System.err.println("Unable to save preferences to:" + file);
 }
 }
...

This example demonstrates that you need to write and run test cases after you complete key functionality.
When you do that, you can ensure that your code works right and validate that it continues to work later
whenever changes happen.

Now run this test case through EclEmma code coverage; the test coverage for the Preferences class is
around 60%. We'll need to improve this. There are some places in our code in Preferences that did not
execute. You'l want to investigate those scenarios and write test cases for them:

Loading up a sample (and valid) preferences file from disk.
Exercising the special methods to handle boo lean preferences.

Add two more test case methods to the end o f the T est Pref erences class:

CODE TO TYPE: /test/util/TestPreferences.java

...
 public void testLoadWorks() {
 if (!propFile.exists()) {
 assertNull (Preferences.get(librarySize));
 }
 Preferences.set("LibrarySize", "1000");

 // clear out from Preferences
 Preferences.props = null;

 assertEquals ("1000", Preferences.get("LibrarySize"));
 }

 public void testBooleanPreferences() {
 String booleanAtt = "SomeBooleanAtt";
 Preferences.set(booleanAtt, true);
 assertTrue (Preferences.isTrue(booleanAtt));
 assertEquals ("true", Preferences.remove(booleanAtt));
 assertFalse (Preferences.isTrue(booleanAtt));
 }
...

After adding these methods, you can see that the coverage still remains too low, at about 78%. The largest
unexecuted logic occurs when there is a problem loading up the preferences file. Add this test case to the end
of T est Pref erences, which constructs a "corrupted" XML file that cannot be loaded properly:

CODE TO TYPE: /test/util/TestPreferences.java

...
 public void testGarbagePropsFile() {
 try {
 PrintWriter pw = new PrintWriter (propFile);
 pw.println("GARBAGE");
 pw.close();
 } catch (FileNotFoundException fnfe) {
 fail ("Unable to create sample props file.");
 }

 assertNull (Preferences.get("Testing"));
 }
...

Run coverage using this test case and you'll see that once again, there is an unexpected error within the
tearDown() method. What could have gone wrong this time? Given the problems you saw earlier with the
FileOutputStream, you're robably not surprised that there is a corresponding problem when dealing with
FileInputStream. Review the load() method and you'll see an invocation to loadFromXML, but when you
review the documentation for this method it claims "The specified stream is closed after this method returns."
However, as you have just found out, the stream is only closed if the method returns successfully, not when
an exception is thrown! The next modification you make will ensure that the file is closed, even upon an
exception. Now when you rerun all test cases within EclEmma you'll see a coverage o f over 87%. This is a
so lid testing performance. (The "Unable to load preferences from:\\beam\~\.testProps" warning message in
the conso le appears because o f the testGarbagePropsFile test case, as it should):

CODE TO TYPE: /src/util/Preferences.java

...
 static boolean load() {
 File file = new File (System.getProperty(homedir), propFileName);

 // silently accept first time if preferences file can't be found
 props = new Properties();
 if (!file.exists()) { return true; }

 FileInputStream fis = null;
 try {
 fis = new FileInputStream(file);
 props.loadFromXML(new FileInputStream(file)fis);
 return true;
 } catch (Exception e) {
 System.err.println("Unable to load preferences from:" + file);
 try { fis.close(); } catch (IOException ioe) { }
 return false;
 }
 }
...

You've missed some exceptional cases in the test case. The new line o f code added to the exception handler
within the load() method is shown in yellow because the IOException exception was never thrown, thus the
empty exception handler was never executed. The o ther yellow-marked regions are similar. The only red-
marked region is within the persist() method.

Now you've got the beginnings o f a GUI in place. Good work. Work through your lesson assignments now
and I'll see you again soon!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Server-Side Application Model
Lesson Objectives

In this lesson you will:

use the application model fo r this ImageRepository application.
store and load images from disk and transfer these images from client to server using the existing IPC layer.
use a client to add an image to the repository.
test the use o f the repository with one or more images.

Server-Side Application Model
Okay, you've got your GUI skeleton in place. Now you're ready to add logic to the RepositoryServer. At this po int, you'll
want to review the requirements and ask yourself key questions about the information that the server needs to store.
For example:

Will images be stored by name? If so , does the name have to conform to a specific fo rmat?
Will images have an "index number" reflecting their position? This seems like it could be hard to implement
because deleting an individual image will cause successive images to be renumbered. Perhaps instead the
image will have numbers that won't be reused when an image is deleted (causing gaps).
How will images be stored on disk? Will each image be placed in its own file or will multiple images be
stored together?
How will metadata for each image be stored, such as when it was uploaded, fo rmat information, or which
user uploaded it?

First you have to decide whether to have a single repository o f all images maintained by a server or to allow a server
to host multiple repositories. Whatever you decide, a client will only connect to a single repository at a time. With either
cho ice there will be tradeoffs:

If a server is restricted to hosting just a single repository, you will simplify the server code itself, but the
environment will become more complicated, because you will need to launch new servers for each
individual repository.
If a server hosts multiple repositories, more clients are connected to a single server and the throughput fo r
that server may be at risk.

In this lesson, you'll customize the server to use a specific directory containing images as a repository, or use a
default image repository when executed. Even so, you need to figure out a way to prevent multiple servers from
executing over the same image repository at the same time (more on this later).

Because disk space is not an issue for most applications, you'll store each image in its own file. This sets up another
tradeoff: because you're making it simpler to access individual files, the server will use the file system to store
potentially thousands o f files containing images. This approach is preferable to developing a technique to store all
image data within one single file. In addition, it's easier to test a repository in which images are stored in their own
files.

Lastly, you can't rely on the sorted image names (or the file names) to set their o rder in the repository. Instead, you'll
construct an index that maintains the order o f the images and all corresponding metadata. You might consider placing
all metadata inside a database (but that's beyond the scope o f this course). For now, you'll develop an internal API that
could ultimately be reimplemented to use a database.

Repository Selection

 In the /src fo lder, create a server.mo del package, where you'll create your classes. The design proposed
here is not the only way to approach the problem, but it o ffers one so lution. By creating a package for the
application model, you maintain separation between these classes and the rest o f the code. When working
with complex applications, do not let code become too interwoven, o therwise you risk having code that "only
works when everything works." You may have heard o f the Model/View/Contro ller (MVC) paradigm, especially
in the context o f Graphical User Interfaces. The design introduced in these labs is similar to MVC.

 In the /src fo lder server.mo del package, create a Repo sit o ry class:

CODE TO TYPE: /src/server.model/Repository.java

package server.model;

import java.io.*;

public class Repository {

 final File storage;
 int count;

 public Repository(File storage) throws IOException {
 if (storage.exists() && storage.isDirectory()) {
 this.storage = storage;
 } else {
 throw new IOException ("Storage for repository must be an existing directo
ry.");
 }
 }

 public void add(byte[] image, String name) {
 System.out.println("Adding " + name + " [" + image.length + " bytes]");
 count++;
 }

 public int size() {
 return count;
 }
}

This first implementation o f the Repository class consists mostly o f scaffo lding. This is a good way to initiate
your designs when you'll be implementing code with increasing complexity. By marking the st o rage attribute
as final, you prevent any changes to the storage reference during execution.

The Repository object will no t be constructed if the storage directory doesn't exist. You must construct a
Repository object with an actual directory, o therwise the constructor will throw a FileNotFoundException.
Because o f this invariant, the final version o f the class will be easier to write.

Our code contains two initial methods: one allows you to add an image whose bytes are stored in a byte[]
array and another allows you to query the number o f images stored in the repository. For now, this (mostly
scaffo lding) code just maintains a running count.

The Repository starts with a basic interface. The first implementation represents an image with a byte[] array.
We won't bother to design a complex class to represent an image until we're sure that we need it.

 Create a fo lder in the Dist ribut edApp pro ject named Repo sit o ry which represents the default
repository.

Then, modify the create() method o f ServerLauncher to construct a Repo sit o ry object using a default file
location as shown:

CODE TO TYPE: /src/server/ServerLauncher.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;

public class ServerLauncher {
 public static final String defaultLocation = "Repository";

 public static RepositoryServer create() throws Exception {
 return create(new File (defaultLocation));
 }

 public static RepositoryServer create(File dir) throws Exception {
 Repository repository = new Repository(dir);
 RepositoryServer server = new RepositoryServer(repository, new ProtocolHandl
er(repository));
 server.bind();
 return server;
 }

 public static void main(String[] args) throws Exception {
 RepositoryServer server = create();

 System.out.println("Server awaiting client connections");
 server.process();
 System.out.println("Server shutting down.");
 }
}

These modifications require the RepositoryServer to become aware o f the Repository object introduced in
this lab; this makes sense because o f the central ro le that the RepositoryServer plays. The secondary change
is that the Protoco lHandler object is constructed with a Repository object; this is done to allow the handler to
access the repository as needed during processing. Update Repo sit o ryServer as shown:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.model.*;

public class RepositoryServer {
 ServerSocket serverSocket = null;
 int state = 0;
 IProtocolHandler protocolHandler;
 Repository repository;

 public RepositoryServer(Repository rep, IProtocolHandler ph) {
 protocolHandler = ph;
 repository = rep;
 }

 public void bind() throws IOException {
 serverSocket = new ServerSocket(9172);
 state = 1;
 }

 public void process() throws IOException {
 while (state == 1) {
 Socket client = serverSocket.accept();

 new RepositoryThread(client, protocolHandler).start();
 }

 shutdown();
 }

 void shutdown() throws IOException {
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state = 0;
 }
 }
}

Now you need to make a few changes to Pro t o co lHandler so that the ServerLauncher will compile.
Modify your code as shown:

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;

public class ProtocolHandler implements IProtocolHandler {
 final Repository repository;

 public ProtocolHandler (Repository r) {
 repository = r;
 }

 public boolean process(BufferedReader fromSocket, PrintWriter toSocket) {
 try {
 String request = fromSocket.readLine();
 if (request == null) {
 return false;
 }

 if (request.equals("SIZE")) {
 output(toSocket, "0");
 } else {
 // internal server error. Try to continue and keep processing
 outputError(toSocket, "Unable to process request: " + request);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 return false;
 }

 return true;
 }

 void output(PrintWriter toSocket, String value) {
 toSocket.println(0);
 toSocket.println(value);
 }

 void outputError(PrintWriter toSocket, String error) {
 toSocket.println(-1);
 toSocket.println(error);
 }
}

We'll draw inspiration from the Test-Driven Development (TDD) community; first we'll create a JUnit test case
that validates the expected behavior. In writing the test case, you will complete the remaining code for this lab.

During testing, you shouldn't depend on using normal repositories; create a test repository to use only fo r
test cases. This is useful because then you can create, add, or destroy repositories as needed during testing.

 Create a fo lder in your Dist ribut edApp pro ject named T est Repo sit o ry to use for all test cases. Modify
T est Server as shown:

http://en.wikipedia.org/wiki/Test-driven_development

CODE TO TYPE: /test/server.ipc/TestServer.java

package server.ipc;

import java.io.*;
import server.ServerLauncher;
import server.ipc.RepositoryServer;
import client.*;
import junit.framework.TestCase;

 public class TestServer extends TestCase {

 public static final String testRepository = "TestRepository";

 ...

 public static RepositoryServer launchServer() throws Exception {
 final RepositoryServer server = ServerLauncher.create(new File (testReposi
tory));
 ...

The create() method in ServerLauncher allows for straightforward customization.

 In the /t est fo lder's server.ipc package, create the T est AddBehavio r test case. This test case is a bit
raw and you will have to modify it later. This type o f incremental change is pretty common to a client/server
system, that is, where you add a new message between the client and server. It requires changes to both
sides o f the client/server system, but if you do it right, you won't have to make any changes to the underlying
IPC infrastructure.

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

package server.ipc;

import java.io.*;
import java.net.*;
import util.*;
import junit.framework.TestCase;

public class TestAddBehavior extends TestCase {
 RepositoryServer server;
 Socket client;

 protected void setUp() throws Exception {
 server = TestServer.launchServer();
 client = new Socket("localhost", 9172);
 }

 protected void tearDown() throws Exception {
 server.shutdown();
 client.close();
 }

 public void testAddBehavior() throws Exception {
 PrintWriter toServer = new PrintWriter (client.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(client
.getInputStream()));

 // Protocol for sending SIZE
 toServer.println("SIZE");
 expectSuccess("0", fromServer);

 // Protocol for sending an image
 toServer.println("ADD-BEGIN");
 toServer.println("sampleImage");
 File f = new File("images", "repositorySplash.png");
 toServer.println(ImageEncoding.encode(f));
 toServer.println("\nADD-DONE");
 expectSuccess(null, fromServer);

 // Expect repository with 1 image
 toServer.println("SIZE");
 expectSuccess("1", fromServer);
 }

 public static void expectSuccess (String expect, BufferedReader fromServer) th
rows IOException {
 int response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();

 if (response == 0) {
 if (expect != null) {
 assertEquals (expect, value);
 } else {
 System.out.println("received:" + value);
 }
 } else {
 fail ("(response:" + response + ") received " + value + " not " + expect);
 }
 }
}

You'll recognize much o f the logic below from earlier labs. This code will no t compile immediately because o f
a missing class (ut il.ImageEnco ding) that you'll write in just a few minutes. This test case class has three
main parts that we'll investigate now:

OBSERVE:

public class TestAddBehavior extends TestCase {
 RepositoryServer server;
 Socket client;

 protected void setUp() throws Exception {
 server = TestServer.launchServer();
 client = new Socket("localhost", 9172);
 }

 protected void tearDown() throws Exception {
 server.shutdown();
 client.close();
 }

 ...

The set Up method is defined by JUnit to be the method that executes immediately before each individual test
case method. In this case, there is only one test case method, t est AddBehavio r. Here, set Up launches a
server and client to be used by the test case method. The complementary t earDo wn method executes
immediately after each test case method. The implementation shown above properly terminates both the
server and client.

Next, check out the expectSuccess() helper method, which validates that the client receives a successful
response:

OBSERVE:

 public static void expectSuccess (String expect, BufferedReader fromServer) th
rows IOException {
 int response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();

 if (response == 0) {
 if (expect != null) {
 assertEquals (expect, value);
 } else {
 System.out.println("received:" + value);
 }
 } else {
 fail ("(response:" + response + ") received " + value + " not " + expect);
 }
 }

This helper method reads two string lines from the Buf f eredReader f ro mServer object. If the respo nse
value is 0 (zero), the server has declared a successful response. Remember, a failure is recorded using a
value o f "-1." The method does one more check to determine whether expect is non-null. If it is, then
expectSuccess() confirms that the value matches the expected outcome, expect .

OBSERVE:

 public void testAddBehavior() throws Exception {
 PrintWriter toServer = new PrintWriter (client.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(client
.getInputStream()));

 // Protocol for sending SIZE
 toServer.println("SIZE");
 expectSuccess("0", fromServer);

 // Protocol for sending an image
 toServer.println("ADD-BEGIN");
 toServer.println("sampleImage");
 File f = new File("images", "repositorySplash.png");
 toServer.println(ImageEncoding.encode(f));
 toServer.println("\nADD-DONE");
 expectSuccess(null, fromServer);

 // Expect repository with 1 image
 toServer.println("SIZE");
 expectSuccess("1", fromServer);
 }

The test case method defines the t o Server object to use for communicating requests to the server, and the
f ro mServer object to use for receiving the response strings from the server. In our test case, first we send a
SIZ E request to the server; the expected successful response is "0 ," reflecting the number o f images in the
repository. Then we define the ADD-BEGIN ... ADD-DONE pro toco l and send an image using it. Once
completed, the expected response is a success, although there is no specific value o f interest to the test
case. Finally, we send another SIZ E request to the server, and this time the successful response must be "1."

The TestAddBehavior() test case verifies that when you add an image to an empty repository, the repository
will contain 1 image. This observation and testing is carried out exclusively using the underlying network
communication that you have already designed. Always test your code this way; first write (and test!)
underlying utility classes and then build upon and use these classes in each subsequent test case. In do ing
so, you develop and test code incrementally in the exact environment in which it will be run.

You already have the SIZ E message implemented, now let's review the proposed ADD message. Since the
Protoco lHandler class is in complete contro l, the handler must support this ADD message structure:

Send a line to the server with the string ADD-BEGIN, indicating that an image is about to be sent.
Send a line with the name of the image ("sampleImage" in this case).
Encode the raw bytes o f the image ("repositorySplash.png" in this case) on subsequent lines,
using the ImageEncoding class that you will define next.
A final ADD-DONE line terminates the message.

This logic works only if the terminal string "ADD-DONE" does not appear in the image encoding. So how do
you transmit an image o f binary data from the client to the server over an ASCII pro toco l?

 In the /src fo lder ut il package, create a new ImageEnco ding class. There are two possible
implementations for you to consider, either option works. Email attachments use MIME (Multipurpose Internet
Mail Extensions) encoding to send binary data using an o therwise ASCII pro toco l. The problem is that this
capability is not standard in the JDK. Here are the two so lutions to this problem:

Install a freely available open source library for the encoding.
Access a "hidden" class in the JDK against the express wishes o f the Java designers.

Option 1:Access a Hidden Class

The JDK comes with a sun.misc.BASE64Encoder class for encoding binary files. However, this class is in a
sun.* package, which means you can't depend on its availability. It may not be present on a different
operating system, but still, you can access this class (and find online documentation about it). Eclipse has a
customizable compiler feature that might identify such attempts at using BASE64Encoder class as errors,
however. Type in this code for ImageEnco ding (if it compiles without any problems, great!):

http://en.wikipedia.org/wiki/MIME
http://www.oracle.com/technetwork/java/faq-sun-packages-142232.html
http://www.docjar.com/docs/api/sun/misc/BASE64Encoder.html

CODE TO TYPE: /src/util/ImageEncoding.java

package util;

import java.io.*;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;

public class ImageEncoding {

 public static String encode (File f) throws IOException {
 if (f == null) {
 throw new IOException ("No image selected for encoding.");
 }
 FileInputStream fis = null;
 try {
 fis = new FileInputStream(f);
 byte[] bytes = new byte[(int) f.length()];
 fis.read(bytes);
 return new BASE64Encoder().encode(bytes);
 } finally {
 fis.close();
 }
 }

 public static byte[] decode (String str) throws IOException {
 return new BASE64Decoder().decodeBuffer(str);
 }
}

We close InputStream objects because there is no documentation or indication about whether
Base64Encoder's encode() method closes the input stream once it's done. The f inally block will close the
output stream properly regardless o f whether the write completed or threw an exception. The above code
might show a compiler error with this warning: Access rest rict io n: T he t ype BASE64Enco der is no t
accessible due t o rest rict io n o n required library C:\Pro gram Files (x86)\Java\jre6\lib\rt .jar. If this
happens, select Windo w | Pref erences and expand the entries for Java | Co mpiler | Erro rs/Warnings.
Expand the "Deprecated and restricted API" section, and change the "Forbidden reference (access rules)" to
Warning, as shown:

When you're alerted that this action will require a full build o f the pro ject, click "agree," and your code compiles
cleanly.

The next section shows an alternative that uses a freely available open-source implementation. If you're
already famiiar with it, feel free to skip to the TestAddBehavior test case.

Option 2: Install a Free Open-Source Class

There are numerous open-source implementations that you can use for MIME-encoding files. Here is one
authored by Robert Harder that I've chosen because it is free and without restrictions. You can download a
Zip file from his website and save it to the file system of your pro ject (which should be
V:\workspace\DistributedApp). When you refresh your Dist ribut edApp pro ject in Eclipse, this zip file will
appear. Double-click on the file to open it, then double-click on the Base64.java file within the zip file. A
notepad application should appear containing the Java code. Select all o f the text in the notepad and copy the
text to your clipboard.

Create a net .iharder package in the /src fo lder.

Create a Base64 class in that package, and replace that class definition with the contents o f the clipboard.
The result will be a Base64 class in the net.iharder package. Now you can define the fo llowing
ImageEnco ding class in the ut il package:

CODE TO TYPE: /src/util/ImageEncoding2.java

package util;

import java.io.*;
import net.iharder.*;

public class ImageEncoding {

 public static String encode (File f) throws IOException {
 return Base64.encodeFromFile(f.getAbsolutePath());
 }

 public static byte[] decode (String str) throws IOException {
 return Base64.decode(str);
 }
}

The structure o f both options is similar. In fact, they are drop-in replacements o f each o ther. You can use
either one.

TestAddBehavior Test Case

Now, make a few changes to the Pro t o co lHandler class. First, the handler needs to have a reference to the
Repo sit o ry object, that's the purpose o f the added constructor. Without the repository, the handler will no t
be able to function properly. Second, we want to update the handler to process add image requests. The
added code reads one line at a time, appending each string together until it encounters the termination line
("ADD-DONE"). Then the ImageEncoding class decodes this string into the original byte array, which is added
to the repository. The logic fo r counting the lines o f the encoded representation is here just to give you an
idea o f the size (number o f lines) o f the encoding:

http://www.iharder.net/current/java/base64/
http://sourceforge.net/projects/iharder/files/latest/download?source=files

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import java.io.*;
import server.model.*;
import server.ipc.*;
import util.*;

/** Implementation of protocol. */
public class ProtocolHandler implements IProtocolHandler {
 final Repository repository;

 public ProtocolHandler(Repository repository) {
 this.repository = repository;
 }

 public boolean process(BufferedReader fromSocket, PrintWriter toSocket) {
 try {
 String request = fromSocket.readLine();
 if (request == null) {
 return false;
 }

 if (request.equals("SIZE")) {
 output(toSocket, "0" + repository.size());
 } else if (request.equals("ADD-BEGIN")) {
 String name = fromSocket.readLine();
 StringBuilder full = new StringBuilder();
 int num = 0;
 while (true) {
 String line = fromSocket.readLine();
 if (line.equals ("ADD-DONE")) { break; }

 full.append(line);
 num++;
 }

 byte[] bytes = ImageEncoding.decode(full.toString());
 repository.add(bytes, name);
 output (toSocket, bytes.length + " bytes received in " + num + " lines."
);
 } else {
 // internal server error. Try to continue and keep processing
 outputError(toSocket, "Unable to process request: " + request);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 return false;
 } catch (RuntimeException re) {
 outputError(toSocket, re.getMessage());
 }

 return true;
 }

 void output(PrintWriter toSocket, String value) {
 toSocket.println(0);
 toSocket.println(value);
 }

 void outputError(PrintWriter toSocket, String error) {
 toSocket.println(-1);
 toSocket.println(error);
 }
}

Instead o f returning "0" when receiving a SIZE request, the server now returns a string containing the actual
number o f images in the repository, using the size() method o f the repo sit o ry. The second change is more
complex:

OBSERVE:

 if (request.equals("ADD-BEGIN")) {
 String name = fromSocket.readLine();
 StringBuilder full = new StringBuilder();
 int num = 0;
 while (true) {
 String line = fromSocket.readLine();
 if (line.equals ("ADD-DONE")) { break; }

 full.append(line);
 num++;
 }

 byte[] bytes = ImageEncoding.decode(full.toString());
 repository.add(bytes, name);
 output (toSocket, bytes.length + " bytes received in " + num + " lines.");

First, the server reads o ne line o f input t o represent t he name o f t he desired image f ile . Then it
co nt at enat es all st rings received f ro m t he client bet ween t he "ADD-BEGIN" and "ADD-DONE"
lines (excluding "ADD-BEGIN" and "ADD-DONE" themselves). Using the ImageEnco ding logic to convert
the encoded string into a byt e[] array, the server adds the image to the repository and outputs a message (o f
success) to the client, recording the number o f bytes in the image. This pro toco l is well-defined, efficient to
implement, and enforced by both client and server.

Run the T est AddBehavio r test case to validate that we've got correct behavior. Now, run the same test case
in EclEmma code coverage; you'll see that Pro t o co lHandler (75% coverage) and Repo sit o ry (88%
coverage) are missing only a few lines o f error logic. This is a good start!

You've added an additional RuntimeException handler within the process() method, which will pro tect the
server. If the server runs into any problems while processing a client request, an appropriate error message
is returned to the client. The power o f Exceptions allows you to have logic, in one place, that handles a range
of potential error situations.

Completing Repository Functionality

Now you'll complete the functionality o f Repository for storing the image persistently in a file. You'll also
create an index file to represent all images in the repository. Consider how you'll determine the name of the
file on disk for each uploaded image. In the testing example, the name of the image from the client's po int o f
view was "sampleImage." However, if multiple clients upload different files, you can't have the repository
store them with the same filename—the newest image would always obliterate the o lder one. In a
client/server system, you can expect that clients don't communicate with each o ther, so we can't readily
enforce a global naming scheme. We have an way to work past this problem and it o ffers an interesting twist
—the MD5 cryptographic hash function. While MD5 is no longer "cryptographically secure," it can be used
here to compute a "fingerprint" fo r an image to create a statistically unique 16-byte hash value. If it turns out
that two clients upload the exact same image (bit fo r bit), then both requests will be computed to the exact
same hash value, which can be used to advise the second client that the image already exists in the
repository.

 In the /src fo lder ut il package, create a Fingerprint class as shown:

http://en.wikipedia.org/wiki/MD5

CODE TO TYPE: /src/util/Fingerprint.java

package util;

import java.security.*;

public class Fingerprint {
 public static String getFingerPrint(byte[] bytes) {
 String defaultFingerprint = "ffffffffffffffffffffffffffffffff";
 try {
 MessageDigest md5 = MessageDigest.getInstance("MD5");
 md5.update(bytes, 0, bytes.length);

 StringBuilder sb = new StringBuilder();
 for (byte b : md5.digest()) {
 String hex = Integer.toHexString(b);
 if (hex.length() == 1) {
 sb.append("0").append(hex);
 } else if (hex.length() == 2) {
 sb.append(hex);
 } else {
 // negative byte values appear as something like "ffffffc0";
 sb.append(hex.substring(6));
 }
 }

 return sb.toString();
 } catch (Exception e) {
 return defaultFingerprint;
 }
 }
}

This class contains the functionality to compute a string representing the MD5 fingerprint o f a byt e[] array. It
relies on the default algorithm implementation already found in the JDK. The JDK documentation contains a
list o f the supported algorithms. As you can see, you need only provide the bytes to the md5 algorithm, which
return the fingerprint as an array o f bytes, which is converted into a hex string as shown below. As
documented in the md5sum application, the string returned by Fingerprint is identical to the value returned
by md5sum.

The Fingerprint class contains the logic that converts the byte[] array message digest created using Java's
default implementation o f the MD5 algorithm. Placing this implementation in its own class simplifies the rest
o f your code and makes it possible to switch fingerprint algorithms efficiently. You can compare the output o f
this class directly to the output o f 'md5sum' to verify that the values are identical.

To store an image in a file, the repository computes its fingerprint and attempts to create a file on disk in which
to store the bytes; if thie attempt fails, then the image is already present in the repository and an Exception
should be thrown. Modify Repo sit o ry as shown (we'll want this method to return the computed fingerprint o f
the added image later, so we'll make that change now too):

http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA
http://en.wikipedia.org/wiki/Md5sum

CODE TO TYPE: /src/server.model/Repository.java

package server.model;

import java.io.*;
import util.*;

public class Repository {

 final File storage;
 int count;

 public Repository(File storage) throws IOException {
 if (storage.exists() && storage.isDirectory()) {
 this.storage = storage;
 } else {
 throw new IOException ("Storage for repository must be an existing directo
ry.");
 }
 }

 public voidString add(byte[] image, String name) {
 String fp = Fingerprint.getFingerPrint(image);
 File f = new File (storage, fp);
 if (f.exists()) {
 throw new IllegalStateException("That image already exists in the reposito
ry");
 }

 FileOutputStream fos = null;
 boolean failed = false;
 try {
 fos = new FileOutputStream (f);
 } catch (FileNotFoundException e) {
 failed = true;
 }

 try {
 if (!failed) {
 fos.write(image);
 }
 } catch (IOException e) {
 failed = true;
 } finally {
 try {
 fos.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 failed = true;
 }
 }

 if (failed) {
 throw new IllegalStateException("Unable to construct image file. Contact A
dministrator.");
 }
 System.out.println("Adding " + name + " [" + image.length + " bytes]");
 count++;
 return fp;
 }

 public int size() {
 return count;
 }
}

The add() method attempts to store the image to disk in a file named for that image's fingerprint. Once the

output file is created using the FileOutputStream (fos) object, that output stream must be closed. Note how the
f inally clause in the exception handler will be invoked regardless o f whether the fos.write(image) method
throws an IOException. The only trick here is the use o f a separate try/catch handler in the f inally block to
handle errors that may arise when fos.close() executes.

When you run the T est AddBehavio r test case now, a file is created in the T est Repo sit o ry fo lder in
Eclipse. You won't actually be able to see this file until you refresh the fo lder (because the file was created
without Eclipse being aware o f it). To do that, right-click the T est Repo sit o ry fo lder and select Ref resh.
You'll see a single file with a name that consists o f a long hex string—if you used the splash image in the test
case, the name is c00bc1ed28f abdbcebc3e4735decc83e , which is the MD5 fingerprint fo r the image file.

Note
The Repository class is unable to recover properly if there are problems in storing persistently,
which is why the class is designed to throw an unchecked IllegalStateException when an image
is added to the Repository. The server must handle these error situations.

Everything looks pretty good, but when you run the test case again, it fails, declaring "That image already
exists in the repository." If you delete the image file in the /T est Repo sit o ry fo lder manually, you can rerun
the test case and it will succeed. Let this be a lesson in repeatability. Test cases are important because you
can execute them automatically, at a moment's notice, to reaffirm your (increasing) confidence in your code!

I like what I'm seeing so far! Get go ing on the homework for this lesson and when you're done, I'll meet you
in the next lesson!

In the next lab you will fix the TestAddBehavior test case and complete the Repository class to properly maintain a persistent
index o f files in the repository.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Java Object Serialization
Lesson Objectives

In this lesson you will:

use Java Object Serialization for persistent storage
use the Java Collections Framework.

Java Object Serialization
From its inception, Java o ffered support fo r linearizing objects into bytes and then restoring the original objects later.
Known as the Object Serialization model, this functionality can be used to transmit objects over a network, or store
objects persistently to disk. In this lesson, you'll learn about the benefits and challenges o f using Object Serialization,
and the best times to implement it.

We need an index to maintain the order o f the images in the repository, and the metadata associated with each image.
You'll develop an Index class for this purpose and use Java's built- in ability to store the Index object persistently to
disk.

The trick to devising effective data structures is to envision the various ways in which the information is retrieved and
updated. Our index maintains the ordering o f the images and, fo r now, the only metadata associated with each image
is its name, fingerprint, and size in bytes. The index will allow for iterative access through the entire set, as well as
retrieval by ordered position and by fingerprint. Since we want the metadata to be extensible, we will use a Properties
object fo r all metadata information.

 in the /src fo lder's server.mo del package, create an Index class as shown:

http://docs.oracle.com/javase/tutorial/collections/
http://docs.oracle.com/javase/6/docs/technotes/guides/serialization/index.html

CODE TO TYPE: /src/server.model/Index.java

package server.model;

import java.util.*;

public class Index implements Iterable<String> {
 // Order of keys determines order in repository
 ArrayList<String> keys = new ArrayList<String>();
 Hashtable<String,Properties> meta = new Hashtable<String,Properties>();

 public Properties getMetaData(String key) {
 Properties md = meta.get(key);
 if (md == null) { return new Properties(); }
 return md;
 }

 public Properties setMetaData(String key, Properties props) {
 Properties old = meta.get(key);
 meta.put(key, props);
 return old;
 }

 public boolean add(String key) {
 if (keys.contains(key)) {
 return false;
 }
 keys.add(key);
 return true;
 }

 public Iterator<String> iterator() {
 return keys.iterator();
 }

 public int size() {
 return keys.size();
 }
}

By creating this class, you expose methods for the conceived behavior o f the index. This class implements the
It erable interface, which allows you to iterate over all o f the keys in the index using an enhanced f o r loop.

Here are the essential parts o f this class:

OBSERVE:

 public class Index implements Iterable<String> {
 ...

 public Iterator<String> iterator() {
 ...
 }
 }

When Index implements Iterable, it declares that it contains an iterator() method which constructs an Iterator over its
aggregate elements. In addition, the type o f element returned by the Iterator is declared to be String (using the Java
generics capability). The enhanced f o r loop that takes advantage o f this capability would look like this:

OBSERVE:

 for (String key : idx) {
 System.out.println(key);
 }

The above code would print out (in order) the keys for the images stored by the Index object, idx:

OBSERVE:

public class Index implements Iterable<String> {
 // Order of keys determines order in repository
 ArrayList<String> keys = new ArrayList<String>();
 Hashtable<String,Properties> meta = new Hashtable<String,Properties>();

 public Properties getMetaData(String key) {
 Properties md = meta.get(key);
 if (md == null) { return new Properties(); }
 return md;
 }

 public Properties setMetaData(String key, Properties props) {
 Properties old = meta.get(key);
 meta.put(key, props);
 return old;
 }

 public boolean add(String key) {
 if (keys.contains(key)) {
 return false;
 }
 keys.add(key);
 return true;
 }

 public Iterator<String> iterator() {
 return keys.iterator();
 }

 public int size() {
 return keys.size();
 }
}

The keys attribute is an ArrayList because you want to preserve the order o f images in the repository by key. The
met a attribute is an associative Hasht able that allows random access by key to retrieve or set the metadata
associated with each image. Although set Met aDat a's primary reponsibility is to store a Properties object fo r the
given key, with minimal programming effort, you can have it return the prio r Properties object that had been associated
with the given key. This is a common pattern with get/set methods that eliminates the need to call getMetaData
separately in order to get the former value before updating it.

Repository still doesn't store metadata persistently to survive from one server execution to the next. Also , the Index
should be reloaded from persistent storage whenever the Repository is constructed. We want to integrate Index with
Repository.

Given the final Repository class from the prio r lab, you need to store the Index to disk when it changes and load up the
complete Index object whenever a Repository is constructed. It makes sense to store the Index object in a file within
the directory that contains the repository image files. Let's proceed with this task in stages. Make these changes to the
Repo sit o ry class to store the Index object to disk (and load it from disk). The code won't compile until all missing
methods are in place:

CODE TO TYPE: /src/server.model/Repository.java

package server.model;

import java.io.*;
import java.util.*;
import util.*;

public class Repository {
 final File storage;
 Index index;
 static final String indexFileName = "indexFile";
 final File indexFile;
 int count;

 public Repository(File storage) throws IOException {
 if (storage.exists() && storage.isDirectory()) {
 this.storage = storage;
 indexFile = loadIndex();
 } else {
 throw new IOException ("Storage for repository must be an existing directory."Sto
rageNotDirectory);
 }
 }

 public String add(byte[] image, String name) {
 String fp = Fingerprint.getFingerPrint(image);
 File f = new File (storage, fp);
 if (f.exists()) {
 throw new IllegalStateException("That image already exists in the repository"Alre
adyExistsImage);
 }

 FileOutputStream fos = null;
 boolean failed = false;
 try {
 fos = new FileOutputStream (f);
 } catch (FileNotFoundException fnfe) {
 failed = true;
 }

 try {
 if (!failed) {
 fos.write(image);
 }
 } catch (IOException ioe) {
 failed = true;
 } finally {
 try {
 fos.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 failed = true;
 }
 }

 if (failed) {
 throw new IllegalStateException("Unable to construct image file. Contact Administ
rator."UnableToWriteFile);
 }
 System.out.println("Adding " + name + " [" + image.length + " bytes");
 count++;
 Properties props = new Properties();
 props.put("name", name);
 props.put("totalBytes", image.length);
 props.put("fingerPrint", fp);
 index.add(fp);
 index.setMetaData(fp, props);

 storeIndex();
 return fp;
 }

 boolean storeIndex() {
 FileOutputStream fos;
 try {
 fos = new FileOutputStream(indexFile);
 } catch (FileNotFoundException fnfe) {
 System.err.println("Unable to store index file to:" + indexFile);
 return false;
 }

 ObjectOutputStream oos = null;
 try {
 oos = new ObjectOutputStream(fos);
 oos.writeObject(index);
 } catch (IOException ioe) {
 System.err.println("Errors encountered while storing index file to:" + indexFile)
;
 ioe.printStackTrace();
 return false;
 } finally {
 try {
 oos.close();
 } catch (IOException ioe) {
 System.err.println("Errors encountered while closing index file.");
 }
 }

 return true;
 }

 File loadIndex() {
 index = new Index();

 File idxFile = new File (storage, indexFileName);
 if (idxFile.exists()) {
 FileInputStream fis;
 try {
 fis = new FileInputStream(idxFile);
 } catch (FileNotFoundException fnfe) {
 return null;
 }

 ObjectInputStream ois = null;
 try {
 ois = new ObjectInputStream(fis);
 index = (Index) ois.readObject();
 } catch (IOException ioe) {
 System.err.println("Problems encountered in loading Index file (" + idxFile + "
).");
 ioe.printStackTrace();
 } catch (ClassNotFoundException cnfe) {
 System.err.println ("Index file (" + idxFile + ") is not a valid Index object."
);
 } finally {
 try {
 ois.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
 }

 return idxFile;
 }

 public int size() {
 return countindex.size();
 }

 public static final String AlreadyExistsImage = "That image already exists in the rep
ository.";
 public static final String UnableToWriteFile = "Unable to construct image file. Conta
ct Administrator.";
 public static final String StorageNotDirectory = "Storage for repository must be a di
rectory.";
 public static final String StorageDoesNotExistPrefix = "Storage for repository doesn'
t exist:";
}

We added a lo t o f new code here; let's discuss some of the more important items:

One significant change is the set o f error strings that are defined because o f the principle o f "single po int o f contro l." An
exception message string is defined in only one place, which makes testing your code more efficient. (You'll see the
benefit o f that firsthand when you complete the test cases in this lab.)

In addition, now the Repository class is responsible for storing persistently and loading the Index object as it is
updated. The order o f objects in the repository will be based on the order o f keys in the index. Whenever the
Repository changes, the storeIndex() method can be called to store information persistently to disk:

OBSERVE:

 boolean storeIndex() {
 FileOutputStream fos;
 try {
 fos = new FileOutputStream(indexFile);
 } catch (FileNotFoundException fnfe) {
 System.err.println("Unable to store index file to:" + indexFile);
 return false;
 }

 ObjectOutputStream oos = null;
 try {
 oos = new ObjectOutputStream(fos);
 oos.writeObject(index);
 } catch (IOException ioe) {
 System.err.println("Errors encountered while storing index file to:" + indexFile)
;
 ioe.printStackTrace();
 return false;
 } finally {
 try {
 oos.close();
 } catch (IOException ioe) {
 System.err.println("Errors encountered while closing index file.");
 }
 }

 return true;
 }

This method uses the java.io classes to interact with the file system. We create a FileOut put St ream object to
access the designated indexFile on disk. Now we can use the writeObject() method o f Object Out put St ream to write
a Serializable object to a file. The code attempts to cover several exceptional circumstances. Also, the f inally block
ensures that the output stream is closed properly upon completion.

When the Repository is instantiated the first time, the Index object must be loaded from disk, as described by the
loadIndex() method:

Add loadIndex() method to Repository class

 File loadIndex() {
 index = new Index();

 File idxFile = new File (storage, indexFileName);
 if (idxFile.exists()) {
 FileInputStream fis;
 try {
 fis = new FileInputStream(idxFile);
 } catch (FileNotFoundException fnfe) {
 return null;
 }

 ObjectInputStream ois = null;
 try {
 ois = new ObjectInputStream(fis);
 index = (Index) ois.readObject();
 } catch (IOException ioe) {
 System.err.println("Problems encountered in loading Index file (" + idxFile + "
).");
 ioe.printStackTrace();
 } catch (ClassNotFoundException cnfe) {
 System.err.println ("Index file (" + idxFile + ") is not a valid Index object."
);
 } finally {
 try {
 ois.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
 }

 return idxFile;
 }

The loadIndex() method mirrors the storeIndex() method. The only difference is that it first instantiates a new Index
object in case there is no persistent indexFile on disk.

If you launch the T est AddBehavio r test case now, you'll see the fo llowing output on the conso le.

OBSERVE:

Errors encountered while storing index file to:TestRepository\indexFile
java.io.NotSerializableException: server.model.Index
 at java.io.ObjectOutputStream.writeObject0(Unknown Source)
 at java.io.ObjectOutputStream.writeObject(Unknown Source)
 at server.model.Repository.storeIndex(Repository.java:126)
 at server.model.Repository.add(Repository.java:72)
 at server.ProtocolHandler.process(ProtocolHandler.java:42)
 at server.ipc.RepositoryThread.run(RepositoryThread.java:30)
Server Completed.

The exception trace tells you that you have not properly made the Index class serializable. Fortunately, you only need
to make this one change to the Index class to fix that:

CODE TO TYPE: /src/server.model/Index.java

public class Index implements Iterable<String>, java.io.Serializable {
 ...
}

This is known as a "marker" interface because it has no methods and it is used to mark objects so that the Java VM
can to store the object. Only those classes specifically tagged as implementing java.lang.Serializable can be stored to
disk. If any object could be serialized, it would expose the internal private data o f those objects to prying eyes, and

pose a real security risk.

Before you run the test case again, note that there is a "partially written" indexFile file in the /T est Repo sit o ry fo lder.
If you don't see it listed, Ref resh the /T est Repo sit o ry fo lder and it will become visible. Open it in Eclipse's text
editor and take a look at the string java.io .No t SerializableExcept io n. Delete that file. If you don't the lo adIndex
method you just wro te will fail when attempting to load the partial file. Also , delete the image file in the
/T est Repo sit o ry fo lder, o therwise the test case will fail because "That image already exists in the repository."

Now re-run the T est AddBehavio r test case and refresh the /T est Repo sit o ry fo lder; you'll see an indexFile file.
Open it in Eclipse to see that this is a quasi-binary stored representation. While you may not be able to interpret all o f
the characters, you'll see some strings that are recognizeable English, revealing the internal state o f the objects that
are being stored to disk.

Re-run the T est AddBehavio r test case, and you may be surprised to see it fail. We wrote the test case assuming that
the repository was empty. The setUp() method for this test case will likely erase all files (and the newly-persisted index
file). Modify clearT est Repo sit o ry() method to the T est Server class to delete all files as found in the repository
directory (and this includes the persistent index file, which is being placed in the same directory) as shown:

CODE TO TYPE: test/server.ipc/TestServer.java

public class TestServer extends TestCase {

 public static final String testRepository = "TestRepository";

 public static void clearTestRepository() {
 File dir = new File(testRepository);
 File[] existing = dir.listFiles();
 for (File f : existing) {
 if (!f.isDirectory()) {
 assertTrue (f.delete());
 }
 }
 }

 ...
}

Now, modify T est AddBehavio r to provide some useful helper methods for our test cases:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.model.*;
import util.*;
import junit.framework.TestCase;

public class TestAddBehavior extends TestCase {
 RepositoryServer server;
 Socket client;
 PrintWriter toServer;
 BufferedReader fromServer;

 void startClient() throws Exception {
 client = new Socket ("localhost", 9172);
 toServer = new PrintWriter (client.getOutputStream(), true);
 fromServer = new BufferedReader (new InputStreamReader(client.getInputStream()));
 }

 void stopClient() throws Exception {
 client.close();
 client= null;
 }

 void stopServer() throws Exception {
 server.shutdown();
 server = null;
 }

 protected void setUp() throws Exception {
...

The above methods allow you to start and stop a client, as well as the server. You'll continue to use the
TestServer.launchServer() method to start the server. The additional toServer and fromServer objects are used to
communicate from these clients to the server. Modify the setUp() method o f T est AddBehavio r to take advantage o f
these methods:

CODE TO TEST: test/server.ipc/TestAddBehavior.java

...
 protected void setUp() throws Exception {
 TestServer.clearTestRepository();
 server = TestServer.launchServer();
 client = new Socket("localhost", 9172);
 startClient();
 }

 protected void tearDown() throws Exception {
 server.shutdown();
 client.close();
 stopServer();
 stopClient();
 }
...

Delete these files before constructing a Repository instance, o therwise the repository will pre-load the index file and
the deletion would have no effect. Because o f these JUnit methods, you need to modify the testAddBehavior() test
case method in T est AddBehavio r to remove o therwise duplicate functionality that has been moved to setUp() and
tearDown():

CODE TO TEST: /test/server.ipc/TestAddBehavior.java

 public void testAddBehavior() throws Exception {
 PrintWriter toServer = new PrintWriter (client.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(client.getInp
utStream()));

 // Protocol for sending SIZE
 toServer.println("SIZE");
 expectSuccess("0", fromServer);

 // Protocol for sending an image
 toServer.println("ADD-BEGIN");
 toServer.println("sampleImage");
 File f = new File("images", "repositorySplash.png");
 toServer.println(ImageEncoding.encode(f));
 toServer.println("\nADD-DONE");
 expectSuccess(null, fromServer);

 // Expect repository with 1 image
 toServer.println("SIZE");
 expectSuccess("1", fromServer);
 }

You'll also need to test the more complex behavior that takes place when you stop and start multiple clients, o r even
servers.

We'll create some building block methods that will be useful in any test case method you will write. These methods
issue requests to the server to compute the size o f the repository and add a new image to the repository. Modify
T est AddBehavio r to support more comprehensive tests:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

...
 void requestSIZE() throws IOException {
 toServer.println("SIZE");
 }

 void requestADD(String name, File f) throws IOException {
 toServer.println("ADD-BEGIN");
 toServer.println(name);
 toServer.println(ImageEncoding.encode(f));
 toServer.println("\nADD-DONE");
 }
...

Now add test case that verifies a sequence o f activities between a client and server:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

...
 public void testBasicAddBehavior() throws Exception {
 requestSIZE();
 TestAddBehavior.expectSuccess("0", fromServer);

 File f = new File ("images", "repositorySplash.png");
 requestADD("sampleImage", f);
 TestAddBehavior.expectSuccess(null, fromServer);

 requestSIZE();
 TestAddBehavior.expectSuccess("1", fromServer);

 stopClient();
 stopServer();

 server = TestServer.launchServer();
 startClient();

 requestSIZE();
 TestAddBehavior.expectSuccess("1", fromServer);

 requestADD("sampleImage", f);
 expectFailure(Repository.AlreadyExistsImage, fromServer);
 }
...

The test repository is cleared out and a server and client are executed. Then an image is added to the repository and
the size o f the repository is confirmed to be 1. Then both client and server are stopped and restarted. Now the
repository contains a single image, attempts to add the same image again, and fails.

To complete the T est AddBehavio r test case, add an expect Failure method as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

...
 public static void expectFailure (String expect, BufferedReader fromServer) throws IO
Exception {
 int response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();

 if (response == -1) {
 if (expect != null) {
 assertEquals (expect, value);
 } else {
 System.out.println("received:" + value);
 }
 } else {
 fail ("(response:" + response + ") received " + value + " not " + expect);
 }
 }
...

This is nearly identical to the expectSuccess() method. The only difference is that it checks to make sure that the
response from the server is -1.

This test case represents a significant investment to ensure basic functionality. Execute the T est Server and
T est AddBehavio r test cases to validate the correct behavior. Generate code coverage using EclEmma for each o f
these test cases. The EclEmma reporting panel shows you the individual reports fo r each individual test case, but you
really want the combined results. Fortunately, the EclEmma panel contains the ability to merge multiple runs together
to produce the result you need. On the panel, there is a "Merge Sessions" button with two stacked red/green bars:

 Click this button to bring up a dialog box where you can select the number o f EclEmma sessions to merge to
produce a single report o f coverage.

You can see that the code coverage is rising (at least on the server side) and most o f the non-executing code is found
in exception handlers. You still have your work cut out fo r you, but you're on your way! You can continue to merge new
runs, but these reports are not persistent. That is, if you exit Eclipse you start with a fresh slate when you come back.

There is one final po int we need to cover regarding Java's Serialization model. If the Index class is modified after an
instance has been written to disk, the default behavior is to assume that the persistently saved object cannot be de-
serialized because o f the risk o f an inconsistent state. The complex so lution to this problem would be to design
specialized writeObject() and readObject() methods (you can explore these further in available tutorials on Java). A
basic, and likely sufficient so lution is to define a st at ic f inal lo ng serialVersio nUID with the serializable class.
Every instance written to disk embeds this serialVersionUID; the identifier is validated when the object is de-serialized.
If you can guarantee that the only changes to a class are methods or t ransient attributes, the de-serialization should
succeed.

Note You can mark an attribute t ransient to ensure that the Java Serializable mechanism ignores the attribute
when storing and loading that object.

In Eclipse, you may have noticed that the Java editor o f the Index class showed this warning:

Select the second "Add generated serial version ID" option; a static attribute is added to Index (your value will likely be
different):

OBSERVE:

 /** Serial version UID will enable loading from disk even when new methods are added.
 */
 private static final long serialVersionUID = -4153322746301327742L;

As long as you maintain the integrity o f existing persisting attributes, future compilation o f this class will no t affect the
way an Index object is loaded. If a structural change makes the new class version incompatible with an o lder stored
version (and you are required to maintain backward compatibility), you will need to write specialized writeObject() and
readObject() methods to support the loading o f serializable objects with the o lder version.

That does it fo r our lesson on serialization. head over to your pro ject adn work on that. WHen you're ready, move on
to the next lesson.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://java.sun.com/developer/technicalArticles/ALT/serialization/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using XML to Specify a Protocol
Lesson Objectives

In this lesson you will:

write an XML schema file to represent the pro toco l.

XML as Protocol Specification
Even though we have implemented only two messages in the system, we need to have an unambiguous way to
specify the pro toco l so that both client and server know how to communicate. It's overly optimistic to assume that our
code contains all relevant details. At the same time, it is impractical to write a pro toco l design document that must be
updated each time the pro toco l changes. Ideally, we'll use a special language to specify the pro toco l that can become
part o f the code used by both client and server. The overall philosophy that expects us to use ASCII text to represent
complex structures is simply outdated and ineffective. The industry standard for capturing complex structures textually
is the eXtensible Markup Language (XML). Still, you have probably heard o f it o r even used it yourself at some time in
your pro fessional career. If you're interested in learning about XML in detail, contact us to find out more about our XML
courses. You can also search for yourself and read up on the intricacies and power o f XML. In this lab, you'll learn just
enough to be able to support the client and server as they seek to communicate with each o ther.

The cornerstone for the pro toco l specification is an XML schema definition (XSD) file. This file defines a schema that
can be used to validate that a given XML string is well-fo rmed and valid. In general practice, we speak o f an XML
document, but fo r our purposes we'll use the term XML string, because those fragments are single messages. Using a
schema definition, we can validate that a given string conforms to that schema before the client sends a command to
the server. Similarly, before the server responds in kind, it must validate each XML string being sent to the client.

 In the top fo lder o f your Dist ribut edApp pro ject, create a file named repo sit o ry.xsd. If Eclipse opens the editor in
Design mode, click the So urce tab at the bottom of the editor window, and then type the XML schema definition as
shown below:

http://en.wikipedia.org/wiki/XML
mailto:info@oreillyschool.com

CODE TO TYPE: /repository.xsd

<?xml version='1.0' encoding='UTF-8'?>
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

<xs:element name='message'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='response'/>
 <xs:element ref='request'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='response'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addResponse'/>
 </xs:choice>
 <xs:attribute name='success' type='xs:boolean' use='required'/>
 <xs:attribute name='reason' type='xs:string' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='request'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addRequest'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='addRequest'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='addResponse'>
 <xs:complexType>
 <xs:attribute name='numBytes' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>
</xs:schema>

This XSD file supports the two message types envisioned for the system. We won't analyze it in detail, but we'll
present enough information to understand how it works with this application. To learn more about XML schemas, see
the W3Schools Schema tutorial and W3.org Schema Primer, or contact us for info about our XML course o fferings.

Click the Design tab at the bottom of the Eclipse editor window (if you don't see the Design tab, close the file, right-
click it in the Package Explorer, select Open Wit h, select Ot her..., and select XML Edit o r):

http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/xmlschema-0/
mailto:info@oreillyschool.com

Expand the elements and components:

The initial element in this schema is a message , which is defined to be either a respo nse o r a request . A respo nse
is a message that has a boo lean success attribute and a string reaso n attribute if the response represents a failure.
The reaso n attribute is declared to be o pt io nal, which mean a successful response doesn't need to include a
meaningless reaso n attribute value.

A request is further subdivided into individual request types. The first (and only, so far) is addRequest . Similarly, a
respo nse is further subdivided into response types; addRespo nse is the only one so far. Each individual request
(or respo nse) is described in terms o f the defined attributes and child elements that must be present. addRequest
has a string name attribute and an image child element. The question remains: how is the image data go ing to be
"inserted" into the XML message? In an earlier lab, you wrote code that embedded MIME-encoded data, but this only
worked because o f a sentinel "ADD-DONE" string that was unlikely to be part o f the encoding. Similarly, the designers
of XML created the ability to encode arbitrary ASCII data using an unparsed section which begins with <![CDAT A[and
ends with]]> . The terminating characters]]> do not appear in the MIME-encoded data format. This fragment
represents a valid addRequest :

http://en.wikipedia.org/wiki/Base64

Valid addRequest XML fragment

<request>
 <addRequest name="sampleImage">
 
 </addRequest>
</request>

The next XML fragment describes the proper addResponse when an image is added to the repository successfully.
The success attribute is part o f the respo nse element, as specified in the XSD file. Now you may be thinking, "where
is the closing '</addResponse>' element which is required for well-fo rmed XML?" Well, the XML designers allow for a
shortcut when elements have no children. An element without children can be defined and closed with /> .

Valid AddResponse XML fragment

<response success="true">
 <addResponse numBytes="9160"/>
</response>

Go ahead and create some classes to manage these XML messages. Don't just embed XML string fragments
throughout your code, because that would become a nightmare to manage and maintain.

 In the /src fo lder, create an xml package.

 In the /src fo lder's new xml package, create a Message class to handle most o f the functionality required for
parsing and constructing XML strings:

CODE TO TYPE: /src/xml/Message.java

package xml;

import java.io.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.validation.*;
import org.w3c.dom.*;
import org.xml.sax.*;

public class Message {
 static DocumentBuilder builder;

 static void configure() {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 SchemaFactory sf = SchemaFactory.newInstance("http://www.w3.org/2001/XMLSchema");
 try {
 factory.setSchema(sf.newSchema(new Source[] {new StreamSource("repository.xsd")})
);
 builder = factory.newDocumentBuilder();
 } catch (Exception e) {
 throw new RuntimeException ("Unable to configure Message");
 }
 }
}

Let's review some of the standard bo ilerplate code in the configure() method:

OBSERVE:

 static void configure() {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 SchemaFactory sf = SchemaFactory.newInstance("http://www.w3.org/2001/XMLSchema");
 try {
 factory.setSchema(sf.newSchema(new Source[] {new StreamSource("repository.xsd")})
);
 builder = factory.newDocumentBuilder();
 } catch (Exception e) {
 throw new RuntimeException ("Unable to configure Message");
 }
 }

Java has built- in XML support as defined in the javax.xml.* packages. The above code configures the Message class
to use the schema as defined by repo sit o ry.xsd. It constructs a singleton builder object to parse XML strings
conforming to the repo sit o ry.xsd schema definition you just created. This singleton builder object must be handled
carefully, that's why outside classes are unable to access this object. Write the Message constructor which is the only
method that uses the builder object:

CODE TO TYPE: /src/xml/Message.java

public class Message {
 ...

 public final Node contents;

 public Message (String xmlSource) throws IllegalArgumentException {
 if (builder == null) {
 configure();
 }

 try {
 InputSource is = new InputSource (new StringReader (xmlSource));

 // parse method in builder is not thread safe.
 Document d = null;
 synchronized (builder) {
 d = builder.parse(is);
 }

 // Grab first (and only) child (either request or response)
 NodeList children = d.getChildNodes();
 for (int i = 0; i < children.getLength(); i++) {
 Node n = children.item(i);
 if (n.getNodeType() == Node.ELEMENT_NODE) {
 contents = n;
 return;
 }
 }

 throw new IllegalArgumentException ("XML document has no child node");
 } catch (Exception e) {
 e.printStackTrace();
 throw new IllegalArgumentException (e.getMessage());
 }
 }
}

Let's discuss this addition in a little more detail.

OBSERVE:

public class Message {
 ...

 public final Node contents;

 public Message (String xmlSource) throws IllegalArgumentException {
 if (builder == null) {
 configure();
 }

 try {
 InputSource is = new InputSource (new StringReader (xmlSource));

 // parse method in builder is not thread safe.
 Document d = null;
 synchronized (builder) {
 d = builder.parse(is);
 }

 // Grab first (and only) child (either request or response)
 NodeList children = d.getChildNodes();
 for (int i = 0; i < children.getLength(); i++) {
 Node n = children.item(i);
 if (n.getNodeType() == Node.ELEMENT_NODE) {
 contents = n;
 return;
 }
 }

 throw new IllegalArgumentException ("XML document has no child node");
 } catch (Exception e) {
 e.printStackTrace();
 throw new IllegalArgumentException (e.getMessage());
 }
 }
}

If the builder has not yet been configured, the constructor self-configures; this is a useful technique to simplify your
application initialization code. Also, access to the builder.parse() method is enclosed within a synchro nized
(builder) code block because that method is not "thread-safe." This ensures that with all simultaneous attempts to
construct Message objects, no more than one will ever access the parse() method at the same time.

The real work for this class takes place in its constructor, which receives an XML string as an argument. The builder
parses the xmlSo urce string using a StringReader object. The constructor will succeed only if the XML string
conforms to the repo sit o ry.xsd schema definition file. Once the parsing completes, the builder returns the root
Document node for the Document Object Model (DOM) representing the XML string.

Given an XML string, the builder creates a tree-like recursive object that represents the structure and relationships
encoded in the string. At this po int, there is a single root Node object corresponding to the XML string. Using the
existing XML API, you can navigate through the children (and grandchildren) nodes within the structure to locate all
elements o f the original XML string.

For now, you want just the first Node in the Document. The f o r lo o p in t he co nst ruct o r shows how to use the XML
API to iterate over all o f the children for a given Document (or Node) object. This loop retrieves a NodeList object over
which you make repeated calls to No de n = children.it em(i) ("get the ith child"). Once you have located a node o f
type ELEMENT_NODE, you know you have found either the request or the response, so this node serves as the
co nt ent s fo r the Message. If no such element exists, then the string doesn't conform and an
IllegalArgumentException can be thrown.

Before you use these XML messages, you need to validate that this Message class actually works.

 In the /t est fo lder, create an xml package.

 In this new xml package, create a Validat eXMLMessages test case as shown:

CODE TO TYPE: /test/xml/ValidateXMLMessages.java

package xml;

import server.model.*;
import junit.framework.TestCase;

public class ValidateXMLMessages extends TestCase {

 public void testAddRequest() {
 String addRequestSample = "<request><addRequest name='sampleImage'>" +
 "</addRequest></request>";
 Message m = new Message(addRequestSample);
 assertEquals ("request", m.contents.getLocalName());
 }

 public void testAddResponseSuccess() {
 String addRequestSample = "<response success='true'><addResponse numBytes='9160'/><
/response>";
 Message m = new Message(addRequestSample);
 assertEquals ("response", m.contents.getLocalName());
 }

 public void testAddResponseFailure() {
 String addRequestSample = "<response success='false' reason='" + Repository.Already
ExistsImage + "'>" +
 "<addResponse numBytes='0'/></response>";
 Message m = new Message(addRequestSample);
 assertEquals ("response", m.contents.getLocalName());
 }

 public void testFailedRequest() {
 try {
 String notInProtocol = "<request><missingRequest name='sampleImage'>" +
 "</missingRequest></request>";
 new Message(notInProtocol);
 fail("Should detect non-existing request.");
 } catch (Exception e) {
 // success
 }
 }
}

Each test case method fo llows a general approach. Let's look more closely at testAddRequest(); the o ther test case
methods are similar:

OBSERVE:

 public void testAddRequest() {
 String addRequestSample = "<request><addRequest name='sampleImage'>" +
 "</addRequest></request>";
 Message m = new Message(addRequestSample);
 assertEquals ("request", m.contents.getLocalName());
 }

The test case method uses the Message constructor to instantiate a Message object from the sample
addRequest Sample string. If this is the first time that a Message object has been constructed, the configure() method
presented earlier will be called immediately to properly load up the requisite repo sit o ry.xsd object. Assuming the
constructor returns successfully, the assert Equals JUnit met ho d validat es t hat t he (lo cal) name o f t he No de
asso ciat ed wit h t he co nt ent s o f t he message o bject is "request " .

In conjunction, these test cases validate that you can construct an addRequest and two proper responses: one for
success and one for failure. For completion, there is a test case for a non-existent request (missingRequest) and a
test case where the input string does not contain well-fo rmed XML. Run these test cases to make sure that all succeed.

What's this? testFailedRequest() allows a Message object to be constructed? Let's take a closer look at this test case
method:

testFailedRequest test case method

 public void testFailedRequest() {
 try {
 String notInProtocol = "<request><missingRequest name='sampleImage'>" +
 "</missingRequest></request>";
 new Message(notInProtocol);
 fail("Should detect non-existing request.");
 } catch (Exception e) {
 // success
 }
 }

As you can see, there is no missingRequest in the schema definition file, so what is this all about? The issue is a
subtle one and occurs because o f the way that the XML techno logy was developed and adopted. You are responsible
for checking the errors that occur and it is your job to determine how to deal with validation errors. To do that, you'll
need to register with builder an error handler that implements org.xml.sax.ErrorHandler.

 In the /src fo lder's xml package, create an XMLHandler class to deal with validation errors properly:

CODE TO TYPE: /src/xml/XMLHandler.java

package xml;

import java.util.*;
import org.xml.sax.*;

public class XMLHandler implements ErrorHandler {
 ArrayList<String> errors = new ArrayList<String>();

 /** Keep record of all errors and continue until failFast is called. */
 public void error(SAXParseException spe) throws SAXException {
 errors.add(spe.toString());
 }

 /** Fail immediately with fatal errors. */
 public void fatalError(SAXParseException spe) throws SAXException {
 throw spe;
 }

 /** Emit warnings as they come and otherwise ignore. */
 public void warning(SAXParseException spe) throws SAXException {
 System.out.println("WARNING: " + spe.toString());
 }

 /** Terminate immediately upon detecting any XML errors. */
 public void failFast() {
 if (errors.size() == 0) {
 return;
 }

 for (String s : errors) {
 System.out.println("ERROR:" + s);
 }
 errors.clear();
 throw new RuntimeException ("Parsing Failed");
 }
}

Let's look at this class more closely.

http://docs.oracle.com/javase/6/docs/api/org/xml/sax/ErrorHandler.html

OBSERVE:

...
 ArrayList<String> errors = new ArrayList<String>();

 /** Keep record of all errors and continue until failFast is called. */
 public void error(SAXParseException spe) throws SAXException {
 errors.add(spe.toString());
 }

 /** Fail immediately with fatal errors. */
 public void fatalError(SAXParseException spe) throws SAXException {
 throw spe;
 }

 /** Emit warnings as they come and otherwise ignore. */
 public void warning(SAXParseException spe) throws SAXException {
 System.out.println("WARNING: " + spe.toString());
 }

 /** Terminate immediately upon detecting any XML errors. */
 public void failFast() {
 if (errors.size() == 0) {
 return;
 }

 for (String s : errors) {
 System.out.println("ERROR:" + s);
 }
 errors.clear();
 throw new RuntimeException ("Parsing Failed");
 }
...

The builder XML parser identifies "warnings," "errors," and "fatal errors" and then invokes the appropriate method on
the registered error handler. If no error handler is registered, no validation takes place! Once you register this error
handler with the builder, all warnings are o ut put t o Syst em.o ut , all f at al erro rs cause an except io n t o be
t hro wn (thus halting the parsing) and all erro rs are co llect ed in an ArrayList o bject . After the document has
been parsed, you call f ailFast to determine whether any errors occured; if there were any, t hey are o ut put t o
Syst em.o ut and a RunT imeExcept io n is t hro wn. The errors ArrayList must be cleared to avo id having future
parse requests fail incorrectly, since all parsing uses the same builder object (and by extension the same error
handler).

Finally, to make sure there will never be concurrent shared usage o f this handler, the invocation to f ailFast must occur
within a synchro nized block. Modify the Message class as shown:

CODE TO TYPE: /src/xml/Message.java

package xml;

import java.io.*;

import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.validation.*;
import org.w3c.dom.*;
import org.xml.sax.*;

public class Message {
 static DocumentBuilder builder;
 static final XMLHandler errorHandler = new XMLHandler();
 public final Node contents;

 public Message (String xmlSource) throws IllegalArgumentException {
 if (builder == null) {
 configure();
 }

 try {
 InputSource is = new InputSource (new StringReader (xmlSource));

 // parse method in builder is not thread safe.
 Document d = null;
 synchronized (builder) {
 d = builder.parse(is);
 errorHandler.failFast();
 }

 // Grab first (and only) child (either request or response)
 NodeList children = d.getChildNodes();
 for (int i = 0; i < children.getLength(); i++) {
 Node n = children.item(i);
 if (n.getNodeType() == Node.ELEMENT_NODE) {
 contents = n;
 return;
 }
 }

 throw new IllegalArgumentException ("XML document has no child node");
 } catch (Exception e) {
 e.printStackTrace();
 throw new IllegalArgumentException (e.getMessage());
 }
 }

 static void configure() {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 SchemaFactory sf = SchemaFactory.newInstance("http://www.w3.org/2001/XMLSchema");
 try {
 factory.setSchema(sf.newSchema(new Source[] {new StreamSource("repository.xsd")})
);
 builder = factory.newDocumentBuilder();
 builder.setErrorHandler(errorHandler);
 } catch (Exception e) {
 throw new RuntimeException ("Unable to configure Message");
 }
 }
}

Running the Validat eXMLMessages test case should convince you that each Message object conforms to a valid
XML string. Now, before you get too satisfied, add the fo llowing testBadXML() test case method to be the first test case

method in Validat eXMLMessages:

CODE TO TYPE: /test/xml/ValidateXMLMessages.java

package xml;

import server.model.*;
import junit.framework.TestCase;

public class ValidateXMLMessages extends TestCase {

 public void testBadXML() {
 try {
 String bad = "<req>Not even XML< ><REQ/>";
 new Message(bad);
 fail("Should detect non-existing request.");
 } catch (Exception e) {
 // success
 }
 }
...

This test case method uses a string that isn't valid XML structure. After adding this method, run your test cases.
Existing test case methods that passed before might now fail! Surely this is a sign o f something more significant. Go
back and review the Message constructor and you'll see that the outermost exception handler doesn't call
erro rHandler.f ailFast () properly. Correct this oversight as shown:

CODE TO TYPE: /src/xml/Message.java

...
 public Message (String xmlSource) throws IllegalArgumentException {
 if (builder == null) {
 configure();
 }

 try {
 InputSource is = new InputSource (new StringReader (xmlSource));

 // parse method in builder is not thread safe.
 Document d = null;
 synchronized (builder) {
 d = builder.parse(is);
 errorHandler.failFast();
 }

 // Grab first (and only) child (either request or response)
 NodeList children = d.getChildNodes();
 for (int i = 0; i < children.getLength(); i++) {
 Node n = children.item(i);
 if (n.getNodeType() == Node.ELEMENT_NODE) {
 contents = n;
 return;
 }
 }

 throw new IllegalArgumentException ("XML document has no child node");
 } catch (Exception e) {
 errorHandler.failFast();
 e.printStackTrace();
 throw new IllegalArgumentException (e.getMessage());
 }
 }
...

Run the tests again and they should all pass.

Status Messages

The XML schema definition file is constructed to be readily extensible as new requests (and responses) are defined.
As a general principle, each request will have a corresponding response to allow the client to know that the request
was properly received and acted upon. Given this principle, what should be the first request that the client makes when
connecting to the server? Or to think o f this another way, what should be the first response that is sent to the client?
Modify the XSD file to support a st at usRequest that contains no attributes or o ther information. This could be used
as the first client request. The corresponding st at usRespo nse will return information about the current image being
viewed and the to tal number o f images in the repository. The schema should be changed to support the fo llowing XML
fragment:

Sample statusResponse XML fragment

<response success="true">
 <statusResponse key="c00bc1ed28fabdbcebc3e4735decc83e" index="1" total="17"/>
</response>

This message encodes the state o f the repository (having 1 o f 17 images) and the specific key o f the image being
observed by the client. Start by modifying the repo sit o ry.xsd file:

CODE TO TYPE: /repository.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

<xs:element name='message'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='response'/>
 <xs:element ref='request'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='response'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addResponse'/>
 <xs:element ref='statusResponse'/>
 </xs:choice>
 <xs:attribute name='success' type='xs:boolean' use='required'/>
 <xs:attribute name='reason' type='xs:string' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='request'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addRequest'/>
 <xs:element ref='statusRequest'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='addRequest'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='addResponse'>
 <xs:complexType>
 <xs:attribute name='numBytes' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
 <xs:complexType>
 <xs:attribute name='key' type='xs:string' use='required'/>
 <xs:attribute name='index' type='xs:integer' use='required'/>
 <xs:attribute name='total' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>
</xs:schema>

Of course, you have to extend the Validat eXMLMessages test case to validate that you can properly parse both o f
these messages:

CODE TO TYPE: /test/xml/ValidateXMLMessages.java

...
 public void testStatusRequest() {
 String statusSample = "<request><statusRequest/></request>";
 Message m = new Message(statusSample);
 assertEquals ("request", m.contents.getLocalName());
 }

 public void testStatusResponse() {
 String statusResponse = "<response success='true'><statusResponse key='asdkjhkas' i
ndex='1' total='17'/></response>";
 Message m = new Message(statusResponse);
 assertEquals ("response", m.contents.getLocalName());
 }
...

Now, relaunch all JUnit test cases to validate your code so far. Defining a pro toco l is a necessary first step toward the
implementation o f the overall application. Once the skeleton support is in place, you can begin to add pairs o f
messages (that is, requests and responses). Along the way, adhere to the philosophy that has guided you so far:
testing incrementally as you go. Instead o f trying to codify the entire pro toco l in advance, you are now ready to begin
integrating the pro toco l into the application, as you will do in the next lab.

Get busy with this lesson's homework and I'll see you soon!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

XML Protocol Implementation
Lesson Objectives

In this lesson you will:

send requests and receive responses over the IPC layer.
retrieve information from XML objects using the Java XML API.

XML Protocol Implementation
Now that you've defined the XML pro toco l, you need to modify the client to send XML requests, and the server to
receive them and send XML responses in return. Note that you don't need to change the IPC layer itself, only the
Pro t o co lHandler class. The changes are substantial because they reflect a different abstraction: the transfer o f an
XML message instead o f the current line-by-line transfer o f ASCII text.

The pro cess() method in Pro t o co lHandler is still responsible for handling the pro toco l using the raw input and
output objects provided by the IPC layer, but now it concatenates each line o f input until a full request is seen. To
facilitate that process, the client makes sure that each request is sent with a trailing new-line character. This ensures
that the pro cess() method will read a line o f ASCII text at some po int, that ends with "</request >" in the XML
representation o f the request. From the raw XML, a Message object is constructed and handed o ff to a
pro cess(Message) method, which acts on the request and returns the appropriate response. This response
Message is converted back into a raw XML string to be written to the socket which communicates back to the client.

Your first task is to replace Pro t o co lHandler with the implementation below. You can delete the o ut put () and
o ut put Erro r() methods and replace the existing pro cess() method as shown:

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;
import xml.*;
import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler {
 final Repository repository;
 public static final String endRequest = "</request>";

 public ProtocolHandler (Repository r) {
 repository = r;
 }

 public boolean process(BufferedReader fromSocket, PrintWriter toSocket) {
 try {
 String line = fromSocket.readLine();
 if (line == null) { return false; }
 StringBuilder buf = new StringBuilder(line);
 while (!buf.substring(buf.length() - endRequest.length(), buf.length()).equals(en
dRequest)) {
 line = fromSocket.readLine();
 if (line == null) { return false; }
 buf.append(line);
 }

 Message request = new Message (buf.toString());
 Message response = process (request);
 toSocket.println(response.toString());
 return !toSocket.checkError();
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 }
}

This code won't compile until you write a pro cess(Message) method (we'll do that in just a bit). First, check out the
revised pro cess(Buf f eredReader, Print Writ er) method which contains the while loop for processing input strings
from Buf f eredReader:

OBSERVE:

 String line = fromSocket.readLine();
 if (line == null) { return false; }
 StringBuilder buf = new StringBuilder(line);

 while (!buf.substring(buf.length()-endRequest.length(), buf.length()).equals(endReque
st)) {
 line = fromSocket.readLine();
 if (line == null) { return false; }
 buf.append(line);
 }

This code concatenates string lines read from the client until the most recently read string is terminated by the
"</request>" string (the endRequest constant attribute stores this value). The rather complicated-looking condition to
the while loop, checks to see if the buf St ringBuilder object ends with the endRequest string. If it does not, the
program reads another string line from the f ro mSo cket and appends it to buf .

Once that while loop completes, buf contains the full XML string request from a client. The remaining code in the
method constructs a Message object to be processed by a pro cess(Message) , and the resulting Message
response is returned to the client. Let's write this pro cess(Message) method. Start by entering this method skeleton:

CODE TO TYPE: /src/server/Pro toco lHandler.java

...
 public Message process (Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 // TODO: Fill in processing of addRequest
 return null;
 }

 return null; // unknown request? No idea what to do.
 }
...

Take a closer look:

OBSERVE:

 public Message process (Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 // TODO: Fill in processing of addRequest
 return null;
 }

 return null; // unknown request? No idea what to do.
 }

We use t he XML API t o pro cess t he Message DOM o bject . The method above contains the essential XML API
calls that you'll use when dealing with XML objects. The parsed XML is represented as a tree-like data structure with
nodes that represent the elements o f the XML document being parsed. The Message class already stores as
co nt ent s, the node associated with the request (or response) message. This node corresponds to the
"<request >" (o r "<respo nse>") element in repo sit o ry.xsd. So, in order to identify the request, we look at the
child o f the co nt ent s node. The Java API provides all the methods we need to go through a DOM:

1. Given a No de with children, getFirstChild() returns the first child node; this convenience method helps you
navigate down a tree quickly when you know there is only a single child.
2. getAttributes() returns a NamedNodeMap which is in essence a hash table with keys that are the attribute
names, with values that are Nodes that store the attributes' values in XML.
3. Given a No de , getNodeValue() returns the associated St ring value; this allows you to get the value for
an attribute.
4. getTextContent() returns the text associated with an element. As a markup language, XML allows
fragments o f the form <Object>SomeValueHere</Object>. Use get T ext Co nt ent () on the No de fo r the
given Object element to retrieve the text associated with the element (in this case, "SomeValueHere").

You can use these API methods when completing the implementation o f pro cess(Message) :

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getFirstChild()
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getAttributes%28%29
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/NamedNodeMap.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getNodeValue()
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getTextContent()

CODE TO TYPE: /src/server/Pro toco lHandler.java

 public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";

 public Message process (Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 String xmlResp;
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 repository.add(bytes, name);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "
'/></response>";
 } catch (IOException e) {
 xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +
 "<addResponse numBytes='0'/></response>";
 } catch (IllegalStateException e) {
 xmlResp = "<response success='false' reason='" + Repository.AlreadyExistsImage
+ "'>" +
 "<addResponse numBytes='0'></addResponse></response>";
 }

 return new Message(xmlResp);
 // TODO: Fill in processing of addRequest
 return null;
 }

 return null; // unknown request? No idea what to do.
 }

The code above adds the constant Co rrupt edImageDat a, which stores the error message for later testing:

OBSERVE:

 public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";

Check out the core logic o f this new code:

OBSERVE:

 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 repository.add(bytes, name);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/></r
esponse>";

This code uses the imageNo de.get T ext Co nt ent s() API call to retrieve the string that contains the MIME-encoded
bytes for the image being sent by the client. Next, the ImageEnco ding class you created earlier decodes this string
into a proper byt e[] array to be inserted into the repository.

To try out this new capability, modify Repo sit o ryClient as shown:

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import java.net.*;
import xml.*;
import util.*;

public class RepositoryClient {

 public static void main(String[] args) throws Exception {
 SplashScreenLogic.update ("connecting to localhost::9172");
 delay(250);
 Socket server = new Socket ("localhost", 9172);

 SplashScreenLogic.update ("connected to localhost::9172");
 delay(250);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server.getInp
utStream()));
 SplashScreenLogic.update ("initializing with server...");
 delay(250);

 for (int num = 0; num < 3; num++) {
 toServer.println("SIZE");
 if (!toServer.checkError()) {
 Integer response = Integer.valueOf(fromServer.readLine());
 String value = fromServer.readLine();
 if (response == 0) {
 System.out.println((num+1) + ": Number of Images: " + value);
 } else if (response == -1) {
 System.err.println(value);
 } else {
 System.err.println("Received unknown response:" + response);
 }
 }
 }

 File f = new File("images", "repositorySplash.png");
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='sampleImage'>" +
 "</addRequest></request>";

 new Message(xmlAddRequest);
 toServer.println(xmlAddRequest);

 processResponse(fromServer);

 server.close();
 SplashScreenLogic.update ("closing");
 delay(250);
 }

 /** Delay for a time. */
 static void delay(int ms) {
 try { Thread.sleep(ms); } catch (InterruptedException ie) { }
 }
}

This code won't compile until you write the pro cessRespo nse(Message) method, but let's check out the logic
anyway:

OBSERVE:

 File f = new File("images", "repositorySplash.png");
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='sampleImage'>" +
 "</addRequest></request>";

 new Message(xmlAddRequest);
 toServer.println(xmlAddRequest);

 processResponse(fromServer);

Using existing logic, this code computes the MIME-encoded string for the specific image. In this case, it constructs an
XML addRequest that embeds this encoded string using the familiar CDAT A construct. You invoke new
Message(xmlAddRequest) to validate the XML string. If there had been a problem in the XML encoding, this
constructor invocation would've throw an Exception. If there is no Exception, the XML is valid—which means the string
can be output directly to the server via the t o Server object. Every request must be terminated by an end-of- line
character, so it's essential to use the print ln method when writing to the server socket.

The pro cessRespo nse() method you'll create next is similar to code in Pro t o co lHandler. First, you'll aggregate
lines o f input until a full response is retrieved, which you'll pass on to the Message constructor. This code allows you
to retrieve the success and reaso n attributes from the response efficiently:

CODE TO TYPE: /test/client/RepositoryClient.java

public class RepositoryClient {
 ...

 public static String endResponse = "</response>";

 static void processResponse(BufferedReader fromServer) throws IOException {
 try {
 StringBuilder buf = new StringBuilder(fromServer.readLine());
 while (!buf.substring(buf.length() - endResponse.length(), buf.length()).equals(e
ndResponse)) {
 buf.append(fromServer.readLine());
 }
 Message response = new Message(buf.toString());
 String sval = response.contents.getAttributes().getNamedItem("success").getNodeVa
lue();
 if (Boolean.valueOf(sval)) {
 System.out.println("Success");
 } else {
 System.out.println("Error:" + response.contents.getAttributes().getNamedItem("r
eason").getNodeValue());
 }

 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }

 ...
}

OBSERVE:

public class RepositoryClient {
 ...

 public static String endResponse = "</response>";

 static void processResponse(BufferedReader fromServer) throws IOException {
 try {
 StringBuilder buf = new StringBuilder(fromServer.readLine());
 while (!buf.substring(buf.length()-endResponse.length(), buf.length()).equals(end
Response)) {
 buf.append(fromServer.readLine());
 }
 Message response = new Message(buf.toString());
 String sval = response.contents.getAttributes().getNamedItem("success").getNodeVa
lue();
 if (Boolean.valueOf(sval)) {
 System.out.println("Success");
 } else {
 System.out.println("Error:" + response.contents.getAttributes().getNamedItem("r
eason").getNodeValue());
 }

 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }

 ...
}

This code is similar to the code you wrote for the server to process the client request. The highlight ed co de
det ermines whet her t he respo nse is a success by finding the value o f the success attribute in the response.

Note Before continuing, refresh the Repo sit o ry fo lder and delete any Index and image files there.

Validate that you have coded the XML logic properly, by running ServerLauncher and then Repo sit o ryClient .
What's this? It seems as if the Repo sit o ryClient just hangs and doesn't return. Even the splash screen is stuck on
"Initializing with server..."

In the conso le tab, there's a pull-down menu on the right that allows you to "Display Selected Conso le." Use this
menu to switch between the running applications; you can see that the server is running properly ("Server awaiting
client connections"), but there is no output on the client side. Given the Repo sit o ryClient , it appears that the server
received a request, but a response was never returned to the client. Terminate the execution o f both the client and
server applications.

You might choose to set breakpo ints now and then execute these applications in the Eclipse debugger to identify
where the problem occurs. I recommend do ing that. You want to become familiar with debugging single and multiple
Java applications. For now, turn your attention to the Pro t o co lHandler code that you revised at the beginning o f this
lab—specifically, these two lines:

OBSERVE:

 Message response = process (request);
 toSocket.println(response.toString());

Compare those two lines with the changes introduced in Repo sit o ryClient as shown below:

OBSERVE:

 new Message(xmlAddRequest);
 toServer.println(xmlAddRequest);

The first line validates the XML string properly, but the constructed Message object is promptly ignored, because it's
not needed. The second line takes the (now validated) XML string and prints it right to the Print Writ er used to
communicate to the server. Review the Pro t o co lHandler code now and you'll see that it depends upon the
Message class having a working toString() method! Whoops! You've just encountered one o f the most common
defects in Java: it omits a necessary t o St ring method.

Add the logic needed for t o St ring to Message as shown below. As with most XML techno logies, you might be
surprised at how unnecessarily complicated it appears; nonetheless, this is the standard way to convert a DOM into its
string representation:

CODE TO TYPE: /src/xml/Message.java

package xml;

import java.io.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.transform.dom.*;
import javax.xml.validation.*;
import org.w3c.dom.*;
import org.xml.sax.*;

public class Message {
 static DocumentBuilder builder;
 static final XMLHandler errorHandler = new XMLHandler();
 static Transformer transformer;
 public final Node contents;

 public Message (String xmlSource) throws IllegalArgumentException {
 if (builder == null) {
 configure();
 }

 try {
 InputSource is = new InputSource (new StringReader (xmlSource));

 // parse method in builder is not thread safe.
 Document d = null;
 synchronized (builder) {
 d = builder.parse(is);
 errorHandler.failFast();
 }

 // Grab first (and only) child (either request or response)
 NodeList children = d.getChildNodes();
 for (int i = 0; i < children.getLength(); i++) {
 Node n = children.item(i);
 if (n.getNodeType() == Node.ELEMENT_NODE) {
 contents = n;
 return;
 }
 }
 throw new IllegalArgumentException ("XML document has no child node");
 } catch (Exception e) {
 errorHandler.failFast();
 e.printStackTrace();
 throw new IllegalArgumentException (e.getMessage());
 }
 }

 static void configure() {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 SchemaFactory sf = SchemaFactory.newInstance("http://www.w3.org/2001/XMLSchema");
 try {
 factory.setSchema(sf.newSchema(new Source[] {new StreamSource("repository.xsd")})
);
 builder = factory.newDocumentBuilder();
 builder.setErrorHandler(errorHandler);
 } catch (Exception e) {
 throw new RuntimeException ("Unable to configure Message");
 }

 TransformerFactory tf = TransformerFactory.newInstance();
 try {
 transformer = tf.newTransformer();
 } catch (TransformerConfigurationException tce) {

 tce.printStackTrace();
 }
 }

 public String toString() {
 DOMSource domSource = new DOMSource(contents);
 StringWriter writer = new StringWriter();
 StreamResult result = new StreamResult(writer);
 try {
 transformer.transform(domSource, result);
 return writer.toString();
 } catch (Exception e) {
 return "";
 }
 }
}

If you haven't terminated the client and server applications, do that now. Also, delete any files in the Repo sit o ry
fo lder. Now relaunch ServerLauncher and execute Repo sit o ryClient . The client output in Eclipse should say,
"Success." Verify the logic o f the repository by executing Repo sit o ryClient again to detect that the image is already
part o f the repository and that this second request is to be denied. Your output should read, "Error:That image already
exists in the repository." Be sure to terminate the server application before continuing.

Extending Protocol Implementation with Status Messages
Modify the Repo sit o ryClient to issue a st at usRequest request at startup:

CODE TO TYPE: /test/client/RepositoryClient

...
 public static void main(String[] args) throws Exception {
 SplashScreenLogic.update ("connecting to localhost::9172");
 delay(250);
 Socket server = new Socket ("localhost", 9172);

 SplashScreenLogic.update ("connected to localhost::9172");
 delay(250);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server.getInp
utStream()));
 SplashScreenLogic.update ("initializing with server...");
 delay(250);

 String xmlStatusRequest = "<request><statusRequest/></request>";
 new Message(xmlStatusRequest);
 toServer.println(xmlStatusRequest);
 processResponse(fromServer);

 File f = new File("images", "repositorySplash.png");
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='sampleImage'>" +
 "</addRequest></request>";

 new Message(xmlAddRequest);
 toServer.println(xmlAddRequest);

 processResponse(fromServer);

 server.close();
 SplashScreenLogic.update ("closing");
 delay(250);
 }
...

Run ServerLauncher and then run Repo sit o ryClient . A NullPo int erExcept io n appears in the Eclipse Conso le

in the pro cess method o f the Pro t o co lHandler class:

OBSERVE:

Server awaiting client connections
Exception in thread "Thread-0" java.lang.NullPointerException
 at server.ProtocolHandler.process(ProtocolHandler.java:38)
 at server.ipc.RepositoryThread.run(RepositoryThread.java:30)

If you click on the link to the pro cess method in the exception stack trace, you will find that the respo nse object
returned by pro cess() is null. Of course! You haven't yet modified the Pro t o co lHandler class to deal with a
st at usRequest that might be sent to the server. Modify the pro cess(Message) method in Pro t o co lHandler as
shown:

CODE TO TYPE: /src/server/Pro toco lHandler.java

...
 public Message process (Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();
 String xmlResp;
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 repository.add(bytes, name);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "
'/></response>";
 } catch (IOException e) {
 xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +
 "<addResponse numBytes='0'/></response>";
 } catch (Exception e) {
 xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
 "<addResponse numBytes='0'/></response>";
 }

 return new Message(xmlResp);
 } else if (child.getLocalName().equals("statusRequest")) {
 String xmlResp = "<response success='true'>" +
 "<statusResponse key='SomeKey' index='1' total='" + repository.size() + "'/
>" +
 "</response>";
 return new Message(xmlResp);
 }

 return null; // unknown request? No idea what to do.
 }
}
...

The server responds to a st at usRequest with a st at usRespo nse that records information about the repository.
This code also contains a scaffo lding element in that st at usRespo nse requires a key value to reflect the fingerprint
o f the "current image" being viewed by the client. Until that logic is implemented, a dummy So meKey value is used
instead, to get the string to pass XML validation.

Now terminate and re-run the ServerLauncher and Repo sit o ryClient . The client produces two output messages;
the first is Success (the response to the statusRequest) and the second is either Erro r:T hat image already exist s
in t he repo sit o ry (if you didn't clear out the repository), o r Success (if you did).

You've powered through more than half o f this advanced Java course. Good job! You'll continue extending your code
to add new messages (requests and responses). This table shows how far we've come toward meeting the original
set o f requirements and goals we set:

R# St at us Descript io n

R1 DONE Server must allow up to 30 concurrent users to connect and browse the images stored there.

R2 Client must be able to support any o f the standard built- in Java image formats (such as PNG or
JPG).

R3 Server can be configured to limit the maximum size o f any individual image file (default: 5MB).

R4 Server can be configured to limit the to tal number o f files stored on the shared repository (default:
1,000).

R5 A user connecting to a server must provide a user name and password.

R6 80% A user can upload up to a fixed number o f images to the repository (default: 100).

R7 A user can delete any image that he has added to the repository; a user cannot delete images added
by another user.

R8 A user can self-register an account with the Server.

R9 During the client-server communication, the user's password never appears in plaintext fo rmat.

R10 A user account is considered inactive if the user has not connected to the server within a fixed time
period (default: 14 days).

R11 Each user account has a unique string identifier composed o f alphanumeric characters (a-zA-Z0-9).
The server only stores the hashed value o f the password and therefore does not know it.

The foundation has been laid and you are ready to tackle the remaining requirements with confidence!

On a final note, since you're keeping score at home, what is your code coverage? Let's find out. Be sure to terminate
any running programs (such as ServerLauncher). First, execute all test cases within the t est source fo lder and
observe that the existing T est AddBehavio r test case no longer works because it was written before the XML
protoco l was defined. To update, replace the o ld "SIZE" requests with the st at usRequest added in this lab. Let's get
started by fixing the methods to test and validate the success or failure o f a response. Make the fo llowing code
changes to T est AddBehavio r to reimplement expect Success.

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.model.*;
import util.*;
import xml.*;
import junit.framework.TestCase;

public class TestAddBehavior extends TestCase {
 ...
 public static final String endResponse = "</response>";

 public static Message processResponse(BufferedReader fromServer) throws IOException {
 // Accumulate all input until terminating </response>
 StringBuilder buf = new StringBuilder(fromServer.readLine());
 while (!buf.substring(buf.length() - endResponse.length(), buf.length()).equals(end
Response)) {
 buf.append(fromServer.readLine());
 }
 return new Message(buf.toString());
 }

 public static Message expectSuccess (BufferedReader fromServer) throws IOException {
 Message response = processResponse(fromServer);
 String sval = response.contents.getAttributes().getNamedItem("success").getNodeValu
e();
 assertTrue (Boolean.valueOf(sval));
 return response;
 }

 ...
}

Let's take a closer look at the revised expectSuccess() method. You've already seen the logic fo r processResponse().

expectSuccess() uses pro cessRespo nse :

OBSERVE:

 public static Message expectSuccess (BufferedReader fromServer) throws IOException {
 Message response = processResponse(fromServer);
 String sval = response.contents.getAttributes().getNamedItem("success").getNodeValu
e();
 assertTrue (Boolean.valueOf(sval));
 return response;
 }

This method returns the Message response received from the server so that it can be inspected in detail by your test
case methods. The required XML API calls t hat ext ract at t ribut es f ro m t he XML respo nse are highlight ed in
red. Now, replace requestSIZE() with requestSTATUS() in T est AddBehavio r as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 void requestSIZE() throws IOException {
 toServer.println("SIZE");
 }

 public static void requestSTATUS (PrintWriter out) {
 String xmlStatusRequest = "<request><statusRequest/></request>";
 new Message(xmlStatusRequest);
 out.println(xmlStatusRequest);
 }

This method is public st at ic, so it can be reused by future test case methods that you write. Now rewrite the
request ADD method to use the XML pro toco l:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 public static void requestADD(PrintWriter out, String name, File f) throws IOExceptio
n {
 // send splash file as IMAGE using (ADD, NAME, IMAGE-encoded)
 toServer.println("ADD-BEGIN");
 toServer.println(name);
 toServer.print(ImageEncoding.encode(f);
 toServer.println("\nADD-DONE");
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='" + name + "'>" +
 "</addRequest></request>";

 new Message(xmlAddRequest);
 out.println(xmlAddRequest);
 }

This revised method uses familiar logic fo r building XML strings; it also validates the XML before sending the string
along to the server. Now you can update the t est AddBehavio r test case method to take full advantage o f these
updated helper methods:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 public void testAddBehavior() throws Exception {
 // Protocol for sending SIZE
 toServer.println("SIZE");
 requestSTATUS(toServer);
 expectSuccess("0", fromServer);

 // Protocol for sending an image
 toServer.println("ADD-BEGIN");
 toServer.println("sampleImage");
 File f = new File("images", "repositorySplash.png");
 toServer.println(ImageEncoding.encode(f));
 toServer.println("\nADD-DONE");
 requestADD(toServer, "sampleImage", f);
 expectSuccess(null, fromServer);

 // Expect repository with 1 image
 toServer.println("SIZE");
 requestSTATUS(toServer);
 Message response = expectSuccess("1", fromServer);
 String sval = response.contents.getFirstChild().getAttributes().getNamedItem("total
").getNodeValue();
 assertEquals ("1", sval);
 }

These changes clean up the code used for communication between the client and the server, and takes advantage o f
the Message class representing XML strings. To complete your test cases, make similar changes to support the
revised t est BasicAddBehavio r test case method. First, rewrite the expect Failure() method in T est AddBehavio r:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 Message expectFailure (String expect, BufferedReader fromServer) throws IOException {
 Message response = TestAddBehavior.processResponse(fromServer);
 String sval = response.contents.getAttributes().getNamedItem("success").getNodeValu
e();
 assertFalse (Boolean.valueOf(sval));
 String reason = response.contents.getAttributes().getNamedItem("reason").getNodeVal
ue();
 assertEquals (expect, reason);
 return response;
 }

Now you're ready to tackle rewriting the t est BasicAddBehavio r test case method:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 public void testBasicAddBehavior() throws Exception {
 Message r;
 requestSIZE();
 expectSuccess("0", fromServer);
 requestSTATUS(toServer);
 r = expectSuccess(fromServer);
 String count = r.contents.getFirstChild().getAttributes().getNamedItem("total").get
NodeValue();
 assertEquals ("0", count);

 File f = new File("images", "repositorySplash.png");
 requestADD(toServer, "sampleImage", f);
 expectSuccess(null, fromServer);

 requestSIZE();
 expectSuccess("1", fromServer);
 requestSTATUS(toServer); // expect one file in repository.
 r = expectSuccess(fromServer);
 count = r.contents.getFirstChild().getAttributes().getNamedItem("total").getNodeVal
ue();
 assertEquals ("1", count);

 stopClient();
 stopServer();

 server = TestServer.launchServer();
 startClient();

 requestSIZE();
 expectSuccess("1", fromServer);
 requestSTATUS(toServer);
 r = expectSuccess(fromServer);
 count = r.contents.getFirstChild().getAttributes().getNamedItem("total").getNodeVal
ue();
 assertEquals ("1", count);

 requestADD(toServer, "sampleImage", f);
 expectFailure(Repository.AlreadyExistsImage, fromServer);
 }
}

Execute EclEmma on all test cases in the t est source fo lder. If you have kept the test cases up-to-date as each lab
progressed, then you'll see a table that aggregates coverage by package:

Package Co verage Co vered Inst ruct io ns T o t al Inst ruct io ns

client 9 .6 % 12 125

client.gui 0 .0 % 0 135

server 81. 0% 149 184

server.ipc 87.7 % 100 114

server.model 55.2 % 203 368

util 87.8 % 195 222

xml 85.9 % 177 206

Aside from the code that shows 0 .0% coverage, you have produced 72% coverage o f the src source fo lder. Expand
the packages in the EclEmma Coverage Report and you'll see that some classes have no coverage (and likely will
have no test cases to cover them) such as Client Launcher; also ImageRepo sit o ryClient isn't covered by a test
class yet. Finally, inspect the coverage for the Repo sit o ry class, because the code that didn't execute is contained
only within Exception handlers. Instead o f trying to reach 80% coverage in this class, you might want to construct
sample test cases that deal with specific situations (fo r example, if the persistent files for the repository are READ
ONLY when executing the program).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

User Authentication
Lesson Objectives

In this lesson you will:

store user state on the server side o f a client-server application.

User Authentication
Now that you have the communication framework for a client server application, it's time to upgrade the server so that
it's aware o f each individual user. Currently the server is multi-threaded to allow multiple clients to upload images, but
there is no way for the server to differentiate between these clients. The common so lution is to provide user accounts
with credentialed information that must be provided at connect time. In this lesson, you'll extend the communication
protoco l to require an initial login message; thereafter, the server will associate that user with the thread spawned to
process the client requests. You also need to ensure that two clients are unable to connect simultaneously to the
same server using the same credentials; this will require a user manager to oversee which users are currently logged
in.

Let's start with the lo ginRequest that you need to add to the pro toco l. Here's a sample XML fragment o f a valid
lo ginRequest :

OBSERVE:

<request>
 <loginRequest user='user00' password='6e5aa8fe26c43b164d6308b0b942deb2'/>
</request>

The password will never be sent as plain text; we'll send an MD5-fingerprint o f the actual password. Begin your code
by defining several new test case methods in Validat eXMLMessages. Don't worry about typing in the "exact"
hexadecimal string representing the hashed password! Just make sure it's a non-empty string:

CODE TO TYPE: /test/xml/ValidateXMLMessages.java

...
 public void testLoginRequest() {
 String login = "<request><loginRequest user='user00' password='6e5aa8fe26c43b164d63
08b0b942deb2'/></request>";
 Message m = new Message(login);
 assertEquals ("request", m.contents.getLocalName());
 }

 public void testLoginResponseFailure() {
 String login = "<response success='false' reason='Invalid credentials'><loginRespon
se user='user00'/></response>";
 Message m = new Message(login);
 assertEquals ("response", m.contents.getLocalName());
 }

 public void testLoginResponseSuccess() {
 String login = "<response success='true'><loginResponse user='user00'/></response>"
;
 Message m = new Message(login);
 assertEquals ("response", m.contents.getLocalName());
 }
...

Naturally, these test cases won't pass yet, because you have to modify the repo sit o ry.xsd file to include definitions
for these messages. These changes will do the trick:

CODE TO TYPE: /repository.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

<xs:element name='message'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='response'/>
 <xs:element ref='request'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='response'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addResponse'/>
 <xs:element ref='statusResponse'/>
 <xs:element ref='loginResponse'/>
 </xs:choice>
 <xs:attribute name='success' type='xs:boolean' use='required'/>
 <xs:attribute name='reason' type='xs:string' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='request'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addRequest'/>
 <xs:element ref='statusRequest'/>
 <xs:element ref='loginRequest'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='addRequest'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='addResponse'>
 <xs:complexType>
 <xs:attribute name='numBytes' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
 <xs:complexType>
 <xs:attribute name='key' type='xs:string' use='required'/>
 <xs:attribute name='index' type='xs:integer' use='required'/>
 <xs:attribute name='total' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='loginRequest'>
 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>
 <xs:attribute name='password' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='loginResponse'>
 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>
</xs:schema>

The above changes define the structure o f lo ginRequest and lo ginRespo nse messages. Note that all o f the
attributes are required. When you edit the XSD file, try to maintain the structure such that requests and responses are
listed in pairs; this will make it easier fo r you to find elements in the file in the future. Before continuing, ensure that the
validat eXMLMessages test case passes.

Now you have to make a fundamental decision regarding lo ginRequest . Specifically, there can be only a single
lo ginRequest message during a client session, but it should not be handled by the Pro t o co lHandler class that
you've been building. Do you see why? The authentication o f a user is part o f the server's responsibility, whereas
Pro t o co lHandler manages all actions on behalf o f a given user. There will be no way for a message to be sent to
the server to "spoof" some other user's identification, so you need to have the Repo sit o ryT hread process the first
lo ginRequest message fundamentally from the client; once the user is authenticated, then Pro t o co lHandler can
get invo lved.

As you consider making this change, you'll see the misplaced implementation in Pro t o co lHandler, fo r assembling
Message objects from the underlying socket. Move this logic into the Repo sit o ryT hread class to avo id inadvertent
errors on behalf o f the user logic being implemented in Pro t o co lHandler. This is a good example o f a potentially
dangerous leakage o f the Message abstraction from the underlying IPC layer. Fix it by modifying the
IPro t o co lHandler interface. Instead o f exposing raw access to the Input/Output streams made available by the
socket, this revised interface takes an XML request and returns an XML response. If this method ever returns null, the
server should disconnect the client. Pause for a moment to digest this change— I'll wait, it's important. It's common to
refactor systems to hide details using better abstractions that are discovered over the course o f a pro ject's lifetime.
Modify IPro t o co lHandler as shown:

CODE TO TYPE: /src/server.ipc/IPro toco lHandler

package server.ipc;

import java.io.*;
import xml.*;

public interface IProtocolHandler {

 /** Process the protocol using socket's input and output. Return false to terminate,
true to continue. */
 boolean process(BufferedReader fromSocket, PrintWriter toSocket);
 /** Process the given Message request, return Message in response or null to terminat
e protocol. */
 Message process(Message request);
}

Once you have made this change to the interface, you can delete the pro cess(Buf f eredReader, Print Writ er)
method in Pro t o co lHandler

/src/server/Pro toco lHandler.java

...
public class ProtocolHandler implements IProtocolHandler {
 ...

 public boolean process(BufferedReader fromSocket, PrintWriter toSocket) {
 ...
 return false;
 }
 }

 ...
}

Several o f our classes contain code logic fo r parsing or concatenating XML strings. Instead o f spreading this logic

around, conso lidate the logic into a single class.

 In the src fo lder xml package, create a Parser class as shown:

CODE TO TYPE: /src/xml/Parser.java

package xml;

import java.io.*;

public class Parser {
 public final static String loginRequest = "loginRequest";
 public final static String loginResponse = "loginResponse";

 public final static String loginUser = "user";
 public final static String loginPassword = "password";

 public final static String invalidCredentials = "Invalid credentials";

 public static Message extractRequest(BufferedReader in) {
 return extractMessage(in, "</request>");
 }

 public static Message extractResponse(BufferedReader in) {
 return extractMessage(in, "</response>");
 }

 static Message extractMessage(BufferedReader in, String terminator) {
 try {
 String line = in.readLine();
 if (line == null) { return null; }
 StringBuilder buf = new StringBuilder(line);
 while (!buf.substring(buf.length() - terminator.length(), buf.length()).equals(te
rminator)) {
 line = in.readLine();
 if (line == null) { return null; }
 buf.append(line);
 }

 return new Message (buf.toString());
 } catch (IOException ioe) {
 return null;
 }
 }
}

This class processes input streams to extract the request and response XML messages. Over time it can store an
increasing number o f string constants associated with the repo sit o ry.xsd schema. For now, the string constants in
Parser reflect the attributes o f the lo ginRequest and lo ginRespo nse messages:

OBSERVE:

public class Parser {
 public final static String loginRequest = "loginRequest";
 public final static String loginResponse = "loginResponse";

 public final static String loginUser = "user";
 public final static String loginPassword = "password";

 public final static String invalidCredentials = "Invalid credentials";

 public static Message extractRequest(BufferedReader in) {
 return extractMessage(in, "</request>");
 }

 public static Message extractResponse(BufferedReader in) {
 return extractMessage(in, "</response>");
 }

 static Message extractMessage(BufferedReader in, String terminator) {
 ...
 }
}

So far you've seen the ext ract Message() method in several test cases and actual code. This helper method is used
by ext ract Request and ext ract Respo nse . Once again, this method succeeds only if the terminator string (in this
case either <request > o r <respo nse>) has an end-of- line ('/n') character immediately fo llowing it.

To take advantage o f this conso lidated code, change the Repo sit o ryT hread class. Let's do that in stages. First,
replace the while loop in the run method:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

package server.ipc;

import java.io.*;
import java.net.*;
import xml.*;
import org.w3c.dom.*;

public class RepositoryThread extends Thread {
 Socket client;
 BufferedReader fromClient;
 PrintWriter toClient;
 IProtocolHandler handler;

 RepositoryThread (Socket s, IProtocolHandler h) throws IOException {
 fromClient = new BufferedReader(new InputStreamReader(s.getInputStream()));
 toClient = new PrintWriter (s.getOutputStream(), true);
 client = s;
 handler = h;
 }

 public void run() {
 // have handler manage the protocol until it decides it is done.
 while (handler.process(fromClient, toClient)) {

 }

 // authentication by first login message. Stop if not a loginRequest.
 Message m = Parser.extractRequest(fromClient);
 Node child = m.contents.getFirstChild();
 if (!child.getLocalName().equals (Parser.loginRequest)) {
 return;
 }

 // Get authentication information
 String user = child.getAttributes().getNamedItem(Parser.loginUser).getNodeValue();
 String pass = child.getAttributes().getNamedItem(Parser.loginPassword).getNodeValue
();

 // tell client decision and engage handler on successful login
 boolean validated;
 if (!authenticate(user, pass)) {
 m = new Message("<response success='false' reason='" + Parser.invalidCredentials
+ "'>" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 } else {
 m = new Message("<response success='true'><loginResponse user='" + user + "'/></r
esponse>");
 validated = true;
 }

 toClient.println(m.toString());
 if (toClient.checkError()) {
 return;
 }

 // TODO: Fill in processing logic

 try {
 fromClient.close();
 toClient.close();
 client.close();
 } catch (IOException ioe) {
 System.err.println("Unable to close connection:" + ioe.getMessage());
 }
 }

 // TODO: Scaffolding code to validate any user whose name starts with letter.
 public boolean authenticate(String user, String pass) {
 return Character.isLetter(user.charAt(0));
 }
}

Let's take a closer look at this added code:

Receiving and processing initial loginRequest method

 // authentication by first login message. Stop if not a loginRequest.
 Message m = Parser.extractRequest(fromClient);
 Node child = m.contents.getFirstChild();
 if (!child.getLocalName().equals (Parser.loginRequest)) {
 return;
 }

 // Get authentication information
 String user = child.getAttributes().getNamedItem(Parser.loginUser).getNodeValue();
 String pass = child.getAttributes().getNamedItem(Parser.loginPassword).getNodeValue()
;

Using the newly defined ext ract Request method in Parser, Repo sit o ryT hread first retrieves the initial request
from the client. Then using the Java XML API yo u have already seen, the code det ermines whet her t he
request is a lo ginRequest , stopping immediately if it is not. Once the message is identified as a lo ginRequest ,
the user and hashed passwo rd are extracted from the request. You can assume that these values are present,
o therwise the Parser would not have been able to construct the lo ginRequest message in the first place. Right
away, you can see the benefit o f using a formal schema; your code is simpler to write because you don't have to
validate the structure o f the data (this task is handled by the XML parsing code).

Next, the code seeks to validate the user with the server. For now, use the scaffo lding aut hent icat e() method you
added earlier to Repo sit o ryT hread:

Authenticating the user with the server

 // tell client decision and engage handler on successful login
 boolean validated;
 if (!authenticate(user, pass)) {
 m = new Message("<response success='false' reason='" + Parser.invalidCredentials +
"'>" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 } else {
 m = new Message("<response success='true'><loginResponse user='" + user + "'/></res
ponse>");
 validated = true;
 }

 toClient.println(m.toString());
 if (toClient.checkError()) {
 return;
 }

Our code constructs either a successful o r failed lo ginRespo nse message, which it then sends back to the client. To
complete the implementation, write the code that processes messages from the client if the authentication succeeds;
this code replaces the T ODO comment we had inserted earlier as a reminder:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

...
 // TODO: Fill in processing logic
 if (validated) {
 // have handler manage the protocol until it decides it is done.
 while ((m = Parser.extractRequest(fromClient)) != null) {
 Message response = handler.process(m);
 if (response == null) { break; }

 toClient.println(response.toString());
 if (toClient.checkError()) {
 break;
 }
 }
 }
...

This while loop extracts message requests from the client and gives them to the handler fo r processing. If
handler.pro cess() returns null, the client's session ends; o therwise the response is sent back to the client and the
loop continues.

With the revised code in place, it's time to write test cases to validate that new code. Write test cases for the Parser
class, which has static methods that pull data from a BufferedReader object. You can construct a BufferedReader
object from a fixed St ring by using the StringReader class as shown in this test case:

 In the /t est fo lder xml package, create a T est Parser test case as shown:

CODE TO TYPE: /test/xml/TestParser.java

package xml;

import java.io.*;
import junit.framework.TestCase;

public class TestParser extends TestCase {

 public void testParser() {
 String s = "<response success='false' reason='" + Parser.invalidCredentials + "'><l
oginResponse user='user00'/></response>";
 StringReader sr = new StringReader(s);
 Message m = Parser.extractResponse(new BufferedReader(sr));
 assertEquals ("response", m.contents.getLocalName());
 }
}

For this test case, assume that if the XML parsing works properly (at the outermost response level), it will parse the
inner specific response properly (in this case, lo ginRespo nse). Generate EclEmma code coverage for this test case
and look at Parser.java; you still need to write a test case to make sure that requests are being parsed similarly. Also ,
observe the yellow-shaded lines within ext ract Message . These are if statements that execute, but the inner guarded
statement does not execute. In addition, there is an Exception handler that never executes. It is really common to have
these sorts o f "so ft" coverage. Add the fo llowing multi- line and request test case methods to T est Parser; the test
code coverage o f Parser reaches 82%.

http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/6/docs/api/java/io/StringReader.html

CODE TO TYPE: /test/xml/TestParser.java

 public void testRequest() {
 String s = "<request><loginRequest user='user00' password='askjdhkjhkdjs'/></reques
t>";
 StringReader serializable = new StringReader(s);
 Message m = Parser.extractRequest(new BufferedReader(serializable));
 assertEquals ("request", m.contents.getLocalName());
 }

 public void testMultiLineParser() {
 String s = "<response success='false' reason='" + Parser.invalidCredentials + "'>\n
<loginResponse user='user00'/>\n</response>";
 StringReader serializable = new StringReader(s);
 Message m = Parser.extractResponse(new BufferedReader(serializable));
 assertEquals ("response", m.contents.getLocalName());
 }

Be sure you test all o f your parsing code, before you test the new login logic.

Now you're ready to upgrade testing code to incorporate the lo ginRequest as the first message from a client. Add
request LOGIN() and respo nseLOGIN() method to T est AddBehavio r and modify request ST AT US() and
request ADD() , as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 public static Message requestLOGIN(String user, String hashedPassword) {
 String s = "<request><loginRequest user='" + user + "' password='" + hashedPassword
+ "'/></request>";
 StringReader sr = new StringReader(s);
 return Parser.extractRequest(new BufferedReader(sr));
 }

 public static Message responseLOGIN(String user, String error) {
 String s = "<response success='";
 if (error == null) {
 s += "false'";
 } else {
 s += "true' reason='" + error + "'";
 }
 s += "><loginResponse user='" + user + "'/></request>";
 StringReader sr = new StringReader(s);
 return Parser.extractRequest(new BufferedReader(sr));
 }

 public static voidMessage requestSTATUS (PrintWriter out) {
 String xmlStatusRequest = "<request><statusRequest/></request>";
 return new Message(xmlStatusRequest);

 out.println(xmlStatusRequest);
 }

 public static voidMessage requestADD(PrintWriter out, String name, File f) throws IOE
xception {
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='" + name + "'>" +
 "</addRequest></request>";
 return new Message(xmlAddRequest);
 out.println(xmlAddRequest);
 }

These methods all have the same structure in that they generate a valid Message object. Also , these methods are all
public st at ic, which maximizes their utility in o ther test cases. The request LOGIN() and respo nseLOGIN()
methods take advantage o f the St ringReader class that allows you to construct a Buf f eredReader from a fixed
string, rather than from an input stream. The changes you made to request AD()D and request ST AT US() , eliminate
the need to pass in a Print Writ er to the method.

Now let's g ahead and clean up the t est BasicAddBehavio r() method in T est AddBehavio r as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 public void testBasicAddBehavior() throws Exception {
 Message r;
 toServer.println(requestLOGIN("sample", "hashed-password"));
 r = expectSuccess(fromServer);
 toServer.println(requestSTATUS(toServer));
 r = expectSuccess(fromServer);
 String count = r.contents.getFirstChild().getAttributes().getNamedItem("total").get
NodeValue();
 assertEquals ("0", count);

 File f = new File ("images", "repositorySplash.png");
 toServer.println(requestADD(toServer, "sampleImage", f));
 expectSuccess(fromServer);

 toServer.println(requestSTATUS(toServer)); // expect one file in repository.
 r = expectSuccess(fromServer);
 count = r.contents.getFirstChild().getAttributes().getNamedItem("total").getNodeVal
ue();
 assertEquals ("1", count);

 stopClient();
 stopServer();

 server = TestServer.launchServer();
 startClient();

 toServer.println(requestLOGIN("sample", "hashed-password"));
 r = expectSuccess(fromServer);
 toServer.println(requestSTATUS(toServer));
 r = expectSuccess(fromServer);
 count = r.contents.getFirstChild().getAttributes().getNamedItem("total").getNodeVal
ue();
 assertEquals ("1", count);

 // must fail because of duplicate image
 toServer.println(requestADD(toServer, "sampleImage", f));
 expectFailure(Repository.AlreadyExistsImage, fromServer);
 }

These changes affect only the logic concerning the way test cases write messages to the server. The
t est AddBehavio r test case method in T est AddBehavio r is now redundant because o f the extra logic being tested
by the t est BasicAddBehavio r test case method, so delete the t est AddBehavio r test case method. Now, add a
test case method to T est AddBehavio r to validate login failures:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

...
 // scaffolding denies user names starting with digit
 public void testLoginFailureBehavior() throws Exception {
 toServer.println(requestLOGIN("0startsLetter", "BADBAD"));
 expectFailure(Parser.invalidCredentials, fromServer);
 }

Rerun all test cases in the t est source fo lder. Make it a habit to run all test cases, because you never know when a
minor change causes some seemingly unrelated part o f your code to fail.

Now, relaunch all test cases in the t est source fo lder using EclEmma to generate code coverage. In the Coverage
panel at the bottom of the Eclipse window, expand each o f the packages in the src fo lder to check your progress. From
this starting po int, create a spreadsheet to chart the increase (or decrease!) o f coverage at the end o f each lecture.
These charts can be extremely useful as you determine which new test cases you need to write. Here's an image o f the
spreadsheet as it is right now. Over the next few labs, you will see percentages go down (because new code has been
added) or go up (because new test cases have been written):

Nicely done! You now have a client that can authenticate its connection with the server and communicate through XML
messages. You're well-positioned to enhance the communication pro toco l with new messages, and add the final
functionality required for this application. In the next lab, you'll enhance the server to maintain information about active
users (users who are connected to the server). See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Server Sessions
Lesson Objectives

In this lesson you will:

use the server to associate user information with each spawned thread to manage the proper authentication and
execution o f the pro toco l.

Server Sessions
So now you have a working pro toco l that lets clients connect to the server, but the server still doesn't maintain user-
defined sessions for each thread to authenticate users' actions properly in the pro toco l. You also have scaffo lding
code in the server-side authentication that needs to be replaced to store and validate users' account information. In
this lab, you'll use the Java Serializable mechanism to store user information persistently in a file. Let's get started!

You'll need to design a UserManager class to manage and store all user information; it will allow the server to create
self-registered accounts. In its constructor, UserManager takes as an argument, a java.io .File, in which all persistent
information is stored. You've already seen how to store whole objects to disk. In this lesson, you'll store the user
manager object itself.

Be aware that user accounts must be deleted automatically after a specified period o f inactivity. One way to meet this
requirement would be to actively monitor the last activity time fo r any user, and proactively take steps to delete
accounts where "time o f inactivity" exceeds the server's thresho ld. We start by storing extra time information for each
user. At startup time, the server can discontinue the account fo r any user that has shown no activity fo r a specified time
period. The only drawback to this approach is that users may log in and stay logged in without any subsequent activity,
and thereby retain their accounts for longer than the allowed period o f time. This situation can be reso lved by including
a separate active "reaper" thread that sweeps through the activity o f each user and disconnects (and deactivates the
accounts o f) users who have been inactive for too long.

You can analyze the requirements to determine that fo r each user you need to store (a) the user id; (b) the hashed
password; and (c) the time o f last activity. To write and parse time values, choose to store this value in the standard
"milliseconds since January 1 1970" format.

Note Although Java supports using "milliseconds since January 1 1970" to store time, you won't encounter
the Unix Millenium Bug because it's stored in a 64-bit lo ng. That's good to know!

 In the /src fo lder server package, create the UserInf o class as shown:

CODE TO TYPE: /src/server/UserInfo .java

package server;

public class UserInfo implements java.io.Serializable {
 final String user;
 final String hashedPassword;
 long lastAccessTime;

 public UserInfo(String user, String hashedPassword, long access) {
 this.user = user;
 this.hashedPassword = hashedPassword;
 this.lastAccessTime = access;
 }

 public boolean authenticate(String hp) {
 return (hashedPassword.equals(hp));
 }

 public void updateAccessTime(long millis) {
 lastAccessTime = millis;
 }
}

http://docs.oracle.com/javase/6/docs/api/java/io/File.html
http://en.wikipedia.org/wiki/Year_2038_problem

This class stores a hashed password and a time o f last activity fo r each user, and supports authentication and
updates. Because there is no way to alter a user's account id or hashed password, these attributes are marked as
f inal. Make sure UserInf o implements java.io .Serializable , because you'll need to store instances o f this object to
disk.

The UserManager supports four key capabilities. Start with just two, fo r now: register new users on demand, and
authenticate existing users. We'll implement this class in stages:

 In the /src fo lder server package, create the UserManager class as shown:

CODE TO TYPE: /src/server/UserManager.java

package server;

import java.io.*;
import java.util.*;

public class UserManager implements Serializable {
 Hashtable<String,UserInfo> users = new Hashtable<String,UserInfo>();
 transient File storage;

 public UserManager (File f) {
 storage = f;
 }

 public boolean registerUser (String user, String hashedPassword) {
 if (users.containsKey(user)) { return false; }

 UserInfo ui = new UserInfo (user, hashedPassword, System.currentTimeMillis());
 users.put(user, ui);
 return true;
 }

 public boolean removeUser(String user) {
 UserInfo ui = users.remove(user);
 return (ui != null);
 }

 public boolean authenticate (String user, String hashedPassword) {
 UserInfo ui = users.get(user);
 if (ui == null) { return false; }

 return ui.authenticate(hashedPassword);
 }
}

OBSERVE:

import java.io.*;
import java.util.*;

public class UserManager implements Serializable {
 Hashtable<String,UserInfo> users = new Hashtable<String,UserInfo>();
 transient File storage;

 public UserManager (File f) {
 storage = f;
 }

UserManager is instantiated with the specified java.io .File into which it should store (and from which it should load)
persistent information. By ensuring the constructor requires the File object fo r persistent storage, the class ensures
that it can ultimately provide lo ad() and st o re() methods requiring no parameters, which can thus be invoked directly
by the Repo sit o ryT hread code. Note that the st o rage attribute is marked t ransient . This tells the Java VM not to
write this value to disk during the serialization process. Now, add the st o re() method to UserManager:

CODE TO TYPE: /src/server/UserManager.java

 public boolean store() {
 FileOutputStream fos;
 try {
 fos = new FileOutputStream(storage);
 } catch (FileNotFoundException fnfe) {
 System.err.println("Unable to store user manager to:" + storage);
 return false;
 }

 ObjectOutputStream oos = null;
 try {
 oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 } catch (IOException ioe) {
 System.err.println("Errors encountered while storing user manager to:" + storage)
;
 return false;
 } finally {
 try {
 oos.close();
 } catch (Exception e) {
 System.err.println("Errors encountered while closing user manager file.");
 }
 }

 return true;
 }

OBSERVE:

 oos = new ObjectOutputStream(fos);
 oos.writeObject(this);

The st o re() method uses FileOutputStream to store data to a file. Using ObjectOutputStream, the ent ire
UserManager o bject is st o red t o disk. Because st o rage was marked as transient, its value is not stored. The
reason for do ing this will be clear when you review and add the lo ad() method:

http://docs.oracle.com/javase/6/docs/api/java/io/FileOutputStream.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html

CODE TO TYPE: /src/server/UserManager.java

 public void load() {
 if (storage.exists()) {
 FileInputStream fis;
 try {
 fis = new FileInputStream(storage);
 } catch (FileNotFoundException fnfe) {
 users = new Hashtable<String,UserInfo>();
 return;
 }

 ObjectInputStream ois = null;
 try {
 ois = new ObjectInputStream(fis);
 UserManager stored = (UserManager) ois.readObject();
 users = stored.users;
 } catch (Exception e) {
 System.err.println("Problems encountered in loading user manager file (" + stor
age + ").");
 } finally {
 try {
 ois.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }

Because this method is invoked on an instantiated UserManager object, you only have to retrieve the users
hashtable from that stored object to update the set o f users for the instantiated UserManager. Eventually the server
has to be changed to load the UserManager object at startup and update the user manager's information during
processing (which includes both self-registered new accounts and access time information).

Now let's tackle two more capabilities: update the last access time for a given user, and determine whether a user
account is still active based on the length o f inactivity. Modify UserManager as shown:

CODE TO TYPE: /src/server/UserManager.java

public class UserManager {
 ...

 public static long activeThreshold = 14 * 24 * 60 * 60 * 1000; // Active threshold
 (in milliseconds) is 14 days by default

 public static void setThreshold(long val) {
 activeThreshold = val;
 }

 public void updateAccessTime(String user) {
 UserInfo ui = users.get(user);
 if (ui != null) { ui.updateAccessTime(System.currentTimeMillis()); }
 }

 public boolean isActive (String user) {
 UserInfo ui = users.get(user);
 if (ui == null) { return false; }

 long now = System.currentTimeMillis();
 Long then = ui.lastAccessTime;

 return (now - then) < activeThreshold;
 }

 ...
}

OBSERVE:

 public void updateAccessTime(String user) {
 UserInfo ui = users.get(user);
 if (ui != null) { ui.updateAccessTime(System.currentTimeMillis()); }
 }

 public boolean isActive (String user) {
 UserInfo ui = users.get(user);
 if (ui == null) { return false; }

 long now = System.currentTimeMillis();
 Long then = ui.lastAccessTime;

 return (now - then) < activeThreshold;
 }

Whenever a user interacts with the server, the Repo sit o ryT hread processing that activity calls updat eAccessT ime
to update the last activity time for that user. It works as a kind o f expiration time. From the initial requirement R10 you
must be able to configure the thresho ld o f time that an account is considered active (the default is 14 days). The default
calculation o f the act iveT hresho ld field and the corresponding set T hresho ld() method for changing this value at
runtime are in UserManager.

When updat eAccessT ime updates the last access time for a user, isAct ive is able to determine whether the
account fo r a given user should be considered active given the time that has elapsed since that user's last access.

Tip
In the isAct ive method, you'll see what at first seems like a weird computation: (no w - t hen) , where no w
is a primitive lo ng, while t hen is an object o f class Lo ng. Since Java version 1.5, the JavaVM "unboxes"
and "boxes" mixed primitives and objects in expressions automatically.

Now we can include the UserManager in your Repo sit o ryServer. Modify ServerLauncher to instantiate a
UserManager object on startup, using a predefined file fo r persistent storage, which will be stored in the Repo sit o ry
directory. The UserManager object is passed along to the server so the server can give it to the Repo sit o ryT hread
when it executes:

CODE TO TYPE: /src/server/ServerLauncher.java

package server;

import server.ipc.*;
import server.model.*;
import java.io.*;

public class ServerLauncher {
 final static String defaultLocation = "Repository";

 public static RepositoryServer create() throws Exception {
 return create(new File (defaultLocation));
 }

 public static RepositoryServer create(File dir) throws Exception {
 Repository repository = new Repository(dir);
 RepositoryServer server = new RepositoryServer(repository, new ProtocolHandler(repo
sitory));
 server.bind();
 return server;
 }

 public static void main(String[] args) throws Exception {
 File storage = new File (defaultLocation);
 if (args.length != 0) {
 storage = new File (args[0]);
 }

 UserManager userManager = new UserManager(new File (storage, "userManager"));
 userManager.load();

 Repository repository = new Repository(storage);
 RepositoryServer server = create();new RepositoryServer(repository, userManager,
 new ProtocolHandler(repository));

 server.bind();

 // process all requests and exit.
 System.out.println("Server awaiting client connections");
 server.process();
 System.out.println("Server shutting down.");
 }
}

For now, ignore the compilation error in ServerLauncher (it will be fixed shortly).

Let's work on the self-registration issue. Edit the repo sit o ry.xsd file to add a new optional boo lean regist er attribute
to the lo ginRequest message. Java presumes that messages with the regist er attribute set to t rue are attempts by
the client to register a new account in the system. The user requesting the registration may have selected a duplicate
user id; these requests will be denied and the user will be prompted to choose a new user id. Find the XML block for
lo ginRequest in repo sit o ry.xsd and modify it as shown:

CODE TO TYPE: /repository.xsd

<xs:element name='loginRequest'>
 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>
 <xs:attribute name='password' type='xs:string' use='required'/>
 <xs:attribute name='register' type='xs:boolean' use='optional'/>
 </xs:complexType>
</xs:element>

When a Repo sit o ryT hread receives a lo ginRequest with regist er='t rue ' , it is directed to open a new account fo r
that user. If the account has already been opened, a failed lo ginRespo nse is returned to the client; o therwise the
account is created and the user remains connected. Since we have modified the pro toco l, you should add a new
attribute to Parser just after the definition o f lo ginPasswo rd:

CODE TO TYPE: /src/xml/Parser.java

...
 public final static String loginUser = "user";
 public final static String loginPassword = "password";
 public final static String loginRegister = "register";

 public final static String invalidCredentials = "Invalid credentials";
...

You'll need to make several changes to the Repo sit o ryT hread process method to manage the pro toco l, and extract
information from the lo ginRequest message. Modify Repo sit o ryT hread as shown:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.*;
import xml.*;
import org.w3c.dom.*;

public class RepositoryThread extends Thread {
 Socket client;
 BufferedReader fromClient;
 PrintWriter toClient;
 IProtocolHandler handler;
 String user;
 UserManager manager;

 RepositoryThread (UserManager um, Socket s, IProtocolHandler h) throws IOException {
 fromClient = new BufferedReader(new InputStreamReader(s.getInputStream()));
 toClient = new PrintWriter (s.getOutputStream(), true);
 client = s;
 handler = h;
 manager = um;
 }

 public void run() {
 // authentication by first login message. Stop if not a loginRequest.
 Message m = Parser.extractRequest(fromClient);
 Node child = m.contents.getFirstChild();
 if (!child.getLocalName().equals (Parser.loginRequest)) {
 return;
 }

 // Get authentication information
 String user = child.getAttributes().getNamedItem(Parser.loginUser).getNodeValue();
 String pass = child.getAttributes().getNamedItem(Parser.loginPassword).getNodeValue
();

 // might be self-registration.
 Node registerNode = child.getAttributes().getNamedItem(Parser.loginRegister);
 boolean register = false;
 if (registerNode != null) {
 register = Boolean.valueOf(registerNode.getNodeValue());
 }

 // tell client decision and engage handler on successful login
 boolean validated;
 if (register) {
 if (manager.registerUser(user, pass)) {
 m = new Message("<response success='true'><loginResponse user='" + user + "'/><
/response>");
 validated = true;
 } else {
 m = new Message("<response success='false' reason='" + Parser.invalidCredential
s + "'>" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 }
 } else {
 if (!manager.authenticate(user, pass)) {
 m = new Message("<response success='false' reason='" + Parser.invalidCredential
s + "'>" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 } else {
 m = new Message("<response success='true'>" +
 "<loginResponse user='" + user + "'/></response>");

 validated = true;
 }
 }

 toClient.println(m.toString());
 if (toClient.checkError()) {
 return;
 }

 if (validated) {
 // have handler manage the protocol until it decides it is done.
 while ((m = Parser.extractRequest(fromClient)) != null) {
 manager.updateAccessTime(user);
 Message response = handler.process(m);
 if (response == null) { break; }

 toClient.println(response.toString());
 if (toClient.checkError()) {
 break;
 }
 }
 }

 // close communication to client.
 try {
 fromClient.close();
 toClient.close();
 client.close();
 } catch (IOException e) {
 System.err.println("Unable to close connection:" + e.getMessage());
 }
 }

 // TODO: Scaffolding code to validate any user whose name starts with letter.
 public boolean authenticate(String user, String pass) {
 return Character.isLetter(user.charAt(0));
 }
}

The new code we added handles the self-registration o f user accounts as requested at the outset o f this pro ject. It also
handles situations where a user tries to self-register an account with a user name that already exists.

In the run method o f Repo sit o ryT hread, you've converted the local variable user extracted from the lo ginRequest
into a class attribute. Because the user string is stored by the Repo sit o ryT hread, it is not available to the
Pro t o co lHandler and therefore cannot be "spoofed" by malicious code. Also, in newly inserted call to
manager.updat eAccessT ime() within the while loop, you can see that whenever any activity occurs for the user,
the thread updates the activity managed by the UserManager first.

The scaffo lding aut hent icat e() method in Repo sit o ryT hread has been deleted and invocations to it have been
replaced with invocations to the UserManager implementation. We write scaffo lding code to enable development to
proceed at a steady, uninterrupted pace. We delete scaffo lding code once the real classes are developed.

Now modify Repo sit o ryServer so it is given a UserManager object when it is constructed; this UserManager
object is passed to each thread spawned by the Repo sit o ryServer:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.model.*;
import server.*;

public class RepositoryServer {
 ServerSocket serverSocket = null;
 int state = 0;
 IProtocolHandler protocolHandler;
 Repository repository;
 UserManager manager;

 public RepositoryServer(Repository rep, UserManager um, IProtocolHandler ph) {
 protocolHandler = ph;
 repository = rep;
 manager = um;
 }

 public void bind() throws IOException {
 serverSocket = new ServerSocket(9172);
 state = 1;
 }

 public void process() throws IOException {
 while (state == 1) {
 Socket client = serverSocket.accept();

 new RepositoryThread(manager, client, protocolHandler).start();
 }

 shutdown();
 }

 void shutdown() throws IOException {
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state = 0;
 }
 }
}

Testing

Your code changes cause compilation errors in the test cases, so now you need to integrate the UserManager class.
The Co ncurrent UserPerf o rmance class in the perf o rmance source fo lder is seriously outdated (it still refers to
SIZE messages). This class has served its purpose; it's time to delete it. Review the T est Server test case that you
need to modify. Change the imports o f this test case to import server.* and then modify the launchServer method as
shown below to integrate UserManager into the launchServer method used during testing:

CODE TO TYPE: /test/server.ipc/TestServer.java

package server.ipc;

import java.io.*;
import server.model.*;
import server.ServerLauncher;
import server.ipc.RepositoryServer;
import server.*;
import client.*;
import junit.framework.TestCase;

public class TestServer extends TestCase {

 ...

 public static RepositoryServer launchServer() throws Exception {
 final RepositoryServer server = ServerLauncher.create(new File (testRepository));
 assertEquals (1, server.state);
 Repository repository = new Repository(new File(testRepository));
 UserManager userManager = new UserManager(new File (testRepository, "userManager"))
;
 userManager.load();
 final RepositoryServer server = new RepositoryServer(repository, userManager,
 new server.ProtocolHandler(repository));
 new Thread() {
 public void run() {
 try {
 server.bind();
 assertEquals (1, server.state);
 server.process();
 } catch (IOException ioe) {
 System.err.println("Server completed:" + ioe.getMessage());
 }
 }
 }.start();

 // wait until server is ready.
 Thread.sleep(2000);

 return server;
 }
}

You need some additional test cases to validate the core behavior o f UserManager.

 In the /t est source fo lder server package, create a new JUnit test case named T est UserManager as shown
(your server package is probably empty at this po int, so it may not appear in your Package Explorer. Right-click the
/t est fo lder, select New | Ot her | JUnit | JUnit T est Case , and include server in the Package field):

CODE TO TYPE: /test/server/TestUserManager.java

package server;

import java.io.*;
import server.ipc.*;
import junit.framework.TestCase;

public class TestUserManager extends TestCase {
 UserManager userManager;

 protected void setUp() {
 userManager = new UserManager(new File (TestServer.testRepository, "userManager"));
 }

 public void testMembership() {
 assertFalse (userManager.isActive("george"));
 assertTrue (userManager.registerUser("george", "HASH-PASSWORD"));
 assertTrue (userManager.isActive("george"));

 assertTrue (userManager.authenticate("george", "HASH-PASSWORD"));
 assertFalse (userManager.authenticate("george", "BAD-HASH-PASSWORD"));
 assertTrue (userManager.removeUser("george"));
 assertFalse (userManager.isActive("george"));
 assertFalse (userManager.authenticate("george", "HASH-PASSWORD"));
 assertFalse (userManager.removeUser("george"));
 }

 public void testStorage() {
 assertFalse (userManager.isActive("george"));
 assertTrue (userManager.registerUser("george", "HASH-PASSWORD"));
 assertTrue (userManager.store());

 // recreate
 userManager = new UserManager(new File (TestServer.testRepository, "userManager"));
 userManager.load();
 assertTrue (userManager.isActive("george"));
 }

 public void testFaultyTwiceRegistered() {
 assertTrue (userManager.registerUser("george", "HASH-PASSWORD"));
 assertFalse (userManager.registerUser("george", "HASH-PASSWORD"));
 }

 public void testTiming () throws InterruptedException {
 assertTrue (userManager.registerUser("george", "HASH-PASSWORD"));
 UserManager.setThreshold(50); // 50 milliseconds
 Thread.sleep(250); // sleep longer than threshold
 assertFalse (userManager.isActive("george"));
 userManager.updateAccessTime("george");
 assertTrue (userManager.isActive("george"));
 }

The t est Membership() test case method issues a sequence o f registrations and authentications to validate that the
core logic is covered. Each method in UserManager returns a meaningful return value which facilitates proper testing.

Validate that all test cases in the t est source fo lder pass. What's this? Failed tests within the T est AddBehavio r test
case? Of course! In this lab, you replaced the "scaffo lding" aut hent icat e method (which validated so lely by making
sure that the first character o f user name was a letter) with the real implementation. So now you have to revisit these
test cases. Since you added self-registration lo ginRequest messages in this lab, you will have to validate that code
as well:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

...
 public static Message requestLOGIN(String user, String hashedPassword, boolean self)
{
 String s = "<request><loginRequest user='" + user + "' password='" + hashedPassword
 +
 "' register='" + self + "'/></request>";
 StringReader sr = new StringReader(s);
 return Parser.extractRequest(new BufferedReader(sr));
 }

 public static Message requestLOGIN(String user, String password) {
 return requestLOGIN(user, password, false);
 }
...

These methods allow test cases to request a login for an existing account or to self-register one. We keep the original
request LOGIN() method with two parameters for convenience and backward compatibility. You can take advantage
of these new methods right away in the revised t est BasicAddBehavio r() method:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

...
 public void testBasicAddBehavior() throws Exception {
 Message r;
 toServer.println(requestLOGIN("sample", "hashed-password", true));
 r = TestAddBehavior.expectSuccess(fromServer);
 ...
 }

Now this test case self-registers the sample user account, which is used later in the test case during a straight-up
login process. However, when we rerun all test cases, this test case fails on the second attempt to login using these
same credentials. We can explain this behavior. Earlier, you wrote lo ad() and st o re() methods in UserManager, but
you never wrote the code to invoke st o re() . You have several options; the least efficient would have you invoke
st o re() whenever any user information changed (for example, when new accounts were created or the last access
time for a user is updated). An alternative would be to use a timer thread to store the UserManager object periodically;
while useful, this option would be challenging to test within a use case. The simplest option would be to invoke
st o re() whenever the server shuts down. Let's do that. Modify the shut do wn() method in Repo sit o ryServer as
shown:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

 void shutdown() throws IOException {
 manager.store();
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state = 0;
 }
 }

Now rerun your test cases; they all pass. Generate code coverage using EclEmma and review the new code in
Repo sit o ryT hread. You can see that you have not exercised code when self-registration fails. What happens, fo r
example, if someone attempts to self-register an account with a user name that already has a valid account? Add this
next method to T est AddBehavio r to handle this situation. While you're at it, fix the t est Lo ginFailureBehavio r test
case method to eliminate its outdated documentation and misleading arguments, as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

 // scaffolding denies user names starting with digit
 public void testLoginFailureBehavior() throws Exception {
 toServer.println(requestLOGIN("0startsLetterUnknownUser", "BADBAD"));
 expectFailure(Parser.invalidCredentials, fromServer);
 }

 public void testInvalidSelfRegistration() throws Exception {
 toServer.println(requestLOGIN("user00", "n", true));
 expectSuccess(fromServer);
 stopClient();

 startClient();
 toServer.println(requestLOGIN("user00", "n", true));
 expectFailure(Parser.invalidCredentials, fromServer);
 }

Use EclEmma to generate the code coverage for all test cases and your results will look like this:

So now you know how Java deals with server sessions and identification. You've covered some complex Java topics
so far. Great work!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Supporting Client Login
Lesson Objectives

In this lesson you will:

develop the client-side IPC layer.
write a login dialog that also supports self-registration.
close a multi-threaded client application.

Supporting Client Login with Improved Client-Side Inter-Process
Communication (IPC)

At last we're ready to revamp the client-side GUI application that will support all o f the functionality you've added to the
server. First, we'll improve the IPC capability o f the client, essentially putting into place a multi-threaded system similar
to what you did for the server. Then we'll add a login window to initiate the connection to the server. Throughout this
process, your server and client will be running on the same (virtual) machine, but once the code is operational, you can
execute the client and server code on separate machines.

Because you don't want to synchronously block all client-side activity while waiting for the server to process a request,
the client requires an executable ServerAccess thread to read responses returned from the server. Additionally, by
having a thread read responses, you make it possible for the client to receive a response asynchronously, without first
sending a request.

The ServerAccess class handles the connection to the server. ServerAccess needs to know:

the complete credentials o f the user trying to connect (that is, user name and hashed password)
the remote machine to which a connection is requested (in our case, "localhost")
whether the user is requesting to self-register a new account

ServerAccess o ffers the ability to connect to the remote server, disconnect from that server, and send a request to
that server. The ServerAccess code pulls in logic that you've seen before.

 in the /src fo lder client package, create a ServerAccess class as shown:

CODE TO TYPE: /src/client/ServerAccess.java

package client;

import java.io.*;
import java.net.*;
import xml.*;

public class ServerAccess extends Thread {
 String host;
 String user;
 String hashedPass;
 boolean selfRegister;

 Socket server;
 BufferedReader fromServer;
 PrintWriter toServer;

 boolean isActive = false;

 public ServerAccess(String host, String user, String hashedPass, boolean selfRegister
) {
 this.host = host;
 this.user = user;
 this.hashedPass = hashedPass;
 this.selfRegister = selfRegister;
 }

 public boolean connect() {
 try {
 server = new Socket (host, 9172);
 fromServer = new BufferedReader (new InputStreamReader(server.getInputStream()));
 toServer = new PrintWriter (server.getOutputStream(), true);
 isActive = true;
 } catch (Exception e) {
 System.err.println("Unable to connect to server: " + e.getMessage());
 isActive = false;
 return false;
 }

 start();
 return true;
 }

 public void run() {
 // TODO: Fill in soon
 }

 public void disconnect() {
 isActive = false;
 try {
 server.close();
 } catch (IOException ioe) {
 System.err.println("Unable to close server:" + ioe.getMessage());
 }
 }

 public synchronized boolean sendRequest(Message r) {
 if (!isActive) { return false; }

 toServer.println(r);
 return !toServer.checkError();
 }
}

The ServerAccess constructor records information that's needed to set up communication with the remote server
when co nnect () is invoked. The isAct ive field determines whether the connection to the remote server is active.

Initially, the value o f isAct ive is f alse ; a user can send a message to the server using sendRequest () only if the
connection is active. Let's take a closer look at the co nnect () method in ServerAccess as it launches a thread:

OBSERVE:

 public boolean connect() {
 try {
 server = new Socket (host, 9172);
 toServer = new PrintWriter (server.getOutputStream(), true);
 fromServer = new BufferedReader (new InputStreamReader(server.getInputStream()));
 isActive = true;
 } catch (Exception e) {
 System.err.println("Unable to connect to server: " + e.getMessage());
 isActive = false;
 return false;
 }

 start();
 return true;
 }

You'll recognize much o f this code. It co nnect s t o t he remo t e server and creat es t o Server and f ro mServer
o bject s. Once communication is established, isAct ive is set to t rue . The st art () invocation causes the
ServerAccess thread to begin executing its run method, which you'll complete now. The run method has two parts.
Edit run() in ServerAccess as shown:

CODE TO TYPE: /src/client/ServerAccess.java

...
 public void run() {
 // TODO: Fill in soon
 try {
 String selfAtt = "";
 if (selfRegister) { selfAtt = " register='true'"; }
 Message m = new Message("<request>" +
 "<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt
+ "/></request>");
 sendRequest(m);

 while (isActive) {
 // TODO: Fill in soon
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 disconnect();
 }
...

Let's take a closer look:

OBSERVE:

 public void run() {
 try {
 String selfAtt = "";
 if (selfRegister) { selfAtt = " register='true'"; }
 Message m = new Message("<request>" +
 "<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt
+ "/></request>");
 sendRequest(m);

 while (isActive) {
 // TODO: Fill in soon
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 disconnect();
 }

The run() method constructs a lo ginRequest , which is sent to the server first. After that, so long as isAct ive is true,
the while loop processes messages. When isAct ive is false (or if an Exception occurs), the ServerAccess thread
disconnects from the remote server. Now let's complete the run() method:

CODE TO TYPE: /src/client/ServerAccess.java

 public void run() {
 try {
 String selfAtt = "";
 if (selfRegister) { selfAtt = " register='true'"; }
 Message m = new Message("<request>" +
 "<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt
+ "/></request>");
 sendRequest(m);

 while (isActive) {
 // TODO: Fill in soon
 m = Parser.extractResponse(fromServer);
 if (m == null) {
 break;
 }
 // TODO: For now, just print it to console
 System.out.println(m);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 disconnect();
 }

The ServerAccess thread blocks and waits fo r a response from the server using the ext ract Respo nse() method
implemented in the Parser class. When a respo nse is read, a Message o bject is co nst ruct ed. If that message
object is ever null, the client can infer that the connection with the server has been shut down, and so it can request
that ServerAccess be disconnected as well. For now, this code just outputs the response from the server— you'll fix
in the next lesson. There's an interesting alternative situation that takes place when the client chooses to disconnect
from the server. In that case, you'll just call disco nnect () on ServerAccess and the thread will exit properly.

OBSERVE:

 while (isActive) {
 m = Parser.extractResponse(fromServer);
 if (m == null) {
 break;
 }

 // TODO: For now, just print it to console
 System.out.println(m);
 }

When designing a client/server system, you have to consider when the client terminates the communication, and when
the server terminates the communication. You also need to know when a thread will stop. The Java API fo r threads
includes the Thread.stop method, which is less than ideal. Calling st o p on a Thread is inherently unsafe. Instead,
you'll want to find indirect ways to terminate a thread. In the case o f ServerAccess, the while method runs as long as
the client is actively connected to the server; once the client drops this connection, isAct ive is set to f alse , and the
loop terminates. The thread will terminate properly without stopping the thread manually.

Client Login Window

Our client GUI looks nice, but it has no real functionality. Let's create a login window where users can enter
their credentials when connecting to the server. You'll use Gro upLayo ut to model the GUI dialog window.
This GUI must allow the user to enter this information:

Remote server host (default: localhost)
User ID
Password
Whether user is self-registering an account (default: no)

You also want this dialog to be "modal," which means that no o ther GUI processing will be possible until the
dialog is closed.

 In the /src fo lder client .gui package, create a Lo ginDialo g class as shown (this is the longest code
listing you've had to enter so far—fortunately, you saw a GUI Swing class earlier, so the Gro upLayo ut
invocations will look familiar):

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#stop()
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

CODE TO TYPE: /src/client.gui/LoginDialog.java

package client.gui;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.GroupLayout.Alignment;

public class LoginDialog extends JDialog {
 JTextField user;
 JPasswordField pass;
 JTextField host;
 JCheckBox register;
 JButton ok;
 JButton cancel;
 boolean isCanceled;

 public LoginDialog(JFrame parent) {
 this (parent, true);
 }

 LoginDialog(JFrame parent, boolean modal) {
 super(parent, "Enter Login Credentials", modal);
 setResizable(false);
 initLayout();
 }

 void initLayout() {
 setSize (400, 200);
 JPanel p = new JPanel();

 GroupLayout layout = new GroupLayout(p);
 p.setLayout(layout);

 // Enable gaps between components and with container for better look.
 layout.setAutoCreateGaps(true);
 layout.setAutoCreateContainerGaps(true);

 JLabel host = new JLabel ("host:");
 JLabel user = new JLabel ("user:");
 JLabel pass = new JLabel ("password:");

 layout.setHorizontalGroup(layout.createParallelGroup(Alignment.CENTER).
 addComponent(getRegisterCheckBox()).
 addGroup(layout.createSequentialGroup().
 addGroup(layout.createParallelGroup(Alignment.TRAILING).
 addComponent (host).
 addComponent (user).
 addComponent (pass).
 addComponent(getCancel())).
 addGroup(layout.createParallelGroup(Alignment.TRAILING).
 addComponent (getHostField()).
 addComponent (getUserField()).
 addComponent (getPasswordField()).
 addComponent (getOK()))));

 layout.setVerticalGroup(layout.createSequentialGroup().
 addGroup(layout.createParallelGroup(Alignment.BASELINE).
 addComponent (host).
 addComponent (getHostField())).
 addGroup(layout.createParallelGroup(Alignment.BASELINE).
 addComponent (user).
 addComponent (getUserField())).
 addGroup(layout.createParallelGroup(Alignment.BASELINE).
 addComponent (pass).
 addComponent (getPasswordField())).
 addGroup(layout.createParallelGroup(Alignment.CENTER).
 addComponent (getCancel()).

 addComponent (getRegisterCheckBox()).
 addComponent (getOK())));

 add(p);
 }

 JTextField getHostField() {
 if (host == null) { host = new JTextField (32); }
 return host;
 }

 JTextField getUserField() {
 if (user == null) { user = new JTextField (32); }
 return user;
 }

 JPasswordField getPasswordField() {
 if (pass == null) { pass = new JPasswordField (32); }
 return pass;
 }

 JCheckBox getRegisterCheckBox() {
 if (register == null) { register = new JCheckBox ("Self Register"); }
 return register;
 }

 JButton getOK() {
 if (ok == null) { ok = new JButton ("OK"); }
 return ok;
 }

 JButton getCancel() {
 if (cancel == null) { cancel = new JButton ("Cancel"); }
 return cancel;
 }
}

Whew! That was long one, but you probaby recognized that the structure is similar to the
ImageRepo sit o ryClient class you've already created. The only complication, naturally, is the invocation o f
set Vert icalGro up and set Ho rizo nt alGro up.

Compare the layout code with this example o f the actual planned layout, which shows the parallel and
sequential groups:

OBSERVE:

 layout.setHorizontalGroup(layout.createParallelGroup(Alignment.CENTER).
 addComponent(getRegisterCheckBox()).
 addGroup(layout.createSequentialGroup().
 addGroup(layout.createParallelGroup(Alignment.TRAILING).
 addComponent (host).
 addComponent (user).
 addComponent (pass).
 addComponent(getCancel())).
 addGroup(layout.createParallelGroup(Alignment.TRAILING).
 addComponent (getHostField()).
 addComponent (getUserField()).
 addComponent (getPasswordField()).
 addComponent (getOK()))));

 layout.setVerticalGroup(layout.createSequentialGroup().
 addGroup(layout.createParallelGroup(Alignment.BASELINE).
 addComponent (host).
 addComponent (getHostField())).
 addGroup(layout.createParallelGroup(Alignment.BASELINE).
 addComponent (user).
 addComponent (getUserField())).
 addGroup(layout.createParallelGroup(Alignment.BASELINE).
 addComponent (pass).
 addComponent (getPasswordField())).
 addGroup(layout.createParallelGroup(Alignment.CENTER).
 addComponent (getCancel()).
 addComponent (getRegisterCheckBox()).
 addComponent (getOK())));

The tricky part o f this invocation is that it's able to place the "Self Register" check box between the "OK" and
"Cancel" buttons. This works because the first layo ut .creat eParalle lGro up() invocation chooses
Alignment .CENT ER fo r its alignment. So, the "Self Register" check box is centered horizontally along with
the o ther widgets.

 To see Lo ginDialo g in action, create the T emp class in the default package o f the /src fo lder. The T emp
class shows how to display a Lo ginDialo g window and dispose o f it when the user closes the window.
(You'll delete this class once you complete Lo ginDialo g):

CODE TO TYPE: /src/Temp.java

import javax.swing.*;
import client.gui.*;

public class Temp {
 public static void main(String[] args) {
 final LoginDialog ld = new LoginDialog(null);
 ld.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 ld.setVisible(true);
 System.out.println("DONE");
 }
}

Normally a dialog is opened from within another Java window, but you can always pass in null to the
constructor. In this case, the dialog appears in the top-left corner o f your display. Lo ginDialo g has two
constructors: the Lo ginDialo g(JFrame) constructor creates a modal dialog, which means that no o ther GUI
activity is accepted by your Swing application until this dialog is closed; and the
Lo ginDialo g(JFrame,bo o lean) constructor, which gives you the option to create a modeless dialog
(which will become necessary later when you write test cases for this class).

Run the T emp class. Your dialog appears as shown:

Unfortunately, none o f the buttons work, but the top three label/field pairs are structured correctly, and the "Self
Register" checkbox is centered horizontally. When you close the Lo ginDialo g window you just launched
with T emp, the word "DONE" appears on the Eclipse conso le. This behavior demonstrates that GUI threads
block whenever a modal dialog is opened.

Users may complete their interactions with a dialog box by pressing the OK button; dialog boxes also
present the option to Cancel (o r the user could choose to close the entire dialog window from the window
frame). There is also an isCanceled attribute in Lo ginDialo g.

In GUI applications, you write contro l handlers to process events (such as mouse clicks and requests to
close windows). Modify the Lo ginDialo g class as shown to add the first contro l handler:

CODE TO TYPE: /src/client.gui/LoginDialog.java

public class LoginDialog extends JDialog {
 ...

 class CancelAction {
 public void process() {
 isCanceled = true;
 LoginDialog.this.dispose();
 }
 }

 public LoginDialog(JFrame parent) {
 this (parent, true);
 }

 LoginDialog(JFrame parent, boolean modal) {
 super(parent, "Enter Login Credentials", modal);
 setResizable(false);
 initLayout();

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 new CancelAction().process();
 }
 });

 getCancel().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 new CancelAction().process();
 }
 });
 }

 ...
}

The CancelAct io n inner class contains a single pro cess() method that sets the isCanceled attribute for
Lo ginDialo g to t rue , before disposing o f the Lo ginDialo g object. The unusual syntax o f the
Lo ginDialo g.t his.dispo se() statement; this syntax allows the inner class (in this case CancelAct io n) to
be able to refer to its container class (that is, Lo ginDialo g). Java's use o f inner classes makes it possible to
write concise code that can be encapsulated to pro tect access. This CancelAct io n class is used by both the
Windo wAdapt er contro ller associated with closing the window, and the Act io nList ener associated with
the Cancel button. Because CancelAct io n is a stateless class, you can construct a new CancelAct io n
object and invoke its pro cess() method. In both cases, you use Java's anonymous classes to register a
Windo wList ener and Act io nList ener with their respective Swing elements.

Go ahead and run the T emp class (you can dispose o f the window by clicking on the Cancel button). That's
progress! Let's keep go ing.

Lo ginDialo g needs to have some logic so the client application can retrieve the information entered by the
user. In o ther words, when the user fills in the text fields and clicks OK, you need to extract the values from the
text fields and store them within the Lo ginDialo g object. When you dispo se o f Lo ginDialo g, you eliminate
only the GUI resources; the Lo ginDialo g object still exists in memory. The code that made Lo ginDialo g
visible in the first place can then retrieve the necessary attributes from the Lo ginDialo g object. Add some
attributes and methods to Lo ginDialo g as shown:

CODE TO TYPE: /src/client.gui/LoginDialog.java

package client.gui;

import util.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.GroupLayout.Alignment;

public class LoginDialog extends JDialog {
 String userValue;
 String hostValue;
 boolean isRegistered;
 String hashedPassword;

 ...

 public boolean wasCanceled () { return isCanceled; }
 public String getUserValue() { return userValue; }
 public String getHostValue() { return hostValue; }
 public String getHashedPasswordValue() { return hashedPassword; }
 public boolean isSelfRegistered() { return isRegistered; }

 ...
}

These changes make it possible to retrieve all information recorded by the Lo ginDialo g object. The next
contro ller you write will be associated with the OK button; it will update these values for future retrieval. Make
these changes to Lo ginDialo g:

CODE TO TYPE: /src/client.gui/LoginDialog.java

public class LoginDialog extends JDialog {
 ...

 class OKAction {
 public void process() {
 isCanceled = false;
 hostValue = getHostField().getText();
 userValue = getUserField().getText();
 isRegistered = getRegisterCheckBox().isSelected();

 // Extract password and safely clean it out
 char [] chars = getPasswordField().getPassword();
 byte[] bytes = new byte[chars.length];

 for (int i = 0; i < bytes.length; i++) {
 bytes[i] = (byte) chars[i];
 chars[i] = '\0';
 }
 hashedPassword = Fingerprint.getFingerPrint(bytes);
 LoginDialog.this.dispose();
 }
 }

 public LoginDialog(JFrame parent) {
 this (parent, true);
 }

 public LoginDialog(JFrame parent, boolean modal) {
 super(parent, "Enter Login Credentials", true);
 setResizable(false);
 initLayout();

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 new CancelAction().process();
 }
 });

 getCancel().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 new CancelAction().process();
 }
 });

 getOK().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new OKAction().process();
 }
 });

 }

 ...
}

The pro cess() method in OKAct io n extracts values from the Swing GUI widgets and stores them in the
class attributes you just added. When you use the pro cess() methid, you can only ext ract a char[] array
from a JPasswo rdField object. This is done to allow the caller to clean out the array contents safely and
construct the hashedPasswo rd using the Fingerprint class you've already developed. The designers o f
the Swing framework recommend the code fragment you've used to extract the characters. This helps to
prevent a malicious third-party from retrieving the password, because you essentially zero it out when you
extract it in the first place. Note that Lo ginDialo g only stores the hashed password, and never the plain-text
password, fo r security reasons. When you write code in this way, you satisfying your obligation to avo id
storing (or transmitting) the user's password in plain text.

Change T emp to retrieve the values from Lo ginDialo g as shown:

Change T emp to retrieve the values from Lo ginDialo g as shown:

CODE TO TYPE: /src/Temp.java

import javax.swing.*;
import client.gui.*;

public class Temp {
 public static void main(String[] args) {
 final LoginDialog ld = new LoginDialog(null);
 ld.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 ld.setVisible(true);
 System.out.println("DONE");
 System.out.println("canceled:" + ld.wasCanceled());
 System.out.println("user:" + ld.getUserValue());
 System.out.println("password:" + ld.getHashedPasswordValue());
 System.out.println("selfRegister:" + ld.isSelfRegistered());
 }
}

Run T emp and observe the output responses under different input circumstances; try closing the dialog by
clicking OK and Cancel.

Let's add one more common GUI feature to Lo ginDialo g that will enable the OK button only when all text
fields have content. This requires using a KeyList ener on all text fields.

CODE TO TYPE: /src/client.gui/LoginDialog.java

public class LoginDialog extends JDialog {

 ...

 class OKFilter extends KeyAdapter {
 public void keyReleased(KeyEvent e) {
 validateForm();
 }
 }

 void validateForm() {
 boolean enable = true;
 if (getHostField().getText().length() == 0) { enable = false; }
 if (getUserField().getText().length() == 0) { enable = false; }
 if (getPasswordField().getPassword().length == 0) { enable = false; }

 getOK().setEnabled(enable);
 }

 ...

 LoginDialog(JFrame parent, boolean modal) {
 super(parent, "Enter Login Credentials", modal);
 setResizable(false);
 initLayout();
 validateForm();

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 new CancelAction().process();
 }
 });

 getCancel().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 new CancelAction().process();
 }
 });

 getOK().addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 new OKAction().process();
 }
 });

 getPasswordField().addKeyListener(new OKFilter());
 getHostField().addKeyListener(new OKFilter());
 getUserField().addKeyListener(new OKFilter());
 }

 ...
}

These small changes, spread across Lo ginDialo g, call validat eFo rm when each key is released. In do ing
so, validat eFo rm is called whenever the user types a key that alters the value stored in any text field. This
sort o f field-value checking is common in GUI systems, and it can result in awful code if it's not handled well.
The enabling logic fo r the OK button is encapsulated within the validat eFo rm method. Each contro ller that
manages user updates must (at some po int) invoke validat eFo rm to enable (or disable) the OK button
correctly.

Run T emp to verify that the OK button is unavailable until you enter data in all three fields.

Testing
The new code for this lesson is split between the client GUI and client IPC layers. You can write a set o f test cases to

validate ServerAccess, but you'll have to wait until the next lesson to write test cases for Lo ginDialo g. For now, get
started by modifying Repo sit o ryClient to use the new pro toco l and retrieve its credentials and host information from
Lo ginDialo g:

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import java.net.*;
import javax.swing.*;
import xml.*;
import util.*;
import client.gui.*;

public class RepositoryClient {
 public static String endResponse = "</response>";

 static void processResponse(BufferedReader fromServer) throws IOException {
 try {
 StringBuilder buf = new StringBuilder(fromServer.readLine());
 while (!buf.substring(buf.length()-endResponse.length(), buf.length()).equals(end
Response)) {
 buf.append(fromServer.readLine());
 }
 Message response = new Message(buf.toString());
 String sval = response.contents.getAttributes().getNamedItem("success").getNodeVa
lue();
 if (Boolean.valueOf(sval)) {
 System.out.println("Success");
 } else {
 System.out.println("Error:" + response.contents.getAttributes().getNamedItem("r
eason").getNodeValue());
 }

 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }

 public static void main(String[] args) throws Exception {
 final LoginDialog ld = new LoginDialog(null);
 ld.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 ld.setVisible(true);
 if (ld.wasCanceled()) { System.exit(0); }

 String fp = ld.getHashedPasswordValue();
 String user = ld.getUserValue();
 String host = ld.getHostValue();
 boolean register = ld.isSelfRegistered();

 SplashScreenLogic.update ("connecting to localhost" + host + "::9172");
 delay(250);
 Socket server = new Socket ("localhost", 9172);
 ServerAccess sa = new ServerAccess(host, user, fp, register);
 if (!sa.connect()) {
 System.err.println ("Unable to connect to server:" + host);
 System.exit(-1);
 }

 SplashScreenLogic.update ("connected to localhost::9172");
 delay(250);

 PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
 BufferedReader fromServer = new BufferedReader (new InputStreamReader(server.getInp
utStream()));
 SplashScreenLogic.update ("initializing with server...");
 delay(250);

 String xmlStatusRequest = "<request><statusRequest/></request>";
 sa.sendRequest(new Message(xmlStatusRequest));

 toServer.println(xmlStatusRequest);
 processResponse(fromServer);

 File f = new File("images", "repositorySplash.png");
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='sampleImage'>" +
 "</addRequest></request>";

 sa.sendRequest(new Message(xmlAddRequest));

 // wait 5 seconds for everything to complete
 delay (5000);

 toServer.println(xmlAddRequest);

 processResponse(fromServer);

 server.close();
 sa.disconnect();
 SplashScreenLogic.update ("closing");
 delay(250);
 }

 /** Delay for a time. */
 static void delay(int ms) {
 try { Thread.sleep(ms); } catch (InterruptedException ie) { }
 }
}

Launch a server by running ServerLauncher, and then run the updated Repo sit o ryClient and select to self-register
a new account. Repo sit o ryClient is intended to test the core logic o f the server; don't be concerned that it fails to
dispose o f the Splash Screen when Lo ginDialo g is visible. For the host value, enter lo calho st . Then enter a name
and password you'll remember, and check the Self Regist er box.

You'll see output like this in your Conso le window when you click the OK button:

OBSERVE:

connecting to localhost::9172
connected to localhost::9172
<?xml version="1.0" encoding="UTF-8"?><response success="true"><loginResponse user="lkj
kl"/></response>
<?xml version="1.0" encoding="UTF-8"?><response success="true"><statusResponse index="1
" key="SomeKey" total="1"/></response>
<?xml version="1.0" encoding="UTF-8"?><response reason="That image already exists in th
e repository." success="false">
 <addResponse numBytes="0"/></response>
closing

The third xml message appears only if you have run code in the past that uploaded an image to the Image Repository.
If you can recall the user credentials fo r the account you just created, re-run Repo sit o ryClient and login using the
same credentials, but this time, do not check the Self Regist er box. Since the server is still running, the account is
still active, and you can connect properly.

 In the /t est fo lder, create a client .gui package.

 In the /t est fo lder client .gui package, create a T est Lo ginDialo g test case as shown:

CODE TO TYPE: /test/client.gui/TestLoginDialog.java

package client.gui;

import util.*;
import junit.framework.TestCase;

public class TestLoginDialog extends TestCase {
 LoginDialog ld;

 protected void setUp () {
 ld = new LoginDialog(null, false);
 ld.setVisible(true);
 }

 protected void tearDown() {
 ld.dispose();
 }

 public void testInitialDisabled() {
 assertFalse (ld.getOK().isEnabled());
 }

 // validate second password.
 public void testRegistrationSituation() {
 assertFalse (ld.getOK().isEnabled());

 ld.getUserField().setText("sample");
 ld.getHostField().setText("localhost");
 ld.getRegisterCheckBox().doClick();

 ld.validateForm();

 assertFalse (ld.getOK().isEnabled());

 // Enter password
 ld.getPasswordField().setText("another");
 ld.validateForm();

 assertTrue (ld.getOK().isEnabled());

 // make the action occur
 ld.new OKAction().process();

 assertEquals ("sample", ld.getUserValue());
 assertEquals (Fingerprint.getFingerPrint("another".getBytes()), ld.getHashedPasswor
dValue());
 assertEquals ("localhost", ld.getHostValue());
 assertFalse (ld.wasCanceled());
 assertTrue (ld.isSelfRegistered());

 assertFalse (ld.isVisible());
 }
}

This test case will exercise the essential logic fo r Lo ginDialo g. In past lessons you saw how to merge a number o f
EclEmma sessions to determine the full code coverage. Now terminate all running applications and launch
ServerLauncher using EclEmma. Do the same for Repo sit o ryClient . Exercise a few features in Lo ginDialo g, like
selecting (and unselecting) the register checkbox, clearing fields, entering invalid information, and so on. Next, choose
to self-register a new account, enter proper credentials, and press OK. The dialog disappears and a coverage session
will be generated.

Note
There is no logic in ServerLauncher to automatically shut it down (yet). Terminate the application using
the conso le tab or the Debug perspective. You will be notified that "No coverage data file has been written
during this coverage session," because you terminated the application manually. We'll fix this problem in
the next lesson.

Now launch all test cases within EclEmma as you've done in past lessons. Due to the changes to Repo sit o ry, the
t est Mult ipleClient s code in T est Server is no longer useful; it pops up multiple Lo ginDialo g boxes. If you wait
ten seconds though, they will go away. (Take a look at the test case method to see why this happens.) Now, use the
"merge sessions" option to , well, merge all sessions.

Wow! Look how nice the coverage appears! (Note that your mileage may vary.)

You are exercising nearly 70% of the code you have written! Congratulations! You are making excellent progress.
Keeep up the good work and see you in shortly.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Client Server Menu
Lesson Objectives

In this lesson you will:

complete the implementation o f the Server menu in the Client GUI application.

Client Server Menu
You're in the home stretch! As we prepare to assemble the GUI client application in its entirety, we want to make sure
we have all the pieces ready to go. We need the client launching class, Client Launcher, instantiates and makes the
primary main client class, ImageRepo sit o ryClient , visible. We also want all interaction with the server to occur
through the ServerAccess class, which can be instantiated on demand. The client already has a Pref erences class
to manage all user customizations persistently.You've already seen "local contro ller" objects used—specifically by
Lo ginDialo g to manage user interactions. The final pieces we need to put into action in order to complete the client
puzzle are the special contro ller classes that will manage all key functionality.

First, you'll need to update ServerAccess so it does more than just print out messages that it receives from the
server. The true logic o f this class should be externalized; to do that, you'll need an interface.

 In the /src fo lder client package, create an IPro cessRespo nse interface as shown:

CODE TO TYPE: /src/client/IProcessResponse.java

package client;

import xml.*;

public interface IProcessResponse {
 void process (Message response);
}

This interface defines a pro cess method that will be implemented by a handler to respond to messages received from
the server.

Now integrate this interface with ServerAccess. Modify your code as shown:

CODE TO TYPE: /src/client/ServerAccess.java

package client;

import java.io.*;
import java.net.*;
import xml.*;

public class ServerAccess extends Thread {
 String host = null;
 String user = null;
 String hashedPass = null;
 boolean selfRegister = false;

 Socket server;
 BufferedReader fromServer;
 PrintWriter toServer;

 boolean isActive = false;
 IProcessResponse handler;

 public ServerAccess(String host, String user, String hashedPass, boolean selfRegister
) {
 this.host = host;
 this.user = user;
 this.hashedPass = hashedPass;
 this.selfRegister = selfRegister;
 }

 public boolean connect(IProcessResponse handler) {
 this.handler = handler;

 try {
 server = new Socket (host, 9172);
 fromServer = new BufferedReader (new InputStreamReader(server.getInputStream()));
 toServer = new PrintWriter (server.getOutputStream(), true);
 isActive = true;
 } catch (Exception e) {
 System.err.println("Unable to connect to server: " + e.getMessage());
 isActive = false;
 return false;
 }

 start();
 return true;
 }

 public void run() {
 try {
 String selfAtt = "";
 if (selfRegister) { selfAtt = " register='true'"; }
 Message m = new Message("<request>" +
 "<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt
+ "/></request>");
 sendRequest(m);

 while (isActive) {
 m = Parser.extractResponse(fromServer);
 if (m == null) {
 break;
 }

 // TODO: For now, just print it to console
 System.out.println(m);
 handler.process(m);
 }

 } catch (Exception e) {

 e.printStackTrace();
 }

 disconnect();
 }

 public void disconnect() {
 isActive = false;
 try {
 server.close();
 } catch (IOException ioe) {
 System.err.println("Unable to close server:" + ioe.getMessage());
 }
 }

 public synchronized boolean sendRequest(Message r) {
 if (!isActive) { return false; }

 toServer.println(r);
 return !toServer.checkError();
 }
}

All messages received from the server are delegated to the handler fo r processing.

Integrate Lo ginDialo g with the Server menu to see these changes in action. There are three menu items to
complete:

Co nnect : connect to a remote server using the Lo ginDialo g window.
Disco nnect : disconnect from a remote server to make it possible to reconnect to a new server.
Quit : quit the GUI application (after prompting user fo r confirmation).

Start with the Quit menu item, because the Client Launcher code already has most o f the logic fo r this functionality.
Extract this logic and place it into a standalone contro ller class which can be invoked either by the closing o f the main
application window or the selection o f the Quit menu item.

 In the /src fo lder client .gui package, create the Quit Co nt ro ller class as shown:

CODE TO TYPE: /src/client.gui/QuitContro ller.java

package client.gui;

import javax.swing.*;
import util.*;

public class QuitController {
 final static String property_confirmOnExit = "ConfirmOnExit";
 static String imageFile = "images/help_32.png";
 static ImageIcon icon;

 public boolean confirm(ImageRepositoryClient client) {
 if (icon == null) {
 icon = new ImageIcon(imageFile);
 }
 if (!Preferences.isTrue(property_confirmOnExit)) {
 String[] choices = { "Confirm", "Confirm and don't ask me again" };

 String s = (String) JOptionPane.showInputDialog (client,
 "Do you wish to exit Image Repository?\n ",
 "Confirm Exit", JOptionPane.PLAIN_MESSAGE,
 icon, choices, choices[0]);

 if (s == null) {
 return false;
 } else if (s.equals (choices[1])) {
 Preferences.set(property_confirmOnExit, true);
 }
 }
 client.quit();
 return true;
 }
}

Ignore the compiler error fo r now, because you'll add a quit () method to ImageRepo sit o ryClient soon, then you
can modify Client Launcher to use that quit () method. Take a look at the method signature for co nf irm() , which
returns t rue on success or f alse on denial. You will continue to use this pattern in the o ther contro llers you write fo r
this lesson. Modify Client Launcher to use Quit Co nt ro ller as shown:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import java.awt.event.*;
import javax.swing.*;
import client.gui.*;
import util.*;

public class ClientLauncher {
 static final String property_confirmOnExit = "ConfirmOnExit";

 public static void main(String[] args) {
 final ImageRepositoryClient irc = new ImageRepositoryClient();
 irc.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 final ImageIcon icon = new ImageIcon("images/help_32.png");
 irc.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent we) {
 if (new QuitController().confirm(irc)) {
 irc.dispose();
 }
 if (!Preferences.isTrue(property_confirmOnExit)) {
 String[] choices = { "Confirm", "Confirm and don't ask me again" };
 String s = (String) JOptionPane.showInputDialog(irc,
 "Do you wish to exit Image Repository\n ",
 "Confirm Exit", JOptionPane.PLAIN_MESSAGE,
 icon, choices, choices[0]);

 if (s == null) {
 return;
 } else if (s.equals (choices[1])) {
 // remember this in the future.
 Preferences.set(property_confirmOnExit, true);
 }
 }

 irc.dispose();
 }
 });

 irc.setVisible(true);
 }
}

Now Client Launcher is more straightforward, and Quit Co nt ro ller can be reused in ImageRepo sit o ryClient .
The Quit Co nt ro ller doesn't compile yet because you still need to add a quit () method to
ImageRepo sit o ryClient ; you'll do that shortly.

All o f the code changes you make during this lesson work toward the single purpose o f defining the GUI contro llers
we'll need to handle the application functionality we want. Once we have that in order, our next task is to develop a
response handler to process the response messages received by the client as the application proceeds.

The Co nnect and Disco nnect functionalities are mutually exclusive, so you need to enable their corresponding
menu items appropriately. For example, Disco nnect can only be enabled once the client has connected to a remote
server. In the same way that you validated a form before allowing the OK button to be enabled earlier, you can have a
similar method enable or disable menu items based on the state o f the client. So, where should this client state be
maintained? Good question! It begins at ImageRepo sit o ryClient , so we'll place the validat eMenuBar() method
there, to be invoked whenever the connection state with the server is updated (for instance, during initialization,
connection, or disconnection).

Let's make the necessary changes one at a time. First, add some attributes and a method to
ImageRepo sit o ryClient :

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

import java.awt.*;
import javax.swing.*;
import javax.swing.GroupLayout.Alignment;
import java.awt.event.*;
import client.*;

/** Primary GUI window for the client application. */
public class ImageRepositoryClient extends JFrame {
 JScrollPane imgPanel;
 JTextArea imgMetaData;
 JTextField status;
 ServerAccess access;
 JMenu image;
 JMenuItem connect;
 JMenuItem disconnect;
 JMenuItem quit;

 ...

 public void validateMenuBar() {
 connect.setEnabled(access == null);

 disconnect.setEnabled(access != null);
 image.setEnabled(access != null);
 }
}

The validat eMenuBar() method defines the conditions under which the co nnect and disco nnect menu items are
enabled. Whenever there is a non-null access object, the client should be able to disconnect from the server and
interact with the image menu, o therwise, only the co nnect menu item should be enabled.

Now, modify the init MenuBar() method to use these attributes. Take care to call validat eMenuBar() at the end o f
the constructor to configure the GUI properly before it becomes visible to the user.

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

 public ImageRepositoryClient() {
 super("Image Repository Client");
 initMenuBar();
 initLayout();
 validateMenuBar();
 }

 void initMenuBar() {
 JMenuBar mb = new JMenuBar();

 JMenu server = new JMenu ("Server");
 connect = new JMenuItem("Connect...");
 server.add(connect);
 connect.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new ConnectController().connect(ImageRepositoryClient.this);
 }
 });

 disconnect = new JMenuItem("Disconnect...");
 server.add(disconnect);

 quit = new JMenuItem("Quit...");
 server.add(quit);
 quit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new QuitController().confirm(ImageRepositoryClient.this);
 }
 });
 mb.add(server);

 JMenu image = new JMenu ("Image");
 mb.add(image);

 setJMenuBar(mb);
 }

These changes register two new contro llers: one to react to the user's selection o f the Co nnect ... menu item, and the
other to use the above Quit Co nt ro ller. The image JMenu object created now is stored by the image class
attribute, rather than by a local variable as it was before; this allows you to write code to manipulate the state (that is,
whether enabled or disabled) o f the menu items later. Finally, you pass the ImageRepo sit o ryClient object to the
Quit Co nt ro ller using this code fragment:

OBSERVE:

new QuitController().confirm(ImageRepositoryClient.this);

Because this fragment exists within the anonymous class defined to implement Act io nList ener, you cannot just
pass t his as an argument. Using ImageRepo sit o ryClient .t his states your intention to pass the enclosing
ImageRepo sit o ryClient object.

Now we're ready for the final push! While ImageRepo sit o ryClient is the primary class for the GUI application, you
have to be careful not to embed too much application logic within it, o therwise you run the risk o f not being able to test
that application logic properly. Whenever possible, encapsulate contro l logic in separate contro llers; at the same time,
you can place some methods, fo r example quit () , into ImageRepo sit o ryClient , because certain methods have
global impact.

 In the /src fo lder client .gui package, create a Co nnect Co nt ro ller class as shown:

CODE TO TYPE: /src/client.gui/ConnectContro ller.java

package client.gui;

import javax.swing.*;
import client.*;

public class ConnectController {
 public boolean connect(ImageRepositoryClient client) {
 final LoginDialog ld = new LoginDialog(client);
 ld.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

 ld.setVisible(true);
 if (ld.wasCanceled()) {
 return false;
 }

 String fp = ld.getHashedPasswordValue();
 String user = ld.getUserValue();
 String host = ld.getHostValue();
 boolean register = ld.isSelfRegistered();
 return connect(client, host, user, fp, register);
 }

 public boolean connect(ImageRepositoryClient client, String host, String user, String
 fp, boolean register) {
 ServerAccess sa = new ServerAccess(host, user, fp, register);
 if (!sa.connect(new ResponseHandler(client))) {
 return false;
 }

 client.access = sa;
 client.validateMenuBar();
 return true;
 }
}

The Co nnect Co nt ro ller displays the Lo ginDialo g and requests information from the user. If the user canceled the
dialog, Lo ginDialo g returns f alse and Co nnect Co nt ro ller returns f alse . If the attempt to connect fails, it also
returns f alse . If it returns t rue , you know that the client connected to the server successfully. This particular contro ller
stores the ServerAccess object directly with the client and then invokes validat eMenuBar to update the GUI
properly.

Co nnect Co nt ro ller has two methods named co nnect . The first (with just an ImageRepo sit o ryClient as an
argument) is intended for interactive behavior. However, this method cannot be tested automatically because it
requires the user's direct invo lvement. That's why we write a second co nnect method that takes an additional four
arguments whose values are extracted from the Lo ginDialo g presented to the user. In this way, the real logic o f this
contro ller can be placed in a method that works with automated testing.

Co nnect Co nt ro ller does not compile because it depends on an undefined class, Respo nseHandler.

 In the /src fo lder client package, create a Respo nseHandler class as shown:

CODE TO TYPE: /src/client/ResponseHandler.java

package client;

import client.gui.*;
import xml.*;

public class ResponseHandler implements IProcessResponse {

 ImageRepositoryClient client;

 public ResponseHandler (ImageRepositoryClient client) {
 this.client = client;
 }

 public void process(Message response) {
 String type = response.contents.getFirstChild().getLocalName();

 // handle loginResponse specially
 if (type.equals(Parser.loginResponse)) {
 if (!Parser.success(response)) {
 client.status("Unable to login:" + Parser.reason(response));
 } else {
 client.status("Connected to server.");
 }

 client.validateMenuBar();
 return;
 }

 System.out.println("received:" + response);
 }
}

Respo nseHandler processes all response messages coming back from the server. You don't want the low-level
IPC handling code to be responsible, and you don't want the top-level ImageRepo sit o ryClient to embed this logic.
Instead, Respo nseHandler takes on those responsibilities.

The pro cess() method deals with all responses coming back from the server. The lo ginRespo nse must be handled
in a particular way to enable and disable menu items. The above code won't compile until you provide some additional
helper methods. First, we'll add some methods to ImageRepo sit o ryClient :

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

...
 public void clearStatus() {
 statusBar().setText("");
 }

 public void status(String msg) {
 statusBar().setText(msg);
 }

 public void quit() {
 if (access != null) {
 access.disconnect();
 }
 access = null;
 setVisible(false);
 dispose();
 }
}

There are lo ts o f places within the client that you can check to determine whether a response has succeeeded. Instead
of embedding the XML-parsing logic throughout your client code, delegate it to the XML utility Parser class, as shown:

CODE TO TYPE: /src/xml/Parser.java

package xml;

import java.io.*;
import org.w3c.dom.*;

public class Parser {
 public final static String loginRequest = "loginRequest";
 public final static String loginResponse = "loginResponse";

 public final static String loginUser = "user";
 public final static String loginPassword = "password";
 public final static String loginRegister = "register";

 public final static String invalidCredentials = "Invalid credentials";

 public final static String success = "success";
 public final static String reason = "reason";

 public static Message extractRequest(BufferedReader in) {
 return extractMessage(in, "</request>");
 }

 public static Message extractResponse(BufferedReader in) {
 return extractMessage(in, "</response>");
 }

 static Message extractMessage(BufferedReader in, String terminator) {
 try {
 String line = in.readLine();
 if (line == null) { return null; }
 StringBuilder buf = new StringBuilder(line);
 while (!buf.substring(buf.length()-terminator.length(), buf.length()).equals(term
inator)) {
 line = in.readLine();
 if (line == null) { return null; }
 buf.append(line);
 }

 return new Message (buf.toString());
 } catch (IOException ioe) {
 return null;
 }
 }

 public static boolean success(Message response) {
 return Boolean.valueOf(response.contents.getAttributes().getNamedItem(success).getN
odeValue());
 }

 public static String reason(Message response) {
 Node r = response.contents.getAttributes().getNamedItem(reason);
 if (r == null) { return ""; }
 return r.getNodeValue();
 }
}

Now you have a fully-functioning client with a Co nnect menu item that's connected to engage the server. Currently, if
you want to disconnect the client, you must exit it, but we'll remedy that little inconvenience in the next lesson.

Before you run the tests, notice that Repo sit o ryClient is broken! We need to modify it to register an
IPro cessRespo nse object with the ServerAccess. Because this is a support class for testing, it's enough to register
a handler that does nothing but output the message to the conso le. Modify Repo sit o ryClient as shown:

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import javax.swing.*;
import xml.*;
import util.*;
import client.gui.*;

public class RepositoryClient {

 public static void main(String[] args) throws Exception {
 final LoginDialog ld = new LoginDialog(null);
 ld.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 ld.setVisible(true);
 if (ld.wasCanceled()) { System.exit(0); }

 String fp = ld.getHashedPasswordValue();
 String user = ld.getUserValue();
 String host = ld.getHostValue();
 boolean register = ld.isSelfRegistered();

 SplashScreenLogic.update ("connecting to " + host + "::9172");
 delay(250);
 ServerAccess sa = new ServerAccess(host, user, fp, register);
 IProcessResponse handler = new IProcessResponse() {
 public void process(Message response) {
 System.out.println(response);
 }
 };
 if (!sa.connect(handler)) {
 System.err.println ("Unable to connect to server:" + host);
 System.exit(-1);
 }

 SplashScreenLogic.update ("connected to localhost::9172");
 delay(250);
...

Now it's time to generate our coverage. Run all test cases using EclEmma first, to compute the automatic coverage.
Next, run ServerLauncher as a stand-alone executable. Run Repo sit o ryClient using EclEmma and exercise a few
of features in Lo ginDialo g before self-registering a new account. You'll have to terminate the ServerLauncher
manually. Now merge the EclEmma sessions and your coverage results will look something like this:

Of course there's still planty o f work to do. The client still cannot disconnect from the server, fo r example. This task will
be completed in the next lesson. Whenerv you add client code, make sure to add new automated test cases to
maintain quality contro l over your code as you go. Our overall testing progress is quite good, and we want to keep it
that way!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Image Browsing
Lesson Objectives

In this lesson you will:

apply the cycle o f message request and message response capabilities between a client and server.

Image Browsing
You're really ro lling now. Pretty soon you'll be able to upload images to the repository and see them in the
ImageRepo sit o ryClient window! You'll start by adding capability that allows the user to select an image file from
disk and upload that image to the repository. All the pieces are in place to show the full integration o f a request being
sent from the GUI and the server generating a proper response. Let's break this task up into steps:

1. Complete the Image menu to allow a connected client to select image for upload.
2. Determine the supported Java image formats (requirement R2).
3. Allow users to select images (o f the appropriate type) from their computer files.
4. Generate an addRequest in the client to send to the server fo r a selected image.
5. Receive a confirmation addRespo nse from the server (either success or failure).

Along the way, we'll fo llow the pattern we've developed in past lessons to make incremental progress and enable
JUnit testing. The goal is to develop a single contro ller class to handle the steps we've listed above and thereby
simplify the contro l logic in the client.

 In the /src fo lder client package, create a new ICo nt ro ller interface as shown:

CODE TO TYPE: /src/client/IContro ller.java

package client;

import xml.*;

public interface IController {
 void process (Message request, Message response);
}

All client contro llers that are responsible for managing the interaction o f request/response messages between the
client and server must implement the above interface.

This interface allows you to access the originating client request when processing the server's response to that
request. In do ing so, you will be able to correlate responses that appear from the server. In order to do that, the
ServerAccess client IPC code needs to keep track o f the contro ller objects that register an interest in a response.
Since each request is sent to the server one by one, and in turn processed by the server, each reponse to a client
request is returned in order. So, you can use a Queue to match up waiting contro llers with the corresponding
responses received by the server. Actually, the storage will be a LinkedList, but you get the idea. You can modify
ServerAccess to make these changes while still supporting the existing "send a request without worrying about a
response" behavior already implemented. Go ahead and modify ServerAccess as shown:

http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/6/docs/api/java/util/LinkedList.html

CODE TO TYPE: /src/client/ServerAccess.java

package client;

import java.io.*;
import java.net.*;
import java.util.*;
import xml.*;

public class ServerAccess extends Thread {

 ...

 Queue<Pair> queue = new LinkedList<Pair>();

 class Pair {
 IController controller;
 Message request;

 Pair (IController c, Message r) {
 controller = c;
 request = r;
 }
 }

 public synchronized boolean isWaiting() {
 return (!queue.isEmpty());
 }

 ...
}

The inner class Pair represents an (ICo nt ro ller, Message) pair. The queue object maintains a linked list o f Pair
objects, which represent the requests and corresponding contro llers waiting for responses to those requests. The
isWait ing() helper method determines whether there are any Pair objects in queue .

To take advantage o f this new capability, add a sendRequest method to ServerAccess:

CODE TO TYPE: /src/client/ServerAccess.java

...
 public synchronized boolean sendRequest(IController c, Message r) {
 if (!isActive) { return false; }

 toServer.println(r);
 boolean success = !toServer.checkError();
 if (success) {
 queue.add(new Pair(c, r));
 }
 return success;
 }
...

This method adds a Pair object fo r the designated ICo nt ro ller and Message to the end o f queue , if the request was
successfully written to the server.

Now, whenever a response is received by the client, it must check the queue to see whether there is a waiting Pair
object in the queue. If there is, then the response is handled by the ICo nt ro ller object associated with the pair. Modify
the run method o f ServerAccess as shown:

CODE TO TYPE: /src/client/ServerAccess.java

...
 public void run() {
 try {
 String selfAtt = "";
 if (selfRegister) { selfAtt = " register='true'"; }
 Message m = new Message("<request>" +
 "<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt
+ "/></request>");
 sendRequest(m);

 while (isActive) {
 m = Parser.extractResponse(fromServer);
 if (m == null) {
 break;
 }

 Pair p = queue.poll();
 if (p != null) {
 p.controller.process(p.request, m);
 } else {
 handler.process(m);
 }
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 disconnect();
 }

Let's take a closer look:

OBSERVE:

 Pair p = queue.poll();
 if (p != null) {
 p.controller.process(p.request, m);
 } else {
 handler.process(m);
 }
 }

This code will po ll t he queue o bject (in non-blocking fashion) to see if there is a registered Pair object in place for
the extracted response. If t here is no t , the response is handled using the handler object. If there is a Pair object in
the queue, it is removed from the queue and the co nt ro ller asso ciat ed wit h t he Pair o bject is given bo t h t he
o riginal request (p.request) and t he respo nse (m) f o r pro cessing.

Now let's consider an instance when the client disconnects from the server. The disconnect may take place while
queue has a registered Pair object, so , to disconnect properly, we have to clear out the queue:

CODE TO TYPE: /src/client/ServerAccess.java

 public void disconnect() {
 isActive = false;
 queue.clear();

 try {
 server.close();
 } catch (IOException ioe) {
 System.err.println("Unable to close server:" + ioe.getMessage());
 }
 }

The Image menu needs an Add menu item and an associated AddImageCo nt ro ller to oversee the action
associated with this menu item. In the init MenuBar method o f ImageRepo sit o ryClient , make these changes:

CODE TO TYPE: /src/client.gui/ImageRepositoryClient

...
 image = new JMenu ("Image");
 JMenuItem add = new JMenuItem("Add...");
 add.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new AddImageController(ImageRepositoryClient.this).add();
 }
 });
 image.add(add);
 mb.add(image);
...

 In the /src fo lder client .gui package, create an AddImageCo nt ro ller class. This contro ller must grab a file
selected by the user based on the set o f supported image formats. For more information, see this useful tutorial on the
subject. You will use a JFileChooser to browse the local disk for a file with a name that matches a given
FileNameExtensionFilter. Fortunately, there is a Java API to determine the allowed file types. Note that
AddImageCo nt ro ller must implement ICo nt ro ller because it will register itself to process the addRespo nse
message returned by the server. Let's tackle this class step by step:

CODE TO TYPE: /src/client.gui/AddImageContro ller.java

package client.gui;

import java.io.*;
import javax.swing.*;
import javax.swing.filechooser.*;
import javax.imageio.*;

import util.*;
import xml.*;
import org.w3c.dom.*;
import client.*;

public class AddImageController implements IController {

 ImageRepositoryClient client;

 public AddImageController (ImageRepositoryClient client) {
 this.client = client;
 }

 public void process (Message request, Message response) {
 NamedNodeMap map = request.contents.getFirstChild().getAttributes();
 String name = map.getNamedItem("name").getNodeValue();

 if (Parser.success(response)) {
 client.status("Image uploaded to server:" + name);
 } else {
 client.status("Problem adding image:" + name + "(" + Parser.reason(response) + ")
");
 }
 }
}

This code represents the framework o f a typical ICo nt ro ller implementation. The pro cess() method is invoked by
ServerAccess when a response is received for a specific request sent by the client. Now add to
AddImageCo nt ro ller the key methods that actually send the request to the server in the first place:

http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/JFileChooser.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/filechooser/FileNameExtensionFilter.html

CODE TO TYPE: /src/client.gui/AddImageContro ller.java

...
 public boolean add() {
 client.clearStatus();
 FileNameExtensionFilter filter = new FileNameExtensionFilter(
 "Supported Image Types", ImageIO.getReaderFormatNames());

 JFileChooser chooser = new JFileChooser();
 chooser.setFileFilter (filter);
 if (chooser.showOpenDialog(client) != JFileChooser.APPROVE_OPTION) {
 return false;
 }

 File f = chooser.getSelectedFile();
 return add(f);
 }

 public boolean add (File f) {
 try {
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='" + f.getName() + "'>" +
 "</addRequest></request>";

 return client.access.sendRequest(this, new Message(xmlAddRequest));
 } catch (IOException ioe) {
 client.status("Problem adding image:" + ioe.getMessage());
 return false;
 }
 }
...

Let's take a closer look:

OBSERVE:

public boolean add() {
 client.clearStatus();
 FileNameExtensionFilter filter = new FileNameExtensionFilter(
 "Supported Image Types", ImageIO.getReaderFormatNames());

 JFileChooser chooser = new JFileChooser();
 chooser.setFileFilter (filter);
 if (chooser.showOpenDialog(client) != JFileChooser.APPROVE_OPTION) {
 return false;
 }

 File f = chooser.getSelectedFile();
 return add(f);
 }

 public boolean add (File f) {
 try {
 String encoding = ImageEncoding.encode(f);
 String xmlAddRequest = "<request><addRequest name='" + f.getName() + "'>" +
 "</addRequest></request>";

 return client.access.sendRequest(this, new Message(xmlAddRequest));
 } catch (IOException ioe) {
 client.status("Problem adding image:" + ioe.getMessage());
 return false;
 }
 }

Invoking the add() method brings up a JFileCho o ser object that allows the user to select an image file from the file
system. Once an image is selected, the method invokes add(f) to carry out this logic. This code is probably familiar to
you, except fo r ho w t he request is sent t o t he server. The code invokes the added sendRequest () method in

ServerAccess with the appropriate arguments.

You might wonder why there is an add() method and an add(File) method. Throughout the course, you've written
code that can be tested automatically. By structuring our code this way, add interacts with the user who selects a file
from disk, while add(File) represents a programming interface that supports add, and (more importantly) enables
testing.

pro cess() picks up where the add(File) method leaves o ff. When you use distributed computation, the challenge is to
develop contro l flow patterns that deal with asynchronous communication with a server. Let's try do ing that:

Run ServerLauncher and execute Client Launcher. Select Server | Co nnect . Enter lo calho st and then a self-
registered account and password. Select the new Image | Add... menu item. A dialog window appears. Browse to a
directory where you have image files, fo r example, the /images directory in the /wo rkspace/Dist ribut edApp
directory:

Select a file that passes the filter (currently this includes BMP, GIF, JPEG, JPG, PNG, and WBMP formats) and click
Open. A successful status message appears in the bottom of the ImageRepo sit o ryClient window. If you refresh
the Repo sit o ry fo lder within Eclipse, you will see a new file that contains the bytes o f the image you selected.

So, you may wonder, "when do you clear the status messages?" There is no good answer that question. One strategy
is to clear the status at the outset o f any user command (as you see here in the add method); if you do that, then when
the user chooses to cancel the command, at least you've already cleared any status. If the command completes, then
the status will be visible until the user initiates a new command. This will be handled at the start o f every GUI contro ller.

Just fo r fun, try to add the image again. The response fails because the duplicate image exists in the repository. Be
sure to terminate the execution o f both Client Launcher and ServerLauncher before continuing.

Testing

With the new code, you also need to write some test cases for validation. While you've planned ahead and designed
AddImageCo nt ro ller with testing in mind, there are o ther challenges. Each JUnit test case class must belong to a
package. Within that package, the JUnit test case has special access to "package private" attributes and methods. You
have taken advantage o f this feature in test cases you've written in past lessons. But what happens when you want to
write a test case that must somehow access "package private" attributes and methods from two different packages?
You can define special helper classes to be placed in the /t est source code fo lder which essentially grant you that
kind o f access.

 in the /t est fo lder server.ipc package, create the Repo sit o ryServerAccess class as shown:

CODE TO TYPE: /test/server.ipc/RepositoryServerAccess.java

package server.ipc;

import java.io.*;

public class RepositoryServerAccess {
 public static int size(RepositoryServer server) {
 return server.repository.size();
 }

 public static void shutdown (RepositoryServer server) throws IOException {
 server.shutdown();
 }
}

This class makes it possible for test cases to access privileged information without fo rcing the actual code to make it
public. This technique maintains the integrity o f your code base, while enhancing the productivity o f your test cases.

Your new code enables your test cases to determine the number o f images in a given Repo sit o ryServer and shut
down a Repo sit o ryServer.

 In the /t est fo lder client .gui package, create a T est AddImageCo nt ro ller test class as shown:

CODE TO TYPE: /test/client.gui/TestAddImageContro ller.java

package client.gui;

import java.io.*;
import client.*;
import server.ipc.*;
import junit.framework.TestCase;

public class TestAddImageController extends TestCase {

 RepositoryServer server;
 static final String user = "tester";
 static final String imageFile = "images/repositorySplash.png";

 protected void setUp() throws Exception {
 TestServer.clearTestRepository();
 server = TestServer.launchServer();
 }

 protected void tearDown() throws Exception {
 RepositoryServerAccess.shutdown(server);
 server = null;
 }

 public static ImageRepositoryClient loginClient() throws Exception {
 ImageRepositoryClient client = new ImageRepositoryClient();

 client.access = new ServerAccess("localhost", user, user, true);
 if (!client.access.connect(new ResponseHandler(client))) {
 fail ("unable to connect to localhost");
 }

 Thread.sleep(1000); // give time to connect
 return client;
 }

 public void testImageAdd() throws Exception {
 ImageRepositoryClient client = loginClient();
 assertEquals (0, RepositoryServerAccess.size(server));

 AddImageController c = new AddImageController(client);
 assertTrue (c.add(new File (imageFile)));

 // wait until all responses have been received before continuing test case
 int ctr = 50;
 while (client.access.isWaiting() && ctr-- > 0) {
 Thread.sleep(200);
 }

 // validate repository add succeeded.
 assertEquals (1, RepositoryServerAccess.size(server));
 client.quit();
 client.dispose();
 }
}

Here, you validate the capabilities o f AddImageCo nt ro ller. The T est AddImageCo nt ro ller test case is similar in
nature to the T est Sequence test case you saw earlier, but the level o f abstraction has been raised. No longer do you
see raw sockets or InputStream objects; instead we're working at the level o f GUIs and contro llers. The
t est ImageAdd test case method relies on the set Up method to instantiate a working Repo sit o ryServer. Then it
self-registers a "tester" user and invokes the add(File) method o f the instantiated AddImageCo nt ro ller in the exact
same way that the interactive user would. Then the test case waits until the ServerAccess object determines that it is
no longer waiting for a response from the server; this only happens when the server has responded properly to the
addRequest generated by the AddImageCo nt ro ller. Upon completion, the test case validates that there is one
image in the repository (using the newly defined Repo sit o ryAccess class) before quitting the client. The t earDo wn()
method safely shuts down the Repo sit o ryServer.

This test case leverages the design o f the user interface to create an effective test. Execute the test case to validate that
it completes successfully. You can refresh the T est Repo sit o ry fo lder to see the files that were added as part o f this
test case.

Browse Repository

The completed functionality allows you to upload images to the repository, but it doesn't support browsing yet. For that
to happen, the client must be able to show a current image in the repository, and either advance or return to another
image. To support this capability, you need to keep track o f which image the client is viewing. You decide whether the
server side or the client side will be responsible for this knowledge. In the client/server architecture, it's common to
consider the client to be "stateless," and thereby delegate responsibility to the server. Next, the server needs to store
the image being viewed for all connected clients; so which class should ho ld this information? It can't be
Repo sit o ryT hread, because that class is responsible for the information o f a specific user. The UserManager can
authenticate users, but should it be invo lved in the server-wide state for each connected user? That doesn't seem like
such a good idea because the UserManager is on the client side, and server-wide stuff ought to be managed on the
server side.

 In the /src fo lder server package, create the Client St at e class as shown:

CODE TO TYPE: /src/server/ClientState.java

package server;

import server.ipc.*;

public class ClientState {
 final String user;
 final RepositoryThread thread;
 String imageKey;

 public ClientState (String user, RepositoryThread thread) {
 this.user = user;
 this.thread = thread;
 }

 public void setImageKey(String key) {
 this.imageKey= key;
 }

 public String getImageKey() {
 return imageKey;
 }
}

The information in UserInf o is meant to be persistent, so we need to create a separate class, Client St at e , that
represents transient client information while it is connected to the server.

For now, the client state consists o f the unique key generated for each image in the repository.

Repo sit o ryServer will maintain a Hashtable o f current connected users and update it as clients connect and
disconnect. To enable this information to be accessed globally, it will be stored as a st at ic Hashtable in
Repo sit o ryServer and a set o f st at ic helper methods will be provided. To allow these static methods to access the
Repo sit o ry object associated with the Repo sit o ryServer, the repo sit o ry attribute is changed to be st at ic. This
makes sense because in any given server there will only be a single Repo sit o ryServer object. Modify your code as
shown:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

package server.ipc;

import java.io.*;
import java.net.*;
import java.util.*;
import server.model.*;
import server.*;

public class RepositoryServer {
 ServerSocket serverSocket = null;
 int state = 0;
 IProtocolHandler protocolHandler;
 static Repository repository;
 UserManager manager;

 static Hashtable<String, ClientState> users = new Hashtable<String, ClientState>();

 public RepositoryServer(Repository rep, UserManager um, IProtocolHandler ph) {
 protocolHandler = ph;
 repository = rep;
 manager = um;
 }

 public void bind() throws IOException {
 serverSocket = new ServerSocket(9172);
 state = 1;
 }

 public void process() throws IOException {
 while (state == 1) {
 Socket client = serverSocket.accept();

 new RepositoryThread(manager, client, protocolHandler).start();
 }

 shutdown();
 }

 void shutdown() throws IOException {
 manager.store();
 if (serverSocket != null) {
 serverSocket.close();
 serverSocket = null;
 state = 0;
 }
 }

 public static boolean register (String user, RepositoryThread thread) {
 if (users.containsKey(user)) { return false; }

 ClientState state = new ClientState(user, thread);
 state.setImageKey(repository.getNthKey(1));
 users.put(user, state);
 return true;
 }

 public static void unregister(String user) {
 users.remove(user);
 }

 public static ClientState getState(String user) {
 return users.get(user);
 }
}

The newly added regist er() and unregist er() methods maintain the users Hashtable by associating a Client St at e
object with each client that connects. The initial state for each user is the image key for the first image in the repository.
Add the get Nt hKey method to Repo sit o ry in order fo r this code to compile:

CODE TO TYPE: /src/server.model/Repository.java

...
 public String getNthKey(int n) {
 return index.getNthKey(n);
 }
...

Add this method to Index to allow the arbitrary retrieval o f an image by its position:

CODE TO TYPE: /src/server.model/Index.java

...
 public String getNthKey(int n) {
 if (n > keys.size()) { return null; }
 return keys.get(n-1);
 }
...

Note that you have to subtract 1 when invoking keys.get (n-1) , because the keys ArrayList uses zero-based
indexing. Now when clients log into the server (within Repo sit o ryT hread) successfully, the thread must register itself
with Repo sit o ryServer as shown by these updates to Repo sit o ryT hread:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

...
 if (validated) {
 RepositoryServer.register(user, this);

 // have handler manage the protocol until it decides it is done.
 while ((m = Parser.extractRequest(fromClient)) != null) {
 manager.updateAccessTime(user);
 Message response = handler.process(user, m);
 if (response == null) { break; }

 toClient.println(response.toString());
 if (toClient.checkError()) {
 break;
 }
 }
 RepositoryServer.unregister(user);
 }
...

To make this code compile, you have to add the user information to the IPro t o co lHandler interface.
Pro t o co lHandler can use the st at ic methods o f Repo sit o ryServer to update client state information. Let's make
the necessary changes:

CODE TO TYPE: /src/server.ipc/IPro toco lHandler.java

package server.ipc;

import xml.*;

public interface IProtocolHandler {
 /** Process the given Message request, return Message in reponse or null to terminate
 protocol. */
 Message process(String user, Message request);
}

Now consider the logic that will be contained within the Pro t o co lHandler class. If you're not careful,

Pro t o co lHandler will swallow all o f the logic on the server! You want to fid ways to iso late and encapsulate the
appropriate logic in an appropriate class. For starters, instead o f burying logic within a complex if statement, introduce
a ServerAddImageCo nt ro ller and a ServerSt at usCo nt ro ller on the server side. Modify Pro t o co lHandler to
pass in the name of the user on whose behalf the Pro t o co lHandler is executing:

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;
import xml.*;
import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler {
 final Repository repository;
 public static final String endRequest = "</request>";

 public ProtocolHandler (Repository r) {
 repository = r;
 }

 public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";

 public Message process (String user, Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 String xmlResp;
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 repository.add(bytes, name);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length +
 "'/></response>";
 } catch (IOException e) {
 xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +
 "<addResponse numBytes='0'/></response>";
 } catch (IllegalStateException e) {
 xmlResp = "<response success='false' reason='" + Repository.AlreadyExistsImag
e + "'>" +
 "<addResponse numBytes='0'></addResponse></response>";
 }

 return new Message(xmlResp);
 return new ServerAddImageController(repository).process(user, request);
 } else if (child.getLocalName().equals("statusRequest")) {
 String xmlResp = "<response success='true'>" +
 "<statusResponse key='SomeKey' index='1' total='" + repository.size() + "'/>"
 +
 "</response>";
 return new Message(xmlResp);
 return new ServerStatusController(repository).process(user, request);
 }

 return null; // unknown request? No idea what to do.
 }
}

The logic fo r adding an image has been removed and will appear in the contro ller classes that you'll create so that the
above code will compile.

 In the /src fo lder server package, create a ServerAddImageCo nt ro ller as shown:

CODE TO TYPE: /src/server/ServerAddImageContro ller.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;
import org.w3c.dom.*;
import xml.*;

public class ServerAddImageController implements IProtocolHandler {
 Repository repository;

 public ServerAddImageController(Repository repository) {
 this.repository = repository;
 }

 public Message process (String user, Message request) {
 Node child = request.contents.getFirstChild();
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 String xmlResp;
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 repository.add (bytes, name);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/
></response>";
 } catch (IOException ioe) {
 xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +
 "<addResponse numBytes='0'/></response>";
 } catch (Exception e) {
 xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
 "<addResponse numBytes='0'/></response>";
 }

 return new Message(xmlResp);
 }

 public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";
}

This code has been extracted from the o ld Pro t o co lHandler class and encapsulated into its own contro ller class.
So, adding an image to the repository updates the repository itself, but which operations update the client's view? Let's
appraoch this piece by piece. First, modify the st at usRespo nse to include an image in the response. Update the XSD
block for st at usRespo nse as fo llows to support an optional image to be attached to each st at usRespo nse
message. The image is optional because o f the minOccurs and maxOccurs values defined in our code:

CODE TO TYPE: /repository.xsd

<xs:element name='statusResponse'>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="1">
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='key' type='xs:string' use='required'/>
 <xs:attribute name='index' type='xs:integer' use='required'/>
 <xs:attribute name='total' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

The client's current image key represents the image embedded with each status response. If the repository contains
no images, then key will be an empty string.

 In the /src fo lder server package, create a ServerSt at usCo nt ro ller to handle this logic, much like it was done
for addRequest :

CODE TO TYPE: /src/server/ServerStatusContro ller.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;
import xml.*;

public class ServerStatusController implements IProtocolHandler {

 Repository repository;

 public ServerStatusController(Repository repository) {
 this.repository = repository;
 }

 public Message process(String user, Message request) {
 ClientState cs = RepositoryServer.getState(user);
 File f = repository.getImage(cs.getImageKey());
 String imageData = "";
 try {
 String encoding = ImageEncoding.encode(f);
 imageData = "";
 } catch (Exception e) {
 System.err.println ("Unable to encode image file:" + e.getMessage());
 }

 String xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey(
) + "' " +
 "index='" + repository.getOrder(cs.getImageKey()) + "' total='" + repository.si
ze() + "'>" +
 imageData + "</statusResponse></response>";
 return new Message(xmlResp);
 }
}

This code will work even when there are no images in the repository because cs.get ImageKey() will return null.

To support this contro ller, you need to add some methods to Repo sit o ry and Index. It may seem surprising to
discover missing methods from key classes, but as you begin to exercise more and more o f the desired functionality,
you'll find that missing methods are actually pretty common. Modify the Repo sit o ry class as shown to add a method
to retrieve an image file by key, and one to return the index location for a given key:

CODE TO TYPE: /src/server.model/Repository.java

...
 public File getImage(String key) {
 if (key == null) { return null; }
 File f = new File (storage, key);
 if (f.exists()) {
 return f;
 }

 return null;
 }

 public int getOrder(String key) {
 return index.getOrder(key);
 }

...

The get Image() method returns the File object that represents that image on disk, or null if the image is non-
existent. Given a key value, get Order determines the image number in the set. To enable this code to compile you
need to add a corresponding method to Index:

CODE TO TYPE: /src/server.model/Index.java

...
 public int getOrder(String key) {
 for (int i = 0; i < keys.size(); i++) {
 if (keys.get(i).equals(key)) {
 return (i+1);
 }
 }
 return -1;
 }

...

The ret urn (i+1) adjusts the zero-based indexing scheme within keys to return a 1-based index value.

So how can you get a st at usRequest sent to the server upon successful login? The ImageRepo sit o ryClient
must send a st at usRequest once it has been connected properly. Right now, you don't want to bury this logic within
the Respo nseHandler. Instead, revise Respo nseHandler to use a new co nnect ed method in
ImageRepo sit o ryClient that can initialize the client when a successful connection has been established. In
essence, you're placing the right functionality in the right place:

CODE TO TYPE: /src/client/ResponseHandler.java

package client;

import client.gui.*;
import xml.*;

public class ResponseHandler implements IProcessResponse {

 ImageRepositoryClient client;

 public ResponseHandler (ImageRepositoryClient client) {
 this.client = client;
 }

 public void process(Message response) {
 String type = response.contents.getFirstChild().getLocalName();

 // handle loginResponse specially
 if (type.equals(Parser.loginResponse)) {
 boolean ok = Parser.success(response);
 if (!okParser.success(response)) {
 client.status("Unable to login:" + Parser.reason(response));
 } else {
 client.status("Connected to server.");
 }

 client.connected(ok);
 client.validateMenuBar();
 return;
 }

 System.out.println("received:" + response);
 }
}

Here we eliminate the need for low-level knowledge o f the GUI to leak out into o ther classes. Add the co nnect ed()
method to ImageRepo sit o ryClient , which validates the menu bar, but also fires o ff a st at usRequest on a
successful connection. If any new initialization code is needed upon successful (or failed) connections, this method
will contain that logic:

CODE TO TYPE: /src/client.gui/ImageRepositoryClient

..
 public void connected(boolean ok) {
 validateMenuBar();

 if (ok) {
 String xmlStatusRequest = "<request><statusRequest/></request>";
 access.sendRequest(new StatusController(this), new xml.Message(xmlStatusRequest))
;
 }
 }
...

A St at usCo nt ro ller object is constructed to process the request/response cycle in its entirety.

 In the /src fo lder client .gui package, create the St at usCo nt ro ller class as shown:

CODE TO TYPE: /src/client.gui/StatusContro ller.java

package client.gui;

import java.io.*;
import java.awt.image.*;
import javax.imageio.*;
import org.w3c.dom.*;
import util.*;
import xml.*;
import client.*;

public class StatusController implements IController {

 ImageRepositoryClient client;

 public StatusController(ImageRepositoryClient client) {
 this.client = client;
 }

 public void process(Message request, Message response) {
 Node child = response.contents.getFirstChild();
 Node imageNode = child.getFirstChild();
 if (imageNode == null) {
 return;
 }

 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());

 InputStream in = new ByteArrayInputStream(bytes);
 BufferedImage image = ImageIO.read(in);
 client.display(image);
 } catch (IOException ioe) {
 client.status("Unable to decode image from server:" + ioe.getMessage());
 }
 }
}

In its pro cess() method, the St at usCo nt ro ller retrieves the image from the st at usRespo nse message and
requests ImageRepo sit o ryClient to update its display. Add the display()method to ImageRepo sit o ryClient to
complete the task:

CODE TO TYPE: /src/client.gui/ImageRepositoryClient

...
 public void display(Image image) {
 if (image == null) {
 imgPanel.setViewportView(new JLabel(""));
 } else {
 ImageIcon icon = new ImageIcon(image);
 imgPanel.setViewportView(new JLabel(icon));
 }

 imgPanel.invalidate();
 imgPanel.validate();
 imgPanel.repaint();
 }

...

The display() method either clears or sets the viewport o f the JScro llPane containing the current image for the client
on the server.

OBSERVE:

 imgPanel.invalidate();
 imgPanel.validate();
 imgPanel.repaint();

To display the image properly, the t hree met ho d invo cat io ns t o invalidat e , validat e , and repaint must be
executed as shown. Do ing so will ensure that the scro lling region is fo rmatted to enclose the image completely,
regardless o f its size.

Phew! This lesson has been a marathon, but now we're ready to demonstrate the functionality we've got so far. First,
delete all files in the Repo sit o ry fo lder so you can start from scratch. Run ServerLauncher and then run
Client Launcher. Connect to the server on localhost, self-register an account, and add a file to the repository. Verify
that the status information at the bottom of your client window has changed to confirm that the image was uploaded
properly. Then, quit the client application (leave the server running if you like). Run Client Launcher and connect
again, either with a new self-registered account or the one that you registered in the previous run. The newly added
image appears in the client's image panel.

Terminate both the Client Launcher and ServerLauncher. Now run all test cases in coverage to determine your
status. We need to attend to writing test cases for the client—this is not surprising given the extensive changes we
made! Even so, you've got increasing coverage o f your pro ject code without excessive effort, because you've been
taking steps along the way to write your test cases. Good thinking!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Navigating Repository Images
Lesson Objectives

In this lesson you will:

design a customizable XML message and properly synchronize the state o f the server and client.

Navigating Images in the Repository
In the last lab, you developed the capability to add an image to the repository and display the user's current image in
the ImageRepo sit o ryClient window, but the user still can't navigate through the images. We need to allow the user
to navigate through the repository, so we'll add these contro ls: Next, Previous, First, and Last. You can get your
navigation too ls in place using a single XML message. Modify repo sit o ry.xsd to include a navigat eRequest :

CODE TO TYPE: /repository.xsd

<?xml version='1.0' encoding='UTF-8'?>
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

<xs:element name='message'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='response'/>
 <xs:element ref='request'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='response'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addResponse'/>
 <xs:element ref='statusResponse'/>
 <xs:element ref='loginResponse'/>
 </xs:choice>
 <xs:attribute name='success' type='xs:boolean' use='required'/>
 <xs:attribute name='reason' type='xs:string' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='request'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addRequest'/>
 <xs:element ref='statusRequest'/>
 <xs:element ref='loginRequest'/>
 <xs:element ref='navigateRequest'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='addRequest'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='addResponse'>
 <xs:complexType>
 <xs:attribute name='numBytes' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="1">
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='key' type='xs:string' use='required'/>
 <xs:attribute name='index' type='xs:integer' use='required'/>
 <xs:attribute name='total' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='loginRequest'>
 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>

 <xs:attribute name='password' type='xs:string' use='required'/>
 <xs:attribute name='register' type='xs:boolean' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='loginResponse'>
 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:simpleType name='directionType'>
 <xs:restriction base='xs:string'>
 <xs:pattern value='next|previous|first|last'/>
 </xs:restriction>
</xs:simpleType>

<xs:element name='navigateRequest'>
 <xs:complexType>
 <xs:attribute name='direction' type='directionType' use='required'/>
 </xs:complexType>
</xs:element>
</xs:schema>

Whenever you make changes to repo sit o ry.xsd, you'll want to add attributes to Parser to be used in your code. Go
ahead and add these attributes to Parser now:

CODE TO TYPE: /src/xml/Parser.java

...
 public final static String statusResponse = "statusResponse";

 public final static String direction = "direction";
 public final static String first = "first";
 public final static String previous = "previous";
 public final static String next = "next";
 public final static String last = "last";

To activate this logic, you need to modify ImageRepo sit o ryClient to add some new menu items that support the
navigation. Update the init MenuBar method o f ImageRepo sit o ryClient as shown:

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

...
import java.awt.*;
import javax.swing.*;
import javax.swing.GroupLayout.Alignment;
import java.awt.event.*;
import client.*;
import xml.*;
...
 void initMenuBar() {
 ...
 image = new JMenu ("Image");
 JMenuItem add = new JMenuItem("Add...");
 add.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new AddImageController(ImageRepositoryClient.this).add();
 }
 });
 image.add(add);
 JMenuItem first = new JMenuItem("First");
 first.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new NavigateController(ImageRepositoryClient.this).go(Parser.first);
 }
 });
 image.add(first);
 JMenuItem previous = new JMenuItem("Previous");
 previous.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new NavigateController(ImageRepositoryClient.this).go(Parser.previous);
 }
 });
 image.add(previous);
 JMenuItem next = new JMenuItem("Next");
 next.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new NavigateController(ImageRepositoryClient.this).go(Parser.next);
 }
 });
 image.add(next);
 JMenuItem last = new JMenuItem("Last");
 last.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new NavigateController(ImageRepositoryClient.this).go(Parser.last);
 }
 });
 image.add(last);
 mb.add(image);
...

These changes invoke a Navigat eCo nt ro ller to go to the first, previous, next, o r last image in the repository.

 In the /src fo lder client .gui package, create a Navigat eCo nt ro ller class as shown:

CODE TO TYPE: /src/client.gui/NavigateContro ller.java

package client.gui;

import xml.*;

public class NavigateController {

 ImageRepositoryClient client;

 public NavigateController(ImageRepositoryClient client) {
 this.client = client;
 }

 boolean go (String direction) {
 String xmlNavRequest = "<request><navigateRequest direction='" + direction + "'/></
request>";
 return client.access.sendRequest(new Message(xmlNavRequest));
 }
}

The Navigat eCo nt ro ller takes one o f the directions (first, previous, next, o r last) and constructs an appropriate
navigat eRequest fo r the server. The idea is to have the server respond with a st at usRespo nse so there is no
need to register a waiting contro ller; you can use the existing sendRequest method to send the request to the server.
On the server side you'll need to modify Pro t o co lHandler to process the navigat eRequest as fo llows (while
you're at it, remove the endRequest attribute; we don't need it anymore):

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;
import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler {
 final Repository repository;
 public static final String endRequest = "</request>";

 public ProtocolHandler (Repository r) {
 repository = r;
 }

 public Message process (String user, Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 return new ServerAddImageController(repository).process(user, request);
 } else if (child.getLocalName().equals("statusRequest")) {
 return new ServerStatusController(repository).process(user, request);
 } else if (child.getLocalName().equals("navigateRequest")) {
 return new ServerNavigateController(repository).process(user, request);
 }

 return null; // unknown request? No idea what to do.
 }
}

 In the /src fo lder server package, create a ServerNavigat eCo nt ro ller class. This contro ller determines which
image is viewed by the client and adjusts accordingly. Finally, the contro ller activates the ServerSt at usCo nt ro ller
which stimulates a st at usRespo nse to be sent to the client. Let's write this class in stages. Start with the skeleton
code below:

CODE TO TYPE: /src/server/ServerNavigateContro ller.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;
import org.w3c.dom.*;

public class ServerNavigateController implements IProtocolHandler {

 Repository repository;

 public ServerNavigateController(Repository repository) {
 this.repository = repository;
 }

 public Message process(String user, Message request) {
 ClientState cs = RepositoryServer.getState(user);
 String key = cs.getImageKey();
 int num = repository.getOrder(key);

 NamedNodeMap map = request.contents.getFirstChild().getAttributes();
 String direction = map.getNamedItem(Parser.direction).getNodeValue();

 // To Add...

 // return a status response.
 return new ServerStatusController(repository).process(user, request);
 }
}

Let's take a closer look:

OBSERVE:

 public Message process(String user, Message request) {
 ClientState cs = RepositoryServer.getState(user);
 String key = cs.getImageKey();
 int num = repository.getOrder(key);

 NamedNodeMap map = request.contents.getFirstChild().getAttributes();
 String direction = map.getNamedItem(Parser.direction).getNodeValue();

 // To Add...

 // return a status response.
 return new ServerStatusController(repository).process(user, request);

The ServerNavigat eCo nt ro ller uses the get St at e() method o f Repo sit o ryServer to determine the state for the
given user. From the state, you can get the key; using the key you can determine the num o rdinal position o f that
client (a number from 1 to the size o f the repository). From the request , you can see how the requested direct io n is
extracted. Finally, the existing ServerSt at usCo nt ro ller returns the response Message to the client, which will
contain the user's current status.

Now, fill in the details o f the logic to manipulate the user's state based on the desired direct io n that's included in the
navigat eRequest :

CODE TO TYPE: /src/server/ServerNavigateContro ller.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;

public class ServerNavigateController implements IProtocolHandler {

 Repository repository;

 public ServerNavigateController(Repository repository) {
 this.repository = repository;
 }

 public Message process(String user, Message request) {
 ClientState cs = RepositoryServer.getState(user);
 String key = cs.getImageKey();
 int num = repository.getOrder(key);

 NamedNodeMap map = request.contents.getFirstChild().getAttributes();
 String direction = map.getNamedItem(Parser.direction).getNodeValue();

 // To Add...
 if (direction.equals(Parser.first)) {
 num = 1;
 } else if (direction.equals(Parser.previous) && num > 1) {
 num--;
 } else if (direction.equals(Parser.last)) {
 num = repository.size();
 } else if (direction.equals(Parser.next) && num < repository.size()) {
 num++;
 }
 key = repository.getNthKey(num);
 cs.setImageKey(key);

 // return a status response.
 return new ServerStatusController(repository).process(user, request);
 }
}

For each o f the four cases, num is updated accordingly. Next, the key fo r the updated image number is retrieved from
the repository using get Nt hKey and you call set ImageKey to record this information with the client state. Now when
the ServerSt at usCo nt ro ller executes, the correct key is included in the st at usRespo nse .

We still have one last item to address. The client isn't ready to receive a st at usRespo nse message unso licited from
the server. You may recall that the client processes all received messages via a Respo nseHandler class, which
currently processes only the lo ginRespo nse message. You need to update this class to handle st at usRespo nse
messages as well. Modify your code as shown:

CODE TO TYPE: /src/client/ResponseHandler.java

package client;

import client.gui.*;
import xml.*;

public class ResponseHandler implements IProcessResponse {

 ImageRepositoryClient client;

 public ResponseHandler (ImageRepositoryClient client) {
 this.client = client;
 }

 public void process(Message response) {
 String type = response.contents.getFirstChild().getLocalName();

 // handle loginResponse specially
 if (type.equals(Parser.loginResponse)) {
 boolean ok = Parser.success(response);
 if (!ok) {
 client.status("Unable to login:" + Parser.reason(response));
 } else {
 client.status("Connected to server.");
 }

 client.connected(ok);
 return;
 } else if (type.equals(Parser.statusResponse)) {
 new StatusController(client).process(null, response);
 return;
 }

 System.out.println("received:" + response);
 }
}

There was no st at usRequest object known on the client side, so the invocation to pro cess added above takes null
as its first parameter; the invocation simply asks the client to process the received st at usRespo nse message.

Could it really be that straightforward? Well, execute ServerLauncher and then execute Client Launcher. Connect to
localhost and self-register a new account. Once connected, you'll see the first image in the repository on the client
display. Select the Image | Add menu item several times to populate the repository. Then begin browsing through the
images using the menu item contro ls. Note that each time you navigate, the new image appears on the client display.
You can even execute another instance o f Client Launcher and have two separate clients, each navigating through
the repository, each adding images, and this can occur simultaneously!

There are a few items that still need our attention:

1. If you connect to the server (not self-registered) and you enter invalid credentials, the Server menu bar
still appears as if the client had properly connected.
2. Disconnect functionality is not yet implemented.
3. The status bar at the bottom of the screen doesn't change during navigation. (Shouldn't it show which
picture in the repository is being viewed? It's time to get that metadata properly displayed on the screen).
4. When adding an image to the repository, that image should become the last one in the repository, but
shouldn't the client navigate to that last picture and show it on the client display?

Let's complete these tasks in order. To validate that the client behaves improperly, run ServerLauncher and then run
Client Launcher and try to connect to lo calho st with new account information. While the status bar at the bottom of
the screen shows "Unable to login:Invalid credentials", the Server menu shows that it believes the connection was
appropriate. So where do you begin to so lve this problem? Well, you can look at the Respo nseHandler because its
pro cess() method is the one that posts the "invalid credentials" status message, but that method only calls the
co nnect ed method. Review the changes to this method below, which calls validat eMenuBar after the method
configures access:

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

...
public void connected(boolean ok) {
 validateMenuBar();

 if (ok) {
 String xmlStatusRequest = "<request><statusRequest/></request>";
 access.sendRequest(new StatusController(this), new xml.Message(xmlStatusRequest));
 } else {
 access = null;
 }

 validateMenuBar();
}
...

If access is set to null on failed login attempts, the validat eMenuBar() method is properly able to adjust to
demonstrate whether the client is connected or not. Close down all applications and restart the ServerLauncher and
Client Launcher. This time note that after failed login attempts, the menu bar is properly updated.

Moving on to the Server | Disco nnect menu item, you need to write a Disco nnect Co nt ro ller to oversee this
functionality. Start at ImageRepo sit o ryClient and make these modifications to init MenuBar() :

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

...
 disconnect = new JMenuItem("Disconnect...");
 disconnect.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new DisconnectController(ImageRepositoryClient.this).confirm();
 }
 });
 server.add(disconnect);
...

This new code invokes Disco nnect Co nt ro ller once selected.

 In the /src fo lder client .gui package, create a Disco nnect Co nt ro ller class as shown:

/src/client.gui/DisconnectContro ller.java

package client.gui;

import javax.swing.*;
import util.*;

public class DisconnectController {
 static String property_confirmOnDisconnect = "ConfirmOnDisconnect";
 static String imageFile = "images/help_32.png";
 static ImageIcon icon;

 ImageRepositoryClient client;

 public DisconnectController(ImageRepositoryClient client) {
 this.client = client;
 }

 public boolean confirm() {
 if (icon == null) {
 icon = new ImageIcon(imageFile);
 }
 if (!Preferences.isTrue(property_confirmOnDisconnect)) {
 String[] choices = { "Confirm", "Confirm and don't ask me again" };

 String s = (String) JOptionPane.showInputDialog (client,
 "Do you wish to disconnect from " + client.access.getHost() + "?\n ",
 "Confirm Disconnect", JOptionPane.PLAIN_MESSAGE,
 icon, choices, choices[0]);
 if (s == null) {
 return false;
 } else if (s.equals (choices[1])) {
 // remember this in the future.
 Preferences.set(property_confirmOnDisconnect, true);
 }
 }

 return disconnect();
 }

 boolean disconnect() {
 String host = client.access.getHost();
 client.access.disconnect();
 client.connected(false);

 client.status("Disconnected from " + host);
 return true;
 }
}

The above code may seem familiar; it is nearly identical to Quit Co nt ro ller. To pro tect the user from inadvertently
"disconnecting," you included the same confirmation step as in the Quit Co nt ro ller. To disconnect the client,
disconnect the ServerAccess object and tell ImageRepo sit o ryClient that it is no longer connected. For this code
to compile, add this method to ServerAccess:

CODE TO TYPE: /src/client/ServerAccess.java

 public String getHost() {
 return host;
 }

Test the capability by terminating all existing applications running in Eclipse. Npw execute ServerLauncher and
Client Launcher. Once you've connected, select Server | Disco nnect ; you'll be asked to confirm the disconnect
request. If you choose to disconnect, the menu bar is revalidated to allow you to reconnect later.

The next task to deal with is that the screen is not updated after the client uploads a new image to the repository. The
next few changes to ServerAddImageCo nt ro ller show how to update the Client St at e fo r the user adding images:

CODE TO TYPE: /src/server/ServerAddImageContro ller.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;
import org.w3c.dom.*;
import xml.*;

public class ServerAddImageController implements IProtocolHandler {
 Repository repository;

 public ServerAddImageController(Repository repository) {
 this.repository = repository;
 }

 public Message process (String user, Message request) {
 Node child = request.contents.getFirstChild();
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 String xmlResp;
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 String key = repository.add (bytes, name);
 ClientState cs = RepositoryServer.getState(user);
 cs.setImageKey(key);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/
></response>";
 } catch (IOException ioe) {
 xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +
 "<addResponse numBytes='0'/></response>";
 } catch (Exception e) {
 xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
 "<addResponse numBytes='0'/></response>";
 }

 return new Message(xmlResp);
 }

 public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";
}

There is no room in the addRespo nse message to send back the image, so how can the client see the uploaded
image? Remember how on the client side, you detect the successful image addition, so at that po int you can send a
st at usRequest to the server to return the current image? Modify the pro cess method o f the client-side
AddImageCo nt ro ller as fo llows:

CODE TO TYPE: /src/client.gui/AddImageContro ller.java

...
 public void process (Message request, Message response) {
 NamedNodeMap map = request.contents.getFirstChild().getAttributes();
 String name = map.getNamedItem("name").getNodeValue();

 if (Parser.success(response)) {
 client.status("Image uploaded to server:" + name);

 String xmlStatusRequest = "<request><statusRequest/></request>";
 client.access.sendRequest(new StatusController(client), new Message(xmlStatusRequ
est));
 } else {
 client.status("Problem adding image:" + name + "(" + Parser.reason(response) + ")
");
 }
 }
...

Pretty coo l! Now, as the client adds images, the most recently added image appears. Try this out. Delete all files in the
/Repo sit o ry fo lder and relaunch ServerLauncher and Client Launcher. Observe the changed behavior as you add
new images to the repository. All o f the scaffo lding and carefully designed contro llers are now building blocks that you
can use to satisfy the application requirements.

You still have one more task to perform. Update the status at the bottom of the client display during navigation:

CODE TO TYPE: /src/client.gui/StatusContro ller.java

package client.gui;

import java.io.*;
import java.awt.image.*;
import javax.imageio.*;
import org.w3c.dom.*;
import util.*;
import xml.*;
import client.*;

public class StatusController implements IController {

 ImageRepositoryClient client;

 public StatusController(ImageRepositoryClient client) {
 this.client = client;
 }

 public void process(Message request, Message response) {
 Node child = response.contents.getFirstChild();
 Node imageNode = child.getFirstChild();
 if (imageNode == null) {
 client.status("Repository has no images.");
 return;
 }

 int idx = Integer.valueOf(child.getAttributes().getNamedItem("index").getNodeValue(
));
 int total = Integer.valueOf(child.getAttributes().getNamedItem("total").getNodeValu
e());
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());

 InputStream in = new ByteArrayInputStream(bytes);
 BufferedImage image = ImageIO.read(in);
 client.display(image);
 client.status("Image " + idx + " of " + total);
 } catch (IOException ioe) {
 client.status("Unable to decode image from server:" + ioe.getMessage());
 }
 }
}

Now when you run the application, you'll see that the status bar information is updated as you navigate among the
images in the repository. Once again, having clearly defined contro llers means you can identify quickly where you
need to make small adjustments in your code, whether during normal development or as requirements change.

Delete the "temporary" classes from the default package—those are no longer part o f your pro ject. Now rerun the code
coverage on all test cases and confirm that the fo llowing classes have ZERO code coverage from any test case. (In
the next lab you must make progress towards closing the coverage gap):

OBSERVE:

Client
ClientLauncher
SplashScreenLogic
ConnectController
DisconnectController
NavigateController
QuitController
Server
ServerNavigateController
ServerLauncher

Let's write some test cases for Navigat eCo nt ro ller. Pattern them after the T est AddBehavio r test case. Your new

test case will extend T est AddBehavio r to take immediate advantage o f its set Up and t earDo wn methods, as well
as its attributes which are now inherited by T est Navigat io nSequence .

 In the /t est fo lder server.ipc package, create a T est Navigat io nSequence class that extends
T est AddBehavio r, as shown. While typing the code, fo llow the sequence o f actions in the test case method:

CODE TO TYPE: /test/server.ipc/TestNavigationSequence.java

package server.ipc;

import java.io.*;
import org.w3c.dom.*;
import xml.*;
import server.*;

public class TestNavigationSequence extends TestAddBehavior {

 static Message requestNAVIGATE (String direction) {
 String xmlNavRequest = "<request><navigateRequest direction='" + direction + "'/></
request>";
 return new Message(xmlNavRequest);
 }

 public void testBriefNavigationSequence() throws Exception {
 String first = "c00bc1ed28fabdbcebc3e4735decc83e";
 String last = "6e3a233232c4c8e0c8bb1c163aa48d9d";
 String user = "user00";

 toServer.println(requestLOGIN(user, "n", true));
 expectSuccess(fromServer);

 // add
 File f = new File("images", "repositorySplash.png");
 toServer.println(requestADD("sampleImage", f));
 expectSuccess(fromServer);

 // verify that client has this first image.
 ClientState state = RepositoryServer.getState(user);
 String key = state.getImageKey();
 assertEquals (first, key);

 // add
 f = new File("images", "help_32.png");
 toServer.println(requestADD("help", f));
 expectSuccess(fromServer);

 // now on second one
 key = state.getImageKey();
 assertEquals (last, key);

 // now navigate to the first
 ServerNavigateController nc = new ServerNavigateController(RepositoryServer.reposit
ory);
 nc.process(user, requestNAVIGATE(Parser.first));
 assertEquals (first, state.getImageKey());

 // validate StatusController works on first
 ServerStatusController sc = new ServerStatusController(RepositoryServer.repository)
;
 Message resp = sc.process(user, TestAddBehavior.requestSTATUS());
 NamedNodeMap map = resp.contents.getFirstChild().getAttributes();
 assertEquals (first, map.getNamedItem("key").getNodeValue());

 // go last
 nc.process(user, requestNAVIGATE(Parser.last));
 assertEquals (last, state.getImageKey());

 // validate StatusController works on first
 sc = new ServerStatusController(RepositoryServer.repository);
 resp = sc.process(user, TestAddBehavior.requestSTATUS());
 map = resp.contents.getFirstChild().getAttributes();
 assertEquals (last, map.getNamedItem("key").getNodeValue());

 // go previous

 nc.process(user, requestNAVIGATE(Parser.previous));
 assertEquals (first, state.getImageKey());

 // go next
 nc.process(user, requestNAVIGATE(Parser.next));
 assertEquals (last, state.getImageKey());
 }
}

This test case logic may be familiar. It's a lo t to type in all at once, but you can probably "read" the scenario it describes
where a client logs in, adds two images, and then navigates among the images in the repository. By extending
T est AddBehavio r, this test case can take advantage o f the inherited attributes and methods from that class, as well
as the set Up and t earDo wn methods for starting and stopping the server and client. Once again, you demonstrate
how to compose new functionality from the composition o f existing classes. This test case demonstrates the
capability on the server side.

In this lab you wrote a number o f capabilities on the client side; now demonstrate their effectiveness.

 In the /t est fo lder client .gui package, create a T est Co nnect io n test case as shown:

CODE TO TYPE: /test/client.gui/TestConnection.java

package client.gui;

import server.ipc.*;
import junit.framework.TestCase;

public class TestConnection extends TestCase {
 RepositoryServer server;

 protected void setUp() throws Exception {
 TestServer.clearTestRepository();
 server = TestServer.launchServer();
 }

 protected void tearDown() throws Exception {
 RepositoryServerAccess.shutdown(server);
 server = null;
 }

 public void testConnection() throws Exception {
 ImageRepositoryClient client = new ImageRepositoryClient();

 ConnectController cc = new ConnectController();
 cc.connect(client, "localhost", "tester", "anything", true);

 assertEquals ("localhost", client.access.getHost());

 DisconnectController dc = new DisconnectController(client);
 assertTrue (dc.disconnect());

 assertTrue (client.access == null);
 }
}

This test case executes the Co nnect Co nt ro ller and Disco nnect Co nt ro ller. You've already seen the scenario
being tested, because you put the building blocks into place.

The t est Co nnect io n test case method creates a new ImageRepo sit o ryClient object, and uses the
Co nnect Co nt ro ller to attempt to connect that client to the local Repo sit o ryServer using a self-registered account
for user "tester" with hashedPassword o f "anything." After confirming the connection (this test case method uses the
get Ho st () method we added earlier in this lab), the client is instructed to disconnect, using Disco nnect Co nt ro ller;
you know that disco nnect succeeds because client .access is reset to null.

For the final test case, you'll validate the client-side navigation capabilities.

 In the /t est fo lder client .gui package, create a T est Client Navigat io n test case. This test case class introduces

a few advanced testing techniques. Let's take them on one step at a time:

CODE TO TYPE: /test/client.gui/TestClientNavigation.java

package client.gui;

import java.io.*;
import server.*;
import server.ipc.*;
import xml.*;
import junit.framework.TestCase;

public class TestClientNavigation extends TestCase {
 RepositoryServer server;
 static final String user = "tester";

 protected void setUp() throws Exception {
 TestServer.clearTestRepository();
 server = TestServer.launchServer();
 }

 protected void tearDown() throws Exception {
 RepositoryServerAccess.shutdown(server);
 server = null;
 }

 public static boolean waitForResponse(ImageRepositoryClient client) throws Exception
{
 // wait until all responses have been received before continuing test case
 int ctr = 50;
 while (client.access.isWaiting() && ctr-- > 0) {
 Thread.sleep(200);
 }
 return !client.access.isWaiting();
 }

 public static boolean waitUntilKeySet(ClientState state, String target) throws Except
ion {
 int ctr = 50;
 while (!target.equals(state.getImageKey()) && ctr-- > 0) {
 Thread.sleep(200);
 }
 return target.equals(state.getImageKey());
 }
}

Let's take a closer look:

OBSERVE:

 public static boolean waitForResponse(ImageRepositoryClient client) throws Exception
{
 // wait until all responses have been received before continuing test case
 int ctr = 50;
 while (client.access.isWaiting() && ctr-- > 0) {
 Thread.sleep(200);
 }
 return !client.access.isWaiting();
 }

 public static boolean waitUntilKeySet(ClientState state, String target) throws Except
ion {
 int ctr = 50;
 while (!target.equals(state.getImageKey()) && ctr-- > 0) {
 Thread.sleep(200);
 }
 return target.equals(state.getImageKey());
 }

This test case invo lves a client and the server. Without making additional changes to your code, it's hard to determine
when to check to see whether a request sent by the client has been processed by the server properly. If a contro ller
sends a request to the server, and expects to receive the response, then the ServerAccess object maintains the
registered contro ller until it can process the response. The wait Fo rRespo nse() method allows you to wait (in a non-
blocking fashion) until client .access.isWait ing() is f alse . To avo id becoming stuck in an infinite loop, this method
will check once every 200 milliseconds, until 10 seconds have elapsed, to determine whether client .access is still
waiting. The method returns t rue when the client is no longer waiting, or f alse when something has gone wrong and
the client has not received a response within 10 seconds.

Similarly, the wait Unt ilKeySet () method waits until the given Client St at e has its image key changed to t arget
(within a to tal elapsed time o f 10 seconds). This method is used for requests that are not expecting a returned
response to a registered contro ller.

Is wait Fo rRespo nse() more complicated than it needs to be? Maybe. Of course, you would like to write a simpler
method that stays in the while loop until the client is no longer waiting, like this:

OBSERVE:

 public static boolean waitForResponse(ImageRepositoryClient client) {
 while (client.access.isWaiting());
 return !client.access.isWaiting();
 }

This won't work though, because the ServerAccess thread and the JUnit thread executing the wait Fo rRespo nse
method will clash. Don't believe me? After you've completed the test case, modify the wait Fo rRespo nse as shown
above and see what happens.

Now add this test case method to T est Client Navigat io n:

CODE TO TYPE: /test/client.gui/TestClientNavigation.java

...
 public void testNavigation() throws Exception {
 String first = "c00bc1ed28fabdbcebc3e4735decc83e";
 String last = "6e3a233232c4c8e0c8bb1c163aa48d9d";

 ImageRepositoryClient client = new ImageRepositoryClient();

 // connect and add two images.
 ConnectController cc = new ConnectController();
 cc.connect(client, "localhost", user, "anything", true);

 AddImageController c = new AddImageController(client);
 assertTrue (c.add(new File ("images/repositorySplash.png")));
 assertTrue (waitForResponse(client));
 assertEquals (1, RepositoryServerAccess.size(server));

 assertTrue (c.add(new File ("images/help_32.png")));
 assertTrue (waitForResponse(client));
 assertEquals (2, RepositoryServerAccess.size(server));

 // make some navigation requests from the client. Go to the first one in repository
.
 // Note that navigation sends back Status messages so this controller is not one
 // that "waits" for a response from the server. Instead we wait for state to change
 NavigateController nc = new NavigateController(client);
 assertTrue (nc.go(Parser.first));

 ClientState state = RepositoryServer.getState(user);
 assertTrue(waitUntilKeySet(state, first));

 assertTrue (nc.go(Parser.last));
 assertTrue(waitUntilKeySet(state, last));

 DisconnectController dc = new DisconnectController(client);
 assertTrue (dc.disconnect());
 assertTrue (client.access == null);
 }

Once this test case method is completed, launch all test cases in the /t est source fo lder to validate that they all pass.
Next, generate code coverage using EclEmmma. Some classes, such as Client Launcher and ServerLauncher,
still have no automatic coverage because they are just launching code that begins the client and server applications,
respectively. In Eclipse, there is no easy way to write a JUnit test case that uses parameters to the Java VM to execute
the SplashScreenLo gic. We have to stick to our basic testing principles that tell us that classes with coverage that is
below 80% must be inspected manually.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Deleting Repository Images
Lesson Objectives

In this lesson you will:

use an authentication po licy to allow or disallow remote functionality.

Deleting Images in the Repository
You've made it to the final lesson o f Java 5. Nice go ing! Now you'll implement the functionality that allows users to
delete images in the repository and complete the core functionality o f the application. Given the structure o f the
client/server approach, you may have already guessed that we'll be adding some new XML messages and writing
client and server contro llers. Before we launch into this task, we'll need to define a po licy that contro ls the deletion o f
images:

1. Users should not be able to delete images that they themselves did not upload. You will identify additional
metadata that can be stored with each image to support this functionality.
2. Users should not be able to delete an image that is currently being viewed by another user.

If we stick to this defined po licy, we improve our users' experience. To request the deletion o f an image, a user must be
looking at that image currently and then select Image | Delet e , which is a new menu item added to
ImageRepo sit o ryClient . Make these change to the init MenuBar() method o f ImageRepo sit o ryClient :

CODE TO TYPE: /src/client.gui/ImageRepositoryClient.java

...
 image = new JMenu ("Image");
 JMenuItem add = new JMenuItem("Add...");
 add.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new AddImageController(ImageRepositoryClient.this).add();
 }
 });
 image.add(add);
 JMenuItem delete = new JMenuItem("Delete...");
 delete.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 new DeleteImageController(ImageRepositoryClient.this).delete();
 }
 });
 image.add(delete);
 image.add(new JSeparator());

 JMenuItem first = new JMenuItem("First");
 first.addActionListener(new ActionListener() {
...

The XML delet eRequest coming from the client doesn't need any information, because the server will determine the
image to delete from the requesting user's Client St at e . The delet eRespo nse should contain the name of the file
(not the unreadable key) to tell the user that the operation succeeded. Make these changes to repo sit o ry.xsd:

CODE TO TYPE: /repository.xsd

<?xml version='1.0' encoding='UTF-8'?>
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

<xs:element name='message'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='response'/>
 <xs:element ref='request'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='response'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addResponse'/>
 <xs:element ref='statusResponse'/>
 <xs:element ref='loginResponse'/>
 <xs:element ref='deleteResponse'/>
 </xs:choice>
 <xs:attribute name='success' type='xs:boolean' use='required'/>
 <xs:attribute name='reason' type='xs:string' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='request'>
 <xs:complexType>
 <xs:choice>
 <xs:element ref='addRequest'/>
 <xs:element ref='statusRequest'/>
 <xs:element ref='loginRequest'/>
 <xs:element ref='navigateRequest'/>
 <xs:element ref='deleteRequest'/>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name='addRequest'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='addResponse'>
 <xs:complexType>
 <xs:attribute name='numBytes' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="1">
 <xs:element name='image'/>
 </xs:sequence>
 <xs:attribute name='key' type='xs:string' use='required'/>
 <xs:attribute name='index' type='xs:integer' use='required'/>
 <xs:attribute name='total' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='loginRequest'>

 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>
 <xs:attribute name='password' type='xs:string' use='required'/>
 <xs:attribute name='register' type='xs:boolean' use='optional'/>
 </xs:complexType>
</xs:element>

<xs:element name='loginResponse'>
 <xs:complexType>
 <xs:attribute name='user' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:simpleType name='directionType'>
 <xs:restriction base='xs:string'>
 <xs:pattern value='next|previous|first|last'/>
 </xs:restriction>
</xs:simpleType>

<xs:element name='navigateRequest'>
 <xs:complexType>
 <xs:attribute name='direction' type='directionType' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='deleteRequest'/>

<xs:element name='deleteResponse'>
 <xs:complexType>
 <xs:attribute name='name' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>
</xs:schema>

When you make changes to the XML, you need to make similar changes to Parser fo r the key constants. Add these
values to Parser:

CODE TO TYPE: /src/xml/Parser.java

...
 public final static String name = "name";
 public final static String value = "value";
...

The client sends a delet eRequest to the server and receives (and processes) a delet eRespo nse in return.

 In the /src fo lder client .gui package, create a Delet e ImageCo nt ro ller class as shown:

CODE TO TYPE: /src/client.gui/DeleteImageContro ller.java

package client.gui;

import org.w3c.dom.*;
import xml.*;
import client.*;

public class DeleteImageController implements IController {

 ImageRepositoryClient client;

 public DeleteImageController (ImageRepositoryClient client) {
 this.client = client;
 }

 public boolean delete() {
 client.clearStatus();

 String xmlDeleteRequest = "<request><deleteRequest/></request>";
 return client.access.sendRequest(this, new Message(xmlDeleteRequest));
 }

 public void process(Message request, Message response) {
 if (Parser.success(response)) {
 NamedNodeMap map = response.contents.getFirstChild().getAttributes();
 String name = map.getNamedItem(Parser.name).getNodeValue();
 client.status("deleted image " + name + " from repository.");

 String xmlStatusRequest = "<request><statusRequest/></request>";
 client.access.sendRequest(new StatusController(client), new Message(xmlStatusRequ
est));
 } else {
 client.status("Unable to delete image:" + Parser.reason(response));
 }
 }
}

This code uses the same two-part structure as AddImageCo nt ro ller did. The delet e method sends the delete
request to the server while the pro cess message handles the response.

Because the server maintains the Client St at e fo r the connected user, the logic o f the client-side
Delet e ImageCo nt ro ller is relatively straightforward.

The real functionality happens in the server. As you might expect, you'll change Pro t o co lHandler to respond to the
delet eRequest that arrives. So, what if a user is viewing the first image in the repository and that user selects to
delete the image just as a new client is logging into the system? As the current server is designed, each individual
request coming to the server is handled by its own thread, which operates concurrently with all o ther threads in the
system. It is entirely likely that the server will decide that it is safe to delete the first image in the repository when, in
reality, a concurrently executing thread has just sent that image to be viewed by the newly connected user. You need
some way to guarantee that an individual thread has the server's attention while processing. Using the synchro nized
key word, you can ensure that no two threads execute the pro cess method at the same time. Because the
Pro t o co lHandler class is the central handler in the server, it's the most convenient place to restrict concurrent
access in a fine-grained way:

CODE TO TYPE: /src/server/Pro toco lHandler.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;
import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler {
 final Repository repository;

 public ProtocolHandler (Repository r) {
 repository = r;
 }

 public synchronized Message process (String user, Message request) {
 Node child = request.contents.getFirstChild();
 if (child.getLocalName().equals ("addRequest")) {
 return new AddImageController(repository).process(user, request);
 } else if (child.getLocalName().equals("statusRequest")) {
 return new StatusController(repository).process(user, request);
 } else if (child.getLocalName().equals("navigateRequest")) {
 return new NavigateController(repository).process(user, request);
 } else if (child.getLocalName().equals("deleteRequest")) {
 return new ServerDeleteImageController(repository).process(user, request);
 }

 return null; // unknown request? No idea what to do.
 }
}

The ServerDelet e ImageCo nt ro ller server-side contro ller must ensure that no o ther users are viewing the exact
same image. If this is confirmed, the image is deleted; o therwise the request is denied and an appropriate response is
sent back. The client display o f the user requesting the deletion will depict the next image in the repository. To make
this contro ller work, you will have to make a number o f small changes to your existing code. Let's get started.

 In the /src fo lder server package, create the ServerDelet e ImageCo nt ro ller class as shown (you will implement
this class in stages):

CODE TO TYPE: /src/server/ServerDeleteImageContro ller.java

package server;

import java.util.*;
import server.ipc.*;
import server.model.*;
import xml.*;

public class ServerDeleteImageController implements IProtocolHandler {

 Repository repository;

 public ServerDeleteImageController(Repository repository) {
 this.repository = repository;
 }

 public Message process(String user, Message request) {
 String xmlResp = "";
 ClientState cs = RepositoryServer.getState(user);
 String key = cs.getImageKey();
 if (key == null) {
 xmlResp = "<response success='false' reason='" + EmptyRepository + "'>" +
 "<deleteResponse name=''/></response>";
 return new Message(xmlResp);
 }

 // To Complete...
 }

 public static final String EmptyRepository = "Repository is empty.";
 public static final String AnotherViewer = "Another user is viewing the image.";
}

The pro cess() method above responds to delet eRequest messages coming from the client. This code describes
how to handle the unexpected case, where there are no images in the repository yet a delet eRequest message was
received by the server. You call Repo sit o ryServer.get St at e() to retrieve the Client St at e object associated with
the given user. Only when the repository is empty is there no key associated with the Client St at e object. The only
action to take is to return a failed response.

To complete the pro cess method, you need to add logic that verifies that no o ther client is actively viewing the image
that is about to be deleted. Instead o f burying this logic deep within Repo sit o ryServer, add a method to
Repo sit o ryServer to expose the full set o f connected users. This flexible method allows you to perform an
operation over all connected users o f the system:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

...
 public static Collection<ClientState> users() {
 return users.values();
 }
...

You will use this method to determine whether any o ther connected user is viewing the exact same image as the one
requested for deletion. Finally, you want Repo sit o ry to allow you to set and get the metadata associated with an
image in the repository by key value as shown:

CODE TO TYPE: /src/server.model/Repository.java

...
 public Properties getMetaData(String key) {
 return index.getMetaData(key);
 }

 public Properties setMetaData(String key, Properties md) {
 Properties old = index.setMetaData(key, md);
 storeIndex();
 return old;
 }
...

These methods expose the underlying Properties object associated with each image. They delegate the get/set
requests to the Index o f the repository, making sure to call st o reIndex() to persist all changes. Now modify the
pro cess method o f ServerDelet e ImageCo nt ro ller to validate that no o ther client is accessing the same image as
the one requested for deletion:

CODE TO TYPE: /src/server/ServerDeleteImageContro ller.java

...
 public Message process(String user, Message request) {
 String xmlResp = "";
 ClientState cs = RepositoryServer.getState(user);
 String key = cs.getImageKey();
 if (key == null) {
 xmlResp = "<response success='false' reason='" + EmptyRepository + "'>" +
 "<deleteResponse name=''/></response>";
 return new Message(xmlResp);
 }

 int num = repository.getOrder(key);
 Properties props = repository.getMetaData(key);

 // Verify that no other user is concurrently viewing the image
 for (ClientState other : RepositoryServer.users()) {
 if (other == cs) { continue; }

 if (key.equals (other.getImageKey())) {
 xmlResp = "<response success='false' reason='" + AnotherViewer + "'>" +
 "<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons
e>";
 return new Message(xmlResp);
 }
 }
 // To Complete...
 }

Let's take a closer look.

OBSERVE:

 // Verify that no other user is concurrently viewing the image
 for (ClientState other : RepositoryServer.users()) {
 if (other == cs) { continue; }

 if (key.equals (other.getImageKey())) {
 xmlResp = "<response success='false' reason='" + AnotherViewer + "'>" +
 "<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons
e>";
 return new Message(xmlResp);
 }
 }

The Repo sit o ryServer.users() method returns the co llection o f users currently connected to the server. This

http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html

method was provided to o ffer the greatest flexibility in dealing with o ther connected users. The enhanced for loop f o r
(Client St at e o t her : Repo sit o ryServer.users()) iterates over all Client St at e objects associated with o ther
connected users. If any o f t hese other Client St at e o bject s has an image key equal t o t he image key being
request ed f o r delet io n, then you must respond with a failed delet eRespo nse message, this time declaring the
reason to be Ano t herViewer. The statement if (o t her == cs) { co nt inue; } ensures that you skip over the o t her
Client St at e when you get to the Client St at e associated with the current user requesting the deletion.

Once all checks have passed, complete the logic that actually deletes the object, as shown:

CODE TO TYPE: /src/server/ServerDeleteImageContro ller.java

...
 public Message process(String user, Message request) {
 String xmlResp = "";
 ClientState cs = RepositoryServer.getState(user);
 String key = cs.getImageKey();
 if (key == null) {
 xmlResp = "<response success='false' reason='" + EmptyRepository + "'>" +
 "<deleteResponse name=''/></response>";
 return new Message(xmlResp);
 }

 int num = repository.getOrder(key);
 Properties props = repository.getMetaData(key);

 // Verify that no other user is concurrently viewing the image
 for (ClientState other : RepositoryServer.users()) {
 if (other == cs) { continue; }

 if (key.equals (other.getImageKey())) {
 xmlResp = "<response success='false' reason='" + AnotherViewer + "'>" +
 "<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons
e>";
 return new Message(xmlResp);
 }
 }

 // To Complete...
 try {
 repository.delete(key);
 if (repository.size() == 0) {
 cs.setImageKey(null);
 } else {
 if (num > repository.size()) {
 num = repository.size();
 }
 cs.setImageKey(repository.getNthKey(num));
 }

 xmlResp = "<response success='true'>" +
 "<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons
e>";
 } catch (Exception e) {
 xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
 "<deleteResponse name='" + props.getProperty(Parser.name) + "'/></response>
";
 }

 return new Message(xmlResp);
 }

This code won't compile until you write a delet e() method in Repo sit o ry that deletes an image by key. The num
value is the ordinal position o f the given image in the repository. Once this image is deleted (via
repo sit o ry.delet e(key)), you can retrieve the key for the next image in the repository by using the same num value,
then save this key as the image key for the Client St at e requesting the deletion. In this final case, the returning
delet eRespo nse is successful unless an exception was thrown when attempting to delete the image.

The above code also handles the situation where the user deletes the last image in the repository. The code updates

num when that happens.

Now modify Repo sit o ry. Begin by writing a delet e() method:

CODE TO TYPE: /src/server.model/Repository.java

...
 public void delete (String key) {
 File f = new File (storage, key);
 if (f.exists()) {
 if (!f.delete()) {
 throw new IllegalStateException ("Unable to delete image:" + key);
 }
 }

 index.delete(key);
 storeIndex();
 }
...

The delet e method in Repo sit o ry depends on adding a corresponding method to Index:

CODE TO TYPE: /src/server.model/Index.java

...
 public void delete(String fp) {
 if (!keys.contains(fp)) {
 return;
 }

 keys.remove(fp);
 meta.remove(fp);
 }
...

To see whether your changes were implemented properly, run ServerLauncher and Client Launcher and make
sure you are the only connected client. If the Repo sit o ry fo lder is empty, add some images. Verify that you are
looking at the first image in the repository. Now request to delete each image that you see, one at a time. You can
review the progress o f the server by refreshing the Repo sit o ry fo lder after each delete request. You can add images
and then delete them, until the repository is empty.

Now connect two clients to the same repository and have each o f them view the first image in the repository. If you
have deleted all images, then go ahead and add one! Now, try to have one o f the clients attempt to delete the first
image in the repository. As you will see, attempts to delete an image are denied as long as another client is viewing
that image.

Upgrade Protocol to Display Metadata

To display metadata information on the right side o f the client display, you need to upgrade the pro toco l. The metadata
is stored by the server; you can "piggyback" the information with the st at usRespo nse message by making a small
change to repo sit o ry.xsd. These changes add a sub-child to image that allows you to have a sequence o f
met adat a tag information for each image. The metadata will come from the Index:

CODE TO TYPE: /repository.xsd

<xs:element name='metadata'>
 <xs:complexType>
 <xs:attribute name='name' type='xs:string' use='required'/>
 <xs:attribute name='value' type='xs:string' use='required'/>
 </xs:complexType>
</xs:element>

<xs:element name='statusResponse'>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="1">
 <xs:element name='image'/>
 <xs:sequence minOccurs="0">
 <xs:element name='metadata'/>
 </xs:sequence>
 </xs:sequence>
 <xs:attribute name='key' type='xs:string' use='required'/>
 <xs:attribute name='index' type='xs:integer' use='required'/>
 <xs:attribute name='total' type='xs:integer' use='required'/>
 </xs:complexType>
</xs:element>

The fundamental structure o f the met adat a schema element is a (name, value) pair. The change to
st at usRespo nse allows for any number (possibly zero) o f (name, value) pairs to be associated with the image
being included in the st at usRespo nse . To take advantage o f this new capability, modify ServerSt at usCo nt ro ller
as shown:

CODE TO TYPE: /src/server/ServerStatusContro ller.java

package server;

import java.io.*;
import java.util.*;
import server.ipc.*;
import server.model.*;
import util.*;
import xml.*;

public class ServerStatusController implements IProtocolHandler {

 Repository repository;

 public ServerStatusController(Repository repository) {
 this.repository = repository;
 }

 public Message process(String user, Message request) {
 ClientState cs = RepositoryServer.getState(user);
 File f = repository.getImage(cs.getImageKey());
 String imageData = "";

 // Default message in case the repository is empty
 String xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey(
) + "' " +
 "index='" + repository.getOrder(cs.getImageKey()) + "' total='" +
repository.size() + "'>" +
 "</statusResponse></response>";
 if (repository.size() == 0) {
 return new Message(xmlResp);
 }

 try {
 String encoding = ImageEncoding.encode(f);
 String metadata = "";
 Properties props = repository.getMetaData(cs.getImageKey());
 for (String name : props.stringPropertyNames()) {
 metadata += "<metadata name='" + name + "' value='" + props.getProperty(name) +
 "'/>";
 }
 String imageData = "<image>\n<![CDATA[" + encoding + "\n]]>" + metadata + "</imag
e>";
 xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey() + "
' " +
 "index='" + repository.getOrder(cs.getImageKey()) + "' total='" + repos
itory.size() + "'>" +
 imageData + "</statusResponse></response>";
 } catch (Exception e) {
 System.err.println ("Unable to encode image file:" + ioe.getMessage());
 xmlResp = "<response success='false' reason='" + UnableToEncode + "'>" +
 "<statusResponse key='" + cs.getImageKey() + "' " +
 "index='" + repository.getOrder(cs.getImageKey()) + "' total='" + repos
itory.size() + "'>" +
 "</statusResponse></response>";
 }

 String xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey(
) + "' " +
 "index='" + repository.getOrder(cs.getImageKey()) + "' total='" + repository.si
ze() + "'>" +
 imageData + "</statusResponse></response>";
 return new Message(xmlResp);
 }

 public static final String UnableToEncode = "Unable to encode image file";
}

The above code constructs a met adat a XML fragment which is inserted as a sub-child to the image XML tag.

On the client side, you need to modify the St at usCo nt ro ller to extract the metadata from the st at usRespo nse it
receives:

CODE TO TYPE: /src/client.gui/StatusContro ller

package client.gui;

import java.io.*;
import java.awt.image.*;
import javax.imageio.*;
import org.w3c.dom.*;
import util.*;
import xml.*;
import client.*;

public class StatusController implements IController {

 ImageRepositoryClient client;

 public StatusController(ImageRepositoryClient client) {
 this.client = client;
 }

 public void process(Message request, Message response) {
 Node child = response.contents.getFirstChild();
 Node imageNode = child.getFirstChild();
 if (imageNode == null) {
 client.status("Repository has no images.");
 client.meta(null);
 client.display(null);
 return;
 }

 client.meta(null);
 NodeList metaNodes = imageNode.getChildNodes();
 for (int i = 0; i < metaNodes.getLength(); i++) {
 Node n = metaNodes.item(i);
 if (n.getNodeType() != Node.ELEMENT_NODE) { continue; }

 String name = n.getAttributes().getNamedItem("name").getNodeValue();
 String value = n.getAttributes().getNamedItem("value").getNodeValue();

 client.meta(name + " = " + value + "\n");
 }

 int idx = Integer.valueOf(child.getAttributes().getNamedItem("index").getNodeValue(
));
 int total = Integer.valueOf(child.getAttributes().getNamedItem("total").getNodeValu
e());
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());

 InputStream in = new ByteArrayInputStream(bytes);
 BufferedImage image = ImageIO.read(in);
 client.display(image);
 client.status("Image " + idx + " of " + total);
 } catch (IOException ioe) {
 client.status("Unable to decode image from server:" + ioe.getMessage());
 client.meta(null);
 client.display(null);
 }
 }
}

Everything in an XML message is represented as a node, which means that you have to determine the type o f each
child node to make sure it is a true ELEMENT _NODE, and thus a met adat a child o f the image element. Once you do
that, you extract the (name, value) value from the node and append that information to the client's metadata frame, on
the right side o f the client's GUI.

The above code also fixes a problem. You may have noticed that when you delete the last image in the repository, the
screen still shows the image even though the status says, "Repository has no images." If there is no image to display,
St at usCo nt ro ller now clears the image and metadata.

To support this method, add a met a() method to ImageRepo sit o ryClient that clears or appends text to the panel
on the right side o f the image:

CODE TO TYPE: /src/cilent.gui/ImageRepositoryClient.java

...
 public void meta(String string) {
 if (string == null) {
 imgMetaData.setText("");
 } else {
 imgMetaData.append(string);
 }
 }
...

Close down your client and server applications (if they are still running) and execute ServerLauncher and
Client Launcher to connect the client to the server. As you navigate through the images, you'll see metadata
information in the right panel. For now, there are only two pieces o f metadata; add some more, namely, the size o f the
image in bytes (both original and encoded) and the name of the user who uploaded the image. Modify the server-side
ServerAddImageCo nt ro ller as shown:

CODE TO TYPE: /src/server/ServerAddImageContro ller.java

package server;

import java.io.*;
import java.util.*;
import server.ipc.*;
import server.model.*;
import util.*;
import org.w3c.dom.*;
import xml.*;

public class ServerAddImageController implements IProtocolHandler {
 Repository repository;

 public ServerAddImageController(Repository repository) {
 this.repository = repository;
 }

 public Message process (String user, Message request) {
 Node child = request.contents.getFirstChild();
 String name = child.getAttributes().getNamedItem("name").getNodeValue();
 Node imageNode = child.getFirstChild();

 String xmlResp;
 try {
 byte[] bytes = ImageEncoding.decode(imageNode.getTextContent());
 String key = repository.add (bytes, name);

 Properties props = repository.getMetaData(key);
 props.setProperty("user", user);
 props.setProperty("size", "" + bytes.length);
 props.setProperty("encoded-size", "" + imageNode.getTextContent().length());
 repository.setMetaData(key, props);

 ClientState cs = RepositoryServer.getState(user);
 cs.setImageKey(key);
 xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/
></response>";
 } catch (IOException ioe) {
 xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +
 "<addResponse numBytes='0'/></response>";
 } catch (Exception e) {
 xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
 "<addResponse numBytes='0'/></response>";
 }

 return new Message(xmlResp);
 }

 public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";
}

Now continue adding images; the user identifiers are now associated with each image. You're ready to make the final
constraint check to make sure that a user deleting an image is actually the one who uploaded that image in the first
place.

Preventing Multiple Login Requests

In this lesson you faced the challenge o f concurrent access to the repository; there is a similar issue regarding the way
a user logs into the system. You need to be sure that these two cases are prevented:

Two clients simultaneously submit self-registration requests for the same user id.
A user attempts to use the same login credentials as a user who is currently logged in.

Since each Repo sit o ryT hread operates independently and concurrently, you have to consider where these threads

can synchronize their actions to prevent the two cases described above from happening. In Repo sit o ryT hread, you
can see an opportunity in the run method where you can synchronize multiple threads according to the way they
access userManager. Instead o f defining a synchro nized method, you introduce a synchro nized block to ensures
that only one concurrent thread operates within this block. If two threads are trying to self-register, then the first one in
will succeed and the second will block and fail when it gets its chance. If two threads are trying to log in using the same
user credentials, then the first one through will succeed and register itself with Repo sit o ryServer (note how the
regist er invocation is moved). With these changes, you can be sure that when the second thread is allowed to
continue, it will detect a logged-in user with the same user id, and exit in failure (so sad):

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

package server.ipc;

import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import xml.*;
import server.*;

public class RepositoryThread extends Thread {
 Socket client;
 BufferedReader fromClient;
 PrintWriter toClient;
 IProtocolHandler handler;
 String user;
 UserManager manager;

 RepositoryThread (UserManager um, Socket s, IProtocolHandler h) throws IOException {
 fromClient = new BufferedReader(new InputStreamReader(s.getInputStream()));
 toClient = new PrintWriter (s.getOutputStream(), true);
 client = s;
 handler = h;
 manager = um;
 }

 public void run() {
 // authentication by first login message. Stop if not a loginRequest.
 Message m = Parser.extractRequest(fromClient);
 Node child = m.contents.getFirstChild();
 if (!child.getLocalName().equals (Parser.loginRequest)) {
 return;
 }

 // Get authentication information
 String user = child.getAttributes().getNamedItem(Parser.loginUser).getNodeValue();
 String pass = child.getAttributes().getNamedItem(Parser.loginPassword).getNodeValue
();

 // might be self-registration.
 Node registerNode = child.getAttributes().getNamedItem(Parser.loginRegister);
 boolean register = false;
 if (registerNode != null) {
 register = Boolean.valueOf(registerNode.getNodeValue());
 }

 // tell client decision and engage handler on successful login
 boolean validated;
 synchronized (manager) {
 if (register) {
 if (manager.registerUser(user, pass)) {
 m = new Message("<response success='true'><loginResponse user='" + user + "'/
></response>");
 validated = true;
 RepositoryServer.register(user, this);
 } else {
 m = new Message("<response success='false' reason='" + Parser.invalidCredenti
als + "'>" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 }
 } else {
 if (!manager.authenticate(user, pass)) {
 m = new Message("<response success='false' reason='" + Parser.invalidCredenti
als + "'>" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 } else {

 if (RepositoryServer.getState(user) != null) {
 m = new Message("<response success='false' reason='" + DuplicateLogin + "'>
" +
 "<loginResponse user='" + user + "'/></response>");
 validated = false;
 } else {
 m = new Message("<response success='true'><loginResponse user='" + user + "
'/></response>");
 validated = true;
 RepositoryServer.register(user, this);
 }
 }
 }
 }

 toClient.println(m.toString());
 if (toClient.checkError()) {
 return;
 validated = false;
 RepositoryServer.unregister(user);
 }

 if (validated) {
 RepositoryServer.register(user, this);

 // have handler manage the protocol until it decides it is done.
 while ((m = Parser.extractRequest(fromClient)) != null) {
 manager.updateAccessTime(user);
 Message response = handler.process(user, m);
 if (response == null) { break; }

 toClient.println(response.toString());
 if (toClient.checkError()) {
 break;
 }
 }
 RepositoryServer.unregister(user);
 }

 try {
 fromClient.close();
 toClient.close();
 client.close();
 } catch (IOException ioe) {
 System.err.println("Unable to close connection:" + ioe.getMessage());
 }
 }

 public static final String DuplicateLogin = "User is already connected";
}

Once this code is complete, run the ServerLauncher and execute two Client Launcher applications. Have the first
client self-register an account. Have the second client try to log in using the same credentials, and the server will detect
the duplicate login.

This has been a long lesson, but you still need to write one final test case using the new functionality that you added in
this lesson. The next test case validates that you can add two images, and delete them one at a time.

 In the /t est fo lder server.ipc package, create a T est Delet io n class that extends T est AddBehavio r. While you
type the code, try to fo llow the narrative sequence o f actions in the test case method:

CODE TO TYPE: /test/server.ipc/TestDeletion.java

package server.ipc;

import java.io.File;

import server.ClientState;
import server.ServerDeleteImageController;
import server.ServerNavigateController;
import xml.*;

public class TestDeletion extends TestAddBehavior {

 static Message requestDELETE () {
 String xmlNavRequest = "<request><deleteRequest/></request>";
 return new Message(xmlNavRequest);
 }

 public void testDeletions() throws Exception {
 String splashFP = "c00bc1ed28fabdbcebc3e4735decc83e";

 String helpFP = "6e3a233232c4c8e0c8bb1c163aa48d9d";
 String user = "user00";

 toServer.println(requestLOGIN(user, "password", true));
 expectSuccess(fromServer);

 File f = new File("images", "repositorySplash.png");
 toServer.println(requestADD("sampleImage", f));
 expectSuccess(fromServer);

 ClientState state = RepositoryServer.getState(user);
 assertEquals (splashFP, state.getImageKey());

 f = new File("images", "help_32.png");
 toServer.println(requestADD("help", f));
 expectSuccess(fromServer);

 assertEquals (helpFP, state.getImageKey());

 // now go to first and delete
 ServerNavigateController nc = new ServerNavigateController(RepositoryServer.reposit
ory);
 nc.process(user, TestNavigationSequence.requestNAVIGATE(Parser.first));
 assertEquals (splashFP, state.getImageKey());

 ServerDeleteImageController dc = new ServerDeleteImageController(RepositoryServer.r
epository);
 dc.process(user, requestDELETE());

 assertEquals (helpFP, state.getImageKey());

 // Now delete last one
 dc.process(user, requestDELETE());
 assertTrue (state.getImageKey() == null);
 }
}

This test case takes advantage o f many o f the contro llers and scaffo lding test case methods you have developed in
this course. See how all o f your earlier work makes it possible to write effective test cases such as this one? Excellent!

Re-execute all JUnit test cases for your pro ject to validate that they all pass; then, re-execute using EclEmma to
determine coverage o f the code.

The results above are truly outstanding. If you get a chance to review the code statistics (give or take a few lines) you
will see that this pro ject contains:

More than 30 classes to taling 2000+ lines o f Java code.
More than 10 test cases to taling 800+ lines o f Java code.
A schema file to taling 100+ lines o f XSD.

Your test cases written throughout the pro ject assure nearly 75% of your code. The code that doesn't execute is mostly
code that cannot be tested manually (fo r example, ServerLauncher and Client Launcher) o r cannot be executed in
testing (SplashScreenLo gic). Some contro llers are entirely GUI-based (Quit Co nt ro ller).

The code with coverage that's below 80% is due largely to extensive error handling (fo r example, Repo sit o ry) to
handle the interaction with the file system, none o f which can be tested readily using JUnit. I hope you feel a real sense
of satisfaction at this po int, you've come a long way! I also hope you can see the limitless possibilities provided by the
design o f this client/server system. You can add new messages and contro llers to handle them, based on the template
shown repeatedly in these lessons. And so, we end where we began, with an emphasis on a so lid design with
implementation that leads to readily tested code—even GUIs—and through that process, you can now write distributed
applications. Well done!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

