Java 5: Distributed Java Applications

Lesson 1:Introduction to Distributed Computing
Introduction to Distributed Computing
Testing

Code Coverage
Socket Abstraction

Sample Client/Server Application

Testing
Adding in Computation Logic

Eclipse Concepts

Doing Your Homework

Project 1 Quiz 1
Lesson 2: Server Essentials
Image Annotation Repository Application

Multi- Threaded Server Application
Client/Server Protocol

Testing and Code Coverage

Performance Tests

Project 1 Quiz 1
Lesson 3: Client Essentials
Preparing an Inter-Process Communication Layer

Preparing a Standalone Client GUI
Writing a Java Splash Screen

Project 1 Quiz 1
Lesson 4: Writing Your Swing Application
Writing a Swing Application Skeleton

Persistent User Preferences

Testing

Project1 Quiz 1
Lesson 5: Server-side Application Model
Server-Side Application Model
Repository Selection
Option 1:Access a Hidden Class
Option 2: Install a Free Open-Source Class
TestAddBehavior Test Case
Completing Repository Functionality

Project 1 Quiz 1
Lesson 6:Java Object Serialization
Java Obiject Serialization

Project1 Quiz 1
Lesson7: XML for Protocol
XML as Protocol Specification
Status Messages

Project 1 Quiz 1
Lesson 8: XML Implementation

Homework/Projects/introToDistributedComputing_proj.project.html
Homework/Quizzes/introToDistributedComputing_quiz.quiz.html
Homework/Projects/serverEssentials_proj.project.html
Homework/Quizzes/serverEssentials_quiz.quiz.html
Homework/Projects/clientEssentials_proj.project.html
Homework/Quizzes/clientEssentials_quiz.quiz.html
Homework/Projects/swingSkeleton_proj.project.html
Homework/Quizzes/swingSkeleton_quiz.quiz.html
Homework/Projects/applicationModel_proj.project.html
Homework/Quizzes/applicationModel_quiz.quiz.html
Homework/Projects/serialization_proj.project.html
Homework/Quizzes/serialization_quiz.quiz.html
Homework/Projects/xmlProtocol_proj.project.html
Homework/Quizzes/xmlProtocol_quiz.quiz.html

XML Protocol Implementation

Extending Protocol Implementation with Status Messages

Project 1 Quiz 1
Lesson 9: User Authentication

User Authentication

Project 1 Quiz 1
Lesson 10:Server Sessions

Server Sessions
Testing

Project 1 Quiz 1

Lesson 11: Client Login
Supporting Client Login with Improved Client-Side Inter-Process Communication (IPC)

Client Login Window

Testing

Project 1 Quiz 1
Lesson 12: Client Server Menu

Client Server Menu

Project1 Quiz 1
Lesson 13:Image Browsing
Image Browsing
Testing
Browse Repository

Project 1 Quiz 1
Lesson 14: Navigating Repository Images

Navigating Images in the Repository

Project 1 Quiz 1
Lesson 15: Deleting Images in the Repository

Deleting Images in the Repository
Upgrade Protocol to Display Metadata

Preventing Multiple Login Requests

Project 1 Quiz 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

Homework/Projects/xmlImplementation_proj.project.html
Homework/Quizzes/xmlImplementation_quiz.quiz.html
Homework/Projects/userAuthentication_proj.project.html
Homework/Quizzes/userAuthentication_quiz.quiz.html
Homework/Projects/serverSessions_proj.project.html
Homework/Quizzes/serverSessions_quiz.quiz.html
Homework/Projects/clientLogin_proj.project.html
Homework/Quizzes/clientLogin_quiz.quiz.html
Homework/Projects/clientServerMenu_proj.project.html
Homework/Quizzes/clientServerMenu_quiz.quiz.html
Homework/Projects/imageBrowsing_proj.project.html
Homework/Quizzes/imageBrowsing_quiz.quiz.html
Homework/Projects/imageNavigating_proj.project.html
Homework/Quizzes/imageNavigating_quiz.quiz.html
Homework/Projects/imageDeleting_proj.project.html
Homework/Quizzes/imageDeleting_quiz.quiz.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Distributed Computing
Welcome to the O'Reilly School of Technology Java 5: Distributed Java Applications Course!

Course Objectives

When you complete this course, you will be able to:

e extend your stand-alone Graphical User Interfaces to communicate with a remote server.

e develop a multi-threaded server that simultaneously supports a number of connected clients.

e design a protocol using an XML XSD specification.

e develop client- and server-side controllers that follow the protocol.

e develop effective JUnit test cases to validate the execution of these controllers.

e develop a testing framework that maximizes code coverage of JUnittest cases.
In this Java course, you will develop a client/server distributed Java application from the ground up. Here you will exercise all of
your Java skills to implement a graphical clientthat communicates with a remote back-end server using XML messages. You

will learn the tradeoffs thatare common in client/server systems and gain valuable insights into how to design your own
distributed, multi-threaded applications.

From the very first lab, you will be developing a client/server application, adding new features and functionality with each
successive lab. You will learn by following the design and implementation of the application in the lab. Each quiz will validate
that you learned the key information and the projects, performed at your pace, will describe useful extensions to the main
development of the overall project.

Lesson Objectives

When you complete this lesson, you will be able to:

e create a ComputationServer application.

e create the ComputationClient.

e make the clientsend command requests and process the response.

e use JUnittest cases together with the ECIEmma code coverage plugin to identify the code that runs during testing.

Welcome to the O'Reilly School of Technology's Advanced Java course. Although it's unlikely that this fifth course in the Java
series is your first OST course, we like to include a description of how OST works in all of our courses, justin case. Feel free to
skip these first sections if you know you've gota solid understanding of our tools and methods, and instead start at the
"Introduction to Distributed Computing" section.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means thatyou
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to /earn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance, but don't depend on it. Try to solve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you atit
until you've mastered the skill. We want you to get that satisfied, "I'm so cool! | did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try outlots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove witt—took—Ttike—this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look 1lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:

|
©
=
o
(2]
©
=
o
<.
o
]
§:
o
=
3
V)
=
o
=)
—
=
V)
~—
3
«Q
=
=
>
°
©
3
V)
=~
D
—
>
@
g
o
)
[
V)
)
]
=
g
=
<
o
c
g
c
(%]
o
(7))
c
o
=
QO
(7]
[72]
>
(@]
=i
o
c
—_-
=
(0]
<
(2]

Introduction to Distributed Computing
In this course, you'llimplement a complex client/server application from start to finish.

You'll learn how an application is developed. When you look at software code, it's almostimpossible to determine the
order in which the code was developed. There are many different approaches you might take to develop a particular
application. In this coures, we're going develop an application under these constraints:

e As you add each new capability to the application, you will always have working code to demonstrate. By
verifying that the code works at every step, you can be reasonably sure that the final application will work.

e As you develop new functionality for the application, you will validate the proper execution using JUnit test
cases. Unittest cases are essential for working on any large system; they become the baseline against
which you measure your progress.

Testing

A good programmer delivers high-quality code that has been tested using a setof unittests. Depending on
the programming language, there are a number of unit testing frameworks available. For this course, we'll use
JUnit, the industry standard for Java. The original JUnit (version 3.0) will suffice for this project, but we
encourage you to review the capabilities of version 4.0 on your own as well.

One of the best practices to follow is to separate the code being built from the testing code. Eclipse provides
an extremely useful capability to support this practice. Each Java projectin Eclipse has a source folder
labeled /src. You can add any number of source folders to a Java project and the classes contained within
these folders are overlaid with each other. You will create a source folder /test to store all JUnit tests; the
package hierarchy of this /test source folder is identical to the /src folder. This allows you to write test cases
that validate protected and package private methods of Java classes without running the risk of exposing
either data or methods to other classes unnecessarily. In fact, none of the attributes or methods developed in
this course are labeled private forjust this reason.

Code Coverage

While testing is essential to confirming the quality of your code, you must use other means to validate the
implementation, and you must always be concerned about the quality of your test cases. Specifically, how do
you know that your test cases truly exercise the code you are writing? There are many code coverage toolkits
available thatlet you determine whether an individual line of Java code has been executed. For this course,
you'll use the freely available EclIEmma Eclipse plugin. ECIEmma identifies which Java statements execute.
Based on this information, you can either write additional test cases or validate (with a code review) that the
non-executed code is still correct. In many cases, there are some exceptional scenarios that are nearly
impossible to automate using a test case; however, upon inspecting the code manually, you can determine
that the code would operate properly if these exceptional scenarios happen to occur.

Socket Abstraction

The client/server architecture depends on a reliable connection-oriented communication such as internet
sockets. Think of a socket as the endpoint of communications between processes across a network. Take a
look at the figure below; because the connection is bidirectional, there is both an input channel and an output
channel:

B nputChannel B
< Output Channel —

. /

http://www.junit.org/
http://www.eclemma.org/

Let's assume this socketis on the clientto represent the communication to the server. You write information
onto the Input Channel to be transmitted to the server, then the client reads information from the Output
Channel, that was written to the socket by the server. The socket abstraction can break down though. For
example, the client can be delayed indefinitely when writing to the input channel if the output channel is
overloaded. One way this can happen is if your client only sends information to the socket without retrieving
any information from the Output Channel. You can predict when that will happen by using getSendBufferSize()
on your socketto determine the size ofits buffer. In practice, with well-written clients and servers, you won't
encounter this problem.

Note To view the Java AP, click the APlicon (ﬂ) in the toolbar at the top of the screen. From there,
you can find detailed information about any classes or methods we talk about in this course.

Sample Client/Server Application

Let's walk through a stripped-down client/server system to review its fundamental elements. We'll start with a system
where the server echoes a string back to the client. You'll upgrade the client (and server) to enable remote users to
submit small computation requests for processing, such as addition (+), multiplication (*), subtraction (-), or division (/)
of two integer values.

We'll incorporate these key features of the client/server architecture in our ComputationServer application:

e Once the server runs, it awaits incoming requests from a client.

e The client performs rudimentary "error checking" of requests sentto the server. For example,
ComputationClient sends only well-formed requests to process integers.

e The server mustbe robustin the case ofill-formed requests (even though the client should perform error
checking) and degrade gracefully.

e The protocol between the clientand server must be specified clearly and understood by both parties.

Create a Java projectin Eclipse, name it DistributedApp, and assign itto the Java5_Lessons working set. Eclipse
creates a/src folder for you.

& Create a ComputationServer class in the default package of the Isrc folder as shown:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html#getSendBufferSize()

CODE TO TYPE: /src/ComputationServer.java

import java.io.*;
import java.net.*;

public class ComputationServer {

public static void main(String[] args) throws IOException {
ServerSocket serverSocket = new ServerSocket (7434);
System.out.println ("Server awaiting client connections");

Socket client = serverSocket.accept();

BufferedReader fromClient = new BufferedReader (new InputStreamReader (client.getInpu
tStream()));

PrintWriter toClient = new PrintWriter (client.getOutputStream(), true);

while (true) {

try {
String str = fromClient.readLine();
if (str == null) { break; }

toClient.println(str);

} catch (IOException ioe) {
// should any interruption occur, stop server
break;

client.close();
serverSocket.close () ;
System.out.println ("Server done.");

o To run ComputationServer, right-click the ComputationServer.java file in the Isrc source folder and select Run

As | Java Application (or click the o icon).

The message, "Server awaiting client connections" appears in the Console tab atthe bottom of your Eclipse window.

Take a closerlook at the first part of the main method:

OBSERVE:

public static void main(String[] args) throws IOException {
ServerSocket serverSocket = new ServerSocket (7434);
System.out.println ("Server awaiting client connections");

Socket client = serverSocket.accept():;

BufferedReader fromClient = new BufferedReader (new InputStreamReader (client.getInpu
tStream())),

PrintWriter toClient = new PrintWriter (client.getOutputStream(), true);

ComputationServer receives a client connection request using the ServerSocket.accept method thatlistens for a
connection to be made to the socket and accepts it. The ComputationServer implementation forms the minimal
possible implementation of a server. This server checks in atjust 30 lines. Once a connection is established, the
server creates an object, toClient, to communicate with the connecting client.

In the call to the Print Writer constructor, the second parameter (true) ensures that strings written using printin are
flushed automatically. If you didn't do this, you'd need to flush the bytes in the PrintWriter manually to make sure the

socket received the data properly.

Note

orcode whose only purpose is to demonstrate an idea or principle.

Let's take a closer look atthe main while loop:

Throughout this course, any classes created in the default package are assumed to be throw-away code

http://docs.oracle.com/javase/6/docs/api/java/net/ServerSocket.html#accept%28%29

OBSERVE:

while (true) {

try {
String str = fromClient.readLine () ;
if (str == null) { break; }

toClient.println(str) ;

} catch (IOException ioe) {
// should any interruption occur, stop server
break;

fromClient is a BufferedReader associated with the input stream of the client socket; the server reads String lines
from fromClient that representthe commands from the client. This simple server does nothing more than echo input
strings back to the client using the to Client PrintWriter associated with the output stream of the client socket. Printing
strings to the PrintWriter sends the text back to the remote client.

In the examples in this lab, you will run all applications on the virtual server, so the host name will always be
"localhost." The first question you might have is abouthow to make sense ofthe Socket client =
serverSocket.accept(); code fragment. Does itreturn the server's socket? If not, what socket is returned? The key
idea to remember is that a socketis merely a convenient networking abstraction. In other words, the socket
constructed and returned by the accept method invocation is used by the server to manage the communication (both
input and output) with the specific remote client communicating with the server. The server will create such a socket
object for each connected client.

In this basic first example, ComputationServer can service justa single clientata time. Even worse, once that client
has completed its use of the server, the server exits. The code was written this way intentionally so we could firstfocus
on the essential socket structures necessary for client/server communication. Now you're ready to complete the
sample application.

& Create a ComputationClient class in the default package of the /src folder as shown:

/src/ComputationClientjava

import java.io.*;
import java.net.*;
import java.util.*;

public class ComputationClient {

public static void main(String[] args) throws Exception ({
Socket server = new Socket ("localhost", 7434);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server.getInp
utStream()));

System.out.println ("Type string to be echoed back by server");
Scanner sc = new Scanner (System.in);
while (sc.hasNextLine()) {

String str = sc.nextLine();

toServer.println(str);

String value = fromServer.readLine () ;
System.out.println ("Server sends: " + value);

}

server.close () ;

Let's look closer:

http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/6/docs/api/java/io/PrintWriter.html

OBSERVE:

Socket server = new Socket ("localhost", 7434);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);

BufferedReader fromServer = new BufferedReader (new InputStreamReader (server.getInp
utStream()));

System.out.println ("Type string to be echoed back by server");
Scanner sc = new Scanner (System.in);
while (sc.hasNextLine()) {
String str = sc.nextLine();
toServer.println (str) ;
String value = fromServer.readLine () ;
System.out.println ("Server sends: " + value);

The client code communicates with the server by opening up a socketto "localhost" on the pre-arranged port
number 7434. This server objectis the client-side abstraction by which the client communicates with the server. We
create a PrintWriter object (toServer) by connecting to the output stream of the server socket. The clientsends

requests to the server by writing to this PrintWriter. We use a BufferedReader object (fromServer) to receive output
from the server.

It seems odd to say that we're receiving output when you see that an InputStreamReader object is being created, but
remember that on the clientwe're reading input from the server, which is creating the output.

ComputationClient contains an inner while loop that reads input from the keyboard and sends the text strings to the
server. Assuming that you still have ComputationServer running, run ComputationClient and type testing as shown:

INTERACTIVE SESSION:

Type string to be echoed back by server
testing
Server sends: testing

The PrintWriter masks all exceptions that might arise. To know for sure whether the printin command sent the
communication properly, you need to invoke manually checkError() as shown:

CODE TO TYPE: /src/ComputationClient.java

import java.io.*;
import java.net.*;
import java.util.*;

public class ComputationClient ({

public static void main(String[] args) throws Exception {
Socket server = new Socket ("localhost", 7434);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server.getInp
utStream()));

System.out.println ("Type string to be echoed back by server");
Scanner sc = new Scanner (System.in);
while (sc.hasNextLine()) {
String str = sc.nextLine();
toServer.println(str);
if (toServer.checkError()) {
System.err.println ("Server communication no longer available.");

break;
}
String value = fromServer.readLine () ;
System.out.println ("Server sends: " + value);

server.close();

The AutoFlush feature of the PrintWriter ensures that strings written are immediately flushed onto the
communication channel whenever the printin() method is invoked. If you use the print method and
include a "\n" character in the string being written (toServer.print(str + "\n")), itwon'ttrigger the flush
automatically (toServer.flush()).

Z
o
-~
D

ComputationServer reads a string from the connecting client using the BufferedReader object. If null is returned, then
the client has disconnected from the server. When ComputationServer is done with the client, we close the client
socket; if the client tries to read input from the (now disconnected) server, null is returned.

Terminate the client, either by typing Ctrl-z in the console window or clicking the ™ Terminate icon. To observe that

process in Eclipse, click the down-pointing arrow on the Display Selected Console icon (E) in the Console panel.
You can switch the selected console to review the output of both processes.

-4 Package Explorer El console 2 ;J Terminal 1] =0 H ComputationServer, java r ComputationClient java 3
ComputationClient [Java Application] C:\Program Files\Javaljreibintjavaw. exe (Oct 29, 2012 1:26:28 PM)
- |G @/ oo E(}
Type string to be echoed back by server 1 Android
testing
erver sends: testing

1% import java.io.¥;
4

712 Computation3erver [Java Application] C:iProgram Files|Javatjresibinijavaw.exe (Oct 29, 2012 1:26:20 PM)
Computa Client [Java Application] gram Filesh b M)

Validate that ComputationServer prints "Server done." as its final output, which demonstrates that it terminates
normally. Both ComputationServer and ComputationClient should stop executing. This simplified client contains less
than 30 lines of Java code.

Testing

When you develop applications, always maintain a working implementation. To help with this process you'll
develop JUnit test cases with each lab. For this firstlab, there is a TestLongRunning test case that
demonstrates one way to validate the server's proper behavior automatically.

Create a source folder in which to place your JUnittest case classes. To do that, right-click on your top-level
(DistributedApp) projectand select New | Source Folder.

[% Package Explarer 53 =2 Consule} B Terminal 11 show wiorkingsets = = 5. ¥ = O

#7 Other Projects
J.f,"l JawaS_Handback
J\SJ JawaS_Community

J\‘_’-,“J JawaS_Haomewar
- @ Jawa Project
:' o Inkn |_=<3 Praject. .
Cpen in Mew Window ,
P ' H Package
Qpen Type Hierarchy F4
Show In Al+shiftaw » & Class
&% Interface
= Copy Chrl4C & Enum
5= Copy Qualified Marme T ettt
¥ Delete Delete =
Build Path b | File
Source AlL+Shift+5 P = Untitled Text File
Refactor Alt+Shift+T »
= Example
=g Impoart. .. .
2% Expart.... 7] Other... ChrH-
Q.ék' Refresh F5

Close Project
Close Unrelated Projects
Assign Working Sets. ..

Run as

Debug As

Profile As

Caverage As

Tearn

Compare With

Restore From Local Hiskory, ..
PyDesy »
Configure 3

*r ¥ ¥ v v w

= _
J Distributed, Properties Alk+Enker

When prompted, enter test as the folder name.

Create the TestLongRunning class by right-clicking on the /test source folder icon and selecting New |
Other. In the dialog that appears, open Java | Junit | JUnit Test Case and click Next. Then, select the
New JUnit 3 test radio button, enter TestLongRunning as the test case name, and click Finish.

& New JUnit Test Case _ O]
JUnit Test Case

I, The use of the defaulk package is discouraged.

I

Source Folder: | Distributedappitest Browse, .,

Package: | (defaulty Browse... |
{ Mame: ITestLDngRunning)

Superclass: |junit.Framewurk.TestCase Browse, ., |

W'hich method stubs would vou like to creater
[T | setlpEefareclassiy [T tearDownakberclasst)
[setUpi) [T tearDownid
| consktruckar
Do wou want ko add comments? {(Configure templates and default value bere)

I aenerake comments

Class under best: | Browse, .,

J

=
I\‘?_,,l < Back | Mexk = | Finish I Cancel

Eclipse will promptyou to add the JUnit 3 library to the build path. Click OK.

& New JUnit Test Case [_ O]

Igl JUrik 3 is mat on the build path. Do wou want to add ik?
= Mok now
™ Open the build path property page

i* perform the Follawing action:

= Add JUnit 3 library to the build path

| (0] 4 I Zancel

Type TestLongRunning as shown:

CODE TO TYPE: /test/TestLongRunning.java

import java.io.*;
import java.net.*;
import junit.framework.TestCase;

/** Validate that server processes a succession of client requests. */
public class TestLongRunning extends TestCase {

public void testl000() throws Exception {
// open up a server in its own thread of execution.
new Thread () {

public void run() {
try {
ComputationServer.main(new String[]{});

} catch (IOException ioe) {
fail ("Unable to start server.");

}
}.start ()

// connect away and retrieve input
Socket server = new Socket ("localhost", 7434);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()));

for (int 1 = 0; 1 < 1000; i++) {
System.out.println(i);
toServer.println (i) ;

int value = Integer.valueOf (fromServer.readLine());
assertEquals (i, value);

}

server.close();

If this code doesn't compile, make sure you've added JUnit 3 libraries to your build path. The simplestway to
configure your projectis to hover your mouse over the word Test Case, which may have a wavy red line
unerneath it. Eclipse has many self-help features to increase your productivity. The nextimage we'll see
shows the Eclipse pop-up window that appears just below the code in question. Move your mouse to select
the firstoption, Add JUnit 3 library to the build path. All compiler errors will disappear:

f%% Validate that serwver procedses & Succes3ion of client regquests. &/

public class TestLongRunning extendsf TestCase |
public void testl1l000() throws Excep
ff open up a server in it3 own th

4 TestCase cannot be resolved to a tvpe

3 quick Fixes available;

new Thread(){ L— —,
public void run{) { (| =h add Jnit 3 library to the buld path)
try {

ComputationServer .malii [new @ Fix projeck setup,..
} catch [(IOException ioe)
fail ("Tnakle to start Server.™):

k
Y.Etartci);

Let's look more closely at this test case, which illustrates the full sequence of actions required to demonstrate
a typical client/server interaction:

OBSERVE:

// open up a server in its own thread of execution.
new Thread() {
public void run() {
try {
ComputationServer.main (new String[]{})
} catch (IOException ioe) {
fail ("Unable to start server.");
}

}
}.start () ;

The Java threading model allows you to spawn a new thread of control any time. While the syntax looks a bit
obscure, the above code shows how you create a new anonymous (which meaning that the name of the
class isn't necessary) subclass of Thread whose run() method executes the ComputationServer main
method. As you know, this main method requires an array of String objects, which is handled by creating an
empty String array. Next, the test case "simulates" a client connection:

OBSERVE:

// connect away and retrieve input
Socket server = new Socket ("localhost", 7434);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()))

The connecting server Socket opens a connection to the ComputationServer executing in its own thread. The
toServer PrintWriter is the object used to communicate to the server, while the fromServer BufferedReader
is the object for reading responses back from the server. Everything comes together in the final loop, which
issues requests to the server, one ata time, and closes the socket when it's done:

OBSERVE:

for (int i = 0; 1 < 1000; i++) {
System.out.println (i) ;
toServer.println (i) ;

int value = Integer.valueOf (fromServer.readLine()) ;
assertEquals (i, value);

}

server.close () ;

This code loops 1000 times, each time sending a number to the server using toServer and then reading
back from the server a string to verify (using assert Equals) that the value returned is the same as the value
sent. Once that's done, the server s closed.

Run this test case by right-clicking the TestLongRunning.java file and selecting Run As | JUnit Test. This
test case spawns the serverin a separate thread and then opens up a socket communication to this server
and initiates a sequence of 1000 operation requests. This test case contains both the instantiation of the
server and client—both useful and necessary for testing a client/server application. The console will show the
output (numbers from 0 to 999). Eclipse will switch to the JUnit tab:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html

' Ty
[% Package Explarer (E Console (@ Terminal 1 m = H

Finished after 0,469 seconds e EB gﬁ | % SIS

Runs: 111 B Errors: 0 B Failures: 0

— L1
= Failure Trace Bl 2

i T
% Package Explorer (E Consale &3 2 Terminal 11 L]Uniq =
<kerminated > TestLongRunning [JUnit] C:\Program FileshJavaljresibintjavaw,. exe (Ock 29, 2012

L AETY EE =Rl

971 |
97z
o733
974
975
O7E
977
975
979
S50
951
Q52
983
o954
955
956
o957
958
959
990
991
S8z
993
994
g9k
996
997
o993
999
Jerver done.

KN 3

Once you have your test case running correctly (note the green bar), switch back to the Package Explorer tab,
right-click this file again, and select Coverage As | JUnit Test to rerun all tests cases to generate a report
of the code thatran. The summary code appears atthe bottom of Eclipse in a Coverage tab, as shown below
(your numbers may vary slightly depending on how you typed in the code):

[Coverage 23 l!>_u-|3€$& '|E|<«===':>V=IE|
Element | Coverage | Covered Inskructions | Missed Instru,.. -+ | Tokal Instructions |
== Distributedapp; BN 504 % 110 7z 182

=2 src s 45 &0 114
! E-H3 (default package) B 3a5% 45 &3 114
m ComputationClient. java - 0.0 % 0 A5 65

H m ComputationSeryerjava] 91.8 % 45 4 49
- test B o56% 65 3 &8
B3 (deFault package) B o5 65 3 68
m TestLongRunning. jasva L 95,6 %% 65 3 6id

In this summary report, the ComputationClient has no associated test cases because ithas no lines that
executed. Since our goal is to achieve 80% coverage of each individual Java file within a lab, it seems clear
thatwe need more test cases. As you work through the labs in this course, you'll find that we often design and
implement code in specific ways to make sure thatit can be tested using JUnit test cases. For this simple
server, we leftouta lot of error-handling code, which means that the code coverage was quite high (91.8%)

with just a single test case.

To review individual files and find out which lines of code executed, open the Java files and review the color-
coding for each line. For example, you can see in our example that the IOException exception handler did not
execute in ComputationServer. Exceptional cases are hard to test, so we want to make an effort to implement
code that can be tested automatically.

|J] ComputationServer.java &3 |J] ComputationClient.java \I [J] TestLongRunming java 1 =0

5] SJerver3ocket serverdocket = new ServerSocket (7434): :J

7 Systew. cud.println("Server awaiting client connections'™):
g
=] Jocket client = serverZocket.accept():
10 BufferedReader fromClient = new BufferedBeader (new Input3treamBeader (client.getInputStreami])]
11 PrintWriter toClient = mew PrintWriter (client.getOutputStreami), true):
1z
13 while (true) {|
14 try {
15 String str = fromClient.readLine():
16 if (str == null) { break: }
17
1a toClient.printlni(str) ;
19 + catch (IOException ioe) {
20 ff If any interruption occurs, Stop Server
o1 hreak;
22 ¥
23 ¥
24
25 client.close ()
=4 serverdocket.close (] ;
27 System.out.println("Server done.™)
25 ¥
29 |} |
30 il
K| [

EclEmma color-codes your source files like this:

e Red shaded regions did not execute. For example, this test did not exercise any code from the
ComputationClient class, which registers a coverage of 0.0 %.

e Green shaded regions executed. Review the ComputationServer class to see the code that
executed. As you can see, none of the exception or error handling code executed. This is often the
hardest code to test.

e Yellow shaded regions indicate code that could execute under various conditions.

Ayellow line suggests that there was a logical conditional contained in that line that was not evaluated under
all possible values. This usually happens when you execute only one side of a logical conditional statement
(such as if or case).

To turn off the shaded color after running ECIEmma, place your cursor in the Java code file and
' Note make achange. |often justplace my cursor atthe end of any row, or within a documentation '
: block, and add a space. :

One weakness of the EcIEmma plugin is that no coverage data is recorded if youterminate an application
manually that you have launched using the Coverage As feature. Additionally, it may often be difficult to
determine why some lines of code remain marked in red even though you are pretty sure that the code did
execute. We'll use EclEmma to validate that 80% of the written code is executed by the JUnittest cases
developed throughout this course. Setting the threshold at 80 % keeps you honestas a programmer and
keeps you from having to write lots of test code to validate strange exceptional situations (but note that you
must still review all non-executed code to make sure it functions properly). Ultimately, we are concerned with
the code coverage reported for classes in the src source folder.

Adding in Computation Logic

You are now ready to complete this lab by making ComputationServer a functional calculator. First, specify
the protocol between the client and server. Let's have the client send three string lines of input. The firstline
contains the operator to be performed, the second line contains an integer operand1, and the third line
contains an integer operand2. Thus the ComputationServer only needs to read three lines of input (assuming
they are all present) and then compute the answer. Then, ComputationServer writes two string lines of output
to the client. The first line contains a zero (0) or a negative one (-1) declaring the success or failure of the
operation. The second line contains either a result (if successful) or an error string (if failure). Here are two
scenarios with examples:

Client communication to server Serverresponse

0
15

-1
Unable to process request: (/10)

=] OO +

Make these changes to ComputationServer:

CODE TO TYPE: /src/ComputationServer.java

import java.io.*;
import java.net.*;

public class ComputationServer {

public static void main(String[] args) throws IOException {
ServerSocket serverSocket = new ServerSocket (7434);
System.out.println ("Server awaiting client connections");

Socket client = serverSocket.accept();

BufferedReader fromClient = new BufferedReader (new InputStreamReader (client.
getInputStream()));

PrintWriter toClient = new PrintWriter (client.getOutputStream(), true);

while (true) {

O o & = ol . a1 ‘
DT LTI T TroffcrIenTc T reatTTIhe 7
= 11\ L o 1 hl
T (SCL —— frarzxty/ T OrcarxKy, f
PR I . el foa o\
< J_J.CJ.J.L,.PJ_J_IILJ_II\ L)
h| ol LT O + L
T TTCIT (TOXCePTIoOT T
= 1. 2 4= o =
SOttt RTerrapPTTIon Cor7—SToP—Sefr ¥

—
String op=null, sl=null, s2=null;
try {

op = fromClient.readLine () ;
sl = fromClient.readLine () ;
s2 = fromClient.readLine () ;

} catch (Exception e) {
System.err.println("Closing Client connection.");
break;

// communication terminated prematurely

if (op == null || sl == null || s2 == null) {
System.err.println("Closing Client connection.");
break;

Integer intl=null, int2=null;

try {
intl = Integer.valueOf (sl);
int2 = Integer.valueOf (s2);

// support four operations (multiply, divide, add, subtract).

if (op.equals("*")) { output(toClient, intl * int2); }

else if (op.equals("/")) { output (toClient, intl / int2); }
else if (op.equals ("+")) { output (toClient, intl + int2); }
else if (op.equals ("-")) { output (toClient, intl - int2); }

else { outputError (toClient, "Bad Operator:" + op); }
} catch (NumberFormatException nfe) {
String errMsg = "Unable to interpret integer:" + nfe.getMessage();
System.err.println (errMsqg) ;
outputError (toClient, errMsgqg);
break;
} catch (Exception e) {
// internal server error. Try to continue and keep processing
String errMsg = "Unable to process request: (" + op + " " + intl + " " +
int2 + ")";
System.err.println (errMsqg) ;
outputError (toClient, errMsgqg);

client.close();
serverSocket.close () ;
System.out.println ("Server done.");

}

static void output (PrintWriter toClient, int wvalue) {
toClient.println (0) ;
toClient.println(value);

}

static void outputError (PrintWriter toClient, String error) {
toClient.println(-1);
toClient.println (error);

}

The while loop has been expanded to process a few operations.

The helper methods, output and outputError, properly encapsulate the protocol needed to respond to the
client's requests. The primary server loop is changed to read three strings from the client, and exit
immediately if all three are not present; three variables record the operation and the two values:

OBSERVE:

String op=null, sl=null, s2=null;

try {
op = fromClient.readLine () ;
sl fromClient.readLine () ;
s2 fromClient.readLine () ;
} catch (Exception e) {
System.err.println ("Closing Client connection.");
break;

}

// communication terminated prematurely

if (op == null || sl == null || s2 == null) {
System.err.println ("Closing Client connection.");
break;

To process the request, a dense if ... then statement considers a number of alternatives. In each pre-
arranged case (thatis,"*","/","+", and "-") the server sends the computed result back to the client with
output. If an unexpected operatoris requested, ituses out putError to describe the failed attempt:

OBSERVE:

Integer intl=null, int2=null;
try {
intl = Integer.valueOf (sl);
int2 Integer.valueOf (s2) ;

// support four operations (multiply, divide, add, subtract).

if (op.equals("*")) { output(toClient, intl * int2); }

else if (op.equals("/")) { output (toClient, intl / int2); }

else if (op.equals ("+")) { output (toClient, intl + int2); }
else if (op.equals ("-")) { output (toClient, intl - int2); }

else { outputError (toClient, "Bad Operator:" + op); }
} catch (NumberFormatException nfe) {
String errMsg = "Unable to interpret integer:" + nfe.getMessage();
System.err.println (errMsqg) ;
outputError (toClient, errMsg);
break;
} catch (Exception e) {
// internal server error. Try to continue and keep processing
String errMsg = "Unable to process request: (" + op + " " + intl + " " + 1
nt2 + ")";
System.err.println (errMsqg) ;
outputError (toClient, errMsg);

With a similar set of changes to ComputationClient, you can now have the client send command requests
and process the response. The response consists oftwo lines containing strings. The firstvalueis a 0
(success) or -1 (failure) and the ComputationClient outputs the result or the error message.

CODE TO TYPE: /src/ComputationClient.java

import java.io.*;
import java.net.*;
import java.util.*;

public class ComputationClient {

public static void main(String[] args) throws Exception {
Socket server = new Socket ("localhost", 7434);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()));
SystermoutprintintiPype——string—to be—echoedPack by —serveriy;
Scanner sc = new Scanner (System.in);
while (trueserhasNextiretr) |

faF SIS i — G
oCr g Sttt — TR COrre {7

LS. | 4
COooCTTE P rIfacTIIT (ST

=y PRl I leTn L
S S S W A O © A i BV~ N W I A A W W A s s

e
7 1

N | VANl : A k] : 7
Ce-err-prracTirt oct oMM Cat IO —IT Tongetr—avarTa

try {
System.out.println ("Command> ") ;
String op = sc.nextLine();
Integer intl = Integer.valueOf (sc.nextLine());
Integer int2 = Integer.valueOf (sc.nextLine());

toServer.println (op) ;
toServer.println (intl) ;
toServer.println (int2);

Integer response = Integer.valueOf (fromServer.readLine());
String value = fromServer.readLine();

o i1}

SystemrontprintintiServer—send

if (response == 0) {
System.out.println (value);

} else if (response == -1) {
System.err.println(value);

} else {

System.err.println ("Received unknown response from server:" + response

1 AY
aroeT

}

} catch (Exception e) {
System.err.println("error: " + e.getMessage());
break;

server.close () ;

Let's see how this revised code performs. Execute ComputationServer and then ComputationClient. Type
three lines of input from the earlier table ("+","6", and "9") and observe that 15 appears as output. Then type
three more lines of input ("/","1","0") and observe the error that appears. Also, try to submitinvalid numbers,
such as ("+","6.4","13.2"), to see the server's response. Oh wait! If you try this case, the client will detect the
error first and immediately exit, so the server never gets the invalid command in the first place. Understanding
this conceptis importantin client/server systems because the client should pre-process commands before
they are sent to the server (to make sure they are valid). Even so, the server must have defensive logicin
place to deal with invalid input as you saw in the above code.

You mustnow update TestLongRunning to reflect the updated logic. Modify the for loop to testall four of the
mathematical operators, as shown:

CODE TO TYPE: /test/TestLongRunning.java

import java.io.*;

import java.net.*;

import junit.framework.TestCase;

/** Validate that server processes a succession */
public class TestLongRunning extends TestCase {

of client requests.

public void testl1l000() throws Exception ({
// open up a server in its own thread of execution.
new Thread() {
public void run() {
try {
ComputationServer.main (new Stringl[]{});

} catch (IOException ioe) {
fail ("Unable to start server.");
}
}
}.start (),

// connect away and retrieve input
Socket server = new Socket ("localhost", 7434);
PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()));

String[] ops = { "+", "-",
for (int i = 0; i < 1000;
System.out.println(i);
toServer.println (ops[i%4]);

toServer.println (i) ;
toServer.println (1) ;

n/n’
i++) |

"k }.
’

int response =
int value =

Integer.valueOf (fromServer.readLine()) ;
Integer.valueOf (fromServer.readLine ()) ;

T b1 s h]
aSSeTrTgtaT I [emmvs oy

assertEquals (0, response);

switch (i%4) {
case 0: assertEquals (i+l, value); break;
case 1l: assertEquals (i-1, value); break;
case 2: assertEquals (i, value); break;
case 3: assertEquals (i, value); break;

server.close();

Terminate any console sessions that are running, and verify that your code works by running the revised
JUnittestcase. And that's it for this lab. Let's review:

e You developed a stripped-down client/server application.

e Youlearned how to use JUnittest cases together with the ECIEmma code coverage plugin to
identify the code that runs during testing. With this information, you can make informed decisions
about additional test cases to write.

Eclipse Concepts

This lab included screenshots showing how to use Eclipse to perform common tasks, such as creating new
source folders, packages, and classes. For the rest of this course, we'll assume that you can complete those
tasks without specific guidance. For the record, here are the Eclipse tasks you will use for the duration of this

course:

e Create a new source folder.

e Create a new package in a source folder.
e Create anew class.

e Create a new interface.

e Execute a Java class.

e Launch the EclEmma plugin.

e Launch all JUnittest cases.

e Launch individual JUnit test case.

Doing Your Homework

For each lab, there are quiz questions and project objectives for you to complete to demonstrate your understanding
of the lab material.

Most of the homework objectives in this course will require you to modify the example projects from the lab, but the
next lab will continue with the example project as we leftitin the previous lab, so you'll wantto copy the example
projects to a new "branch" project to submitto yourinstructor for each lab's homework assignment.

To copy the DistributedApp project to another project, in the Package Explorer, click the down-pointing white arrow and
selectTop Level Elements | Projects:

3 Package Explorer &3 = Console\l .;\;'J Terminal l\l = EJl (

—

Show wiorking Sets « =

bc assigr-exp
bc average
{37‘J bigpraject_arig
bc c-string
bc char-play
bc Compare-c ® 1571 Window Working Set
\j ComputeFigure
f;;_—{,:' constants
IEG Database

Top Level Elements

S —
Select Warking Set. ..

Deselect Waorking Set

Edit Active Woarking Set..,

4512 androidl _Lessons

J|_,J 3 Jawal _Lessons

T

l:j o :{——:‘&Filters...

-} Distributedfpp

:g Crawabies Package Presertation 3
::‘/J’ drivingproject v Show 'Referenced Libraries' Node

bc exp-expression
k’; FileHandling
bc float-play
{37‘J Guesskyhumber
bc hella_world
f_g Hellowarld

“, Link with Editor

Find your DistributedApp projectin the list, right-click it, and select Co py.
Select Edit | Paste from the Eclipse top menu, and give the copy a new name, such as IntroDistributedApp.
Right-click the new IntroDistributedApp project and assign itto the Java5_Homework working set.

Click the downward-pointing white arrow again and select Top Level Elements | Working Sets:

[# packags Explorer 3 = Consnle} <8 Terrninal 11 = ’ﬁ_.”

Show ‘Working Sets = = Q;{;

F-1=5 shortout

=5 smiller.129,4403, 1 Lesson10_Homewark,
= smiller,129,4442,1 Lessonl4_Homewaork,
=% smiler.129.4457.1,Lesson1é_Homework
[;:5 skring

= shring-canyersion Package Presentation 3

= Skyling v Show 'Referenced Libraries' Mode
-F

e test “5 Link with Editor

1:"; TestDrivenDeveloprment
:b% Threads
=5 triangle
=% UnitTesting
=5 var-exp
=% var-pass
&;5 var-types
H-== variable_homewark
----- 1421 Javas_Handback,
----- {5‘1 JavaS_Cornrnuniby
Elff,‘l JavaS_Homework

e T e ¥ o

And justlike that you're on your way! See you in the nextlesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

S N VOO W ¥ W

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Server Essentials

Lesson Objectives

In this lesson you will:

e use threads within a server to support multiple connecting clients.
e identify exceptional problems that occur in the communication between clients and servers.
e write code to exercise the performance of a client/server system.

Image Annotation Repository Application

Our goal for this course is to construct a software system that enables groups of users to upload image files to a
shared repository and browse through those images.

When you start a project, you'll want to identify your specific requirements in advance. Often though, project
requirements change midstream, so you need to learn to build systems with designs that are flexible enough to
support unexpected change.

One way to think about this aspect of the application is to compare your process to the process an architect uses
when building an arch. An architect couldn't build an arch without first assembling a scaffolding to support the arch as it
is being built. Of course, once the scaffolding is removed, your average person won't know exactly how the arch was
built and is left to wonder at how such an amazing structure was built! A similar situation exists for users of the
application that you're about to build. They'll use it, but they probably won't understand how was built. After you
conquer the labs in this course, you'll be a kind of architect and you'll know exactly how ths particular client/server
system was built.

This table illustrates the requirements of the application you'll be developing:

R# Description

R1 | Server mustallow up to 30 concurrentusers to connect and browse the images stored there.

R2 |Clientmustbe able to supportany of the standard built-in Java image formats (such as PNG or JPG).

R3 | Server can be configured to limitthe maximum size of any individual image file (default: 5MB).

R4 | Server can be configured to limit the total number offiles stored on the shared repository (default: 1,000).

R5 | Auserconnecting to a server must provide a user name and password.

R6 |Ausercan upload up to afixed number ofimages to the repository (default: 100).

A user can delete any image that he has added to the repository; a user cannot delete images added by

R7 another user.

R8 | Ausercan self-register an account with the server.

R9 | During the client-server communication, the user's password never appears in plaintext format.

A user accountis considered inactive if the user has not connected to the server within a fixed time period
(default: 14 days).

Each user account has a unique string identifier composed of alphanumeric characters (a-zA-Z0-9). The
server only stores the hashed value of the password and therefore does notknow it.

R10

R11

With this set of established requirements as your blueprint, you will implement a core set of Java classes to construct
a fully functioning server and client. Instead of just reading the code for a fully implemented and constructed system,
you are going to build the system, step by step. Throughout the process, you will maintain a working system that offers
a subset of the desired functionality. Of course, the proposed setoflabs is just one way to build this software
application, but it will give you insightinto the overall development of an application. As you work through the labs, you
may even question the design decisions that have been made along the way—this is good! Your skepticism is a sign
of your expanding knowledge and ability to come up with all kinds of different ways to solve problems. We wantto ask
questions, experiment and make mistakes. The essence of becoming a professional is learning from those mistakes.
We'll always explain why the code was designed in the way thatitwas and ultimately you can determine for yourself
which way works bestfor your needs.

Multi-Threaded Server Application

Given our current knowledge of single-threaded servers, we know we need to satisfy requirement R1 to ensure that the
server application can allow up to 30 concurrentusers to connect and browse the images stored there. Your first task
then, is to write a multi-threaded server and testits execution using JUnit. The Java threading model will help you to
accomplish that. Let's break this task into smaller units of work:

e Constructa server object from the priorlab's standalone server. (This will simplify how servers are coded
and tested.)

e Extractthe server code that processes requests so it can be executed within its own RepositoryThread
class.

e Write a separate ServerLauncher class to launch the server.
In your DistributedApp project's Isrc folder, create a new package named server.

& In the server package, create a RepositoryServer class as shown:

CODE TO TYPE: /src/server/RepositoryServer.java

package server;

import java.io.*;
import java.net.*;

public class RepositoryServer ({
ServerSocket serverSocket = null;
int state = 0;

public void bind() throws IOException ({
serverSocket = new ServerSocket (9172);

state = 1;

}

public void process () throws IOException {
while (state == 1) {

Socket client = serverSocket.accept();

new RepositoryThread(client) .start();

}

shutdown () ;
}

void shutdown () throws IOException {
if (serverSocket != null) {
serverSocket.close () ;
serverSocket = null;
state = 0;

This class represents a server object thatresponds to clientrequests for the Image Repository. The primary methods
of this object are bind() (which initializes a ServerSocket object to listen to clientrequests), process() (which spawns
threads to respond to client requests), and shutdown (which has the server shutdown so it no longer processes
requests). You'll see a compilation error because you have not yet created the RepositoryThread class.

RepositoryServer manages a ServerSocket object thatis associated with a specific port number on the machine on
which it executes. A network port numberis like a post office box number used to direct mail to a specific recipient.
Clients seeking to connectto a specific server mustknow both the hostname and the specific port number used by that
server.

http://docs.oracle.com/javase/6/docs/api/java/net/ServerSocket.html

OBSERVE:

public void process() throws IOException {
while (state == 1) ({
Socket client = serverSocket.accept():;

new RepositoryThread(client) .start();

}

void shutdown () throws IOException {
if (serverSocket != null) {
serverSocket.close() ;
serverSocket = null;
state> = 0;

RepositoryServer constructs a ServerSocket to listen for client requests; when process() is invoked, it responds to
clientrequests to connect, as long as the state variable is 1. Once shutdown() is invoked, state is setto 0 and the
process() method can terminate. Note that the only way for the server to exitis to have one of the instantiated
RepositoryThreads call shutdown(). Of course, you can still terminate RepositoryServer execution externally, in
Eclipse.

The process() method loops repeatedly while RepositoryServer is accepting connections (while state == 1). The call
to serverSocket.accept() blocks until client code requests a socket connection, at which pointit constructs and
returns a Socket object representing the communication channel to/from that client. Finally, when shutdown() is
invoked, the socketis closed and state isreset to 0.

Client/Server Protocol

Next, we'll define the protocol between the client and the server. To start, we'll setitup so the clientsends a
requestas a single string on a line by itself, and the server responds with two string lines: the firstline
contains O for success or -1 for failure. The second line contains the results of the request (for success) oran
error message (for failure). Admittedly, this protocol structure is not going to lastin the long run, but rather
than getting bogged down in developing complex protocols right away, we can start with this basic concept
and then figure out later how to improve it.

The first client request will be to return the number ofimages in the repository. Since you're starting with an
empty repository (right?), the response will be 0 until you add functionality to upload images. This lab focuses
on changes that are made to the server, so the client code we see will be intentionally artificial (we haven't
constructed the client code yet, so we have "pretend" code thatlooks like it comes from a client, which
doesn'tyet exist). In the nextlisting, the client makes three SIZE requests, sleeping for a second in between
each request. The Thread.sleep invocations are introduced to demonstrate that the serveris able to handle
multiple client requests simultaneously.

In the /test folder, create a client package, and in it, create a RepositoryClient class. This class is in the
Itest folder because it will serve as "scaffolding" to use during testing:

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#sleep(long)

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import java.net.*;

public class RepositoryClient {

public static void main(String[] args) throws Exception {
Socket server = new Socket ("localhost", 9172);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()));

for (int num = 0; num < 3; num++) {
toServer.println ("SIZE") ;
if (!toServer.checkError()) {
int response = Integer.valueOf (fromServer.readLine());
String value = fromServer.readLine();
if (response == 0) {
System.out.println (num + ": Number of Images: " + value);
} else if (response == -1) {
System.err.println(value);
} else {
System.err.println ("Received unknown response:" + response);

server.close();

Let's look closer at the client/server communication pattern.

OBSERVE:

public static void main(String[] args) throws Exception {
Socket server = new Socket ("localhost", 9172);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()));

toServer.println ("SIZE") ;
if (!toServer.checkError()) ({
int response = Integer.valueOf (fromServer.readLine()) ;
String value = fromServer.readLine () ;
if (response == 0) {
System.out.println (num + ": Number of Images: " + wvalue);
} else if (response == -1) {
System.err.println (value) ;
} else {
System.err.println ("Received unknown response:" + response) ;

}

After validating that a SIZE request was sent to the server properly using checkError, the code reads two
consecutive String lines from the server (response and value).

The main method is declared to throw an Exception, which simplifies the method by avoiding the need
to write exception handlers; to see what you were able to avoid, temporarily eliminate the throws Exception
declaration and you'll see that the code contains six compiler errors. It's common to take shortcuts like this in
such scaffolding code. Put the throws declaration back in place. Now you're ready to complete the server.

& In the Isrc folder server package, create the RepositoryThread class as shown:

CODE TO TYPE: /src/server/RepositoryThread.java

package server;

import java.io.*;
import Jjava.net.*;

public class RepositoryThread extends Thread {

Socket client;
BufferedReader fromClient;
PrintWriter toClient;

RepositoryThread (Socket s) throws IOException {
fromClient = new BufferedReader (new InputStreamReader (s.getInputStream()));
toClient = new PrintWriter (s.getOutputStream(), true);
client = s;

}

public void run() {
try {
while (true) {
String request = fromClient.readLine();
if (request == null) {
break;
}
if (request.equals ("SIZE")) {
output ("0") ;
} else {
// internal server error. Try to continue and keep processing
outputError ("Unable to process request: " + request);
continue;

}
} catch (IOException ioe) {
System.err.println ("Thread processing terminated:" + ioe.getMessage());

try {
fromClient.close () ;
toClient.close();
client.close();
} catch (IOException ioe) {
System.err.println ("Unable to close connection:" + ioe.getMessage());

}

void output (String result) {
toClient.println (0) ;
toClient.println (result);
}

void outputError (String error) {
toClient.println(-1);
toClient.println(error);

}

You will recognize mostofthis class from the prior lab—it's repackaged here as a standalone class that
extends the java.lang.Thread class. Subclasses of Thread provide a run() method that executes once the
thread starts. In the case of RepositoryThread, the run() method retrieves the requestfrom the clientas a
single string on a line by itself. Currently, the class only understands SIZE requests, in which case itreturns
"0" as the value for the result.

In our example, each RepositoryThread object maintains its own state: a Socket objectis used to
communicate with the client, a BufferedReader objectis used to retrieve String input from the client, and a
PrintWriter objectis used to send String responses to the client.

OBSERVE:

public void run() {
try {
while (true) {
String request = fromClient.readLine () ;
if (request == null) {
break;

}

The run() method contains logic that you've already seen. In Java, calling the start() method on a thread (as is
done by RepositoryServer) causes that thread to execute its run() method. As long as the thread is reading
requests from the client, it will continue to execute. However, once fromClient.readLine() returns null, the
loop will break and the thread will close the socket, thereby closing communication to the client. The
RepositoryThread class maintains the three class variables necessary to process it. Finally, it has two helper
output methods.

OBSERVE:

RepositoryThread (Socket s) throws IOException {
fromClient = new BufferedReader (new InputStreamReader (s.getInputStream()));
toClient = new PrintWriter (s.getOutputStream(), true);
client = s;

}

When the RepositoryThread objectis constructed, it sets up the BufferedReader and Print Writer objects.
Its run() method executes repeatedly, fetching request strings from the remote client and returning output,
using the output() and outputError() helper methods. The thread terminates when it receives null as input
from the client (which happens when the client severs the connection).

Several suboptimal decisions have been made in the implementation of RepositoryThread. One of them will
cause you to have to modify this class every time a new requestis added to the client/server protocol. This
would be like having to upgrade the circuit box in your house whenever you bought a new appliance. In later
labs, you'll eliminate this problem in your code. A second issue arises because the protocol is overly
simplistic, and as such, you will need to upgrade the way requests and responses are issued between the
clientand the server. You have to do this because image data sent from the server to the clientwill be in
binary format, and you will be unable to confine the bytes of an image to a single line of text sent to the client.
Still, there is no easy way to completely implement any application, so it's often bestto charta slow and
steady path towards your end goal.

& In the Isrc folder server package, create a ServerLauncher class as shown to instantiate and configure
the RepositoryServer object:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/6/docs/api/java/io/PrintWriter.html

CODE TO TYPE: /src/server/ServerLauncher.java

package server;
public class ServerLauncher ({

public static RepositoryServer create() throws Exception ({
RepositoryServer server = new RepositoryServer();
server.bind () ;
return server;

}

public static void main(String[] args) throws Exception {
RepositoryServer server = create();

System.out.println ("Server awaiting client connections");
server.process () ;
System.out.println ("Server shutting down.");

This class contains logic that should be separate from the code that makes up the server.

Can this code handle thirty concurrent requests? The Java documentation for the ServerSocket class
confirms thatits ServerSocket(int) constructor supports up to 50 incoming connections, well above that
requirement.

Which classes should have main methods? | recommend extracting all public static void main(String[]
args) methods so they existin "launching" classes such as ServerLauncher, otherwise they will be buried
too deep within your code base. Note thatthe main() method is allowed to throw an Exception, which
simplifies the code. Finally, the create() method does everything while setting up a server, except for
initiating processing; this method will be useful during testing.

Testing and Code Coverage

Now that the server has been properly restructured, you can write test cases to validate the code's
implementation. The primary test case to review is testMultipleClients() because it demonstrates three clients
connecting to the same server. These test cases will exist within the /test folder, so you need to create a
server package under that source folder.

E! In the /test folder server package, create the TestServer JUnittest case as shown:

http://docs.oracle.com/javase/6/docs/api/java/net/ServerSocket.html#ServerSocket(int)

CODE TO TYPE: /test/server/TestServer.java

package server;

import java.io.*;
import client.*;
import junit.framework.TestCase;

public class TestServer extends TestCase {
public void testMultipleClients () throws Exception ({
RepositoryServer server = launchServer();

launchClient () ;
launchClient () ;
launchClient () ;

// wait until everything done.
Thread.sleep (10000) ;

server.shutdown () ;
assertEquals (0, server.state);

}

public static void launchClient () {
new Thread() {
public void run() {
try {

RepositoryClient.main (new String[]{});
} catch (Exception e) {
System.err.println ("Unable to launch test client.");

}
}.start (),

}

public static RepositoryServer launchServer () throws Exception {
final RepositoryServer server = ServerlLauncher.create();
assertEquals (1, server.state);
new Thread() {
public void run() {
try {
server.process () ;
} catch (IOException ioe) {
System.err.println ("Server completed.");

}
}.start();

// wait until server is ready.
Thread.sleep (2000) ;

return server;

Make sure you understand the two helper methods in this test case, because you'll use them in all of your

future test cases.

The launchServer() method builds on the the create method in ServerLauncher to instantiate and bind a
RepositoryServer object. However, you can't just run the process method, because that "blocks" all activity
while it waits for clientrequests; you need to execute process within its own Thread, as shown below. This
logic instantiates a new Thread and executes its start method, which ultimately forces the run method to
execute, thus having this thread block while the remainder of the launchServer() method can continue. So the
method has to wait for two seconds (we chose this amountoftime arbitrarily), for the server to be properly

instantiated.

OBSERVE:

public static RepositoryServer launchServer () throws Exception {
final RepositoryServer server = ServerLauncher.create() ;
assertEquals (1, server.state);
new Thread() {
public void run() ({
try {
server.process () ;
} catch (IOException ioe) ({
System.err.println("Server completed.") ;
}
}
}.start() ;

// wait until server is ready.
Thread.sleep (2000) ;

assertEquals (1, server.state);

return server;

In similar fashion, launchClient spawns a new thread that executes RepositoryClient in its own thread of
control:

OBSERVE:

public static void launchClient () {
new Thread() {
public void run() {

try {
RepositoryClient.main(new String[]{})

} catch (Exception e) {
System.err.println("Unable to launch test client.");

}

}
}.start () ;

When you run the TestServer test case, each of the three clients sends its first request to the server for
processing, after which each sleeps for a second. You can see the requests are intermingled in the output, but
each client still has three requests. Thus, these requests are all being handled concurrently. You need to wait
10 seconds for the entire test case to complete:

OBSERVE: Output from TestServer

: Number of Images:
: Number of Images:
: Number of Images:
: Number of Images:
: Number of Images:
: Number of Images:
: Number of Images:
: Number of Images:
: Number of Images:
Server Completed.

NENMNNDORPRRE OO
O O O OO oo oo

m Generate EcClEmma code coverage for the TestServer test case. You will have to wait the full ten seconds
until the test case completes sleeping, but then you will see that you have increased code coverage of
RepositoryServer to over 80% (our target threshold). RepositoryThread is still stuck atless than 60% and
you can see that all of the non-executed code blocks occur in error handling situations. The only way to
demonstrate their execution is to refine the client code (as you did in this lab with the server). You will do that
in the next lab.

Because the testMultipleClients test case depends on the proper execution of Thread.sleep() statements,
such a testcase is notideal. We differentiate between several different types of test cases: those that validate

proper execution, those that are performance tests that evaluate the execution time of given functionality, and
those that create error or exceptional situations to determine the robustness of the implementation.

Performance Tests

Is it possible to write a JUnit test case to validate requirement R1? Well, it's not entirely appropriate to do so.
The R1requirementis bestvalidated using a performance stress testrather than a JUnittest case, because
the purpose of a JUnittest case is to validate the correct execution of the code.

#" Create a new source folder named performance, and in it, create a server package. In this folder, you'll
place code that validates performance (not correctness) tests. Another reason to separate these classes
from JUnittest cases is that Eclipse offers a convenient capability to run "All JUnit test cases" quickly for a
projector a source code folder; these performance classes should notbe executed every time.

& In the Iperformance folder server package, create the ConcurrentUserPerformance class. This is
nota JUnittest case, but you can take advantage of the helper static methods you have already written.

CODE TO TYPE: /performance/server/ConcurrentUserPerformance.java

package server;

import java.io.*;
import java.net.*;

public class ConcurrentUserPerformance {
public static void main(String[] args) throws Exception {
Socket[] connections = new Socket[40];
PrintWriter[] writers = new PrintWriter[40];
BufferedReader[] readers = new BufferedReader[40];

RepositoryServer server = TestServer.launchServer () ;

for (int 1 = 0; 1 < connections.length; i++) {
connections[i] = new Socket ("localhost", 9172);
writers[i] = new PrintWriter (connections[i].getOutputStream(), true);
readers[i] = new BufferedReader (new InputStreamReader (connections[i].getI

nputStream()));
}

for (int 1 = 0; i < connections.length; i++) {
for (int 7 = 0; Jj < connections.length; j++) {
writers([j].println ("SIZE");

String rc = readers[j].readLine();
String val = readers|[]j].readLine();
System.out.println("C" + j + " communicates (" + rc + ":" + val + ")");

for (int 1 = 0; i < connections.length; i++) {
connections[i].close();

}

server.shutdown () ;

ConcurrentUserPerformance does notuse threads (aside from the thread executing the RepositoryServer),
rather it makes a fixed number of client connections (in this case 40) and exercises these connections in
serial fashion:

OBSERVE:

Socket[] connections = new Socket[40];
PrintWriter[] writers = new PrintWriter([40];
BufferedReader[] readers = new BufferedReader[40];

RepositoryServer server = TestServer.launchServer () ;

for (int i = 0; i1 < connections.length; i++) {
connections[i] = new Socket ("localhost", 9172);
writers[i] = new PrintWriter (connections[i].getOutputStream(), true);
readers[i] = new BufferedReader (new InputStreamReader (connections[i].getIn

putStream())) ;
}

This code instantiates a RepositoryServer, then constructs and connects 40 sockets to that server. The
writers[] and readers[] arrays store the PrintWriter and BufferedReader objects used to communicate
requests to the server and read responses back from the server.

After the socketsset of sockets comes two nested for loops that generate 40 * 40 = 1600 SIZE requests to
be processed by the server. Each request consists of printing "SIZE" to writers]j], followed by reading two
string responses from readersJj]:

OBSERVE: How to generate and process 1,600 requests

for (int i = 0; i < connections.length; i++) {
for (int j = 0; j < connections.length; j++) {
writers[j].println ("SIZE");
String rc = readers[j].readLine();
String val = readers[j].readLine () ;
System.out.println("C" + j + " communicates (" + rc + ":" + val + ")");

Run ConcurrentUserPerformance to verify that each of the 40 connections was able to submit repeated SIZE
requests.

Most excellent work! That's the end of this lesson. Go ahead and work through the homework and project like
you always do, and I'll see you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Client Essentials

Lesson Objectives

In this lesson you will:

e design an inter-process communication (IPC) layer from the existing classes on top of which to design a Java Swing
clientto connectto remote server.

Preparing an Inter-Process Communication Layer

So far, we've developed a multi-threaded RepositoryServer and a command-line RepositoryClient thatissues
requests to that server. Now, we'll design a Graphical User Interface (GUI) client that provides capabilities users
expect. If you review the full set of capabilities that you'll need for the final application, you'll know where to start! (The
list of requirements can be found in a table at the beginning of the serverEssentials lesson.) In this lab you'll implement
only the primary window and splash screen. In the process, you'll restructure your code to encapsulate the client's
interactions to the serverin an Inter-Process Communication (IPC) layer.

The IPC layer is the infrastructure used to communicate between the client and server. We won't need to change that
code much once it's created, and it's helpful to know thatit's stable code. To guard against unexpected changes,
modify the existing classes to encapsulate and hide theirimplementation.

& Inthe Isrc folder, create a package named server.ipc, and move the RepositoryThread and
RepositoryServer classes into this package. To move the classes, hold down the Ctrl key, click on the two classes
(RepositoryThread and RepositoryServer), then drag both classes into the new server.ipc package. The action
on the screen will look like this:

{2 Pack :2 T2 Hierar| il Junit| = O
& e~
4 TE"'- AdvancedlavaCourse
4 [sre
4 B (default package)
- ComputationClient.java
: ComputationServer.java
a4 {7 client
: RepositoryClient.java
4 {7 server
- RepositoryServer.java
.| [J] RepositoryThread.java
- ServerLauncher.java
&5 seVENifE positoryServer.java
4 [test Repository Thread. ja
a B (default palckage]'
4 TestLengRunning.java
. (@ TestLongRunning
a FY server
- TestServer.java
4 [performance

a {7 server
: ConcurrentUserPerformanc
- B JRE Systemn Library [jred]
- = JUnit 3

When prompted by Eclipse, check the Update references to 2 moved element(s) box.

Ideally, you'll design interfaces against which to program, and then you can forget the underlying implementation

details and getto the business of making the application "do stuff." Instead of thinking about sockets and input/output
streams, you'll work with an interface that encapsulates all protocol behavior into a single interface. Before you move
on, fix the code that broke because of the refactoring. Not surprisingly, your test case and performance test no longer
compile.

H# Create server.ipc subpackages in the test and /performance folders. Now move TestServer into the
Itest/server.ipc package and ConcurrentUserPerformance into the /[performance/server.ipc package.

Before continuing, take some time to clean up some code that you won't need in the future, specifically, the classes

that were placed in the default package. Delete ComputationClient and ComputationServer in the /src folder,
and TestLongRunning in the /test folder.

& Create the IProtocolHandler interface in the /src/serve r.ipc package as shown:

Isrc/server.ipc/IProtocolHandler.java

package server.ipc;
import java.io.*;
public interface IProtocolHandler {
/** Process the protocol using socket's input and output. Return false to terminate,
true to continue. */

boolean process (BufferedReader fromSocket, PrintWriter toSocket);

}

As is common in object-oriented projects, the name of the interface starts with a capital | to clearly identify thatitis an
interface. This interface enables the real logic of the protocol to be "outsourced" to a handler class that you're about to
design. In this way, the IPC layer is responsible only for making the initial connection; after that, a protocol handler will
know when to read and write from the socketinvolved in the communication.

Eclipse offers a helpful layout when you have multiple packages using a hierarchical naming pattern. To
Note ‘"nest" packages in the Package Explorer properly, click the white drop-down arrow and select Package '
Presentation | Hierarchical. '

& In the Isrciserver package, create a class named ProtocolHandler, thatimplements IProtocolHandler. You'll
recognize most of this code from the RepositoryThread class that you wrote in the lastlab:

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

: e : Ry <l
POt Java.1to.Dagrrered™

. L . Dot o
ITHPOTr T Java . TO- L L Tirc

f
o

7
o 4= S I 111 il
‘LIHPULL oL CL.LPK_,.LELUL_UL,U‘LLlOLLULCL,
import java.io.*;

import server.ipc.*;

public class ProtocolHandler implements IProtocolHandler ({

QOverride
public boolean process (BufferedReader fromSocket, PrintWriter toSocket) {
s e T I
returar—fatse;
try {
String request = fromSocket.readLine();
if (request == null) {

return false;

}

if (request.equals ("SIZE")) {
output (toSocket, "O0");

} else {
// internal server error. Try to continue and keep processing
outputError (toSocket, "Unable to process request: " + request);

}

} catch (IOException ioe) {
ice.printStackTrace () ;
return false;

return true;

void output (PrintWriter toSocket, String value) {
toSocket.println (0) ;
toSocket.println (value);

void outputError (PrintWriter toSocket, String error) {
toSocket.println(-1);
toSocket.println (error);

Look over the process() method. ltreads a single line of input from the BufferedReader associated with the
connecting client's socket. Then, based on the input received, the server generates a successful response using
output orafailed response using outputError:

OBSERVE:

public boolean process (BufferedReader fromSocket, PrintWriter toSocket) ({
try {
String request = fromSocket.readLine() ;
if (request == null) {
return false;

}

if (request.equals ("SIZE")) {
output (toSocket, "0");
} else {

// internal server error. Try to continue and keep processing
outputError (toSocket, "Unable to process request: " + request);
}
} catch (IOException ioe) {
ice.printStackTrace () ;
return false;

return true;

Currently, process() only handles SIZE requests. While the core logic of ProtocolHandler is identical to the former
RepositoryThread implementation, it should be encapsulated in its own class as shown, because you don'twant the
logic needed to process messages from the client to be buried deeply within low-level IPC code.

For your final modification, you need to tell the RepositoryThread about your ProtocolHandler object. Start by
modifying ServerLauncher as shown below. (You will modify the RepositoryServer constructor to take in an instance
ofthe ProtocolHandler class to be used to interpret the protocol):

CODE TO TYPE: /src/server/ServerLauncher.java

package server;
import server.ipc.*;
public class ServerLauncher {

public static RepositoryServer create() throws Exception {
RepositoryServer server = new RepositoryServer (new ProtocolHandler());
server.bind();
return server;

public static void main(String[] args) throws Exception ({
RepositoryServer server = create();

System.out.println ("Server awaiting client connections");
server.process () ;
System.out.println ("Server shutting down.");

The code will resultin a compiler error until you make a few modifications to the RepositoryServer class. Until then,
RepositoryServer will hold onto the ProtocolHandler object and use it whenever a clientconnects. You need to add a
constructor to take the protocol object and then update the code that launches the RepositoryThread objects for
processing:

CODE TO TYPE: /src/server.ipc/RepositoryServer

package server.ipc;

import java.io.*;
import java.net.*;

public class RepositoryServer {
ServerSocket serverSocket = null;
int state = 0;
IProtocolHandler protocolHandler;

public RepositoryServer (IProtocolHandler ph)
protocolHandler = ph;
}

public void bind() throws IOException {
serverSocket = new ServerSocket (9172);

state = 1;

}

public void process () throws IOException ({
while (state == 1) {

Socket client = serverSocket.accept();

new RepositoryThread(client, protocolHandler) .start();

}

shutdown () ;
}

void shutdown () throws IOException {
if (serverSocket != null) {
serverSocket.close();
serverSocket = null;
state = 0;

The final change will be to the RepositoryThread class:

CODE TO TYPE: /src/server.ipc/RepositoryThread

package server.ipc;

import java.io.*;
import java.net.*;

public class RepositoryThread extends Thread {
Socket client;
BufferedReader fromClient;
PrintWriter toClient;
IProtocolHandler handler;

RepositoryThread (Socket s, IProtocolHandler h) throws IOException {
fromClient = new BufferedReader (new InputStreamReader (s.getInputStream())):;
toClient = new PrintWriter (s.getOutputStream(), true);
client = s;
handler = h;

public void run() {

~

B
T

—— -+ 15 4 AT =
CLr i1y reoa T rrofffcrrrehrc reatoTIT
£

T

= A= 1 VAl Nalivami i L
T (reguesTredua St oo T
e Py | Wau 1 AN
oTuTpPoT T U 7
) hl ‘
T TSt
. hl m i P a1 .
THTeraT erver Fror—TfF To—CofrTIit ot Keere— T S ETIS)
. S) LUITT ol . A= 11 I =)
OO TPOCHE oY viIraore— o process—reguestT —regteSsST Y
o
= ITCTITO 12
) el o o : ‘
T CcaTe—{TOon P TITOT—Toe)
fal e - 4] 1ol <l - 4= - e <l 11 I - =D VARN
[CTIT . T .tJLLllL,LLl\ TITI O PLUK,C Lll\j CTTIMTTIITAaCT U . T ERw) -y CTIT S O\jc \WANAG

—
// have handler manage the protocol until it decides it is done.
while (handler.process (fromClient, toClient)) {

try {
fromClient.close();
toClient.close();
client.close();
} catch (IOException e) {
System.err.println ("Unable to close connection:" + e.getMessage());

<l e (O 1 e

T OO CtPOCc {ocr Tig rteosarc/) 1
AT B | L0

COCTICiIC. prTrirctir(ou/y

k] e L | L 1

coOCTTreiTc. prrircoir(t o= oy

LA o T (O o ‘
\SA SV S AT §) ©L v 3 U A s i S O S S 55 4 S S By B
AT B 4 t i] L1

cCoOCTTreirc. prrirctirt <t/ 7

o] o 4 | L

coCTrrec. prrrcra(error—

—
)

You deleted all of the logic that had previously processed the protocol and replaced it with a simple loop to use the
new protocol handler code. The RepositoryThread class recognizes the ProtocolHandler object as an instance ofa
class thatimplements IProtocolHandler, which insulaties the IPC layer from the actual business logic further.

Validate that all test cases and performance tests operate properly. You can do this in two ways: to run all test cases
associated with your project, right click on the DistributedApp project and select menu item Run As | JUnit Test.
Alternatively, you can right-click, one by one, on the test and performance packages, and selectthe Run As | JUnit
Test menuitem.

Preparing a Standalone Client GUI

The clients we've written so far are not very useful. We need to add a Graphical User Interface (GUI). You are already
familiar with the Java Swing approach for developing Java GUIs. You only need to understand part of the full Swing API
to develop reasonably usable client applications. To design the skeleton of a client application, we'll:

1. write a splash screen that flashes briefly when the application launches.
2. write a Menu-based Swing application with all commands in place.

3. write code to read from (and write to) the user directory to store preferences to use whenever the
application runs.

Let's get started!

Writing a Java Splash Screen

The Java Virtual Machine (VM) can be cumbersome at startup, which makes it challenging to write a splash
screen. Fortunately, with the Java SE 6 release, the Java VM added a command-line argument to immediately
display a pre-selected image in a centered window when launching a Java application. If that were the only
capability we had though, it would be a poor splash screen; modern applications often show configuration
information or the status ofinitialization routines as well. You will be able to add logic to manipulate the
splash screen. As you can see in the SplashScreen documentation, you can provide an image file (either GIF,
JPEG, or PNG) thatis displayed immediately upon execution. Even better, once your real windows start
appearing, the splash screen automatically hides itself.

[_*7 In your DistributedApp project, create an /images folder. Then, download the image abelow s

repositorySplash.png in the new /images folder. (You can modify the image as you like, as long as you
keep the same dimensions, especially of the inner rounded rectangle):

Image

Repository

where objects live...

O'Reilly School of Technology. Java 5 Course

To download the image, right-click it, click Save picture as..., and navigate to your /images folder (in
Computer/V:lworkspace/DistributedApp/images). To confirm that the image was saved properly, right
click on the limages folder and select menu item Refresh; Eclipse will now show this file within the /images
folder.

H# Create a client package in the /src folder.

& Create a SplashScreenLogic class in the /src folder client package. Type the code below, which
demonstrates the ability to post messages to the gray space below the "Image Repository" rounded
rectangle:

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/6/docs/api/java/awt/SplashScreen.html

CODE TO TYPE: /src/client/SplashScreenLogic.java

package client;
import Jjava.awt.*;
public class SplashScreenLogic {

public static void update (String s) {
Graphics g = null;
SplashScreen splash = SplashScreen.getSplashScreen();
if (splash != null) {
g = splash.createGraphics();

}

// no splash screen? Well, at least we record the message to stdout.
if (g == null) {

System.out.println (s);

return;

g.setColor (new Color (195, 195, 195));
g.fillRect (60, 180, 300, 30);
g.setColor (Color.black);
g.drawString (s, 60, 190);

splash.update () ;

g.dispose () ;

Swing application programmers often fail to properly dispose of Graphics objects that they have constructed.
While this is most common with the getGraphics() method, it can also happen with the create Graphics()
method as shown here. Here, we invoke dispose() on Graphics object g so itdoesn'twaste system
resources.

OBSERVE:

public static void update (String s) {
Graphics g = null;
SplashScreen splash = SplashScreen.getSplashScreen () ;
if (splash != null) {
g = splash.createGraphics() ;

}

// no splash screen? Well, at least we record the message to stdout.
if (g == null) {

System.out.println (s);

return;

g.setColor (new Color (195, 195, 195));
g.fillRect (60, 180, 300, 30);
g.setColor (Color.black) ;
g.drawString (s, 60, 190);

splash.update () ;

g.dispose() ;

Now, modify RepositoryClient so it will write messages to the splash screen:

CODE TO TYPE: /test/client/RepositoryClient

package client;

import java.io.*;
import java.net.*;

public class RepositoryClient {

public static void main(String[] args) throws Exception {
SplashScreenlogic.update ("connecting to localhost::9172");
delay (250) ;
Socket server = new Socket ("localhost", 9172);

SplashScreenlogic.update ("connected to localhost::9172");
delay (250) ;

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);

BufferedReader fromServer = new BufferedReader (new InputStreamReader (server
.getInputStream()));

SplashScreenlogic.update ("initializing with server...");

delay (250);

for (int num = 0; num < 3; num++) {
toServer.println ("SIZE") ;

if (!'toServer.checkError()) {
Integer response = Integer.valueOf (fromServer.readLine());
String value = fromServer.readLine();
if (response == 0) {
System.out.println((num+l) + ": Number of Images: " + value);
} else if (response == -1) {
System.err.println(value) ;
} else {
System.err.println ("Received unknown response:" + response);

server.close () ;
SplashScreenlogic.update ("closing");
delay (250);

}

/** Delay for a time. */
static void delay(int ms) {

try { Thread.sleep(ms); } catch (InterruptedException ie) { }
}

Run the ServerLauncher, and then the RepositoryClient. (We inserted delays to make it possible to read

the messages.) If you weren't running a server, you will get an exception, but nothing "graphical" happened.

That's because there is still one more step we need to take. To activate the splash screen feature, you need to

supply a specific command line argument to the Java VM. This is a bit awkward, but the designers of Java

recognized thatitwould be the best way to avoid the lengthy initialization sequence of the Java VM. From the
Run menu in Eclipse, select Run Configurations... and, under the Java Application grouping, locate the
RepositoryClient entry (which should be the last one executed). Switch to the Arguments tab and enter -

splash:images\repositorySplash.png in the VM Arguments section:

. =)

= Run Configurations

Create, manage, and run configurations -
Run a Java application @
i LILEE N

Name: RepositoryClient

type filter text -
& Main [69= Arguments = JRE| % Classpath %~ Source| B Environment| 1 Commen

€ Android Application

J5 Android JUnit Test

[Aspect) Load-Time Wea
Al Aspect)f)ava Applicatior
[€] C/C++ Local Applicatior
& Eclipse Application Variables...
E4 Java Applet

3] Java Application VM arguments:
ComputationClient

Program arguments:

=

j— A -splashiimages\repositerySplash.png
7] ComputationServer

71 ConcurrentUserPerfc

[T] RepositoryClient
Ju Unit

& JUnit Plug-in Test

4 05Gi Framework
Juj Task Context Test @ Default: S{workspace_loc:Advanced)avaCourse}

| | [

I ! 4 I 1 4

Working directory:

() Other:

Warkspace... Eile System... Variablgs...

4 m 3 ’ Apply] [Revert l
Filter matched 19 of 19 items

@ [R |[Close |

h

Click Apply and then Run. The splash screen should appear; if you see an exception, you might need to run
ServerLauncher and then relaunch RepositoryClient to see the subsequent steps. Of course this is just
an example; the whole application lives "within the splash screen," but you get the point.

After a long coding session, be sure to run all existing JUnit test cases to verify that they all pass. (First, make
sure to terminate the execution of any RepositoryServer that may be running.) Now, take a break, stretch your
legs, then move on to the homework for this lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Writing Your Swing Application

Lesson Objectives

In this lesson you will:

e design a Java Swing clientto connectto aremote server.

Writing a Swing Application Skeleton

Now let's getdown to the business of writing a GUI with a menu bar to access commands, and a window where the
user will browse the images stored on the server. For the layout, we'll take advantage of the GrouplLayout class. This
is the go-to class when designing Swing GUIs. After years of fumbling around with AWT layouts and third-party layout
libraries, | was amazed at the versatility of GroupLayout; you'll be amazed too! The basic premise of this layout
manager is that GUI layouts are fundamentally composed of symmetric rectangular regions; by treating each axis
independently (horizontal and vertical), the code is both clear and concise, thatis, once you get used to reading the
code fragments.

Based on the requirements we set for this lab, we'll write a GUI that allows users to browse through the images in a
repository. Let's assume that we need standard navigation ability where the user can advance to the nextimage, return
to the previous image, go to the very firstimage, or to the very lastimage. You will display each image in the largest
section of the GUI, and you'll reserve space to include metadata about the image. All of these GUI elements apply to
the entire application, notjust this particular lab. You'll include a status widget at the bottom of the window as well.
Ultimately, the GUI will look like this:

SERVER IMAGE HELP

meta data
information for
the image
would go here.

Main Image

Status Widget

http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html

You'll build this GUIl incrementally over the next few labs.
& In the Isrc folder, create the client.gui package.

& In the Isrclclie nt.gui package, create an ImageRepositoryClient class that extends javax.swing.JFrame
(which is needed for any Swing window-based GUI) as shown:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

package client.gui;

import java.awt.*;
import javax.swing.*dFrame;
import javax.swing.GroupLayout.Alignment;

/** Primary GUI window for the client application. */
public class ImageRepositoryClient extends JFrame {
JScrollPane imgPanel;
JTextArea imgMetaData;
JTextField status;

public ImageRepositoryClient () {
super ("Image Repository Client");
initMenuBar () ;
initLayout () ;

void initMenuBar () {
JMenuBar mb = new JMenuBar () ;

JMenu server = new JMenu ("Server");
mb.add (server) ;

JMenu image = new JMenu ("Image");
mb.add (image) ;

setJMenuBar (mb) ;

void initLayout () {
setSize (600, 600);

JPanel p = new JPanel();

Grouplayout layout = new Grouplayout (p);
p.setlLayout (layout) ;
layout.setAutoCreateGaps (true) ;
layout.setAutoCreateContainerGaps (true) ;

layout.setHorizontalGroup (layout.createParallelGroup (Alignment.CENTER) .
addGroup (layout.createSequentialGroup () .
addComponent (imagePanel ()) .
addComponent (imageMetaData (), GroupLayout.PREFERRED SIZE, GroupLayout.DEFAULT
_SIZE, GroupLayout.PREFERRED SIZE)).
addComponent (statusBar()));

layout.setVerticalGroup (layout.createSequentialGroup () .
addGroup (layout.createParallelGroup (Alignment .CENTER) .
addComponent (imagePanel ()) .
addComponent (imageMetaData ())) .
addComponent (statusBar (), GroupLayout.PREFERRED SIZE, GroupLayout.DEFAULT SIZE,
GroupLayout.PREFERRED SIZE)) ;

add (p) ;

JScrollPane imagePanel () {
if (imgPanel == null) {

imgPanel = new JScrollPane();

imgPanel.setHorizontalScrollBarPolicy (ScrollPaneConstants.HORIZONTAL SCROLLBAR AS
_NEEDED) ;

imgPanel.setVerticalScrollBarPolicy (ScrollPaneConstants.VERTICAL SCROLLBAR AS NEE
DED) ;

imgPanel.setPreferredSize (new Dimension (416, 520));

return imgPanel;

}

JTextArea imageMetaData () {
if (imgMetaData == null) {
imgMetaData = new JTextAreal();
imgMetaData.setEditable (false);
imgMetaData.setPreferredSize (new Dimension (160, 520));

}

return imgMetaData;

}

JTextField statusBar () {
if (status == null) {
status = new JTextField(132);
status.setEditable (false);

return status;

This class is responsible for constructing the GUI elements, including the menu bar and the frame's contents. We had
to type a lot of code there, and we need to go over one tricky bit of logic. Pay particular attention to the widgets created
here:imgPanel, which will present the images in the repository imgMetaData, which represents the textual metadata
for the image being viewed, and status, which contains status information about the execution of the application.

Let's talk about the methods in this class. It's standard practice to have imagePanel() and imageMetaData()
methods that either create or return the widget created earlier, which simplifies ordering constraints that may be present
in initialization code. By creating a class attribute to store the widgets being created, you can reference these objects
later. Note how the specialized logic for each widgetis encapsulated; for example, imgMetaData is constructed to be
non-editable. The initMenuBar() method is pretty self-explanatory. Let's move on and take a look at initLayout():

OBSERVE:

void initLayout () {
setSize (600, 600);

JPanel p = new JPanel();

Grouplayout layout = new Grouplayout (p) ;
p.setlLayout (layout) ;
layout.setAutoCreateGaps (true) ;
layout.setAutoCreateContainerGaps (true) ;

layout.setHorizontalGroup (layout.createParallelGroup (Alignment .CENTER) .
addGroup (layout.createSequentialGroup () .
addComponent (imagePanel ()) .
addComponent (imageMetaData (), GroupLayout.PREFERRED SIZE, GroupLayout.DEFAULT
_SIZE, GroupLayout.PREFERRED SIZE)) .
addComponent (statusBar())) ;

layout.setVerticalGroup (layout.createSequentialGroup () .
addGroup (layout.createParallelGroup (Alignment .CENTER) .
addComponent (imagePanel ()) .
addComponent (imageMetaData ())) .
addComponent (statusBar (), GroupLayout.PREFERRED SIZE, GroupLayout.DEFAULT SIZE,
GroupLayout.PREFERRED SIZE)) ;

add (p) ;
}

The initLayout() method follows common Swing practice by constructing a JPanel object thatis added to the enclosing
ImageRepositoryClient class. Every JPanel object needs a LayoutManager; in this case you'll use GrouplLayout. The
key method invocations are setHorizontalGroup and setVerticalGroup. GroupLayout divides the layout by considering
these two axes independently. This enables you to write sophisticated layouts that automatically stretch and shrink as
the window is resized; if you've ever written a Java GUI using the default Abstract Windowing Toolkit (AWT), you'll

http://docs.oracle.com/javase/6/docs/api/javax/swing/JPanel.html
http://docs.oracle.com/javase/6/docs/api/java/awt/LayoutManager.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html#setHorizontalGroup(javax.swing.GroupLayout.Group)
http://docs.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html#setVerticalGroup(javax.swing.GroupLayout.Group)

recognize that this is a major upgrade to AWT's earlier layout managers.

setHorizontalGroup setVerticalGroup
ﬁ__;parallel Group rf_,sequentlal Group
hﬁ“‘ﬂsequenﬁalGrnup I parallel Group

&

Together, setHorizontalGroup and setVerticalGroup constrain the layout of widgets in the JPanel. As you look at the
horizontal grouping of the widgets above, note that there is a sequential group = {imgPanel ;imgMetaData } from
left to right. This group (from left to right) parallels status since the group is "on top of" status. In describing this
horizontal layout, we have started from the inside and worked our way out. In the layoutinvocation above, you can see
that we start with the outermost parallel group and work our way in. The indentation is critical to understanding. Each
group starts a new indentation level, and all components in the same group have the same indentation. Note thata
group itself can be considered just another component. The only further constraintis thatimgMetaData must
maintain a fixed width based on its preferred size, as determined by the three exira parameters.

In the vertical grouping of the widgets above, there is a parallel inner group ={imgPanel || imgMetaData } from top to
bottom. This group is followed by status at the bottom. The final constraintis that the height of status mustremain
fixed. These visual cues allow you to understand the invocation to setVerticalGroup. If you view the proposed image
from top to bottom, you'll see that there are parallel groupings;imgPanel and imgMetaData are side by side, and
both are on top of status.

Because you don'tknow the size of the images to be stored in the repository (and you don't know how the user will
choose to resize the window), we instantiate the JScrollPane objectin imagePanel(). It will use scrollbars to display
whatever image is placed in it, automatically.

GrouplLayout allows fine-grained control for resizing. In the invocation to setHorizontalGroup, when adding the
imgMetaData widget, you add three optional parameters. Specifically, in the final application, you want to ensure that
when you resize the application frame, the size of the metadata panel on the right size remains a fixed horizontal
width. The three parameters reflect the minimum allowed size, the preferred size, and the maximum size. Here,
minimum=maximum guarantees a fixed width.

(& Create the ClientLauncher class in the /src/client package to launch the GUI application:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;
import client.gui.*;

public class ClientLauncher ({
public static void main (String[] args) {
ImageRepositoryClient irc = new ImageRepositoryClient();
irc.setVisible (true) ;

}

Our launcher will become more complex, but this is a good start. The launcher constructs an instance of the
ImageRepositoryClient and makes it visible. This is how Swing applications are run.

When you run ClientLauncher, the widgets appear as expected; when you resize the frame, the image panel on the
left grows while the metadata panel on the right remains fixed in width, and the status field maintains a fixed height.
Close the Frame by clicking on the red X in the upper right corner. What happened to the nice splash screen? That's
right, you also need to update the run configuration for ClientLauncher (as you did in a prior lab) by adding -
splash:images/repositorySplash.png to the VM arguments used when executing that class. Now when you launch
the ClientLauncher, the splash screen flashes momentarily before the main application launches. The splash screen
may be visible for only a fraction of a second. As your application becomes more complex, the time to launch will
increase and the splash screen will remain visible longer.

If you've been running the client examples above, and you haven't closed the client frames, do that now. Notice in
Eclipse that you still have processes executing! You can see this in the console window, which still has a red box icon,

http://docs.oracle.com/javase/6/docs/api/javax/swing/JScrollPane.html

which allows you to terminate the recently launched application. Switch to the Debug perspective (Window | Open
Perspective | Debug); you'll see an entry in the Debug tab for every launched client. Use the Eclipse icon to
terminate each of these applications, one by one. Select each ClientLauncher instance and click on the red
Terminate icon until all executables are terminated:

ﬁ?[}ebugﬁﬂ | |i='ﬁ>_‘T55_’| ¥ =0
4 |[7] ClientLauncher [Java Applicatiun|m -
g Ch\Program Files (x86)\Java'jr inYjavaw.exe (Jan 24, 2012 5:15:53 PM)

a [T ClientLauncher [Java Application]
g Ch\Program Files (x86)"Java'jreb\bin\javaw.exe (Jan 24, 2012 5:16:00 PM)

4 [T] ClientLauncher [Java Application]
g1 C\Program Files (x86)\Java\jreb\bin'javaw.exe (Jan 24, 2012 5:20:38 PM)

4 [7] ClientLauncher [Java Application]
g1 CAProgram Files (x86)\Java\jreb\bin'javaw.exe (Jan 24, 2012 5:26:18 PM)

4 [7] ClientLauncher [Java Application]
g CAProgram Files (x86)\Java\jreb\bin'javaw.exe (Jan 24, 2012 5:26:50 PM) -

m

How did this happen? The answer lies within ClientLauncher. The Swing GUI takes control once you make your first
JFrame window visible. Until further action is taken, however, it will not relinquish control. Fix that now by giving the
Swing GUI the ability to (a) ask the user to confirm the close window request, and (b) ask the user whether they want to
remember this as default behaviorin the future.

Switch back to the Java perspective (Window | Open Perspective | Java) and modify the ClientLauncher class as
shown:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import java.awt.event.*;
import javax.swing.*;
import client.gui.*;

public class ClientLauncher {

public static void main(String[] args) {
final ImageRepositoryClient irc = new ImageRepositoryClient();
irc.setDefaultCloseOperation (JFrame.DO NOTHING ON CLOSE) ;

final ImagelIcon icon = new ImageIcon ("images/help 32.png");
irc.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
String[] choices = { "Confirm", "Confirm and don't ask me again" };
String s = (String) JOptionPane.showInputDialog (irc,
"Do you wish to exit Image Repository?\n ",
"Confirm Exit", JOptionPane.PLAIN MESSAGE,
icon, choices, choices[0]);
if (s == null) {
return;
}

irc.dispose();
1)

irc.setVisible (true) ;

This code depends on anicon loaded from an external file. We recommend you store all of the images for your
application in a central location like the /images folder; in this case, download and save the icon file there. I've used a

free 32x32 icon, butyou can use any 32x32 image:

http://docs.oracle.com/javase/6/docs/api/javax/swing/JFrame.html
http://www.gettyicons.com/free-icons/112/must-have/png/32/help_32.png

The second argument to the showInputDialog() invocation ends in /n, which creates extra space to make the dialog
box appear less cluttered. If you don'tinclude the trailing space, the extra line is trimmed away. Go figure!

Right now you're interested in windowClosing actions; note how this code uses an anonymous class to extend
WindowAdapter to override justthe one method needed. The irc variable is marked final so the anonymous class can
access this object. When you override the windowClosing method, you can deny the user's request by returning. To
confirm the user request, dispose of the ImageRepositoryClient frame manually by calling dispose() on it. Make sure
to tell Swing that the irc frame is notto be closed automatically; you do that by invoking the setDefaultCloseOperation
with the JFrame.DO_NOTHING ON_CLOSE argument.

Now when the user closes the ImageRepositoryClient window, the windowClosing method is executed, using a
standard JOptionPane method to display a dialog that reqires the user to act.

Confirm Exit E2 |

@ Do you wish to exit Inage Repository?

Confirm -

OK Cancel

If the user clicks cancel (or closes the dialog), showlnputDialog returns null and the windowClosing method returns
withoutdisposing of the irc frame, otherwise the irc frame is disposed. In Swing, once the last visible window is
disposed, the Java VM can exit, so there is no need to invoke System.exit() here. There are no lingering processes
when you close the window.

We've made some nice progress. Now we'll give our application the ability to store user preferences persistently, and
give the user a chance to quit the ImageRepositoryClient application without requiring any confirmation.

Persistent User Preferences

You can store application-specific information in the user's home directory, which is the most efficient way to
ensure that the file is stored in a user-accessible location, regardless of platform. Using the Java API, you can
determine the user's home directory through the System property user.home. Itis common to create file
names that begin with a period (.), which makes these files "hidden." The Preferences helper class provides
the necessary functionality for your client. ltisn't clear which package should hold this class, because we
could use preferences on either the client or the server side of the final application. While the class is dealing
with client-based preferences now, we might wantto use it for server-based preferences later. We'll create a
new package named "util," and create the Preferences class there, so it's nottied to clientor server, but
placed in its own neat little utility package.

& In the Isrc folder, create a util package, and in that package, create a Preferences class. As you type in
this class, pay special attention to the methods you're writing, because they define the minimal behavior
required for this class:

http://docs.oracle.com/javase/6/docs/api/javax/swing/JOptionPane.html#showInputDialog%28java.awt.Component, java.lang.Object, java.lang.String, int, javax.swing.Icon, java.lang.Object[], java.lang.Object%29
http://docs.oracle.com/javase/6/docs/api/java/awt/event/WindowListener.html#windowClosing(java.awt.event.WindowEvent)
http://docs.oracle.com/javase/6/docs/api/java/awt/event/WindowAdapter.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/JFrame.html#setDefaultCloseOperation%28int%29
http://docs.oracle.com/javase/6/docs/api/javax/swing/WindowConstants.html#DO_NOTHING_ON_CLOSE
http://docs.oracle.com/javase/6/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#exit(int)
http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#getProperties()

CODE TO TYPE: /src/util/Preferences .java

package util;

import java.io.*;
import java.util.*;

public class Preferences {
static Properties props null;
static String propFileName = ".imageRepository.properties";
static String homedir "user.home";

public static String get (String name) {
if (props == null) { load(); }
return (String) props.get (name);

}

public static String set (String name, String value) {

if (props == null) { load(); }
String oldValue = (String) props.put (name, value);
persist();

return oldValue;

public static String remove (String name) {
if (props == null) { load(); }
String oldValue = (String) props.remove (name) ;
persist();
return oldValue;

}

static boolean load() {
File file = new File (System.getProperty(homedir), propFileName);

// silently accept first time if preferences file can't be found
props = new Properties();
if (!file.exists()) { return true; }

try {
props.loadFromXML (new FileInputStream(file));
return true;
} catch (Exception e) {
System.err.println ("Unable to load preferences from:" + file);
return false;

}

static void persist () {
File file = new File (System.getProperty (homedir), propFileName) ;
try {

FileOutputStream fos = new FileOutputStream (file);

props.storeToXML (fos, "Saved on " + new Date().toString());
} catch (Exception e) {

System.err.println ("Unable to save preferences to:" + file);

}

This class manages a Properties object, props. The first three methods manipulate this object, as shown:

OBSERVE:

public class Preferences {

static Properties props = null;
static String propFileName = ".imageRepository.preferences";
static String homedir = "user.home";

public static String get (String name) {
if (props == null) { load(); }
return (String) props.get (name) ;

}

public static String set(String name, String value) {
if (props == null) { load(); }
String oldValue = (String) props.put (name, value);
persist () ;
return oldvValue;

}

public static String remove (String name) {
if (props == null) { load(); }
String oldValue = (String) props.remove (name) ;
persist () ;
return oldValue;

Preferences persists the stored Properties object whenever the set orremove method is called. These
methods each load() the Properties object from disk first, whenever pro ps is null. This somewhatlazy form
of evaluation ensures that props is properly configured when needed. After set and remove update props,
the persist() method is called to store the information persistently to disk. Let's look at the load() code first:

OBSERVE:

static boolean load() {
File file = new File (System.getProperty (homedir), propFileName) ;

// silently accept first time if preferences file can't be found
props = new Properties();
if (!'file.exists()) { return true; }

try {
props.loadFromXML (new FileInputStream(file));
return true;
} catch (Exception e) {
System.err.println ("Unable to load preferences from:" + file);
return false;

load() reads a set of preferences using the built-in loadFromXML() method of the Properties class. The
location of the persistent file is computed using the global Java property user.home, which always tells you
the current user's home directory on the file system. The method returns true when itloads the information
successfully. When there is no stored file, load() handles the situation properly, because your program has
never been run. The final piece of this class is the persist() method:

Storing Properties object to disk

static void persist () {
File file = new File (System.getProperty (homedir), propFileName) ;
try {
FileOutputStream fos = new FileOutputStream (file);
props.storeToXML (fos, "Saved on " + new Date() .toString());
} catch (Exception e) {
System.err.println ("Unable to save preferences to:" + file);

}

This method complements the load() method. Note how a FileOutputStream objectis created for storing the
XML representation of the Properties object.

Because many preferences are boolean values, we'll add two helper methods to the class, and take
advantage of java.lang.Boolean:

CODE TO TYPE: src/util/Preferences.java

public static String set (String name, boolean b) {
return set (name, Boolean.toString(b));

}

public static boolean isTrue (String name) {
if (props == null) { load(); }
return Boolean.parseBoolean ((String)props.get (name)) ;

Now let's integrate this logic with ClientLauncher. The updated listing below shows you just what needs to be
changed. As you can see, this code checks whether the preference already exists, and ensures that the
ConfirmOnExit preference is setif the user chooses thatoption:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import java.awt.event.*;
import javax.swing.*;
import client.gui.*;
import util.*;

public class ClientLauncher ({
static final String preference confirmOnExit = "ConfirmOnExit";

public static void main(String[] args) {
final ImageRepositoryClient irc = new ImageRepositoryClient();
irc.setDefaultCloseOperation (JFrame.DO NOTHING ON CLOSE) ;

final ImagelIcon icon = new ImageIcon ("images/help 32.png");
irc.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {

if (!Preferences.isTrue (preference confirmOnExit)) {
String[] choices = { "Confirm", "Confirm and don't ask me again" };
String s = (String) JOptionPane.showInputDialog (irc,

"Do you wish to exit Image Repository?\n ",
"Confirm Exit", JOptionPane.PLAIN MESSAGE,
icon, choices, choices[0]);
if (s == null) {
return;
} else if (s.equals (choices[1])) {
// remember this in the future.
Preferences.set (preference confirmOnExit, true);
}
}
irc.dispose();
}
1)

irc.setVisible (true);

-
@ Run ClientLauncher and close it; when closing the main window, choose the Confirm and don't ask
me again option and press the OK button. After execution, check your home directory and look over the XML
file named .imageRepository.preferences (click File in the upper right and navigate to your "V:" drive;
right-click the file and select Open; if prompted, browse to and select Notepad as the viewer):

OBSERVE:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<comment>Saved on Sun Feb 10 15:09:00 EST 2013</comment>

<entry key="ConfirmOnExit">true</entry>

</properties>

If you execute the application again and close the frame, you will no longer be prompted for a confirmation
and the application will exit cleanly. To reinstate the requirement to request confirmation, delete the
.imageRepository.preferences file in your home directory.

The JDK has a powerful java.util.prefs.Preferences class that allows "applications to store and
retrieve user and system preference and configuration data. This data is stored persistently in an
implementation-dependent backing store. Typical implementations include flat files, OS-specific

Note registries, directory servers and SQL databases. The user of this class needn't be concerned
with details of the backing store.”" On a Linux machine, user preferences would be stored in
$HOME/.javal.userPrefs/prefs.xml; on a Windows desktop, information would be stored in
the Windows registry. We have shown how to write your own preferences functionality.

http://docs.oracle.com/javase/6/docs/api/java/util/prefs/Preferences.html

Testing

Everything looks great, but before we consider this lab a success, let's write some tests. The one way to feel
entirely confident about your code is to write test cases that demonstrate proper behavior. The Preferences
class makes testing a challenge because it works with persistentinformation. In addition, if you aren't careful,
testing the Preferences class will overwrite the image repository preferences file stored in the user's directory!
Whatis a tester to do? Well, you can take advantage of the way the Eclipse workspace is set up, where test
cases are stored in the /test folder. In particular, you can "rename" the preferences file so that all test cases
are processed independently of the normal running code.

H Create a util package in the /test source folder.

ET In the Itest folder util package, create a TestPreferences JUnittest case as shown:

CODE TO TYPE: /test/util/TestPreferences .java

package util;

import java.io.*;
import junit.framework.TestCase;

public class TestPreferences extends TestCase {
File propFile;
static String oldPropName;
static String testPropName = ".testProps";
final static String librarySize = "LibrarySize";

// ensure preferences file will be in test location
protected void setUp () {
oldPropName = Preferences.propFileName;
Preferences.propFileName = testPropName;

Preferences.props = null;
propFile = new File (System.getProperty(Preferences.homedir), testPropName) ;
if (propFile.exists()) {

assertTrue (propFile.delete());
}

// delete test location file and restore original name
protected void tearDown () {
if (propFile.exists()) {
assertTrue (propFile.delete());
}

Preferences.propFileName = oldPropName;

public void testSinglePreference () {
assertFalse (propFile.exists());
assertNull (Preferences.get(librarySize));

Preferences.set (librarySize, "1000");
assertTrue (propFile.exists());

assertEquals ("1000", Preferences.get (librarySize));
assertEquals ("1000", Preferences.set (librarySize, "1500"));
assertEquals ("1500", Preferences.remove (librarySize));
assertNull (Preferences.get(librarySize));

setUp() and tearDown() are used to rename the Preferences.propFileName value, so these testcase
methods can execute independently of the production code:

OBSERVE:

// ensure preferences file will be in test location
protected void setUp () {
oldPropName = Preferences.propFileName;
Preferences.propFileName = testPropName;
Preferences.props = null;
propFile = new File (System.getProperty (Preferences.homedir), testPropName) ;
if (propFile.exists()) {
assertTrue (propFile.delete());
}
}

// delete test location file and restore original name
protected void tearDown () {
if (propFile.exists()) {
assertTrue (propFile.delete());
}
Preferences.propFileName = oldPropName;

}

Before each test case method, setUp() ensures that there is no preferences file, propFile, on disk.
tearDown() will also delete the file on disk atthe completion of each test case method, so you can be sure
that each test case method will start with a pristine file system. Now let's take a closerlook at the
testSinglePreference test case method:

OBSERVE:

public void testSinglePreference () {
assertFalse (propFile.exists());
assertNull (Preferences.get(librarySize)) ;

Preferences.set (librarySize, "1000") ;
assertTrue (propFile.exists())

assertEquals ("1000", Preferences.get(librarySize)) ;
assertEquals ("1000", Preferences.set(librarySize, "1500")) ;
assertEquals ("1500", Preferences.remove (librarySize)) ;
assertNull (Preferences.get(librarySize)) ;

This test case method covers two cases. First, when there is not yet a preferences file (that is, the
propFile instantiated in setUp does not exist on disk). In this case, returning the librarySize
preference mustreturn null. Second, once a preference is set (in this case, librarySize), the
properties file is created on disk; thereafter, this preference can be updated and
Preferences.get() will retrieve its current value. This test case also confirms that the value of an
unknown (or removed) preference is returned as null.

In addition, this test case confirms that you can add a single preference to an empty preferences file, verify that
it exists, change its value, and then verify thatit no longer exists once it has been deleted. Run this test case to
verify that your code works. What's this? The test case fails? The test case fails in the tearDown() method
when you're trying to delete the preferences file on disk. You can check to make sure that this file exists on
your computer, so why can't you delete it? This is one ofthe most common mistakes Java programmers
make when using OutputStream objects. There seems to be no easy to way to figure out what's going wrong,
butif you don't close an output stream then it will remain open until the Java VM exits. Normally this isn'ta
problem, butitbecomes one when you try to delete the underlying file from disk. Where did you open an
output stream? Go to the persist() method in Preferences and you will see the subtle defect as shown below.
This method creates a FileOutputStream, but fails to close it! Add the single line of code to close the
FileOutputStream, and the test case passes:

http://docs.oracle.com/javase/6/docs/api/java/io/OutputStream.html

CODE TO TYPE: /src/util/Preferences .java

static void persist () {

File file = new File (System.getProperty (homedir), propFileName);
try {

FileOutputStream fos = new FileOutputStream (file);
props.storeToXML (fos, "Saved on " + new Date().toString());
fos.close () ;

} catch (Exception e) {
System.err.println ("Unable to save preferences to:" + file);

This example demonstrates that you need to write and run test cases after you complete key functionality.
When you do that, you can ensure that your code works right and validate that it continues to work later
whenever changes happen.

Now run this test case through EcCIEmma code coverage; the test coverage for the Preferences class is
around 60%. We'll need to improve this. There are some places in our code in Preferences that did not
execute. You'l want to investigate those scenarios and write test cases for them:

e Loading up a sample (and valid) preferences file from disk.
e Exercising the special methods to handle boolean preferences.

Add two more test case methods to the end ofthe TestPreferences class:

CODE TO TYPE: /test/util/TestPreferences .java

public void testLoadWorks () {
if (!propFile.exists()) {
assertNull (Preferences.get (librarySize));

}

Preferences.set ("LibrarySize", "1000");

// clear out from Preferences
Preferences.props = null;

assertEquals ("1000", Preferences.get ("LibrarySize"));

public void testBooleanPreferences () {
String booleanAtt = "SomeBooleanAtt";
Preferences.set (booleanAtt, true);
assertTrue (Preferences.isTrue (booleanAtt));
assertEquals ("true", Preferences.remove (booleanAtt));
assertFalse (Preferences.isTrue (booleanAtt));

After adding these methods, you can see that the coverage still remains too low, atabout 78 %. The largest
unexecuted logic occurs when there is a problem loading up the preferences file. Add this test case to the end
of TestPreferences, which constructs a "corrupted" XML file that cannot be loaded properly:

CODE TO TYPE: /test/util/TestPreferences .java

public void testGarbagePropsFile() {
try {
PrintWriter pw = new PrintWriter (propFile);
pw.println ("GARBAGE") ;
pw.close();
} catch (FileNotFoundException fnfe) {
fail ("Unable to create sample props file.");

assertNull (Preferences.get ("Testing"));

Run coverage using this test case and you'll see that once again, there is an unexpected error within the
tearDown() method. What could have gone wrong this time? Given the problems you saw earlier with the
FileOutputStream, you're robably not surprised that there is a corresponding problem when dealing with
FilelnputStream. Review the load() method and you'll see an invocation to loadFromXML, but when you
review the documentation for this method it claims "The specified stream is closed after this method returns."
However, as you have justfound out, the stream is only closed if the method returns successfully, not when
an exception is thrown! The next modification you make will ensure that the file is closed, even upon an
exception. Now when you rerun all test cases within ECIEmma you'll see a coverage ofover87%. This is a
solid testing performance. (The "Unable to load preferences from:\\beam\~\.testProps" warning message in
the console appears because of the testGarbagePropsFile test case, as it should):

CODE TO TYPE: /src/util/Preferences java

static boolean load() {
File file = new File (System.getProperty (homedir), propFileName) ;

// silently accept first time if preferences file can't be found
props = new Properties();
if (!'file.exists()) { return true; }

FileInputStream fis = null;
try {
fis = new FileInputStream(file);
props.loadFromXML (rew—FitetmputStream{fiterfis) ;
return true;
} catch (Exception e) {
System.err.println ("Unable to load preferences from:" + file);
try { fis.close(); } catch (IOException ioe) { }
return false;

You've missed some exceptional cases in the test case. The new line of code added to the exception handler
within the load() method is shown in yellow because the IOException exception was never thrown, thus the
empty exception handler was never executed. The other yellow-marked regions are similar. The only red-
marked region is within the persist() method.

Now you've gotthe beginnings ofa GUIl in place. Good work. Work through your lesson assignments now
and I'll see you again soon!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Server-Side Application Model

Lesson Objectives

In this lesson you will:

use the application model for this ImageRepository application.
e store and load images from disk and transfer these images from clientto server using the existing IPC layer.

use a clientto add an image to the repository.

testthe use of the repository with one or more images.

Server-Side Application Model

Okay, you've gotyour GUI skeleton in place. Now you're ready to add logic to the RepositoryServer. At this point, you'll
want to review the requirements and ask yourself key questions about the information that the server needs to store.
For example:

e Willimages be stored by name? If so, does the name have to conform to a specific format?

e Willimages have an "index number" reflecting their position? This seems like it could be hard to implement
because deleting an individual image will cause successive images to be renumbered. Perhaps instead the
image will have numbers that won't be reused when an image is deleted (causing gaps).

e How willimages be stored on disk? Will each image be placed in its own file or will multiple images be
stored together?

e How will metadata for each image be stored, such as when it was uploaded, formatinformation, or which
user uploaded it?

First you have to decide whether to have a single repository of all images maintained by a server or to allow a server
to host multiple repositories. Whatever you decide, a client will only connect to a single repository at a time. With either
choice there will be tradeoffs:

e Ifaserveris restricted to hosting just a single repository, you will simplify the server code itself, but the
environment will become more complicated, because you will need to launch new servers for each
individual repository.

e Ifaserverhosts multiple repositories, more clients are connected to a single server and the throughput for
that server may be atrisk.

In this lesson, you'll customize the server to use a specific directory containing images as a repository, oruse a
defaultimage repository when executed. Even so, you need to figure outa way to prevent multiple servers from
executing over the same image repository atthe same time (more on this later).

Because disk space is notan issue for most applications, you'll store each image in its own file. This sets up another
tradeoff: because you're making it simpler to access individual files, the server will use the file system to store
potentially thousands of files containing images. This approach is preferable to developing a technique to store all
image data within one single file. In addition, it's easier to test a repository in which images are stored in their own
files.

Lastly, you can'trely on the sorted image names (or the file names) to set their order in the repository. Instead, you'll
construct an index that maintains the order of the images and all corresponding metadata. You might consider placing
all metadata inside a database (but that's beyond the scope of this course). For now, you'll develop an internal API that
could ultimately be reimplemented to use a database.

Repository Selection

T In the /src folder, create a server.model package, where you'll create your classes. The design proposed
here is notthe only way to approach the problem, butit offers one solution. By creating a package for the
application model, you maintain separation between these classes and the rest of the code. When working
with complex applications, do notlet code become too interwoven, otherwise you risk having code that "only
works when everything works." You may have heard of the Model/View/Controller (MVC) paradigm, especially
in the context of Graphical User Interfaces. The design introduced in these labs is similar to MVC.

& In the Isrc folder server.model package, create a Repository class:

CODE TO TYPE: /src/server.model/Repository.java

package server.model;
import java.io.*;
public class Repository {

final File storage;
int count;

public Repository(File storage) throws IOException {

if (storage.exists() && storage.isDirectory()) {
this.storage = storage;
} else {
throw new IOException ("Storage for repository must be an existing directo
ry.");

}
}

public void add(byte[] image, String name)
System.out.println ("Adding " + name + " [" + image.length + " bytes]");
count++;

}

public int size() {
return count;

}

This firstimplementation of the Repository class consists mostly of scaffolding. This is a good way to initiate
your designs when you'll be implementing code with increasing complexity. By marking the storage attribute
as final, you prevent any changes to the storage reference during execution.

The Repository object will not be constructed if the storage directory doesn't exist. You must constructa
Repository object with an actual directory, otherwise the constructor will throw a FileNotFoundException.
Because of this invariant, the final version of the class will be easier to write.

Our code contains two initial methods: one allows you to add an image whose bytes are stored in a byte]]
array and another allows you to query the number ofimages stored in the repository. For now, this (mostly
scaffolding) code just maintains a running count.

The Repository starts with a basic interface. The firstimplementation represents an image with a byte[] array.
We won't bother to design a complex class to represent an image until we're sure that we need it.

|_*7 Create a folder in the DistributedApp project named Repository which represents the default
repository.

Then, modify the create() method of ServerLauncher to construct a Repository object using a default file
location as shown:

CODE TO TYPE: /src/server/ServerLauncher.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;

public class ServerLauncher ({
public static final String defaultLocation = "Repository";

public static RepositoryServer create() throws Exception ({
return create(new File (defaultLocation));

public static RepositoryServer create(File dir) throws Exception ({
Repository repository = new Repository(dir);
RepositoryServer server = new RepositoryServer (repository, new ProtocolHandl
er (repository));
server.bind() ;
return server;

public static void main(String[] args) throws Exception {
RepositoryServer server = create();

System.out.println ("Server awaiting client connections");
server.process () ;
System.out.println ("Server shutting down.");

These modifications require the RepositoryServer to become aware of the Repository objectintroduced in
this lab; this makes sense because of the central role that the RepositoryServer plays. The secondary change
is that the ProtocolHandler objectis constructed with a Repository object; this is done to allow the handler to
access the repository as needed during processing. Update RepositoryServer as shown:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.model.*;

public class RepositoryServer ({
ServerSocket serverSocket = null;
int state = 0;
IProtocolHandler protocolHandler;
Repository repository;

public RepositoryServer (Repository rep, IProtocolHandler ph) {
protocolHandler = ph;
repository = rep;

public void bind() throws IOException {
serverSocket = new ServerSocket (9172);
state = 1;

public void process () throws IOException ({
while (state == 1) {
Socket client = serverSocket.accept();

new RepositoryThread(client, protocolHandler) .start();

shutdown () ;

void shutdown () throws IOException {
if (serverSocket != null) {
serverSocket.close();
serverSocket = null;
state = 0;

Now you need to make a few changes to ProtocolHandler so thatthe ServerLauncher will compile.
Modify your code as shown:

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;

public class ProtocolHandler implements IProtocolHandler ({
final Repository repository;

public ProtocolHandler (Repository r) {
repository = r;

}

public boolean process (BufferedReader fromSocket, PrintWriter toSocket) {

try {
String request = fromSocket.readLine();
if (request == null) {

return false;

}

if (request.equals ("SIZE")) {
output (toSocket, "O0");

} else {
// internal server error. Try to continue and keep processing
outputError (toSocket, "Unable to process request: " + request);

}

} catch (IOException ioe) {
ice.printStackTrace () ;
return false;

return true;

}

void output (PrintWriter toSocket, String value) {
toSocket.println (0) ;
toSocket.println (value);

}

void outputError (PrintWriter toSocket, String error) {
toSocket.println(-1);
toSocket.println (error);

}

We'll draw inspiration from the Test-Driven Development (TDD) community; first we'll create a JUnit test case

that validates the expected behavior. In writing the test case, you will complete the remaining code for this lab.

During testing, you shouldn't depend on using normal repositories; create a test repository to use only for

test cases. This is useful because then you can create, add, or destroy repositories as needed during testing.

[_*1 Create a folder in your DistributedApp project named TestRepository to use for all test cases. Modify

TestServer as shown:

http://en.wikipedia.org/wiki/Test-driven_development

CODE TO TYPE: /test/server.ipc/TestServer.java

package server.ipc;

import java.io.*;

import server.ServerLauncher;
import server.ipc.RepositoryServer;
import client.*;

import junit.framework.TestCase;

public class TestServer extends TestCase {

public static final String testRepository = "TestRepository";

public static RepositoryServer launchServer () throws Exception {
final RepositoryServer server = ServerLauncher.create(new File (testReposi
tory));

The create() method in ServerLauncher allows for straightforward customization.

ET In the Itest folder's server.ipc package, create the Test AddBehavior test case. This testcase is a bit
raw and you will have to modify it later. This type of incremental change is pretty common to a client/server
system, thatis, where you add a new message between the client and server. lt requires changes to both
sides of the client/server system, butif you do itright, you won't have to make any changes to the underlying
IPC infrastructure.

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

package server.ipc;

import java.io.*;

import java.net.*;

import util.*;

import junit.framework.TestCase;

public class TestAddBehavior extends TestCase {
RepositoryServer server;
Socket client;

protected void setUp() throws Exception {
server = TestServer.launchServer();
client = new Socket ("localhost", 9172);

protected void tearDown () throws Exception {
server.shutdown () ;
client.close();

public void testAddBehavior () throws Exception {
PrintWriter toServer = new PrintWriter (client.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (client
.getInputStream()));

// Protocol for sending SIZE
toServer.println ("SIZE");
expectSuccess ("0", fromServer);

// Protocol for sending an image

toServer.println ("ADD-BEGIN") ;

toServer.println ("sampleImage") ;

File f = new File("images", "repositorySplash.png");
toServer.println (ImageEncoding.encode (f));
toServer.println ("\nADD-DONE") ;

expectSuccess (null, fromServer);

// Expect repository with 1 image
toServer.println ("SIZE") ;
expectSuccess ("1", fromServer);

public static void expectSuccess (String expect, BufferedReader fromServer) th
rows IOException {

int response = Integer.valueOf (fromServer.readLine());
String value = fromServer.readLine() ;
if (response == 0) {
if (expect != null) {
assertEquals (expect, wvalue);
} else {

System.out.println ("received:" + value);
}
} else {
fail (" (response:" + response + ") received " + value + " not " + expect);

You'll recognize much of the logic below from earlier labs. This code will not compile immediately because of
a missing class (util.ImageEncoding) that you'll write in just a few minutes. This test case class has three
main parts that we'll investigate now:

OBSERVE:

public class TestAddBehavior extends TestCase {
RepositoryServer server;
Socket client;

protected void setUp() throws Exception ({
server = TestServer.launchServer () ;
client = new Socket ("localhost", 9172);
}

protected void tearDown () throws Exception {
server.shutdown () ;
client.close () ;

The setUp method is defined by JUnit to be the method that executes immediately before each individual test
case method. In this case, there is only one test case method, test AddBehavior. Here, set Up launches a
server and clientto be used by the test case method. The complementary tearDown method executes
immediately after each test case method. The implementation shown above properly terminates both the
server and client.

Next, check out the expectSuccess() helper method, which validates that the client receives a successful
response:

OBSERVE:

public static void expectSuccess (String expect, BufferedReader fromServer) th
rows IOException ({
int response = Integer.valueOf (fromServer.readlLine())
String value = fromServer.readLine () ;

if (response == 0) {
if (expect != null) {
assertEquals (expect, value);
} else {
System.out.println ("received:" + value);
}
} else {
fail (" (response:" + response + ") received " + value + " not " + expect);

}

This helper method reads two string lines from the BufferedReader fromServer object. If the response
value is 0 (zero), the server has declared a successful response. Remember, a failure is recorded using a
value of "-1." The method does one more check to determine whether expect is non-null. Ifitis, then
expectSuccess() confirms that the value matches the expected outcome, expect.

OBSERVE:

public void testAddBehavior () throws Exception ({
PrintWriter toServer = new PrintWriter (client.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (client
.getInputStream()))

// Protocol for sending SIZE
toServer.println ("SIZE") ;
expectSuccess ("0", fromServer) ;

// Protocol for sending an image

toServer.println ("ADD-BEGIN") ;

toServer.println ("sampleImage") ;

File f = new File("images", "repositorySplash.png");
toServer.println (ImageEncoding.encode (f)) ;
toServer.println ("\nADD-DONE") ;

expectSuccess (null, fromServer) ;

// Expect repository with 1 image
toServer.println ("SIZE") ;
expectSuccess ("1", fromServer) ;

The test case method defines the toServer objectto use for communicating requests to the server, and the
fromServer objectto use for receiving the response strings from the server. In our test case, first we send a
SIZE request to the server; the expected successful response is "0," reflecting the number ofimages in the
repository. Then we define the ADD-BEGIN ... ADD-DONE protocol and send an image using it. Once
completed, the expected response is a success, although there is no specific value of interest to the test
case. Finally, we send another SIZE request to the server, and this time the successful response mustbe "1."

The TestAddBehavior() test case verifies that when you add an image to an empty repository, the repository
will contain 1image. This observation and testing is carried out exclusively using the underlying network
communication that you have already designed. Always test your code this way; first write (and test!)
underlying utility classes and then build upon and use these classes in each subsequenttestcase. In doing
so0, you develop and test code incrementally in the exact environmentin which it will be run.

You already have the SIZE message implemented, now let's review the proposed ADD message. Since the
ProtocolHandler class is in complete control, the handler must support this ADD message structure:

e Send aline to the server with the string ADD-BEGIN, indicating that an image is aboutto be sent.
e Send a line with the name of the image ("samplelmage" in this case).

e Encode the raw bytes of the image ("repositorySplash.png" in this case) on subsequentlines,
using the ImageEncoding class that you will define next.

e Afinal ADD-DONE line terminates the message.

This logic works only if the terminal string "ADD-DONE" does not appear in the image encoding. So how do
you transmit an image of binary data from the client to the server over an ASCII protocol?

& In the Isrc folder util package, create a new ImageEncoding class. There are two possible
implementations for you to consider, either option works. Email attachments use MIME (Multipurpose Internet
Mail Extensions) encoding to send binary data using an otherwise ASCII protocol. The problem is that this
capability is not standard in the JDK. Here are the two solutions to this problem:

e Install a freely available open source library for the encoding.

e Access a "hidden" class in the JDK against the express wishes of the Java designers.

Option 1:Access a Hidden Class

The JDK comes with a sun.misc.BASE64Encoder class for encoding binary files. However, this class is in a
sun.* package, which means you can't depend on its availability. It may not be present on a different
operating system, but still, you can access this class (and find online documentation about it). Eclipse has a
customizable compiler feature that might identify such attempts at using BASE64Encoder class as errors,
however. Type in this code forImageEncoding (if it compiles without any problems, great!):

http://en.wikipedia.org/wiki/MIME
http://www.oracle.com/technetwork/java/faq-sun-packages-142232.html
http://www.docjar.com/docs/api/sun/misc/BASE64Encoder.html

CODE TO TYPE: /src/util/lmageEncoding.java

package util;

import
import
import

java.io.*;

sun.misc.BASE64Decoder;

sun.misc.BASE64Encoder;

public class ImageEncoding {

public static String encode
if (£ == null) {

throw new IOException

(File f) throws IOException {

("No image selected for encoding.");
}
FileInputStream fis
try |
fis new FileInputStream(f);
byte[] bytes new byte[(int)
fis.read (bytes);
return new BASE64Encoder () .encode (bytes) ;
} finally {
fis.close();

null;

f.length()];

public static byte[] decode (String str) throws IOException {
return new BASE64Decoder () .decodeBuffer (str);

We close InputStream objects because there is no documentation orindication about whether
Base64Encoder's encode() method closes the input stream once it's done. The finally block will close the
output stream properly regardless of whether the write completed or threw an exception. The above code
might show a compiler error with this warning: Access restriction: The type BASE64Encoderis not
accessible due to restriction on required library C:\Program Files (x86)\Java\jre6\lib\rt.jar. If this
happens, select Window | Preferences and expand the entries for Java | Compiler | Errors/Warnings.
Expand the "Deprecated and restricted API" section, and change the "Forbidden reference (access rules)" to

Warning, as shown:

When you're alerted that this action will require a full build of the project, click "agree," and your code compiles

cleanly.

-
= Preferences

B [|

Install/Update
Java

Errors/Warnings
Javadoc

type filter text ErrorsfWarnings - v
General Configure Project Specific Settings...
Ant Select the severity level for the following opticnal Java compiler problems: -
Aspect] Compiler o @

C/C++
Help (s i s D S e s

Indirect access to static member:

Appearance Unqualified access to instance field:
Build Path
Code Coverage Undocumented empty black:
Code Style Access to a non-accessible member of an enclosing type: I hd
Compiler
Building Method with a constructor name:

Parameter assignment:

Task Tags Non-externalized strings (missing/unused SNON-NLSS tag): 3
Debug » Potential ing probl
Editor 'otential programming problems
Installed JREs » Name shadowing and conflicts
Junit ~ Deprecated and restricted API
Properties Files Editor
JDT Weaving Deprecated APL
Plug-in Development [7] Signal use of deprecated APIinside deprecated code
Run/Debug [Signal overriding or implementing deprecated method
Swing Lock And Feel .
Forbidden reference (access rules):
Tasks
Team Discouraged reference (access rules): E{EM
Usage Data Collector Ignore
Validation » Unnecessary code
Visualiser » Generic types
WindowBuilder + Annotations N
XML
[Rastore Defau\ts] [Apply]
\

The next section shows an alternative that uses a freely available open-source implementation. If you're
already famiiar with it, feel free to skip to the TestAddBehavior test case.

Option 2: Install a Free Open-Source Class

There are numerous open-source implementations that you can use for MIME-encoding files. Here is one
authored by Robert Harder that I've chosen because itis free and without restrictions. You can download a
Zip file from his website and save it to the file system of your project (which should be
V:\workspace\DistributedApp). When you refresh your DistributedApp projectin Eclipse, this zip file will
appear. Double-click on the file to open it, then double-click on the Base64 java file within the zip file. A
notepad application should appear containing the Java code. Select all of the textin the notepad and copy the
textto your clipboard.

tH Create a net.iharder package in the /src folder.
(&'Create a Base64 class in that package, and replace that class definition with the contents of the clipboard.

The result will be a Base64 class in the netiharder package. Now you can define the following
ImageEncoding class in the util package:

CODE TO TYPE: /src/util/imageEncoding2.java

package util;

import java.io.*;
import net.iharder.*;

public class ImageEncoding {

public static String encode (File f) throws IOException {
return Base64.encodeFromFile (f.getAbsolutePath());
}

public static byte[] decode (String str) throws IOException {
return Base64.decode (str);

}

The structure of both options is similar. In fact, they are drop-in replacements of each other. You can use
eitherone.

TestAddBehavior Test Case

Now, make a few changes to the ProtocolHandler class. First, the handler needs to have a reference to the
Repository object, that's the purpose of the added constructor. Without the repository, the handler will not
be able to function properly. Second, we want to update the handler to process add image requests. The
added code reads one line ata time, appending each string together until it encounters the termination line
("ADD-DONE"). Then the ImageEncoding class decodes this string into the original byte array, which is added
to the repository. The logic for counting the lines of the encoded representation is here justto give you an
idea of the size (number oflines) of the encoding:

http://www.iharder.net/current/java/base64/
http://sourceforge.net/projects/iharder/files/latest/download?source=files

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

import java.io.*;
import server.model.*;
import server.ipc.*;
import util.*;

/** Implementation of protocol. */

public class ProtocolHandler implements IProtocolHandler {
final Repository repository;
public ProtocolHandler (Repository repository) {

this.repository = repository;

public boolean process (BufferedReader fromSocket, PrintWriter toSocket) {

try {
String request = fromSocket.readLine() ;
if (request == null) {

return false;

if (request.equals ("SIZE")) {
output (toSocket, "&" + repository.size()):;
} else if (request.equals ("ADD-BEGIN")) {
String name = fromSocket.readLine();
StringBuilder full = new StringBuilder();
int num = 0;
while (true) {
String line = fromSocket.readLine () ;
if (line.equals ("ADD-DONE")) { break; }

full.append(line);
num++;

byte[] bytes = ImageEncoding.decode (full.toString());
repository.add (bytes, name);
output (toSocket, bytes.length + " bytes received in " + num + " lines."

} else {
// internal server error. Try to continue and keep processing
outputError (toSocket, "Unable to process request: " + request);

}

} catch (IOException ioe) {
ioce.printStackTrace() ;
return false;

} catch (RuntimeException re) {
outputError (toSocket, re.getMessage());

return true;

void output (PrintWriter toSocket, String value) {
toSocket.println (0) ;
toSocket.println (value) ;

void outputError (PrintWriter toSocket, String error) ({
toSocket.println(-1);
toSocket.println(error);

Instead of returning "0" when receiving a SIZE request, the server now returns a string containing the actual
number ofimages in the repository, using the size() method of the repository. The second change is more

complex:
OBSERVE:
if (request.equals ("ADD-BEGIN")) {

String name = fromSocket.readLine() ;
StringBuilder full = new StringBuilder() ;
int num = 0;
while (true) {

String line = fromSocket.readLine() ;

if (line.equals ("ADD-DONE")) { break; }

full.append(line) ;
num++;

}

byte[] bytes = ImageEncoding.decode (full.toString());
repository.add (bytes, name);
output (toSocket, bytes.length + " bytes received in " + num + " lines.");

First, the serverreads one line of input to represent the name of the desired image file. Then it
contatenates all strings received from the client between the "ADD-BEGIN" and "ADD-DONE"
lines (excluding "ADD-BEGIN" and "ADD-DONE" themselves). Using the ImageEncoding logic to convert
the encoded string into a byte[] array, the server adds the image to the repository and outputs a message (of
success) to the client, recording the number of bytes in the image. This protocol is well-defined, efficient to
implement, and enforced by both clientand server.

Run the TestAddBehavior test case to validate that we've got correct behavior. Now, run the same testcase
in ECIEmma code coverage; you'll see thatProtocolHandler (75% coverage) and Repository (88%
coverage) are missing only a few lines of error logic. This is a good start!

You've added an additional RuntimeException handler within the process() method, which will protect the
server. If the server runs into any problems while processing a clientrequest, an appropriate error message
is returned to the client. The power of Exceptions allows you to have logic, in one place, that handles a range
of potential error situations.

Completing Repository Functionality

Now you'll complete the functionality of Repository for storing the image persistently in a file. You'll also
create an index file to representall images in the repository. Consider how you'll determine the name of the
file on disk for each uploaded image. In the testing example, the name of the image from the client's point of
view was "samplelmage." However, if multiple clients upload different files, you can't have the repository
store them with the same filename—the newestimage would always obliterate the olderone.In a
client/server system, you can expect that clients don't communicate with each other, so we can't readily
enforce a global naming scheme. We have an way to work past this problem and it offers an interesting twist
—the MDS5 cryptographic hash function. While MD5 is no longer "cryptographically secure," it can be used
here to compute a "fingerprint" for an image to create a statistically unique 16-byte hash value. Ifit turns out
that two clients upload the exact same image (bit for bit), then both requests will be computed to the exact
same hash value, which can be used to advise the second client that the image already exists in the
repository.

& In the Isrc folder util package, create a Fingerprint class as shown:

http://en.wikipedia.org/wiki/MD5

CODE TO TYPE: /src/util/Fingerprint.java

package util;
import java.security.*;

public class Fingerprint {
public static String getFingerPrint (byte[] bytes) {
String defaultFingerprint = "fffffffffffffffffffffffffffffrefe";
try {
MessageDigest md5 = MessageDigest.getInstance ("MD5");
md5.update (bytes, 0, bytes.length);

StringBuilder sb = new StringBuilder();
for (byte b : md5.digest()) {
String hex = Integer.toHexString(b);
if (hex.length() == 1) {
sb.append ("0") .append (hex) ;
} else if (hex.length() == 2) {
sb.append (hex) ;
} else {
// negative byte values appear as something like "ffffffcO";
sb.append (hex.substring (6)) ;

}

return sb.toString();
} catch (Exception e) {
return defaultFingerprint;

This class contains the functionality to compute a string representing the MD5 fingerprintofa byte[] array. It
relies on the default algorithm implementation already found in the JDK. The JDK documentation contains a
listofthe supported algorithms. As you can see, you need only provide the bytes to the md5 algorithm, which
return the fingerprint as an array of bytes, which is converted into a hex string as shown below. As
documented in the md5sum application, the string returned by Fingerprint is identical to the value returned
by md5sum.

The Fingerprint class contains the logic that converts the byte[] array message digest created using Java's
defaultimplementation of the MD5 algorithm. Placing this implementation in its own class simplifies the rest
ofyour code and makes it possible to switch fingerprint algorithms efficiently. You can compare the output of
this class directly to the output of 'md5sum’ to verify that the values are identical.

To store an image in a file, the repository computes its fingerprint and attempts to create a file on disk in which
to store the bytes; if thie attempt fails, then the image is already presentin the repository and an Exception
should be thrown. Modify Repository as shown (we'll want this method to return the computed fingerprint of
the added image later, so we'll make that change now too):

http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA
http://en.wikipedia.org/wiki/Md5sum

CODE TO TYPE: /src/server.model/Repository.java

package server.model;

import java.io.*;
import util.*;

public class Repository {

final File storage;
int count;

public Repository(File storage) throws IOException {

if (storage.exists () && storage.isDirectory()) {
this.storage = storage;
} else {

throw new IOException ("Storage for repository must be an existing directo
ry.");
}
}

public se+dString add(byte[] image, String name) {
String fp = Fingerprint.getFingerPrint (image) ;
File f = new File (storage, fp);
if (f.exists()) {
throw new IllegalStateException("That image already exists in the reposito
ry");
}

FileOutputStream fos = null;
boolean failed = false;
try {
fos = new FileOutputStream (f);
} catch (FileNotFoundException e) {
failed = true;

try {
if (!failed) {
fos.write (image) ;
}
} catch (IOException e) {
failed = true;
} finally {
try {
fos.close();
} catch (IOException ioe) {
ioce.printStackTrace () ;
failed = true;

}

if (failed) {
throw new IllegalStateException ("Unable to construct image file. Contact A
dministrator.");
}
System.out.println ("Adding " + name + " [" + image.length + " bytes]");
count++;
return fp;

}

public int size() {
return count;

}

The add() method attempts to store the image to disk in a file named for thatimage's fingerprint. Once the

outputfile is created using the FileOutputStream (fos) object, that output stream mustbe closed. Note how the
finally clause in the exception handler will be invoked regardless of whether the fos.write(image) method
throws an IOException. The only trick here is the use of a separate try/catch handler in the finally block to
handle errors that may arise when fos.close() executes.

When you run the Test AddBehavior test case now, a file is created in the TestRepository folderin
Eclipse. You won't actually be able to see this file until you refresh the folder (because the file was created
without Eclipse being aware ofit). To do that, right-click the TestRepository folder and select Refresh.
You'll see a single file with a name that consists of a long hex string—if you used the splash image in the test
case, the name is c00bc1ed28fabdbcebc3e4735decc83e, which is the MD5 fingerprint for the image file.

The Repository class is unable to recover properly if there are problems in storing persistently,
' Note which is why the class is designed to throw an unchecked lllegalStateException when an image !
' is added to the Repository. The server must handle these error situations. '

Everything looks pretty good, butwhen you run the test case again, it fails, declaring "Thatimage already

exists in the repository."” If you delete the image file in the /TestRepository folder manually, you can rerun
the test case and it will succeed. Let this be a lesson in repeatability. Test cases are important because you
can execute them automatically, ata moment's notice, to reaffirm your (increasing) confidence in your code!

I like whatI'm seeing so farl Get going on the homework for this lesson and when you're done, I'll meet you
in the nextlesson!

In the next lab you will fix the TestAddBehavior test case and complete the Repository class to properly maintain a persistent
index of files in the repository.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Java Object Serialization

Lesson Objectives

In this lesson you will:

e use Java Object Serialization for persistent storage
e use the Java Collections Framework.

Java Object Serialization

From its inception, Java offered support for linearizing objects into bytes and then restoring the original objects later.
Known as the Object Serialization model, this functionality can be used to transmit objects over a network, or store
objects persistently to disk. In this lesson, you'll learn about the benefits and challenges of using Object Serialization,
and the besttimes to implementiit.

We need an index to maintain the order of the images in the repository, and the metadata associated with each image.
You'll develop an Index class for this purpose and use Java's built-in ability to store the Index object persistently to
disk.

The trick to devising effective data structures is to envision the various ways in which the information is retrieved and
updated. Our index maintains the ordering of the images and, for now, the only metadata associated with each image
is its name, fingerprint, and size in bytes. The index will allow for iterative access through the entire set, as well as
retrieval by ordered position and by fingerprint. Since we want the metadata to be extensible, we will use a Properties
object for all metadata information.

(& in the Isrc folder's server.model package, create an Index class as shown:

http://docs.oracle.com/javase/tutorial/collections/
http://docs.oracle.com/javase/6/docs/technotes/guides/serialization/index.html

CODE TO TYPE: /src/server.model/Index.java

package server.model;
import java.util.*;

public class Index implements Iterable<String> ({
// Order of keys determines order in repository
ArrayList<String> keys = new ArrayList<String>();
Hashtable<String, Properties> meta = new Hashtable<String, Properties>();

public Properties getMetaData (String key) {
Properties md = meta.get (key);
if (md == null) { return new Properties(); }
return md;

}

public Properties setMetaData (String key, Properties props) {
Properties old = meta.get (key);
meta.put (key, props);
return old;

}

public boolean add(String key) {
if (keys.contains (key)) {
return false;
}
keys.add (key) ;
return true;

}

public Iterator<String> iterator () {
return keys.iterator();

}

public int size() {
return keys.size();

}

By creating this class, you expose methods for the conceived behavior of the index. This class implements the
Iterable interface, which allows you to iterate over all of the keys in the index using an enhanced for loop.

Here are the essential parts of this class:

OBSERVE:

public class Index implements Iterable<String> {

public Iterator<String> iterator () {

}

When Index implements lterable, it declares that it contains an iterator() method which constructs an lterator over its
aggregate elements. In addition, the type of elementreturned by the lterator is declared to be String (using the Java
generics capability). The enhanced for loop that takes advantage of this capability would look like this:

OBSERVE:

for (String key : idx) {
System.out.println (key) ;
}

The above code would print out (in order) the keys for the images stored by the Index object, idx:

OBSERVE:

public class Index implements Iterable<String> {
// Order of keys determines order in repository
ArrayList<String> keys = new ArrayList<String>();
Hashtable<String,Properties> meta = new Hashtable<String,Properties>() ;

public Properties getMetaData (String key) {
Properties md = meta.get (key) ;
if (md == null) { return new Properties(); }
return md;

}

public Properties setMetaData (String key, Properties props) ({
Properties old = meta.get (key) ;
meta.put (key, props)
return old;

}

public boolean add(String key) {
if (keys.contains (key)) {
return false;
}
keys.add (key) ;
return true;

}

public Iterator<String> iterator () {
return keys.iterator();

}

public int size() {
return keys.size() ;

}

The keys attribute is an ArrayList because you want to preserve the order ofimages in the repository by key. The
meta aftribute is an associative Hashtable that allows random access by key to retrieve or set the metadata
associated with each image. Although setMetaData's primary reponsibility is to store a Properties object for the
given key, with minimal programming effort, you can have it return the prior Properties object that had been associated
with the given key. This is a common pattern with get/set methods that eliminates the need to call getMetaData
separately in order to get the former value before updating it.

Repository still doesn't store metadata persistently to survive from one server execution to the next. Also, the Index
should be reloaded from persistent storage whenever the Repository is constructed. We want to integrate Index with
Repository.

Given the final Repository class from the prior lab, you need to store the Index to disk when it changes and load up the
complete Index object whenever a Repository is constructed. It makes sense to store the Index objectin a file within
the directory that contains the repository image files. Let's proceed with this task in stages. Make these changes to the
Repository class to store the Index object to disk (and load it from disk). The code won't compile until all missing
methods are in place:

CODE TO TYPE: /src/server.model/Repository.java

package server.model;

import java.io.*;
import java.util.*;
import util.*;

public class Repository {
final File storage;
Index index;
static final String indexFileName = "indexFile";
final File indexFile;
Hre—eourts

public Repository(File storage) throws IOException {
if (storage.exists () && storage.isDirectory()) {
this.storage = storage;
indexFile = loadIndex () ;
} else {
throw new IOException (YStorage—for—reposittorymust—e—an Tstiag—directorytSto
rageNotDirectory) ;

}

public String add(byte[] image, String name)
String fp = Fingerprint.getFingerPrint (image) ;
File f = new File (storage, fp);
if (f.exists()) |
throw new IllegalStateException ("hat—image—atready—extsts—inthe—reposttorytAlre
adyExistsImage) ;
}

FileOutputStream fos = null;

boolean failed = false;

try {
fos = new FileOutputStream (f);

} catch (FileNotFoundException fnfe) {
failed = true;

try {
if (!failed) {
fos.write (image) ;
}
} catch (IOException ioe) {
failed = true;
} finally {
try {
fos.close();
} catch (IOException ioe) {
ioe.printStackTrace();
failed = true;

if (failed) {
throw new IllegalStateException (“Hrebte—t rstract—itmage—fite—CortactAdmintst
+ator—"UnableToWriteFile) ;

fal Al no PR | Tl | B : k] I T | R [TAY
=] \ivEni) Tt T T —riage T e g T T YT

e
—court+-
Properties props = new Properties();
props.put ("name", name);
props.put ("totalBytes", image.length);
props.put ("fingerPrint", fp);
index.add (fp) ;
index.setMetaData (fp, props);

storelIndex();
return fp;

boolean storeIndex () {
FileOutputStream fos;
try {
fos = new FileOutputStream(indexFile) ;
} catch (FileNotFoundException fnfe) {
System.err.println ("Unable to store index file to:" + indexFile);
return false;

ObjectOutputStream oos = null;
try {
oos = new ObjectOutputStream(fos);
oos.writeObject (index) ;
} catch (IOException ioe) {
System.err.println ("Errors encountered while storing index file to:" + indexFile)

ioe.printStackTrace () ;
return false;
} finally {
try {
oos.close();
} catch (IOException ioe) {
System.err.println ("Errors encountered while closing index file.");

return true;

File loadIndex () {
index = new Index();

File idxFile = new File (storage, indexFileName) ;
if (idxFile.exists()) {
FileInputStream fis;
try {
fis = new FilelInputStream(idxFile);
} catch (FileNotFoundException fnfe) {
return null;

}

ObjectInputStream ois = null;

try {
ois = new ObjectInputStream(fis);
index = (Index) ois.readObject();
} catch (IOException ioe) {
System.err.println ("Problems encountered in loading Index file (" + idxFile + "

)"
ioe.printStackTrace();
} catch (ClassNotFoundException cnfe) {

System.err.println ("Index file (" + idxFile + ") is not a valid Index object."
)
} finally {
try {

ois.close();
} catch (IOException ioe) {
ioce.printStackTrace();

}

return idxFile;

public int size() {
return eewrtindex.size () ;

}

public static final String AlreadyExistsImage = "That image already exists in the rep
ository.";

public static final String UnableToWriteFile = "Unable to construct image file. Conta
ct Administrator.";

public static final String StorageNotDirectory = "Storage for repository must be a di
rectory.";

public static final String StorageDoesNotExistPrefix = "Storage for repository doesn'
t exist:";

}

We added a lotof new code here; let's discuss some of the more importantitems:

One significant change is the setof error strings that are defined because of the principle of "single pointof control." An

exception message string is defined in only one place, which makes testing your code more efficient. (You'll see the
benefit of that firsthand when you complete the test cases in this lab.)

In addition, now the Repository class is responsible for storing persistently and loading the Index object as itis
updated. The order of objects in the repository will be based on the order of keys in the index. Whenever the
Repository changes, the storelndex() method can be called to store information persistently to disk:

OBSERVE:
boolean storeIndex () {
FileOutputStream fos;

try {

fos = new FileOutputStream (indexFile) ;

} catch (FileNotFoundException fnfe) {
System.err.println ("Unable to store index file to:" + indexFile);
return false;

}

ObjectOutputStream oos = null;
try {
oos = new ObjectOutputStream (fos) ;
oos.writeObject (index) ;
} catch (IOException ioe) {
System.err.println ("Errors encountered while storing index file to:" + indexFile)

ioce.printStackTrace () ;
return false;
} finally {
try {
oos.close() ;
} catch (IOException ioe) {
System.err.println ("Errors encountered while closing index file.");

}

return true;

This method uses the java.io classes to interact with the file system. We create a FileOutputStream object to

access the designated indexFile on disk. Now we can use the writeObject() method of ObjectOut putStream to write

a Serializable object to a file. The code attempts to cover several exceptional circumstances. Also, the finally block
ensures that the output stream is closed properly upon completion.

When the Repository is instantiated the firsttime, the Index object must be loaded from disk, as described by the
loadindex() method:

Add loadIndex() method to Repository class

File loadIndex () {
index = new Index();

File idxFile = new File (storage, indexFileName) ;
if (idxFile.exists()) {
FileInputStream fis;
try {
fis = new FileInputStream(idxFile) ;
} catch (FileNotFoundException fnfe) {
return null;

}

ObjectInputStream ois = null;

try {
ois = new ObjectInputStream(fis);
index = (Index) ois.readObject ()
} catch (IOException ioe) {
System.err.println ("Problems encountered in loading Index file (" + idxFile + "

ice.printStackTrace () ;
} catch (ClassNotFoundException cnfe) {

System.err.println ("Index file (" + idxFile + ") is not a valid Index object."
)i
} finally {
try {

ois.close();
} catch (IOException ioe) {
ioce.printStackTrace() ;

}
}

return idxFile;

The loadlndex() method mirrors the storelndex() method. The only difference is thatitfirstinstantiates a new Index
objectin case there is no persistentindexFile on disk.

If you launch the Test AddBehavior test case now, you'll see the following output on the console.

OBSERVE:

Errors encountered while storing index file to:TestRepository\indexFile
java.io.NotSerializableException: server.model.Index

at java.io.ObjectOutputStream.writeObjectO (Unknown Source)

at java.io.ObjectOutputStream.writeObject (Unknown Source)

at server.model.Repository.storelndex (Repository.java:126)

at server.model.Repository.add (Repository.java:72)

at server.ProtocolHandler.process (ProtocolHandler. java:42)

at server.ipc.RepositoryThread.run (RepositoryThread.java:30)

Server Completed.

The exception trace tells you that you have not properly made the Index class serializable. Fortunately, you only need
to make this one change to the Index class to fix that:

CODE TO TYPE: /src/server.model/Index.java

public class Index implements Iterable<String>, Jjava.io.Serializable {

}

This is known as a "marker" interface because ithas no methods and itis used to mark objects so thatthe Java VM
can to store the object. Only those classes specifically tagged as implementing java.lang.Serializable can be stored to
disk. If any object could be serialized, itwould expose the internal private data of those objects to prying eyes, and

pose a real security risk.

Before you run the test case again, note that there is a "partially written" inde xFile file in the [TestRepository folder.
Ifyou don'tseeitlisted, Refresh the [TestRepository folder and it will become visible. Open itin Eclipse's text
editor and take a look at the string java.io.NotSerializableException. Delete thatfile. If you don'tthe loadlndex
method you just wrote will fail when attempting to load the partial file. Also, delete the image file in the
[TestRepository folder, otherwise the test case will fail because "Thatimage already exists in the repository."

Now re-run the Test AddBehavior test case and refresh the [TestRepository folder; you'll see an indexFile file.
Openitin Eclipse to see that this is a quasi-binary stored representation. While you may not be able to interpret all of
the characters, you'll see some strings that are recognizeable English, revealing the internal state of the objects that
are being stored to disk.

Re-run the Test AddBehavior test case, and you may be surprised to see it fail. We wrote the test case assuming that
the repository was empty. The setUp() method for this test case will likely erase all files (and the newly-persisted index
file). Modify clearTestRepository() method to the TestServer class to delete all files as found in the repository
directory (and this includes the persistentindex file, which is being placed in the same directory) as shown:

CODE TO TYPE: test/server.ipc/TestServer.java

public class TestServer extends TestCase {
public static final String testRepository = "TestRepository";

public static void clearTestRepository () {
File dir = new File(testRepository);
File[] existing = dir.listFiles();
for (File f : existing) {
if (!f.isDirectory()) {
assertTrue (f.delete());

}

Now, modify TestAddBehavior to provide some useful helper methods for our test cases:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

package server.ipc;

import java.io.*;

import java.net.*;

import server.model.*;

import util.*;

import junit.framework.TestCase;

public class TestAddBehavior extends TestCase {
RepositoryServer server;

Socket client;
PrintWriter toServer;
BufferedReader fromServer;

void startClient () throws Exception ({

client = new Socket ("localhost", 9172);

toServer = new PrintWriter (client.getOutputStream(), true);

fromServer = new BufferedReader (new InputStreamReader (client.getInputStream())):;
}

void stopClient () throws Exception {
client.close();
client= null;

}

void stopServer () throws Exception {
server.shutdown () ;
server = null;

protected void setUp() throws Exception {

The above methods allow you to startand stop a client, as well as the server. You'll continue to use the
TestServer.launchServer() method to start the server. The additional toServer and fromServer objects are used to
communicate from these clients to the server. Modify the setUp() method of Test AddBehavior to take advantage of
these methods:

CODE TO TEST: test/server.ipc/TestAddBehavior.java

protected void setUp() throws Exception ({
TestServer.clearTestRepository () ;

server = TestServer.launchServer () ;

1 = = fal 1 oy | 11 | Q1 7200\
cCTrIreirc — TewW oOCRKET (T rtoCaTIiIoStT T T
startClient () ;

}

protected void tearDown() throws Exception {

Toaade ol \
e ST TtaoOWwWIT (),

\,14_ ut.plu <),
stopServer () ;
stopClient () ;

Delete these files before constructing a Repository instance, otherwise the repository will pre-load the index file and
the deletion would have no effect. Because ofthese JUnit methods, you need to modify the testAddBehavior() test
case method in TestAddBehavior to remove otherwise duplicate functionality that has been moved to setUp() and
tearDown():

CODE TO TEST: /test/server.ipc/TestAddBehavior.java

public void testAddBehavior () throws Exception {

Docs ot Tyt 4 PR Dacs b T 2 4 12 e PRV
T TITCIW I T CTT | wre) p p. - 1T W T T TITCTWI TC p A J_J_CLLL,-KJCL, uk,t_/u

gy AR <l £ o Dazo AR | T
Dorreretrneaaer— Tt oMot YE W ourrereaneaterT (1w TPt

wESEreamt -

// Protocol for sending SIZE
toServer.println ("SIZE") ;
expectSuccess ("0", fromServer);

// Protocol for sending an image

toServer.println ("ADD-BEGIN") ;

toServer.println ("sampleImage") ;

File f = new File("images", "repositorySplash.png");
toServer.println (ImageEncoding.encode (f));
toServer.println ("\nADD-DONE") ;

expectSuccess (null, fromServer);

// Expect repository with 1 image
toServer.println ("SIZE") ;
expectSuccess ("1", fromServer);

You'll also need to testthe more complex behavior that takes place when you stop and start multiple clients, or even
servers.

We'll create some building block methods that will be useful in any test case method you will write. These methods
issue requests to the server to compute the size ofthe repository and add a new image to the repository. Modify
TestAddBehavior to support more comprehensive tests:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

void requestSIZE () throws IOException {
toServer.println ("SIZE") ;

void requestADD (String name, File f) throws IOException {
toServer.println ("ADD-BEGIN") ;
toServer.println (name) ;
toServer.println (ImageEncoding.encode (f));
toServer.println ("\nADD-DONE") ;

Now add test case that verifies a sequence of activities between a client and server:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public void testBasicAddBehavior () throws Exception {
requestSIZE () ;
TestAddBehavior.expectSuccess ("0", fromServer);

File £ = new File ("images", "repositorySplash.png");
requestADD ("sampleImage", £f);
TestAddBehavior.expectSuccess (null, fromServer);

requestSIZE () ;
TestAddBehavior.expectSuccess ("1", fromServer);

stopClient () ;
stopServer () ;

server = TestServer.launchServer();
startClient () ;

requestSIZE () ;
TestAddBehavior.expectSuccess ("1", fromServer);

requestADD ("sampleImage", f);
expectFailure (Repository.AlreadyExistsImage, fromServer);

The testrepository is cleared out and a server and client are executed. Then an image is added to the repository and
the size of the repository is confirmed to be 1. Then both client and server are stopped and restarted. Now the
repository contains a single image, attempts to add the same image again, and fails.

To complete the Test AddBehavior testcase, add an expectFailure method as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public static void expectFailure (String expect, BufferedReader fromServer) throws IO
Exception {
int response = Integer.valueOf (fromServer.readLine())
String value fromServer.readLine () ;

if (response == -1) {
if (expect != null) {
assertEquals (expect, value);
} else {

System.out.println ("received:" + value);
}
} else {
fail (" (response:" + response + ") received " + value + " not " + expect);

This is nearly identical to the expectSuccess() method. The only difference is thatit checks to make sure that the
response from the serveris -1.

This test case represents a significantinvestment to ensure basic functionality. Execute the TestServer and
TestAddBehavior test cases to validate the correct behavior. Generate code coverage using EcCIEmma for each of
these testcases. The EclEmma reporting panel shows you the individual reports for each individual test case, but you
really want the combined results. Fortunately, the EcIEmma panel contains the ability to merge multiple runs together
to produce the result you need. On the panel, there is a "Merge Sessions" button with two stacked red/green bars:

[2/ Problems | @ Javadoc | [, Declaration =2 — S— . "| o &% ¥ =0
TestAddBehavior (Jan 25, 20}2 10:51:01 A Click here to merge. | Merge Sessions
Element Total Instructions
s I;_—‘,J- AdvancedlavaCourse L 237 % 608 2570

=! Click this button to bring up a dialog box where you can select the number of ECIEmma sessions to merge to
produce a single report of coverage.

You can see that the code coverage is rising (atleast on the server side) and most of the non-executing code is found
in exception handlers. You still have your work cutoutfor you, butyou're on your way! You can continue to merge new
runs, butthese reports are not persistent. Thatis, if you exit Eclipse you start with a fresh slate when you come back.

There is one final point we need to cover regarding Java's Serialization model. If the Index class is modified after an
instance has been written to disk, the default behavior is to assume that the persistently saved object cannot be de-
serialized because ofthe risk of an inconsistent state. The complex solution to this problem would be to design
specialized writeObject() and readObject() methods (you can explore these further in available tutorials on Java). A
basic, and likely sufficient solution is to define a static final long serialVersionUID with the serializable class.
Every instance written to disk embeds this serialVersionUID; the identifier is validated when the object is de-serialized.
If you can guarantee that the only changes to a class are methods or transient attributes, the de-serialization should
succeed.

You can mark an attribute transient to ensure that the Java Serializable mechanism ignores the attribute
when storing and loading that object.

Note

In Eclipse, you may have noticed that the Java editor of the Index class showed this warning:

public class Index implements Iterable<String», java.io.Serializable {

. The serializable class Index does not declare a static final serialVersionUID field of type long
3 quick fixes available:

fS#% Ordered| 4 Add default serial version ID

ArrayList<5| 4k Add generated serial version ID

@ Add @SuppressWarnings 'senal’ to 'Tndex’

/%% Stored
.) Press 'F2° for focus
Hashtable<5 Iy Y = ¥ Y i s -

Select the second "Add generated serial version ID" option; a static attribute is added to Index (your value will likely be
different):

OBSERVE:

/** Serial version UID will enable loading from disk even when new methods are added.
*/

private static final long serialVersionUID = -4153322746301327742L;

As long as you maintain the integrity of existing persisting attributes, future compilation of this class will not affect the
way an Index objectis loaded. If a structural change makes the new class version incompatible with an older stored
version (and you are required to maintain backward compatibility), you will need to write specialized writeObject() and
readObject() methods to support the loading of serializable objects with the older version.

Thatdoes itfor ourlesson on serialization. head over to your project adn work on that. WHen you're ready, move on
to the nextlesson.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://java.sun.com/developer/technicalArticles/ALT/serialization/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using XML to Specify a Protocol

Lesson Objectives

In this lesson you will:

e write an XML schema file to represent the protocol.

XML as Protocol Specification

Even though we have implemented only two messages in the system, we need to have an unambiguous way to
specify the protocol so that both client and server know how to communicate. It's overly optimistic to assume thatour
code contains all relevant details. Atthe same time, itis impractical to write a protocol design document that must be
updated each time the protocol changes. Ideally, we'll use a special language to specify the protocol that can become
part of the code used by both client and server. The overall philosophy that expects us to use ASCII text to represent
complex structures is simply outdated and ineffective. The industry standard for capturing complex structures textually
is the eXtensible Markup Language (XML). Still, you have probably heard ofitor even used ityourself atsome time in
your professional career. If you're interested in learning about XML in detail, contact us to find out more about our XML
courses. You can also search for yourself and read up on the intricacies and power of XML. In this lab, you'll learn just
enough to be able to supportthe clientand server as they seek to communicate with each other.

The cornerstone for the protocol specification is an XML schema definition (XSD) file. This file defines a schema that
can be used to validate that a given XML string is well-formed and valid. In general practice, we speak of an XML
document, butfor our purposes we'll use the term XML string, because those fragments are single messages. Using a
schema definition, we can validate that a given string conforms to that schema before the client sends a command to
the server. Similarly, before the server responds in kind, it must validate each XML string being sent to the client.

7 In the top folder of your DistributedApp project, create a file named repository.xsd. If Eclipse opens the editorin
Design mode, click the Source tab at the bottom of the editor window, and then type the XML schema definition as
shown below:

http://en.wikipedia.org/wiki/XML
mailto:info@oreillyschool.com

CODE TO TYPE: /repository.xsd

<?xml version='l.0' encoding='UTF-8'?>
<xs:schema xmlns:xs='http://www.w3.0rg/2001/XMLSchema’'>

<xs:element name='message'>
<xs:complexType>
<xs:choice>
<xs:element ref='response'/>
<xs:element ref='request'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='response'>
<xs:complexType>
<xs:choice>
<xs:element ref='addResponse'/>
</xs:choice>
<xs:attribute name='success' type='xs:boolean' use='required'/>
<xs:attribute name='reason' type='xs:string' use='optional'/>
</xs:complexType>
</xs:element>

<xs:element name='request'>
<xs:complexType>
<xs:choice>
<xs:element ref='addRequest'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='addRequest'>
<xs:complexType>
<xs:sequence>
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='addResponse'>
<xs:complexType>
<xs:attribute name='numBytes' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>
</xs:schema>

This XSD file supports the two message types envisioned for the system. We won't analyze itin detail, but we'll

presentenough information to understand how it works with this application. To learn more about XML schemas, see
the W3Schools Schema tutorial and W3.org Schema Primer, or contact us for info about our XML course offerings.

Click the Design tab at the bottom of the Eclipse editor window (if you don't see the Design tab, close the file, right-

click itin the Package Explorer, select Open Wit h, select Other..., and select XML Editor):

http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/xmlschema-0/
mailto:info@oreillyschool.com

| repository.asd 1 =
1 = '.':-:|.|Dsh’lbutcdﬂpp|'src.btn1.l‘repostnr5r.J@di- *ITF=5" 2> ﬂ

<x2ischers xmlns:ges="kid y:,-')"mm'. w3, obg/ 2001 XNEEchama ' >

B

= I.r-':-—l-—.'m-n‘ neme= "'mess s

<¥3icomplexTypes
I Nk

sxazch

- emeEnt gel="respongeat/ >
elem=nt rcef='regquast'/>
< ype
Bil </x=s:element:
13= <xzielement neme='responsea’:
4 <¥S:complexType>
t caf="a

For design view, click here

¥3:iattribute na

Wrikable Smart Iresrt | 451
Expand the elements and components:
|%| repository.xsd &3 =0
==
Mode | Content -
P2 wml version="1,0" encoding="UTF-8'
= [&] xs:schema
xmins:xs hitkp: /e w3, orgf 2001 5MLSchema
w5ielement
name message
Bl [8] xsicomplexType
=1 [&] xs:choice
= [8] xsielement
ref response
=[] xs:element |
ref request
= [&] xs:element
name respaonse
B[] wsicomplexType
=[] xs:chaoice

=[] xsielement

ref addResponse -
4| - i I o

Design] Source |

The initial elementin this schema is a message, which is defined to be either aresponse orarequest. Aresponse
is a message thathas a boolean success attribute and a string reason attribute if the response represents a failure.
The reason attribute is declared to be optional, which mean a successful response doesn't need to include a
meaningless reason attribute value.

Arequest is further subdivided into individual requesttypes. The first (and only, so far) is addRequest. Similarly, a
response is further subdivided into response types; addResponse is the only one so far. Each individual reque st
(orresponse)is described in terms of the defined attributes and child elements that must be present. addRe que st
has a string name attribute and an image child element. The question remains: how is the image data going to be
"inserted" into the XML message? In an earlier lab, you wrote code that embedded MIME-encoded data, but this only
worked because of a sentinel "ADD-DONE" string that was unlikely to be part of the encoding. Similarly, the designers
of XML created the ability to encode arbitrary ASCIl data using an unparsed section which begins with <I[[CDATA[and
ends with]]>. The terminating characters]]> do notappear in the MIME-encoded data format. This fragment
represents a valid addRequest:

http://en.wikipedia.org/wiki/Base64

Valid addRequest XML fragment

<request>
<addRequest name="sampleImage">

</addRequest>
</request>

The next XML fragment describes the proper addResponse when an image is added to the repository successfully.

The success attribute is part of the response element, as specified in the XSD file. Now you may be thinking, "where
is the closing '</addResponse>' element which is required for well-formed XML?" Well, the XML designers allow for a

shortcut when elements have no children. An element without children can be defined and closed with />.

Valid AddResponse XML fragment

<response success="true">
<addResponse numBytes="9160"/>
</response>

Go ahead and create some classes to manage these XML messages. Don'tjustembed XML string fragments
throughout your code, because that would become a nightmare to manage and maintain.

tEf In the Isrc folder, create an xm| package.

& In the Isrc folder's new xml package, create a Message class to handle most of the functionality required for
parsing and constructing XML strings:

CODE TO TYPE: /src/xml/Message.java

package xml;

import java.io.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;
import javax.xml.validation.*;
import org.w3c.dom.*;

import org.xml.sax.*;

public class Message {
static DocumentBuilder builder;

static void configure () {
DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance();
factory.setNamespaceAware (true) ;
SchemaFactory sf = SchemaFactory.newlInstance ("http://www.w3.0rg/2001/XMLSchema") ;

try {
factory.setSchema (sf.newSchema (new Source[] {new StreamSource ("repository.xsd")})
)
builder = factory.newDocumentBuilder () ;

} catch (Exception e) {
throw new RuntimeException ("Unable to configure Message");

}

Let's review some of the standard boilerplate code in the configure() method:

OBSERVE:

static void configure () {
DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance () ;
factory.setNamespaceAware (true) ;
SchemaFactory sf = SchemaFactory.newlInstance ("http://www.w3.0rg/2001/XMLSchema") ;
try {
factory.setSchema (sf.newSchema (new Source[] {new StreamSource ("repository.xsd")})

builder = factory.newDocumentBuilder () ;
} catch (Exception e) {
throw new RuntimeException ("Unable to configure Message") ;

}

Java has built-in XML support as defined in the javax.xml.* packages. The above code configures the Message class
to use the schema as defined by repository.xsd. It constructs a singleton builder object to parse XML strings
conforming to the repository.xsd schema definition you just created. This singleton builder object must be handled
carefully, that's why outside classes are unable to access this object. Write the Message constructor which is the only
method that uses the builder object:

CODE TO TYPE: /src/xml/Message.java

public class Message {

public final Node contents;

public Message (String xmlSource) throws IllegalArgumentException ({
if (builder == null) {
configure () ;

}

try {
InputSource is = new InputSource (new StringReader (xmlSource));

// parse method in builder is not thread safe.
Document d = null;
synchronized (builder) {

d = builder.parse(is);

}

// Grab first (and only) child (either request or response)
NodeList children = d.getChildNodes () ;

for (int i = 0; i < children.getLength(); i++) {
Node n = children.item(i);
if (n.getNodeType () == Node.ELEMENT NODE) {
contents = n;
return;

}

throw new IllegalArgumentException ("XML document has no child node");
} catch (Exception e) {

e.printStackTrace () ;

throw new IllegalArgumentException (e.getMessage());

Let's discuss this addition in a little more detail.

OBSERVE:

public class Message {

public final Node contents;

public Message (String xmlSource) throws IllegalArgumentException {
if (builder == null) {
configure() ;

}

try {
InputSource is = new InputSource (new StringReader (xmlSource)) ;

// parse method in builder is not thread safe.
Document d = null;
synchronized (builder) {

d = builder.parse (is) ;

}

// Grab first (and only) child (either request or response)
Nodelist children = d.getChildNodes () ;
for (int i = 0; i < children.getLength(); i++) {

Node n = children.item(i) ;

if (n.getNodeType () == Node.ELEMENT NODE) {
contents = n;
return;

}
}

throw new IllegalArgumentException ("XML document has no child node") ;
} catch (Exception e) {

e.printStackTrace () ;

throw new IllegalArgumentException (e.getMessage());

If the builder has notyet been configured, the constructor self-configures; this is a useful technique to simplify your
application initialization code. Also, access to the builder.parse() method is enclosed within a synchronized
(builder) code block because that method is not "thread-safe." This ensures that with all simultaneous attempts to
construct Message objects, no more than one will ever access the parse() method atthe same time.

The real work for this class takes place in its constructor, which receives an XML string as an argument. The builder
parses the xmISource string using a StringReader object. The constructor will succeed only if the XML string
conforms to the repository.xsd schema definition file. Once the parsing completes, the builder returns the root
Document node for the Document Object Model (DOM) representing the XML string.

Given an XML string, the builder creates a tree-like recursive object that represents the structure and relationships
encoded in the string. At this point, there is a single root Node object corresponding to the XML string. Using the
existing XML API, you can navigate through the children (and grandchildren) nodes within the structure to locate all
elements of the original XML string.

For now, you wantjust the first Node in the Document. The forloop in the constructor shows how to use the XML
APl to iterate over all of the children for a given Document (or Node) object. This loop retrieves a NodeL.ist object over

which you make repeated calls to Node n = children.item(i) ("get the ith child"). Once you have located a node of
type ELEMENT_NODE, you know you have found either the request or the response, so this node serves as the
contents for the Message. If no such element exists, then the string doesn't conform and an
lllegalArgumentException can be thrown.

Before you use these XML messages, you need to validate that this Message class actually works.
In the Itest folder, create an xml package.

E In this new xm| package, create a ValidateXMLMessages test case as shown:

CODE TO TYPE: /test/xml/ValidateXMLMessages .java

package xml;

import server.model.*;
import junit.framework.TestCase;

public class ValidateXMLMessages extends TestCase {

public void testAddRequest () {
String addRequestSample = "<request><addRequest name='sampleImage'>" +
"</addRequest></request>";
Message m = new Message (addRequestSample) ;

assertEquals ("request", m.contents.getLocalName())
}
public void testAddResponseSuccess () {
String addRequestSample = "<response success='true'><addResponse numBytes='9160"'/><
/response>";
Message m = new Message (addRequestSample) ;
assertEquals ("response", m.contents.getLocalName())

}

public void testAddResponseFailure() {
String addRequestSample = "<response success='false' reason='" + Repository.Already
ExistsImage + "'>" +
"<addResponse numBytes='0'/></response>";
Message m = new Message (addRequestSample) ;
assertEquals ("response", m.contents.getLocalName());

}

public void testFailedRequest () {
try {
String notInProtocol = "<request><missingRequest name='samplelmage'>" +
"</missingRequest></request>";
new Message (notInProtocol) ;
fail ("Should detect non-existing request.");
} catch (Exception e) {
// success

Each test case method follows a general approach. Let's look more closely at testAddRequest(); the other test case
methods are similar:

OBSERVE:

public void testAddRequest () {
String addRequestSample = "<request><addRequest name='sampleImage'>" +
"</addRequest></request>";
Message m = new Message (addRequestSample) ;
assertEquals ("request", m.contents.getLocalName()) ;
}

The test case method uses the Message constructor to instantiate a Message object from the sample
addRequestSample string. If this is the firsttime that a Message object has been constructed, the configure() method
presented earlier will be called immediately to properly load up the requisite repository.xsd object. Assuming the
constructor returns successfully, the assertEquals JUnit method validates that the (local) name of the Node
associated with the contents of the message object is "request”.

In conjunction, these test cases validate that you can construct an addRequestand two proper responses: one for
success and one for failure. For completion, there is a test case for a non-existentrequest (missingRequest) and a
test case where the input string does not contain well-formed XML. Run these test cases to make sure that all succeed.

What's this? testFailedRequest() allows a Message object to be constructed? Let's take a closer look at this test case
method:

testFailedRequest test case method

public void testFailedRequest () {
try {
String notInProtocol = "<request><missingRequest name='sampleImage'>" +
"</missingRequest></request>";
new Message (notInProtocol) ;
fail ("Should detect non-existing request.");
} catch (Exception e) {
// success

As you can see, there is no missingRequest in the schema definition file, so whatis this all about? The issue is a
subtle one and occurs because of the way that the XML technology was developed and adopted. You are responsible
for checking the errors that occur and itis yourjob to determine how to deal with validation errors. To do that, you'll
need to register with builder an error handler thatimplements org.xml.sax.ErrorHandler.

& In the Isrc folder's xml package, create an XMLHandler class to deal with validation errors properly:

CODE TO TYPE: /src/xmIl/XMLHandler.java

package xml;

import java.util.*;
import org.xml.sax.*;

public class XMLHandler implements ErrorHandler {
ArrayList<String> errors = new ArrayList<String>();

/** Keep record of all errors and continue until failFast is called. */
public void error (SAXParseException spe) throws SAXException {
errors.add(spe.toString());

}

/** Fail immediately with fatal errors. */
public void fatalError (SAXParseException spe) throws SAXException {
throw spe;

}

/** Emit warnings as they come and otherwise ignore. */

public void warning (SAXParseException spe) throws SAXException {
System.out.println ("WARNING: " + spe.toString());

}

/** Terminate immediately upon detecting any XML errors. */
public void failFast () {

if (errors.size() == 0) {
return;

}

for (String s : errors) {

System.out.println ("ERROR:" + s);
}
errors.clear () ;
throw new RuntimeException ("Parsing Failed");

Let's look at this class more closely.

http://docs.oracle.com/javase/6/docs/api/org/xml/sax/ErrorHandler.html

OBSERVE:

ArraylList<String> errors = new ArrayList<String>();

/** Keep record of all errors and continue until failFast is called. */

public void error (SAXParseException spe) throws SAXException {
errors.add (spe.toString()) ;

}

/** Fail immediately with fatal errors. */
public void fatalError (SAXParseException spe) throws SAXException {
throw spe;

}

/** Emit warnings as they come and otherwise ignore. */

public void warning (SAXParseException spe) throws SAXException {
System.out.println ("WARNING: " + spe.toString());

}

/** Terminate immediately upon detecting any XML errors. */
public void failFast() ({

if (errors.size() == 0) {
return;

}

for (String s : errors) {

System.out.println ("ERROR:" + s);
}
errors.clear() ;
throw new RuntimeException ("Parsing Failed");

The builder XML parser identifies "warnings," "errors," and "fatal errors" and then invokes the appropriate method on
the registered error handler. If no error handler is registered, no validation takes place! Once you register this error
handler with the builder, all warnings are output to System.out, all fatal errors cause an exception to be
thrown (thus halting the parsing) and all errors are collected in an ArrayList object. After the document has
been parsed, you call failFast to determine whether any errors occured; if there were any, they are output to
System.out and a RunTimeException is thrown. The errors ArrayList must be cleared to avoid having future
parse requests fail incorrectly, since all parsing uses the same builder object (and by extension the same error
handler).

Finally, to make sure there will never be concurrent shared usage of this handler, the invocation to failFast mustoccur
within a synchronized block. Modify the Message class as shown:

CODE TO TYPE: /src/xml/Message.java

package xml;

import java.io.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;
import javax.xml.validation.*;
import org.w3c.dom.*;

import org.xml.sax.*;

public class Message {
static DocumentBuilder builder;
static final XMLHandler errorHandler = new XMLHandler ();
public final Node contents;

public Message (String xmlSource) throws IllegalArgumentException ({

if (builder == null) {
configure();
}
try {
InputSource is = new InputSource (new StringReader (xmlSource));

// parse method in builder is not thread safe.
Document d = null;
synchronized (builder) {
d = builder.parse(is);
errorHandler.failFast () ;

// Grab first (and only) child (either request or response)
NodeList children = d.getChildNodes () ;

for (int i = 0; 1 < children.getLength(); i++) {
Node n = children.item(i);
if (n.getNodeType () == Node.ELEMENT NODE) {
contents = n;
return;

throw new IllegalArgumentException ("XML document has no child node");
} catch (Exception e) {

e.printStackTrace () ;

throw new IllegalArgumentException (e.getMessage());

static void configure () {
DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance();
factory.setNamespaceAware (true) ;
SchemaFactory sf = SchemaFactory.newInstance ("http://www.w3.0rg/2001/XMLSchema") ;

try |
factory.setSchema (sf.newSchema (new Source[] {new StreamSource ("repository.xsd")})
)
builder = factory.newDocumentBuilder () ;

builder.setErrorHandler (errorHandler) ;
} catch (Exception e) {
throw new RuntimeException ("Unable to configure Message");

Running the Validate XMLMessages test case should convince you that each Message object conforms to a valid
XML string. Now, before you get too satisfied, add the following testBadXML() test case method to be the first test case

method in Validate XMLMessages:

CODE TO TYPE: /test/xml/Validate XMLMessages.java

package xml;

import server.model.*;
import junit.framework.TestCase;

public class ValidateXMLMessages extends TestCase {

public void testBadXML () {
try |
String bad = "<reg>Not even XML< ><REQ/>";
new Message (bad) ;
fail ("Should detect non-existing request.");
} catch (Exception e) {
// success

This test case method uses a string thatisn't valid XML structure. After adding this method, run your test cases.
Existing test case methods that passed before might now faill Surely this is a sign of something more significant. Go
back and review the Message constructor and you'll see that the outermost exception handler doesn't call
errorHandler.failFast() properly. Correct this oversightas shown:

CODE TO TYPE: /src/xml/Message .java

public Message (String xmlSource) throws IllegalArgumentException {
if (builder == null) {
configure() ;

try A
InputSource is = new InputSource (new StringReader (xmlSource));

// parse method in builder is not thread safe.
Document d = null;
synchronized (builder) {
d = builder.parse(is);
errorHandler.failFast () ;

}

// Grab first (and only) child (either request or response)
NodeList children = d.getChildNodes () ;

for (int 1 = 0; i1 < children.getLength(); i++) {
Node n = children.item(1i);
if (n.getNodeType() == Node.ELEMENT NODE) {
contents = n;
return;

}

throw new IllegalArgumentException ("XML document has no child node");
} catch (Exception e) {

errorHandler.failFast () ;

e.printStackTrace () ;

throw new IllegalArgumentException (e.getMessage());

Run the tests again and they should all pass.

Status Messages

The XML schema definition file is constructed to be readily extensible as new requests (and responses) are defined.
As a general principle, each request will have a corresponding response to allow the client to know that the request
was properly received and acted upon. Given this principle, what should be the first request that the client makes when
connecting to the server? Or to think of this another way, what should be the first response thatis sent to the client?
Modify the XSD file to support a statusRequest that contains no attributes or other information. This could be used
as the first clientrequest. The corresponding statusResponse will return information about the currentimage being
viewed and the total number ofimages in the repository. The schema should be changed to support the following XML
fragment:

Sample statusResponse XML fragment

<response success="true">
<statusResponse key="c00bcled28fabdbcebc3ed735decc83e" index="1" total="17"/>

</response>

This message encodes the state of the repository (having 1 of 17 images) and the specific key of the image being
observed by the client. Start by modifying the repository.xsd file:

CODE TO TYPE: /repository.xsd

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs='http://www.w3.0rg/2001/XMLSchema’'>

<xs:element name='message'>
<xs:complexType>
<xs:choice>
<xs:element ref='response'/>
<xs:element ref='request'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='response'>
<xs:complexType>
<xs:choice>
<xs:element ref='addResponse'/>
<xs:element ref='statusResponse'/>
</xs:choice>
<xs:attribute name='success' type='xs:boolean' use='required'/>
<xs:attribute name='reason' type='xs:string' use='optional'/>
</xs:complexType>
</xs:element>

<xs:element name='request'>
<xs:complexType>
<xs:choice>
<xs:element ref='addRequest'/>
<xs:element ref='statusRequest'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='addRequest'>
<xs:complexType>
<xs:sequence>
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='addResponse'>
<xs:complexType>
<xs:attribute name='numBytes' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
<xs:complexType>
<xs:attribute name='key' type='xs:string' wuse='required'/>
<xs:attribute name='index' type='xs:integer' use='required'/>
<xs:attribute name='total' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>
</xs:schema>

Of course, you have to extend the Validate XMLMessages test case to validate that you can properly parse both of
these messages:

CODE TO TYPE: /test/xml/ValidateXMLMessages .java

public void testStatusRequest () {
String statusSample = "<request><statusRequest/></request>";
Message m = new Message (statusSample) ;
assertEquals ("request", m.contents.getLocalName ()) ;

}

public void testStatusResponse () {
String statusResponse = "<response success='true'><statusResponse key='asdkjhkas' i
ndex='1"' total='17"'/></response>";
Message m = new Message (statusResponse) ;
assertEquals ("response", m.contents.getLocalName())

}

Now, relaunch all JUnit test cases to validate your code so far. Defining a protocol is a necessary first step toward the

implementation of the overall application. Once the skeleton supportis in place, you can begin to add pairs of

messages (thatis, requests and responses). Along the way, adhere to the philosophy that has guided you so far:
testing incrementally as you go. Instead of trying to codify the entire protocol in advance, you are now ready to begin
integrating the protocol into the application, as you will do in the next lab.

Get busy with this lesson's homework and I'll see you soon!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

XML Protocol Implementation

Lesson Objectives

In this lesson you will:

e sendrequests and receive responses over the IPC layer.
e retrieve information from XML objects using the Java XML API.

XML Protocol Implementation

Now that you've defined the XML protocol, you need to modify the clientto send XML requests, and the server to
receive them and send XML responses in return. Note that you don't need to change the IPC layer itself, only the
ProtocolHandler class. The changes are substantial because they reflect a different abstraction: the transfer of an
XML message instead of the current line-by-line transfer of ASCII text.

The process() method in ProtocolHandler is still responsible for handling the protocol using the raw input and
output objects provided by the IPC layer, but now it concatenates each line of input until a full requestis seen. To
facilitate that process, the client makes sure that each requestis sent with a trailing new-line character. This ensures
thatthe process() method will read a line of ASCII text at some point, that ends with "</request>" in the XML
representation of the request. From the raw XML, a Message objectis constructed and handed offto a
process(Message) method, which acts on the request and returns the appropriate response. This response
Message is converted back into a raw XML string to be written to the socket which communicates back to the client.

Your firsttask is to replace ProtocolHandler with the implementation below. You can delete the out put() and
outputError() methods and replace the existing process() method as shown:

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;

import xml.x*;

import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler ({
final Repository repository;
public static final String endRequest = "</request>";

public ProtocolHandler (Repository r) {
repository = r;

}

public boolean process (BufferedReader fromSocket, PrintWriter toSocket) {
try |
String line = fromSocket.readLine() ;
if (line == null) { return false; }
StringBuilder buf = new StringBuilder (line);
while (!buf.substring(buf.length() - endRequest.length(), buf.length()) .equals(en
dRequest)) {
line = fromSocket.readLine () ;
if (line == null) { return false; }
buf.append(line);
}

Message request = new Message (buf.toString());
Message response = process (request);
toSocket.println (response.toString()) ;
return !toSocket.checkError (),

} catch (Exception e) {
e.printStackTrace () ;
return false;

This code won't compile until you write a process(Message) method (we'll do thatin just a bit). First, check out the

revised process(BufferedReader, Print Writer) method which contains the while loop for processing input strings
from BufferedReader:

OBSERVE:
String line = fromSocket.readLine () ;
if (line == null) { return false; }

StringBuilder buf = new StringBuilder (line);

while ('buf.substring(buf.length()-endRequest.length(), buf.length()) .equals (endReque
st)) {

line = fromSocket.readLine() ;
if (line == null) { return false; }
buf.append(line) ;

}

This code concatenates string lines read from the client until the mostrecently read string is terminated by the
"</request>" string (the endRe quest constant attribute stores this value). The rather complicated-looking condition to
the while loop, checks to see ifthe buf StringBuilder object ends with the endRe quest string. Ifit does not, the
program reads another string line from the fromSocket and appends itto buf.

Once that while loop completes, buf contains the full XML string requestfrom a client. The remaining code in the
method constructs a Message objectto be processed by a process(Message), and the resulting Message
response is returned to the client. Let's write this process(Message) method. Start by entering this method skeleton:

CODE TO TYPE: /src/server/ProtocolHandler.java

public Message process (Message request) {
Node child = request.contents.getFirstChild() ;
if (child.getLocalName () .equals ("addRequest")) {
String name = child.getAttributes () .getNamedItem("name") .getNodeValue () ;
Node imageNode = child.getFirstChild();

// TODO: Fill in processing of addRequest
return null;

}

return null; // unknown request? No idea what to do.

Take a closerlook:

OBSERVE:

public Message process (Message request) {
Node child = request.contents.getFirstChild() ;
if (child.getLocalName () .equals ("addRequest")) {
String name = child.getAttributes () .getNamedItem("name") .getNodeValue () ;
Node imageNode = child.getFirstChild() ;

// TODO: Fill in processing of addRequest
return null;

}

return null; // unknown request? No idea what to do.

We use the XML APl to process the Message DOM object. The method above contains the essential XML API
calls that you'll use when dealing with XML objects. The parsed XML is represented as a tree-like data structure with
nodes thatrepresent the elements of the XML document being parsed. The Message class already stores as
contents, the node associated with the request (or response) message. This node corresponds to the
"<request>" (or"<response>")elementin repository.xsd. So, in order to identify the request, we look at the
child of the contents node. The Java API provides all the methods we need to go through a DOM:

1. Given a Node with children, getFirstChild() returns the first child node; this convenience method helps you
navigate down a tree quickly when you know there is only a single child.

2. getAttributes () returns a NamedNodeMap which is in essence a hash table with keys that are the attribute
names, with values that are Nodes that store the attributes' values in XML.

3. Given a Node, getNodeValue() returns the associated String value; this allows you to get the value for
an attribute.

4. getTextContent() returns the text associated with an element. As a markup language, XML allows
fragments of the form <Object>SomeValueHere</Object>. Use getTextContent() on the Node for the
given Object element to retrieve the text associated with the element (in this case, "SomeValueHere").

You can use these APl methods when completing the implementation of process(Message):

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getFirstChild()
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getAttributes%28%29
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/NamedNodeMap.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getNodeValue()
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Node.html#getTextContent()

CODE TO TYPE: /src/server/ProtocolHandler.java

public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";

public Message process (Message request) {
Node child = request.contents.getFirstChild();
if (child.getLocalName () .equals ("addRequest")) {
String name = child.getAttributes () .getNamedItem ("name") .getNodeValue () ;
Node imageNode = child.getFirstChild();

String xmlResp;

try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());
repository.add (bytes, name);

xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "
' /></response>";
} catch (IOException e) {
xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +

"<addResponse numBytes='0'/></response>";
} catch (IllegalStateException e) {
xmlResp = "<response success='false' reason='" + Repository.AlreadyExistsImage
+ lll>l| +
"<addResponse numBytes='0'></addResponse></response>";

return new Message (xmlResp) ;

TmAD ma 11 2 2 £ SR +
TODO T Tt It pPr SIS T oo egHesST

= 11
reTorir rrtarry

return null; // unknown request? No idea what to do.

The code above adds the constant CorruptedimageDat a, which stores the error message for later testing:

OBSERVE:

public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";

Check out the core logic of this new code:

OBSERVE:

byte[] bytes = ImageEncoding.decode (imageNode.getTextContent()) ;

repository.add(bytes, name);

xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/></r
esponse>";

This code uses the imageNode.getTextContents() API call to retrieve the string that contains the MIME-encoded
bytes for the image being sent by the client. Next, the ImageEncoding class you created earlier decodes this string
into a proper byte[] array to be inserted into the repository.

To try out this new capability, modify RepositoryClient as shown:

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import java.net.*;
import xml.*;
import util.*;

public class RepositoryClient {
public static void main(String[] args) throws Exception ({
SplashScreenlogic.update ("connecting to localhost::9172");
delay (250);

Socket server = new Socket ("localhost", 9172);

SplashScreenlogic.update ("connected to localhost::9172");
delay (250);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);

BufferedReader fromServer = new BufferedReader (new InputStreamReader (server.getInp

utStream()));
SplashScreenlogic.update ("initializing with server...");
delay (250);

£ L Ja) 2 Ly ‘
TOTr—(TIrTCc ot — Uy frait D7 fror T
PN} 3o NO T
cCOoCY [SR e e G ¢ W Ay
=S SN e] I 1o LAY c
T Toott =CTT) s o s Ay
oot 4 bl £ [c fa) PAE VANRY
TITcegetr £ PoOITSe——TIrcegeYr TTOCUT (L L ofoctE ooty
fars =~ PRE VA
OCL TIg aroc— rrofthocrver—readorie
Lo/ Ta ¥y 4
IT (eSO OoTsS ==—UTT 1
. 4 | yawi IR] AL 1 £ T n__ bl \
DY S CCIH. OO C s DL TITCtIirt (irar -7 T OO e Y O T riagesST T [eEmTI—y a7
] b Lo/ 1\ 14
T eTIrSe IT (feSpoirsTe— T 1
fa) 4 L | L k]
OYyoCCl.Cr s prrircririvaracyy
) bl L
T TSt
fa) . | VA1 o) : |] n_)
Oy o CeH. Cr - Pr riTctir{t neceTrveT OIIRIIoOWIr reSPoirse —reSPOITSeT

File f = new File("images", "repositorySplash.png");

String encoding = ImageEncoding.encode (f);

String xmlAddRequest = "<request><addRequest name='sampleImage'>" +
"</addRequest></request>";

new Message (xmlAddRequest) ;
toServer.println (xmlAddRequest) ;

processResponse (fromServer) ;

server.close();
SplashScreenlogic.update ("closing");
delay (250);

/** Delay for a time. */
static void delay(int ms) {
try { Thread.sleep(ms); } catch (InterruptedException ie) { }

This code won't compile until you write the processResponse(Message) method, butlet's check out the logic
anyway:

OBSERVE:

File f = new File("images", "repositorySplash.png");

String encoding = ImageEncoding.encode (f) ;

String xmlAddRequest = "<request><addRequest name='sampleImage'>" +
"</addRequest></request>";

new Message (xmlAddRequest) ;
toServer.println (xmlAddRequest) ;

processResponse (fromServer) ;

Using existing logic, this code computes the MIME-encoded string for the specific image. In this case, it constructs an
XML addRequest thatembeds this encoded string using the familiar CDAT A construct. You invoke new
Message(xmIAddRequest) to validate the XML string. If there had been a problem in the XML encoding, this
constructor invocation would've throw an Exception. If there is no Exception, the XML is valid—which means the string
can be output directly to the server via the toServer object. Every request must be terminated by an end-of-line
character, so it's essential to use the println method when writing to the server socket.

The processResponse() method you'll create nextis similarto code in ProtocolHandler. First, you'll aggregate
lines of input until a full response is retrieved, which you'll pass on to the Message constructor. This code allows you
to retrieve the success and reason attributes from the response efficiently:

CODE TO TYPE: /test/client/RepositoryClient.java

public class RepositoryClient {

public static String endResponse = "</response>";

static void processResponse (BufferedReader fromServer) throws IOException {

try {
StringBuilder buf = new StringBuilder (fromServer.readLine());
while (!buf.substring(buf.length() - endResponse.length(), buf.length()).equals (e
ndResponse)) {

buf.append (fromServer.readLine()) ;

}

Message response = new Message (buf.toString());

String sval = response.contents.getAttributes () .getNamedItem ("success") .getNodeVa
lue ();
if (Boolean.valueOf (sval)) {
System.out.println ("Success") ;
} else {
System.out.println ("Error:" + response.contents.getAttributes () .getNamedIltem("r

eason") .getNodeValue()) ;

}

} catch (IOException ioe) {
ioe.printStackTrace () ;

}

OBSERVE:

public class RepositoryClient {

public static String endResponse = "</response>";

static void processResponse (BufferedReader fromServer) throws IOException {
try {
StringBuilder buf = new StringBuilder (fromServer.readLine()) ;
while (!buf.substring(buf.length ()-endResponse.length (), buf.length()) .equals (end
Response)) {
buf.append (fromServer.readLine ()) ;
}
Message response = new Message (buf.toString()) ;
String sval = response.contents.getAttributes () .getNamedItem ("success") .getNodeVa
lue() ;
if (Boolean.valueOf (sval)) {
System.out.println ("Success") ;
} else {
System.out.println ("Error:" + response.contents.getAttributes () .getNamedItem("r
eason") .getNodeValue()) ;

}

} catch (IOException ioe) {
ioce.printStackTrace () ;

}

This code is similar to the code you wrote for the server to process the clientrequest. The highlighted code
determines whether the response is a success by finding the value of the success attribute in the response.

Validate that you have coded the XML logic properly, by running ServerLauncher and then RepositoryClient.
What's this? It seems as if the RepositoryClient justhangs and doesn'treturn. Even the splash screen is stuck on
"Initializing with server..."

El Console #2 . ¥ Tasks| [2(Problems| (3 Executables L] | ® @A | = Bi=rf~ =0
ServerLauncher [Java Application] C:\Program Files (x86)\Java\jreb\bin\javaw.exe (Jan 25, 2012 §:59:11 PM) | Display Selected Console
Server awaiting client connections T |

In the console tab, there's a pull-down menu on the right that allows you to "Display Selected Console." Use this
menu to switch between the running applications; you can see that the server is running properly ("Server awaiting
client connections"), but there is no output on the clientside. Given the RepositoryClient, it appears that the server
received a request, but a response was never returned to the client. Terminate the execution of both the clientand
server applications.

[# Package Explorer | B Console 3 A= Terminal 11 =8
RepositoryClient [Java Application] C:\Pragram Files\lavaljresibintjavam. exe (1an 8, 2013 9:21:

LoifE[e]

X| repository . xsd (ProtocolHandler . java (m RepositoryClient.java £2 '
try { p

StringBuilder buf = new StringBuilder (fromServer.readline()) ’
e | 041 () I < L P B

=

t Click for drop-down.

b

1 Android

cation] C:\Program File valjres) vy & 2z]
® 713 RepositoryClient [Java Application] C:\Program Fles)Javaljresibintjavaw. exe (Jan 8, 2013 9:21:39 AM) Y

£y String sval = responsSe.contents.getlttributes(). getNamedItem?

47 if (Boolean. valuslf(sval)) |

45 System. cut.println("Success"™) ; {
ute,

40 + else {
L] Syatem. cut.println("Error:™ + response.contents.getlittrib
51 H

53 } catch [(IOException ioe) |

DN U NS x.u_r&-—-—;

\\,_-‘I‘.\ sl ol P P "-I\ ‘\,’

You mightchoose to set breakpoints now and then execute these applications in the Eclipse debugger to identify
where the problem occurs. | recommend doing that. You want to become familiar with debugging single and multiple
Java applications. For now, turn your attention to the ProtocolHandler code that you revised at the beginning of this
lab—specifically, these two lines:

OBSERVE:

Message response = process (request);
toSocket.println (response.toString()) ;

Compare those two lines with the changes introduced in RepositoryClient as shown below:

OBSERVE:

new Message (xmlAddRequest) ;
toServer.println (xmlAddRequest) ;

The firstline validates the XML string properly, but the constructed Message objectis promptly ignored, because it's
notneeded. The second line takes the (now validated) XML string and prints itrightto the PrintWriter used to
communicate to the server. Review the ProtocolHandler code now and you'll see thatit depends upon the
Message class having a working to String() method! Whoops! You've just encountered one of the mostcommon
defects in Java: itomits a necessary toString method.

Add the logic needed fortoString to Message as shown below. As with most XML technologies, you might be
surprised at how unnecessarily complicated it appears; nonetheless, this is the standard way to converta DOM into its
string representation:

CODE TO TYPE: /src/xml/Message.java

package xml;

import java.io.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;
import javax.xml.transform.dom.*;
import javax.xml.validation.*;
import org.w3c.dom.*;

import org.xml.sax.*;

public class Message {
static DocumentBuilder builder;
static final XMLHandler errorHandler = new XMLHandler ();
static Transformer transformer;
public final Node contents;

public Message (String xmlSource) throws IllegalArgumentException {
if (builder == null) {
configure() ;

try A
InputSource is = new InputSource (new StringReader (xmlSource));

// parse method in builder is not thread safe.
Document d = null;
synchronized (builder) {
d = builder.parse(is);
errorHandler.failFast () ;

// Grab first (and only) child (either request or response)
NodeList children = d.getChildNodes () ;

for (int i = 0; i < children.getlLength(); i++) {
Node n = children.item(i);
if (n.getNodeType () == Node.ELEMENT NODE) {
contents = n;
return;

}

throw new IllegalArgumentException ("XML document has no child node");
} catch (Exception e) {

errorHandler.failFast () ;

e.printStackTrace () ;

throw new IllegalArgumentException (e.getMessage());

static void configure () {
DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance();
factory.setNamespaceAware (true) ;
SchemaFactory sf = SchemaFactory.newlInstance ("http://www.w3.0rg/2001/XMLSchema") ;
try A
factory.setSchema (sf.newSchema (new Source[] {new StreamSource ("repository.xsd")})

builder = factory.newDocumentBuilder () ;
builder.setErrorHandler (errorHandler) ;

} catch (Exception e) {
throw new RuntimeException ("Unable to configure Message");

TransformerFactory tf = TransformerFactory.newlnstance();
try {

transformer = tf.newTransformer () ;
} catch (TransformerConfigurationException tce) {

tce.printStackTrace () ;

}

public String toString() {
DOMSource domSource = new DOMSource (contents);
StringWriter writer = new StringWriter();
StreamResult result = new StreamResult (writer);
try |
transformer.transform(domSource, result);
return writer.toString() ;
} catch (Exception e) {
return "";

If you haven't terminated the client and server applications, do that now. Also, delete any files in the Repository
folder. Now relaunch ServerLauncher and execute RepositoryClient. The clientoutputin Eclipse should say,
"Success." Verify the logic of the repository by executing RepositoryClient again to detect that the image is already
part of the repository and that this second requestis to be denied. Your output should read, "Error:That image already
exists in the repository." Be sure to terminate the server application before continuing.

Extending Protocol Implementation with Status Messages

Modify the RepositoryClient to issue a statusRequest request at startup:

CODE TO TYPE: /test/client/RepositoryClient

public static void main(String[] args) throws Exception {
SplashScreenlogic.update ("connecting to localhost::9172");
delay (250);
Socket server = new Socket ("localhost", 9172);

SplashScreenlogic.update ("connected to localhost::9172");
delay (250);

PrintWriter toServer = new PrintWriter (server.getOutputStream(), true);
BufferedReader fromServer = new BufferedReader (new InputStreamReader (server.getInp

utStream()));
SplashScreenlogic.update ("initializing with server...");
delay (250);
String xmlStatusRequest = "<request><statusRequest/></request>";

new Message (xmlStatusRequest) ;
toServer.println (xmlStatusRequest) ;
processResponse (fromServer) ;

File f = new File("images", "repositorySplash.png");
String encoding = ImageEncoding.encode (f);
String xmlAddRequest = "<request><addRequest name='samplelImage'>" +

"</addRequest></request>";

new Message (xmlAddRequest) ;
toServer.println (xmlAddRequest) ;

processResponse (fromServer) ;
server.close();

SplashScreenlogic.update ("closing");
delay (250);

Run ServerLauncher and then run RepositoryClient. ANullPointerException appears in the Eclipse Console

in the process method ofthe ProtocolHandler class:

OBSERVE:

Server awaiting client connections

Exception in thread "Thread-0" java.lang.NullPointerException
at server.ProtocolHandler.process (ProtocolHandler. java:38)
at server.ipc.RepositoryThread.run (RepositoryThread.java:30)

If you click on the link to the process method in the exception stack trace, you will find that the response object
returned by process() is null. Of course! You haven't yet modified the ProtocolHandler class to deal with a
statusRequest that might be sentto the server. Modify the process(Message) method in ProtocolHandler as
shown:

CODE TO TYPE: /src/server/ProtocolHandler.java

public Message process (Message request) ({
Node child = request.contents.getFirstChild();
if (child.getLocalName () .equals ("addRequest")) {
String name = child.getAttributes () .getNamedItem ("name") .getNodeValue () ;
Node imageNode = child.getFirstChild();
String xmlResp;
try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());
repository.add (bytes, name);
xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "
' /></response>";
} catch (IOException e) {
xmlResp = "<response success='false' reason='" + CorruptedImagebData + "'>" +
"<addResponse numBytes='0'/></response>";
} catch (Exception e) {
xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
"<addResponse numBytes='0'/></response>";

return new Message (xmlResp) ;

} else if (child.getLocalName () .equals ("statusRequest")) {
String xmlResp = "<response success='true'>" +
"<statusResponse key='SomeKey' index='l' total='" + repository.size() + "'/
>"o+
"</response>";
return new Message (xmlResp) ;
}
return null; // unknown request? No idea what to do.

The serverresponds to a statusRequest with a statusResponse thatrecords information about the repository.
This code also contains a scaffolding elementin that statusResponse requires a key value to reflect the fingerprint
ofthe "currentimage" being viewed by the client. Until thatlogic is implemented, a dummy SomeKey value is used
instead, to get the string to pass XML validation.

Now terminate and re-run the ServerLauncher and RepositoryClient. The client produces two output messages;
the firstis Success (the response to the statusRequest) and the second is either Error:That image already exists
inthe repository (if you didn't clear out the repository), or Success (if you did).

You've powered through more than half of this advanced Java course. Good job! You'll continue extending your code
to add new messages (requests and responses). This table shows how far we've come toward meeting the original
setofrequirements and goals we set:

R# |Status Description

R1 |DONE |Server mustallow up to 30 concurrentusers to connectand browse the images stored there.

R2 Client must be able to support any of the standard built-in Java image formats (such as PNG or

JPG).

R3 Server can be configured to limit the maximum size of any individual image file (default: 5MB).

R4 Server can be configured to limit the total number of files stored on the shared repository (default:
1,000).

R5 A user connecting to a server must provide a user name and password.

R6 |80% A user can upload up to a fixed number ofimages to the repository (default: 100).

R7 A user can delete any image that he has added to the repository; a user cannot delete images added
by another user.

R8 A user can self-register an account with the Server.

R9 During the client-server communication, the user's password never appears in plaintext format.

R10 A user accountis considered inactive if the user has not connected to the server within a fixed time

period (default: 14 days).

R11 Each user account has a unique string identifier composed of alphanumeric characters (a-zA-Z0-9).
The server only stores the hashed value of the password and therefore does not know it.

The foundation has been laid and you are ready to tackle the remaining requirements with confidence!

On a final note, since you're keeping score athome, whatis your code coverage? Let's find out. Be sure to terminate
any running programs (such as ServerLauncher). First, execute all test cases within the test source folder and
observe that the existing Test AddBehavior test case no longer works because it was written before the XML
protocol was defined. To update, replace the old "SIZE" requests with the statusRequest added in this lab. Let's get
started by fixing the methods to test and validate the success or failure of a response. Make the following code
changes to Test AddBehavior to reimplementexpectSuccess.

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

package server.ipc;

import java.io.*;

import java.net.*;

import server.model.*;

import util.*;

import xml.*;

import junit.framework.TestCase;

public class TestAddBehavior extends TestCase {
public static final String endResponse = "</response>";

public static Message processResponse (BufferedReader fromServer) throws IOException {
// Accumulate all input until terminating </response>
StringBuilder buf = new StringBuilder (fromServer.readLine());
while (!buf.substring(buf.length() - endResponse.length(), buf.length()).equals(end
Response)) |
buf.append (fromServer.readLine()) ;
}
return new Message (buf.toString());

}

public static Message expectSuccess (BufferedReader fromServer) throws IOException {
Message response = processResponse (fromServer) ;
String sval = response.contents.getAttributes () .getNamedIltem ("success") .getNodeValu
e();
assertTrue (Boolean.valueOf (sval));
return response;

}

Let's take a closer look at the revised expectSuccess() method. You've already seen the logic for processResponse().

expectSuccess() uses processResponse:

OBSERVE:

public static Message expectSuccess (BufferedReader fromServer) throws IOException ({
Message response = processResponse (fromServer) ;
String sval = response.contents.getAttributes () .getNamedItem("success") .getNodeValu
e();
assertTrue (Boolean.valueOf (sval));
return response;

This method returns the Message response received from the server so thatit can be inspected in detail by your test
case methods. The required XML API calls that extract attributes from the XML response are highlighted in
red. Now, replace requestSIZE() with requestSTATUS() in Test AddBehavior as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

K| LT T (N o Tom s L
T TregaeSToTr o/ ¢© ST TOXCEPTTIOIT
i
T

e O H
COOCE Ve OTrTIT

—+

public static void requestSTATUS (PrintWriter out) {
String xmlStatusRequest = "<request><statusRequest/></request>";
new Message (xmlStatusRequest) ;
out.println (xmlStatusRequest) ;

}

This method is public static, so it can be reused by future test case methods that you write. Now rewrite the
request ADD method to use the XML protocol:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public static void requestADD (PrintWriter out, String name, File f) throws IOExceptio

n {
<l 1 N~ Lo 1 ol Vv, Wk e} LD TN AL i ol Vi, Wk e} DAY
CITCD LJLO‘Dll [S .y [=} JN A Vi W) =8 Lll\j 0Dy, NI, T T CITCOUTTTT
= (al 3 | LIV T DI TATILY
OO 1 e -LdJ_J_J.lL,J_J.l\ 3T DO TIN T r
s lal 4 o | v \
CTOO 1 g t/J.J.lJL,J.ll\lJCUII T r
4= lal = (T I P <l V=
toServer—prirt{Imagebncodingencode{f
= (al . =] il A imVatSani i}
CUOUOoOTT =L .tJLLiAL_Lll\ 1T U7 DUINTD T r
String encoding = ImageEncoding.encode (f);
String xmlAddRequest = "<request><addRequest name='" + name + "'>" +

"</addRequest></request>";

new Message (xmlAddRequest) ;
out.println (xmlAddRequest) ;

This revised method uses familiar logic for building XML strings; it also validates the XML before sending the string
along to the server. Now you can update the test AddBehavior test case method to take full advantage ofthese
updated helper methods:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public void testAddBehavior throws Exception {

O
crom
2T

n . 1 e 3

g T O U1 CLLMJ_ll\j =}
e fal 4 o | Vil NalivAmi | BY
[=wre) s =L -t/J_J.llL,J.ll\ [Ny A a) T r

requestSTATUS (toServer) ;
expectSuccess (“o*5—fromServer) ;

4= ul £ PRI 4
T T 2w . . CLLMJ_llkj 1T __Mlakj

s lal o | yall DR sk Nl 1Y
toServerprirt U ADB—BREGTHN
4= lal 3 = 1] 1 I LLAY
toServerprirtatisanptetmage

] j—] LI " " 2 n .
File f = new File("images", "repositorySplash.png");
. lal 3 o | LT I P <l A=A\
OO0 1 e .k/J_ LTITCTIT \J_HLG\.% 1T \A._J.l\j . TTCOUTD L/ /)7
= (al 3 4= yail AmNmY inValSanii}
OO 1 g -E/J.J.lJL,J.ll\ 1T U7 DUINTD T r

requestADD (toServer, "sampleImage", f);
expectSuccess (frort—fromServer) ;

k) i L R I | :
TXPECT TEePpoSTTOoOTY WITIT T Tioge
e O T | VA I Nalksllvinl I AY
cooCEvVer - orTrrcTirt oot /7

requestSTATUS (toServer) ;

Message response = expectSuccess (*+*5—fromServer) ;

String sval = response.contents.getFirstChild () .getAttributes () .getNamedItem("total
") .getNodeValue () ;

assertEquals ("1", sval);

These changes clean up the code used for communication between the client and the server, and takes advantage of
the Message class representing XML strings. To complete your test cases, make similar changes to support the
revised testBasicAddBehavior test case method. First, rewrite the expectFailure() method in TestAddBehavior:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

Message expectFailure (String expect, BufferedReader fromServer) throws IOException {

Message response = TestAddBehavior.processResponse (fromServer) ;

String sval = response.contents.getAttributes () .getNamedItem ("success") .getNodeValu
e();

assertFalse (Boolean.valueOf (sval));

String reason = response.contents.getAttributes () .getNamedItem ("reason") .getNodeVal
ue () ;

assertEquals (expect, reason);

return response;

Now you're ready to tackle rewriting the test BasicAddBehavior test case method:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public void testBasicAddBehavior () throws Exception {
Message r

’
L O T 7T
redgaeSToTram {7

i [INaX1] £ lal
T ot S 7 L LromoCrEveTry

requestSTATUS (toServer) ;

r = expectSuccess (fromServer) ;

String count = r.contents.getFirstChild () .getAttributes () .getNamedItem("total") .get
NodeValue () ;

assertEquals ("0", count);

File f = new File("images", "repositorySplash.png");
requestADD (toServer, "samplelmage", f);
expectSuccess (garr—fromServer) ;

J_Cki\/lc
=0 o £ (al
1= Cooc St 7 LromoerEvyer)
requestSTATUS (toServer); // expect one file in repository.

r = expectSuccess (fromServer) ;

count = r.contents.getFirstChild() .getAttributes () .getNamedItem("total") .getNodeVal
ue () ;

assertEquals ("1", count);

stopClient () ;
stopServer () ;

server = TestServer.launchServer () ;
startClient () ;

L O T 7T
regaeSToTram {7

o
T

i £ o
y=4 Tot S Trofftoerver)~

requestSTATUS (toServer) ;

r = expectSuccess (fromServer) ;

count = r.contents.getFirstChild () .getAttributes () .getNamedItem("total") .getNodeVal
ue () ;

assertEquals ("1", count);

requestADD (toServer, "sampleImage", f);
expectFailure (Repository.AlreadyExistsImage, fromServer);

Execute EcCIEmma on all test cases in the test source folder. If you have kept the test cases up-to-date as each lab
progressed, then you'll see a table that aggregates coverage by package:

Package |Coverage |Covered Instructions|Total Instructions
client 9.6 % 12 125
client.gui 0.0 % 0 135
server 81.0% 149 184
server.ipc 87.7% 100 114
servermodel |55.2 % 203 368
util 87.8 % 195 222
xml 85.9 % 177 206

Aside from the code that shows 0.0% coverage, you have produced 72% coverage of the src source folder. Expand
the packages in the EcIEmma Coverage Reportand you'll see that some classes have no coverage (and likely will
have no testcases to cover them) such as ClientLauncher; also ImageRepositoryClient isn't covered by a test
class yet. Finally, inspect the coverage for the Repository class, because the code that didn't execute is contained
only within Exception handlers. Instead of trying to reach 80% coverage in this class, you might wantto construct
sample test cases that deal with specific situations (for example, if the persistentfiles for the repository are READ
ONLY when executing the program).

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

User Authentication

Lesson Objectives

In this lesson you will:

e store user state on the server side of a client-server application.

User Authentication

Now that you have the communication framework for a client server application, it's time to upgrade the server so that
it's aware of each individual user. Currently the server is multi-threaded to allow multiple clients to upload images, but
there is no way for the server to differentiate between these clients. The common solution is to provide user accounts
with credentialed information that must be provided at connecttime. In this lesson, you'll extend the communication
protocol to require an initial login message; thereafter, the server will associate that user with the thread spawned to
process the clientrequests. You also need to ensure that two clients are unable to connect simultaneously to the
same server using the same credentials; this will require a user manager to oversee which users are currently logged
in.

Let's start with the loginRequest that you need to add to the protocol. Here's a sample XML fragment of a valid
loginRequest:

OBSERVE:

<request>
<loginRequest user='user00' password='6e5aa8fe26c43b164d6308b0b942deb2' />
</request>

The password will never be sent as plain text; we'll send an MD5-fingerprint of the actual password. Begin your code
by defining several new test case methods in Validate XMLMessages. Don't worry about typing in the "exact"
hexadecimal string representing the hashed password! Just make sure it's a non-empty string:

CODE TO TYPE: /test/xml/Validate XMLMessages.java

public void testLoginRequest () {
String login = "<request><loginRequest user='user00' password='6e5aa8fe26c43b164d63
08b0b942deb2"' /></request>";
Message m = new Message (login);
assertEquals ("request", m.contents.getLocalName());

}

public void testLoginResponseFailure () {
String login = "<response success='false' reason='Invalid credentials'><loginRespon
se user='user00'/></response>";
Message m = new Message (login) ;
assertEquals ("response", m.contents.getLocalName());

}

public void testLoginResponseSuccess () {
String login = "<response success='true'><loginResponse user='user00'/></response>"

Message m = new Message (login);
assertEquals ("response", m.contents.getLocalName())

}

Naturally, these test cases won't pass yet, because you have to modify the repository.xsd file to include definitions
for these messages. These changes will do the trick:

CODE TO TYPE: /repository.xsd

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs='http://www.w3.0rg/2001/XMLSchema’'>

<xs:element name='message'>
<xs:complexType>
<xs:choice>
<xs:element ref='response'/>
<xs:element ref='request'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='response'>
<xs:complexType>
<xs:choice>
<xs:element ref='addResponse'/>
<xs:element ref='statusResponse'/>
<xs:element ref='loginResponse'/>
</xs:choice>
<xs:attribute name='success' type='xs:boolean' use='required'/>
<xs:attribute name='reason' type='xs:string' use='optional'/>
</xs:complexType>
</xs:element>

<xs:element name='request'>
<xs:complexType>
<xs:choice>
<xs:element ref='addRequest'/>
<xs:element ref='statusRequest'/>
<xs:element ref='loginRequest'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='addRequest'>
<xs:complexType>
<xXs:sequence>
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='addResponse'>
<xs:complexType>
<xs:attribute name='numBytes' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
<xs:complexType>
<xs:attribute name='key' type='xs:string' use='required'/>
<xs:attribute name='index' type='xs:integer' use='required'/>
<xs:attribute name='total' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='loginRequest'>
<xs:complexType>
<xs:attribute name='user' type='xs:string' use='required'/>
<xs:attribute name='password' type='xs:string' use='required'/>
</xs:complexType>

</xs:element>

<xs:element name='loginResponse'>
<xs:complexType>
<xs:attribute name='user' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>
</xs:schema>

The above changes define the structure ofloginRequest and loginResponse messages. Note thatall of the
attributes are required. When you edit the XSD file, try to maintain the structure such thatrequests and responses are
listed in pairs; this will make it easier for you to find elements in the file in the future. Before continuing, ensure that the
validate XMLMessages testcase passes.

Now you have to make a fundamental decision regarding loginRequest. Specifically, there can be only a single
loginRequest message during a clientsession, butitshould not be handled by the ProtocolHandler class that
you've been building. Do you see why? The authentication of a user is part of the server's responsibility, whereas
ProtocolHandler manages all actions on behalf of a given user. There will be no way for a message to be sentto
the serverto "spoof' some other user's identification, so you need to have the RepositoryThread process the first
loginRequest message fundamentally from the client; once the user is authenticated, then ProtocolHandler can
getinvolved.

As you consider making this change, you'll see the misplaced implementation in ProtocolHandler, for assembling
Message objects from the underlying socket. Move this logic into the RepositoryThread class to avoid inadvertent
errors on behalf ofthe userlogic being implemented in ProtocolHandler. This is a good example of a potentially
dangerous leakage of the Message abstraction from the underlying IPC layer. Fix it by modifying the
IProtocolHandler interface. Instead of exposing raw access to the Input/Output streams made available by the
socket, this revised interface takes an XML request and returns an XML response. If this method ever returns null, the
server should disconnect the client. Pause for a momentto digest this change— I'll wait, it's important. It's common to
refactor systems to hide details using better abstractions that are discovered over the course of a project's lifetime.
Modify IProtocolHandler as shown:

CODE TO TYPE: /src/server.ipc/IProtocolHandler

package server.ipc;

. R . +
ITHPOTr T Java . toO- 7

import xml.*;

public interface IProtocolHandler {

Xk D N
TEoCEe T

i h] : lead 1 : e <l i e Rai £ i . 4 i
1T O T T oS TIg CKEeT oac ot gCPooCe T COriT— oS =3 cCeTrTriTacey

o

= A &
crac C orrcriracs

1 k] kP oy an <l £ fal leoi OIS 7, SN el lea
oo TeaIT PO (DO rreret et e r— T oMo oCCRe T, rrIrrcwrrceYr COoOCRET)7

/** Process the given Message request, return Message in response or null to terminat
e protocol. */
Message process (Message request);

}

Once you have made this change to the interface, you can delete the process(BufferedReader, PrintWriter)
method in ProtocolHandler

Isrc/server/ProtocolHandler.java

public class ProtocolHandler implements IProtocolHandler ({

1 N h] (Do cC AR <l £ fal leai Dacd o T i o O leai 14
TS OOoTEaIT P eSS o rrreret e e Tr— oMo)N S n e i L S) e n) B SR AV S A A Y — e T
i £
reTuorir rar 7

Several of our classes contain code logic for parsing or concatenating XML strings. Instead of spreading this logic

around, consolidate the logic into a single class.

& In the src folder xml package, create a Parser class as shown:

CODE TO TYPE: /src/xml/Parser.java

package xml;
import java.io.*;

public class Parser {

public final static String loginRequest = "loginRequest";

public final static String loginResponse = "loginResponse";
public final static String loginUser = "user";

public final static String loginPassword = "password";

public final static String invalidCredentials = "Invalid credentials";

public static Message extractRequest (BufferedReader in) {
return extractMessage (in, "</request>");

}

public static Message extractResponse (BufferedReader in) {
return extractMessage (in, "</response>");

}

static Message extractMessage (BufferedReader in, String terminator) {
try {
String line = in.readLine();
if (line == null) { return null; }
StringBuilder buf = new StringBuilder (line);
while (!buf.substring(buf.length() - terminator.length(), buf.length()).equals(te
rminator)) {
line = in.readLine();
if (line == null) { return null; }
buf.append(line) ;
}

return new Message (buf.toString());
} catch (IOException ioe) {
return null;

This class processes input streams to extract the requestand response XML messages. Over time it can store an
increasing number of string constants associated with the repository.xsd schema. For now, the string constants in
Parser reflect the attributes of the loginRequest and loginResponse messages:

OBSERVE:

public class Parser {

public final static String loginRequest = "loginRequest";
public final static String loginResponse = "loginResponse";
public final static String loginUser = "user";

public final static String loginPassword = "password";

public final static String invalidCredentials

"Invalid credentials";

public static Message extractRequest (BufferedReader in) {
return extractMessage (in, "</request>");

}

public static Message extractResponse (BufferedReader in) {
return extractMessage (in, "</response>") ;

}

static Message extractMessage (BufferedReader in, String terminator) {

}

So faryou've seen the extract Message () method in several test cases and actual code. This helper method is used
by extractRequest and extractResponse. Once again, this method succeeds only if the terminator string (in this
case either <request> or <response>) has an end-of-line ('/n') character immediately following it.

To take advantage of this consolidated code, change the RepositoryThread class. Let's do thatin stages. First,
replace the while loop in the run method:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

package server.ipc;

import java.io.*;
import java.net.*;
import xml.*;

import org.w3c.dom.*;

public class RepositoryThread extends Thread {
Socket client;
BufferedReader fromClient;
PrintWriter toClient;
IProtocolHandler handler;

RepositoryThread (Socket s, IProtocolHandler h) throws IOException {
fromClient = new BufferedReader (new InputStreamReader (s.getInputStream()));
toClient = new PrintWriter (s.getOutputStream(), true);

client = s;
handler = h;

public void run() {
L N~ 1 =l 4= 1 = 1 . i 2 <l s 2 <l
Frave—hancter—manrage—the—prot +—orreit—e—decides—+t—is—don
loa 1 Ll P Y= o o = . o o A= AY L
WITIT T (1IITaITTU D .b}LUL./C \ L L UIIT LLCIIL, T T ITITCT T 1

// authentication by first login message. Stop if not a loginRequest.
Message m = Parser.extractRequest (fromClient) ;
Node child = m.contents.getFirstChild();
if (!child.getLocalName () .equals (Parser.loginRequest)) {
return;

}

// Get authentication information
String user = child.getAttributes () .getNamedItem (Parser.loginUser) .getNodeValue () ;
String pass = child.getAttributes () .getNamedItem (Parser.loginPassword) .getNodeValue

// tell client decision and engage handler on successful login
boolean validated;
if ('authenticate (user, pass)) {

m = new Message ("<response success='false' reason='" + Parser.invalidCredentials
+ "> o4
"<loginResponse user='" + user + "'/></response>");
validated = false;
} else {
m = new Message ("<response success='true'><loginResponse user='" + user + "'/></r
esponse>") ;

validated = true;

}

toClient.println (m.toString());
if (toClient.checkError()) {
return;

}
// TODO: Fill in processing logic

try {
fromClient.close () ;
toClient.close();
client.close();
} catch (IOException ioe) {
System.err.println ("Unable to close connection:" + ioe.getMessage());

// TODO: Scaffolding code to validate any user whose name starts with letter.
public boolean authenticate (String user, String pass) {
return Character.islLetter (user.charAt (0));

}

Let's take a closer look at this added code:

Receiving and processing initial loginRequest method

// authentication by first login message. Stop if not a loginRequest.
Message m = Parser.extractRequest (fromClient) ;
Node child = m.contents.getFirstChild() ;
if (!child.getLocalName () .equals (Parser.loginRequest)) {
return;

}

// Get authentication information
String user = child.getAttributes () .getNamedItem(Parser.loginUser) .getNodeValue () ;
String pass = child.getAttributes () .getNamedItem(Parser.loginPassword) .getNodeValue ()

Using the newly defined extractRequest method in Parser, RepositoryThread firstretrieves the initial request
from the client. Then using the Java XML APl you have already seen, the code determines whether the
request is aloginRequest, stopping immediately ifitis not. Once the message is identified as aloginRequest,
the user and hashed password are extracted from the request. You can assume that these values are present,
otherwise the Parser would not have been able to construct the loginRequest message in the first place. Right
away, you can see the benefit of using a formal schema; your code is simpler to write because you don't have to
validate the structure of the data (this task is handled by the XML parsing code).

Next, the code seeks to validate the user with the server. For now, use the scaffolding authenticate() method you
added earlier to RepositoryThread:

Authenticating the user with the server

// tell client decision and engage handler on successful login
boolean validated;
if ('authenticate (user, pass)) {

m = new Message ("<response success='false' reason='" + Parser.invalidCredentials +
mST o4
"<loginResponse user='" + user + "'/></response>");
validated = false;
} else {
m = new Message ("<response success='true'><loginResponse user='" + user + "'/></res
ponse>") ;

validated = true;

}

toClient.println (m.toString()) ;
if (toClient.checkError()) {
return;

Our code constructs either a successful or failed loginResponse message, which it then sends back to the client. To
complete the implementation, write the code that processes messages from the client if the authentication succeeds;
this code replaces the TODO comment we had inserted earlier as a reminder:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

FOPO—F i H—ir—processing—togt
if (validated) {
// have handler manage the protocol until it decides it is done.
while ((m = Parser.extractRequest (fromClient)) != null) {
Message response = handler.process(m);
if (response == null) { break; }

toClient.println (response.toString()) ;
if (toClient.checkError()) {
break;

This while loop extracts message requests from the client and gives them to the handler for processing. If
handler.process() returns null, the client's session ends; otherwise the response is sent back to the clientand the
loop continues.

With the revised code in place, it's time to write test cases to validate that new code. Write test cases for the Parser
class, which has static methods that pull data from a BufferedReader object. You can construct a BufferedReader
object from a fixed String by using the StringReader class as shown in this test case:

ET In the /test folder xml package, create a TestParser test case as shown:

CODE TO TYPE: /test/xml/TestParser.java

package xml;

import java.io.*;
import junit.framework.TestCase;

public class TestParser extends TestCase {

public void testParser () {
String s = "<response success='false' reason='" + Parser.invalidCredentials + "'><1l
oginResponse user='user00'/></response>";
StringReader sr new StringReader (s);
Message m = Parser.extractResponse (new BufferedReader (sr));
assertEquals ("response", m.contents.getLocalName());

}

For this test case, assume thatif the XML parsing works properly (atthe outermostresponse level), it will parse the
inner specific response properly (in this case, loginResponse). Generate ECIEmma code coverage for this test case
and look at Parser.java; you still need to write a test case to make sure thatrequests are being parsed similarly. Also,
observe the yellow-shaded lines within extract Message. These are if statements that execute, but the inner guarded
statementdoes not execute. In addition, there is an Exception handler that never executes. ltis really common to have
these sorts of "soft" coverage. Add the following multi-line and request test case methods to TestParser; the test
code coverage of Parser reaches 82%.

http://docs.oracle.com/javase/6/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/6/docs/api/java/io/StringReader.html

CODE TO TYPE: /test/xml/TestParser.java

public void testRequest () {
String s = "<request><loginRequest user='user00' password='askjdhkjhkdjs'/></reques
t>",‘
StringReader serializable = new StringReader (s);
Message m = Parser.extractRequest (new BufferedReader (serializable));
assertEquals ("request", m.contents.getLocalName());

public void testMultilLineParser () {
String s = "<response success='false' reason='" + Parser.invalidCredentials + "'>\n
<loginResponse user='user00'/>\n</response>";
StringReader serializable = new StringReader(s);
Message m = Parser.extractResponse (new BufferedReader (serializable));
assertEquals ("response", m.contents.getLocalName());

Be sure you test all of your parsing code, before you test the new login logic.

Now you're ready to upgrade testing code to incorporate the loginRequest as the first message from a client. Add
requestLOGIN() and responseLOGIN() method to Test AddBehavior and modify requestSTATUS() and
request ADD(), as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public static Message requestLOGIN (String user, String hashedPassword) {
String s = "<request><loginRequest user='" + user + "' password='" + hashedPassword
+ "'/></request>";
StringReader sr = new StringReader (s);
return Parser.extractRequest (new BufferedReader (sr));

public static Message responseLOGIN(String user, String error) {

String s = "<response success='";
if (error == null) {
s += "false'";
} else {
s += "true' reason='" + error + "'";
}
s += "><loginResponse user='" + user + "'/></request>";

StringReader sr = new StringReader (s);
return Parser.extractRequest (new BufferedReader (sr));

public static setdMessage requestSTATUS (Primtheriter—out) |
String xmlStatusRequest = "<request><statusRequest/></request>";
return new Message (xmlStatusRequest) ;

i T | L 1o oo n R
OUC. pPrIfIcrir(XRrocacaoncgucsSc/ y

public static weidMessage requestADD (PrimtWriter—out—String name, File f) throws IOE
xception {
String encoding = ImageEncoding.encode (f);
String xmlAddRequest = "<request><addRequest name='" + name + "'>" +
"</addRequest></request>";
return new Message (xmlAddRequest) ;

i N | L 1A ddn i
OO T PprIfci (X rrooanecgue ST/

These methods all have the same structure in that they generate a valid Message object. Also, these methods are all
public static, which maximizes their utility in other test cases. The requestLOGIN() and response LOGIN()
methods take advantage of the StringReader class thatallows you to constructa BufferedReader from a fixed
string, rather than from an input stream. The changes you made to request AD()D and requestSTATUS(), eliminate
the need to pass in a PrintWriter to the method.

Now let's g ahead and clean up the testBasicAddBehavior() method in Test AddBehavior as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public void testBasicAddBehavior () throws Exception {
Message r;
toServer.println (requestLOGIN ("sample", "hashed-password"));
r = expectSuccess (fromServer) ;
toServer.println (requestSTATUS (toSerser)) ;
r = expectSuccess (fromServer) ;
String count = r.contents.getFirstChild() .getAttributes () .getNamedItem("total") .get
NodeValue () ;
assertEquals ("0", count);

File f = new File ("images", "repositorySplash.png"):;
toServer.println (requestADD (toServer—"sampleImage", f));
expectSuccess (fromServer) ;

toServer.println (requestSTATUS (teSersver)); // expect one file in repository.

r = expectSuccess (fromServer) ;

count = r.contents.getFirstChild() .getAttributes () .getNamedItem("total") .getNodeVal
ue () ;

assertEquals ("1", count);

stopClient () ;

stopServer () ;

server = TestServer.launchServer();

startClient () ;

toServer.println (requestLOGIN ("sample", "hashed-password"));

r = expectSuccess (fromServer) ;

toServer.println (requestSTATUS (toServer)) ;

r = expectSuccess (fromServer) ;

count = r.contents.getFirstChild() .getAttributes () .getNamedItem("total") .getNodeVal
ue () ;

assertEquals ("1", count);

// must fail because of duplicate image
toServer.println (requestADD (toServer—"sampleImage", f));
expectFailure (Repository.AlreadyExistsImage, fromServer);

These changes affect only the logic concerning the way test cases write messages to the server. The
testAddBehavior testcase method in Test AddBehavior is now redundant because of the extra logic being tested
by the testBasicAddBehavior test case method, so delete the test AddBehavior test case method. Now, add a
test case method to Test AddBehavior to validate login failures:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

// scaffolding denies user names starting with digit

public void testLoginFailureBehavior () throws Exception {
toServer.println (requestLOGIN ("OstartsLetter", "BADBAD"));
expectFailure (Parser.invalidCredentials, fromServer);

}

Rerun all testcases in the test source folder. Make it a habit to run all test cases, because you never know when a
minor change causes some seemingly unrelated part of your code to fail.

Now, relaunch all test cases in the test source folder using ECIEmma to generate code coverage. In the Coverage
panel at the bottom of the Eclipse window, expand each of the packages in the src folder to check your progress. From
this starting point, create a spreadsheet to chart the increase (or decreasel!) of coverage at the end of each lecture.
These charts can be extremely useful as you determine which new test cases you need to write. Here's an image of the
spreadsheet as itis right now. Over the next few labs, you will see percentages go down (because new code has been
added) or go up (because new test cases have been written):

Authenticate Server Client Server Browse Mavigate Delete
Users Sessions Login Menu Images Image Image
sre 72.6
client 9.6
client.gui 1]
server 78.7
server.ipc 91.9
server.model 55.2
util 87.8
xml 85.9
100
& = client
80 x == client.gui
60 * =fr=Serer
a0 i e MY ET.IPC
== ce ryer.maodel
20)
* == Litil
o L T T . 1 1]
a &4 G 8 10

#[3_ Problems (@ Jawvadoc I,@ Declaration (E Console ﬂa Coverage ¢4
Distributedfpp (Feb 16, 2013 10:36:09 Pr)

Element = | Cnveragel

=12 Distributedapp B 71E%

- sre - 726%

- E=-8 dient - 95

: ClientLauncher ., java L 0.0 %

SplashScreenLogic,java . 26.7 %

=83 client.qui - 00%

ImageR epositoryClient. java L 0.0 %

: -4 net.iharder = 5.0 %

&~ [J] Bases4.java B 750%

- server B 757 %

m ProtocoHandler . java | 92,9 %

‘ ServerLauncher.java =] 47,4 %a

-3 server.ipe B 91,99%

N RepositoryServer.java | 94,7 %%

H--- RepositoryThread. java | 0.3 %

- F server.model EN 55

Index. java =) 63,3 %

l--- Repository, java = 52.5 %

- util . 57E%

Fingerprint.java = 1.4 %

ImageEncoding. java =) 0.0 %

‘ m Preferences.java = 37.3 %

=8 xml B 55.9%

Message,java = 87.5 %

Parser.java == 35.7 %

& [J] #¥MLHandler.java . 523%

Nicely donel You now have a client that can authenticate its connection with the server and communicate through XML
messages. You're well-positioned to enhance the communication protocol with new messages, and add the final
functionality required for this application. In the nextlab, you'll enhance the server to maintain information about active
users (users who are connected to the server). See you there!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Server Sessions

Lesson Objectives

In this lesson you will:

e use the serverto associate userinformation with each spawned thread to manage the proper authentication and
execution of the protocol.

Server Sessions

So now you have a working protocol that lets clients connectto the server, but the server still doesn't maintain user-
defined sessions for each thread to authenticate users' actions properly in the protocol. You also have scaffolding

code in the server-side authentication that needs to be replaced to store and validate users' accountinformation. In
this lab, you'll use the Java Serializable mechanism to store userinformation persistently in a file. Let's get started!

You'll need to design a UserManager class to manage and store all user information; it will allow the server to create
self-registered accounts. In its constructor, UserManager takes as an argument, a java.io .File, in which all persistent
information is stored. You've already seen how to store whole objects to disk. In this lesson, you'll store the user
manager object itself.

Be aware that user accounts must be deleted automatically after a specified period of inactivity. One way to meet this
requirement would be to actively monitor the /ast activity time for any user, and proactively take steps to delete
accounts where "time of inactivity" exceeds the server's threshold. We start by storing extra time information for each
user. At startup time, the server can discontinue the account for any user that has shown no activity for a specified time
period. The only drawback to this approach is that users may log in and stay logged in without any subsequent activity,
and thereby retain their accounts for longer than the allowed period of time. This situation can be resolved by including
a separate active "reaper" thread that sweeps through the activity of each user and disconnects (and deactivates the
accounts of) users who have been inactive for too long.

You can analyze the requirements to determine that for each user you need to store (a) the userid; (b) the hashed
password; and (c) the time of last activity. To write and parse time values, choose to store this value in the standard
"milliseconds since January 11970" format.

Although Java supports using "milliseconds since January 11970" to store time, you won'tencounter
the Unix Millenium Bug because it's stored in a 64-bitlong. That's good to know!

& In the Isrc folder server package, create the UserInfo class as shown:

CODE TO TYPE: /src/server/Userinfo .java

package server;

public class UserInfo implements java.io.Serializable {
final String user;
final String hashedPassword;
long lastAccessTime;

public UserInfo(String user, String hashedPassword, long access) {
this.user = user;
this.hashedPassword = hashedPassword;
this.lastAccessTime = access;

}

public boolean authenticate (String hp) {
return (hashedPassword.equals (hp))

}

public void updateAccessTime (long millis) {
lastAccessTime = millis;

}

http://docs.oracle.com/javase/6/docs/api/java/io/File.html
http://en.wikipedia.org/wiki/Year_2038_problem

This class stores a hashed password and a time of last activity for each user, and supports authentication and
updates. Because there is no way to alter a user's accountid or hashed password, these attributes are marked as
final. Make sure Userinfo implements java.io.Serializable, because you'll need to store instances of this object to
disk.

The UserManager supports four key capabilities. Start with justtwo, for now: register new users on demand, and
authenticate existing users. We'll implement this class in stages:

& In the Isrc folder server package, create the UserManager class as shown:

CODE TO TYPE: /src/server/UserManager.java

package server;

import java.io.*;
import java.util.*;

public class UserManager implements Serializable {
Hashtable<String,UserInfo> users = new Hashtable<String,UserInfo>();
transient File storage;

public UserManager (File f) {
storage = f;

}

public boolean registerUser (String user, String hashedPassword) {
if (users.containsKey(user)) { return false; }

UserInfo ui = new UserInfo (user, hashedPassword, System.currentTimeMillis());
users.put (user, ui);
return true;

public boolean removeUser (String user) {
UserInfo ui = users.remove (user);
return (ui != null);

}
public boolean authenticate (String user, String hashedPassword) ({
UserInfo ui = users.get (user);

if (ui == null) { return false; }

return uil.authenticate (hashedPassword) ;

OBSERVE:

import java.io.¥*;
import java.util.*;

public class UserManager implements Serializable {
Hashtable<String,UserInfo> users = new Hashtable<String,UserInfo>();
transient File storage;

public UserManager (File f) {
storage = £;

}

UserManager is instantiated with the specified java.io.File into which it should store (and from which it should load)
persistentinformation. By ensuring the constructor requires the File object for persistent storage, the class ensures
thatit can ultimately provide load() and store() methods requiring no parameters, which can thus be invoked directly
by the RepositoryThread code. Note thatthe storage attribute is marked transient. This tells the Java VM notto
write this value to disk during the serialization process. Now, add the store() method to UserManager:

CODE TO TYPE: /src/server/UserManager.java

public boolean store() {
FileOutputStream fos;
try {
fos = new FileOutputStream(storage);
} catch (FileNotFoundException fnfe) {
System.err.println ("Unable to store user manager to:" + storage);
return false;

ObjectOutputStream oos = null;
try {
oos = new ObjectOutputStream(fos);
oos.writeObject (this);
} catch (IOException ioe) {
System.err.println ("Errors encountered while storing user manager to:" + storage)

return false;
} finally {
try {
oos.close();
} catch (Exception e) {
System.err.println ("Errors encountered while closing user manager file.");

return true;

OBSERVE:

oos = new ObjectOutputStream(fos) ;
oos.writeObject (this) ;

The store() method uses FileOutputStream to store data to a file. Using ObjectOutputStream, the entire
UserManager object is stored to disk. Because storage was marked as transient, its value is not stored. The
reason for doing this will be clear when you review and add the load() method:

http://docs.oracle.com/javase/6/docs/api/java/io/FileOutputStream.html
http://docs.oracle.com/javase/6/docs/api/java/io/ObjectOutputStream.html

CODE TO TYPE: /src/server/UserManager.java

public void load() {
if (storage.exists()) {

FileInputStream fis;

try {
fis = new FileInputStream(storage);

} catch (FileNotFoundException fnfe) ({
users = new Hashtable<String,UserInfo>();
return;

}

ObjectInputStream ois = null;
try {
ois = new ObjectInputStream(fis);
UserManager stored = (UserManager) ois.readObject();
users = stored.users;
} catch (Exception e) {
System.err.println ("Problems encountered in loading user manager file (" + stor
age + ").");
} finally {
try {
ois.close();
} catch (Exception e) {
e.printStackTrace () ;

}

Because this method is invoked on an instantiated UserManager object, you only have to retrieve the users
hashtable from that stored object to update the set of users for the instantiated UserManager. Eventually the server
has to be changed to load the UserManager object at startup and update the user manager's information during
processing (which includes both self-registered new accounts and access time information).

Now let's tackle two more capabilities: update the last access time for a given user, and determine whether a user
accountis still active based on the length of inactivity. Modify UserManager as shown:

CODE TO TYPE: /src/server/UserManager.java

public class UserManager {

public static long activeThreshold = 14 * 24 * 60 * 60 * 1000; // Active threshold
(in milliseconds) is 14 days by default

public static void setThreshold(long val) {
activeThreshold = val;

}

public void updateAccessTime (String user) {
UserInfo ui = users.get (user);
if (ui != null) { ui.updateAccessTime (System.currentTimeMillis()); }

}
public boolean isActive (String user) {
UserInfo ui = users.get (user);

if (ui == null) { return false; }

long now = System.currentTimeMillis();
Long then = ui.lastAccessTime;

return (now - then) < activeThreshold;

Whenever a user interacts with the server, the RepositoryThread processing that activity calls updateAccessTime
to update the last activity time for that user. It works as a kind of expiration time. From the initial requirement R10 you
must be able to configure the threshold of time that an accountis considered active (the defaultis 14 days). The default
calculation ofthe activeThreshold field and the corresponding set Threshold() method for changing this value at

OBSERVE:

}

public void updateAccessTime (String user) {

UserInfo ui = users.get (user) ;
if (ui '= null) { ui.updateAccessTime (System.currentTimeMillis()) ;

public boolean isActive (String user) ({

UserInfo ui = users.get (user);
if (ui == null) { return false; }

long now = System.currentTimeMillis() ;
Long then = ui.lastAccessTime;

return (now - then) < activeThreshold;

}

runtime are in UserManager.

When updateAccessTime updates the lastaccess time for a user, isActive is able to determine whether the
accountfor a given user should be considered active given the time that has elapsed since thatuser's last access.

Now we can include the UserManager in your RepositoryServer. Modify ServerLauncher to instantiate a
UserManager object on startup, using a predefined file for persistent storage, which will be stored in the Repository
directory. The UserManager objectis passed along to the server so the server can give itto the RepositoryThread

Tip

In the isActive method, you'll see what at first seems like a weird computation: (now - then), where now
is a primitive long, while then is an object of class Long. Since Java version 1.5, the JavaVM "unboxes"

and "boxes" mixed primitives and objects in expressions automatically.

when it executes:

CODE TO TYPE: /src/server/ServerLauncher.java

package server;

import
import
import

server.ipc.*;
server.model.*;
Jjava.io.*;

public class ServerLauncher {

final static String defaultLocation = "Repository";

yubl;u tatip P M it\JL S p. p. T Ctt () thL W E L.,'Ct.}tivii {
A L I 1 Lol £ 1 T o \
E. COLIT T aC 1T W f A .) Tr O T CaCT 1T T 7
—+
yubl;p tete—R 1= EorySer —ereat (FLl dLL) throws— pcytiuu {
PCJ:JUDJ_t J_Y J_CJ:)\J J'_t J_Y 7 TTCTW P t/ Jl_t\JJ_ <d_;_1_) 12
PCJ_\JUDJ‘_t 1 S 1 =L =} E. E. T ITTCTW P tJ JI.L,\)J_ S 1 E. (J_CLJUDJ‘_t J__Y, 1T W PJ_ t lHaudl [S bJ
sHeory -+
loa 1L
L= SIAVA - B W i AW B W
o
LT T CUOULIT E. =17
—+
public static void main(String[] args) throws Exception ({
File storage = new File (defaultLocation);
if (args.length != 0) {
storage = new File (args[0]);
}
UserManager userManager = new UserManager (new File (storage, "userManager"));
userManager.load() ;
Repository repository = new Repository(storage);
RepositoryServer server = ereste{y;new RepositoryServer (repository, userManager,

new ProtocolHandler (repository)):;
server.bind() ;

// process all requests and exit.

System.out.println ("Server awaiting client connections");
server.process () ;

System.out.println ("Server shutting down.");

For now, ignore the compilation errorin ServerLauncher (it will be fixed shortly).

Let's work on the self-registration issue. Edit the repository.xsd file to add a new optional boolean register attribute
to the loginRequest message. Java presumes that messages with the register attribute setto true are attempts by
the clientto register a new accountin the system. The user requesting the registration may have selected a duplicate
user id; these requests will be denied and the user will be prompted to choose a new user id. Find the XML block for
loginRequest in repository.xsd and modify itas shown:

CODE TO TYPE: /repository.xsd

<xs:element name='loginRequest'>
<xs:complexType>

<xs:attribute name='user'
<xs:attribute name='password'
<xs:attribute name='register'

type='xs:string'
type='xs:string'

use='required'/>
use='required'/>

type='xs:boolean' use='optional'/>

</xs:complexType>
</xs:element>

When a RepositoryThread receives aloginRequest with register="true’, itis directed to open a new accountfor
that user. If the account has already been opened, a failed loginResponse is returned to the client; otherwise the
accountis created and the user remains connected. Since we have modified the protocol, you should add a new
attribute to Parser just after the definition ofloginPassword:

CODE TO TYPE: /src/xml/Parser.java

public final static String loginUser = "user";

public final static String loginPassword = "password";
public final static String loginRegister = "register";
public final static String invalidCredentials = "Invalid credentials";

You'll need to make several changes to the RepositoryThread process method to manage the protocol, and extract
information from the loginRequest message. Modify RepositoryThread as shown:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.*;
import xml.*;

import org.w3c.dom.*;

public class RepositoryThread extends Thread {
Socket client;
BufferedReader fromClient;
PrintWriter toClient;
IProtocolHandler handler;
String user;
UserManager manager;

RepositoryThread (UserManager um, Socket s, IProtocolHandler h) throws IOException {
fromClient = new BufferedReader (new InputStreamReader (s.getInputStream()));
toClient = new PrintWriter (s.getOutputStream(), true);
client = s;
handler h;
manager = um;

public void run() {
// authentication by first login message. Stop if not a loginRequest.
Message m = Parser.extractRequest (fromClient) ;
Node child = m.contents.getFirstChild() ;
if (!child.getLocalName () .equals (Parser.loginRequest)) {
return;

// Get authentication information
Strineg—user = child.getAttributes () .getNamedItem (Parser.loginUser) .getNodeValue () ;
String pass = child.getAttributes () .getNamedItem(Parser.loginPassword) .getNodeValue

// might be self-registration.
Node registerNode = child.getAttributes () .getNamedIltem (Parser.loginRegister) ;
boolean register = false;
if (registerNode != null) {
register = Boolean.valueOf (registerNode.getNodeValue()) ;

// tell client decision and engage handler on successful login
boolean validated;
if (register) {

if (manager.registerUser (user, pass)) {
m = new Message ("<response success='true'><loginResponse user='" + user + "'/><
/response>") ;
validated = true;
} else {
m = new Message ("<response success='false' reason='" + Parser.invalidCredential

S + "|>" +
"<loginResponse user='" + user + "'/></response>");
validated = false;

}

} else {
if (!manager.authenticate (user, pass)) {
m = new Message ("<response success='false' reason='" + Parser.invalidCredential
S + A\l l>“ +
"<loginResponse user='" + user + "'/></response>");
validated = false;

} else {
m = new Message ("<response success='true'>" +
"<loginResponse user='" + user + "'/></response>");

validated = true;

toClient.println (m.toString());
if (toClient.checkError()) {
return;

if (validated) {
// have handler manage the protocol until it decides it is done.
while ((m = Parser.extractRequest (fromClient)) != null) {
manager .updateAccessTime (user) ;
Message response = handler.process (m);
if (response == null) { break; }

toClient.println(response.toString());
if (toClient.checkError()) {
break;

}

// close communication to client.
try {
fromClient.close();
toClient.close();
client.close();
} catch (IOException e) {
System.err.println ("Unable to close connection:" + e.getMessage());

M 1 i .
=n o Seaite—STarTS W

ar
7
e
ar
ar
H

e 12 Jo
T [eEmRvicnw TITY

P
[¢p]
q

=3
IR \ e
CErITg P T

. 1o k] .
POoTIC OO0 TCaIT auacliIclr
i

e NI fa)
OCL IIIg gocCry o
\
7

A Ol : = YA
reTOETT T raCter—x T T (o

—
)

T r

The new code we added handles the self-registration of user accounts as requested at the outset of this project. It also
handles situations where a user tries to self-register an account with a user name that already exists.

In the run method of RepositoryThread, you've converted the local variable user extracted from the loginRequest
into a class attribute. Because the user string is stored by the RepositoryThread, itis notavailable to the
ProtocolHandler and therefore cannotbe "spoofed" by malicious code. Also, in newly inserted call to
manager.updateAccessTime() within the while loop, you can see that whenever any activity occurs for the user,
the thread updates the activity managed by the UserManager first.

The scaffolding authenticate() method in RepositoryThread has been deleted and invocations to it have been
replaced with invocations to the UserManager implementation. We write scaffolding code to enable development to
proceed at a steady, uninterrupted pace. We delete scaffolding code once the real classes are developed.

Now modify RepositoryServer so itis given a UserManager object when itis constructed; this UserManager
objectis passed to each thread spawned by the RepositoryServer:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

package server.ipc;

import java.io.*;
import java.net.*;
import server.model.*;
import server.*;

public class RepositoryServer ({
ServerSocket serverSocket = null;
int state = 0;
IProtocolHandler protocolHandler;
Repository repository;
UserManager manager;

public RepositoryServer (Repository rep, UserManager um, IProtocolHandler ph) {
protocolHandler = ph;
repository = rep;
manager = um;

}

public void bind() throws IOException {
serverSocket = new ServerSocket (9172);

state = 1;

}

public void process () throws IOException {
while (state == 1) {

Socket client = serverSocket.accept();

new RepositoryThread (manager, client, protocolHandler) .start();

}

shutdown () ;

void shutdown () throws IOException {
if (serverSocket != null) {
serverSocket.close () ;
serverSocket = null;
state = 0;

Testing

Your code changes cause compilation errors in the test cases, so now you need to integrate the UserManager class.

The ConcurrentUserPerformance class in the performance source folderis seriously outdated (it still refers to
SIZE messages). This class has served its purpose; it's time to delete it. Review the TestServer testcase thatyou

need to modify. Change the imports of this test case to import server.* and then modify the launchServer method as

shown below to integrate UserManager into the launchServer method used during testing:

CODE TO TYPE: /test/server.ipc/TestServer.java

package server.ipc;

import java.io.*;

import server.model.*;

o A= fal I 1o

41“}/&_}];[, oL L . oL CLTOaUITCITT LT,

2 4= - R . lal
J_lLLf/UJ_L oL oL .J_r/k_,-i CJ:/\J T CUL [SA=nn =L

import
import
import

public

server.*;
client.*;
junit.framework.TestCase;

class TestServer extends TestCase {

public static RepositoryServer launchServer ()

throws Exception {

£ 1 n 2 o o I |~ A= L o= 1 s Y L \
T TITa T T L\JU L C E= [SA=E = 1 E. =L T [=J 1 L O TIT 1T 1 e UL aC 1T W f A .) g 1 C o CL Ct_l\) L C J__Y/ T r
=10 1 1 4= 4=

asserthagtats—(i——server—stater

Repository repository = new Repository(new File (testRepository));

UserManager userManager = new UserManager (new File (testRepository, "userManager"))
;

userManager.load() ;

final RepositoryServer server = new RepositoryServer (repository, userManager,

new server.ProtocolHandler (repository));
new Thread() {
public void run() {
try {
server.bind() ;
assertEquals (1,
server.process () ;
} catch (IOException ioe) {
System.err.println ("Server completed:" + ioe.getMessage());

server.state);

}
}.start () ;

// wait until server is ready.
Thread.sleep (2000) ;

return server;

You need some additional test cases to validate the core behavior of UserManager.

EI In the ltest source folder server package, create a new JUnittest case named TestUserManager as shown
(your server package is probably empty at this point, so it may not appear in your Package Explorer. Right-click the
Itest folder, select New | Other | JUnit | JUnit Test Case, and include server in the Package field):

CODE TO TYPE: /test/server/TestUserManager.java

package server;

import java.io.*;
import server.ipc.*;
import junit.framework.TestCase;

public class TestUserManager extends TestCase {
UserManager userManager;

protected void setUp() {
userManager = new UserManager (new File (TestServer.testRepository, "userManager"));

public void testMembership () {
assertFalse (userManager.isActive ("george"));
assertTrue (userManager.registerUser ("george", "HASH-PASSWORD"));
assertTrue (userManager.isActive ("george"));

assertTrue (userManager.authenticate ("george", "HASH-PASSWORD")) ;

assertFalse (userManager.authenticate ("george", "BAD-HASH-PASSWORD")) ;
assertTrue (userManager.removeUser ("george"));

assertFalse (userManager.isActive ("george"));

assertFalse (userManager.authenticate ("george", "HASH-PASSWORD")) ;

assertFalse (userManager.removeUser ("george"));

public void testStorage () {
assertFalse (userManager.isActive ("george"));
assertTrue (userManager.registerUser ("george", "HASH-PASSWORD"));
assertTrue (userManager.store());

// recreate

userManager = new UserManager (new File (TestServer.testRepository, "userManager"));
userManager.load() ;

assertTrue (userManager.isActive ("george"));

public void testFaultyTwiceRegistered() {
assertTrue (userManager.registerUser ("george", "HASH-PASSWORD"));
assertFalse (userManager.registerUser ("george", "HASH-PASSWORD")) ;

public void testTiming () throws InterruptedException {
assertTrue (userManager.registerUser ("george", "HASH-PASSWORD")) ;
UserManager.setThreshold (50); // 50 milliseconds
Thread.sleep (250) ; // sleep longer than threshold
assertFalse (userManager.isActive ("george"));
userManager.updateAccessTime ("george") ;
assertTrue (userManager.isActive ("george"));

The testMembership() test case method issues a sequence ofregistrations and authentications to validate that the
core logicis covered. Each method in UserManager returns a meaningful return value which facilitates proper testing.

Validate that all test cases in the test source folder pass. What's this? Failed tests within the Test AddBehavior test
case? Of coursel! In this lab, you replaced the "scaffolding" authenticate method (which validated solely by making
sure that the first character of user name was a letter) with the real implementation. So now you have to revisit these
test cases. Since you added self-registration loginRequest messages in this lab, you will have to validate that code
as well:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public static Message requestLOGIN(String user, String hashedPassword, boolean self)
{

String s = "<request><loginRequest user='" + user + "' password='" + hashedPassword

"' register='" + self + "'/></request>";
StringReader sr = new StringReader (s);
return Parser.extractRequest (new BufferedReader (sr));

}

public static Message requestLOGIN(String user, String password) {
return requestLOGIN (user, password, false);

}

These methods allow test cases to requesta login for an existing accountor to self-register one. We keep the original
requestLOGIN() method with two parameters for convenience and backward compatibility. You can take advantage
ofthese new methods right away in the revised test BasicAddBehavior() method:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

public void testBasicAddBehavior () throws Exception {
Message r;
toServer.println (requestLOGIN ("sample", "hashed-password", true));
r = TestAddBehavior.expectSuccess (fromServer) ;

Now this test case self-registers the sample user account, which is used later in the test case during a straight-up
login process. However, when we rerun all test cases, this test case fails on the second attemptto login using these
same credentials. We can explain this behavior. Earlier, you wrote load() and store() methods in UserManager, but
you never wrote the code to invoke store(). You have several options; the least efficient would have you invoke
store() whenever any user information changed (for example, when new accounts were created or the last access
time for a user is updated). An alternative would be to use a timer thread to store the UserManager object periodically;
while useful, this option would be challenging to testwithin a use case. The simplest option would be to invoke
store() whenever the server shuts down. Let's do that. Modify the shutdown() method in RepositoryServer as
shown:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

void shutdown () throws IOException {
manager.store () ;
if (serverSocket != null) {
serverSocket.close();
serverSocket = null;
state = 0;

Now rerun your test cases; they all pass. Generate code coverage using EcCIEmma and review the new code in
RepositoryThread. You can see that you have not exercised code when self-registration fails. What happens, for
example, if someone attempts to self-register an accountwith a user name that already has a valid account? Add this
next method to Test AddBehavior to handle this situation. While you're atit, fix the testLoginFailureBehavior test
case method to eliminate its outdated documentation and misleading arguments, as shown:

CODE TO TYPE: /test/server.ipc/TestAddBehavior.java

caffotding—dernrtes—user rames—starting—with—diogtt

public void testLoginFailureBehavior () throws Exception ({
toServer.println (requestLOGIN ("SstartstetterUnknownUser", "BADBAD")) ;
expectFailure (Parser.invalidCredentials, fromServer);

}

public void testInvalidSelfRegistration() throws Exception ({
toServer.println (requestLOGIN ("user00", "n", true));
expectSuccess (fromServer) ;
stopClient () ;

startClient () ;
toServer.println (requestLOGIN ("user00", "n", true));
expectFailure (Parser.invalidCredentials, fromServer);

Use EclEmma to generate the code coverage for all test cases and your results will look like this:

Authenticate Server Client Server Browse Mavigate Delete

Users Sessions Login Menu Images Image Image
src 72.6 72.3
client 9.6 9.6
client.gui i] 0
server 78.7 63.6
server.ipc 91.9 94
server.model 55.2 55.2
util B87.8 B7.8
xml 85.9 85.9

100

= —t=—Client

a0
\‘ == lient.gui
50 == cErver

40 i cp e IpC
i sy 7. model
20)
i Liti |
0 . . T T T 1 xml
0 2 4 = a 10

So now you know how Java deals with server sessions and identification. You've covered some complex Java topics
so far. Great work!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Supporting Client Login

Lesson Objectives

In this lesson you will:

e develop the client-side IPC layer.
e write alogin dialog that also supports self-registration.
e close a multi-threaded client application.

Supporting Client Login with Improved Client-Side Inter-Process
Communication (IPC)
Atlastwe're ready to revamp the client-side GUI application that will support all of the functionality you've added to the
server. First, we'll improve the IPC capability of the client, essentially putting into place a multi-threaded system similar
to what you did for the server. Then we'll add a login window to initiate the connection to the server. Throughout this

process, your server and client will be running on the same (virtual) machine, but once the code is operational, you can
execute the client and server code on separate machines.

Because you don'twantto synchronously block all client-side activity while waiting for the server to process a request,
the client requires an executable ServerAccess thread to read responses returned from the server. Additionally, by
having a thread read responses, you make it possible for the client to receive a response asynchronously, without first
sending a request.

The ServerAccess class handles the connection to the server. ServerAccess needs to know:

e the complete credentials of the user trying to connect (thatis, user name and hashed password)
e the remote machine to which a connection is requested (in our case, "localhost")

e whether the useris requesting to self-register a new account

ServerAccess offers the ability to connect to the remote server, disconnect from that server, and send a request to
that server. The ServerAccess code pulls in logic that you've seen before.

& in the Isrc folder client package, create a ServerAccess class as shown:

CODE TO TYPE: /src/client/ServerAccess .java

package client;

import java.io.*;
import java.net.*;
import xml.*;

public class ServerAccess extends Thread {
String host;
String user;
String hashedPass;
boolean selfRegister;

Socket server;
BufferedReader fromServer;
PrintWriter toServer;

boolean isActive = false;

System.err.println ("Unable to connect to server:
isActive = false;
return false;

start () ;
return true;

public void run() {
// TODO: Fill in soon
}

public void disconnect () {
isActive = false;
try |
server.close () ;
} catch (IOException ioe) {

System.err.println ("Unable to close server:'

public synchronized boolean sendRequest (Message r) {
if (!isActive) { return false; }

toServer.println(r);
return !toServer.checkError();

String hashedPass,

public ServerAccess (String host, String user,
) |
this.host = host;
this.user = user;
this.hashedPass = hashedPass;
this.selfRegister = selfRegister;
}
public boolean connect () {
try {
server = new Socket (host, 9172);
fromServer = new BufferedReader
toServer = new PrintWriter (server.getOutputStream(),
isActive = true;
} catch (Exception e) {

boolean selfRegister

(new InputStreamReader (server.getInputStream()));

true) ;

" + e.getMessage());

+ ioe.getMessage());

The ServerAccess constructor records information that's needed to set up communication with the remote server
when connect() is invoked. The isActive field determines whether the connection to the remote serveris active.

Initially, the value ofisActive is false;a user can send a message to the server using sendRequest () only if the
connection is active. Let's take a closer look atthe connect() method in ServerAccess as it launches a thread:

OBSERVE:

public boolean connect () {

try {
server = new Socket (host, 9172);
toServer = new PrintWriter (server.getOutputStream(), true);
fromServer = new BufferedReader (new InputStreamReader (server.getInputStream()))
isActive = true;

} catch (Exception e) {
System.err.println ("Unable to connect to server: " + e.getMessage()):;
isActive = false;
return false;

}

start();
return true;

You'll recognize much of this code. ltconnects to the remote server and creates toServerand fromServer
objects. Once communication is established, isActive is setto true. The start() invocation causes the
ServerAccess thread to begin executing its run method, which you'll complete now. The run method has two parts.
Editrun() in ServerAccess as shown:

CODE TO TYPE: /src/client/ServerAccess.java

public void run() {

FOBo+—FitF—Frr—soon
try {
String selfAtt = "";
if (selfRegister) { selfAtt = " register='true'"; }
Message m = new Message ("<request>" +
"<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt

+ "/></request>");
sendRequest (m) ;

while (isActive) {

// TODO: Fill in soon

} catch (Exception e) {
e.printStackTrace () ;

}

disconnect () ;

Let's take a closerlook:

OBSERVE:

public void run() {
try {
String selfAtt = "";
if (selfRegister) { selfAtt = " register='true'"; }
Message m = new Message ("<request>" +
"<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt

+ "/></request>") ;
sendRequest (m) ;

while (isActive) {

// TODO: Fill in soon

} catch (Exception e) {
e.printStackTrace () ;

}

disconnect () ;

The run() method constructs a loginRequest, which is sentto the server first. After that, so long as isActive is true,
the while loop processes messages. When isActive is false (orif an Exception occurs), the ServerAccess thread
disconnects from the remote server. Now let's complete the run() method:

CODE TO TYPE: /src/client/ServerAccess .java

public void run() {

try |
String selfAtt = "";
if (selfRegister) { selfAtt = " register='true'"; }
Message m = new Message ("<request>" +

"<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt
+ "/></request>");

sendRequest (m) ;

while (isActive) {

oo, ma 1 :
ToODO T T T IIT OOTT

m = Parser.extractResponse (fromServer) ;
if (m == null) {
break;
}
// TODO: For now, just print it to console
System.out.println (m);

} catch (Exception e) {
e.printStackTrace () ;

}

disconnect () ;

The ServerAccess thread blocks and waits for a response from the server using the extractResponse() method
implemented in the Parser class. When aresponse is read, a Message object is constructed. [fthatmessage
objectis ever null, the client can infer that the connection with the server has been shutdown, and so it can request
that ServerAccess be disconnected as well. For now, this code just outputs the response from the server— you'll fix
in the nextlesson. There's an interesting alternative situation that takes place when the client chooses to disconnect
from the server. In that case, you'll just call disconnect() on ServerAccess and the thread will exit properly.

OBSERVE:

while (isActive) {
m = Parser.extractResponse (fromServer) ;
if (m == null) {
break;

}

// TODO: For now, just print it to console
System.out.println (m) ;

When designing a client/server system, you have to consider when the client terminates the communication, and when
the server terminates the communication. You also need to know when a thread will stop. The Java API for threads
includes the Thread.stop method, which is less than ideal. Calling stop on a Thread is inherently unsafe. Instead,
you'll want to find indirect ways to terminate a thread. In the case of ServerAccess, the while method runs as long as
the clientis actively connected to the server; once the clientdrops this connection, isActive is setto false, and the
loop terminates. The thread will terminate properly without stopping the thread manually.

Client Login Window

Our client GUI looks nice, but it has no real functionality. Let's create a login window where users can enter
their credentials when connecting to the server. You'll use GroupLayout to model the GUI dialog window.
This GUI must allow the user to enter this information:

e Remote server host (default: localhost)

e UserlD

e Password

e Whetheruseris self-registering an account (default: no)

You also want this dialog to be "modal,” which means that no other GUI processing will be possible until the
dialogis closed.

& In the Isrc folder client.gui package, create a LoginDialog class as shown (this is the longest code
listing you've had to enter so far—fortunately, you saw a GUI Swing class earlier, so the GroupLayout
invocations will look familiar):

http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.html#stop()
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

CODE TO TYPE: /src/client.gui/LoginDialog.java

package client.gui;
import java.awt.event.*;
import javax.swing.*;

import javax.swing.GroupLayout.Alignment;

public class LoginDialog extends JDialog {

JTextField user;
JPasswordField pass;
JTextField host;
JCheckBox register;
JButton ok;

JButton cancel;
boolean isCanceled;

public LoginDialog (JFrame parent) {
this (parent, true);

}

LoginDialog (JFrame parent, boolean modal) {
super (parent, "Enter Login Credentials", modal);
setResizable (false);
initLayout () ;

}

void initLayout () {
setSize (400, 200);
JPanel p = new JPanel();

Grouplayout layout = new Grouplayout (p);
p.setLayout (layout) ;

// Enable gaps between components and with container for better look.
layout.setAutoCreateGaps (true) ;
layout.setAutoCreateContainerGaps (true) ;

JLabel host = new JLabel ("host:");
JLabel user = new JLabel ("user:");
JLabel pass = new JLabel ("password:");

layout.setHorizontalGroup (layout.createParallelGroup (Alignment.CENTER) .
addComponent (getRegisterCheckBox ()) .
addGroup (layout.createSequentialGroup () .
addGroup (layout.createParallelGroup (Alignment.TRAILING) .
addComponent (host) .
addComponent (user) .
addComponent (pass) .
addComponent (getCancel())) .
addGroup (layout.createParallelGroup (Alignment.TRAILING) .

addComponent (getHostField()) .
addComponent (getUserField()) .
addComponent (getPasswordField()) .
addComponent (getOK()))));

layout.setVerticalGroup (layout.createSequentialGroup () .

addGroup (layout.createParallelGroup (Alignment .BASELINE) .
addComponent (host) .
addComponent (getHostField())) .

addGroup (layout.createParallelGroup (Alignment .BASELINE) .
addComponent (user) .
addComponent (getUserField())).

addGroup (layout.createParallelGroup (Alignment .BASELINE) .
addComponent (pass) .
addComponent (getPasswordField())) .

addGroup (layout.createParallelGroup (Alignment .CENTER) .
addComponent (getCancel()) .

addComponent (getRegisterCheckBox()) .
addComponent (getOK())));

add(p) ;
}

JTextField getHostField() {
if (host == null) { host = new JTextField (32); }
return host;

}

JTextField getUserField() {
if (user == null) { user = new JTextField (32); }
return user;

}

JPasswordField getPasswordField() {
if (pass == null) { pass = new JPasswordField (32); }
return pass;

JCheckBox getRegisterCheckBox () {
if (register == null) { register = new JCheckBox ("Self Register"); }
return register;

JButton getOK () {
if (ok == null) { ok = new JButton ("OK"); }
return ok;

JButton getCancel () {
if (cancel == null) { cancel = new JButton ("Cancel"); }
return cancel;

Whew! That was long one, but you probaby recognized that the structure is similar to the
ImageRepositoryClient class you've already created. The only complication, naturally, is the invocation of
setVerticalGroup and setHorizontalGroup.

Compare the layout code with this example of the actual planned layout, which shows the parallel and
sequential groups:

OBSERVE:

layout.setHorizontalGroup (layout.createParallelGroup (Alignment.CENTER) .
addComponent (getRegisterCheckBox ()) .
addGroup (layout.createSequentialGroup () .
addGroup (layout.createParallelGroup (Alignment . TRAILING) .
addComponent (host) .
addComponent (user) .
addComponent (pass) .
addComponent (getCancel ())) .
addGroup (layout.createParallelGroup (Alignment . TRAILING) .
addComponent (getHostField()) .
addComponent (getUserField()) .
addComponent (getPasswordField()) .
addComponent (getOK())))):

layout.setVerticalGroup (layout.createSequentialGroup () .

addGroup (layout.createParallelGroup (Alignment .BASELINE) .
addComponent (host) .
addComponent (getHostField())) .

addGroup (layout.createParallelGroup (Alignment .BASELINE) .
addComponent (user) .
addComponent (getUserField())) .

addGroup (layout.createParallelGroup (Alignment .BASELINE) .
addComponent (pass) .
addComponent (getPasswordField())) .

addGroup (layout.createParallelGroup (Alignment .CENTER) .
addComponent (getCancel()) .
addComponent (getRegisterCheckBox()) .

addComponent (getOK())));
setHorizontalGroup setVerticalGroup
| __——parallel Group =0 —
——————

sequential Grou
| =24 P

—— B]
= "‘““Hsequen'tialf]rcuup @ El— LM parallel Group
= o o] -

0 oo

The tricky part of this invocation is thatit's able to place the "Self Register" check box between the "OK" and
"Cancel" buttons. This works because the firstlayout.createParallelGroup() invocation chooses
Alignment.CENTER for its alignment. So, the "Self Register" check box is centered horizontally along with

the other widgets.
r -
Enter Login Credentials Iéj

host: | |

user: | |

password: | |

Cancel [] Self Register 0K

i

& To see LoginDialog in action, create the Temp class in the default package of the Isrc folder. The Temp
class shows how to display a LoginDialog window and dispose ofitwhen the user closes the window.
(You'll delete this class once you complete LoginDialog):

CODE TO TYPE: /src/Temp.java

import javax.swing.*;
import client.gui.*;

public class Temp {
public static void main (String[] args) {
final LoginDialog 1d = new LoginDialog(null);
ld.setDefaultCloseOperation (JFrame.DISPOSE ON CLOSE) ;

ld.setVisible (true) ;
System.out.println ("DONE") ;

Normally a dialog is opened from within another Java window, but you can always pass in null to the
constructor. In this case, the dialog appears in the top-left corner of your display. LoginDialog has two
constructors: the LoginDialog(JFrame) constructor creates a modal dialog, which means that no other GUI
activity is accepted by your Swing application until this dialog is closed; and the
LoginDialog(JFrame,boolean) constructor, which gives you the option to create a modeless dialog
(which will become necessary later when you write test cases for this class).

Run the Temp class. Your dialog appears as shown:

[Enter Login Craedentials L-E:hr
host: | |
user: | |

password: | |
Cancel [| Self Register oK

Unfortunately, none of the buttons work, but the top three label/field pairs are structured correctly, and the "Self
Register" checkbox is centered horizontally. When you close the LoginDialog window you justlaunched
with Temp, the word "DONE" appears on the Eclipse console. This behavior demonstrates that GUI threads
block whenever a modal dialog is opened.

Users may complete their interactions with a dialog box by pressing the OK button; dialog boxes also
present the option to Cancel (or the user could choose to close the entire dialog window from the window
frame). There is also an isCanceled attribute in LoginDialog.

In GUI applications, you write control handlers to process events (such as mouse clicks and requests to
close windows). Modify the LoginDialog class as shown to add the first control handler:

CODE TO TYPE: /src/client.gui/LoginDialog.java

public class LoginDialog extends JDialog {

class CancelAction {
public void process () {
isCanceled = true;
LoginDialog.this.dispose();
}
}

public LoginDialog (JFrame parent) {
this (parent, true);

}

LoginDialog (JFrame parent, boolean modal) {
super (parent, "Enter Login Credentials", modal);
setResizable (false);
initLayout () ;

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent we) {
new CancelAction () .process|();
}
1)

getCancel () .addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent ae) {
new CancelAction () .process();
}
1)

The CancelAction inner class contains a single process() method that sets the isCanceled attribute for
LoginDialog to true, before disposing of the LoginDialog object. The unusual syntax of the
LoginDialog.this.dispose() statement; this syntax allows the inner class (in this case CancelAction) to
be able to refer to its container class (thatis, LoginDialog). Java's use ofinner classes makes it possible to
write concise code that can be encapsulated to protect access. This CancelAction class is used by both the
WindowAdapter controller associated with closing the window, and the ActionListener associated with
the Cancel button. Because CancelAction is a stateless class, you can construct a new CancelAction
objectand invoke its process() method. In both cases, you use Java's anonymous classes to register a
WindowListener and ActionListener with their respective Swing elements.

Go ahead and run the Temp class (you can dispose of the window by clicking on the Cancel button). That's
progress!Let's keep going.

LoginDialog needs to have some logic so the client application can retrieve the information entered by the
user. In other words, when the userfills in the text fields and clicks OK, you need to extract the values from the
text fields and store them within the LoginDialog object. When you dispose of LoginDialog, you eliminate
only the GUIresources; the LoginDialog object still exists in memory. The code that made LoginDialog
visible in the first place can then retrieve the necessary attributes from the LoginDialog object. Add some
attributes and methods to LoginDialog as shown:

CODE TO TYPE: /src/client.gui/LoginDialog.java

package client.gui;

import util.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.GroupLayout.Alignment;

public class LoginDialog extends JDialog {
String userValue;
String hostValue;
boolean isRegistered;
String hashedPassword;

public boolean wasCanceled () { return isCanceled; }

public String getUserValue() { return userValue; }

public String getHostValue() { return hostValue; }

public String getHashedPasswordValue () { return hashedPassword; }
public boolean isSelfRegistered() { return isRegistered; }

These changes make it possible to retrieve all information recorded by the LoginDialog object. The next
controller you write will be associated with the OK button; it will update these values for future retrieval. Make
these changes to LoginDialog:

CODE TO TYPE: /src/client.gui/LoginDialog.java

public class LoginDialog extends JDialog {

class OKAction {
public void process () {
isCanceled = false;
hostValue = getHostField() .getText ()
userValue = getUserField() .getText ()
isRegistered = getRegisterCheckBox () .isSelected();

// Extract password and safely clean it out
char [] chars = getPasswordField() .getPassword() ;
byte[] bytes = new byte[chars.length];

for (int 1 = 0; 1 < bytes.length; i++) {
bytes[i] = (byte) chars[i];
chars([i] = "\0';
}
hashedPassword = Fingerprint.getFingerPrint (bytes);
LoginDialog.this.dispose();

}

public LoginDialog (JFrame parent) {
this (parent, true);

}

public LoginDialog (JFrame parent, boolean modal) {

super (parent, "Enter Login Credentials", true);
setResizable (false);

initLayout () ;

addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent we) {
new CancelAction() .process();
}
1)

getCancel () .addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent ae) {
new CancelAction () .process();
}
1)

getOK () .addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new OKAction () .process();
}
1)

The process() method in OKAction extracts values from the Swing GUI widgets and stores them in the
class attributes you justadded. When you use the process() methid, you can only extract a char[] array
from a JPasswordField object. This is done to allow the caller to clean out the array contents safely and
construct the hashedPassword using the Fingerprint class you've already developed. The designers of
the Swing framework recommend the code fragment you've used to extract the characters. This helps to
prevent a malicious third-party from retrieving the password, because you essentially zero it out when you
extractitin the first place. Note that LoginDialog only stores the hashed password, and never the plain-text
password, for security reasons. When you write code in this way, you satisfying your obligation to avoid
storing (or transmitting) the user's password in plain text.

Chanae Temp to retrieve the values from LoainDialoa as shown:

CODE TO TYPE: /src/Temp.java

import javax.swing.*;
import client.gui.*;

public class Temp {
public static void main(String[] args) {
final LoginDialog 1d = new LoginDialog(null);
ld.setDefaultCloseOperation (JFrame.DISPOSE ON CLOSE) ;

1d.setVisible (true) ;

e O e e

System.out.println ("canceled:" + ld.wasCanceled());
System.out.println("user:" + ld.getUserValue());
System.out.println ("password:" + ld.getHashedPasswordvValue());

System.out.println ("selfRegister:" + ld.isSelfRegistered());

Run Temp and observe the output responses under different input circumstances; try closing the dialog by
clicking OK and Cancel.

Let's add one more common GUI feature to LoginDialog that will enable the OK button only when all text
fields have content. This requires using a KeyListener on all text fields.

CODE TO TYPE: /src/client.gui/LoginDialog.java

public class LoginDialog extends JDialog {

class OKFilter extends KeyAdapter {
public void keyReleased (KeyEvent e) {
validateForm() ;
}
}

void validateForm() {

boolean enable true;

if (getHostField() .getText () .length() == 0) { enable = false; }

if (getUserField() .getText () .length() == 0) { enable = false; }

if (getPasswordField() .getPassword() .length == 0) { enable = false; }

getOK () .setEnabled (enable) ;

LoginDialog (JFrame parent, boolean modal) {
super (parent, "Enter Login Credentials", modal);
setResizable (false);
initLayout () ;
validateForm() ;

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent we) {
new CancelAction () .process();
}
1)

getCancel () .addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent ae) {
new CancelAction() .process();
}
1)

getOK () .addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent ae) {
new OKAction () .process();
}
1)

getPasswordField () .addKeyListener (new OKFilter());
getHostField () .addKeyListener (new OKFilter());
getUserField () .addKeyListener (new OKFilter());

These small changes, spread across LoginDialog, call validateForm when each key is released. In doing
so, validateForm is called whenever the user types a key that alters the value stored in any text field. This
sort of field-value checking is common in GUl systems, and it can resultin awful code ifit's not handled well.
The enabling logic for the OK button is encapsulated within the validateForm method. Each controller that
manages user updates must (at some point) invoke validateForm to enable (or disable) the OK button
correctly.

Run Temp to verify that the OK button is unavailable until you enter data in all three fields.

Testing

The new code for this lesson is split between the client GUl and client IPC layers. You can write a setoftest cases to

validate ServerAccess, butyou'll have to wait until the nextlesson to write test cases for LoginDialog. For now, get
started by modifying RepositoryClient to use the new protocol and retrieve its credentials and hostinformation from
LoginDialog:

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;

tmport—avaaet—
import javax.swing.*;
import xml.*;

import util.*;

import client.gui.*;

public class RepositoryClient {

1 PR IR SR il n
tJLALJJ_J__/ CcCaCcICT n_)L,J_J_llg CITCT b/ull T J_CDt)\JJ.l = 12

i) < £ fal A Eatnl s 4
cret et e T oMot I owWS ToOnRCeOTTIOT 1

Hh

IEnl no

i T | LY A i L7\ yAll
11 RCAT S Sy s e i o o W A s Y e SPOITSeTCoTTeTT S g€ T

VA N ST
eSSt~ geThameS et £

public static void main(String[] args) throws Exception {
final LoginDialog 1d = new LoginDialog(null);
ld.setDefaultCloseOperation (JFrame.DO NOTHING ON CLOSE) ;

ld.setVisible (true) ;
if (ld.wasCanceled()) { System.exit (0); }

String fp = ld.getHashedPasswordvValue () ;
String user = ld.getUserValue();
String host ld.getHostValue () ;
boolean register = ld.isSelfRegistered();

SplashScreenlogic.update ("connecting to +eeathest" + host + "::9172");
delay (250) ;
Soeket——server—men—Socket—(tocathost—5++2)
ServerAccess sa = new ServerAccess (host, user, fp, register);
if (!sa.connect()) {
System.err.println ("Unable to connect to server:" + host);
System.exit (-1);

SplashScreenlogic.update ("connected to localhost::9172");
delay (250) ;

String xmlStatusRequest = "<request><statusRequest/></request>";
sa.sendRequest (new Message (xmlStatusRequest));

fal T | 1o
CoCErVer T P IIC I (XITroca

o
=}
o
o)

n £
TTroce nNEeSPoITrSe T oM - E

File f = new File("images", "repositorySplash.png");

String encoding = ImageEncoding.encode (f);

String xmlAddRequest = "<request><addRequest name='samplelImage'>" +
"</addRequest></request>";

sa.sendRequest (new Message (xmlAddRequest)) ;

// wait 5 seconds for everything to complete
delay (5000);

e O N | 1A ddn i
CooCE Ve prrircri(Rrraanegae ST/

n Y= o \
=z SESPOITSe (T oot T 7

=L ‘CL.k_/l\J C\)y
sa.disconnect () ;
SplashScreenLogic.update ("closing");
delay (250) ;

}

/** Delay for a time. */
static void delay(int ms) {

try { Thread.sleep(ms); } catch (InterruptedException ie) { }
}

Launch a server by running ServerLauncher, and then run the updated RepositoryClient and select to self-register

a new account. RepositoryClient is intended to testthe core logic of the server; don't be concerned that it fails to
dispose ofthe Splash Screen when LoginDialog is visible. For the host value, enter localhost. Then enter a name
and password you'll remember, and check the Self Register box.

You'll see output like this in your Console window when you click the OK button:

OBSERVE:

connecting to localhost::9172
connected to localhost::9172
<?xml version="1.0" encoding="UTF-8"?><response success="true"><loginResponse user="1kj
k1" /></response>
<?xml version="1.0" encoding="UTF-8"?><response success="true"><statusResponse index="1
" key="SomeKey" total="1"/></response>
<?xml version="1.0" encoding="UTF-8"?><response reason="That image already exists in th
e repository." success="false">

<addResponse numBytes="0"/></response>
closing

The third xml message appears only if you have run code in the past that uploaded an image to the Image Repository.

If you can recall the user credentials for the account you just created, re-run RepositoryClient and login using the
same credentials, but this time, do notcheck the Self Register box. Since the server is still running, the accountis
still active, and you can connect properly.

& In the ftest folder, create a client.gui package.

ET In the /test folder client.gui package, create a TestLoginDialog testcase as shown:

CODE TO TYPE: /test/client.gui/TestLoginDialog.java

package client.gui;

import util.*;
import junit.framework.TestCase;

public class TestLoginDialog extends TestCase {
LoginDialog 1d;

protected void setUp () {
1d = new LoginDialog(null, false);
ld.setVisible (true) ;

protected void tearDown () {
1d.dispose () ;
}

public void testInitialDisabled() {
assertFalse (1ld.getOK() .isEnabled()):;
}

// validate second password.

public void testRegistrationSituation() {
assertFalse (ld.getOK() .isEnabled()):;
ld.getUserField() .setText ("sample") ;
ld.getHostField () .setText ("localhost");
ld.getRegisterCheckBox () .doClick() ;
ld.validateForm() ;
assertFalse (1ld.getOK() .isEnabled()):;
// Enter password
ld.getPasswordField () .setText ("another") ;
ld.validateForm() ;

assertTrue (ld.getOK() .isEnabled()):;

// make the action occur
ld.new OKAction () .process();

assertEquals ("sample", ld.getUserValue());
assertEquals (Fingerprint.getFingerPrint ("another".getBytes()), ld.getHashedPasswor

dvalue());
assertEquals ("localhost", ld.getHostValue()):;
assertFalse (ld.wasCanceled());

assertTrue (ld.isSelfRegistered());

assertFalse (1ld.isVisible());

This test case will exercise the essential logic for LoginDialog. In pastlessons you saw how to merge a number of
EclEmma sessions to determine the full code coverage. Now terminate all running applications and launch
ServerLauncher using EcIEmma. Do the same for RepositoryClient. Exercise a few features in LoginDialog, like
selecting (and unselecting) the register checkbox, clearing fields, entering invalid information, and so on. Next, choose
to self-register a new account, enter proper credentials, and press OK. The dialog disappears and a coverage session
will be generated.

There is no logicin ServerLauncher to automatically shutit down (yet). Terminate the application using
the console tab or the Debug perspective. You will be notified that "No coverage data file has been written
during this coverage session," because you terminated the application manually. We'll fix this problem in
the nextlesson.

Z
(o)
-~
D

Now launch all test cases within ECIEmma as you've done in pastlessons. Due to the changes to Repository, the
testMultipleClients code in TestServeris no longer useful; it pops up multiple LoginDialog boxes. If you wait
ten seconds though, they will go away. (Take a look at the test case method to see why this happens.) Now, use the
"merge sessions" option to, well, merge all sessions.

Wow! Look how nice the coverage appears! (Note that your mileage may vary.)

Authenticate Server Client Server Browse Mavigate Delete

Users Sessions Login Menu Images Image Image
src 72.6 72.3 73.3
client 9.6 9.6 57.0
client.gui 0 0 67.4
server 78.7 63.0 63.6
server.ipc 91.9 94 93.7
server.model 55.2 55.2 55.2
util 87.8 87.8 87.8
xml 85.9 85.9 g87.0
100
iﬂ:‘:& == lient
80
== client.gui
60 == 58 NV er
40 i cp T IpC
i s Py 1. M OO e
20)
=== Litil
0 . T T T 1 xml
0 2 4 & 8 10

You are exercising nearly 70% of the code you have written! Congratulations! You are making excellent progress.
Keeep up the good work and see you in shortly.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Client Server Menu

Lesson Objectives

In this lesson you will:

e complete the implementation ofthe Server menu in the Client GUIl application.

Client Server Menu

You're in the home stretch! As we prepare to assemble the GUI client application in its entirety, we want to make sure
we have all the pieces ready to go. We need the clientlaunching class, ClientLauncher, instantiates and makes the
primary main clientclass, ImageRepositoryClient, visible. We also want all interaction with the server to occur
through the ServerAccess class, which can be instantiated on demand. The client already has a Preferences class
to manage all user customizations persistently.You've already seen "local controller" objects used—specifically by
LoginDialog to manage user interactions. The final pieces we need to putinto action in order to complete the client
puzzle are the special controller classes that will manage all key functionality.

First, you'll need to update ServerAccess so itdoes more than just print out messages that it receives from the
server. The true logic of this class should be externalized; to do that, you'll need an interface.

& In the /src folder client package, create an IProcessResponse interface as shown:

CODE TO TYPE: /src/client/IProcessResponse.java

package client;
import xml.*;
public interface IProcessResponse {

void process (Message response);

}

This interface defines a process method that will be implemented by a handler to respond to messages received from
the server.

Now integrate this interface with ServerAccess. Modify your code as shown:

CODE TO TYPE: /src/client/ServerAccess .java

package client;

import java.io.*;
import java.net.*;
import xml.*;

public class ServerAccess extends Thread {
String host = null;
String user = null;
String hashedPass = null;
boolean selfRegister = false;

Socket server;
BufferedReader fromServer;
PrintWriter toServer;

boolean isActive = false;
IProcessResponse handler;

public ServerAccess (String host, String user, String hashedPass, boolean selfRegister
) |
this.host = host;
this.user = user;
this.hashedPass = hashedPass;
this.selfRegister = selfRegister;

public boolean connect (IProcessResponse handler) {
this.handler = handler;

try {
server = new Socket (host, 9172);
fromServer = new BufferedReader (new InputStreamReader (server.getInputStream()));
toServer = new PrintWriter (server.getOutputStream(), true);
isActive = true;
} catch (Exception e) {
System.err.println ("Unable to connect to server: " + e.getMessage());
isActive = false;
return false;

start () ;
return true;

public void run() {
try {
String selfAtt = "";
if (selfRegister) { selfAtt = " register='true'"; }
Message m = new Message ("<request>" +
"<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt

+ "/></request>");
sendRequest (m) ;

while (isActive) {

m = Parser.extractResponse (fromServer) ;
if (m == null) {
break;
AN hml . 4 LN L, 1
OB For—pow—Tast—print—it—teo—econsote
fal A= = 2 = L AY
J C lH-\JuL,.J:J‘LLlLl_Lll \R VYA

handler.process (m) ;

} catch (Exception e) {

e.printStackTrace () ;

}

disconnect () ;

}

public void disconnect () {
isActive = false;
try |
server.close();
} catch (IOException ioe) {
System.err.println ("Unable to close server:" + ioe.getMessage());
}
}

public synchronized boolean sendRequest (Message r) {
if (!isActive) { return false; }

toServer.println(r);
return !toServer.checkError () ;

All messages received from the server are delegated to the handler for processing.

Integrate LoginDialog with the Server menu to see these changes in action. There are three menu items to
complete:

e Connect:connectto aremote server using the LoginDialog window.
e Disconnect: disconnectfrom aremote server to make it possible to reconnectto a new server.
e Quit: quitthe GUl application (after prompting user for confirmation).
Start with the Quit menu item, because the ClientLauncher code already has mostofthe logic for this functionality.

Extract this logic and place itinto a standalone controller class which can be invoked either by the closing of the main
application window or the selection of the Quit menu item.

& In the Isrc folder clie nt.gui package, create the QuitController class as shown:

CODE TO TYPE: /src/client.gui/QuitController.java

package client.gui;

import javax.swing.*;
import util.*;

public class QuitController {
final static String property confirmOnExit = "ConfirmOnExit";
static String imageFile = "images/help 32.png";
static ImagelIcon icon;

public boolean confirm(ImageRepositoryClient client) {
if (icon == null) {
icon = new Imagelcon (imageFile);
}
if (!Preferences.isTrue (property confirmOnExit)) {
String[] choices = { "Confirm", "Confirm and don't ask me again" };

String s = (String) JOptionPane.showInputDialog (client,
"Do you wish to exit Image Repository?\n ",
"Confirm Exit", JOptionPane.PLAIN MESSAGE,
icon, choices, choices[0]);

if (s == null) {
return false;
} else if (s.equals (choices[1])) {
Preferences.set (property confirmOnExit, true);
}
}
client.quit();
return true;

Ignore the compiler error for now, because you'll add a quit() method to ImageRepositoryClient soon, then you
can modify ClientLauncher to use that quit() method. Take a look at the method signature for confirm(), which
returns true on success or false on denial. You will continue to use this pattern in the other controllers you write for
this lesson. Modify ClientLauncher to use QuitController as shown:

CODE TO TYPE: /src/client/ClientLauncher.java

package client;

import java.awt.event.*;
import javax.swing.*;
import client.gui.*;

: = T
IMpPoYrt ottt 7

public class ClientLauncher ({

—_r L[]

o £ kil
|\ 1 g g s 11 A 3 A iy

o o £ h] R i £ Thaoo i
CorCc L TTritTar oCrTilg pPropetrTy T Mo XTC

public static void main(String[] args) {
final ImageRepositoryClient irc = new ImageRepositoryClient();
irc.setDefaultCloseOperation (JFrame.DO NOTHING ON CLOSE) ;
£ 1 I I H T I 1 - 1. 1 2 LAY

T TITa T J.Hla\j LT O UIT T 1T o 1T W J.lHG.‘j T CUITT J_Lllag =} llCJ.t/i\) -t_/ll\j T r

irc.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent we) {
if (new QuitController().confirm(irc)) {
irc.dispose();

+

£ P Munl { ES £ sz \ e
TreTreretT T IS L UOC {PLroPerTY o= T T U

C

L

i
Y
O k] oo [V £ (1] [1Val £ ol 1 1 LN |
OCLIIIg] ClIorce = |\ e g 1 OITT T alirar OoIr C ok e agair 77
sy (O oo T A n I T P N | V]
OCL LI = oIS ooOP TIonr ot - STTOW I PO CcoUTaTtog (T Cy
N L P T n L i1}
=) oUW STr—C T T oy nePoSTTOT T 7

[I¥al

A n o
PCIoTToiTe T O TV T T0TT

=1
£ Tosea o W1 I
|\ 15 i e s 1 G e wn m Sy S v
i

Lot
YT T

q
i
]

. .
IO, CroTrcesST—C

=) 11 ‘
T =TTy T
&
ettty
hl 1 e L 1 L 1o . [11 L
T TSI (S.coguar o rCesST=T1 71
=l el NS
LT CTITCTIOOT T CITT 1T CITT TOCTUOL™
o = . . =] Tt i . \
J TETTITCE . L,\rJJ_ t/ 1T CUTTT IO TTID LT CcCLaT
2
TECTOTSE St 7

irc.setVisible (true);

Now ClientLauncher is more straightforward, and QuitController can be reused in ImageRepositoryClient.
The QuitController doesn't compile yet because you still need to add a quit() method to
ImageRepositoryClient; you'll do that shortly.

All of the code changes you make during this lesson work toward the single purpose of defining the GUI controllers
we'll need to handle the application functionality we want. Once we have thatin order, our next task is to develop a
response handler to process the response messages received by the client as the application proceeds.

The Connect and Disconnect functionalities are mutually exclusive, so you need to enable their corresponding
menu items appropriately. For example, Disconnect can only be enabled once the clienthas connected to a remote
server. In the same way that you validated a form before allowing the OK button to be enabled earlier, you can have a
similar method enable or disable menu items based on the state of the client. So, where should this client state be
maintained? Good question! lt begins at ImageRepositoryClient, so we'll place the validate MenuBar() method
there, to be invoked whenever the connection state with the server is updated (for instance, during initialization,
connection, or disconnection).

Let's make the necessary changes one ata time. First, add some attributes and a method to
ImageRepositoryClient:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

import java.awt.*;

import javax.swing.*;

import javax.swing.GroupLayout.Alignment;
import java.awt.event.*;

import client.*;

/** Primary GUI window for the client application. */
public class ImageRepositoryClient extends JFrame {

JScrollPane imgPanel;

JTextArea imgMetaData;

JTextField status;

ServerAccess access;

JMenu image;

JMenultem connect;

JMenultem disconnect;

JMenultem quit;

public void validateMenuBar () {

connect.setEnabled (access == null);
disconnect.setEnabled(access != null);
image.setEnabled(access != null);

The validateMenuBar() method defines the conditions under which the connect and disconnect menu items are
enabled. Whenever there is a non-null access object, the client should be able to disconnect from the server and
interact with the image menu, otherwise, only the connect menu item should be enabled.

Now, modify the initMenuBar() method to use these attributes. Take care to call validate MenuBar() atthe end of
the constructor to configure the GUI properly before it becomes visible to the user.

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

public ImageRepositoryClient () {
super ("Image Repository Client");
initMenuBar () ;
initLayout () ;
validateMenuBar () ;

}

void initMenuBar () {
JMenuBar mb = new JMenuBar () ;

JMenu server = new JMenu ("Server");
connect = new JMenultem("Connect...");
server.add (connect) ;
connect.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new ConnectController () .connect (ImageRepositoryClient.this);
}
1)

disconnect = new JMenultem("Disconnect...");
server.add (disconnect) ;

quit = new JMenultem("Quit...");
server.add (quit) ;
quit.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new QuitController () .confirm(ImageRepositoryClient.this);
}
1)
mb.add (server) ;

IMernt—image = new JMenu ("Image");
mb.add (image) ;

setJMenuBar (mb) ;

These changes register two new controllers: one to react to the user's selection of the Connect... menu item, and the
other to use the above QuitController. The image JMenu object created now is stored by the image class
attribute, rather than by a local variable as it was before; this allows you to write code to manipulate the state (thatis,
whether enabled or disabled) of the menu items later. Finally, you pass the ImageRepositoryClient object to the
QuitController using this code fragment:

OBSERVE:

new QuitController () .confirm(ImageRepositoryClient.this) ;

Because this fragment exists within the anonymous class defined to implement ActionListener, you cannotjust
pass this as an argument. Using ImageRepositoryClient .this states yourintention to pass the enclosing
ImageRepositoryClient object.

Now we're ready for the final push! While ImageRepositoryClient is the primary class for the GUI application, you
have to be careful notto embed too much application logic within it, otherwise you run the risk of not being able to test
that application logic properly. Whenever possible, encapsulate control logic in separate controllers; atthe same time,
you can place some methods, for example quit(), into ImageRepositoryClient, because certain methods have
global impact.

& In the Isrc folder client.gui package, create a ConnectController class as shown:

CODE TO TYPE: /src/client.gui/ConnectController.java

package client.gui;

import javax.swing.*;
import client.*;

public class ConnectController {
public boolean connect (ImageRepositoryClient client) {
final LoginDialog 1d = new LoginDialog(client);
ld.setDefaultCloseOperation (JFrame.DO NOTHING ON CLOSE) ;

ld.setVisible (true) ;
if (ld.wasCanceled()) {
return false;

}

String fp = ld.getHashedPasswordValue () ;

String user = ld.getUserValue();

String host = 1ld.getHostValue();

boolean register = ld.isSelfRegistered();

return connect (client, host, user, fp, register);

public boolean connect (ImageRepositoryClient client, String host, String user, String
fp, boolean register) {
ServerAccess sa = new ServerAccess (host, user, fp, register);
if (!sa.connect (new ResponseHandler (client))) {
return false;

}

client.access = sa;
client.validateMenuBar () ;
return true;

The ConnectController displays the LoginDialog and requests information from the user. If the user canceled the
dialog, LoginDialog returns false and ConnectController returns false. If the attemptto connect fails, italso
returns false. Ifitreturns true, you know that the client connected to the server successfully. This particular controller
stores the ServerAccess object directly with the client and then invokes validateMenuBar to update the GUI

properly.

ConnectController has two methods named connect. The first (with justan ImageRepositoryClient as an
argument) is intended for interactive behavior. However, this method cannot be tested automatically because it
requires the user's directinvolvement. That's why we write a second connect method that takes an additional four
arguments whose values are extracted from the LoginDialog presented to the user. In this way, the real logic of this
controller can be placed in a method that works with automated testing.

ConnectController does notcompile because it depends on an undefined class, ResponseHandler.

& In the Isrc folder client package, create a ResponseHandler class as shown:

CODE TO TYPE: /src/client/ResponseHandler.java

package client;

import client.gui.*;
import xml.*;

public class ResponseHandler implements IProcessResponse {
ImageRepositoryClient client;

public ResponseHandler (ImageRepositoryClient client) {
this.client = client;

}

public void process (Message response) {
String type = response.contents.getFirstChild() .getLocalName () ;

// handle loginResponse specially

if (type.equals (Parser.loginResponse)) {
if (!Parser.success (response)) {
client.status ("Unable to login:" + Parser.reason(response));
} else {

client.status ("Connected to server.");

}

client.validateMenuBar () ;
return;

}

System.out.println ("received:" + response);

ResponseHandler processes all response messages coming back from the server. You don't want the low-level
IPC handling code to be responsible, and you don't want the top-level ImageRepositoryClient to embed this logic.
Instead, ResponseHandler takes on those responsibilities.

The process() method deals with all responses coming back from the server. The loginResponse must be handled
in a particular way to enable and disable menu items. The above code won't compile until you provide some additional
helper methods. First, we'll add some methods to ImageRepositoryClient:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

public void clearStatus() {
statusBar () .setText ("") ;

}

public void status (String msg) {
statusBar () .setText (msqg) ;

}

public void quit() {
if (access != null) {
access.disconnect () ;
}
access = null;
setVisible (false);
dispose () ;

There are lots of places within the client that you can check to determine whether a response has succeeeded. Instead
of embedding the XML-parsing logic throughout your client code, delegate it to the XML utility Parser class, as shown:

CODE TO TYPE: /src/xml/Parser.java

package xml;

import java.io.*;
import org.w3c.dom.*;

public class Parser {

public final static String loginRequest = "loginRequest";

public final static String loginResponse = "loginResponse";
public final static String loginUser = "user";

public final static String loginPassword = "password";

public final static String loginRegister = "register";

public final static String invalidCredentials = "Invalid credentials";
public final static String success = "success";

public final static String reason = "reason";

public static Message extractRequest (BufferedReader in) {
return extractMessage (in, "</request>");

}

public static Message extractResponse (BufferedReader in) {
return extractMessage (in, "</response>");

}

static Message extractMessage (BufferedReader in, String terminator) {

try {
String line = in.readLine();
if (line == null) { return null; }
StringBuilder buf = new StringBuilder (line);
while (!buf.substring(buf.length()-terminator.length(), buf.length()) .equals (term
inator)) {
line = in.readLine();
if (line == null) { return null; }

buf.append(line);
}

return new Message (buf.toString()):;
} catch (IOException ioe) {
return null;

public static boolean success (Message response) {
return Boolean.valueOf (response.contents.getAttributes () .getNamedItem (success) .getN
odeValue ()) ;
}

public static String reason (Message response) {
Node r = response.contents.getAttributes () .getNamedItem (reason) ;
if (r == null) { return ""; }
return r.getNodeValue () ;

Now you have a fully-functioning client with a Connect menu item that's connected to engage the server. Currently, if
you wantto disconnect the client, you must exit it, but we'll remedy that little inconvenience in the nextlesson.

Before you run the tests, notice that RepositoryClient is broken! We need to modify itto register an
IProcessResponse object with the ServerAccess. Because this is a support class for testing, it's enough to register
a handler that does nothing but output the message to the console. Modify RepositoryClient as shown:

CODE TO TYPE: /test/client/RepositoryClient.java

package client;

import java.io.*;
import javax.swing.*;
import xml.*;

import util.*;

import client.gui.*;

public class RepositoryClient {

public static void main(String[] args) throws Exception {
final LoginDialog 1d = new LoginDialog(null);
ld.setDefaultCloseOperation (JFrame.DISPOSE ON CLOSE) ;

ld.setVisible (true) ;
if (ld.wasCanceled()) { System.exit(0); }

String fp = ld.getHashedPasswordValue() ;
String user = 1ld.getUserValue();
String host = ld.getHostValue();
boolean register = ld.isSelfRegistered();

SplashScreenlogic.update ("connecting to " + host + "::9172");
delay (250) ;

ServerAccess sa = new ServerAccess (host, user, fp, register);
IProcessResponse handler = new IProcessResponse() {

public void process (Message response) {
System.out.println (response) ;
}
}i
if (!sa.connect (handler)) {
System.err.println ("Unable to connect to server:" + host);
System.exit (-1);
}

SplashScreenlogic.update ("connected to localhost::9172");
delay (250) ;

Now it's time to generate our coverage. Run all test cases using EclIEmma first, to compute the automatic coverage.
Next, run ServerLauncher as a stand-alone executable. Run RepositoryClient using ECIEmma and exercise a few
of features in LoginDialog before self-registering a new account. You'll have to terminate the ServerLauncher
manually. Now merge the EcCIEmma sessions and your coverage results will look something like this:

Authenticate Server Client Server Browse Mavigate Delete

Users Sessions Login Menu Images Image Image
src 72.0 72.3 73.3 710
client 9.6 9.6 57.0 56.5
client.gui 1] 1] 67.4 47.4
server 8.7 63.6 63.6 63.6
server.ipc 91.9 94 93.7 93.7
server.model 55.2 55.2 55.2 55.2
util 87.8 87.8 87.8 87.8
xml 85.9 85.9 87.0 B80.3
100
my—. i - |ignt
80
== client.gui
=1h] e rver
40 i cp T IpC
= ge ryer.model
20
i Lt |
0 . T T T 1 xmil
0 2 4 6 8 10

Of course there's still planty of work to do. The client still cannot disconnect from the server, for example. This task will
be completed in the nextlesson. Whenerv you add client code, make sure to add new automated test cases to
maintain quality control over your code as you go. Our overall testing progress is quite good, and we want to keep it
that way!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Image Browsing

Lesson Objectives

In this lesson you will:

e apply the cycle of message request and message response capabilities between a client and server.

Image Browsing

You're really rolling now. Pretty soon you'll be able to upload images to the repository and see them in the
ImageRepositoryClient window! You'll start by adding capability that allows the user to select an image file from
disk and upload thatimage to the repository. All the pieces are in place to show the full integration of a request being
sentfrom the GUI and the server generating a proper response. Let's break this task up into steps:

1. Complete the Image menu to allow a connected clientto selectimage for upload.
2. Determine the supported Java image formats (requirement R2).

3. Allow users to selectimages (of the appropriate type) from their computer files.

4. Generate an addRequest in the clientto send to the server for a selected image.
5. Receive a confirmation addResponse from the server (either success or failure).

Along the way, we'll follow the pattern we've developed in pastlessons to make incremental progress and enable
JUnittesting. The goal is to develop a single controller class to handle the steps we've listed above and thereby
simplify the control logic in the client.

& In the Isrc folder client package, create a new IController interface as shown:

CODE TO TYPE: /src/client/IController.java

package client;
import xml.*;
public interface IController ({

void process (Message request, Message response);

}

All client controllers that are responsible for managing the interaction of request/response messages between the
clientand server mustimplement the above interface.

This interface allows you to access the originating client request when processing the server's response to that
request. In doing so, you will be able to correlate responses that appear from the server. In order to do that, the
ServerAccess client IPC code needs to keep track of the controller objects that register an interestin a response.
Since each requestis sentto the server one by one, and in turn processed by the server, each reponse to a client
requestis returned in order. So, you can use a Queue to match up waiting controllers with the corresponding
responses received by the server. Actually, the storage will be a LinkedList, but you get the idea. You can modify
ServerAccess to make these changes while still supporting the existing "send a request without worrying about a
response" behavior already implemented. Go ahead and modify ServerAccess as shown:

http://docs.oracle.com/javase/6/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/6/docs/api/java/util/LinkedList.html

CODE TO TYPE: /src/client/ServerAccess .java

package client;

import java.io.*;
import java.net.*;
import java.util.*;
import xml.*;

public class ServerAccess extends Thread {

Queue<Pair> queue = new LinkedList<Pair>();

class Pair {
IController controller;
Message request;

Pair (IController c, Message r) {
controller = c;
request = r;

public synchronized boolean isWaiting () {
return (!queue.isEmpty());

}

The inner class Pair represents an (IController, Message) pair. The queue object maintains a linked list of Pair
objects, which represent the requests and corresponding controllers waiting for responses to those requests. The
isWaiting() helper method determines whether there are any Pair objects in queue.

To take advantage of this new capability, add a sendRequest method to ServerAccess:

CODE TO TYPE: /src/client/ServerAccess .java

public synchronized boolean sendRequest (IController c, Message r) {
if (!isActive) { return false; }

toServer.println(r);
boolean success = !toServer.checkError();
if (success) {
queue.add (new Pair(c, r));
}

return success;

This method adds a Pair object for the designated IController and Message to the end of queue, if the request was
successfully written to the server.

Now, whenever a response is received by the client, it must check the queue to see whether there is a waiting Pair
objectin the queue. If there is, then the response is handled by the IController object associated with the pair. Modify
the run method of ServerAccess as shown:

CODE TO TYPE: /src/client/ServerAccess .java

public void run() {

try {
String selfAtt = "";
if (selfRegister) { selfAtt = " register='true'"; }
Message m = new Message ("<request>" +
"<loginRequest user='" + user + "' password='" + hashedPass + "' " + selfAtt

+ "/></request>");
sendRequest (m) ;

while (isActive) {
m = Parser.extractResponse (fromServer) ;
if (m == null) {
break;

}

Pair p = queue.poll();

if (p != null) {
p.controller.process (p.request, m);
} else {

handler.process (m) ;
}
}

} catch (Exception e) {
e.printStackTrace() ;

}

disconnect () ;

Let's take a closerlook:

OBSERVE:

Pair p = queue.poll();
if (p !'= null) {

p.controller.process (p.request, m);
} else {

handler.process (m) ;

}

This code will poll the queue object (in non-blocking fashion) to see if there is a registered Pair objectin place for
the extracted response. If there is not, the response is handled using the handler object. If there is a Pair objectin
the queue, itis removed from the queue and the controller associated with the Pair object is given both the

original request (p.request) and the response (m) for processing.

Now let's consider an instance when the clientdisconnects from the server. The disconnect may take place while
queue has aregistered Pair object, so, to disconnect properly, we have to clear out the queue:

CODE TO TYPE: /src/client/ServerAccess.java

public void disconnect () {
isActive = false;
queue.clear();

try {
server.close();
} catch (IOException ioe) {
System.err.println ("Unable to close server:" + ioe.getMessage()):;

}

The Image menu needs an Add menu item and an associated AddimageController to oversee the action
associated with this menu item. In the initMenuBar method ofImageRepositoryClient, make these changes:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient

image = new JMenu ("Image");
JMenultem add = new JMenultem("Add...");
add.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new AddImageController (ImageRepositoryClient.this) .add();
}
1)
image.add (add) ;
mb.add (image) ;

& In the Isrc folder clie nt.gui package, create an AddimageController class. This controller mustgrab a file
selected by the user based on the set of supported image formats. For more information, see this useful tutorial on the
subject. You will use a JFileChooser to browse the local disk for a file with a name that matches a given
FileNameExtensionFilter. Fortunately, there is a Java APl to determine the allowed file types. Note that
AddimageController mustimplementlController because it will register itselfto process the addResponse
message returned by the server. Let's tackle this class step by step:

CODE TO TYPE: /src/client.gui/AddimageController.java

package client.gui;

import java.io.*;

import javax.swing.*;

import javax.swing.filechooser.*;
import javax.imageio.*;

import util.*;

import xml.*;

import org.w3c.dom.*;
import client.*;

public class AddImageController implements IController {
ImageRepositoryClient client;
public AddImageController (ImageRepositoryClient client) {
this.client = client;
}
public void process (Message request, Message response) {

NamedNodeMap map = request.contents.getFirstChild() .getAttributes();
String name = map.getNamedItem ("name") .getNodeValue () ;

if (Parser.success (response)) {
client.status ("Image uploaded to server:" + name);
} else {
client.status ("Problem adding image:" + name + " (" + Parser.reason (response) + ")

")

This code represents the framework of a typical IController implementation. The process() method is invoked by
ServerAccess when a response is received for a specific request sent by the client. Now add to
AddimageController the key methods that actually send the request to the server in the first place:

http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/JFileChooser.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/filechooser/FileNameExtensionFilter.html

CODE TO TYPE: /src/client.gui/AddimageController.java

public boolean add() {

client.clearStatus();
FileNameExtensionFilter filter = new FileNameExtensionFilter (
"Supported Image Types", ImagelO.getReaderFormatNames())

JFileChooser chooser = new JFileChooser () ;

chooser.setFileFilter (filter);

if (chooser.showOpenDialog(client) != JFileChooser.APPROVE OPTION) {
return false;

}
File f = chooser.getSelectedFile();
return add(f);

}

public boolean add (File f) {

try {
String encoding = ImageEncoding.encode (f);
String xmlAddRequest = "<request><addRequest name='" + f.getName() + "'>" +

"</addRequest></request>";

return client.access.sendRequest (this, new Message (xmlAddRequest)) ;
} catch (IOException ioe) {

client.status ("Problem adding image:" + ioe.getMessage());

return false;

Let's take a closerlook:

OBSERVE:

public boolean add() {
client.clearStatus() ;
FileNameExtensionFilter filter = new FileNameExtensionFilter (
"Supported Image Types", ImagelO.getReaderFormatNames()) ;

JFileChooser chooser = new JFileChooser() ;

chooser.setFileFilter (filter);

if (chooser.showOpenDialog(client) != JFileChooser.APPROVE OPTION) {
return false;

}
File f = chooser.getSelectedFile();
return add(f) ;

}

public boolean add (File f) {

try {
String encoding = ImageEncoding.encode (f) ;
String xmlAddRequest = "<request><addRequest name='" + f.getName() + "'>" +

"</addRequest></request>";

return client.access.sendRequest(this, new Message (xmlAddRequest)) ;
} catch (IOException ioe) {

client.status ("Problem adding image:" + ioe.getMessage()):;

return false;

Invoking the add() method brings up a JFileChooser object that allows the user to select an image file from the file
system. Once an image is selected, the method invokes add(f) to carry out this logic. This code is probably familiar to
you, exceptforhowthe request is sent to the server. The code invokes the added sendRequest() method in

ServerAccess with the appropriate arguments.

You might wonder why there is an add() method and an add(File) method. Throughoutthe course, you've written
code that can be tested automatically. By structuring our code this way, add interacts with the user who selects a file
from disk, while add(File) represents a programming interface that supports add, and (more importantly) enables
testing.

process() picks up where the add(File) method leaves off. When you use distributed computation, the challenge is to
develop control flow patterns that deal with asynchronous communication with a server. Let's try doing that:

Run ServerLauncher and execute ClientLauncher. Select Server | Connect. Enter localhost and then a self-
registered account and password. Selectthe new Image | Add... menu item. A dialog window appears. Browse to a
directory where you have image files, for example, the fimages directory in the /workspace/DistributedApp
directory:

Eﬂpen

|l o—
.| o—

Look In:] images A s |

oo
oo

D ConfirmExit.png |
D help_32.png
E‘] repositonySplash.png

File Hame:

Files of Type: |Supported Image Types -

Open Cancel

Select a file that passes the filter (currently this includes BMP, GIF, JPEG, JPG, PNG, and WBMP formats) and click
Open. A successful status message appears in the bottom ofthe ImageRepositoryClient window. If you refresh
the Repository folder within Eclipse, you will see a new file that contains the bytes of the image you selected.

So, you may wonder, "when do you clear the status messages?" There is no good answer that question. One strategy
is to clear the status atthe outset of any user command (as you see here in the add method); if you do that, then when
the user chooses to cancel the command, atleast you've already cleared any status. If the command completes, then

the status will be visible until the user initiates a new command. This will be handled at the start of every GUI controller.

Justfor fun, try to add the image again. The response fails because the duplicate image exists in the repository. Be
sure to terminate the execution of both ClientLauncher and ServerLauncher before continuing.

Testing

With the new code, you also need to write some test cases for validation. While you've planned ahead and designed
AddimageController with testing in mind, there are other challenges. Each JUnittest case class mustbelong to a
package. Within that package, the JUnittest case has special access to "package private" attributes and methods. You
have taken advantage of this feature in test cases you've written in pastlessons. Butwhat happens when you want to
write a test case that must somehow access "package private" attributes and methods from two different packages?
You can define special helper classes to be placed in the /test source code folder which essentially grant you that
kind of access.

& in the Itest folder server.ipc package, create the RepositoryServerAccess class as shown:

CODE TO TYPE: /test/server.ipc/RepositoryServerAccess.java

package server.ipc;
import java.io.*;

public class RepositoryServerAccess {
public static int size (RepositoryServer server) {
return server.repository.size();

}

public static void shutdown (RepositoryServer server) throws IOException {
server.shutdown () ;

}

This class makes it possible for test cases to access privileged information without forcing the actual code to make it
public. This technique maintains the integrity of your code base, while enhancing the productivity of your test cases.

Your new code enables your test cases to determine the number ofimages in a given RepositoryServer and shut
down a RepositoryServer.

ET In the /test folder client.gui package, create a TestAddimageController testclass as shown:

CODE TO TYPE: /test/client.gui/TestAddimageController.java

package client.gui;

import java.io.*;

import client.*;

import server.ipc.*;

import junit.framework.TestCase;

public class TestAddImageController extends TestCase {

RepositoryServer server;
static final String user = "tester";
static final String imageFile = "images/repositorySplash.png";

protected void setUp() throws Exception {
TestServer.clearTestRepository () ;
server = TestServer.launchServer();

protected void tearDown() throws Exception {
RepositoryServerAccess.shutdown (server) ;
server = null;

}

public static ImageRepositoryClient loginClient () throws Exception {
ImageRepositoryClient client = new ImageRepositoryClient();

client.access = new ServerAccess ("localhost", user, user, true);
if (!'client.access.connect (new ResponseHandler (client))) {
fail ("unable to connect to localhost");

Thread.sleep(1000); // give time to connect
return client;

public void testImageAdd() throws Exception {
ImageRepositoryClient client = loginClient () ;
assertEquals (0, RepositoryServerAccess.size (server));

AddImageController ¢ = new AddImageController (client);
assertTrue (c.add(new File (imageFile)));

// wait until all responses have been received before continuing test case
int ctr = 50;
while (client.access.isWaiting() && ctr--— > 0) {
Thread.sleep (200) ;
}

// validate repository add succeeded.

assertEquals (1, RepositoryServerAccess.size (server));
client.quit();

client.dispose();

Here, you validate the capabilities of AddlmageController. The TestAddimageController testcase is similarin
nature to the TestSequence testcase you saw earlier, but the level of abstraction has been raised. No longer do you

see raw sockets or InputStream objects; instead we're working at the level of GUIs and controllers. The

testimageAdd test case method relies on the setUp method to instantiate a working RepositoryServer. Then it
self-registers a "tester" user and invokes the add(File) method of the instantiated AddlmageController in the exact
same way that the interactive user would. Then the test case waits until the ServerAccess object determines thatitis
no longer waiting for a response from the server; this only happens when the server has responded properly to the
addRequest generated by the AddilmageController. Upon completion, the test case validates that there is one
image in the repository (using the newly defined RepositoryAccess class) before quitting the client. The tearDown()

method safely shuts down the RepositoryServer.

This test case leverages the design of the user interface to create an effective test. Execute the test case to validate that
it completes successfully. You can refresh the TestRepository folder to see the files that were added as part of this
test case.

Browse Repository

The completed functionality allows you to upload images to the repository, butitdoesn't support browsing yet. For that
to happen, the client must be able to show a currentimage in the repository, and either advance or return to another
image. To support this capability, you need to keep track of which image the clientis viewing. You decide whether the
server side or the client side will be responsible for this knowledge. In the client/server architecture, it's common to
consider the clientto be "stateless," and thereby delegate responsibility to the server. Next, the server needs to store
the image being viewed for all connected clients; so which class should hold this information? It can't be
RepositoryThread, because thatclass is responsible for the information of a specific user. The UserManager can
authenticate users, but should it be involved in the server-wide state for each connected user? Thatdoesn't seem like
such a good idea because the UserManager is on the client side, and server-wide stuff oughtto be managed on the
server side.

(& In the Isrc folder server package, create the ClientState class as shown:

CODE TO TYPE: /src/server/ClientState.java

package server;
import server.ipc.*;

public class ClientState {
final String user;
final RepositoryThread thread;
String imageKey;

public ClientState (String user, RepositoryThread thread) {
this.user = user;
this.thread = thread;

}

public void setImageKey (String key) {
this.imageKey= key;
}

public String getImageKey () {
return imageKey;

}

The information in Userinfo is meantto be persistent, so we need to create a separate class, ClientState, that
represents transient clientinformation while itis connected to the server.

For now, the client state consists of the unique key generated for each image in the repository.

RepositoryServer will maintain a Hashtable of current connected users and update it as clients connectand
disconnect. To enable this information to be accessed globally, it will be stored as a static Hashtable in
RepositoryServer and a setofstatic helper methods will be provided. To allow these static methods to access the
Repository object associated with the RepositoryServer, the repository attribute is changed to be static. This
makes sense because in any given server there will only be a single RepositoryServer object. Modify your code as
shown:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

package server.ipc;

import java.io.*;
import java.net.*;
import java.util.*;
import server.model.*;
import server.*;

public class RepositoryServer {
ServerSocket serverSocket = null;
int state = 0;
IProtocolHandler protocolHandler;
static Repository repository;
UserManager manager;

static Hashtable<String, ClientState> users = new Hashtable<String, ClientState>();

public RepositoryServer (Repository rep, UserManager um, IProtocolHandler ph) ({
protocolHandler = ph;
repository = rep;
manager = um;

}

public void bind() throws IOException ({
serverSocket = new ServerSocket (9172);

state = 1;

}

public void process () throws IOException ({
while (state == 1) {

Socket client = serverSocket.accept();

new RepositoryThread (manager, client, protocolHandler).start();

shutdown () ;

void shutdown () throws IOException {
manager.store() ;
if (serverSocket != null) {
serverSocket.close () ;
serverSocket = null;
state = 0;

public static boolean register (String user, RepositoryThread thread) {
if (users.containsKey(user)) { return false; }

ClientState state = new ClientState (user, thread);
state.setImageKey (repository.getNthKey (1)) ;
users.put (user, state);

return true;

public static void unregister (String user) {
users.remove (user) ;

public static ClientState getState(String user) {
return users.get (user);

}

The newly added register() and unregister() methods maintain the users Hashtable by associating a ClientState
object with each client that connects. The initial state for each user is the image key for the firstimage in the repository.
Add the getNthKey method to Repository in order for this code to compile:

CODE TO TYPE: /src/server.model/Repository.java

public String getNthKey(int n) {
return index.getNthKey (n) ;
}

Add this method to Index to allow the arbitrary retrieval of an image by its position:

CODE TO TYPE: /src/server.model/Index.java

public String getNthKey(int n) {
if (n > keys.size()) { return null; }
return keys.get(n-1);

}

Note that you have to subtract 1 when invoking keys.get(n-1), because the keys ArrayList uses zero-based
indexing. Now when clients log into the server (within RepositoryThread) successfully, the thread must register itself
with RepositoryServer as shown by these updates to RepositoryThread:

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

if (validated) {
RepositoryServer.register (user, this);

// have handler manage the protocol until it decides it is done.
while ((m = Parser.extractRequest (fromClient)) != null) {
manager.updateAccessTime (user) ;
Message response = handler.process (user, m);
if (response == null) { break; }

toClient.println (response.toString());
if (toClient.checkError()) {
break;
}
}

RepositoryServer.unregister (user) ;

To make this code compile, you have to add the userinformation to the IProtocolHandler interface.

ProtocolHandler can use the static methods of RepositoryServer to update client state information. Let's make
the necessary changes:

CODE TO TYPE: /src/server.ipc/IProtocolHandler.java

package server.ipc;
import xml.*;

public interface IProtocolHandler {

/** Process the given Message request, return Message in reponse or null to terminate
protocol. */

Message process (String user, Message request);

}

Now consider the logic that will be contained within the ProtocolHandler class. If you're not careful,

ProtocolHandler will swallow all of the logic on the server! You want to fid ways to isolate and encapsulate the
appropriate logic in an appropriate class. For starters, instead of burying logic within a complex if statement, introduce
a ServerAddimageController and a ServerStatusController on the server side. Modify ProtocolHandler to
pass in the name of the user on whose behalfthe ProtocolHandler is executing:

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

_;_J.H.bl J_t _IJG. G..J..U-+y
import server.ipc.*;
import server.model.*;
3 = | =

_LLLLPKJJ_L | J g r

import xml.*;

import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler {
final Repository repository;
public static final String endRequest = "</request>";

public ProtocolHandler (Repository r) {
repository = r;

12 4= 4= £ ul el 2 4= T Dadt - nwr =i <l 2 PRI L
bt tatie—firat—String rruptedimagebata Ercoded—image—data—appears—to—be—cor
fdpEed- 7
public Message process (String user, Message request) {
Node child = request.contents.getFirstChild() ;
2 2 " "
if (child.getLocalName () .equals ("addRequest")) {
lalF' 2 a1 o . et i S VAR o Pl yall L1RY S & PN | ul v
o C L J_ll\j TTAIITE o CITIT U, \jc CACCLI TIUOCT \WJ -8C CINATITCS U T TTTIT TTCIIT T .\j CIVOUT a7
Mol 4 Mol oo 1 AT ki BN BV ALY
v A= __lLLa\j IV A\ A el T CITITTC . k__j Cr 15T ITT TV 7
(el 1
[CATEN Lll\j TITTINT LJ,
oz L] 1o, A= I I PR <l <l Vs Mot Faal el 4= e\)
}J_Y T] }J_Y T =} T J.lHQ\jCJ_All\,\J\A.J_lle A \W A el \J.MLQKJCL\IU\AC . \jCLJ.C T UITCeIT T U T r
e PAPA VA STYS
reposttory—addtbytes,—rrame
1 — 111 P 1 PRPNEnY D p— 1] ! loc i | =l il
HiIResSy respon St et aedResporSe—RamByE —bytes—tength—
11 11
FESPoITSTe 7
) . 1 LT . \ L
T aC 1T L rJL,J.UlL =7 1
1 - 1 P =y ul 1 p— 1 il e T Dot il e 1 Il
mrResp— response—St ss='fatsel reason= rruptedimagebata—t t
1] PRPAEnY n = =101 1]
adadResporse—rnumBytes=10 respons 2
al = N~ T 11 1 = I . AY L
T CaCCIT (LTI Ty LT otattTh TP CLITUITTT 1
1 1 | = ul 1 111 I n . ul PN < = T
T t/ 7 1 t)\JlL A=t O o [Sy = E. (=8 Ol T T CJ:)U L C J_Y -DJ_.LCGLLAYJ_A . C J_MLO.kj
1 PRPNEn] Dzt P AW | PAPEn] 1
adeResporse—rnumBytes=10 acteRespons respons 7
4= LV L 1R \
E. CCOL1T TTCTW T =} a\j \ T CDtJ[7

return new ServerAddImageController (repository) .process (user, request);
} else if (child.getLocalName () .equals ("statusRequest")) {

faF] 1R i1} 1 [RN T -
OCL TIIg mrneSPe — TESPOITST oCcCCeSS=CIr™o T
1] Ao n 1 | el k7] ol [BT BN, | [I - 4 : L 1y (1}
TCOCOST OIS KEey=ooitere TSEX="=T coTa T T IrCPOSTITCOTrY..oLZze (7 T
1] n
¥ POITST 7
= N L 1
TCTTOrIT Tew rreSSage A neSP /T

return new ServerStatusController (repository) .process (user, request);

return null; // unknown request? No idea what to do.

The logic for adding an image has been removed and will appear in the controller classes that you'll create so that the
above code will compile.

& In the Isrc folder server package, create a ServerAddimageController as shown:

CODE TO TYPE: /src/server/ServerAddimageController.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;

import org.w3c.dom.*;
import xml.*;

public class ServerAddImageController implements IProtocolHandler {
Repository repository;

public ServerAddImageController (Repository repository) {
this.repository = repository;

public Message process (String user, Message request) {
Node child = request.contents.getFirstChild() ;
String name = child.getAttributes () .getNamedItem ("name") .getNodeValue() ;
Node imageNode = child.getFirstChild();

String xmlResp;

try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());
repository.add (bytes, name);

xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/
></response>";
} catch (IOException ioe) {
xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +

"<addResponse numBytes='0'/></response>";
} catch (Exception e) {
xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
"<addResponse numBytes='0'/></response>";

return new Message (xmlResp) ;

public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";
}

This code has been extracted from the old ProtocolHandler class and encapsulated into its own controller class.

So, adding an image to the repository updates the repository itself, but which operations update the client's view? Let's
appraoch this piece by piece. First, modify the statusResponse to include an image in the response. Update the XSD

block for statusResponse as follows to supportan optional image to be attached to each statusResponse
message. The image is optional because of the minOccurs and maxOccurs values defined in our code:

CODE TO TYPE: /repository.xsd

<xs:element name='statusResponse'>
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='key' type='xs:string' use='required'/>
<xs:attribute name='index' type='xs:integer' use='required'/>
<xs:attribute name='total' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

The client's currentimage key represents the image embedded with each status response. If the repository contains
no images, then key will be an empty string.

(3; In the Isrc folder server package, create a ServerStatusController to handle this logic, much like it was done
foraddRequest:

CODE TO TYPE: /src/server/ServerStatusController.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;

import xml.x*;

public class ServerStatusController implements IProtocolHandler {
Repository repository;

public ServerStatusController (Repository repository) {
this.repository = repository;

}

public Message process (String user, Message request) {
ClientState cs = RepositoryServer.getState (user);
File f = repository.getlImage (cs.getImageKey());
String imageData = "";

try {
String encoding = ImageEncoding.encode (f) ;
imageData = "";

} catch (Exception e) {
System.err.println ("Unable to encode image file:" + e.getMessage());

}

String xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey (
) + m " +
"index='" + repository.getOrder (cs.getImageKey()) + "' total='" + repository.si

ze () + "'>" +
imageData + "</statusResponse></response>";
return new Message (xmlResp) ;

This code will work even when there are no images in the repository because cs.getIlmageKey() will return null.

To support this controller, you need to add some methods to Repository and Index. It may seem surprising to
discover missing methods from key classes, but as you begin to exercise more and more of the desired functionality,
you'll find that missing methods are actually pretty common. Modify the Repository class as shown to add a method
to retrieve an image file by key, and one to return the index location for a given key:

CODE TO TYPE: /src/server.model/Repository.java

public File getlImage (String key) {

if (key == null) { return null; }
File £ = new File (storage, key);
if (f.exists()) {

return f;

return null;

public int getOrder (String key) {
return index.getOrder (key) ;

}

The getlmage() method returns the File object that represents thatimage on disk, or null if the image is non-
existent. Given a key value, getOrder determines the image number in the set. To enable this code to compile you
need to add a corresponding method to Index:

CODE TO TYPE: /src/server.model/Index.java

public int getOrder (String key) {
for (int 1 = 0; i < keys.size();
if (keys.get (i) .equals(key)) {
return (i+1);

i+4+) {

}

return -1;

The return (i+1) adjusts the zero-based indexing scheme within keys to return a 1-based index value.

So how can you geta statusRequest sentto the server upon successful login? The ImageRepositoryClient
mustsend a statusRequest once ithas been connected properly. Right now, you don't want to bury this logic within
the ResponseHandler. Instead, revise ResponseHandler to use a new connected method in
ImageRepositoryClient that can initialize the client when a successful connection has been established. In
essence, you're placing the right functionality in the right place:

CODE TO TYPE: /src/client/ResponseHandler.java

package client;

import client.gui.*;
import xml.*;

public class ResponseHandler implements IProcessResponse {
ImageRepositoryClient client;

public ResponseHandler (ImageRepositoryClient client) {
this.client = client;

}

public void process (Message response) {
String type = response.contents.getFirstChild() .getLocalName () ;

// handle loginResponse specially
if (type.equals (Parser.loginResponse)) {
boolean ok = Parser.success (response);

if (!okParser—su s{resporseyr) |

client.status ("Unable to login:" + Parser.reason (response));
} else {

client.status ("Connected to server.");

}

client.connected (ok) ;

1 - A 1o ot N n L)
et et ~vatraeteMeraBart—
return;

}

System.out.println ("received:" + response);

Here we eliminate the need for low-level knowledge ofthe GUI to leak outinto other classes. Add the connected()
method to ImageRepositoryClient, which validates the menu bar, butalso fires offa statusRequest on a
successful connection. If any new initialization code is needed upon successful (or failed) connections, this method
will contain thatlogic:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient

public void connected (boolean ok) {
validateMenuBar () ;

if (ok) {
String xmlStatusRequest = "<request><statusRequest/></request>";
access.sendRequest (new StatusController (this), new xml.Message (xmlStatusRequest))

A StatusController objectis constructed to process the request/response cycle in its entirety.

& In the Isrc folder clie nt.gui package, create the StatusController class as shown:

CODE TO TYPE: /src/client.gui/Status Controller.java

package client.gui;

import java.io.*;

import java.awt.image.*;
import javax.imageio.*;
import org.w3c.dom.*;
import util.*;

import xml.*;

import client.*;

public class StatusController implements IController ({
ImageRepositoryClient client;

public StatusController (ImageRepositoryClient client) {
this.client = client;
}
public void process (Message request, Message response) {
Node child = response.contents.getFirstChild();
Node imageNode = child.getFirstChild();
if (imageNode == null) {
return;

try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());

InputStream in = new ByteArraylInputStream(bytes);
BufferedImage image = ImagelIO.read(in);
client.display (image) ;
} catch (IOException ioe) {
client.status ("Unable to decode image from server:" + ioe.getMessage());

Inits process() method, the StatusController retrieves the image from the statusResponse message and
requests ImageRepositoryClient to update its display. Add the display()method to ImageRepositoryClient to
complete the task:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient

public void display(Image image) {

if (image == null) {
imgPanel.setViewportView (new JLabel (""));
} else {

ImagelIcon icon = new Imagelcon (image) ;
imgPanel.setViewportView (new JLabel (icon));

}

imgPanel.invalidate () ;
imgPanel.validate();
imgPanel.repaint () ;

The display() method either clears or sets the viewportofthe JScrollPane containing the currentimage for the client
on the server.

OBSERVE:

imgPanel.invalidate() ;
imgPanel .validate() ;
imgPanel .repaint() ;

To display the image properly, the three method invocations to invalidate, validate, and repaint mustbe
executed as shown. Doing so will ensure that the scrolling region is formatted to enclose the image completely,
regardless ofits size.

Phew! This lesson has been a marathon, but now we're ready to demonstrate the functionality we've gotso far. First,
delete all files in the Repository folder so you can startfrom scratch. Run ServerLauncher and then run
ClientLauncher. Connect to the server on localhost, self-register an account, and add a file to the repository. Verify
that the status information at the bottom of your client window has changed to confirm that the image was uploaded
properly. Then, quit the client application (leave the server running if you like). Run ClientLauncher and connect
again, either with a new self-registered account or the one that you registered in the previous run. The newly added
image appears in the client's image panel.

Terminate both the ClientLauncher and ServerLauncher. Now run all test cases in coverage to determine your
status. We need to attend to writing test cases for the client—this is not surprising given the extensive changes we
made! Even so, you've gotincreasing coverage of your project code without excessive effort, because you've been
taking steps along the way to write your test cases. Good thinking!

Authenticate Server Client Server Browse Mavigate Delete
Users Sessions Login Menu Images Image Image
5rC 72.6 72.3 73.3 71.0 74.1
client 9.6 9.6 57.0 58.5 61.2
client.gui 0 0 67.4 47.4 717
server 78.7 63.6 63.6 63.6 71.6
server.ipc 91.9 94 93.7 93.7 94.0
server.model 55.2 55.2 55.2 55.2 615
util B87.8 B87.8 B87.8 B87.8 B87.8
xmi 85.9 83.9 B87.0 80.3 B83.5
100
b——.q.j =+=client
80 1'-
== client.gui
&0 =dr=server
a0 s g Ty 21 .0PC
=i s ry £r.model
20
== Litil
o O T T T xml
] 2 4 & 8 10

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Navigating Repository Images

Lesson Objectives

In this lesson you will:

e design a customizable XML message and properly synchronize the state of the server and client.

Navigating Images in the Repository

In the lastlab, you developed the capability to add an image to the repository and display the user's currentimage in
the ImageRepositoryClient window, but the user still can't navigate through the images. We need to allow the user
to navigate through the repository, so we'll add these controls: Next, Previous, First, and Last. You can getyour
navigation tools in place using a single XML message. Modify repository.xsd to include a navigateRequest:

CODE TO TYPE: /repository.xsd

<?xml version='l.0' encoding='UTF-8'?>
<xs:schema xmlns:xs='http://www.w3.0rg/2001/XMLSchema’'>

<xs:element name='message'>
<xs:complexType>
<xs:choice>
<xs:element ref='response'/>
<xs:element ref='request'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='response'>
<xs:complexType>
<xs:choice>
<xs:element ref='addResponse'/>
<xs:element ref='statusResponse'/>
<xs:element ref='loginResponse'/>
</xs:choice>
<xs:attribute name='success' type='xs:boolean' use='required'/>
<xs:attribute name='reason' type='xs:string' use='optional'/>
</xs:complexType>
</xs:element>

<xs:element name='request'>
<xs:complexType>
<xs:choice>
<xs:element ref='addRequest'/>
<xs:element ref='statusRequest'/>
<xs:element ref='loginRequest'/>
<xs:element ref='navigateRequest'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='addRequest'>

<xs:complexType>

<xs:sequence>

<xs:element name='image'/>

</xs:sequence>

<xs:attribute name='name' type='xs:string' use='required'/>

</xs:complexType>
</xs:element>

<xs:element name='addResponse'>
<xs:complexType>
<xs:attribute name='numBytes' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='key' type='xs:string' use='required'/>
<xs:attribute name='index' type='xs:integer' use='required'/>
<xs:attribute name='total' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='loginRequest'>
<xs:complexType>
<xs:attribute name='user' type='xs:string' use='required'/>

<xs:attribute name='password' type='xs:string' wuse='required'/>
<xs:attribute name='register' type='xs:boolean' use='optional'/>
</xs:complexType>

</xs:element>

<xs:element name='loginResponse'>
<xs:complexType>
<xs:attribute name='user' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:simpleType name='directionType'>
<xs:restriction base='xs:string'>
<xs:pattern value='next |previous|first|last'/>
</xs:restriction>
</xs:simpleType>

<xs:element name='navigateRequest'>
<xs:complexType>
<xs:attribute name='direction' type='directionType' use='required'/>
</xs:complexType>
</xs:element>
</xs:schema>

Whenever you make changes to repository.xsd, you'll want to add attributes to Parser to be used in your code. Go
ahead and add these attributes to Parser now:

CODE TO TYPE: /src/xml/Parser.java
public final static String statusResponse = "statusResponse";
public final static String direction = "direction";
public final static String first = "first";
public final static String previous = "previous";
public final static String next = "next";
public final static String last = "last";

To activate this logic, you need to modify ImageRepositoryClient to add some new menu items that support the
navigation. Update the initMenuBar method of ImageRepositoryClient as shown:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

import java.awt.*;

import javax.swing.*;

import javax.swing.GroupLayout.Alignment;
import java.awt.event.*;

import client.*;

import xml.*;

void initMenuBar () {

image = new JMenu ("Image");
JMenultem add = new JMenultem("Add...");
add.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new AddImageController (ImageRepositoryClient.this) .add();
}
1)
image.add (add) ;
JMenultem first = new JMenultem ("First");
first.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new NavigateController (ImageRepositoryClient.this) .go(Parser.first);
}
}):
image.add (first);
JMenultem previous = new JMenultem("Previous");
previous.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new NavigateController (ImageRepositoryClient.this) .go (Parser.previous);
}
1)
image.add (previous) ;
JMenultem next = new JMenultem ("Next"):;
next.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new NavigateController (ImageRepositoryClient.this) .go (Parser.next);
}
1)
image.add (next) ;
JMenultem last = new JMenultem("Last");
last.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new NavigateController (ImageRepositoryClient.this) .go(Parser.last);
}
1)
image.add(last) ;
mb.add (image) ;

These changes invoke a NavigateController to go to the first, previous, next, or lastimage in the repository.

@ In the Isrc folder client.gui package, create a NavigateController class as shown:

CODE TO TYPE: /src/client.gui/NavigateController.java

package client.gui;
import xml.*;
public class NavigateController {
ImageRepositoryClient client;
public NavigateController (ImageRepositoryClient client) {

this.client = client;

boolean go (String direction) {
String xmlNavRequest = "<request><navigateRequest direction='" + direction + "'/></
request>";
return client.access.sendRequest (new Message (xmlNavRequest)) ;

The NavigateController takes one of the directions (first, previous, next, orlast) and constructs an appropriate
navigateRequest for the server. The idea is to have the server respond with a statusResponse so there is no
need to register a waiting controller; you can use the existing sendRequest method to send the request to the server.
On the server side you'll need to modify ProtocolHandler to process the navigateRequest as follows (while
you're atit, remove the endRequest attribute; we don't need itanymore):

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;

import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler ({
final Repository repository;

. o o £ e N an i i1} N1}
PTooTTC CaCcIC Trirar ocrring eihrionedaeSTt — reagaeST 7

public ProtocolHandler (Repository r) {
repository = r;

public Message process (String user, Message request) {
Node child = request.contents.getFirstChild() ;
if (child.getLocalName () .equals ("addRequest")) {
return new ServerAddImageController (repository) .process (user, request);
} else if (child.getLocalName () .equals ("statusRequest")) {
return new ServerStatusController (repository) .process (user, request);
} else if (child.getLocalName () .equals ("navigateRequest")) {
return new ServerNavigateController (repository) .process (user, request);

return null; // unknown request? No idea what to do.

(& In the Isrc folder server package, create a ServerNavigateController class. This controller determines which
image is viewed by the clientand adjusts accordingly. Finally, the controller activates the ServerStatusController
which stimulates a statusResponse to be sentto the client. Let's write this class in stages. Start with the skeleton
code below:

CODE TO TYPE: /src/server/ServerNavigateController.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;

import org.w3c.dom.*;

public class ServerNavigateController implements IProtocolHandler {
Repository repository;
public ServerNavigateController (Repository repository) {

this.repository = repository;

}

public Message process (String user, Message request) {
ClientState cs = RepositoryServer.getState (user);
String key = cs.getImageKey() ;
int num = repository.getOrder (key) ;

NamedNodeMap map = request.contents.getFirstChild() .getAttributes();
String direction = map.getNamedItem(Parser.direction) .getNodeValue () ;

// To Add...

// return a status response.
return new ServerStatusController (repository) .process (user, request);

Let's take a closerlook:

OBSERVE:

public Message process (String user, Message request) {
ClientState cs = RepositoryServer.getState (user) ;
String key = cs.getImageKey() ;
int num = repository.getOrder (key) ;

NamedNodeMap map = request.contents.getFirstChild () .getAttributes() ;
String direction = map.getNamedItem (Parser.direction) .getNodeValue () ;

// To Add...

// return a status response.
return new ServerStatusController (repository) .process (user, request);

The ServerNavigateController uses the getState() method of RepositoryServer to determine the state for the
given user. From the state, you can get the key; using the key you can determine the num ordinal position of that
client (a number from 1to the size of the repository). From the request, you can see how the requested direction is
extracted. Finally, the existing ServerStatusController returns the response Message to the client, which will
contain the user's current status.

Now, fill in the details of the logic to manipulate the user's state based on the desired direction that's included in the
navigateRequest:

CODE TO TYPE: /src/server/ServerNavigateController.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;

public class ServerNavigateController implements IProtocolHandler {
Repository repository;

public ServerNavigateController (Repository repository) {
this.repository = repository;

}

public Message process (String user, Message request) {
ClientState cs = RepositoryServer.getState (user);
String key = cs.getImageKey();
int num = repository.getOrder (key) ;

NamedNodeMap map = request.contents.getFirstChild() .getAttributes();
String direction = map.getNamedItem (Parser.direction) .getNodeValue();

if (direction.equals(Parser.first)) {
num = 1;

} else if (direction.equals (Parser.previous) && num > 1) {
num--;

} else if (direction.equals (Parser.last)) {

num = repository.size();

} else if (direction.equals (Parser.next) && num < repository.size()) {
num++;

}

key = repository.getNthKey (num) ;

cs.setImageKey (key) ;

// return a status response.
return new ServerStatusController (repository) .process (user, request);

For each ofthe four cases, num is updated accordingly. Next, the key for the updated image number is retrieved from
the repository using get NthKey and you call setimageKey to record this information with the client state. Now when

the ServerStatusController executes, the correctkey is included in the statusResponse.

We still have one lastitem to address. The clientisn't ready to receive a statusResponse message unsolicited from

the server. You may recall that the client processes all received messages via a ResponseHandler class, which

currently processes only the loginResponse message. You need to update this class to handle statusResponse

messages as well. Modify your code as shown:

CODE TO TYPE: /src/client/ResponseHandler.java

package client;

import client.gui.*;
import xml.*;

public class ResponseHandler implements IProcessResponse {
ImageRepositoryClient client;

public ResponseHandler (ImageRepositoryClient client) {
this.client = client;

}

public void process (Message response) {
String type = response.contents.getFirstChild() .getLocalName () ;

// handle loginResponse specially
if (type.equals (Parser.loginResponse)) {
boolean ok = Parser.success (response);
if (lok) |
client.status ("Unable to login:" + Parser.reason(response));
} else {
client.status ("Connected to server.");

}

client.connected (ok) ;

return;

} else if (type.equals (Parser.statusResponse)) {
new StatusController (client) .process(null, response);
return;

}

System.out.println ("received:" + response);

}

There was no statusRequest object known on the client side, so the invocation to process added above takes null
as its first parameter; the invocation simply asks the clientto process the received statusResponse message.

Could itreally be that straightforward? Well, execute ServerLauncher and then execute ClientLauncher. Connectto
localhostand self-register a new account. Once connected, you'll see the firstimage in the repository on the client
display. Select the Image | Add menu item several times to populate the repository. Then begin browsing through the
images using the menu item controls. Note that each time you navigate, the new image appears on the clientdisplay.
You can even execute another instance of ClientLauncher and have two separate clients, each navigating through
the repository, each adding images, and this can occur simultaneously!

There are a few items that still need our attention:

1. If you connect to the server (not self-registered) and you enter invalid credentials, the Server menu bar
still appears as if the client had properly connected.

2. Disconnect functionality is not yetimplemented.

3. The status bar at the bottom ofthe screen doesn't change during navigation. (Shouldn'tit show which
picture in the repository is being viewed? It's time to get that metadata properly displayed on the screen).

4. When adding an image to the repository, thatimage should become the last one in the repository, but
shouldn'tthe client navigate to thatlast picture and show it on the client display?

Let's complete these tasks in order. To validate that the client behaves improperly, run ServerLauncher and then run
ClientLauncher and try to connectto localhost with new accountinformation. While the status bar atthe bottom of
the screen shows "Unable to login:Invalid credentials", the Server menu shows that it believes the connection was
appropriate. So where do you begin to solve this problem? Well, you can look at the ResponseHandler because its
process() method is the one that posts the "invalid credentials" status message, but that method only calls the
connected method. Review the changes to this method below, which calls validate MenuBar after the method
configures access:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

public void connected(boolean ok) {

1 Jdo 4 o ke
Trroaacerieaoa L (/7

if (ok) {
String xmlStatusRequest = "<request><statusRequest/></request>";
access.sendRequest (new StatusController (this), new xml.Message (xmlStatusRequest)) ;
} else {
access = null;

}

validateMenuBar () ;

Ifaccess is setto null on failed login attempts, the validateMenuBar() method is properly able to adjust to

demonstrate whether the clientis connected or not. Close down all applications and restart the ServerLauncher and

ClientLauncher. This time note that after failed login attempts, the menu bar is properly updated.

Moving on to the Server | Disconnect menu item, you need to write a DisconnectController to oversee this
functionality. Start at ImageRepositoryClient and make these modifications to init MenuBar():

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

disconnect = new JMenultem("Disconnect...");
disconnect.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new DisconnectController (ImageRepositoryClient.this) .confirm();

}
)i

server.add (disconnect) ;

This new code invokes DisconnectController once selected.

& In the Isrc folder client.gui package, create a DisconnectController class as shown:

Isrc/client.gui/DisconnectController.java

package client.gui;

import javax.swing.*;
import util.*;

public class DisconnectController {
static String property confirmOnDisconnect = "ConfirmOnDisconnect";
static String imageFile = "images/help 32.png";
static ImagelIcon icon;

ImageRepositoryClient client;

public DisconnectController (ImageRepositoryClient client) {
this.client = client;

}

public boolean confirm() {
if (icon == null) {
icon = new Imagelcon (imageFile);
}
if (!Preferences.isTrue (property confirmOnDisconnect)) {
String[] choices = { "Confirm", "Confirm and don't ask me again" };

String s = (String) JOptionPane.showInputDialog (client,
"Do you wish to disconnect from " + client.access.getHost() + "?\n ",
"Confirm Disconnect", JOptionPane.PLAIN MESSAGE,
icon, choices, choices[0]);
if (s == null) {
return false;
} else if (s.equals (choices[1])) {
// remember this in the future.
Preferences.set (property confirmOnDisconnect, true);

}

return disconnect () ;

boolean disconnect () {
String host = client.access.getHost () ;
client.access.disconnect () ;
client.connected(false);

client.status ("Disconnected from " + host);
return true;

The above code may seem familiar; itis nearly identical to QuitController. To protect the user from inadvertently
"disconnecting,"” you included the same confirmation step as in the QuitController. To disconnect the client,
disconnect the ServerAccess object and tell ImageRepositoryClient thatitis no longer connected. For this code
to compile, add this method to ServerAccess:

CODE TO TYPE: /src/client/ServerAccess.java

public String getHost () {
return host;

Test the capability by terminating all existing applications running in Eclipse. Npw execute ServerLauncher and
ClientLauncher. Once you've connected, select Server | Disconnect; you'll be asked to confirm the disconnect
request. If you choose to disconnect, the menu bar is revalidated to allow you to reconnect later.

The next task to deal with is that the screen is not updated after the client uploads a new image to the repository. The
next few changes to ServerAddimageController show how to update the ClientState for the user adding images:

CODE TO TYPE: /src/server/ServerAddimageController.java

package server;

import java.io.*;
import server.ipc.*;
import server.model.*;
import util.*;

import org.w3c.dom.*;
import xml.*;

public class ServerAddImageController implements IProtocolHandler {
Repository repository;

public ServerAddImageController (Repository repository) {
this.repository = repository;

public Message process (String user, Message request) {
Node child = request.contents.getFirstChild();
String name = child.getAttributes() .getNamedItem ("name") .getNodeValue () ;
Node imageNode = child.getFirstChild();

String xmlResp;

try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ()) ;
String key = repository.add (bytes, name);
ClientState cs = RepositoryServer.getState (user);
cs.setImageKey (key) ;

xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/
></response>";
} catch (IOException ioe) {
xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +

"<addResponse numBytes='0'/></response>";
} catch (Exception e) {
xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
"<addResponse numBytes='0'/></response>";

return new Message (xmlResp) ;

public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";
}

There is no room in the addResponse message to send back the image, so how can the client see the uploaded
image? Remember how on the client side, you detect the successful image addition, so atthat pointyou can send a
statusRequest to the server to return the currentimage? Modify the process method of the client-side
AddimageController as follows:

CODE TO TYPE: /src/client.gui/AddimageController.java

public void process (Message request, Message response) {
NamedNodeMap map = request.contents.getFirstChild() .getAttributes();
String name = map.getNamedItem ("name") .getNodeValue () ;

if (Parser.success (response)) {

client.status ("Image uploaded to server:" + name);
String xmlStatusRequest = "<request><statusRequest/></request>";
client.access.sendRequest (new StatusController (client), new Message (xmlStatusRequ
est));
} else {
client.status ("Problem adding image:" + name + " (" + Parser.reason(response) + ")

")

Pretty cool! Now, as the client adds images, the mostrecently added image appears. Try this out. Delete all files in the
IRepository folder and relaunch ServerLauncher and ClientLauncher. Observe the changed behavior as you add
new images to the repository. All of the scaffolding and carefully designed controllers are now building blocks that you
can use to satisfy the application requirements.

You still have one more task to perform. Update the status at the bottom of the client display during navigation:

CODE TO TYPE: /src/client.gui/Status Controller.java

package client.gui;

import java.io.*;

import java.awt.image.*;
import javax.imageio.*;
import org.w3c.dom.*;
import util.*;

import xml.*;

import client.*;

public class StatusController implements IController ({
ImageRepositoryClient client;
public StatusController (ImageRepositoryClient client) {
this.client = client;
}
public void process (Message request, Message response) {

Node child = response.contents.getFirstChild();
Node imageNode = child.getFirstChild();

if (imageNode == null) {
client.status ("Repository has no images.");
return;

int idx = Integer.valueOf (child.getAttributes () .getNamedItem ("index") .getNodeValue (
)) i
int total = Integer.valueOf (child.getAttributes () .getNamedItem("total") .getNodeValu
e());
try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());

InputStream in = new ByteArrayInputStream(bytes);
BufferedImage image = ImagelO.read(in);
client.display (image) ;
client.status ("Image " + idx + " of " + total);
} catch (IOException ioe) {
client.status ("Unable to decode image from server:" + ioe.getMessage());

Now when you run the application, you'll see that the status bar information is updated as you navigate among the
images in the repository. Once again, having clearly defined controllers means you can identify quickly where you
need to make small adjustments in your code, whether during normal development or as requirements change.

Delete the "temporary"” classes from the default package—those are no longer part of your project. Now rerun the code

coverage on all test cases and confirm that the following classes have ZERO code coverage from any test case. (In
the nextlab you must make progress towards closing the coverage gap):

OBSERVE:

Client

ClientLauncher
SplashScreenLogic
ConnectController
DisconnectController
NavigateController
QuitController

Server
ServerNavigateController
ServerLauncher

Let's write some testcases for NavigateController. Pattern them after the Test AddBehavior test case. Your new

testcase will extend Test AddBehavior to take imnmediate advantage ofits setUp and tearDown methods, as well
as its attributes which are now inherited by Test NavigationSequence.

El In the /test folder serve r.ipc package, create a TestNavigationSequence class that extends
TestAddBehavior, as shown. While typing the code, follow the sequence of actions in the test case method:

CODE TO TYPE: /test/server.ipc/TestNavigationSequence.java

package server.ipc;

import java.io.*;
import org.w3c.dom.*;
import xml.*;

import server.*;

public class TestNavigationSequence extends TestAddBehavior {

static Message requestNAVIGATE (String direction) {
String xmlNavRequest = "<request><navigateRequest direction='" + direction + "'/></
request>";
return new Message (xmlNavRequest) ;

public void testBriefNavigationSequence () throws Exception ({
String first = "cO00bcled28fabdbcebc3e4735decc83e";
String last = "6e3a233232c4c8e0c8bblcl63aa48dod";
String user = "user00";

toServer.println (requestLOGIN (user, "n", true));
expectSuccess (fromServer) ;

// add
File f = new File("images", "repositorySplash.png");
toServer.println (requestADD ("sampleImage", £f));

expectSuccess (fromServer) ;

// verify that client has this first image.
ClientState state = RepositoryServer.getState (user);
String key = state.getImageKey () ;

assertEquals (first, key);

// add

f = new File("images", "help 32.png");
toServer.println (requestADD ("help", f));
expectSuccess (fromServer) ;

// now on second one
key = state.getImageKey () ;
assertEquals (last, key);

// now navigate to the first

ServerNavigateController nc = new ServerNavigateController (RepositoryServer.reposit
ory);

nc.process (user, requestNAVIGATE (Parser.first));

assertEquals (first, state.getImageKey());

// validate StatusController works on first
ServerStatusController sc = new ServerStatusController (RepositoryServer.repository)

Message resp = sc.process (user, TestAddBehavior.requestSTATUS())
NamedNodeMap map = resp.contents.getFirstChild() .getAttributes();
assertEquals (first, map.getNamedItem("key") .getNodeValue())

// go last
nc.process (user, requestNAVIGATE (Parser.last));
assertEquals (last, state.getImageKey());

// validate StatusController works on first

sc = new ServerStatusController (RepositoryServer.repository);
resp = sc.process (user, TestAddBehavior.requestSTATUS())

map = resp.contents.getFirstChild() .getAttributes();
assertEquals (last, map.getNamedItem("key") .getNodeValue())

// go previous

nc.process (user, requestNAVIGATE (Parser.previous)) ;
assertEquals (first, state.getImageKey());

// go next
nc.process (user, requestNAVIGATE (Parser.next));
assertEquals (last, state.getImageKey());

This test case logic may be familiar. It's a lot to type in all at once, but you can probably "read" the scenario it describes
where a clientlogs in, adds two images, and then navigates among the images in the repository. By extending
TestAddBehavior, this test case can take advantage of the inherited attributes and methods from that class, as well
as the setUp and tearDown methods for starting and stopping the server and client. Once again, you demonstrate
how to compose new functionality from the composition of existing classes. This test case demonstrates the
capability on the server side.

In this lab you wrote a number of capabilities on the client side; now demonstrate their effectiveness.

E7 In the /test folder client.gui package, create a TestConnection test case as shown:

CODE TO TYPE: /test/client.gui/TestConnection.java

package client.gui;

import server.ipc.*;
import junit.framework.TestCase;

public class TestConnection extends TestCase {
RepositoryServer server;

protected void setUp() throws Exception {

TestServer.clearTestRepository() ;
server = TestServer.launchServer () ;

protected void tearDown() throws Exception {
RepositoryServerAccess.shutdown (server) ;
server = null;

public void testConnection () throws Exception {
ImageRepositoryClient client = new ImageRepositoryClient();

ConnectController cc = new ConnectController();
cc.connect (client, "localhost", "tester", "anything", true);

assertEquals ("localhost", client.access.getHost());

DisconnectController dc = new DisconnectController (client);
assertTrue (dc.disconnect());

assertTrue (client.access == null);

This test case executes the ConnectController and DisconnectController. You've already seen the scenario
being tested, because you put the building blocks into place.

The testConnection test case method creates a new ImageRepositoryClient object, and uses the
ConnectController to attemptto connect that clientto the local RepositoryServer using a self-registered account
for user "tester" with hashedPassword of "anything." After confirming the connection (this test case method uses the
getHost() method we added earlier in this lab), the clientis instructed to disconnect, using DisconnectController;
you know that disconnect succeeds because client.access is resetto null.

For the final test case, you'll validate the client-side navigation capabilities.

ET In the /test folder client.gui package, create a TestClientNavigation test case. This test case class introduces

a few advanced testing techniques. Let's take them on one step ata time:

CODE TO TYPE: /test/client.gui/TestClientNavigation.java

package client.gui;

import java.io.*;

import server.*;

import server.ipc.*;

import xml.*;

import junit.framework.TestCase;

public class TestClientNavigation extends TestCase {
RepositoryServer server;
static final String user = "tester";

protected void setUp() throws Exception {
TestServer.clearTestRepository () ;
server = TestServer.launchServer();

protected void tearDown() throws Exception {
RepositoryServerAccess.shutdown (server) ;
server = null;

public static boolean waitForResponse (ImageRepositoryClient client) throws Exception

// wait until all responses have been received before continuing test case
int ctr = 50;
while (client.access.isWaiting() && ctr-— > 0) {
Thread.sleep (200) ;
}

return !client.access.isWaiting();

public static boolean waitUntilKeySet (ClientState state, String target) throws Except
ion {
int ctr = 50;
while (!target.equals (state.getImageKey()) && ctr-- > 0) {
Thread.sleep (200);
}
return target.equals (state.getImageKey()):;

Let's take a closerlook:

OBSERVE:

public static boolean waitForResponse (ImageRepositoryClient client) throws Exception
{
// wait until all responses have been received before continuing test case
int ctr = 50;
while (client.access.isWaiting() && ctr-- > 0) {
Thread.sleep (200) ;
}
return !client.access.isWaiting() ;

}

public static boolean waitUntilKeySet (ClientState state, String target) throws Except
ion {
int ctr = 50;
while (!target.equals(state.getImageKey()) && ctr-- > 0) {
Thread.sleep (200) ;
}
return target.equals(state.getImageKey()) ;
}

This test case involves a client and the server. Without making additional changes to your code, it's hard to determine
when to check to see whether a request sent by the client has been processed by the server properly. If a controller
sends arequest to the server, and expects to receive the response, then the ServerAccess object maintains the
registered controller until it can process the response. The waitForResponse() method allows you to wait (in a non-
blocking fashion) until client.access.isWaiting() is false. To avoid becoming stuck in an infinite loop, this method
will check once every 200 milliseconds, until 10 seconds have elapsed, to determine whether client.access is still
waiting. The method returns true when the clientis no longer waiting, or false when something has gone wrong and
the clienthas notreceived a response within 10 seconds.

Similarly, the waitUntilKeySet () method waits until the given ClientState has its image key changed to target
(within a total elapsed time of 10 seconds). This method is used for requests that are not expecting a returned
response to a registered controller.

Is waitForResponse() more complicated than it needs to be? Maybe. Of course, you would like to write a simpler
method that stays in the while loop until the clientis no longer waiting, like this:

OBSERVE:

public static boolean waitForResponse (ImageRepositoryClient client) {
while (client.access.isWaiting())
return !client.access.isWaiting() ;

This won't work though, because the ServerAccess thread and the JUnit thread executing the waitForResponse
method will clash. Don't believe me? After you've completed the test case, modify the waitForResponse as shown
above and see what happens.

Now add this test case method to TestClientNavigation:

CODE TO TYPE: /test/client.gui/TestClientNavigation.java

public void testNavigation () throws Exception {
String first = "cO00bcled28fabdbcebc3e4735decc83e";
String last = "6e3a233232c4c8el0c8bblcl63aa48d9d";

ImageRepositoryClient client = new ImageRepositoryClient();

// connect and add two images.
ConnectController cc = new ConnectController();
cc.connect (client, "localhost", user, "anything", true);

AddImageController c¢ = new AddImageController (client);
assertTrue (c.add(new File ("images/repositorySplash.png")));
assertTrue (waitForResponse(client));

assertEquals (1, RepositoryServerAccess.size(server));

assertTrue (c.add(new File ("images/help 32.png")));
assertTrue (waitForResponse(client));
assertEquals (2, RepositoryServerAccess.size (server));

// make some navigation requests from the client. Go to the first one in repository

// Note that navigation sends back Status messages so this controller is not one

// that "waits" for a response from the server. Instead we wait for state to change
NavigateController nc = new NavigateController (client);

assertTrue (nc.go(Parser.first));

ClientState state = RepositoryServer.getState (user);
assertTrue (waitUntilKeySet (state, first));

assertTrue (nc.go(Parser.last));
assertTrue (waitUntilKeySet (state, last));

DisconnectController dc = new DisconnectController (client);
assertTrue (dc.disconnect());
assertTrue (client.access == null);

Once this test case method is completed, launch all test cases in the /test source folder to validate that they all pass.
Next, generate code coverage using ECIEmmma. Some classes, such as ClientLauncher and ServerLauncher,
still have no automatic coverage because they are justlaunching code that begins the client and server applications,
respectively. In Eclipse, there is no easy way to write a JUnit test case that uses parameters to the Java VM to execute
the SplashScreenLogic. We have to stick to our basic testing principles that tell us that classes with coverage thatis
below 80% must be inspected manually.

Authenticate Server Client Server Browse Mavigate Delete

Users Sessions Login Menu Images Image Image
src 72.6 72.3 73.3 71.0 741 75.2
client 9.6 9.6 57.0 56.5 61.2 63.6
client.gui 0 0 67.4 47.4 71.7 75
server 78.7 63.6 63.6 83.6 71.6 76.2
server.ipc 91.9 94 93.7 93.7 94.0 94
server.model 55.2 55.2 55.2 55.2 61.5 61.5
util 87.8 87.8 87.8 87.8 87.8 87.8
xm/ 85.9 85.9 87.0 B80.3 83.5 83.5
100
m\. ! ! i lient
80 1'-
== client.gui
&0 =dr=server
a0 s g Ty 21 .0PC
=i s ry £r.model
20
== Litil
o . T T T 1 o~ Al
] 2 4 & 8 10

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Deleting Repository Images

Lesson Objectives

In this lesson you will:

e use an authentication policy to allow or disallow remote functionality.

Deleting Images in the Repository

You've made itto the final lesson of Java 5. Nice going! Now you'll implement the functionality that allows users to
delete images in the repository and complete the core functionality of the application. Given the structure of the
client/server approach, you may have already guessed that we'll be adding some new XML messages and writing
clientand server controllers. Before we launch into this task, we'll need to define a policy that controls the deletion of
images:

1. Users should not be able to delete images that they themselves did not upload. You will identify additional
metadata that can be stored with each image to support this functionality.
2. Users should notbe able to delete an image thatis currently being viewed by another user.

If we stick to this defined policy, we improve our users' experience. To request the deletion of an image, a user must be

looking at thatimage currently and then selectImage | Delete, which is a new menu item added to
ImageRepositoryClient. Make these change to the initMenuBar() method ofImageRepositoryClient:

CODE TO TYPE: /src/client.gui/lmageRepositoryClient.java

image = new JMenu ("Image");
JMenultem add = new JMenultem("Add...");
add.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new AddImageController (ImageRepositoryClient.this) .add();
}
}):
image.add (add) ;
JMenultem delete = new JMenultem("Delete...");
delete.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
new DeleteImageController (ImageRepositoryClient.this) .delete();
}
}):
image.add (delete);
image.add (new JSeparator());

JMenultem first = new JMenultem ("First");
first.addActionListener (new ActionListener () {

The XML deleteRequest coming from the clientdoesn't need any information, because the server will determine the
image to delete from the requesting user's ClientState. The deleteResponse should contain the name of the file
(notthe unreadable key) to tell the user that the operation succeeded. Make these changes to repository.xsd:

CODE TO TYPE: /repository.xsd

<?xml version='l.0' encoding='UTF-8'?>
<xs:schema xmlns:xs='http://www.w3.0rg/2001/XMLSchema’'>

<xs:element name='message'>
<xs:complexType>
<xs:choice>
<xs:element ref='response'/>
<xs:element ref='request'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='response'>
<xs:complexType>
<xs:choice>
<xs:element ref='addResponse'/>
<xs:element ref='statusResponse'/>
<xs:element ref='loginResponse'/>
<xs:element ref='deleteResponse'/>
</xs:choice>
<xs:attribute name='success' type='xs:boolean' use='required'/>
<xs:attribute name='reason' type='xs:string' use='optional'/>
</xs:complexType>
</xs:element>

<xs:element name='request'>
<xs:complexType>
<xs:choice>
<xs:element ref='addRequest'/>
<xs:element ref='statusRequest'/>
<xs:element ref='loginRequest'/>
<xs:element ref='navigateRequest'/>
<xs:element ref='deleteRequest'/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name='addRequest'>
<xs:complexType>
<xs:sequence>
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='addResponse'>
<xs:complexType>
<xs:attribute name='numBytes' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='statusRequest'/>

<xs:element name='statusResponse'>
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name='image'/>
</xs:sequence>
<xs:attribute name='key' type='xs:string' wuse='required'/>
<xs:attribute name='index' type='xs:integer' use='required'/>
<xs:attribute name='total' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='loginRequest'>

<xs:complexType>
<xs:attribute name='user' type='xs:string' use='required'/>
<xs:attribute name='password' type='xs:string' use='required'/>
<xs:attribute name='register' type='xs:boolean' use='optional'/>
</xs:complexType>
</xs:element>

<xs:element name='loginResponse'>
<xs:complexType>
<xs:attribute name='user' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:simpleType name='directionType'>
<xs:restriction base='xs:string'>
<xs:pattern value='next|previous|first|last'/>
</xs:restriction>
</xs:simpleType>

<xs:element name='navigateRequest'>
<xs:complexType>
<xs:attribute name='direction' type='directionType' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='deleteRequest'/>

<xs:element name='deleteResponse'>
<xs:complexType>
<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>
</xs:schema>

When you make changes to the XML, you need to make similar changes to Parser for the key constants. Add these
values to Parser:

CODE TO TYPE: /src/xml/Parser.java

public final static String name
public final static String value

"name";
"value";

The clientsends a deleteRequest to the server and receives (and processes) a deleteResponse in return.

& In the Isrc folder client.gui package, create a DeletelmageController class as shown:

CODE TO TYPE: /src/client.gui/DeletelmageController.java

package client.gui;

import org.w3c.dom.*;
import xml.*;
import client.*;

public class DeleteImageController implements IController ({
ImageRepositoryClient client;

public DeleteImageController (ImageRepositoryClient client) {
this.client = client;

}

public boolean delete() {
client.clearStatus();

String xmlDeleteRequest = "<request><deleteRequest/></request>";
return client.access.sendRequest (this, new Message (xmlDeleteRequest)) ;

}

public void process (Message request, Message response) {
if (Parser.success (response)) {
NamedNodeMap map = response.contents.getFirstChild() .getAttributes();
String name = map.getNamedItem (Parser.name) .getNodeValue () ;
client.status("deleted image " + name + " from repository.");

String xmlStatusRequest = "<request><statusRequest/></request>";
client.access.sendRequest (new StatusController (client), new Message (xmlStatusRequ
est));
} else {
client.status ("Unable to delete image:" + Parser.reason (response));

}

This code uses the same two-part structure as AddimageController did. The delete method sends the delete
requestto the server while the process message handles the response.

Because the server maintains the ClientState for the connected user, the logic of the client-side
DeletelmageController is relatively straightforward.

The real functionality happens in the server. As you might expect, you'll change ProtocolHandler to respond to the
deleteRequest thatarrives. So, whatif a useris viewing the firstimage in the repository and that user selects to
delete the image justas a new clientis logging into the system? As the current server is designed, each individual
request coming to the server is handled by its own thread, which operates concurrently with all other threads in the
system. ltis entirely likely that the server will decide thatitis safe to delete the firstimage in the repository when, in
reality, a concurrently executing thread has just sent thatimage to be viewed by the newly connected user. You need
some way to guarantee that an individual thread has the server's attention while processing. Using the synchronized
key word, you can ensure that no two threads execute the process method atthe same time. Because the
ProtocolHandler class is the central handler in the server, it's the most convenient place to restrict concurrent
access in a fine-grained way:

CODE TO TYPE: /src/server/ProtocolHandler.java

package server;

import server.ipc.*;
import server.model.*;
import xml.*;

import org.w3c.dom.*;

public class ProtocolHandler implements IProtocolHandler ({
final Repository repository;

public ProtocolHandler (Repository r) {
repository = r;

}

public synchronized Message process (String user, Message request) {
Node child = request.contents.getFirstChild();
if (child.getLocalName () .equals ("addRequest")) {
return new AddImageController (repository) .process (user, request);
} else if (child.getLocalName ().equals ("statusRequest")) {
return new StatusController (repository) .process (user, request);
} else if (child.getLocalName () .equals ("navigateRequest")) {
return new NavigateController (repository) .process (user, request);
} else if (child.getLocalName ().equals ("deleteRequest")) {
return new ServerDeletelImageController (repository) .process (user, request);

return null; // unknown request? No idea what to do.

The ServerDeletelmageController server-side controller must ensure that no other users are viewing the exact
same image. Ifthis is confirmed, the image is deleted; otherwise the requestis denied and an appropriate response is
sent back. The client display of the user requesting the deletion will depict the nextimage in the repository. To make
this controller work, you will have to make a number of small changes to your existing code. Let's get started.

(& In the Isrc folder server package, create the ServerDeletelmageController class as shown (you will implement
this class in stages):

CODE TO TYPE: /src/server/ServerDeleteimageController.java

package server;

import java.util.*;
import server.ipc.*;
import server.model.*;
import xml.*;

public class ServerDeleteImageController implements IProtocolHandler ({
Repository repository;

public ServerDeleteImageController (Repository repository) {
this.repository = repository;

}

public Message process (String user, Message request) {
String xmlResp = "";
ClientState cs = RepositoryServer.getState (user);
String key = cs.getImageKey() ;
if (key == null) {
xmlResp = "<response success='false' reason='" + EmptyRepository + "'>" +
"<deleteResponse name='"'/></response>";
return new Message (xmlResp) ;

}

// To Complete...
}

public static final String EmptyRepository = "Repository is empty.";
public static final String AnotherViewer = "Another user is viewing the image.";

The process() method above responds to deleteRequest messages coming from the client. This code describes
how to handle the unexpected case, where there are no images in the repository yeta deleteRequest message was
received by the server. You call RepositoryServer.getState() to retrieve the ClientState object associated with
the given user. Only when the repository is empty is there no key associated with the ClientState object. The only
action to take is to return a failed response.

To complete the process method, you need to add logic that verifies that no other clientis actively viewing the image
thatis aboutto be deleted. Instead of burying this logic deep within RepositoryServer, add a method to
RepositoryServer to expose the full set of connected users. This flexible method allows you to perform an
operation over all connected users of the system:

CODE TO TYPE: /src/server.ipc/RepositoryServer.java

public static Collection<ClientState> users() {
return users.values();

}

You will use this method to determine whether any other connected user is viewing the exact same image as the one
requested for deletion. Finally, you want Repository to allow you to set and get the metadata associated with an
image in the repository by key value as shown:

CODE TO TYPE: /src/server.model/Repository.java

public Properties getMetaData (String key) {
return index.getMetaData (key) ;

}

public Properties setMetaData (String key, Properties md) {
Properties old = index.setMetaData (key, md);
storelIndex () ;
return old;

These methods expose the underlying Properties object associated with each image. They delegate the get/set
requests to the Index of the repository, making sure to call storelndex() to persistall changes. Now modify the
process method of ServerDeletelmageController to validate that no other clientis accessing the same image as
the one requested for deletion:

CODE TO TYPE: /src/server/ServerDeleteimageController.java

public Message process (String user, Message request) {
String xmlResp = "";
ClientState cs = RepositoryServer.getState (user);
String key = cs.getImageKey() ;
if (key == null) {
xmlResp = "<response success='false' reason='" + EmptyRepository + "'>" +
"<deleteResponse name='"'/></response>";
return new Message (xmlResp) ;

}

int num = repository.getOrder (key) ;
Properties props = repository.getMetaData (key) ;

// Verify that no other user is concurrently viewing the image
for (ClientState other : RepositoryServer.users()) {

if (other == cs) { continue; }
if (key.equals (other.getImageKey())) {
xmlResp = "<response success='false' reason='" + AnotherViewer + "'>" +
"<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons

e>";
return new Message (xmlResp) ;
}
}
// To Complete...

Let's take a closerlook.

OBSERVE:

// Verify that no other user is concurrently viewing the image
for (ClientState other : RepositoryServer.users()) {
if (other == cs) { continue; }

if (key.equals (other.getImageKey())) {
xmlResp = "<response success='false' reason='" + AnotherViewer + "'>" +
"<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons
e>";
return new Message (xmlResp) ;

}

The RepositoryServer.users() method returns the collection of users currently connected to the server. This

http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html

method was provided to offer the greatest flexibility in dealing with other connected users. The enhanced forloop for
(ClientState other : RepositoryServer.users()) iterates over all ClientState objects associated with other
connected users. If any of these other ClientState objects has an image key equal to the image key being
requested for deletion, then you mustrespond with a failed deleteResponse message, this time declaring the
reason to be AnotherViewer. The statementif (other == cs) { continue; } ensures thatyou skip overthe other
ClientState when you getto the ClientState associated with the current user requesting the deletion.

Once all checks have passed, complete the logic that actually deletes the object, as shown:

CODE TO TYPE: /src/server/ServerDeleteimageController.java

public Message process (String user, Message request) {
String xmlResp = "";
ClientState cs = RepositoryServer.getState (user);
String key = cs.getImageKey() ;
if (key == null) {
xmlResp = "<response success='false' reason='" + EmptyRepository + "'>" +
"<deleteResponse name='"'/></response>";
return new Message (xmlResp) ;

}

int num = repository.getOrder (key) ;
Properties props = repository.getMetaData (key);

// Verify that no other user is concurrently viewing the image
for (ClientState other : RepositoryServer.users()) {
if (other == cs) { continue; }

if (key.equals (other.getImageKey())) {
xmlResp = "<response success='false' reason='" + AnotherViewer + "'>" +
"<deleteResponse name='" + props.getProperty(Parser.name) + "'/></respons
e>";
return new Message (xmlResp) ;

e
try {
repository.delete (key) ;
if (repository.size() == 0) {
cs.setImageKey (null) ;
} else {
if (num > repository.size()) {
num = repository.size();
}
cs.setImageKey (repository.getNthKey (num)) ;

xmlResp = "<response success='true'>" +
"<deleteResponse name='" + props.getProperty (Parser.name) + "'/></respons
e>";
} catch (Exception e) {
xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
"<deleteResponse name='" + props.getProperty (Parser.name) + "'/></response>

return new Message (xmlResp) ;

This code won't compile until you write a delete() method in Repository that deletes an image by key. The num
value is the ordinal position of the given image in the repository. Once this image is deleted (via
repository.delete(key)), you can retrieve the key for the nextimage in the repository by using the same num value,
then save this key as the image key for the ClientState requesting the deletion. In this final case, the returning
deleteResponse is successful unless an exception was thrown when attempting to delete the image.

The above code also handles the situation where the user deletes the lastimage in the repository. The code updates

num when that happens.

Now modify Repository. Begin by writing a delete() method:

CODE TO TYPE: /src/server.model/Repository.java

public void delete (String key) {
File f = new File (storage, key);
if (f.exists()) |
if (!f.delete()) {
throw new IllegalStateException ("Unable to delete image:" + key);
}
}

index.delete (key) ;
storelndex () ;

The delete method in Repository depends on adding a corresponding method to Index:

CODE TO TYPE: /src/server.model/Index.java

public void delete(String fp) {
if ('keys.contains(fp)) {
return;

}

keys.remove (fp) ;
meta.remove (fp) ;

}

To see whether your changes were implemented properly, run ServerLauncher and ClientLauncher and make
sure you are the only connected client. If the Repository folder is empty, add some images. Verify that you are
looking at the firstimage in the repository. Now request to delete each image that you see, one ata time. You can
review the progress of the server by refreshing the Repository folder after each delete request. You can add images
and then delete them, until the repository is empty.

Now connecttwo clients to the same repository and have each of them view the firstimage in the repository. If you
have deleted all images, then go ahead and add one! Now, try to have one of the clients attemptto delete the first
image in the repository. As you will see, attempts to delete an image are denied as long as another clientis viewing
thatimage.

Upgrade Protocol to Display Metadata

To display metadata information on the right side of the client display, you need to upgrade the protocol. The metadata
is stored by the server; you can "piggyback” the information with the statusResponse message by making a small
change to repository.xsd. These changes add a sub-child to image thatallows you to have a sequence of
metadata tag information for each image. The metadata will come from the Index:

CODE TO TYPE: /repository.xsd

<xs:element name='metadata'>
<xs:complexType>
<xs:attribute name='name' type='xs:string' use='required'/>
<xs:attribute name='value' type='xs:string' use='required'/>
</xs:complexType>
</xs:element>

<xs:element name='statusResponse'>
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name='image'/>
<xs:sequence minOccurs="0">
<xs:element name='metadata'/>
</xs:sequence>
</xs:sequence>
<xs:attribute name='key' type="'xs:string' use='required'/>
<xs:attribute name='index' type='xs:integer' use='required'/>
<xs:attribute name='total' type='xs:integer' use='required'/>
</xs:complexType>
</xs:element>

The fundamental structure of the metadata schema elementis a (name, value) pair. The change to
statusResponse allows for any number (possibly zero) of (name, value) pairs to be associated with the image

being included in the statusResponse. To take advantage of this new capability, modify ServerStatusController
as shown:

CODE TO TYPE: /src/server/ServerStatusController.java

package server;

import java.io.*;
import java.util.*;
import server.ipc.*;
import server.model.*;
import util.*;

import xml.*;

public class ServerStatusController implements IProtocolHandler {
Repository repository;
public ServerStatusController (Repository repository) {

this.repository = repository;

public Message process (String user, Message request) {
ClientState cs = RepositoryServer.getState (user);
File f = repository.getlImage (cs.getImageKey());

T e
// Default message in case the repository is empty
String xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey (
y + "o o4
"index='" + repository.getOrder (cs.getImageKey()) + "' total="'" +
repository.size() + "'>" +
"</statusResponse></response>";
if (repository.size() == 0) {
return new Message (xmlResp) ;

try {
String encoding = ImageEncoding.encode (f);
String metadata = "";
Properties props = repository.getMetaData (cs.getImageKey())

for (String name : props.stringPropertyNames()) {
metadata += "<metadata name='" + name + "' value='" + props.getProperty(name) +
mwa />u,.
}
String imageData = "<image>\n<![CDATA[" + encoding + "\n]]>" + metadata + "</imag
e>u’
xmlResp = "<response success='true'><statusResponse key='" + cs.getImageKey() + "
T " +
"index='" + repository.getOrder (cs.getImageKey()) + "' total='" + repos

itory.size() + "'>" +
imageData + "</statusResponse></response>";
} catch (Exception e) {

Systemerrprintir{('Onabte—to—encode—tmage—fite ! —+—ioergetMessage)~

xmlResp = "<response success='false' reason='" + UnableToEncode + "'>" +
"<statusResponse key='" + cs.getImageKey() + "' " +
"index='" + repository.getOrder (cs.getImageKey()) + "' total='" + repos

itory.size() + "'>" +
"</statusResponse></response>";

—

O o 1 i1} 1 1 NI n 1 [I T T T L
OCL TI1g mrneSP = TTSPOITS gCcCeSS= Ccruac CAOCUSNNCoOpPUITST ROy T CST.goCIiagency
0o | I T L A <l L T k7 L) T 11 I, | 1 L :
Emsiws = T IrePOSTToOr Y- ge Toraer(CSgeTagerey (/7 T cotaT— —IrePOSTTOEYY ST
4 Dad TR ot n 1]
TSt oDaca CacoaoneSPOoOITST TESPOIT 7

return new Message (xmlResp) ;

public static final String UnableToEncode = "Unable to encode image file";

The above code constructs a metadata XML fragment which is inserted as a sub-child to the image XML tag.

On the client side, you need to modify the StatusController to extract the metadata from the statusResponse it
receives:

CODE TO TYPE: /src/client.gui/Status Controller

package client.gui;

import java.io.*;

import java.awt.image.*;
import javax.imageio.*;
import org.w3c.dom.*;
import util.*;

import xml.*;

import client.*;

public class StatusController implements IController {
ImageRepositoryClient client;

public StatusController (ImageRepositoryClient client) {
this.client = client;

}

public void process (Message request, Message response) {
Node child = response.contents.getFirstChild();
Node imageNode = child.getFirstChild();
if (imageNode == null) {
client.status ("Repository has no images.");
client.meta (null);
client.display(null);
return;

}

client.meta (null) ;
NodeList metaNodes = imageNode.getChildNodes() ;

for (int i = 0; i < metaNodes.getLength(); i++) {
Node n = metaNodes.item(i) ;
if (n.getNodeType () != Node.ELEMENT NODE) { continue; }

String name = n.getAttributes () .getNamedIltem ("name") .getNodeValue () ;
String value = n.getAttributes () .getNamedItem("value") .getNodeValue () ;

client.meta(name + " = " + value + "\n");

int idx = Integer.valueOf (child.getAttributes () .getNamedItem ("index") .getNodeValue (
)) i
int total = Integer.valueOf (child.getAttributes () .getNamedItem("total") .getNodeValu
e());
try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());

InputStream in = new ByteArrayInputStream(bytes);
BufferedImage image = ImagelO.read(in);
client.display (image) ;
client.status ("Image " + idx + " of " + total);
} catch (IOException ioe) {
client.status ("Unable to decode image from server:" + ioe.getMessage());
client.meta (null);
client.display(null);

Everything in an XML message is represented as a node, which means that you have to determine the type of each
child node to make sure itis a true ELEMENT _NODE, and thus a metadata child of the image element. Once you do
that, you extract the (name, value) value from the node and append thatinformation to the client's metadata frame, on
the right side of the client's GUI.

The above code also fixes a problem. You may have noticed that when you delete the lastimage in the repository, the
screen still shows the image even though the status says, "Repository has no images." If there is no image to display,
StatusController now clears the image and metadata.

To support this method, add a meta() method to ImageRepositoryClient that clears or appends textto the panel
on the right side of the image:

CODE TO TYPE: /src/cilent.gui/lmageRepositoryClient.java

public void meta (String string) {

if (string == null) {
imgMetaData.setText ("");
} else {

imgMetaData.append (string) ;
}

Close down your client and server applications (if they are still running) and execute ServerLauncher and
ClientLauncher to connect the client to the server. As you navigate through the images, you'll see metadata
information in the right panel. For now, there are only two pieces of metadata; add some more, namely, the size of the
image in bytes (both original and encoded) and the name of the user who uploaded the image. Modify the server-side
ServerAddimageController as shown:

CODE TO TYPE: /src/server/ServerAddimageController.java

package server;

import java.io.*;
import java.util.*;
import server.ipc.*;
import server.model.*;
import util.*;

import org.w3c.dom.*;
import xml.*;

public class ServerAddImageController implements IProtocolHandler {
Repository repository;

public ServerAddImageController (Repository repository) {
this.repository = repository;

}

public Message process (String user, Message request) {
Node child = request.contents.getFirstChild();
String name = child.getAttributes() .getNamedItem ("name") .getNodeValue () ;
Node imageNode = child.getFirstChild();

String xmlResp;

try {
byte[] bytes = ImageEncoding.decode (imageNode.getTextContent ());
String key = repository.add (bytes, name);

Properties props = repository.getMetaData (key);
props.setProperty ("user", user);

props.setProperty("size", "" + bytes.length);

props.setProperty ("encoded-size", "" + imageNode.getTextContent ().length());
repository.setMetaData (key, props):;

ClientState cs = RepositoryServer.getState (user);
cs.setImageKey (key) ;

xmlResp = "<response success='true'><addResponse numBytes='" + bytes.length + "'/
></response>";
} catch (IOException ioe) {
xmlResp = "<response success='false' reason='" + CorruptedImageData + "'>" +

"<addResponse numBytes='0'/></response>";
} catch (Exception e) {
xmlResp = "<response success='false' reason='" + e.getMessage() + "'>" +
"<addResponse numBytes='0'/></response>";

return new Message (xmlResp) ;

public static final String CorruptedImageData = "Encoded image data appears to be cor
rupted.";
}

Now continue adding images; the user identifiers are now associated with each image. You're ready to make the final
constraint check to make sure that a user deleting an image is actually the one who uploaded thatimage in the first
place.

Preventing Multiple Login Requests

In this lesson you faced the challenge of concurrent access to the repository; there is a similar issue regarding the way
a userlogs into the system. You need to be sure thatthese two cases are prevented:

e Two clients simultaneously submit self-registration requests for the same userid.

e Auserattempts to use the same login credentials as a user who is currently logged in.

Since each RepositoryThread operates independently and concurrently, you have to consider where these threads

can synchronize their actions to prevent the two cases described above from happening. In RepositoryThread, you
can see an opportunity in the run method where you can synchronize multiple threads according to the way they
access userManager. Instead of defining a synchronized method, you introduce a synchronized block to ensures
that only one concurrent thread operates within this block. If two threads are trying to self-register, then the firstone in
will succeed and the second will block and fail when it gets its chance. If two threads are trying to log in using the same
user credentials, then the first one through will succeed and register itself with RepositoryServer (note how the
register invocation is moved). With these changes, you can be sure that when the second thread is allowed to
continue, it will detect a logged-in user with the same user id, and exitin failure (so sad):

CODE TO TYPE: /src/server.ipc/RepositoryThread.java

package server.ipc;

import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import xml.*;

import server.*;

public class RepositoryThread extends Thread {
Socket client;
BufferedReader fromClient;
PrintWriter toClient;
IProtocolHandler handler;
String user;
UserManager manager;

RepositoryThread (UserManager um, Socket s, IProtocolHandler h) throws IOException {
fromClient = new BufferedReader (new InputStreamReader (s.getInputStream()));
toClient = new PrintWriter (s.getOutputStream(), true);
client = s;
handler h;
manager = um;

public void run() {
// authentication by first login message. Stop if not a loginRequest.
Message m = Parser.extractRequest (fromClient) ;
Node child = m.contents.getFirstChild() ;
if (!child.getLocalName () .equals (Parser.loginRequest)) {
return;

// Get authentication information
String user = child.getAttributes () .getNamedItem (Parser.loginUser) .getNodeValue () ;
String pass = child.getAttributes () .getNamedItem(Parser.loginPassword) .getNodeValue

// might be self-registration.
Node registerNode = child.getAttributes () .getNamedIltem (Parser.loginRegister) ;
boolean register = false;
if (registerNode != null) {
register = Boolean.valueOf (registerNode.getNodeValue());

// tell client decision and engage handler on successful login
boolean validated;
synchronized (manager) {
if (register) {
if (manager.registerUser (user, pass)) {
m = new Message ("<response success='true'><loginResponse user='" + user + "'/
></response>") ;
validated = true;
RepositoryServer.register (user, this);
} else {
m = new Message ("<response success='false' reason='" + Parser.invalidCredenti
als + "'>" +
"<loginResponse user='" + user + "'/></response>");
validated = false;
}
} else {
if (!manager.authenticate (user, pass)) {
m = new Message ("<response success='false' reason='" + Parser.invalidCredenti
als + "'>" +
"<loginResponse user='" + user + "'/></response>");
validated = false;
} else {

if (RepositoryServer.getState (user) != null) {
m = new Message ("<response success='false' reason='" + DuplicatelLogin + "'>
"o+
"<loginResponse user='" + user + "'/></response>");
validated = false;
} else {
m = new Message ("<response success='true'><loginResponse user='" + user + "
'/></response>") ;
validated = true;
RepositoryServer.register (user, this);
}
}
}
}
toClient.println (m.toString());
if (toClient.checkError()) {
return-
validated = false;
RepositoryServer.unregister (user) ;
}
if (validated) {
ReposttoryServer—registerftaser—thisr
// have handler manage the protocol until it decides it is done.
while ((m = Parser.extractRequest (fromClient)) != null) {
manager .updateAccessTime (user) ;
Message response = handler.process (user, m);
if (response == null) { break; }
toClient.println(response.toString());
if (toClient.checkError()) {
break;
}
}
RepositoryServer.unregister (user);
}
try {
fromClient.close () ;
toClient.close () ;
client.close();
} catch (IOException ioe) {
System.err.println ("Unable to close connection:" + ioe.getMessage());
}
}
public static final String DuplicateLogin = "User 1is already connected";
}

Once this code is complete, run the ServerLauncher and execute two ClientLauncher applications. Have the first

client self-register an account. Have the second clienttry to log in using the same credentials, and the server will detect
the duplicate login.

This has been along lesson, but you still need to write one final test case using the new functionality that you added in
this lesson. The next test case validates that you can add two images, and delete them one ata time.

E In the test folder server.ipc package, create a TestDeletion class that extends TestAddBehavior. While you
type the code, try to follow the narrative sequence of actions in the test case method:

CODE TO TYPE: /test/server.ipc/TestDeletion.java

package server.ipc;
import java.io.File;

import server.ClientState;

import server.ServerDeleteImageController;
import server.ServerNavigateController;
import xml.*;

public class TestDeletion extends TestAddBehavior {

static Message requestDELETE () {
String xmlNavRequest = "<request><deleteRequest/></request>";
return new Message (xmlNavRequest) ;

public void testDeletions () throws Exception {
String splashFP = "cOObcled28fabdbcebc3e4735decc83e";

String helpFP = "6e3a233232c4c8e0c8bblcl63aad48d9d";
String user = "user00";

toServer.println (requestLOGIN (user, "password", true));
expectSuccess (fromServer) ;

File f = new File("images", "repositorySplash.png");
toServer.println (requestADD ("sampleImage", f));
expectSuccess (fromServer) ;

ClientState state = RepositoryServer.getState (user);
assertEquals (splashFP, state.getImageKey());

f = new File("images", "help 32.png");
toServer.println (requestADD ("help", f));
expectSuccess (fromServer) ;

assertEquals (helpFP, state.getImageKey());

// now go to first and delete

ServerNavigateController nc = new ServerNavigateController (RepositoryServer.reposit
ory);

nc.process (user, TestNavigationSequence.requestNAVIGATE (Parser.first));

assertEquals (splashFP, state.getImageKey()):;

ServerDeleteImageController dc = new ServerDeleteImageController (RepositoryServer.r
epository);
dc.process (user, requestDELETE());

assertEquals (helpFP, state.getImageKey());
// Now delete last one

dc.process (user, requestDELETE());
assertTrue (state.getImageKey () == null);

This test case takes advantage of many of the controllers and scaffolding test case methods you have developed in
this course. See how all of your earlier work makes it possible to write effective test cases such as this one? Excellent!

Re-execute all JUnittest cases for your project to validate that they all pass; then, re-execute using EcCIEmma to
determine coverage of the code.

Authenticate Server Client Server Browse Mavigate Delete

Users Sessions Login Menu Images Image Image
s 72.6 72.3 13.3 71.0 4.1 5.2 4.7
client 9.6 9.6 57.0 36.5 61.2 63.6 B6.5
client.gui 0 0 67.4 47.4 7.7 75 72.8
server 78.7 63.6 63.6 83.6 71.6 6.2 73.0
server.ipc 91.3 94 93.7 93.7 594.0 94 88.3
server.model 35.2 55.2 55.2 35.2 61.5 61.5 B6.1
util 87.8 87.8 87.8 87.8 87.8 87.8 87.8
xmi 85.9 853.9 a7.0 80.3 83.5 83.5 83.5
100
P - e i > » ——gy == lient
80
== client.gui
60 =fr=sernver
40 i cp T IpC
=g v er.model
20
==Lt
0 O T T T 1 wmil
0 2 4 = 8 10

The results above are truly outstanding. If you get a chance to review the code statistics (give or take a few lines) you
will see that this project contains:

e More than 30 classes totaling 2000+ lines of Java code.
e More than 10 test cases totaling 800+ lines of Java code.
e Aschema file totaling 100+ lines of XSD.

Your test cases written throughout the project assure nearly 75% of your code. The code that doesn't execute is mostly
code that cannot be tested manually (for example, ServerLauncher and ClientLauncher) or cannot be executed in
testing (SplashScreenLogic). Some controllers are entirely GUl-based (QuitController).

The code with coverage that's below 80 % is due largely to extensive error handling (for example, Repository)to
handle the interaction with the file system, none of which can be tested readily using JUnit. | hope you feel a real sense
of satisfaction at this point, you've come a long way! | also hope you can see the limitless possibilities provided by the
design of this client/server system. You can add new messages and controllers to handle them, based on the template
shown repeatedly in these lessons. And so, we end where we began, with an emphasis on a solid design with
implementation that leads to readily tested code—even GUIs—and through that process, you can now write distributed
applications. Well done!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

