Data Structures and Algorithms

Lesson 1: Data Structures and Algorithms using Java

Data Structures and Algorithms Overview

Algorithm Performance

Constant Performance

Logarithmic Performance

Linear Performance

Quadratic Performance

Comparing Classification Families

Lessons Learned

ArrayList Amortized Reallocation

Quiz 1 Project 1
Lesson 2: Data Structures and the Java Collections Framework

Introduction to Java Collections Framework

Set Interface
List Interface
Queue Interface

Map Interface
Summarizing the Implementations You Need To Know

Important Methods For Keys And Values

Lessons Learned

Quiz 1 Project 1
Lesson 3: Algorithms Using Java

Designing Algorithms

Skyline Problem
Lessons Learned

Quiz 1 Project 1
Lesson 4: Working With Big Data
Working with Big Data
Sorting Large Sets Using External Storage

Characterizing Storage Requirements for an Algorithm

MergeSort with O(n) Storage Requirements

Working with Large Datasets

Never Be Satisfied

Lessons Learned

Quiz 1 Project 1
Lesson 5: Representing Graph Data Structures

Representing Graphs

Using Adjacency Matrix To Represent Graph

Searching a Graph

Practical Application

Lessons Learned

Quiz 1 Project 1
Lesson 6: Graph Adjacency List and Shortest Path Algorithms
Searching For Optimal Paths

homework/overviewDataStructures_quiz.quiz.html
homework/overviewDataStructures_proj.project.html
homework/collections_quiz.quiz.html
homework/collections_proj.project.html
homework/overviewAlgorithms_quiz.quiz.html
homework/overviewAlgorithms_proj.project.html
homework/largeData_quiz.quiz.html
homework/largeData_proj.project.html
homework/graphDataStructures_quiz.quiz.html
homework/graphDataStructures_proj.project.html

Representing Graph By Adjacency List
Breadth-First Search
Lessons Learned

Quiz 1 Project 1
Lesson 7: Priority Queues

Priority Queue Data Structure

Minimum Spanning Tree

Heap Data Structure

Prim's Algorithm Implementation

Evaluating Minimum Spanning Tree Implementations

Lessons Learned

Quiz 1 Project 1
Lesson 8:Binary Tree Data Structure

Binary Tree Data Structure

Naive Binary Tree Implementation

Evaluating Binary Tree Implementation

Rebalancing Binary Trees

Using Collections TreeSet

Lessons Learned

Quiz 1 Project 1
Lesson 9: Multidimensional Algorithms

A Data Structure For Multidimensional Algorithms

Traversing a kd-tree

Using kd-trees to Search for Points

Lessons Learned
Project

Quiz 1 Project 1

Lesson 10: Mathematical Algorithms and Floating Point Computations

Mathematical Algorithms and Floating Point Computations

Gauss Jordan Elimination

Rounding Errors

Partial Input Data

Matrix Determinant

Lessons Learned

Quiz 1 Project 1
Lesson 11: Brute Force Algorithms

Using Brute Force To Solve Permutation Problems
Finding All Five-Letter words in PALINDROME
N Queens Problem

Lessons Learned

Quiz 1 Project 1
Lesson 12: Path Finding for Single-Player Games

Path Finding For Single-Player Games
Breadth-First Search

Evaluating Search Tree Algorithms

Lessons Learned

homework/graphAdjacencyList_quiz.quiz.html
homework/graphAdjacencyList_proj.project.html
homework/priorityQueue_quiz.quiz.html
homework/priorityQueue_proj.project.html
homework/binaryTree_quiz.quiz.html
homework/binaryTree_proj.project.html
homework/multidimension_quiz.quiz.html
homework/multidimension_proj.project.html
homework/mathematical_quiz.quiz.html
homework/mathematical_proj.project.html
homework/bruteForce_quiz.quiz.html
homework/bruteForce_proj.project.html

Quiz 1 Project 1
Lesson 13: Path Finding for Two-Player Games

Path Finding For Two-Player Games

Minimax Implementation

Lessons Learned

Quiz 1 Project 1
Lesson 14: Algorithms On Sound Data
Signal Processing Algorithms

Composed Wave Forms

Analyzing Composed Wave Forms
Using FFT on WAV file samples
Lessons Learned

Quiz 1 Project 1
Lesson 15: Conclusion
Concluding Lesson For Algorithms

Removing Elements From a Sorted Array

Removing Elements From Binary Search Trees

Removing Elements From AVL Trees

Removing Elements From KD-trees

Lessons Learned

Quiz 1 Project 1

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/singlePlayer_quiz.quiz.html
homework/singlePlayer_proj.project.html
homework/twoPlayer_quiz.quiz.html
homework/twoPlayer_proj.project.html
homework/soundFiles_quiz.quiz.html
homework/soundFiles_proj.project.html
homework/conclusion_quiz.quiz.html
homework/conclusion_proj.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Data Structures and Algorithms using Java

Welcome to the O'Reilly School of Technology course on Data Structures and Algorithms Using Javal

Course Objectives

When you complete this course, you will be able to:

e identify the core data structures provided by the JDK.

e identify appropriate data structures based on problems you are likely to face.
e explain the essential design techniques necessary for developing algorithms.
e develop algorithms that efficiently process data.

e characterize the performance of an algorithm in both space and time.

In this Java course, you'll learn how to write efficient Java code, which means learning about data structures and algorithms.
Here you'll refine your Java skills to identify the appropriate data structures to use when solving real-world problems. These
data structures are already provided for you in the Java Development Kit (JDK) release. You'll learn key algorithms that you'll
use again and again so your code performs efficiently every time.

In each lab, you'll learn about data structures and algorithms within the context of a solution to a real-world problem. Once you
understand the solution, you'll demonstrate mastery by extending the existing code in a project. Throughout this course you will
write Java code from scratch while solving real problems. There will also be references to Algorithms in a Nutshell, the
associated textbook for this course. The book comes with an online code base, the Algorithms Development Kit (ADK), that can
be used as a reference in addition to the code described in these lessons.

Each quiz will validate that you learned the key information and the projects and will describe likely extensions to the data
structures and algorithms.

As you progress through the course, you'll write professional test cases to verify the behavior of your data structures and
algorithms.

Lesson Objectives

When you complete this lesson, you will be able to:

e explain the limitation of using arrays to store dynamic collections.
e characterize the input, processing and output steps for an algorithm.

e explain why using classes to model structured information is preferred to just using multiple arrays containing
primitive types.

e characterize the run-time performance of an algorithm based on the size of a problem instance.

Welcome to the O'Reilly School of Technology's course on Data Structures and Algorithms. Although it's unlikely that this sixth
course in the Java series is your first OST course, we'll describe how OST works, justin case. If you already have a solid
understanding of our tools and methods, feel free to skip ahead to the Data Structures and Algorithms Overview section.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means thatyou
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cutand paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out whatelse
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance, but don't depend on it. Try to solve problems on yourown. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you atit
until you've mastered the skill. We want you to get that satisfied, "I'm so cool! | did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try outlots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).
If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove witt—Fook—Fike—this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also setespecially pertinentinformation apartin "Note" boxes:

Data Structures and Algorithms Overview

In 1976, Niklaus Wirth, the inventor of the Pascal language and a pioneering figure in Computer Science, published a
fundamental textbook on Software Engineering called Algorithms + Data Structures = Programs. In short, he proposed
that developers must understand data structures and algorithms as a prerequisite to writing efficient programs.

In your earliest programs, you no doubt used variables to store information that you processed. For example, think of
the firsttime you wrote a program that converted temperatures between Celsius and Fahrenheit (and you know that
you did). To understand how to write this program, a developer must identify the appropriate Algorithm and Data
Structure to use.

An algorithm is a step-by-step procedure for computation that processes input data to produce an output result.

We'll highlightinput data, processes, and output results with these colors throughout this lesson to identify the
different functional parts of the algorithm implementations.

The computation for temperature conversion is a straightforward calculation, so you only need to determine the format
ofinput. In most situations, the inputis most easily represented as text strings typed by the user; however, you could
also retrieve input as a binary sequence of bits, perhaps from an embedded microcontroller.

A problem instance is a particular input data setto which a program is applied.

In practical terms, different programs will process their input using code that decodes or translates the inputinto the
proper data structures that they need to function. Let's try an example.

Create a new project for this lesson named DataStruct, and assign the Java6_Lessons working setto it:

= Mew Jawva Projeck

Create a Java Project

Creake a Java project in the workspace or in an external location,

=] E3

-

CErDjEEt name: | BEREE (I)

[V Use defaulk locatian

Locatian: |'n-':'l,wcnrkspan:e'l,DataStrun:t

Browse, .. |

—JRE

" Use an execution environment JRE: IJavaSE-l G

i Ilse a project specific JRE: Ijre?

* Use default JRE {currently 're?")

2
-

Confiqure JREs. ..

~Projeck layouk

{~ Use project Folder as rook for sources and class Files

{* Create separate Folders For sources and class Files

Configure default. .

v add projeck bo waorking sets \

Weorking sets: |Javat_Lessons J j Select... |
S A
@:l < Back Mexk = | | Einish I Cancel

When prompted to open the perspective, check Remember my answer and click No.

@ In the DataStruct project/src source folder, create a TemperatureConversion class:

= Mew Java Class M=] B9

Java Class —.
I, The use of the default package is discouraged. <Q

Source Folder; | DatasSkruck)src Browse, ., |
Package: | {defaulty Browse... |
I Enclosing type: | Browse, .. |
Mame: I Temperature[nnversiun|

Modifiers: = public " defaul: £ private " protected

[T abstract [Ffinal ™| skatic

Superclass: | java.lang. Object Browse. ..

Interfaces:

Remove

I

W'hich method stubs would vou like to creater
[~ public skatic void maindSkring[] args)
[™ Constructors from superclass
¥ Inherited abstract methods
Do wou want ko add comments? {(Configure templates and default value bere)

I Generate comments

) -
l\‘? ¢ Einish I Cancel

CODE TO TYPE: TemperatureConversion class

import java.util.*;

public class TemperatureConversion {
public static void main(String[] args) {
System.out.println ("Enter Celsius: ");
Scanner sc = new Scanner (System.in);

double ¢ = Double.valueOf (sc.nextLine());
double f = ¢*9.0/5 + 32;

System.out.println ("Fahrenheit is: " + f);

Right-click the class and select Run As | Java Application. When prompted "Enter Celsius:", enter a number. The
Fahrenheit equivalent prints:

Run TemperatureConversion

Enter Celsius:
100
Fahrenheit is: 212.0

Let's take a closer look at the program.

OBSERVE: TemperatureConversion class

import java.util.*;

public class TemperatureConversion {
public static void main (String[] args) {
System.out.println ("Enter Celsius: ");
Scanner sc = new Scanner (System.in);

double c¢ = Double.valueOf (sc.nextLine()) ;
double £ = ¢*9.0/5 + 32;
System.out.println ("Fahrenheit is: " + f);

The above program conforms to the generic Input - Process - Output structure of mostprograms. The Celsius

temperature istyped by the user and you convert it to Fahrenheit, and multiply by 9.0/5 to retain precision

in your computation. For output, print the computed Fahrenheit value to the console.

The world gets more complicated when you need to process groups of data. Let's extend the above program to
produce a table of Fahrenheit conversions given a number of Celsius values. This first attempt stores just the
collection of Celsius values and computes the Fahrenheit conversion values as needed. We'll assume that the user
enters the requested values correctly; adding error-handling logic would only complicate these small programs and
obscure the points we're trying to make in this lesson.

& In the DataStruct project/src source folder, create a TemperatureConversionTable class, and modify itas
shown:

CODE TO TYPE: TemperatureConversionTable class

import java.util.*;
public class TemperatureConversionTable ({
public static void main (String[] args) {

System.out.println ("Enter Celsius values separated by spaces then press Enter: ");
Scanner sc = new Scanner (System.in);

String values = sc.nextLine();
StringTokenizer st = new StringTokenizer (values, " ");
double cValues[] = new double[st.countTokens()];
int index = 0;
while (st.hasMoreTokens()) {
cValues[index] = Double.valueOf (st.nextToken());
index++;

}

System.out.println ("Celsius\tFahrenheit") ;

for (int 1 = 0; i < cValues.length; i++) {
double f = cValues[1i]*9.0/5 + 32;
System.out.println(cvValues[i] + "\t" + f);

Save and run TemperatureConversionTable to see how it executes on a sample problem instance:

Run TemperatureConversionTable

Enter Celsius values separated by spaces then press Enter:
32.71.3 9.9 123.4

Celsius Fahrenheit

3.0 37.4

2.7 36.86

1.3 34.34

9.9 49.82

123.4 254.12000000000003

Let's look at the different functional elements of this code.

TemperatureConversionTable broken down into its parts

import java.text.*;
import java.util.*;

public class TemperatureConversionTable {

public static void main (String[] args) {
System.out.println ("Enter Celsius values separated by spaces then press Enter: ");
Scanner sc = new Scanner (System.in);
String values = sc.nextLine() ;

StringTokenizer st = new StringTokenizer (values, " ");
double cValues[] = new double[st.countTokens()];

int index = 0;

while (st.hasMoreTokens()) {
cValues[index] = Double.valueOf (st.nextToken()) ;
index++;

}

System.out.println("Celsius\tFahrenheit") ;
for (int i = 0; i < cValues.length; i++) {
double f = cValues[i]*9.0/5 + 32;
System.out.println(cValues[i] + "\t" + £f);
}

The above code uses an array of double cValues][] to store the Celsius values entered by the user. With arrays you
need to specify the size ofthe collection in advance. In many cases, you either know the proper size in advance or you
can setthe size to be some value large enough for any conceivable program execution. The Input consists of
Celsius values separated by spaces. You can use StringTokenizer to extract each of these values as a String token,
which is then converted into a double value using the Double.value Of () method. As an added bonus,
StringTokenizer can tell you the total number of tokens that will be extracted using the countTokens() method. The
above code uses an obvious array structure to store a setof singularly typed values (doubles, in this case) and you
easily traverse each elementin the array using a for loop to iterate over every element.

The output of this program is still a bitrough. Let's make some enhancements:

1. Retrieve the Celsius values from the user one per line; after that, the user simply presses Enter.
2. Present the conversion table sorted in ascending order.
3. Round Temperature values to two digits of precision.
4.Don'tdisplay any duplicate values in the table.
The first enhancement changes the entire Input phase of the program. The program no longer knows in advance how

many values are to be read; rather, it mustread them one at a time until told to stop. Once the entire array of values has
been created, you can satisfy the second enhancement by sorting the array. Finally, you need to do some extra

processing to ensure thet there are no duplicates for the fourth enhancement. The upcoming code handles all of these
enhancements while still using a simple array to store its values. The structure of the code has changed to allow you
to conduct testing at the end of this lesson.

CODE TO TYPE: Modified TemperatureConversionTable class

import java.io.*;
import java.text.*;
import java.util.*;

public class TemperatureConversionTable {
static double cValues|[];
static NumberFormat nf;

public static void main(String[] args) {
System.out.println ("Enter Celsius values, one per line, then press Enter when done:

fal lal L e 4 \

>4 aTTIT . . 11 W O aTTITE T A= CTT- 1T

e 3o 3 il - LT s JAN

STETIS eSS 1 Tt

O = inal 1 = O < unl 1 - L ul 11 L1 AN
L)LJ_J_ll\jl NCITT p. |3 — IICW _)LJ_J_ll\jJ.UI\ ITT =1\ aITUT Sy T r
| | il r | la o emal k|

\TAwAw S W n = [SER L) TJ — IITCW \TAwAw S wm o C. CUOUITCTURTITS U) 1 /7

process (System.in) ;
output (System.out) ;

static void process (InputStream is) {
Scanner sc = new Scanner (is);

nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits (2);

cValues = new double[0];

while (true) {
String value = sc.nextline();
if (value.equals ("")) { break; }
double val = Double.valueOf (value);
String formatVal = nf.format (val);

boolean found = false;
for (double d : cValues) {
if (nf.format (d).equals (formatval)) {
found = true;
break;

if (found) {

System.err.println(" ** omitting duplicate value:" + formatval);
} else {

cValues = java.util.Arrays.copyOf (cValues, cValues.length+l);

cValues[cValues.length-1] = val;

static void output (PrintStream out) {
java.util.Arrays.sort (cValues) ;

System-out.println ("Celsius\tFahrenheit") ;
for (int i = 0; i < cValues.length; i++) {
double f = cValues[1]*9.0/5 + 32;
Systemrout.println (nf. format (cvalues[i]) + "\t" + nf.format (f));
}

Try running this revised TemperatureConversionTable on the following problem instance:

INTERACTIVE SESSION: Sample Run

Enter Celsius values, one per line, then press Enter when done:
22.4
13.7
18.003
31
18
** omitting duplicate value:18

Celsius Fahrenheit
13.7 56.66

18 64.41
22.4 72.32
31 87.8

Let's break this code down and try to deal with a number of separately identified code blocks:

OBSERVE: revised main and new process method

public static void main(String[] args) {

System.out.println ("Enter Celsius values, one per line, then press Enter when done: "
)

process (System.in) ;

output (System.out) ;
}

static void process (InputStream is) {
Scanner sc = new Scanner (is);

nf = NumberFormat.getInstance() ;
nf.setMaximumFractionDigits (2) ;

cValues = new double[0];

while (true) {
String value = sc.nextLine() ;
if (value.equals ("")) { break; }
double val = Double.valueOf (value) ;
String formatVal = nf.format(val) ;

boolean found = false;
for (double d : cValues) {
if (nf.format(d) .equals(formatval)) {
found = true;
break;

}

if (found) {
System.err.println(" ** omitting duplicate value:" + formatVal) ;
} else {
cValues = java.util.Arrays.copyOf (cValues, cValues.length+l) ;
cValues[cValues.length-1] = val;

}

The above code will read strings from System.in which contain the Celsius values. All Celsius values will be stored
in an array of double values; however, since the program cannot determine in advance the number of Celsius values
entered, it starts—literally—with an empty array of double. A NumberFormat instance accurate to two digits of
precision is created to be used both during processing and output.

The bulk of the work is handled by the code thatreads one string line at a time to extract Celsius values to be added to
the array of double values. The program must ensure that no duplicate value appears in the output table. Of course you
could filter the output to avoid printing duplicate values, butit's better idea to just avoid storing duplicate values in the
first place. Note that you mustavoid having two values in the table which would otherwise "round" to the same two
digits of precision. So, if the input contained both 15.234 and 15.2321, only the first value should be entered into the
array, because both values round to 15.23.

As each String value is read from the input, the code checks for the empty string as a signal that the useris done;
otherwise, it converts the string value into a double using Double.valueOf() and also constructs a formatVal
String representing the two-digit rounded value that it would representin the output table. The for (double d :
cValues) loop checks to see whether any other Celsius value (once formatted) also equals formatVal. Ifitdoes, the
program considers the new value to be a duplicate and alerts the user that the value will be omitted.

If the value is not eliminated, you must add it to the cValues array. Since the size of the array cannot be known in
advance, this code uses the java.util.Arrays.copyOf() method to extend the array to be one greaterin size. The
method copies values from the old array into the new one because the new array is allocated as a new Java object.
Note that the last value in the array will be the value typed in by the user, val.

OBSERVE: output method

static void output (PrintStream out) {
java.util.Arrays.sort(cValues) ;

out.println ("Celsius\tFahrenheit") ;
for (int i = 0; i < cValues.length; i++) {

double £ = cValues[i]*9.0/5 + 32;

out.println (nf.format(cValues[i]) + "\t" + nf.format(f));
}

}

The final logic in the code sorts the Celsius values in cValues using the java.util.Arrays.sort() method provided
by Java. Once cValues is sorted, the Fahrenheit temperatures are converted as needed, and the table is outputin
ascending Celsius order, line by line.

You may be satisfied with this program as itis. ltlooks like it solves the problem. However, performance may be an
issue; the run-time performance on this small data is fine, butit might not work as well on a much larger data set.

With algorithms, the key performance question to consider is what happens when the size of a random problem
instance grows; more specifically, when the size doubles. To anticipate the performance of this code, you need to
understand how practitioners evaluate the performance of algorithms.

Algorithm Performance

Choosing an algorithm depends on the problem being solved and the problems it will likely face. Algorithms are
typically presented with three common cases in mind:

e Worst case: The class of problem instances for which an algorithm exhibits its worst runtime behavior.
Instead of trying to identify the specific input, algorithm designers typically describe properties of the input
that prevent an algorithm from running efficiently.

e Average case: The expected behavior when executing the algorithm on random problem instances. This
measure describes the expectations an average user of the algorithm should have.

e Best case: The class of problem instances for which an algorithm exhibits its best runtime behavior. In
reality, the best case rarely occurs.

We compare algorithms by evaluating their performance on problem instances of size n. The goal is to determine the
number of steps or operations the algorithm needs to solve the problem. This is an abstract way of measuring the cost
of an algorithm. Intuitively, an operation can be the assignment of a variable, comparing two numbers together, or
performing a mathematical operation. This methodology is the standard means for comparing algorithms. By counting
the number of operations, we can determine which algorithms scale to solve problems of nontrivial size by evaluating
the running time needed by the algorithm in relation to the size of the provided input. This form of evaluation is

consistentand does notdepend on the programming language used or the specific processor on which the program
is run.

When you determine the number of operations performed by an algorithm, you must represent the total count with
regards to the original size, n, of the problem instance. For example, the following sample count counts the number of
times an integer value appears in an arbitrary array of integer values:

OBSERVE: sample count method

static int count (int[] A, int wval) {

int count = 0;
for (int 1 = 0; 1 < A.length; i++) {
if (A[i] == val) {
count++;

}
}

return count;

There are six individual statements in the above code. For each statement, you can determine the maximum number
oftimes it executes on a problem instance of size n:

Statement Execution Count

1.int count =0 executes once

2.inti=0 executes once

3.if (i < A.length) | executes n+1times

4.if (A[i] == val) |executes ntimes

5.count++ executes NO MORE THAN n times
6.i++ executes ntimes

In total, there will be no more than 4*n+3 statements executed. If nis very large, the constant +3 becomes insignificant
and you can just say that the number of operations will be four times the total number, n, of values. The phrase used in
this course is that the number of operations for the above algorithm is on the order of n or O(n). The statement "an
order n algorithm"—uwritten as O(n)—means that the total number of operations is bounded by a constant (in this case
itwas 4) multiplied by n.

In some cases, the number of operations is constantand does notdepend on the problem instance size. In these
cases, you would represent the behavior as O(1). For a more detailed discussion on the "big O" notation used here,
review Chapter 2 in the Algorithms In A Nutshell book.

There are a number of classifications in this course. They are ordered here by decreasing efficiency:

e Constant O(1)

e Logarithmic O(log n)
e Linear O(n)

e Loglinear O(nlog n)
e Quadratic O(n2)

e Exponential O(2")
You will see examples of each of these classifications during this course. For now, let's focus on these four examples:

Constant Performance

Suppose you want to determine the first element of an unordered array of n elements. The effort you'd expend
to accomplish this task would be the same even if you had 2*n, or twice as many, elements. When an
algorithm can solve a problem in a fixed number of operations, regardless of the size of the problem
instance, the algorithm exhibits Constant Performance.

Logarithmic Performance

Consider looking for a given last name in the phone book with 1000 pages. You don't typically start on page
1; rather you start on page 500 and determine "which side" of the phonebook you need to search further. You
repeat this process until you find the proper page. With each step of work, you reduce the size of the problem
by half. When an algorithm can solve a problem in a number of steps relative to the logarithm (base 2) of the

problem instance size, we say that the algorithm exhibits Logarithmic Performance.

Linear Performance

When the number of steps required by an algorithm to solve a problem grows at the same rate as the
problem size grows, then the algorithm exhibits Linear Performance. If you're searching for a value in an
unordered array of n elements, you would require twice as much work to search through an array with 2*n
elements.

Quadratic Performance

For some algorithms, doubling the size of the problem instance makes the execution four times longer,
resulting in Quadratic Performance. Consider the problem of determining whether there are two values in an
unordered array of n elements that are the same. For each value in the array, you may have to compare it
against each of the other values in order to find a match.

Whenever you identify a nested loop over all elements in a collection, you can be sure that the performance is
atleast Quadratic.

OBSERVE: Sample nested for loop exhibiting quadratic performance

for (int i = 0; i < values.length; i++) {
for (int j = 0; j < values.length; Jj++) {
Inner Code Block
}

The Inner Code Block executes n? times, where n is the number of elements in the values array. Here's
another common nesting pattern:

OBSERVE: Another sample nested for loop exhibiting quadratic performance

for (int 1 = 0; 1 < values.length-1; i++) {
for (int j = i+l; j < values.length; j++) {
Inner Code Block
}

In that code, the Inner Code Block executes once for every unique pair of elements in values. The total

number oftimes this executes is n*(n-1)/2 or n?/2 -n/2. The performance of this nested for loop is still
considered to be Quadratic with respect to the size of the problem instance, n, despite the subtraction of n/2

and the coefficient 1/2. This is due to the dominance of nZ in the equation. As n continues to increase, the
growth in size of this equation will always be larger than a corresponding growth in a linear equation.

Comparing Classification Families

The run-time behaviors of algorithms can be compared by classification. Thatis, an O(7) algorithm is
considered to be more efficientthan an O(n) algorithm. When two algorithms exhibit the same performance
classification—say, O(n log n)—one might still be more efficient than another "because of the constants."
Recall how earlier we said that the contants become insignificant with increasing sizes of n? Theoretically this
is true, but one implementation of an algorithm may be more efficient than another even when they belong to

the same classification. You may also find thatan O(n2) algorithm is more efficientthan a comparable O(n log
n) algorithm for small values of N. The associated constants for the O(n log n) algorithm make the code

run slower than it does with the O(n2) algorithm for small values of n. Once nincreases, the O(n log n)
algorithm will outperform any O(n2) algorithm regardless of constants.

Let's go back and evaluate the performance of TemperatureConversionTable.

#7 In your DataStruct project, Create a [performance source folder to store all performance-related classes.

& Create a TimeTemperatureConversion class in the default package of the /[performance source folder.

CODE TO TYPE: TimeTemperatureConversion class

import java.util.*;
import java.io.*;

public class TimeTemperatureConversion {
public static void main(String[] args) throws Exception ({
Scanner sc = new Scanner (System.in);
System.out.println ("Enter number of different values to add.");
int numItems = Integer.valueOf (sc.nextLine());

StringBuilder sb = new StringBuilder();

for (int i = 0; 1 < numItems; i++) {
sb.append (i) .append ("\n") ;

}

sb.append ("\n") ; // empty string to terminate the input

// execute with timing in place
double total = 0;

int numTrials = 10;

for (int run = 0; run < numTrials; run++) {
ByteArrayInputStream is = new ByteArrayInputStream(sb.toString() .getBytes());
System.gc () ;

long now = System.currentTimeMillis();
TemperatureConversionTable.process (is) ;
long end = System.currentTimeMillis();
total += (end - now);

}

System.out.println (numItems + "," + (total/numTrials));

O Run TimeTemperatureConversion now for 64, 128, 256, 512, 1024, 2048, and 4096 and note the results, then
we'll make some changes and re-run the code using the same values.

The above code creates a string, sb, from which the inputis to be read. The process() method of
TemperatureConversionTable was designed to process its inputfrom an InputStream object; in the actual code,
inputcame from System.in, butin this performance code a ByteArraylnputStream objectis created and used
instead. This code design allows you to write automated test cases so you don't have to input your data manually like
we're doing here. Ten trials are executed and the average over all executions is printed.

As the problem size doubles, the time required by TemperatureConversionTable to solve each problem
increases (tripling or even quadrupling), suggesting that this implementation exhibits Quadratic Performance. Butdoes
that mean that there is no faster implementation?

To improve our results, we'll use data structures provided by the JDK. (In the next lab, we'll introduce a number of core
data structures with behaviors that will be useful as you write more advanced algorithms.)

(&'Create a CelsiusValue class in the default package ofthe DataStruct/src source folder.

CODE TO TYPE: CelsiusValue class

import java.text.NumberFormat;

public class CelsiusValue implements Comparable<CelsiusValue> {
public String formatted;
public double value;
public String fahrenheit;

static NumberFormat nf = null;

public CelsiusValue (double v) {
value = v;

if (nf == null) {
nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits (2) ;

}

formatted = nf.format (v);
fahrenheit = nf.format (9.0*v/5 + 32);
}

public boolean equals (Object o) {

if (o == null) { return false; }
if (o instanceof CelsiusValue) {
CelsiusValue other = (CelsiusValue) o;

return (formatted.equals (other.formatted)):;

return (false);

public int compareTo (CelsiusValue other) {
return formatted.compareTo (other.formatted);

}

This class represents an entry in the Celsius conversion table. The CelsiusValue constructor stores the formatted
Celsius value (accurate to two digits) and its computed fahrenheit equivalent. To increase efficiency, there's a static
NumberFormat field, nf, thatis constructed the very firsttime a CelsiusValue objectis constructed.

You need two other methods to arrive at this solution. You may be familiar with the Java standard equals(Object)
method, which determines whether two objects are equal to each other. For this problem, two CelsiusValue objects
are equal if they have the same formatted representation; this will prevent two duplicate entries from appearing in the
table when their formatted values are the same. The compareTo method determines the ordering of two
CelsiusValue objects, to sort entries in the table properly. The names of these methods should be familiar to Java
programmers and in the nextlesson we will further investigate the naming conventions and standard interfaces and
classes provided by the JDK. As you develop classes to representinformation in the problem domain, you will see
thatthese classes are no longer exclusively Input or Process classes.

Now modify TemperatureConversionTable as shown:

CODE TO TYPE: Modified TemperatureConversionTable class

import java.io.*;
3 = 2 = A= =
_LlLLtJUJ_L_, JQ. e CT T e 12

import java.util.*;

public class TemperatureConversionTable {
static TreeSet<CelsiusValue> cValues;

Aot o <l 1o 3 hl r
tacIrCc—aouoT cvaroaeSST 7

—statie—NamberFormat—af-

public static void main(String[] args) {

System.out.println ("Enter Celsius values, one per line, then press Enter when done:
")

process (System.in) ;

output (System.out) ;

static void process (InputStream is) {
Scanner sc = new Scanner (is);

£ i\ 1o kel A T i VA
T oS rorfifac . g crirScalr \WA

£ N : il . o LR
T SeTraxXTmair raccIToTorgTrco

cValues = new TreeSet<CelsiusValue> () ;wrew—doubtetots
while (true) {

String value = sc.nextLine();

if (value.equals ("")) { break; }

double val = Double.valueOf (value);

CelsiusValue cval = new CelsiusValue (val);

laF™S 2 £ A= 1 £ £ =L 1.\
x)L,J_J_ll\j En LTI C [T 1T « T LTI T\ (=== arg
1o 1 £ <l £ 1
TOUTTTIT ERAWAUS B LW B j e g <7
£ Lol lal <l 1 \ L
TOT oo Tre—< cvaro T T
=y L £ £ PN 1 LE£ A ul \ L
T T It . ToOTrac (o) - eguarx TrTorfnacvaLy/)/ 1
£ <l — 4=
fotre———trues
I~ 1
breals
—_—+
if (cValues.contains (cval)feurd) |
System.err.println(" ** omitting duplicate value:" + valueformatvet);
} else {
cValues.add (cval) ;
1 — 2 | £ [1 B P e |
athes—=—TFavea ot Area copyoftevatuesy atwes—tengthti
3 1 =lo b |
aroco [cvarac Tog ol T [3 s

static void output (PrintStream out) {

2 . | D A=/ h 1 AY

JG. O..\AL,J_J.-nJ_J_O.y . D 1T [S3= Ll T r

out.println("Celsius\tFahrenheit");

for (CelsiusValue cv : cValues) {
out.println(cv.formatted + "\t" + cv.fahrenheit);

£ L] fa 1 bl LN RN Id
TOTr—{(TIrc T (S cvaTto TrengTiy T)\
<l o £ o hl [140 A/C 1 29
TOToT T CvartgeSTI] R oz
. LIS | Lo £ O . 71 Lo 1 PR | NI | £ FEAN=ENRY
OO T PrIfTcrIir(IIr - TorfMac(CcvatoacS L1/ T T I . tormac Lt/ /s

—
}

Now rerun TimeTemperatureConversion for the same values we used in the earlier test (64, 128, 256, 512, 1024,
2048,and 4096).

The second column below shows how TemperatureConversionTable performed the firsttime; the third column
shows approximate performance after the last changes (vour results mavy differ somewhat):

Problem TemperatureConversionTable TemperatureConversionTable with ArrayList
Size Average Execution Time (milliseconds) Average Execution Time (milliseconds)

64 3.0 2.6

128 8.0 3.0

256 228 6.0

512 79.7 7.0

1024 293.6 9.0

2048 949.8 13.7

4096 3814.8 242

8192 * 47 1

16384 * 974

You can see that, as the problem instance size increases, this revised implementation is ten times faster (size 512)
and even 100 times faster (size 4096). Clearly the second implementation is much more efficient! In this case, it
appears that the choice of data structure vastly improved the efficiency of the code, reaffirming the observation by Wirth
that Algorithms + Data Structures = Programs.

Lessons Learned

Real-world problems are not always as clean and simple as those presented here. In particular, you must routinely
maintain a highly dynamic collection of values. Sometimes you might wantto add or remove a value to or from the
collection. You might want to store the entire collection to persistent storage (such as a database or the file system) so
you can retrieve it entirely at a later point. Since release 1.5 of the JDK, Java provides the Collections Framework, which
is a sophisticated set of classes to represent and manipulate collections. You have likely come across these classes
because of their versatility (classes such as ArrayList and HashMap, for example). As a programmer, you need to
know about these classes and—more importantly—to know the specific circumstances under which to use each one.
There is no need for you to reimplement these data structures on your own, but you do need to understand how to
select the appropriate classes for your needs.

We started this course by completing a problem using the most primitive capabilities offered by the Java programming
language. The TimeTemperatureConversion class works correctly, butit's not efficient enough when tackling
larger problem instances. You can find ways to modify your programs to improve their efficiency, butin mostcases it's
easier to use the available data structures rather than implement your own versions.

Atthe end of each lab, we'll review key concepts regarding data structures and algorithms. Here is the firstlist of key
concepts:

e Use arraysin the way they were designed: Use arrays when you have a fixed and bounded number of
values and you need immediate access to any of these values using a position index.

e Avoidsearching through unordered arrays: It's inefficient. If searching for an item is a key part of your
algorithm, do notstore your items in an unordered array.

e Avoid dynamically resizing arrays to be just one size larger: If you are frequently adding an item to a
collection, review the Java Collections Framework (described in nextlesson) to find a more suitable data
structure for dynamic behavior.

ArraylList Amortized Reallocation

If you have access to the source code of the JDK, review the ensure Capacity() method of the
java.util.ArrayList class. You can see that whenever a new elementis added to an ArrayList object,
ensureCapacity() first ensures thatit has enough capacity for the new element. The size of the new array is
roughly 1.5 times larger whenever it needs to expand the size of the underlying elementData array.

OBSERVE: ArrayList add() method uses Amortization through ensureCapacity()

public boolean add(E e) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[sizet++] = e;
return true;

}

public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;

// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf (elementData, newCapacity) ;

When you expand an array to accommodate more elements, make sure that you don't call the operation too
frequently. Instead, increase the size of the array by mulitplying it by some number rather than by adding room
for a constant number of items.

The nextlesson will introduce the Java Collections Framework, which we'll use extensively in this course.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Data Structures and the Java Collections Framework

Lesson Objectives

When you finish this lesson you will be able to:

e identify the core interfaces provided by the Java Collections Framework.
e explain the difference between a Setand a List.
e implementequals(Object) and hashCode() methods as required by Setand Listimplementations.

Introduction to Java Collections Framework

In this course, we use the commonly-accepted term "Java Development Kit (JDK)" to refer to the platform for
developing Java applications. The JDK defines a range of Application Programming Interfaces (APIs) for general
purpose functionality, including network programming packages (java.net) and graphical user interfaces (java.awt,
javax.swing). Altogether, the JDK release dated August 1, 2013 contains over 12,000 classes (18,000 classes ifyou
include anonymous and inner classes). In this lesson, we are concerned with the java.util package, which contains
the Collections Framework, legacy collection classes, event model, date and time facilities, internationalization, and
miscellaneous utility classes (a string tokenizer, a random-number generator, and a bit array).

Before describing the classes in the Collections Framework, we need to discuss the nature of an inferface in Java.
Each Java class defines public methods to be used by external classes. The java.lang.String class, for example,
contains 82 public methods. Did you know that you can determine the lastindex position of a character within a String?
You mightifyou had read the documentation and discovered that there is a lastIndexOf(char ch) method. This class
also has acompareTo(String s) method that compares two strings in alphabetical order; it returns 0 if the two string
objects are equal to each other and returns a negative or positive number to determine the alphabetic order of the two
String objects. Because comparing two objects is a fundamental operation for so many classes, Java designers
developed an interface that declares this behavior (here's part of the documentation in the interface):

OBSERVE: java.lang.Comparable Interface

package java.lang;

public interface Comparable<T> {
/**
* Compares this object with the specified object for order. Returns a
* negative integer, zero, or a positive integer as this object is less
* than, equal to, or greater than the specified object.
o/
public int compareTo (T o) ;

}

An interface contains a set of methods that represents a behavior; in this case, the Comparable interface represents
the ability to order two objects. This behavior is the same whether the objectis a String, an Integer or a Double object.
The interface specifies the behavior and a class provides the behavior by declaring that the class implements the
interface. The String class, for example, declares this:

OBSERVE: String interfaces

public final class String implements java.io.Serializable, Comparable<String>, CharSequ
ence { ... }

Once you know that the String class implements Comparable, you know that it must provide an implementation of its
methods, and specifically that it will have the compareTo method defined by the interface.

To describe the Collections Framework, let's start with the java.util.Collection<E> interface, which is the
fundamental interface in this package. A Collection<E> represents a group of elements of type E defined using the
Java Generics concept. This general definition applies to a wide range of behaviors. This interface defines 15
methods, including these six fundamental methods:

e int size() returns size ofthe collection.

e boolean isEmpty() determines if the collection is empty.

http://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html

e contains (Object element) determines whether it contains a given element.

e Iterator<E> iterator() enables retrieval of elements in the collection in some order.

e boolean add(E element) adds an elementto the collection (optional method).

e remove(Object element) removes an elementfrom the collection (optional method).

Because some collection objects are immutable—that is, their elements cannot be changed—the lasttwo methods
above are optional and a Collection object may or may nothonor requests to add orremove an element. However, if
an add method returns true, the Collection guarantees that the element was added to the set. If the add method
returns false, the collection already contains the elementand will notallow duplicates. If a Collection refuses to add a

particular element for a reason other than it being a duplicate, it must throw an Exception.

The following code sample shows how to use all of these methods with an ArrayList objectto determine the unique

letters used in a given sentence.

Create a Collections projectand add itto the Java6_Lessons working set.

& In the default package ofthe Collections/src source folder, create a UniqueLetters class as shown:

CODE TO TYPE: UniquelLetters class

import java.util.*;

public class Uniqueletters ({
static final String vowels = "aeiou";

public static void main (String[] args) {
System.out.println ("Enter at least one character:");
Scanner sc = new Scanner (System.in);
String s = sc.nextLine();
Collection<Character> unique = new ArrayList<Character>();

for (int i = 0; i < s.length(); i++) {
char ¢ = Character.toLowerCase (s.charAt (i));
if (Character.isWhitespace(c)) { continue; }

if ('unique.contains(c)) {
unique.add(c) ;
}
}

if (unique.isEmpty()) {
System.out.println ("Please enter at least one character");
System.exit (1) ;

}

System.out.println ("There are " + unique.size() + " unique characters");
System.out.print (" Vowels:");
for (int 1 = 0; 1 < vowels.length(); i++) {
char ¢ = vowels.charAt (i) ;
if (unique.contains(c)) {
System.out.print (c);
unique.remove (c) ;
}
}

System.out.print ("\n Consonants:");

for (Iterator<Character> it = unique.iterator(); it.hasNext();) {
System.out.print (it.next());

}

System.out.println () ;

Run this program on the sample input below:

INTERACTIVE SESSION: Sample execution of Uniqueletters

Enter at least one character:
Now is the time for all good men to come to the aid of their country
There are 18 unique characters

Vowels:aeiou

Consonants:nwsthmfrlgdcy

Let's take a closer look at this code.:

OBSERVE: Adding elements to a Collection

Collection<Character> unique = new ArrayList<Character>();

for (int i = 0; i < s.length(); it+) {
char ¢ = Character.tolowerCase (s.charAt(i));
if (Character.isWhitespace(c)) { continue; }

if ('unique.contains(c)) {
unique ;

}

The unique objectis constructed as an ArrayList of Character objects. For each non-whitespace characterin
the input string (converted to lowercase), we check to make sure thatthe characteris not already a member

ofunique before .Justkeep in mind that once the method completes, the element
is guaranteed to be a member of the collection. The specificimplementation of Collection—in this case ArrayList—is
responsible for handling the request; ArrayList appends the character to the end of the growing list of

Character objects.

OBSERVE: Searching for and removing elements from a Collection

static final String vowels = "aeiou";

for (int 1 = 0; 1 < vowels.length(); i++) {
char ¢ = vowels.charAt (i) ;
if (unique.contains(c)) {

System.out.print (c) ;
unique.remove (c) ;

}

The code iterates over the known vowels and removes these characters from the collection unique. Finally, all
Collection classes provide a consistent means to iterate over their elements, as shown in this code:

OBSERVE: Ilterate over elements in a Collection using an Iterator

for (Iterator<Character> it = unique.iterator(); it.hasNext();) {
System.out.print (it.next ());
}

The Collection classes also implement the Iterable interface, which means you can use Java's enhanced for loop to
iterate over the elements. The above iteration code could have been written more simply as:

OBSERVE: Iterate over elements in a Collection using enhanced for loop

for (Character c : unique) {
System.out.print (c) ;

}

The Collection interface forms the root of the hierarchy for three important interfaces in the Collections Framework:
List, Set, and Queue. This code example uses the ArrayList class, which is a concrete implementation of the List
class. We'll discuss each interface in the upcoming sections of the lesson.

Each implementation of Collection guarantees certain performance of the methods defined earlier. In describing this
performance, the JDK documentation uses the same terms used in the previous lesson to describe the worst-case
run-time performance of algorithms. Here is the "specification sheet" for ArrayList for the six fundamental Collection
methods:

e O(1):size,isEmpty
e Amortized Constant Time: add

e O(n): remove, contains, iterate

The add method is declared to have amortized constant time because ArrayList mustreallocate more memory when
it becomes full. Recall the discussion in the previous lesson about the dangers of resizing arrays? When ArrayList
needs to resize its array of n elements, it makes sure to request (3*n/2+1) elements to reduce the number of times that
it has to reallocate memory. In the long run, adding n elements requires only a total of O(n) time, which means each
individual add operation is considered to be amortized constant time.

There are two reasons to choose a particular data structure: (1) because of the functional behavior that it provides; (2)
because of the performance associated with that behavior. All operations for these classes will be described using the
algorithm performance classification.

Set Interface

We start with the Set interface because itadds no methods to the Collection interface; it only constrains
methods thatadd an elementto a Set. Specifically, a Set is a Collection that contains no duplicate elements
and never contains null as an element. The interface matches the mathematical conceptof a set. This
constraint changes the behavior of add(E element) to return false if the provided element already exists in
the Set.

The Collections Framework is designed to conform to basic Java principles, so there are some subtle
changes to both the standard equals and hashCode methods. The equals method is the standard means
in Java to determine whether two objects are equal. When dealing with two Collection objects, you'll often
want to determine if they represent the same collection of objects regardless of the actual concrete class
implementing this interface. However, it would be cumbersome to require this capability of all Collection
subclasses. Java's designers have solved that problem by requiring that Set implementations only support
equals with other Set implementations. The main reason for this is that Set objects cannotbe ordered, so
the equals method for all implementations of Set return false whenever the provided objectis itselfnota
class thatimplements Set. In other words, Set objects can only be compared for equality against other Set
objects.

Finally, when set1.equals(set2) is true, it must be the case thatset1.hashCode() equals
set2.hashCode(). This is the essential relationship between the hashCode and equals methods as
required by the Java specification. However, classes thatimplement Set may choose how to implement
these methods. To ensure the proper relationship between equals and hashCode, regardless of the specific
implementation, any implementation of Set must make sure thatits hashCode method returns the sum of
the hashCode of all ofits members. Because addition is a commuting operation (thatis, a+b equals b+a),
this ensures that the respective hashCode values of two Set objects will always be the same ifthey
represent the same elements. This design principle is incredibly insightful because it separates the contract of
the interface from any of its potential implementations.

Let's reimplement the sample problem described earlier, which actually seems more easily implemented
using sets. For this implemention, replace ArrayList with HashSet:

CODE TO TYPE: Modify Uniqueletters class

import java.util.*;

public class Uniqueletters {
static final String vowels = "aeiou";

public static void main(String[] args) {
System.out.println ("Enter at least one character:");
Scanner sc = new Scanner (System.in);
String s = sc.nextLine();
Collection<Character> unique = new HashSet&Arraytist<Character>();

for (int 1 = 0; i < s.length(); i++) {
char ¢ = Character.toLowerCase (s.charAt(i));
if (Character.isWhitespace(c)) { continue; }

. o | . L : L)\ L
IT (airrgoes ITCaTtito </ \
unique.add(c) ;
—t

if (unique.isEmpty()) {
System.out.println ("Please enter at least one character");
System.exit (1) ;

System.out.println ("There are " + unique.size() + " unique characters");
System.out.print (" Vowels:");
for (int 1 = 0; 1 < vowels.length(); i++) {
char ¢ = vowels.charAt (i) ;
if (unique.contains(c)) {
System.out.print (c);
unique.remove (c) ;

System.out.print ("\n Consonants:");

for (Iterator<Character> it = unique.iterator(); it.hasNext();) {
System.out.print (it.next());

}

System.out.println();

Now execute the modified UniqueLetters class using the same input as before to generate the same
output:

INTERACTIVE SESSIONS: Output of UniquelLetter remains the same

Enter at least one character:
Now is the time for all good men to come to the aid of their country
There are 18 unique characters

Vowels:aeiou

Consonants: fgdcnlmhwtsry

A HashSet offers improved performance for the core operations described earlier by using a scheme that
subdivides a collection into b buckets. Elements are placed into a bucket based on the hashing function,
hashCode(); these performance characteristics are valid if the hashing function disperses the elements
properly among the buckets.

e O(1):size,isEmpty, contains, add, remove
e O(n): iterate over the setofelements

When you use a HashSet, you have the option of predeclaring an initial Capacity which specifies the number
of buckets to use to store the collection. If you set this too high, the iteration over all elements in the set
requires time proportional to n+b (where b is the number of buckets in the HashSet); it's better to let
HashSet manage its own structure.

List Interface

The Listinterface provides a sequence-oriented perspective on a collection. First, itis ordered, which
provides the first distinction with regard to Set. Second, a List may contain duplicate elements or even null
values. Third, this interface is much more powerful than the "list" concepts that most programmers intuitively
have in mind—specifically, the List interface offers additional behaviors to Collection:

e Index (positional) access. You can retrieve, remove or replace any element by its position in the
List. You can also insertelements into a List at a specific location, bumping all elements up by one
spotfrom that pointin the list.

e Search. You can identify the ordinal location (0 .. n-7) in the listofa given element (from either the
frontor the end of the list).

As with Set, any class implementing List must properly implement the equals() method to return false
whenever itis compared againsta non-List object. Two List objects are considered to be equal if they are of
the same size and they contain the same elements in the same order. However, the hashCode method must
be defined to work with equals. For this reason, any class thatimplements List must be sure that its
hashCode method follows the contract as defined by the List class.

You've already seen how useful ArrayList can be. Another useful Listimplementation is LinkedList, which
implements a doubly-linked list of items. Why would you choose to use one class over the other? Suppose
you wanted to implement a double-ended queue (or "dequeue" for short; pronounced "deek"). The following
benchmark directly compares ArrayList to LinkedList. First, it creates a list by adding integer elements at
the "end" ofthe listand then randomly removing either the first or he last elementin the list. Once max
iterations have completed, it drains the remaining elements of the list by repeatedly removing the first one.

& Create a CompareDequeue class in the default package of the Isrc source folder:

http://docs.oracle.com/javase/7/docs/api/java/util/List.html#hashCode()

CODE TO TYPE: CompareDequeue class

import java.util.*;

public class CompareDequeue {
static long[] performance (int max, List<Integer> list) {
long nanoTime = System.nanoTime () ;
while (max > 0) {
list.add (max) ;
list.add (max+1) ;
if (Math.random() < 0.5) {
list.remove (0);

} else {
list.remove (list.size()-1);
}
max--;
}
long inner = System.nanoTime () ;

while (!list.isEmpty()) {
list.remove (0) ;
}
long lastTime = System.nanoTime () ;
return new long[]{ inner-nanoTime, lastTime-inner};

}

public static void main(String[] args) {
int max = 65536;
float m = 1000000;

System.out.println ("\t\tConstruct\tDrain\t\tTotal") ;

System.gc () ;

long[] arraylist = performance (max, new ArrayList<Integer>());

System.out.println ("ArrayList\t" + arraylist[0]/m + "\t" + arraylist([1l]/m +
"\t" + (arraylist[0] + arraylist[l])/m);

System.gc () ;
long[] linkedlist = performance (max, new LinkedList<Integer>());

System.out.println ("Linkedlist\t" + linkedlist[0]/m + "\t" + linkedlist[1l]/m

"\t" + (linkedlist[0] + linkedlist[1])/m);

o Save and run this program to produce the performance profile. The code measures the execution time of
two phases ofthe program (growing phase and draining phase). The final number in the column is the total
time in milliseconds:

INTERACTICE SESSION: Output from CompareDequue (Time in milliseconds)

Construct Drain Total
ArrayList 253.11002 469.56882 722.67883
Linkedlist 17.202131 1.695052 18.897184

In this benchmark, LinkedList performs much faster than ArrayList. ArrayList suffers in comparison

because it must constantly resize its internal array to meet the growing demand. In addition, when removing

the firstelementfrom the ArrayList, all subsequentitems in the List must be copied down.

So, whatif you made a small change to the benchmark? Remove a random elementinstead of just removing

an element from either the head or tail of the list. Modify the code as shown:

CODE TO TYPE: CompareDequeue class

import java.util.*;

public class CompareDequeue {
static long[] performance (int max, List<Integer> list) {
long nanoTime = System.nanoTime () ;
while (max > 0) {
list.add (max) ;
list.add (max+1);
list.remove (max % list.size());

= Mol <l L) o L
T (MIaCclir. CalraottT {7 T/ T
ul =
- Ce L 11T <=\ Tr
hl ul L
F—etse—t
ul = L1 e L) ul
THistrremove{tistsize—1)
max--;
long inner = System.nanoTime () ;

while (!list.isEmpty()) {
list.remove (0) ;
}
long lastTime = System.nanoTime () ;
return new long[]{ inner-nanoTime, lastTime-inner};

}

public static void main(String[] args) {
int max = 65536;
float m = 1000000;

System.out.println ("\t\tConstruct\tDrain\t\tTotal") ;

System.gc () ;

long[] arraylist = performance (max, new ArrayList<Integer>());

System.out.println ("ArrayList\t" + arraylist[0]/m + "\t" + arraylist[l]/m +
"\t" + (arraylist[0] + arraylist[l])/m);

System.gc () ;
long[] linkedlist = performance (max, new LinkedList<Integer>());

System.out.println ("Linkedlist\t" + linkedlist[0]/m + "\t" + linkedlist[1l]/m

"\t" 4+ (linkedlist[0] + linkedlist[1])/m);

0 Save and run it; the tables have turned!

INTERACTIVE SESSION: Output from CompareDequue (Time in milliseconds)

Construct Drain Total
ArrayList 320.66714 466.6363 787.3034
Linkedlist 1834.3232 1.668898 1835.9921

When choosing the appropriate data structure, you need to understand exactly how the data structure is to be
used, especially ifitis updated frequently, you need randomized access to any element, or the ratio of
add/remove compared to the number of queries is used to determine whether an element exists in the
collection.

Queue Interface

A Queue is a data structure that allows you to remove an elementonly at the head of an ordered sequence
and insert elements only atthe end of the sequence. The actual implementation determines whether the
Queue is first-in, first-out (what would be expected) or a variation (such as a last-in, first-out). Further, one can
only remove an element from the head of the queue as determined by the implementation. There is a Deque
interface that extends Queue to offer double-ended queueing behavior.

In the Collections Framework, a Queue specifies a collection designed to hold elements prior to processing.
The Queue interface extends Collection. This interface is designed to support collections thathave a
maximum size (such as bounded queues) in addition to more general queues with no restrictions. You can
offer an elementto the Queue, which simply returns false if the Queue denies this request (usually because it
is a bounded queue). The remaining four methods (remove, poll,element, and peek) each return (without
modifying the queue) or remove the element at the head of the queue.

Itmay seem odd thata Queue is not predefined to be a subinterface of List. However, itis critical when
designing frameworks to separate structure from behavior. Using list-based semantics is not the only way to
implement a queue (you could use circular buffers, for example, which is an efficient way to implement a
bounded queue). The LinkedList class chooses to implementboth Listand Deque (and thus by extension,
Queue). ArrayList does notimplement Queue though, likely because its performance as a queue would be
horrible.

Map Interface

The Map interface in the Collections Framework allows you to create collections that associate a value with a
unique key. Given a Map, you can add (or replace) a key mapping with put (key,value); to retrieve a value or
to determine whether the value exists in the Map, use get(key).

The designers of Map had to decide whether a Map was a Collection object; after all, it stores a collection of
values. However, the fundamental operation on a Collection is the add method, and there is no easy way to
apply this operation to a Map. Instead, Map objects offer two Collection views over its objects. Because the
keys in a Map are unique, you can retrieve the Set of all keys in the Map, but their values might not be unique,
so Map only allows you to retrieve the Collection of values in the map.

Map is designed to optimize the insertion and removal of (key, value) pairs. In doing so, any ordering
properties among the keys are lost. For example, try to order the keys in a Map alphabetically.

ECreate a SortingMap class in the default package of the Isrc source folder:

CODE TO TYPE: Sorting key values in map

import java.util.*;

public class SortingMap {
public static void main (String[] args) {

float m = 1000000;
Map<String, Integer> map = new HashMap<String, Integer>();

long start = System.nanoTime () ;
byte[] word = new byte[3];

for (byte c0 = 'A'; c0 <= 'Z'; cO0++) |
word[0] = cO0;
for (byte cl = '"A'"; cl <= "Z'; cl++) {
word[1l] = cl;
for (byte c2 = "A'; c2 <= "Z'; c2++) {
word[2] = c2;
String s = new String(word);

map.put (s, c0*cl*c2);

}

}

long created = System.nanoTime () ;

ArrayList<String> keys = new ArraylList<String>(map.keySet()):
Collections.sort (keys);

long sorted = System.nanoTime () ;

long total = 0;
for (String k : keys) {
total += map.get (k);

}

long done = System.nanoTime () ;

System.out.println ("Total\t" + total);

System.out.println ("Created\t" + (created-start)/m +
"\nSorted\t" + (sorted-created)/m +
"\nDone\t" + (done - sorted)/m);

int print = 10;

for (String s : map.keySet()) {
if (--print < 0) { break; }
System.out.println(s);

ﬁ Save and runit.

INTERACTIVE SESSION: Output of SortedMap

Total 8181353375
Created 99.77721
Sorted 68.29778
Done 13.256433
GDC

GDD

GDA

GDB

GDK

GDL

GDI

GDJ

GDG

GDH

The code inserts pairs (s, n) for max entries and then outputs the keys in sorted value. To do that, it must
retrieve the keySet() from the Map, but the set mustbe converted into a Listso itcan be sorted, so an
ArrayList keysis constructed from the setof keys. Finally, it sorts the keys using the Collections.sort
method. The execution shows the performance, as well as the first ten keys in the Map; note that these keys
aren't sorted because the Map iteration does not maintain ordering.

Summarizing the Implementations You Need To Know

We refer to a number of common implementations provided for you in the JDK. These are the "go to" classes
you'll use again and again to solve your programming issues. You must never re-implement these data
structures on your own; these implementations have already been fine-tuned by experts.

Hash table Resizable array Tree Linked List
Interface - . . .
Implementations|Implementations |Implementations |Implementations
Set HashSet TreeSet
List ArrayList LinkedList
Map HashMap TreeMap

Each of these defaultimplementations provide distinct performance profiles for the Collection methods. In
addition, both List and Map add methods to their interface definitions. It's important to differentiate between
the behaviors of the classes thatimplement these interfaces as well.

Important Methods For Keys And Values

All of the classes in the Collection Framework support Java Generics, so you don'tjustreferto an ArrayList,
butan ArrayList<String>. Doing so makes your code more robust because it enables the compiler to
detect many class cast exceptions. The contains method—common to many Collections classes— must be
implemented properly, otherwise the Collection class won'twork. Consider this example:

(& Create a class Tuple in the default package of the Isrc source folder:

CODE TO TYPE: Tuple class

public class Tuple {
String value;
int xX;
int Vi

public Tuple (String v, int x, int y) {
this.value = v;
this.x = x;
this.y = y;

}

public String toString () {
return "(" + value + "," + x + "," + vy + ")";

}

C] Now, create the following driver class named TupleDriver in the default package of the /src source folder:

CODE TO TYPE: TupleDriver class

import java.util.*;

public class TupleDriver ({
public static void main(String[] args) {
ArrayList<Tuple> al = new ArrayList<Tuple>();

Tuple tl = new Tuple("Sample", 10, 20);
al.add(tl);
System.out.println ("ArrayList Contains tuple:" + al.contains(tl));

Tuple t2 = new Tuple("Sample", 10, 20);
System.out.println ("ArrayList Contains tuple:" + al.contains(t2));

-
@ Save and run the above code to see some surprising output:

INTERACTIVE SESSION: Output of TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:false

Although Tuple t7 and t2 are exactly the same, only one ofthem is found in the ArrayList. You see this
behavior because you haven'timplemented the requisite equals(Object o) method required by the
Collections Framework. The contains(o) method will return true if there is an objectin the Collection for
which equals(o) is true. Go ahead and add the equals method now:

CODE TO TYPE: Modified Tuple class

public class Tuple {
String value;
int xX;
int Vi

public Tuple (String v, int x, int y) {
this.value = v;
this.x = x;
this.y = y;

}

public boolean equals (Object o) {

if (o == null) { return false; }
if (! (o instanceof Tuple)) { return false; }
Tuple other = (Tuple) o;
if (value == null) {
if (other.value != null) {

return false;
}
} else if (!value.equals (other.value)) {
return false;

}

return x == other.x && y == other.y;
}
public String toString () {
return "w (ll + Value + A\ , " + x + " , "w + y + ") ll;

}

Review the equals method. It should notthrow any Exception, but rather handle all cases (such as null
object references). This code is able to work with Tuple objects that have a value String attribute of null. Now
go back and rerun the TupleDriver:

INTERACTIVE SESION: Output of TupleDriver

ArraylList Contains tuple:true
ArrayList Contains tuple:true

Now let's try to use this Tuple as a key in HashSet. Modify TupleDriver as shown:

CODE TO TYPE: Modified TupleDriver class

import java.util.*;

public class TupleDriver {
public static void main(String[] args) {
ArrayList<Tuple> al = new ArrayList<Tuple>();

Tuple tl = new Tuple("Sample", 10, 20);
al.add(tl);
System.out.println ("ArrayList Contains tuple:" + al.contains(tl));

Tuple t2 = new Tuple ("Sample", 10, 20);
System.out.println ("ArrayList Contains tuple:" + al.contains(t2));

HashSet<Tuple> values = new HashSet<Tuple>();

values.add (tl) ;

System.out.println ("HashSet Contains tuple:" + values.contains(tl));
System.out.println ("HashSet Contains tuple:" + values.contains(t2))

’

o save and run it again:

INTERACTIVE SESSION: Output of TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:true
HashSet Contains tuple:true
HashSet Contains tuple:false

When using a class as a key value in any of the "Hash" collection classes (thatis, HashSet, HashMap,
LinkedHashSet, or LinkedHashMap) you need to implementthe hashCode() method. Specifically, if two
objects are equal, their hashCode() values mustbe identical. If you don't provide your own hashCode
method, then you will inherit the default from java.lang.Object which means hashCode() values mustbe
identical. Modify Tuple to add a reasonable implementation of hashCode.

CODE TO TYPE: Modified Tuple class

public class Tuple {
String value;
int xX;
int Vi

public Tuple (String v, int x, int y) {
this.value = v;
this.x = x;
this.y = y;

}

public boolean equals (Object o) {

if (o == null) { return false; }
if (! (o instanceof Tuple)) { return false; }
Tuple other = (Tuple) o;
if (value == null) {
if (other.value != null) {

return false;

}
} else if (!value.equals (other.value)) {
return false;

return x == other.x && y == other.y;

public int hashCode () {
int hash = 0;
if (value != null) { hash += value.hashCode(); }
return hash + x + y;

}

public String toString () {
return " (" + value + "," + x + "," + y + "M";

}

The hashCode method must always return the same value upon each execution. Because all of the
fundamental classes in the JDK have suitable hashCode methods, you may wantto compose yourown
methods using their values in numerical computations. Rerun TupleDriver:

INTERACTIVE SESSION: Output of TupleDriver

ArraylList Contains tuple:true
Arraylist Contains tuple:true
HashSet Contains tuple:true
HashSet Contains tuple:true

But wait—we're notdone. You have to be especially careful with classes that have objects that will be key
values. Specifically, you must make these classes immutable, otherwise strange things can happen. For
example, modify TupleDriver as shown:

CODE TO TYPE: Modified TupleDriver class

import java.util.*;

public class TupleDriver {
public static void main(String[] args) {
ArrayList<Tuple> al = new ArrayList<Tuple>();

Tuple tl1 = new Tuple("Sample", 10, 20);
al.add(tl);
System.out.println ("ArrayList Contains tuple:" + al.contains(tl));

Tuple t2 = new Tuple ("Sample", 10, 20);
System.out.println ("ArrayList Contains tuple:" + al.contains(t2));

HashSet<Tuple> values = new HashSet<Tuple>();

values.add (tl);

System.out.println ("HashSet Contains tuple:" + values.contains(tl));
tl.value = "Other";

System.out.println ("HashSet Contains tuple:" + values.contains(tl));
System.out.println ("HashSet Contains tuple:" + values.contains(t2));

G save and run it again:

INTERACTIVE SESSIONS: Output of TupleDriver

ArrayList Contains tuple:true
Arraylist Contains tuple:true
HashSet Contains tuple:true

HashSet Contains tuple:false
HashSet Contains tuple:false

Once you change the value of an object that has been used as a key value within HashSet, you may not be
able to find itagain. Use the final modifier for the attributes of your key classes to avoid these situations:

CODE TO TYPE: Modified Tuple class

public class Tuple {
final String value;
final int xX;
final int Vi

public Tuple (String v, int x, int y) {
this.value = v;
this.x = x;
this.y = y;

}

public boolean equals (Object o) {
if (o == null) { return false; }
if (! (o instanceof Tuple)) { return false; }
Tuple other = (Tuple) o;

if (value == null) {
if (other.value != null) {
return false;
}
} else if (!value.equals (other.value)) {
return false;

}

return x == other.x && y == other.y;

}

public int hashCode () {
int hash = 0;
if (value != null) { hash += value.hashCode(); }
return hash + x + y;

}

public String toString () {
return " (" + value + "," + x + "," + y + "M";

}

With this change, the TupleDriver class no longer compiles because it's trying to modify the (now
immutable) attribute. Delete the offending line in TupleDriver. Now you have a working implementation ofa
class suitable for use as a key value in any of the "Hash" Collections classes.

Lessons Learned

The Collections Framework contains many implementations of the fundamental data structures that you'll use
in your algorithms. When you Understand these structures it will help you write efficient code:

e Ratherthanreimplement your own, use default implementations of Set, List, and
Queue. The defaultimplementations are made to work efficiently under the mostcommon
usages.

e Seekdatastructuresthat lead to O(nlog n) behavior. Many problems have "naive"

solutions thatresultin O(n2) run-time performance. In most cases you'll be able to increase
performance to O(n log n) by applying the appropriate data structure. You'll see this happen often in
furture lessons.

The Collections Framework contains a Collections class that has a number of static methods useful for
your algorithms. Again, these methods are optimized for use by the various classes in the Collections
Framework. Use these methods rather than reimplementing them. Each of these methods has a published
performance contract to which itadheres, which makes it possible to use them and be assured of reasonably
good performance. Review the class in the APl documentation when you get a chance. Here are four that
you'll use often:

e sort(List): efficiently sort the Listin place in O(n log n) time.
e binarySearch(List): assuming that Listis ordered, locate the index of the given key in O(log n) time.

e reverse(List, key): locate the key in the ordered List objectin O(log n) time.
e shuffle(List): permutes the Listin place in O(n) time.
This lesson covered just the highlights of the Collections Framework. The java.util package contains 283

classes and 19 interfaces. To delve deeperinto Collections, follow the standard Tutorial on the Collections
framework after you complete this course.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://docs.oracle.com/javase/tutorial/collections/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Algorithms Using Java

Lesson Objectives

After completing this lesson, you will be able to:

e maintain the ordering property of a List when inserting values.
e use a TreeSet to iterate over the elements of a setin their natural ordering.

Designing Algorithms

There are well-known algorithms you can use to sortan array of strings, such as QuickSort, but the real value ofan
algorithm is thatitis a concise explaination of an efficient way to solve a specific problem. The algorithms you will
encounter are as varied as the problems they solve. Let's start by trying to solve a given problem. As you work toward
a solution, you'll solve numerous sub-tasks and make important decisions and develop are essential in the process.
Let's get started.

Skyline Problem
Let's say you have a set of rectangular building profiles in two dimensions, compute the Skyline view based

on the partially overlapping and fully obstructed building profiles at your disposal. Assume there are seven
buildings as shown. Note that two buildings (4 and 5) share the same left coordinate, although building 5 is

e 0 00 6 o0

¥
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Skyline for the solution is shown in red with black shadow highlights:

Solution: (1,0) (1,3) (2,3) (2,4) (5,4) (5,0)
(6,0) (6,1) (7,1) (7,0)

(8,0) (8,5) (11,5) (11,4) (13,4)

(13,5) (16,5) (16,0)

1 2 3 4 5 6 7 88 9 10 11 12 13 14 15 16

If you solve this problem by hand, you'd probably have no trouble tracing the appropriate edges, but you
might find it hard to explain the exact sequence of steps you took. No doubt, you would be able to determine
the skyline for any conceivable set of rectangular buildings. So, how can you write a program to do the same
thing? Let's start by identifying the Input - Process - Output phases for this problem.

Each skyline problem instance is defined by a set of buildings. A building can be represented any number of
ways; here we'll represent a building with three integers: left, right, and height. Building 1 above, for example,
can be defined as (left=1, right=4, height=3). The Input to our final program will be a sequence of text lines,
each of which contains three integers separated by spaces. When considering the input, ask yourselfthese
questions: Will the sequence of buildings in the Input already be sorted somehow from left to right? Is it
possible for two buildings in the input to share the same left coordinate? Can two buildings have the exact
same values for all three coordinates? As you consider these questions, make the fewest possible
assumptions. This will help make your code more robustand able to handle diverse situations.

For this problem, assume that each building coordinate is represented by an integer value greater than 0. This
prevents bizarre situations (a building with zero or negative height). Also, assume left < right for each building.
This ensures you will know that the smaller coordinate is truly "left" of a building's right coordinate. There may
be duplicate coordinates (even buildings) in the input. It would be more difficult to try to find and remove
duplicate buildings from the input set than to write your program to work even when the input contains
duplicate buildings.

To record the input, you will need data structures to store the information about each building. First you need
to define a way to store information about a building.

Create a project named Algorithms and assign itto your Java6_Lessons working set.

Inthe Algorithms project/src source folder, create a package named skyline to contain all the code you
need to solve this problem.

& Create a Building class in the /src source folder skyline package to represent a building:

CODE TO TYPE: Building class

package skyline;

public class Building {
final public int left;
final public int right;
final public int height;

public Building(int left, int right, int height) {
this.left = left;
this.right = right;
this.height = height;

if (left <= 0 || right <= 0 || height <= 0 || left >= right) {
throw new IllegalArgumentException ("Invalid building parameters: " +
left + "," + right + "," + height);

public String toString () {
return "[" + left + "," + right + "] @ " + height;
}

This class represents a valid building; any attemptto construct an invalid Building object will throw an
Exception. The input for a Skyline problem instance consists of a set of Building objects which you can store
as an ArrayList<Building> object.

& Create a Skyline class in the skyline package of the Isrc source folder and enter the code as shown (the
code processes a setoftextlines representing buildings and the outputs the buildings it found):

CODE TO TYPE: Skyline class

package skyline;

import java.io.*;
import java.util.*;

public class Skyline {

public static Collection<Building> retrievelnput (InputStream is) {
ArrayList<Building> buildings = new ArrayList<Building>();
Scanner sc = new Scanner (is);
while (sc.hasNextLine()) {
String s = sc.nextLine();
if (s.equals("")) { break; }

try {
StringTokenizer st = new StringTokenizer (s);
int left = Integer.valueOf (st.nextToken());
int right = Integer.valueOf (st.nextToken());
int height = Integer.valueOf (st.nextToken()) ;
Building b = new Building (left, right, height);
buildings.add(b) ;

} catch (NumberFormatException nfe) {
System.err.println (" ** Ignoring " + s + ": all values must be integers.

} catch (Exception e) {
System.err.println(" ** Ignoring " + s + ": " + e.getMessage());

return (buildings);

}

public static void main(String[] args) {
Collection<Building> buildings = retrievelnput (System.in);

for (Building b : buildings) {
System.out.println("[" + b.left + "," + b.right + "] @ " + b.height);

This "scaffolding" code contains a retrievelnput method thatreads a series oflines thatrepresent the
buildings in the Skyline problem instance. retrievelnput returns an ArrayList of Building objects that it
parsed. When in doubt as to which class to use when representing a list, start with ArrayList. The main
method outputs the building information for all buildings retrieved from the input.

Run Skyline with the input set below (press Enter twice when you finish); the output shows that all buildings
were properly processed by this scaffolding class:

INTERACTIVE SESSION: Demonstrate Skyline processes sample input

= N ©w 00 0 o

[1,4]1 @ 3
[6,7] @ 1
[8,15] @ 4
[8,11] @ 5
[9,12] @ 3
[2,5] @ 4
[13,16] @ 5

Now you are ready to consider how to represent a valid solution to the Skyline problem—how the Output
should be represented. In the above graphic, the solution is represented as a sequence of "(x,y)" points that
determines the Skyline from left to right. The bottom of each building is y=0 and the first pointin the solution is
(L, 0) where L is the left coordinate of the leftmost building. Finally, the last pointin the solution is (R, 0) where
R is the right coordinate of the rightmost building. Because the buildings are rectangular, you know that the
Skyline is composed of a sequence of alternating vertical and horizontal edges. With this information in hand,
you can see that your program should compute the set of edges from the building information in the Input.
From the sequence of edges, you can easily compute the sequence of points in the Skyline.

When tackling a complex problem, it really helps to spend the time (like you did) to understand the input and
output requirements. Now you're ready to address the Process phase of this algorithm. When trying to
determine how to solve the Skyline problem, start with what you know. You know that the leftmost vertical
(red) edge of the leftmost building will form the start of the Skyline; the first pointis (1,0) and the "end" of the
Skyline is (1,3). Let's use two variables to compute the Skyline; right X=1 and topY=3 are the x- and y-
coordinates of the rightmost pointin the Skyline. Starting with a first (blue) building, consider three different
possibilities when processing the "next" second building to determine how to extend the Skyline. The second
building is the building in the input set with the left coordinate thatis closestto the left coordinate of the first
building.

>| CASE ONE | CASE TWO | CASE THREE
4 D 4 4
‘B 2nd
3 3 3
S

2 2 2nd T 2
1 1 ‘ 1

1 2 3 4 § 1 2 3 4 § 1 2 3 4 5

O End of Skyline (rightX, topY) = (1,3) = Next End of Skyline

In Case One, the second building is taller than the first building, so the Skyline rises (as shown by thick black
lines) adding the point (2,3) and ending at the "next end" of (2,4). However, in Case Two, the second building
is smaller than the first building, so the Skyline will come back down (again, shown in thick black lines) adding
the point (4,3) and ending at the "nextend" of (4,2). In addition to maintaining the "end point" of the Skyline
(rightX, topY) you also need to know buildingRight, or the right coordinate of the current building being
processed (in Case Two you need this value so you know where to "turn").

Now, neither of these cases handles the situation when the second building doesn't actually overlap the first

building (as shown by Case Three). We can handle this case though because the Skyline comes back down
to "ground zero" and then continues back up the left edge of the second building. Here three points are added
to the Skyline—(2,3), (2,0), (3,0) and you end up with a "next end" of (3,2).

These cases lay the foundation for an algorithm. Now you need to consider the initialization phase of the
algorithm (where do you start?) and the termination phase (how do you end?). To start this algorithm, you
need to find the leftmost building with tallest height (justin case two or more buildings start with the same
smallest coordinate) and start the Skyline with its vertical edge. To terminate this algorithm, there will be no
second building (since they will have all been processed), so you can "close" the algorithm by extending the
Skyline to buildingRight and then back down to the "ground zero".

Before implementing the algorithm, you should describe its logic using pseudocode; this allows you to see
the structure without the complicated syntax of a regular programming language. When sketching an
algorithm using pseudocode, you can define helper functions as needed. Define a nextTallest (x) function
that returns the building whose left coordinate is closest to the right of x. In the eventofa "tie," this function
must return the tallest of all such buildings starting at that coordinate. Review the following pseudocode
description and note how Case Three is handled first, since that detects when the next building doesn't
intersect the "current building." With each pass through the loop, current and next are updated accordingly
to represent the index of the current building being processed and the next building to process.

OBSERVE: Pseudocode description of algorithm

compute ()
current = nextTallest (0)
rightX = current.left
topY = current.height
skyline starts with (rightX, 0) and (rightX, topY)

buildingRight = current.right

while exists next = nextTallest (rightX) do

if next.left > buildingRight then
add edges to skyline according to Case Three
rightX = next.left

else if next.height > topY then
add edges to skyline according to Case One
rightX = next.left

else if next.height < topY then
add edges to skyline according to Case Two
rightX = current.right

topY = next.height
buildingRight = next.right

current = next

close skyline by adding (buildingRight, topY) and (buildingRight, 0)

Before jumping into implementation, review how this algorithm would work on the sample problem you saw
earlier. If you follow the above pseudocode on the sample data, you will see thatitincorrectly computes
this Skyline:

5 > ()

TERMINATE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The actual points in the Skyline are:

OBSERVE: Skyline processes sample input

[(1,0) - (1,3)]
[(1,3) - (2,3)]
[(2,3) - (2,4)]
[(2,4) - (5,4)]
[(5,4) - (5,0)]
[(5,0) - (6,0)]
[(6,0) - (6,1)]
[(6,1) - (7,1)]
[(7,1) - (7,0)]
[(7,0) - (8,0)]
[(8,0) - (8,5)]

[(11,3) - (12,3)]
[(12,3) - (12,0)]
[(12,0) - (13,0)]
[(13,0) - (13,5)]
[(13,5) - (16,5)]
[(16,5) - (16,0)]

[(11,5) - (11,3)] ** Here is where the Skyline is incorrect **

implementations by checking your pseudocode against a real example.

In my first attempt to solve this problem, | coded the solution before | considered all possible
Note cases,then realized the implementation was incorrect. You can avoid wasting time on faulty

As you uncover the missing case that you hadn't considered before, it looks like the whole approach will have

to change.

CASE FOUR Revised Approach

5 5

4 g E——

3 3| (- u‘

2 2

1 lo ‘ 9‘
1 2 3 4 5 6 7 1 2 3 4 5 6 7

In Case Four, once you have processed the second building, the height of the next Skyline point will be at the
original first building, not the third building processed. The original approach focused too much on the left
coordinates of the buildings; now you can see that the right coordinate of the buildings is justas important.

Let's approach the problem from another perspective. Another way to define the Skyline for a set of buildings
is to consider only the tops of buildings, thatis, just the horizontal edges. The top of a building at a given x-
coordinate is part of the Skyline if no other building at that x-coordinate is taller. This is a simpler way to
approach the whole problem; often after you have worked on a problem for some time, a simpler solution will
materialize. The earlier observation that the Skyline contained alternating vertical and horizontal edges was
actually a distraction from this simpler approach.

The revised approach to this problem (as shown above in Case Four) still involves attempts to "sweep" the
buildings from left to right, but now it gives equal weight to both the left- and right- coordinates of a building.
Now you need to maintain an ordered heightList of buildings (from tallestdown to smallest) as the x-
coordinate sweeps from left to right. The ordered list (represented by a chain of circles) keeps track of the
buildings. When you sweep x from left to right and discover the left edge of a building at that x-coordinate, add
the building to this ordered list at its proper location (according to its height). When the x-coordinate matches
the right-coordinate of a building in heightList, remove that building from the list. Now comes the key
observation: Whenever the top of the ordered list changes, the Skyline changes as well.

Here's the expected behavior when we manage the heightlList structure for the sample input set described
earlier:

1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16

Let's get started with adding code to sweep through the coordinates and constructs heightList. Modify the
Skyline class as shown:

CODE TO TYPE: Modifications to Skyline class

package skyline;

import java.io.*;
import java.util.*;

public class Skyline {

public static Collection<Building> retrievelnput (InputStream is) {
ArrayList<Building> buildings = new ArrayList<Building>();
Scanner sc = new Scanner (is);
while (sc.hasNextLine()) {
String s = sc.nextLine();
if (s.equals("")) { break; }

try {
StringTokenizer st = new StringTokenizer (s);
int left = Integer.valueOf (st.nextToken()):;
int right = Integer.valueOf (st.nextToken());
int height = Integer.valueOf (st.nextToken()) ;

Building b = new Building (left, right, height);
buildings.add(b) ;
} catch (NumberFormatException nfe) {
System.err.println(" ** Ignoring " + s + ": all values must be integers.

} catch (Exception e) {
System.err.println(" ** Ignoring " + s + ": " + e.getMessage());

return (buildings);

}

public static void compute (Collection<Building> buildings) {
TreeSet<Integer> S = new TreeSet<Integer>();
HashMap<Integer,ArraylList<Building>> lefts = new HashMap<Integer,ArrayList<B
uilding>>();
HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>> () ;
ArrayList<Building> list = null;
for (Building b : buildings) {
S.add (b.left);
list = lefts.get (b.left);
if (list == null) {
list = new ArrayList<Building>();
lefts.put (b.left, list);
}
list.add(b);

S.add (b.right) ;

list = rights.get (b.right);

if (list == null) {
list = new ArrayList<Building>();
rights.put (b.right, list);

}

list.add (b);

}

ArrayList<Building> heightList = new ArrayList<Building>();
for (int x : S) {
list = rights.get(x);
if (list != null) {
for (Building b : list) {
heightList.remove (b) ;
}

list = lefts.get(x);
if (list != null) {
for (Building b : list) {
int i;
for (i = 0; 1 < heightList.size(); i++) {
if (heightList.get (i) .height < b.height) {
heightList.add (i, b);
break;
}
}
if (i == heightList.size()) {
heightList.add(b);
}

}
System.out.println(x + ":" + heightList);
}
}

public static void main (String[] args) {
Collection<Building> buildings = retrievelnput (System.in);

compute (buildings) ;

£ (Do] 12 1 B PN I
TOr (oo rtoTritg o« oo oT S

&+
H ~+

fal oo

4 L L |
=] Ce-OUC. P rirctirt [

Execute this program on the sample input from before:

INTERACTIVE SESSION: Maintaining HeightList
143

671

8 15 4

8 11 5

9 12 3

254

13 16 5

1:[[1,4] @ 3]

2:[[2,5] @ 4, [1,4] @ 3]
4:[0[2,5] @ 4]

5:[]

6:[[6,7] @ 1]

T:01]

8:[[8,11] @ 5, [8,15] @ 4]
9:[[8,11] @ 5, [8,15] @ 4, [9,12] @ 3]
11:[[8,15] @ 4, [9,12] @ 3]
12:[[8,15] @ 4]

13:[[13,16] @ 5, [8,15] @ 4]
15:[[13,16] @ 5]

16:[]

Each line of output shows the heightList of buildings, in reverse order of height. Compare the output to the
heightListimage we just saw; the results at each x-coordinate accurately reflect the order of buildings in
heightlList at each coordinate. Let's take a closer look at the code:

OBSERVE: Creating initial data structures S, lefts and rights

public static void compute (Collection<Building> buildings) {
TreeSet<Integer> S = new TreeSet<Integer> () ;
HashMap<Integer,ArrayList<Building>> lefts = new HashMap<Integer,ArrayList<B
uilding>>() ;
HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer, ArrayList<
Building>>() ;
ArrayList<Building> list = null;
for (Building b : buildings) {
S.add(b.left);
list = lefts.get (b.left);
if (list == null) {
list = new ArrayList<Building> () ;
lefts.put (b.left, list);
}
list.add(b);

S.add (b.right) ;

list = rights.get (b.right);

if (list == null) {
list = new ArrayList<Building> () ;
rights.put (b.right, list);

}

list.add(b) ;

This code constructs a set S from the left- and right- coordinates of the buildings so it can sweep through the
coordinates from left to right. In the previous lesson, we learned that sets have no inherent ordering
associated with them; they simply maintain a collection of unique elements. In practice, however, the
TreeSet class in the Collections Framework can store the elements of a set efficiently and allow you to
iterate over these elements in sorted order. The algorithm pseudocode shows that you need to be able to
retrieve quickly, all buildings whose left- (or right-) coordinate is a specific value. This behavior calls for an
associative Map of some kind. Here the code creates two HashMap objects. lefts enables the retrieval of an
ArrayList of Building objects that all share the same left x-coordinate. Similarly, the rights HashMap stores
an ArrayList of Building objects that all share the same right x-coordinate.

To compute the number of operations in the above code, consider these actions:

e Theforloop executes ntimes.

e Eachaddto aTreeSet is guaranteed to perform with O(log n) behavior.
e Each get onaHashMap is O(7) time.

e Each put operation on a HashMap is O(7) time.

e Each add on a ArrayList is amortized constanttime.

The total number of operations is 2*n*(O(log n) + O(1) + O(1) + Amortized Constant). The above is classifed as
an O(n log n) algorithm because those are the dominantterms in the computation.

Throughout this course you will be asked to evaluate the run-time performance of an algorithm in the same
manner. Make sure you understand the reason behind classifying the performance of this initialization code
as O(n log n).

Once lefts, rights, and S are constructed, the compute method must sweep through the coordinates from
left to right. It does so by iterating over all integer values in S, which are processed in ascending order.

OBSERVE: Manage heightList

ArrayList<Building> heightList = new ArrayList<Building>();
for (int x : S) {
list = rights.get(x);
if (list !'= null) {
for (Building b : list) {
heightList.remove (b) ;
}
}

list = lefts.get(x);
if (list '= null) {
for (Building b : list) {
int i;
for (1 = 0; i < heightList.size(); i++) {
if (heightList.get(i) .height < b.height) {
break;
}
}
if (i == heightlList.size()) {
heightList.add (b) ;
}
}
}

System.out.println(x + ":" + heightList) ;
}

The for loop iterates over every coordinate value x. Firstitremoves from heightList all buildings with the

right-coordinate of x; these buildings can no longer affect the Skyline. Then the forloop
all of the buildings with a left-coordinate of x. If any exist, the Building objects in thatlistare
inserted at the proper location in heightList. Observe how the above code keeps heightListin order (from

tallest to shortest). The closing printin statement outputs heightList so you can validate that the sweep is
working properly.

Now that you have a working sweep that maintains the heighiList, it's time to design the revised pseudocode

for the algorithm.

OBSERVE: Pseudocode description of revised algorithm

compute ()
S = set of integers containing all left- and right-coordinates of buildings
lefts = HashMap of buildings by left-coordinate
rights = HashMap of buildings by right-coordinate
heightList = empty

skyline = empty
foreach x in S in sorted order do
if heightList is empty then
top = 0
else
top = tallest building in heightList

foreach building b whose b.right=x do
remove b from heightList
foreach building b whose b.left=x do
insert b into heightList at appropriate location

if heightList is empty then
newTop = 0
else
newTop = tallest building in heightList

if top is 0 then

left = x
else if then
add edge (left, top) - (x, top) into skyline
left = x

return skyline

The pseudocode demonstrates how to generate a set of edges while sweeping the coordinates from left to
right. With each pass through the foreach loop, the algorithm determines if the top of the tallest building in
heightList changes because a building is removed from or added to the heightList. If a change happens, then

and a horizontal edge can be determined for the Skyline. With each pass through the
foreach loop, leftrecords the mostrecent x-coordinate for processing.

To complete the implementation, you need a class to represent the edges in the Skyline.

& Create an Edge class in the skyline package of the /src source folder:

CODE TO TYPE: Edge class

package skyline;
import java.awt.Point;

public class Edge {
final Point start;
final Point end;

public Edge (Point start, Point end) {
this.start = start;
this.end = end;

public String toString() {
return "[(" + start.x + "," + start.y + ") - (" + end.x + "," + end.y + ")]"

The Edge class simply records an edge by using two java.awt.Point objects. It has a convenienttoString
method for debugging.

To compute the Skyline of horizontal edges you need to record whenever the top of the ordered heightList
changes. Make these code modifications to Skyline:

CODE TO TYPE: Modifications to Skyline to compute edges of Skyline

package skyline;

import java.io.*;
import java.util.*;
import java.awt.Point;

public class Skyline {
public static Collection<Building> retrievelInput (InputStream is) {

ArrayList<Building> buildings = new ArrayList<Building>();
Scanner sc = new Scanner (is);

while (sc.hasNextLine()) {
String s = sc.nextLine();
if (s.equals("")) { break; }
try {
StringTokenizer st = new StringTokenizer (s);

int left = Integer.valueOf (st.nextToken());
int right = Integer.valueOf (st.nextToken());
int height = Integer.valueOf (st.nextToken());

Building b = new Building (left, right, height);
buildings.add(b) ;
} catch (NumberFormatException nfe) {
System.err.println (" ** Ignoring " + s + ": all values must be integers.

} catch (Exception e) {
System.err.println (" ** Ignoring " + s + ": " + e.getMessage());

return (buildings);

}

public static Arraylist<Edge>veid compute (Collection<Building> buildings) {
TreeSet<Integer> S = new TreeSet<Integer>();
HashMap<Integer,ArrayList<Building>> lefts =
uilding>>();
HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>> () ;
ArrayList<Building> list = null;
for (Building b : buildings) {
S.add (b.left);
list = lefts.get(b.left);
if (list == null) {
list = new ArrayList<Building>();
lefts.put (b.left, list);
}
list.add(b);

new HashMap<Integer,ArrayList<B

S.add (b.right) ;

list = rights.get(b.right);

if (list == null) {
list = new ArrayList<Building>();
rights.put (b.right, list);

}

list.add(b);

}

int left = 0, top = O;
ArrayList<Edge>skyline = new ArrayList<Edge>();
ArrayList<Building> heightList = new ArrayList<Building>();
for (int x : S) {
if (heightList.isEmpty()) {
top = 0;
} else {

top = heightList.get (0) .height;
}

list = rights.get (x);
if (list != null) {
for (Building b : list) {
heightList.remove (b) ;
}
}

list = lefts.get(x);
if (list != null) {
for (Building b : list) {
int 1i;
for (i = 0; i < heightList.size(); i++) {
if (heightList.get (i) .height < b.height) {
heightList.add (i, b);
break;

}

if (i == heightList.size()) {
heightList.add(b) ;

}

int newTop;

if (heightList.isEmpty()) {
newTop = 0;
} else {

newTop = heightList.get (0) .height;
}

if (top == 0) {
left = x;
} else if (top != newTop) {
Edge e = new Edge (new Point (left, top), new Point (x, top));
skyline.add (e) ;
left = x;

o A i L | L TR | T T T NSRS, I, P Y
OyoCeH. OOt P TIiTctir(T . — e ITgnCcorSCc/

}

return (skyline);

}

public static void main(String[] args) {
Collection<Building> buildings = retrievelnput (System.in);

for (Edge e : compute (buildings)) {+
System.out.println(e);

This approach will record all of the horizontal lines (shown in red in previous images) that form the tops of
buildings. Execute this program on the original set of buildings to produce this setof horizontal edges:

143

6 71

8 15 4

8 11 5

9 12 3

254

13 16 5

[(1,3) - (2,3)]

[(2,4) (5,4)]

[(6,1) (7,1)]

[(8,5 - (11,5)]
[(11,4) - (13,4)]
[(13,5) - (16,5)]

Compare these edges with the image below that highlights the edges in the Skylinein red; these are the
horizontal edges in the final Skyline:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

To complete this algorithm, you add a helper method that completes the Skyline which contains only
horizontal edges forming the tops of each building. Since the edges in the Skyline were added from left to
right, you must "stitch together" vertical edges to connect them, but you mustalso handle gaps thatform
when there is a space between two buildings. The pseudocode below for complete() describes this
process. In the pseudocode, edge.start refers to the left point of a horizontal edge and edge.end refers to
its right point. Each point has an x-coordinate and a y-coordinate, so edge.end.x refers to the x-coordinate
ofthe right point of the given edge:

OBSERVE: Pseudocode for complete() method

complete (skyline)
skylinepoints = empty
left = leftmost coordinate of edges in skyline
right = rightmost coordinate of edges in skyline

append (left, 0) to skylinepoints
foreach edge in skyline do
append edge.start to skylinepoints
append edge.end to skylinepoints

nextEdge = next edge in skyline
if nextEdge exists then
if edge.end does not have same x-coordinate as nextEdge.start then
append (edge.end.x, 0) to skylinepoints
append (nextEdge.start.x, 0) to skylinepoints

append (right, 0) to skylinepoints
return skylinepoints

The following implementation shows the final modifications to complete the Skyline problem.

Skyline Final Implementation

package skyline;

import java.io.*;
import java.util.x*;
import java.awt.Point;

public class Skyline {

public static Collection<Building> retrievelInput (InputStream is) {
ArrayList<Building> buildings = new ArrayList<Building>();
Scanner sc = new Scanner (is);
while (sc.hasNextLine()) {
String s = sc.nextLine();
if (s.equals("")) { break; }

try {
StringTokenizer st = new StringTokenizer (s);
int left = Integer.valueOf (st.nextToken());
int right = Integer.valueOf (st.nextToken());
int height = Integer.valueOf (st.nextToken());

Building b = new Building (left, right, height);
buildings.add(b) ;
} catch (NumberFormatException nfe) {
System.err.println (" ** Ignoring " + s + ": all values must be integers.

} catch (Exception e) {
System.err.println (" ** Ignoring " + s + ": " + e.getMessage());

return (buildings);

public static ArraylList<Edge> compute (Collection<Building> buildings) {
TreeSet<Integer> S = new TreeSet<Integer>();
HashMap<Integer,ArrayList<Building>> lefts =
uilding>>();
HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>> () ;
ArrayList<Building> list = null;
for (Building b : buildings) {
S.add (b.left);
list = lefts.get(b.left);
if (list == null) {
list = new ArrayList<Building>();
lefts.put (b.left, list);

new HashMap<Integer,ArrayList<B

}
list.add(b);

S.add (b.right) ;

list = rights.get(b.right);

if (list == null) {
list = new ArrayList<Building>();
rights.put (b.right, list);

}

list.add(b);

int left = 0, top = O;
ArraylList<Edge>skyline = new ArrayList<Edge>();
ArrayList<Building> heightList = new ArrayList<Building>();
for (int x : S) {
if (heightList.isEmpty()) {
top = 0;
} else {

top = heightList.get (0) .height;
}

list = rights.get (x);
if (list != null) {
for (Building b : list) {
heightList.remove (b) ;
}
}

list = lefts.get(x);

if (list != null) {
for (Building b : list) {
int i;

for (i = 0; i < heightList.size(); i++) {
if (heightList.get (i) .height < b.height) {
heightList.add (i, b);
break;

}

if (i == heightList.size()) {
heightList.add(b) ;

}

int newTop;
if (heightList.isEmpty()) {
newTop = 0;
} else {
newTop = heightList.get (0) .height;
}

if (top == 0) {
left = x;
} else if (top != newTop) {
Edge e = new Edge (new Point (left, top), new Point (x, top));
skyline.add(e) ;
left = x;
}
}
return (skyline);

}

public static Collection<Point> complete (ArrayList<Edge> skyline) {
ArrayList<Point> skylinepoints = new ArrayList<Point>();
if (skyline.isEmpty()) { return skylinepoints; }

int left = skyline.get(0).start.x;
int right = skyline.get(skyline.size()-1).end.x;

skylinepoints.add(new Point (left, 0));

for (int i = 0; i < skyline.size(); i++) {
Edge edge = skyline.get (i);
skylinepoints.add(edge.start);
skylinepoints.add (edge.end) ;

Edge nextEdge = null;
if (i+1 < skyline.size()) {
nextEdge = skyline.get (i+1l);

if (edge.end.x != nextEdge.start.x) {
skylinepoints.add(new Point (edge.end.x, 0));
skylinepoints.add (new Point (nextEdge.start.x, 0));

skylinepoints.add (new Point (right, 0));
return (skylinepoints);

}

public static void main(String[] args) {
Collection<Building> buildings = retrievelnput (System.in);

ArrayList<Edge> skyline = compute (buildings) ;

Collection<Point> skylinepoints = complete (skyline);
for (Point p : skylinepoints) {
System.out.print (" (" + p.x + "," + p.y + ") ");
}
forr (Edkﬁ 0 llltJ\AtC \buildiu\j) T {
Sy e ut-t)LJ‘_iltlll\C) 7
—

Execute the final program to validate thatitworks on the sample input set:

INTERACTIVE SESSION: Final output from Skyline program

R N W 0 0 o

(1,0) (1,3) (2,3) (2,4) (5,4) (5,0) (6,0) (e,1) (7,1) (7,0) (8,0) (8,5) (11,5) (
11,4)
(13,4) (13,5) (16,5) (16,0)

Lessons Learned

This lesson demonstrates an iterative approach to algorithm development. The challenge is to identify
milestones along the way where you can validate your progress. Instead of trying to solve the whole problem
all atonce, find ways to break the problem into sub-tasks. Our first attempt to solve the Skyline problem
identified a number of cases that we believed to be every possible way that the Skyline would grow when
buildings intersected with each other. In retrospect, this ad hoc solution didn't capture all the ways thatn
buildings could intersect each other. You need to find meaningful milestones that represent the different
stages with the processing phase of an algorithm. Each milestone has a well-defined validation condition that
you could test using test cases. In Skyline, everything started to work once the heightList abstraction was
identified; that's allowed us to identify the horizontal edges in the Skyline. Once that work was completed and
validated, the second stage of the algorithm just stitched the edges together to form the Skyline.

1.When you cannot fully orderthe elements,tryto find a way to sweep from left to
right across a partially ordered set: the sweeping technique described in this lesson can be
used to fully process each elementin a setthat cannot be completely ordered.

2.Even though a set isinherently unordered,the TreeSet allows you to iterate over
its elements in order: while Set implementations cannotbe sorted in the same way that List
implementations can, you can use its efficientiterator to inspect each ofthe elements in sorted
order.

3. Use ArrayList when you need to maintain alist in some sorted order and then insert
newelementsinto their properlocations within the list: while LinkedListand ArrayList are
both Lists that can be sorted, you cannotinsert the elementinto its proper location efficiently in
LinkedList because its get(idx) method executes in O(n) time where n represents the number of
elements in the list. Only ArrayList guarantees a constant time performance for this operation.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Working With Big Data

Lesson Objectives

When you finish this lesson you will be able to:

e characterize the storage requirement for an algorithm.
e access the contents of a structured binary file in the same way that you would an array stored in main memory.
e read from and write to a memory-mapped file.

Working with Big Data

Whatif you had to sorta collection of integers? The following example shows how to use the built-in sorting
capabilities provided by the JDK.

Create a BigData project, and assign itto the Java6_Lessons working set.

C] Then, create a SortRandomlintegers class in the default package of the /src source folder:

CODE TO TYPE: SortingExample

import java.util.Arrays;

public class SortRandomIntegers {
public static void main(String[] args) {
int numIntegers = 1000;

int[] group = new int[numIntegers];
for (int 1 = 0; 1 < numIntegers; i++) {
group[i] = (int) (Math.random () *numIntegers) ;

}

Arrays.sort (group) ;

for (int i = 0; i < 10; i++) {
System.out.println (groupl[i]);
}

€2 Run the code to verify that it prints outten numbers in sorted order.

This small program generates a random array containing 1000 integers, sorts them, and prints out the smallestten in
the array. You should always use the Arrays.sort built-in methods to sort arrays because it provides tuned
algorithms with a performance that is nearly always O(n log n). For comparison-based sorting algorithms (where you
can only sort the elements by directly comparing the individual elements) this is the best we've got.

Now what if you have a large collection of integers? Like 450 million? If you modify the settings of the above program
to generate 450000000 integers instead 0of 1000 integers, you'll see this error message:

OBSERVE: Unable to create large arrays in memory

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at SortRandomIntegers.main (SortRandomIntegers.java:8)

The primary issue with this code is thatitis simply impossible to create a contiguous array to contain a large collection
of elements. You can try to increase the heap space available to your Java virtual machine, but eventually the computer
on which you are running will exhaustits available memory. So how is it possible to deal with extremely large data
sets? You will need to develop techniques that manage the transfer of data from external storage (such as a hard disk)
into main memory (whatis commonly called RAM). In the early days of computing, main memory was measured in
kilobytes (not gigagbytes!) and programmers learned how to work within these constraints. In this era of "Big Data"
where data can be measured in terabytes and petabytes, even modern programmers have to make some fundamental

adjustments.

In this lesson, you'll learn how to sortlarge sets stored on disk, sets that may be too large to store in main memory.
We'll show examples using small data sets, but they can scale to much larger data sets as needed.

Sorting Large Sets Using External Storage

Most sorting algorithms operate over an array of values, swapping elements in the array until the elements
are in order. The earlier sort method does that. However, when the number of elements being sorted is too
large to store in main memory, there are sorting algorithms that allow us to use external storage. The
fundamental algorithm to learn is called MergeSort. You've probably used this technique in the real world
already. Suppose that you had a stack of 50 notecards, each containing a single number. To sort the whole
stack, divide itinto two stacks of 25 notecards each. Sort each of these two stacks individually, which results
in two sorted stacks of notecards where you can see the topmost visible card in each stack. You can "merge"
these two smaller stacks into a third sorted stack by repeatedly taking the card whose visible number is the
smaller of the two. This merging process gives the algorithm its name.

MergeSortis recursive, since it breaks up a problem instance into two smaller instances of half the size. To
stop the recursion, consider two cases:

1. Sorting a collection of two values: swap the first value with the second if they are outoforder.
2. Sorting a collection with a single value: the collection is already sorted, so stop.

You have enough information to write the pseudocode now. The notation |A| represents the size of the
collection A:

OBSERVE: pseudocode for Mergesort

MergeSort (A)
if |A| < 2 then return A
if |A| = 2 then
swap elements of A if out of order
return A

subl = MergeSort (left half of A)
sub2 = MergeSort (right half of A)

merge subl and sub2 into a new array B
return B

Try this out by manually executing MergeSort on the collection [6, 2, 1, 5, 3]. In the following graphic, the blue
arrows representinvocations of MergeSort and the red arrows represent the returned sorted arrays. The
newly created arrays are depicted in red and contain three or more elements (thatis, [1,3,5] and [1,2,3,5,6]):

T [1,2,3,5,6]

|
[6,2,1,5,3]

Now it's your turn to implement this algorithm:
H# Create a sort package in the /src source folder.

& Createa Co pyMergeSort class in the sort package as shown.

CODE TO TYPE: CopyMergeSort class

package sort;
import java.util.Arrays;

public class CopyMergeSort {
public static void main(String[] args) {
int[] group = new int []{6, 2, 1, 5, 3};
group = copymergesort (group) ;

for (int i : group) {
System.out.print (1 + " ");
}
}
static int[] copymergesort (int[] A) {

if (A.length < 2) {
return A;

}

if (A.length == 2) {
if (A[O] > A[1]) |

int tmp = A[O0];
A[0] = A[1];
A[l] = tmp;

}

return A;

}

int mid = A.length/2;

int[] left = Arrays.copyOfRange (A, 0, mid);

int[] right = Arrays.copyOfRange (A, mid, A.length);

left = copymergesort (left);
right = copymergesort (right);

for (int i = 0, j = 0, idx=0; idx < A.length; idx++) {

if (3 >= right.length || (i < left.length && left[i] < right[j]))
Alidx] = left[i++];

} else {
Alidx] = right[j++];

}

return A;

{

Run this code to verify that it works. You might experiment with different initial arrays to see how the code

handles arrays with just 1 or 2 (or larger number of) elements:

OBSERVE: Output of CopyMergeSort

12356

Let's take a closerlook at this code. The base cases ofthe recursion are as follows:

OBSERVE: Base cases of CopyMergeSort recursion

static int[] copymergesort(int[] A) ({
if (A.length < 2) {
return A;

}

if (A.length == 2) {
if (A[O] > A[1]) {
int tmp = A[0];

A[0] = A[1];
A[l] = tmp;
}
return A;

The copymergesort method mustreturn an int[] array, so these if statements both return the input array,
A.When there are two elements in the array, the second if statementswaps the two elements ifthey are
outoforder.

OBSERVE: Recursive steps

int mid = A.length/2;
int[] left = Arrays.copyOfRange(A, 0, mid) ;
int[] right = Arrays.copyOfRange (A, mid, A.length) ;

left = left ;
right = right ;

The true logic of this algorithm occurs when the array A is subdivided into two arrays, left and right,
which are then recursively sorted using

OBSERVE: Merging two sorted arrays

for (int i = 0, j = 0, idx=0; idx < A.length; idx++) {

if (j >= right.length || (i < left.length && left[i] < right[j])) {
Alidx] = left[i++];
} else {

A[idx] = right[j++];
}
}

return A;

}

Once the two recursive calls return, left and right will be sorted (this is the fundamental property of any
recursive function). All that remains is the process of selecting the smaller of the two elements while merging
these two lists. The code above reuses array A to store the sorted values. Variable i will iterate over the
indices in left, while j will iterate over the indices in right. idx identifies the index location in A into which the
smaller value of left[i] or right[j] will be written. The loop terminates once all values have been transferred
into A (thatis, when idx = A.length). Once right has exhausted its elements (because j >=right.length),
elements of left are transferred to A. Similarly, once left has exhausted its elements (because i >=
left.length), elements of right are transferred to A.

This code works, and it's reasonably efficienton small sets of numbers, but we also need space for the left
and right arrays. To address this issue, you need to learn how to characterize the storage requirements for
an algorithm.

Characterizing Storage Requirements for an Algorithm

Throughout this course, you have characterized the running time of an algorithm to determine its efficiency.
This is how algorithms are most often compared. You can also compare algorithms by their storage
requirements. There is a "Time vs. Space" tradeoffin programming that explains many of the design

decisions thata programmer must make. For example, each Java class thatis used as a key value in a
HashMap mustimplementa hashCode() method as partofthe Collections Framework. As we've
mentioned, if two objects are equal to each other, then the value returned by hashCode mustalso be the
same. Forimmutable classes (such as String), a program can save computation time by computing the
hash value just once and then caching the result for subsequentinvocations. Here is the code from
java.lang.String:

OBSERVE: String.hashCode() method

public int hashCode() {
int h = hash;
int len = count;

if (h == 0 && len > 0) {
int off = offset;
char val[] = value;

for (int 1 = 0; i < len; i++) {
h = 31*h + val[off++];
}
hash = h;
}

return h;

}

Whenever hashCode is executed, it checks to see if the cached value hash is equal to zero; only then does it

compute and store the value in the hash class attribute. This code is more efficient because of the extra
integer being stored. How much extra storage is required? In this case it's a fixed amount of storage—just

one additional int value. When addressing more complicated algorithms, you will need to determine whether

the amount of extra storage is fixed, or is based on the size of the problem instance. For example, if you
needed 2*n additional stored array elements to sort an existing array of n elements, you would characterize
the storage requirements as being O(n). If, however, you needed n*n additional array elements to sortan

existing array of n elements, the required storage is O(n2). We use the following notation in this course. T(n)
refers to the running time characterization of an algorithm, S(n) refers to the storage requirements of an
algorithm. Modify the CopyMergeSort code as shown:

CODE TO TYPE: Modifications to CopyMergeSortto compute storage requirements

package sort;
import java.util.Arrays;

public class CopyMergeSort {
static int total=0;

public static void main(String[] args) {
2 I | 2 A L1 L ha g 2.
T group— €W IITc 11907 7 T 97 9O 7

int numIntegers = 512;
for (; numIntegers < 65536; numIntegers *= 2) {
int[]group = new int[numIntegers];

for (int i = 0; i < numIntegers; i++) {
group[i] = (int) (Math.random() *numIntegers) ;

}

total = 0;

group = copymergesort (group) ;

System.out.println(total + " locations for " + numIntegers);
}
for—trrt—t——groupr—

Systemontprint—t+—+"1Y~

—
)

static int[] copymergesort (int[] A) {
if (A.length < 2) {
return A;
}
if (A.length == 2) {
if (A[0] > A[1]) {
int tmp = A[0];
A[0] = A[1l];
A[l] = tmp;
}
return A;

}

int mid = A.length/2;

int[] left = Arrays.copyOfRange (A, 0, mid);

int[] right = Arrays.copyOfRange (A, mid, A.length);

left = copymergesort (left);
right = copymergesort (right);

for (int 1 = 0, j = 0, idx=0; idx < A.length; idx++) {

if (j >= right.length || (i < left.length && left[i] < right[j])) {
Alidx] = left[i++];

} else {
A[idx] = right[j++];

total += A.length;
return A;

Execute this revised code to produce this table:

OBSERVE: Output showing storage requirements for CopyMergeSort

4096 locations for 512
9216 locations for 1024
20480 locations for 2048
45056 locations for 4096
98304 locations for 8192
212992 locations for 16384
458752 locations for 32768

When sorting 512 elements you need 8 times as much temporary storage; worse, when sorting 2,048
elements you need 10 times as much temporary storage. Based on the above table, when sorting n elements
you need 2*n*log2(n) temporary storage where log2(n) is the logarithm of nin base 2. So, the storage
requirement for CopyMergeSortis O(n log n). Even though CopyMergeSort executes efficiently, there is a
serious issue regarding its storage requirements. Can something be done to remedy this? Yes.

MergeSort with O(n) Storage Requirements

Most sorting algorithms already perform "in place" with no additional storage requirements, so you might
think that some intermediate compromise can be reached to reduce the storage requirements. You don't
need to instantiate two sub-arrays left and right ifyou instead pass parameters that referto
subranges within the array itself. Let's start by revising the pseudocode for MergeSortto create a method
that takes an array, A, and two internal indices, [start, end) where index location start is inclusive in the
range 0 .. A.length-1 while end is exclusive in the range 0 .. A.length. So, to sortan array one would
invoke MergeSort(A, 0, A.length). Note that the sorting is done "in place" so an array is no longer returned
by this function.

OBSERVE: potential revised pseudocode for Mergesort

MergeSort (A, start, end)
if end - start < 2 then return
if end - start = 2 then
swap elements of A if out of order

mid = (end + start)/2;
MergeSort (A, start, mid);
MergeSort (A, mid, end);

merge A's left- and right- sorted sub-arrays

The trouble with this approach is that merging in place will ultimately require justas many comparisons (and
possibly more element swaps) as sorting in place. To avoid this situation, consider making these change to
the pseudocode which introduces a copy of the initial array being sorted, which means the storage
requirementis O(n):

OBSERVE: final pseudocode for Mergesort

MergeSort (A)
copy = copy of A
MergeSort (copy, A, 0, |A]|)

MergeSort (A, result, start, end)
if end - start < 2 then return
if end - start = 2 then
swap elements of result if out of order

mid = (end + start)/2;
MergeSort (result, A, start, mid);
MergeSort (result, A, mid, end);

(] T B <l Y el il
mMeroe EECENE TITCr L ITOIIC rTceC oo arra

merge left- and right- of A into result

Because copy is a true copy of the entire array, the terminating base cases of the recursion will work because
they reference the original elements of the array directly at their respective index locations. This observation is
a sophisticated one; when you run this implementation in the debugger, you can validate it for yourself. In

addition, the final merge step requires only O(n) operations.

Now it's your turn to implement this pseudocode.

@ In the sort package of the Isrc source folder, create a MergeSortinteger class as shown.

COE TO TYPE: MergeSortinteger class

package sort;
import java.util.Arrays;

public class MergeSortInteger {
public static void main(String[] args) {
int numIntegers = 1024;
int[] group = new int[numIntegers];
for (int 1 = 0; 1 < numIntegers; i++) {
group[i] = (int) (Math.random () *numIntegers) ;
}

mergesort (group) ;

for (int 1 = 0; 1 < 10; i++) {
System.out.println (groupl[i]) ;

}

static void mergesort (int[] A) {
int[] copy = Arrays.copyOf (A, A.length);
mergesort (copy, A, 0, A.length);

}

static void mergesort (int[] A, int[] result, int start, int end) {
if (end - start < 2) {
return;

}

if (end - start == 2) {
if (result[end-2] > resultl[end-1]) {
int tmp = result[end-2];
result[end-2] = result[end-17;
result[end-1] = tmp;
}

return;

int mid = (end + start)/2;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

for (int i = start, j = mid, idx=start; idx < end; idx++) {

if (3 > end || (1 < mid && A[i] < A[]])) {
result[idx] = A[i++];

} else {
result[idx] = A[j++];

G Run this code; you see the first ten randomly generated integers in sorted order. Let's review this code
more closely:

OBSERVE: MergeSortinvocation

static void mergesort (int[] A) {
int[] copy = Arrays.copyOf (A, A.length);
mergesort (copy, A, 0, A.length);

}

To sortthe array, we make a full copy and then internally invoke mergesort to sortthe copy with A as the
ultimate destination. Note that the arguments to pass in are 0 and A.length, which reflect the index values
into A, namely inclusive on the left side with 0 and exclusive on the right side with A.length.

All logic once again resides in the recursive method. Let's review the base cases:

OBSERVE: Recursive base case of MergeSort

static void mergesort (int[] A, int[] result, int start, int end) {
if (end - start < 2) {
return;

}

If end - start is less than 2, there is either no elementor a single elementto be sorted, which means
nothing needs to be done. When , there are two elements to be sorted. This code
executes only as a base case in the recursion, which means thatit's the firsttime the method is inspecting the
array subrange of [start,end). Because the result must be stored in the result array, this code reorders the
values itfinds there.

The final elements in mergesort show how to merge the sorted left and right sub-arrays:

OBSERVE: Merging in O(n) time

int mid = (end + start)/2;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

for (int i1 = start, j = mid, idx=start; idx < end; idx++) {

if (3 > end || (i < mid && A[i] < A[j])) {
result[idx] = A[i++];
} else {

result[idx] = A[j++];
}

This code firstrecursively sorts the left half and right half of the range [start, end), placing the
properly ordered elements in the array referenced as A. Then ituses two indices, i and j, to iterate over each
ofthese sub-ranges, always copying the smaller of Afi] and A[j] into the properly located result[idx]. There
are three cases to consider:

1. The right side is exhausted (j >= end), in which case you can grab the remaining elements from
Ali].

2. The left side is exhausted (i >= mid), in which case you can grab the remaining elements from
Aljl-
3. The left and right side have elements; if A[i] < A[j], insert A[i], otherwise insert A[j].

Once the for loop completes, result has the merged (and sorted) elements from the subarray [start, end)
ofthe original array A.

Working with Large Datasets

You are going to use MergeSortto sortlarge collections of values. You're going to need additional storage
for thatto work. You don't actually need to store the entire collection in main memory to sortits contents.
Let's start by defining the problem instance. The input of n integers will be stored in a binary file containing 4*n
bytes. Practice using this structure by writing this sample program:

& In the sort package of the Isrc source folder, create a class BinarylntegerFile as shown:

CODE TO TYPE: BinaryIntegerFile

package sort;
import java.io.*;

public class BinaryIntegerFile {
public static void main(String[] args) throws IOException {
int numIntegers = 4096;
File f = new File ("IntegerFile.bin");
DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
for (int 1 = 0; i < numIntegers; i++) {
dos.writelInt ((int) (Math.random () *numIntegers));
}

dos.close();
DatalnputStream dis = new DatalnputStream(new FileInputStream(f));

System.out.println ("First five sorted numbers");

for (int i = 0; 1 < 5; i++) {
System.out.println(dis.readInt());

}

dis.skipBytes (4* (numIntegers-10));

System.out.println("Last five sorted numbers");

for (int 1 = 0; 1 < 5; i++) {
System.out.println(dis.readInt());

}

dis.close();

o Run this program; you'll see something like this (your numbers will be different because they are
randomly generated):

INTERACTIVE SESSION: Output from BinaryIntegerFile. Note that sort function is not yetimplemented.

First five sorted numbers
2935

3918

245

2885

2496

Last five sorted numbers
2748

3716

1972

2086

1350

Let's take a closer look at this code. The java.io package contains a number of classes to read and write
information to the file system. The fundamental abstraction is a stream, which represents a sequence of data.
An InputStream reads data from a source and an OutputStream writes data to a source. In the code, a
DatalnputStream is used to read primitive Java data types from the input stream (such as int
and float values) while a DataOutputStream writes primitive Java data types to an output
stream.

OBSERVE: Creating a random binary file of integers

int numIntegers = 4096;

File f = new File ("IntegerFile.bin");

DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));

for (int 1 = 0; 1 < numIntegers; i++) {
dos.writelInt ((int) (Math.random () *numIntegers)) ;

}

dos.close() ;

Using a DataOut put Stream object, the above code writes 4,096 integers in binary format to the file and
closes it. Once created, this file will contain 16,384 bytes because the integers are written in binary format
where each integer value requires four bytes. Don't bother trying to open this file in Eclipse because the data
is stored in binary format so Eclipse will just present you with the raw data. You can retrieve the integer values
that were stored using Datalnput Stream, which properly decodes the binary formatted encoding of the
integer values in the file. The second part of the code reads in this file and prints the first five integers and the
last five integers in the file.

OBSERVE: Read integers from file

DataInputStream dis = new DataInputStream(new FileInputStream(f));

System.out.println ("First five sorted numbers") ;
for (int 1 = 0; 1 < 5; i++) {

System.out.println (dis.readInt());
}
dis.skipBytes (4* (numIntegers-10)) ;
System.out.println ("Last five sorted numbers");
for (int i1 = 0; 1 < 5; i++) {

System.out.println (dis.readInt());
}

dis.close();

This code uses a DatalnputStream to retrieve the values from the file. Note that it reads the first five
integers and then skips the requisite number of bytes (there are four bytes for each integer) so itcan
then read the last five numbers from the file. Clearly this file isn't sorted; you'll solve this by implementing a
MergeSort that operates over a File containing integer values, rather than an in-memory array of integer
values.

To make this work, you have to access a file in the same way that you would otherwise access an array. You
know the structure of MergeSortfrom the implementation you completed earlier, all you need to do now is
map those concepts to a file. Consider using RandomAccessFile, provided by the java.io package, which
allows you to access any byte within a file randomly. Knowing that the file contains a collection of integers in
4-byte format, you can determine that to read the nth int value from the file, you need to startreading 4 bytes
from position n*4. Similar logic is used to write an integer to replace the nth int value in the file. All of these
operations will succeed with index values of type long, which means you can process extremely large files if
you want.

& In the sort package of the /src source folder, create a MergeSortFile class as shown:

CODE TO TYPE: MergeSortFile class

package sort;
import java.io.*;
public class MergeSortFile {

static void mergesort (File A) throws IOException {
File copy = new File (A.getPath() + ".tmp");
copyFile (A, copy);

// TBA: invoke MergeSort
}

static void copyFile(File src, File dest) throws IOException {
FileInputStream fis = new FilelInputStream(src);
FileOutputStream fos = new FileOutputStream (dest);
byte[] bytes = new byte[4*1048576];
int numRead;
while ((numRead = fis.read(bytes)) > 0) {
fos.write (bytes, 0, numRead);
}
fis.close();
fos.close();

The mergesort method prepares for the algorithm by making a full copy of the source file, A. For
demonstration purposes, the file copy is created in your workspace, but normally you would use the static
method File.createTempFile instead to create a temporary file in the default temporary directory. The
copyFile method copies bytes in chunks of four megabytes to replicate the file. To test out the above code,
modify BinarylntegerFile to use the mergesort method in MergeSortFile.

CODE TO TYPE: Modified BinaryIntegerFile

package sort;
import java.io.*;

public class BinaryIntegerFile {
public static void main(String[] args) throws IOException {
int numIntegers = 4096;
File f = new File ("IntegerFile.bin");
DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
for (int 1 = 0; i1 < numIntegers; i++) {
dos.writelInt ((int) (Math.random () *numIntegers));
}

dos.close();

long now = System.currentTimeMillis();
MergeSortFile.mergesort (f) ;
System.out.println ((System.currentTimeMillis() - now) + " ms.");

DataInputStream dis = new DatalnputStream(new FileInputStream(f));

System.out.println ("First five sorted numbers");

for (int i = 0; i < 5; i++) {
System.out.println(dis.readInt());

}

dis.skipBytes (4* (numIntegers-10));

System.out.println("Last five sorted numbers");

for (int i = 0; 1 < 5; i++) {
System.out.println(dis.readInt());

}

dis.close();

Now execute BinarylntegerFile and refresh your workspace. You will see two top-level files:

IntegerFile.bin and IntegerFile.bin.tmp. Select both of these files in the Java package browser (holding
down the Shift key and click each icon), and right-click on either file to select Compare With | Each Other.

The files are identical, because you haven't yet written any code to sort the data.

You are now ready to complete the MergeSortimplementation. Modify MergeSortFile as follows:

Modified MergeSortFile

package sort;
import java.io.*;
public class MergeSortFile {
static void mergesort (File A) throws IOException {

File copy = new File (A.getPath() + ".tmp");
copyFile (A, copy):;

M7 : 1 N o A
TDIr e TIIVORN TIETrgeo0oET

RandomAccessFile src = new RandomAccessFile (A, "rw");
RandomAccessFile dest = new RandomAccessFile (copy, "rw");

mergesort (dest, src, 0, A.length());
src.close () ;

dest.close();

copy.delete() ;

static void copyFile(File src, File dest) throws IOException {
FileInputStream fis = new FileInputStream(src);
FileOutputStream fos = new FileOutputStream (dest);
byte[] bytes = new byte[4*1048576];
int numRead;
while ((numRead = fis.read(bytes)) > 0) {
fos.write (bytes, 0, numRead);
}
fis.close();
fos.close();

static void mergesort (RandomAccessFile A, RandomAccessFile result,
long start, long end) throws IOException {

if (end - start < 8) {
return;

if (end - start == 8) {

result.seek (end-8);

int left = result.readInt():;

int right = result.readInt();

if (left > right) {
result.seek (end-8);
result.writelnt (right);
result.writelInt (left);

}

return;

long mid = (end + start)/8%4;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

result.seek (start);
for (long i = start, j = mid, idx=start; idx < end; idx += 4) {
A.seek (i) ;
int Ai = A.readInt();
int Aj = 0;
if (J < end) { A.seek(j); Aj = A.readInt(); }
if (3 > end || (1 < mid && Ai < Aj)) {
result.writeInt (Ai);
i += 4;
} else {
result.writelInt (Aj);

The modified mergesort method now opens two RandomAccessFile objects on the two files and they are
both opened in read/write mode because they will both be updated during the MergeSort algorithm. The
mergesort method is invoked by requesting to sort the contents of the copied file into the original file. Once
done, the copied file can be deleted.

The mergesort(RandomAccessFile A, RandomAccessFile result, long start, long end) method performs the
recursive MergeSort of the given range [start, end) of the underlying files. These parameters are both of type
long to enable this method to sortfiles that can be several gigabytes in size. For this lesson, the files will
only be several megabytes in size; feel free to generate files of this size on your home computer!

The structure of this method follows the earlier examples.

Go back and execute BinarylntegerFile and the output will appear properly (though your random numbers
will be different):

Output from BinarylntegerFile

First five sorted numbers

o o) bW

Last five sorted numbers
4091
4091
4093
4093
4095

Refresh the files in your workspace; the temporary file used during the sort has been deleted. Let's take a
closerlook at this code. First, let's inspect the base cases of the recursion:

OBSERVE: mergesort base cases for recursion

static void mergesort (RandomAccessFile A, RandomAccessFile result,
long start, long end) throws IOException {

if (end - start < 8) {
return;

}

if (end - start == 8) {

result.seek (end-8) ;

int left = result.readInt():;

int right = result.readInt();

if (left > right) {
result.seek (end-8) ;
result.writelnt (right) ;
result.writelnt (left) ;

}

return;

Recall that integers are stored using 4 bytes. The offsets start and end are index locations within the
RandomAccessFile; in addition, start and end mustbe evenly divisible by 4. The condition end - start <
8 determines when the subrange [start, end) contains zero or one element; when this occurs, no sorting
needs to take place and the method can simply return.

The second base case needs to swap the two neighboring integers in result if they are out of order. When
end - start == 8 you know that[start, end) contains two elements exactly. The above code uses the seek

method to find thatlocation in the file for the first of these two integers. It then reads in two integers
sequentially from the 8 bytes stored at that position in that file. If these two numbers are out of order, itgoes
back to the beginning of thatrange in the file and writes the two integers in the proper order.

The final case demonstrates how to merge the two sub-ranges together. It starts with a little mathematical
optimization. Mergesort must divide the range into two parts, but each sub-range must contain a number of
bytes thatis divisible by four. For example, if the range contained 7 integers for a total of 28 bytes, it might be
represented as [0,28). Simply dividing (0+28)/2 would give 14, which is not divisible by 4. Instead, divide
(0+28)/8 (to get 3 using integer division) and then multiply by 4 to get 12, which is roughly half of the range.

OBSERVE: Merging case in MergeSort

long mid = (end + start)/8%*4;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

result. ;

for (long i = start, j = mid, idx=start; idx < end; idx += 4) {
A.seek (1) ;
int Ai = A.readInt();

int Aj = 0;
if (jJ < end) { A.seek(j); Aj = A.readInt(); }
if (J >= end || (1 < mid && Ai < Aj)) {
result.writelInt (Ai);
i += 4;
} else {
result.writelnt (Aj) ;
J += 4;

}

The above code recursively invokes mergesort on the left and right sub-ranges, after which the file on
disk referenced by A will contain the two sorted sub-ranges waiting to be merged. The code takes advantage
of a nice optimization in that the integers written to result will be written sequentially, so itonly needs to

of that output sequence in result before starting the for loop. When the code
determines the Ai and Aj values, it must seek the proper file position within A and then read the integer
encoded there.

Note that, in this for loop, the index values j, j, and idx are all incremented by 4 because they reference
positions inside the file that contains the 4-byte integer encodings.

The condition (j >= end || (i < mid && Ai < Aj)) takes advantage of "short-circuit" logical evaluation. Thatis,
ifj >= end, the second part of the condition (after the "||") is not executed. However, ifj < end, you can
retrieve Aj from the file. For this reason, the code firstloads up Aj if it exists to prepare for the short-circuit
conditional.

Never Be Satisfied

Despite the success of the code, it still feels like it takes too long to complete. The problem is likely that as the
files getlarger, the number of disk accesses begins to dominate the performance of the algorithm. Fortunately
there is a "drop-in replacement” for file access based on an operating-system capability known as "Memory
Mapped Files." The implementation is found in the java.nio package, known as the "new input/output" Java
package that contains many high-performance classes.

& In the sort package of the Isrc source folder, create a class named MergeSortFileMapped. Much of this
code will be familiar to you because itfollows the exactimplementation style of the earlier MergeSort.

CODE TO TYPE: MergeSortFileMapped class

package sort;

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MergeSortFileMapped {

static void mergesort (File A) throws IOException {
File copy = File.createTempFile ("Mergesort", ".bin");
MergeSortFile.copyFile (A, copy);

RandomAccessFile src = new RandomAccessFile (A, "rw");

RandomAccessFile dest = new RandomAccessFile (copy, "rw");

FileChannel srcC = src.getChannel () ;

FileChannel destC = dest.getChannel();

MappedByteBuffer srcMap = srcC.map (FileChannel.MapMode.READ WRITE, 0, src.le
ngth());

MappedByteBuffer destMap = destC.map (FileChannel.MapMode.READ WRITE, 0, dest
.length());

mergesort (destMap, srcMap, 0, (int) A.length());
src.close();
dest.close();

static void mergesort (MappedByteBuffer A, MappedByteBuffer result,
int start, int end) throws IOException {

if (end - start < 8) {
return;

if (end - start == 8) {

result.position (start);

int left = result.getlnt();

int right = result.getInt();

if (left > right) {
result.position (start);
result.putInt (right) ;
result.putInt (left);

}

return;

int mid = (end + start)/8*4;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

result.position (start);
for (int i = start, j =
int Ai = A.getInt(i);
int Aj = 0;
if (J < end) { Aj = A.getInt(3); }
if (J > end || (i < mid && A1 < AjJ)) {
result.putInt (Ai);
i += 4;
} else {
result.putInt (Aj);
Jj += 4;

mid, idx=start; idx < end; idx += 4) {

To execute this code instead of the earlier version, modify BinarylntegerFile as shown:

CODE TO TYPE: Modifications to BinarylntegerFile

package sort;
import java.io.*;

public class BinaryIntegerFile {
public static void main(String[] args) throws IOException {
int numIntegers = 6553646596;
File f = new File ("IntegerFile.bin");
DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
for (int i = 0; i < numIntegers; i++) {
dos.writelInt ((int) (Math.random () *numIntegers)) ;

}

dos.close();

long now = System.currentTimeMillis();

DA lal s o P | A =

MergeSortFitemery e

MergeSortFileMapped.mergesort (f) ;
System.out.println((System.currentTimeMillis() - now) + " ms.");

DatalnputStream dis = new DatalnputStream(new FileInputStream(f));
System.out.println ("First five sorted numbers");
for (int i = 0; 1 < 5; i++) {
System.out.println(dis.readInt());
}
dis.skipBytes (4* (numIntegers-10));
System.out.println("Last five sorted numbers");
for (int 1 = 0; 1 < 5; i++) {
System.out.println(dis.readInt());
}

dis.close();

Q Runitto sortjustover 65,000 integer values. The code spends most ofits time writing the random
numbers to the disk file to prepare for the algorithm. The execution now takes far less time (32 milliseconds
instead of 10276 milliseconds). This code executes so much faster because when you're working with data
on disk, you need to limit the frequency of disk access to maximize the efficiency of your code. Inside the
Java Virtual Machine, the java.nio package is integrated with the virtual memory manager of the operating
system. Memory-mapped files are loaded into memory one entire page ata time, and each operating system
is fine-tuned so these operations execute as efficiently as possible. When you modify information in a
memory-mapped file, it will be written out to the file one page at a time; the operating system is responsible
for carrying this operation out efficiently as well. Now your program is no longer in charge of reading and
writing bytes from a file directly; it updates memory directly, as managed by the MappedByteBuffer class.

Ultimately this class determines when the updated memory is written to the file.

Let's review this code:

OBSERVE: Using MappedByteBuffers to access file data

static void mergesort (File A) throws IOException ({
File copy = File.createTempFile ("Mergesort", ".bin");
MergeSortFile.copyFile (A, copy):;

RandomAccessFile src = new RandomAccessFile (A, "rw");

RandomAccessFile dest = new RandomAccessFile (copy, "rw") ;

FileChannel srcC = src.getChannel() ;

FileChannel destC = dest.getChannel() ;

MappedByteBuffer srcMap = srcC.map (FileChannel.MapMode.READ WRITE, 0, src.le
ngth());

MappedByteBuffer destMap = destC.map (FileChannel.MapMode.READ WRITE, 0, dest
.length()) ;

mergesort (destMap, srcMap, O, (int) A.length());
src.close() ;
dest.close () ;

One unfortunate drawback with using MappedByteBuffer is that on many operating systems (and on Windows
in particular) once a file has been mapped, it cannot be deleted from within the Java program. The above
code, therefore, creates atemporary file in the designated default temporary directory which will
eventually be cleaned up by the user. From a RandomAccessFile, itis possible to retrieve its
FileChannel descriptor, which is used to construct the respective MappedByteBuffer objects.

Changes to the mergesort method are more subtle:

OBSERVE: mergesort revised to use MappedByteBuffer

static void mergesort (MappedByteBuffer A, MappedByteBuffer result,
int start, int end) throws IOException ({

if (end - start < 8) {
return;

}

if (end - start == 8) {

result.position (start) ;

int left = result.getInt();

int right = result.getlInt();

if (left > right) {
result.position (start) ;
result.putInt (right) ;
result.putInt (left);

}

return;

int mid = (end + start)/8%*4;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

result.position (start) ;
for (int i = start, j = mid, idx=start; idx < end; idx += 4) {
int Ai = A.getlInt (i);
int Aj = 0;
if (j < end) { Aj = A.getInt(j); }
if (3 > end || (1 < mid && Ai < Aj)) {
result.putInt (Ai) ;
i += 4;
} else {
result.putInt (Aj) ;
j = 4

start and end are int values again. The MappedByteBuffer class only supports integer indexing, which
means the files to be sorted cannot be greater than 232 bytes in size (roughly 4 gigabytes).

Let's review the base cases of the recursion:

OBSERVE: MergeSortFileMapped base recursive cases

if (end - start < 8) {
return;

}

if (end - start == 8) ({

result.position (start) ;

int left = result.getInt():;

int right = result.getInt():;

if (left > right) {
result.position (start) ;
result.putInt(right) ;
result.putInt(left);

}

return;

When asked to sorttwo elements, the code uses the getInt method of the MappedByteBuffer class to
retrieve the integer stored at the proper offsetof start. If the MappedByteBuffer does not have this information
in main memory, it will read the information into memory one page ata time. If this memory is updated (using
the putInt methods) it won't be written to disk until the MappedByteBuffer determines thatit can be written
eficiently. As a programmer, you no longer know whether a getint or end method accesses the file system;
you can simply program it correctly while leaving MappedByteBuffer responsible for the persistent storage of
the information.

OBSERVE: Completing the mergesort

int mid = (end + start)/8*4;
mergesort (result, A, start, mid);
mergesort (result, A, mid, end);

result.position (start) ;

for (int i1 = start, j = mid, idx=start; idx < end; idx += 4) {
int Ai = A.getInt (i),
int Aj = 0;
if (J < end) { Aj = A.getInt(j); }

if (J >= end || (1 < mid && Al < Aj)) {
result.putInt (Ai) ;
i += 4;
} else {
result.putlInt (&j) ;
J += 4;

}

Despite the large number of read and write statements that access the result and A files, the
MappedByteBuffer class ensures that these operations acton information stored in main memory. You can't
predict when (Java) will write the info to a file, so the MappedByteBuffer class ensures that data is read from
memory (instead of the file). It'll be more efficient because it's faster to read from memory than from a file (in
this case, almost 300 times faster).

Lessons Learned

Often you can improve the efficiency of an algorithm by storing additional state information. You see this on a
small scale in java.lang.String, which caches its computed hash value to improve the performance of
hashCode. Often you can achieve efficient O(n log n) performance by storing additional O(n) storage
information.

To determine the appropriate algorithm to use, be sure to characterize the storage requirements in addition to
the run-time performance. In most cases, the additional storage will be O(n), which typically is an acceptable

trade-off to make.

Accessing information on disk is typically thousands of times slower than accessing information in main
memory. When designing algorithms that access data on disk, you mustfind ways to reduce the number of
individual reads and writes, choosing instead to let the operating system optimize input/output access.

Practice some of the things you learned in this lesson in the project. See you in the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Representing Graph Data Structures

Lesson Objectives

After completing this lesson, you will be able to:

e compute the adjacency matrix for any graph.
e explain the concept of backtracking.
e use a backtracking depth-first search algorithm to traverse a graph.

Representing Graphs

You've already seen how to use Set and List classes from the Java Collections Framework to represent unordered
sets orlists ordered linearly. However, sometimes you need to represent more than a collection ofitems; you also
need to capture relationships between the items themselves. One common way to accomplish this is to define a Graph
construct composed of a set of vertices, V, representing a set ofitems, and a setof edges, E, connecting pairs of these
vertices, representing the relationships. In this lesson, we'll focus on learning how to represent graphs. Along the way,
you'll also learn how to explore a graph by traversing its edges from one vertex to another.

Let's start with an example. Assume you live in a city with a subway system with three subway lines and ten stations as
shown:

You would like to determine a route from a given starting station to a destination station. For example, to go from
station 4 to 10 you can likely see two distinct paths to take: (4, 5,3, 10) and (4, 2, 8,9, 10). If the subway system has
dozens of stations, the problem increases in complexity and you might not always be able to "see a path" at a glance.
To write a program that solves this problem, you need to develop an algorithm to traverse the subway from a starting
station to an ending station. The algorithm needs a data structure that represents the subway system so it can execute
efficiently. None of the classes provided by the JDK can be used "as is" to solve this problem, so you have to do this
yourself.

Using Adjacency Matrix To Represent Graph

Since you only need to know whether two stations are connected with each other, you could create a two-
dimensional array boolean matrix[][] in which a given element matrix[i][j] is true when there is a direct
connection between stations i and j. This array is symmetric so matrix[i][j] equals matrix[j][i].

This representation doesn'tinclude part of the structure of a subway system, namely the multiple
' Note subway lines thatmay traverse the same link between two stations. However, for the purposes '
: of this lesson, it's okay. :

é Create a new Java Project named Graphs and assign itto the Java6_Lessons working set.
£ In the Isrc folder of the Graphs project, create a subway package.

& In the subway package of the /src source folder, create a SubwayMatrix class. This class will representa

graph using an adjacency matrix.

CODE TO TYPE: SubwayMatrix class

package subway;

public class SubwayMatrix {
final int n;
final boolean matrix[][];

public SubwayMatrix (int numStations) {
n = numStations;
matrix = new boolean[n+1] [n+1];

The SubwayMatrix constructor requires the total number of vertices so it can construct the matrix[][] two-
dimensional array. Because stations (hence vertices) are numbered from 1 .. numVertices, this array is one
number larger than it needs to be; this makes the code easier to read and write.

The example subway system could be represented by auto-initializing the matrix in SubwayMatrix as
shown:

OBSERVE: potential compiled initialization of matrix for subway problem

boolean matrix[][] = new boolean[][] {
/% 1 2 3 4 5 6 7 8 9
10 */

{false, false, false, false, false, false, false, false, false, fals

e, false},

/* 1 */ ({false, false, false, false, true, false, false, false, false, fals
e, false},

/* 2 */ {false, false, false, false, true, false, false, false, true, fals
e, false},

/* 3 */ ({false, false, false, false, false, true, false, false, false, fals
e, true},

/* 4 */ {false, true, true, false, false, true, false, false, false, fals
e, false},

/* 5 */ ({false, false, false, true, true, false, false, false, false, fals
e, false},

/* 6 */ {false, false, false, false, false, false, false, true, false, fals
e, false},

/* 7 */ {false, false, false, false, false, false, true, false, true, fals
e, false},

/* 8 */ {false, false, true, false, false, false, false, true, false, true
, false},

/* 9 */ {false, false, false, false, false, false, false, false, true, fals
e, true},

/* 10 */ {false, false, false, true, false, false, false, false, false, true
, false}};
}

Instead of defining the subway system in this way, add the method below to the end of SubwayMatrix, which
will allow you to update matrix dynamically, given an array of int values in sequence:

CODE TO STYLE: Method to dynamically add stations in a line

public void addLine (int[] stations) {
for (int 1 = 1; i < stations.length; i++) {
matrix[stations[i-1]] [stations[i]] = true;
matrix[stations[i]] [stations[i-1]] = true;

We prefer this approach because you can construct subway lines dynamically without compilation.

Searching a Graph

To compute a path in a graph from any vertex X to another vertex Y, make these assumptions:

e The graph is connected; thatis, itis possible to travel from any vertex to any other vertex by
following the edges in the graph.

e The path mustnotvisitthe same vertex twice.

To find a route from station 4 to 10, for example, imagine that you have a copy of the map that you can mark
up with a pencil. Start by shading station 4 in gray, and then consider traveling next to one ofits unvisited
neighbors, such as station 1. Draw an arrow connecting stations 4 and 1. Once you see that station 1 has no
neighboring station that you haven't visited, color station 1in black to indicate that there is no need to
consider that station again. Now, like encountering a dead end in a maze, you have to "backtrack" to the
previous station 4 to see ifanother route is possible:

Continue the search by moving on from station 4 to station 2, shading station 2 in gray:

Station 6 is a dead end because there are no neighboring stations that you have not already visited, so you
can color station 6 black and backtrack to station 7. You get he same result at station 7, so color 7 black and

backtrack to station 8.

Observe that station 8 still has an unvisited neighbor (station 9), so head in that direction and eventually you
will reach station 10, your destination:

a8 9 10

In the above graphic, you can see that you have three different station colors:

1. Black vertices have been visited and are fully processed.
2. Gray vertices have been visited, but they may have an unvisited neighbor.

3. White vertices have not been visited at all yet.

Instead of stopping when you reach the destination vertex (at station 10), it's just to let the algorithm explore
the entire graph such that, when it's finished, all vertices are colored black. You need to make one more
enhancement since this algorithm is trying to find a path from the designated start vertex (station 4) to a
destination vertex (station 10). In the images above, you connected stations with arrows in the direction of the
search. However, ifinstead you "flip" the arrows so they record where the search came from, you can recreate
the path from the start vertex to any other vertex in the graph by following the arrows in reverse:

You can reconstruct the path from the start vertex to any destination vertex quickly by starting at a destination
vertex and following the black "previous" arrows all the way back to the start vertex. The computed path here
is4,2,8,9,10. This algorithm is notdesigned to compute the shortest path between two vertices. For
example, although stations 4 and 5 are directly connected by the blue subway line, the computed path is 4, 2,
8,9,10,3,5.

This brief example highlights a Depth-First Search over a graph. When faced with that decision, try visiting
some vertex that you haven't yet visited; when you reach a dead end, backirack to the previous vertex to see if
you missed a route to an unvisited vertex. Continue this approach until all vertices are visited.

It's time to apply these concepts to your program. Modify SubwayMatrix as shown:

CODE TO TYPE: SubwayMatrix class

package subway;

public class SubwayMatrix {
final static int White = 0;
final static int Gray = 1;
final static int Black = 2;

final int n;

final boolean matrix[][];
int src;

final int previous|[];
final int color[];

public SubwayMatrix (int numStations) {
n = numStations;
matrix = new boolean[n+1] [n+1];

previous = new int[n+1];
color = new int[n+1];
src = 0;
}
public void addLine (int[] stations) {
for (int i = 1; i < stations.length; i++) {
matrix[stations[i-1]] [stations[i]] = true;
matrix[stations[i]] [stations[i-1]] = true;

}

The SubwayMatrix constructor requires the total number of vertices so it can construct the previous and
color arrays, as well as the matrix[][] two-dimensional array. Because stations (hence vertices) are
numbered from 1 .. numVertices (which makes the code easier to read and write), these arrays are all one
size larger than they need to be. SubwayMatrix also stores the source vertices, src, from which the desired
search is made. This is important because this algorithm ultimately determines the path between the source
vertex, src, and every other vertex to which itis connected in the graph. Initially we see, sre=0, which means
that the algorithm has not yet executed.

To implement Depth-First Search over a graph, you need to know about recursion. Instead of trying to solve a
problem all atonce, recursion breaks a problem into smaller pieces. For example, instead of trying to find the
full path, start by visiting the start vertex. To visita vertex u you shade it gray to remember that vertex u is no
longer unvisited. Then, recursively visit all neighboring vertices of u. Once these recursive tasks are done, you
shade u black to indicate that you are done with the vertex. This approach works because you use the color of
the vertices to record your progress. When visiting a neighbor v of u, be sure to record that previous[v]=u
so you can reconstruct the path from the source vertex to any other connected vertex in the graph. Note thatin
a connected graph, after completing the search, only the starting vertex has no computed previous vertex.

The following pseudocode describes the Depth-First Search algorithm:

OBSERVE: pseudocode for Depth-First Search

dfsSearch (s)
foreach v in V do
color([v] = White
dfsVisit (s)

dfsVisit (u)
color[u] = Gray
foreach neighbor v of u do
if (color([v] = White) then
previous([v] = u
dfsVisit (v)
color[u] = Black

The algorithm starts by coloring every vertex in the graph white before it visits the starting vertex, s. The visit
function, df sVisit(u), is a recursive function which invokes dfsVisit(v) on each unvisited neighbor v of u.

As with previous lessons, itis worth "stepping through" the execution to make sure that it will work properly.
In doing so, you will see exactly how recursion allows you to backtrack in your search. Let's start by
graphically representing the state of the algorithm and its progress through the pseudocode when
dfsVisit(4) is called. Each executing pseudocode statementis shown in red on the right.

o o o dfsvisit (u=4)

color[u] = Gray
o foreach neighbor v of u do
=] if (color([v] = White) then

e ° previous([v] = u
)

dfsvVisit (v

]
o G o @ color[u] = Black

Once vertex 4 is colored gray, the foreach loop processes each ofits neighbors; let's start with vertex 1.
Since its coloris White, set previous[1]=4 and recursively call df sVisit(1). When this call returns, the
foreach loop will continue where it left off, and then process the other two neighbors of4 (namely vertex 2
and 5). In other words, the algorithm will backtrack to vertex 4. This graphic shows the "call stack" and the
second invocation of df sVisit():

dfsvisit (u=1)
color[u] = Gray
foreach neighbor v of u do
if (color[v] = White) then
o o previous([v] = u
dfsvisit (v)
color[u] = Black
M

dfsVisit (u=4)
color[u] = Gray
foreach neighbor v of u do
if (color[v] = White) then
previous([v] = u
dfsVisit (v)
color[u] = Black

The second df sVisit(1) function first colors vertex 1 gray. It then tries to find a neighbor of vertex 1 that is
white (indicating that it remains unvisited). Since there are no unvisited neighbors of vertex 1, the function
colors vertex 1 black and then returns. This is the key backtracking step—going back to an earlier pointin the
computation. The call stack shows that df sVisit(4) is still waiting for df sVisit (1) to complete so itcan move
on to the other neighbors of 4. Assuming that vertex 2 is visited next (after vertex 1), the next recursive call
(and corresponding graph state) looks like this:

dfsvisit (u=2)
color[u] = Gray
foreach neighbor v of u do
if (color[v] = White) then
o o previous([v] = u
dfsvisit (wv)
color[u] = Black
M

dfsvVisit (u=4)
o @ color([u] = Gray
foreach neighbor v of u do
if (color[v] = White) then
previous([v] = u
dfsvisit (wv)
color[u] = Black

)
Q10101 -

You can continue this exercise as long as you want, ultimately producing the final graphic described earlier
where every vertex is colored black. With this pseudocode in hand, you're ready to begin programming.

Modify SubwayMatrix as shown to implement Depth-First Search over a graph represented using an
adjacency matrix representation:

CODE TO TYPE: Modifications to SubwayMatrix

package subway;
import java.util.*;

public class SubwayMatrix {
final static int White = 0;
final static int Gray = 1;
final static int Black = 2;

final int n;

final boolean matrix[][];
int src;

final int previous|[];
final int color([];

public SubwayMatrix (int numStations) {
n = numStations;
matrix = new boolean[n+1] [n+1];
previous = new int[n+1];
color = new int[n+1];
src = 0;

}

public void dfsSearch(int s) {

for (int v = 1; v <= n; v++) {
color([v] = White;
previous|[v] = 0;

}

dfsVisit(s);
src = s;

}

void dfsVisit (int u) {
color[u] = Gray;

for (int v = 1; v <= n; v++) {
if (matrix[u] [v] && color[v] == White) {
previous|[v] = u;
dfsvisit (v);

color[u] = Black;
}
public void addLine(int[] stations) {
for (int i = 1; i < stations.length; i++) {
matrix[stations[i-1]] [stations[i]] = true;
matrix[stations[i]] [stations[i-1]] = true;

This code follows the pseudocode fairly faithfully. Let's investigate more closely.

OBSERVE: Initializing and executing search

public void dfsSearch(int s) {
for (int v = 1; v <= n; v++) {
color[v] = White;
previous[v] = 0;

}

dfsvVisit (s);
src = s;

The dfsSearch(int s) method firstinitializes the algorithm's state by resetting the color of each vertex
white and clearing the previous links. Using an array-based storage of the graph allows you to write a
simple forloop to iterate over all vertices in the graph. Recall that one of the fundamental tasks of a depth first
search algorithm is to identify the neighbors for a vertex u. With an array-based storage, you only need to use
afor(int v=1;v <=n;v++)loop to locate the true matrix[u][v] entries for different v values. Remember
that the vertices are numbered from 1to n. Once the search is complete, itsets the src variable to record
the source vertex used for the search. Now let's investigate the recursive dfsVisit(int u) method:

OBSERVE: Recursive dfsVisit method

void dfsVisit(int u) {
color[u] = Gray;

for (int v = 1; v <= n; v++) {
if (matrix[u] [v] && color[v] == White) ({
previous([v] = u;
dfsVisit (v);
}
}

color[u] = Black;

}

dfsVisit(int u) mustfirstcolor vertex u gray to signal that the vertex is no longer unvisited. Remember
that the algorithm recursively visits all unvisited neighbors of this vertex. With the array-based implementation,
you only need to iterate through all possible vertices, v, to see if matrix[u][v] is non-zero (which
means there is an edge between u and v) and that color[v] is White (which means vertex v has not
yet been visited). As its final act, dfsVisit(u) colors u black to signal that vertex v is fully processed. With
recursion, you just have to trust that it will visit all vertices required. At this point, you could inserta
mathematical proofto show that this algorithm will terminate; instead, let me convince you notto by sharing
two observations. First, df sVisit starts by coloring a vertex gray. Second, df sVisit recursively calls df sVisit
only on vertices that are colored white. If you put these two observations together, df sVisit will never be
called twice on the same vertex. Since there is a fixed number of vertices in the graph, eventually df sVisit will
run out of unvisited vertices to process.

To complete the implementation, add a path(d) method that returns a List ofintegers representing the
stations between the original source vertex and the given destination vertex, d. This method traverses the
previous links and prepends each vertex identifier to ensure proper ordering. Add this method to the end of
SubwayMatrix:

CODE TO TYPE: Add path() method to SubwayMatrix

public List<Integer> path (int d) {
LinkedList<Integer> path = new LinkedList<Integer>();
if (src != 0 && src !=d) {
while (d !'= 0) {
path.add (0, d);
d = previous([d];

}

return path;

}

To validate the above code, write some performance tests:

Create a new performance source folder:
H# Create a subway package in the /performance source folder:

& Inthe Iperformance folder subway package, create a Demonstrate class as shown:

CODE TO TYPE: Demonstrate class

package subway;

public class Demonstrate {
public static void main(String[] args) {
SubwayMatrix sm = new SubwayMatrix(10);
sm.addLine (new int[]{1, 4, 2, 8, 7, 6});
sm.addLine (new int[]{3, 5, 4, 2, 8, 9, 10});
sm.addLine (new int[]{3, 10});

sm.dfsSearch (4) ;
for (int i = 1; 1 <= 10; i++) {

System.out.println("4-" + i + " : " + sm.path(i));
}

-
L)) Save and run it. This code creates the subway described earlier and prints out the path one would follow
from station 4 to all other stations in the subway system:

OBSERVE: Sample Output From Demonstrate

4-1 : [4, 1]

4-2 : [4, 2]

4-3 : [4, 2, 8, 9, 10, 3]
4-4 : []

4-5 : [4, 2, 8, 9, 10, 3, 5]
4-6 : [4, 2, 8, 7, 6]

4-7 : [4, 2, 8, 7]

4-8 : [4, 2, 8]

4-9 : [4, 2, 8, 9]

4-10 : [4, 2, 8, 9, 10]

You can verify that all of these are valid paths in the subway system; this code even handles the case where
the source and destination stations are the same by producing the empty path.

Practical Application

Let's put the Depth-First Search Algorithm to use on a related problem: generating a rectangular grid maze.
It's a related problem because you can frame the problem starting with a rectangular grid maze with every
interior wall present. It's not much of a maze though since you can't move through it. Now start with a cell on

the topmostrow of the maze. If you can randomly move in one of the (potentially four) valid directions, either

horizontally or vertically, to a cell that has not yet been visited, then do so and remove the wall in between.
Repeat this process until all cells have been visited.

& In the Isrc source folder subway package, create a Maze Applet class as shown:

CODE TO TYPE: MazeApplet class

package maze;

import javax.swing.*;
import java.awt.*;
import java.util.*;

public class MazeApplet extends JApplet {
int size = 10, offset = 50;
int width = 500, height = 500;

final static int White = 0;
final static int Gray = 1;
final static int Black = 2;

int color[][];

LinkedList<Point> neighbors([][];
boolean hasEastWall[][];

boolean hasSouthwall[][];

void clearWall (int fromR, int fromC, int toR, int toC) {

if (fromC == toC) {

hasSouthWall [Math.min (fromR, toR)][fromC] = false;
} else {

hasEastWall[fromR] [Math.min (fromC, toC)] = false;

public MazeApplet () {

hasEastWall = new boolean[height/size] [width/size];
hasSouthWall = new boolean[height/size] [width/size];
color = new int[height/size] [width/size];
neighbors = new LinkedList[height/size] [width/size];

for (int r = 0; r < height/size; r++) {
for (int ¢ = 0; ¢ < width/size; c++) {
hasEastWall[r] [c] = true;
hasSouthWall[r] [c] = true;
neighbors[r] [c] new LinkedList<Point> () ;

if (xr !'= 0) { neighbors[r] [c]
if (r !'= height/size-1) { neighbors[r][c]
if (¢ !'= 0) { neighbors|(r][c]
if (¢ !'= width/size-1) { neighbors(r][c]
Collections.shuffle (neighbors[r] [c]);
}
}
dfsVisit (0,width/size/2);
hasSouthWall [height/size-1] [width/size/2] = false;

}

void dfsVisit (int r, int c) {
color([r][c] = Gray;
while (!neighbors[r][c].isEmpty()) {
Point cell = neighbors([r][c].remove();
if (color[cell.x][cell.y] == White) {
clearWall(r,c, cell.x,cell.y);
dfsVisit (cell.x, cell.y);

color([r] [c] = Black;

public void paint (Graphics g) {

g.drawLine (offset, offset, offset, offset+(height/size)*size);

.add (new Point (r-1,

c-1)
c+1l)

c));
.add (new Point (r+1, c)
.add (new Point (r,
.add (new Point (r,

)
)
)

’

’

’

—— o o

g.drawLine (offset, offset, offset + (width/size/2)*size, offset);
g.drawLine (offset + size* (1+(width/size)/2), offset, offset+ (width/size)*siz
e, offset);

for (int r = 0; r < height/size; r += 1) {
for (int ¢ = 0; ¢ < width/size; c += 1) {
if (hasSouthWall[r][c]) {
g.drawLine (offset+c*size, offset + (r+l)*size, offset+(c+l)*size, off
set + (r+l)*size);
}
if (hasEastWall[r][c]) {
g.drawLine (offset+(c+l)*size, offset + r*size, offset+(c+l)*size, off
set + (r+l)*size);
}
}

—

Save and run this appletand you'll see a window like this:

T,

|

J??‘

BaE|i==Ilt

I l \:I

A

Shiih| e

I
I
s

Let's take a closer look at the code. It has the skeletal structure of Depth-First Search:

OBSERVE: dfsVisit(intr, int c) method

void dfsVisit (int r, int c) {
color[r] [c] = Gray;

while ('neighbors[r][c].isEmpty()) {
Cell cell = neighbors|[r] [c].remove () ;
if (color[cell.row] [cell.col] == White) {
clearWall(r,c, cell.row,cell.col);
dfsVisit(cell.row, cell.col);
}
}
color([r] [c] = Black;

}

Here the color array is two-dimensional because each cell is identified by a row and a column. The code

use

s ajava.awt.Point class to record a given cell position. Firstit marks the designated cell as Gray and

then, as long as there is an unvisited neighborremaining for that cell, itclears the wall between
the cell r,c and the neighbor cell.x, cell.y, before recursively visiting that cell. Once all recursions have
completed, itsets color[r][c] to Black because it has completed all processing for that cell.

OBSERVE: clearWall method

void clearWall (int fromR, int fromC, int toR, int toC) {

if (fromC == toC) {

hasSouthWall [Math.min (fromR, toR)][fromC] = false;
} else {

hasEastWall [fromR] [Math.min (fromC, toC)] = false;

}

The

maze contains two arrays, hasSouthWall and hasEast Wall, that determine whether there is a wall ata

given row and column. There is no need to worry about north or west walls, because the maze is symmetric
(meaning if you can getfrom cell u to v, you can getfrom v back to u). Using Math.min, the above code
clears the south or east walls as required. Drawing takes place like this:

OBSERVE: paint(Graphics) method

public void paint (Graphics g) {
g.drawline (offset, offset, offset, offset+(height/size) *size);

for (int r = 0; r < height/size; r += 1) {
for (int c¢ = 0; ¢ < width/size; c += 1) {
if (hasSouthWall[r][c]) {
g.drawLine (offset+c*size, offset + (r+l)*size, offset+(c+l)*size, off
set + (r+l)*size);
}
if (hasEastWall[r][c]) {
g.drawLine (offset+(c+l)*size, offset + r*size, offset+(c+l)*size, off
set + (r+l)*size);
}
}

The first g.drawLine invocation draws the vertical line representing the "western" vertical line of the maze.

The

leave a space at the top of the maze where the start cell exists—

exactly half-way through the firstrow of the maze. The nested for loops iterate over all possible cells in the
maze and draw the southern and/or eastern walls for those cells if necessary.

OBSERVE: Create Maze

public MazeApplet () {

hasEastWall = new boolean[height/size] [width/size];
hasSouthWall = new boolean[height/size] [width/size];
color = new int[height/size] [width/size];
neighbors = new LinkedList[height/size] [width/size];

for (int r = 0; r < height/size; r++) {
for (int ¢ = 0; ¢ < width/size; c++) {
hasEastWall[r] [c] true;
hasSouthWall[r] [c] true;
neighbors|[r] [c] new LinkedList<Point>() ;

if (r '= 0) { neighbors[r] [c] .add (new Point(r-1, c)); }
if (r '= height/size-1) { neighbors[r][c].add(new Point(r+l, c)); }
if (¢ '= 0) { neighbors[r] [c].add(new Point(r, c-1)); }
if (c !'= width/size-1) { neighbors[r][c].add(new Point(r, c+1)); }

Collections.shuffle (neighbors|[r] [c]) ;
}
}

dfsVisit (0,width/size/2) ;
hasSouthWall [height/size-1] [width/size/2] = false;
}

The MazeApplet constructor creates the color storage array used for Depth-First Search. It also creates the
arrays for whether hasSout hWall and hasEast Wall exist. Finally, each cell has a number ofneighbors—
between 2 and 4, depending on where that cell exists in the maze. There is a two-dimensional array,
neighbors, where each elementis a LinkedList of Cell objects. The nested forloop instantiates the
list of all neighbors foreach cell and then uses Collections.shuffle to ensure that when dfsVisit(0,0)
executes, it will search through the maze randomly.

The search starts in the middle of the first row, at cell (0, width/size/2). The end point of the maze is identified
by removing the south wall of the cell in the middle of the final row.

Lessons Learned

e Two-dimensional boolean matrices can capture relationships between nelements. A
simple graph is composed of unique edges between any two elements in a set. The range of the
matrix represents the vertices, and each value in the matrix is a boolean that represents the
existence of an edge between two vertices in the graph.

e A matrixof complextypes can capture metadata about the edges. Instead of simply
recording the existence of an edge, the value in matrix/uj[v] can contain information about the
relationship, including real-world properties such as distance or cost.

e Depth-First Search is blind and needs to knowthe target destination so it knows when
it is done. Instead of trying to conduct an intelligent search, Depth-First Search tries each
available choice, relying on recursion and backtracking to ensure that the entire space will be
searched in pursuitofthe goal.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Graph Adjacency List and Shortest Path Algorithms

Lesson Objectives

After completing this lesson, you will be able to:

e representgraphs using Adjacency Lists.
e explain how Breadth-First Search uses a Queue to search a graph.

Searching For Optimal Paths

In the lastlesson, you applied a Depth-First Search algorithm to traverse a graph. However, Depth-First Search will not
help you compute the shortest path between two vertices. In this lesson, we'll learn how to compute the path with the
fewest number of edge traversals between a given source and destination vertex. In tackling this problem, you'll also
revise the way that graphs are stored.

Representing Graph By Adjacency List

The SubwayMatrix class you designed in the prior lesson represents a graph using a two-dimensional
array known as the adjacency matrix. An alternate representation for graphs is an adjacency list, which is a
more efficient data structure to use for sparse graphs. A graph with n vertices may potential have n*(n-1)/2
edges (which demonstrates quadratic growth), but a sparse graph has much fewer edges. For example,
suppose you want to use Breadth-First Search to determine the fewest number of subway stations to visitin
the New York City subway system given a source and destination station. Start by constructing a graph where
the vertices represent the 421 subway stations (468 if you individually count the subway stations that belong
to one of the 32 station complexes). Theoretically, a graph with 421 vertices could have up to 421*420/2, or
88,410, individual tracks connecting pairs of stations. The actual number of station pairings will be much
smaller, given the physical reality of subway construction.

Now you'll develop an adjacency listimplementation that stores a collection of neighboring vertices for each
vertex. As graphs become larger (and sparser) this form of representation will decrease the storage
requirements of a graph significantly. Also, instead of being forced to use a for loop to iterate over all
possible edges that might exist, code using an adjacency list will only iterate over the existing known
neighbors. The performance benefits will be negligible for small graphs, but when you tackle larger graphs,
you'll see the improved performance.

We'll continue working in the Graphs project for this lesson.

& In the Isrc source folder subway package, create a SubwayList class. This class borrows much of the
implementation from SubwayMat rix:

CODE TO TYPE: SubwayList

package subway;
import java.util.*;

public class SubwayList {

final static int White = 0O;
final static int Gray = 1;
final static int Black = 2;
final int n;

final Set<Integer>[] neighbors;
int src;

final int previous|[];
final int color[];

public SubwayList (int numStations) {

n = numStations;
neighbors = new TreeSet[n+1];
for (int i = 1; 1 <= n; i++) {

neighbors([i] =

}

new TreeSet<Integer>();

previous = new int[n+1];
color = new int[n+1];

src = 0;

public void addLine (int[] stations) {
for (int i = 0; i < stations.length-1; i++) {
neighbors([stations[i]].add(stations[i+1]);
neighbors[stations[i+1]].add(stations[i]);
}
}

public ArrayList<Integer> path (int d) {
ArrayList<Integer> path = new ArraylList<Integer>();
if (src !'= 0 && src !'= d) {
while (d != 0) {
path.add (0, d);

d = previous([d];
}
}
return path;

}

Let's take a closer look at this class:

OBSERVE: SubwayList Structure

public class SubwayList {
final static int White = O;
final static int Gray = 1;
final static int Black = 2;

final int n;

final Set<Integer>[] neighbors;
int src;

final int previous|[];

final int color[];

public SubwayList (int numStations) {
n = numStations;
neighbors = new TreeSet[n+l];
for (int i = 1; i <= n; i++) {
neighbors[i] = new TreeSet<Integer>();

}

previous = new int[n+1];
color = new int[n+1];
src = 0;

Instead of using a two-dimensional array, we use a single array, neighbors, to representthe Set of
neighboring vertices for each vertex in the graph. The index into neighbors is the vertex identifier (a number
from 1..n). Note thateach elementin the neighbors array is a Set<Integer>. With this change, the addLine
method now invokes the add method to insert each vertex. You don't need to check whether two vertices are
already connected because the TreeSet implements set-based semantics, so duplicates are prevented. The
same White, Gray, and Black constants are used, in addition to the color and previous arrays.

Breadth-First Search

While Depth-First Search computes valid paths between two vertices in a connected graph, there is no
guarantee thatthe computed path is the shortest that exists. You'll need to try another approach. A Breadth-
First Search through a graph starts at a source vertex, s, then proceeds to visit all vertices that are one edge
away from s, then vertices no more than two edges away, then vertices no more than three edges away, and
so on. The search proceeds methodically from the source vertex, radiating outwards until all vertices in the
connected graph are visited.

Using the same subway system from the previous lesson, let's compute the shortest path from station 4 to
all other stations in the system. Start by coloring vertex 4 Gray:

7 8 9 {ID'

Now three stations are directly connected to station 4, so they are just one edge away. Color station 4 Black
(to signal thatit's done) and colorin Gray stations 1, 2, and 5. Record the previous station in the path (in this
case, station 4) using an arrow for each of these stations:

At this point, station 1is a dead end because it has no unvisited neighbors. However, you can continue to
extend the search outwards from stations 2 and 5. Be sure to color stations 2 and 5 Black because they are
now fully processed and update previous links for stations 3 and 8:

Continue this process until all vertices are colored Black and all previous links are assigned. Trace a path
from any destination station to station 4 (the source station for the search) and you won'tbe able to find a
shorter path than the one computed by Breadth-First Search:

We've reused the concept of coloring vertices developed in the lastlesson for Depth-First Search.
Specifically,:

e Dblack vertices have been visited and are fully processed.
e gray vertices have been visited but they may have an unvisited neighbor.
e white vertices have not been visited yet at all.

The fundamental question for implementing Breadth-First Search is how to keep track of the state of the
algorithm as it progresses. Depth-First Search maintains only one "current vertex" as it searches through the

graph, backtracking to overcome dead ends. However, Breadth-First Search needs to keep track of the Gray
vertices that it has identified for exploration. It also must make sure to process the vertices in order. In the
subway system above, the shortest path from station 4 to station 9 contains three edges (4, 2, 8, 9); another
longer path exists (4,5,3,10,9).

To enable Breadth-First Search to keep track of the Gray vertices, let's review the behavior of a First-in First-
out Queue, a versatile data structure that stores an ordered sequence of items. Using the terminology from
the Java Collections Framework, a Queue is a Collection that supports this behavior:

e Items are added to the tail of a Queue using the add operation.
e Items are removed from the head of a Queue using the remove operation.
Breadth-First Search uses a Queue to maintain all Gray vertices, which represents the "boundary" of the

search radiating outwards from the initial source vertex, s. While this Queue is not empty, there may still be
other unvisited vertices to be processed. This pseudocode describes the Breadth-First Search algorithm:

OBSERVE: pseudocode for Breadth-First Search

bfsSearch (s)
foreach v in V do

previous[v] = 0
color([v] = White
color[s] = Gray
Q = empty Queue
add s to Q

while (Q is not empty) do
u = remove head of Q
foreach neighbor v of u do
if (color[v] = White) then

previous[v] = u
color([v] = Gray
add v to Q

color[u] = Black

In this lesson, we'll complete the Breadth-First Search and Depth-First Search implementations in both the
SubwayMatrix and SubwayList classes.

Modify the existing SubwayMatrix implementation described in the previous lesson, to convert this
pseudocode to Java:

CODE TO TYPE: Modifications to SubwayMatrix class

package subway;
import java.util.*;

public class SubwayMatrix {
final static int White = 0;
final static int Gray = 1;
final static int Black = 2;

final int n;

final boolean matrix[][];
int src;

final int previous|[];
final int color([];

public SubwayMatrix (int numStations) {

n = numStations;
matrix = new boolean[n+1] [n+1];
previous = new int[n+1];
color = new int[n+1];
src = 0;
}
public void addLine (int[] stations) {
for (int i = 1; i < stations.length; i++) {
matrix[stations([i-1]] [stations[i]] = true;
matrix[stations[i]] [stations[i-1]] = true;

}

public void dfsSearch(int s) {
for (int v = 1; v <= n; v++) {
color([v] = White;
previous[v] = 0;

}

dfsvisit(s);
src = s;

void dfsVisit (int u) {
color[u] = Gray;

for (int v = 1; v <= n; v++) {
if (matrix[u] [v] && color([v] == White) {
previous|[v] = u;
dfsVisit (v);

color[u] = Black;

public List<Integer> path (int d) {
LinkedList<Integer> path = new LinkedList<Integer>();
if (src != 0 && src !'=d) {
while (d != 0) {
path.add (0, d);
d = previous|[d];

}

return path;

public void bfsSearch(int s) {

for (int v = 1; v <= n; v++) {
color([v] = White;
previous([v] = 0;

}

Queue<Integer> g = new LinkedList<Integer>();
color([s] = Gray;
g.add(s) ;

while

('q.isEmpty()) {
int u =

g.remove () ;

for (int v = 1; v <= n; v++) {
if (matrix[u] [v] && color[v] == White) {
previous[v] = u;
color([v] = Gray;
g.add (v) ;
}

color[u] = Black;

src = s;

Let's review this code in more detail:

OBSERVE: Initializing Breadth-First Search

public void bfsSearch (int s) {
for (int v = 1; v <= n; v++) {
color[v] = White;
previous[v] = 0;

}

Queue<Integer> q = new LinkedList<Integer>() ;
color[s] = Gray;
g.add(s) ;

The for loop iterates over all vertices in the graph to reset their color and previous values. It then

constructs a Queue of integers starting with s as its initial element. When analyzing an algorithm,

it's helpful to identify some invariants that are always true. From the pseudocode you saw earlier, observe
thatany vertex in the Queue is colored Gray.

There are many classes in the Java Collections Framework thatimplement the Queue interface; we chose the

LinkedList class because itimplements add (to the tail of the queue) and remove (from the head of the
queue) efficiently. Also, observe a common idiom when using the Collections Framework: referring to the
instantiated object, q, by its interface Queue rather than the instantiating class LinkedList:

OBSERVE: Computing Breadth-First Search

int u = g.remove() ;

g.add(v) ;
color[u] = Black;
}
src = s;

The algorithm proceeds by removing the head element, u,from the Queue and adding to the tail
those unvisited vertices that are neighbors of u.

As long as there are vertices in the Queue that need to be processed, the will remove the head
vertex from the Queue. Atsome point the must terminate because only the unvisited vertices
(colored White) are ever considered for addition to the Queue, and there are a finite number of vertices in the
graph. Note that this code maintains the invariant that only Gray vertices are added to the Queue. The add
method properly inserts the vertex at the tail to maintain proper ordering of the vertices within the Queue. That
is, there is no other Gray or White vertex in the graph thatis closer to the source vertex, s.

To validate this implementation, write this performance code:

& In the Iperformance source folder subway package, create a Compare class as shown:

CODE TO TYPE: Compare Class

package subway;
import java.util.*;

public class Compare {
public static void main(String[] args) {
SubwayMatrix sm = new SubwayMatrix(10);
sm.addLine (new int[]{1, 4, 2, 8, 7, 6});
sm.addLine (new int[]{3, 5, 4, 2, 8, 9, 10});
sm.addLine (new int[]{3, 10});

sm.dfsSearch (4) ;

List dfsPaths[] = new List[11];

for (int i = 1; 1 <= 10; i++) {
dfsPaths[i] = sm.path(i);

}

sm.bfsSearch (4);

List bfsPaths[] = new List[11];

for (int i = 1; 1 <= 10; i++) {
bfsPaths[i] = sm.path(i);

}

for (int i = 1; 1 <= 10; i++) {
if (bfsPaths[i].size() < dfsPaths[i].size()) {
System.out.println ("4-" + i + " : " + bfsPaths[i] + " (instead of " + df
sPaths[i] + ™)");
}
}

Q Save and run it. As you can see, this code directly compares Breadth-First Search against Depth-First

Search on the same subway system and prints only the paths that are shorter when computed by Breadth-
First Search. The output below is computed and you can verify that it finds three shorter paths in the graph:

OBSERVE: Comparison of Breadth-First and Depth-First Search on Subway System

4-3 [4, 5, 3] (instead of [4, 2, 8, 9, 10, 3])
4-5 : [4, 5] (instead of [4, 2, 8, 9, 10, 3, 5])
4-10 : [4, 5, 3, 10] (instead of [4, 2, 8, 9, 10])

Now you can complete SubwayList by implementing the Breadth-First Search algorithm also:.

CODE TO TYPE: Modifications to SubwayList class

package subway;
import java.util.*;

public class SubwayList {
final static int White = 0;
final static int Gray = 1;
final static int Black = 2;

final int n;

final Set<Integer>[] neighbors;
int src;

final int previous|[];

final int color[];

public SubwayList (int numStations) {
n = numStations;
neighbors = new TreeSet[n+1];
for (int i = 1; i <= n; i++) {
neighbors[i] = new TreeSet<Integer>();

}

previous = new int[n+1];
color = new int[n+1];
src = 0;

public void addLine (int[] stations) {
for (int i = 1; i < stations.length; i++) {
neighbors([stations[i-1]].add(stations[i]);
neighbors[stations[i]].add(stations[i-1]);
}
}

public ArrayList<Integer> path (int d) {
ArrayList<Integer> path = new ArraylList<Integer>();
if (src !'= 0 && src !'= d) {
while (d != 0) {
path.add (0, d);
d = previous|[d];
}
}
return path;

}

public void dfsSearch(int s) {
for (int v = 1; v <= n; v++) {
color([v] = White;
previous|[v] = 0;
}
dfsvVisit(s);
src = s;

}

void dfsVisit (int u) {

color[u] = Gray;
for (int v : neighbors[u]) {
if (color[v] == White) {
previous|[v] = u;

dfsvisit (v);

color[u] = Black;

Because you can iterate over just the neighbors of a given vertex, there is don'thave to use a for loop within
df sVisit to check for all possible edges that might exist like you did when the graph was represented as an
Adjacency Matrix.

To understand which representation option to choose (Adjacency Matrix or Adjacency List), figure out which
types of graphs you'll be processing. In a dense graph, the number of edges can grow proportional to the
square of the number of vertices. In a sparse graph, the number of edges grows linearly with the number of
vertices.

The following performance code generates stylized graphs (representing subway lines) on which to test
these algorithms. Specifically, these graphs have n=k2+2 vertices and k3-k%+2k edges. The number of edges

is roughly n"-% where n is the number of vertices. The following is the example for k=4 which contains n=16
vertices and 56 edges (vertex 1 is the leftmost vertex and vertex 718 is the rightmostone):

& Inthe Iperformance source code folder subway package, create a StylizedDemonstration class as
shown:

CODE TO TYPE: StylizedDemonstration

package subway;

public class StylizedDemonstration {
static int Max = 20;
static int m = 1000000;
static SubwayMatrix mat;
static SubwayList list;
static int numVertices;

public static void main(String[] args) {
System.out.println ("n\tMatrix\t\tList") ;
for (int k = 2; k <= 64; k *= 2) {
float totalMatrix = 0, totallList = 0;
for (int numTrials = 1; numTrials <= Max; numTrials++) {
generate (k) ;

System.gc() ;

long now = System.nanoTime () ;
mat.dfsSearch (1) ;

totalMatrix += (System.nanoTime ()-now) ;

System.gc() ;
now = System.nanoTime () ;
list.dfsSearch(l);
totallist += (System.nanoTime ()-now) ;

}

System.out.println (numVertices + "\t" + totalMatrix/Max/m + "\t" + totalli

st/Max/m) ;
}

public static void generate (int k) {
int n = k*k;
numVertices = n+2;
mat = new SubwayMatrix (n+2);
list = new SubwayList (n+2);
int[] pairs;

for (int i = 2; i <= k+1; 1i++) {
pairs = new int[]{1l,i};
list.addLine (pairs);
mat.addLine (pairs) ;
}
for (int i = n-k+2; i <= n+1; i++) {
pairs = new int[]{n+2,1i};
list.addLine (pairs);
mat.addLine (pairs);
}
for (int i = 0; i
for (int j = 0;
int u = 2 + 1i*
for (int m = 0; m < k; m++) {
pairs = new int[]{u, 2+ (i+1) *k+m};
list.addLine (pairs);
mat.addLine (pairs);

;o1++) |
-1; J++) |

G Save and run it; you see output similar to this:

OBSERVE: Comparing Adjacency List with Adjacency Matrix

n Matrix List

6 0.0047069504 0.031076651
18 0.0098863 0.05587125
66 0.033456147 0.0704818
258 0.24323966 0.18596876
1026 3.4497294 1.659615
4098 52.31373 26.572315

The Adjacency Matrix implementation initially outperforms the Adjacency Listimplementation, but the situation
changes quickly, and the Adjacency Matrix implementation progresses twice as slowly. Note that the
algorithm has not changed, but rather the structural representation of the graph.

Lessons Learned

e Representation of adata structure impacts the performance foran algorithm. Even
when you have identified the proper algorithm to use, make sure that you are not using a sub-
optimal data structure. The Adjacency Listis preferred for sparse graphs while Adjacency Matrix is

optimal for dense graphs. Only you know which types of graphs that you intend to process, so
choose wisely!

e Stacks support last-in,first-out while Queues support first-in, first-out. The difference
between Depth-First Search and Breadth-First Search can be traced directly to the data structures
used to represent the active search. Depth-First Search uses the call stack to store progress,

backtracking whenever it hits a dead end; Breadth-first Search uses a queue to methodically search
a graph.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Priority Queues

Lesson Objectives

After completing this lesson you will be able to:

write your own heap implementation using array-based storage.
e describe two distinctimplementations of priority queues.

compute the resulting heap structure after a number of insertions and removals.

compute a Minimum Spanning Tree for a graph using Prim's Algorithm.

Priority Queue Data Structure

A Queue is the data structure used when you need First-in, First-out behavior as items are added to, and removed
from, a collection. Normally a queue is used to model a sequence ofitems using the insertion time as the comparator
between elements. The Priority Queue is a related structure that behaves like a queue, except that the items in the
queue all have an associated priority value (typically an integer). In a priority queue, each item is added with an
associated priority. When removing an elementfrom the priority queue, the item with the smallest priority value is
removed first. Thatis, the mostimportantitem in the priority queue is the one with the smallest priority value. Typically,
priority values are non-negative, so zero has the highestimportance while +Infinity has the lowest priority.

Not If two or more items have the same lowest priority value, either one may be returned when you request
the removal of an item from the priority queue.

To see a priority queue in operation, let's introduce the Pair class, which contains an integer key value and its
associated integer priority.

g Create a new Java Projectnamed Priority and assign itto the Java6_Lessons working set.
£ In the Isrc source folder, create a package named mst.

@ In the mst package, create a class named Pair as shown:

CODE TO TYPE: Pair class

package mst;

public class Pair ({
int key;
int priority;

public Pair (int k, int p) {
key = k;
priority = p;

}

public String toString() {
return "(" + key + ",p:" + priority + ")ll;

}

The Pair class associates a priority value with each key value. The class below codifies that smaller priority values
represent more important items in the priority queue.

& In the mst package, create a class PriorityComparator as shown:

CODE TO TYPE: PriorityComparator class

package mst;
import java.util.Comparator;

public class PriorityComparator implements Comparator<Pair> {
public int compare (Pair first, Pair second) {
return first.priority - second.priority;

}

This Comparator class determines how to compare two Pair objects in the PriorityQueue. Pair objects with lower
priority values are considered to be more important, so the compare method mustreturn zero when the two objects
have the same priority and a negative number when the first object's priority value is smaller than the second object's
priority value (in other words, when the first object has higher importance).

Now you can create a PriorityQueue object to which you add Pair objects and from which you retrieve Pair objects,
in order of theirimportance:

& In the mst package, create a class SamplePriorityQueue as shown:

CODE TO TYPE: SamplePriorityQueue class

package mst;
import java.util.*;

public class SamplePriorityQueue {
public static void main(String[] args) {
PriorityComparator comp = new PriorityComparator();
PriorityQueue<Pair> pg = new PriorityQueue<Pair> (10, comp) ;

new Pair (1000,
new Pair (2000,
new Pair (3000,
new Pair (4000,

pg.add
pg.add
pg.add
pg.add

while (!pg.isEmpty()) {
System.out.println (pg.remove ()) ;

}

-
U Save and runit; you see this output.

OBSERVE: Output of SamplePriorityQueue

(4000, p=3)
(1000, p=5)
(3000, p=7)
(2000, p=10)

Your first thought might be that a PriorityQueue only sorts its elements by their respective priorities. However, itisn't
mandatory to sort queue elements by their respective priority values. You can make your sort more efficient by
removing the item with highest priority from the queue. Once again, efficiency will be based on achieving O(log n)
performance on both the add and remove methods.

In this lesson, you'll learn how to apply priority queues to compute a Minimum Spanning Tree (MST) of a graph.
Computing the MST is central to many network problems, because itdetermines the lowest aggregate total for a set of
edges that maintains the connected property of a graph. Solving MST is useful for chip design and the
telecommunications industry because they are often concerned with computing a connectivity scheme that uses the
lowest total length of wire. In this lesso, you'll learn some limitations of the existing PriorityQueue implementation
as found in the Java Collections Framework, and you'll develop your own priority queue class using a novel data
structure, known as a heap.

Minimum Spanning Tree

A connected graph allows you to go from any vertex in the graph to any other vertex in the graph over its
edges. Given a connected graph G=(V,E), it's possible that the graph will still be connected even if you discard
many of its edges. A Spanning Tree for a graph is simply a graph STG=(V,SE) where SE is a subsetofthe
original edges in the graph such that the removal of any edge in SE from STG results in a disconnected graph.
There are many such spanning trees for a given graph. If each edge in the graph is associated with a positive
weight, you might want to find a minimum spanning tree for a graph whose accumulated edge weights is
minimum for all possible spanning trees.

To solve this problem efficiently, you can'tjust generate all possible spanning trees and select the one whose
accumulated edge weights is minimum; there are simply too many possible spanning trees. Atthe same
time, you are nottrying to find a unique spanning tree; there may be many spanning trees with accumulated
edge weights that all match the same minimum value.

Prim's Algorithm is an elegant solution to constructing a minimum spanning tree (MST) for a given graph by
using a greedy approach in which each step of the algorithm makes forward progress towards a solution
without reversing earlier decisions; Thatis, no backtracking is necessary.

This pseudocode describes the algorithm:

OBSERVE: pseudocode for Prim's Algorithm

computeMST (G)
MST = empty
S = some vertex in V
T=V -S

while (T is not empty) do
find edge (u,v) with lowest weight such that (u in S) and (v in T)
add (u,v) to MST
remove v from T
add v to S
return MST

At each step through the while loop, the algorithm finds the edge with lowest weight that crosses the
boundary from the set S (representing the vertices in the MST) and T (representing the vertices still to be
processed). This greedy approach will ensure that the accumulated weights of the MST grows by the smallest
possible increment with each step, ultimately resulting in a minimum spanning tree for the graph.

Let's go over this pseudocode on a specific example to make sure it's designed properly. Here is a sample
graph for which you will compute a minimum spanning tree:

,x ~
.,
OXEROLELO
\\. 71 f,

s . ! ,%5

Start with vertex 0 as the initial vertex in set S, which means T ={1, 2, 3, 4}. The edge (0,1) highlighted in red is
the edge between S and T with the lowest edge weight.

s = {0} s={0, 1} s={0,1, 2}
T={1,2, 3,4} T={2,3,4} T={3, 4)

The edge (0,1) is added to the MST and S and T are updated accordingly. In the middle graph above, the edge
(1,2) is the edge between S and T with the lowest edge weight, so this edge is added to the MST,and Sand T

are updated. In the third image above, the edge (2,4) is the edge between S and T with the lowest edge weight,
so itis added to the MST.

The final step in the algorithm below shows thatedge (2,3) is the edge between S and T with the lowest edge
weight, so itis added to the MST and the algorithm completes. You won't be able to find another spanning
tree for this graph with accumulated weights that is lower than the 11 computed here.

$=1{0, 1, 2, 3} $={0,1, 2,3, 4}
T={4} T=1{}

What data structures should you use to implement this algorithm? Well, you can use Collection objects to
representsets S and T, butthe most costly operation is within the while loop where you have to efficiently
find the edge with the lowestweight for all edges (u,v) where u belongs to S and v belongs to T. It seems like,
as S grows in size, itwill be increasingly complicated to compute this edge. If you had to check each edge that
exists between S and T, the performance of the algorithm would suffer.

How can a priority queue be used to solve this problem? The MST above is computed by starting at vertex 0,
so the three edges being inspected first are those directly connected to vertex 0: the edges to vertices 1, 3,
and 4. Note that vertex 2 is notyet "on the search horizon" so the distance from vertex 0 to vertex 2 must be
considered to be +Infinity. So, what if you were able to maintain a priority queue that contained all vertices with
a computed priority of the current shortest distance from any vertex in S? For example, at the start you could
insert the vertices 1, 3, and 4 into the priority queue with priorities 2, 8, and 4 respectively; vertex 2 would also
be in the priority queue, butits priority would be +Infinity. The priority queue would look like this: (1, p=2) > (4,
p=4) > (3, p=8) > (2, p=INF). The ordering in the priority queue is done according to increasing distance, so
the first vertex to be removed from the priority queue would be vertex 1. At this point, you could review the
neighbors of vertex 1 (in this case vertex 2) and determine to insert (2, p=3) into the priority queue; however,
this vertex already exists in the priority queue. Somehow you need to decrease the priority value associated
with a vertex that already exists in the priority queue. Technically, you want to find the key value associated with
vertex 2 in the queue and decrease its priority value from +INF to 3, such that the resulting priority queue is (2,
p=3) > (4, p=4) > (3, p=8).

Continuing from this priority queue, remove vertex 2 since it has the smallest priority value and you can
observe from the presence of the edge (2,4) that you can connect to vertex 4 with a distance of 1 instead of the
current distance of 4 as maintained in the priority queue. Similarly, with edae (2,3) vou can connect to vertex 3

with a distance of 4 instead of the current distance of 8 as shown in the priarit)‘/ qu’e-ue. To do that, you need to
find the key value associated with these two vertices in the queue and decrease that key value so that the
resulting priority queue is (4, p=1) > (3, p=5).

Now you're faced with a dilemma: locating a given elementin a priority queue is potentially an O(n) operation.
Altering the priority associated with an elementin the priority queue seems like it can only be done safely by
removing the elementfirst and then reinserting it with the new priority.

Start by creating a class to represent an edge in the computed minimum spanning tree.

& In the mst package, create an Edge class as shown:

CODE TO TYPE: Edge class

package mst;

public class Edge {
int start;
int end;

public Edge (int s, int e) {
start = s;
end = e;

}

public String toString() {
return "" + start + "-" + end;

}

The code below demonstrates the naive use of PriorityQueue from the Java Collections Framework. The
initial graph is represented as a two-dimensional adjacency matrix where the value of graph[i][j] is the
weight associated with the edge (i,j); if no such edge exists, then graph[i][j] = 0.

G In the mst package, create a Driver class as shown:

CODE TO TYPE: Driver

package mst;

public class Driver {
public static void main (String[] args) {
int[][] graph new int[][] {

{0, 2, 0, 8, 4},
{2, 0, 3, 0, 0},
{0, 3, 0, 5, 1},
{8, 0, 5, 0, 7},
{4, 0, 1, 7, 0}};

Edge[] mst = MST.compute (graph) ;

for (Edge e : mst) {
System.out.println(e + " (" + graphl[e.start][e.end] + ")");
}

The above code represents the graph used in the earlier example by an adjacency matrix. It computes a
minimum spanning tree (using the MST class that you will write shortly). The returned array mstfk] represents
the n-1 edges in the computed minimum spanning tree.

@r' In the mst package, create an MST class as shown:

CODE TO TYPE: MST class

package mst;
import java.util.*;

public class MST {
static Edge[] compute (int[][]
int n graph.length;
Edge[] mst new Edge[n-1];

graph) {

PriorityQueue<Pair> pg = new PriorityQueue<Pair>(n,

for (int 1 = 1; i < n; 1i++) {
pg.add(new Pair (i, Integer.MAX VALUE)) ;
mst[i-1] = new Edge (i, -1);
}
pg.add(new Pair (0, 0));
while (!pg.isEmpty()) {
int u = pg.remove () .key;
for (int v = 0; v < n; v++) {
int weight = graphlu] [Vv];
if (weight > 0) {
for (Pair pv : pqg) {
if ((pv.key == v) && (weight < pv.priority))

mst[v-1].end = u;
pg.remove (pv) ;
pv.priority
pg.add(pv) ;
break;

weight;

return mst;

new PriorityComparator ()

{

G Save all of the new files and run the Driver class; you see output which corresponds to the manual

computation from earlier. When given a connected graph of n vertices, the corresponding output will have n-1

edges:

INTERACTIVE SESSION: Output of Driver

Let's look at this code more closely:

OBSERVE: MST initialization

int n = graph.length;
Edge[] mst = new Edge[n-1];

PriorityQueue<Pair> pg = new PriorityQueue<Pair>(n, new PriorityComparator());
for (int i = 1; i < n; i++) {
pg.add(new Pair (i, Integer.MAX VALUE)) ;
mst[i-1] = new Edge (i, -1);
}
pg.add (new Pair (0, 0));

This code initializes the data structures used by the algorithm. Prim's Algorithm starts at some vertex—for the
implementation, you will start at vertex 0, so the priority queue will initially contain Pair objects for each of the
other n-1 vertices with +Infinity as the computed minimum distance. The final initialization code inserts

vertex 0 into the priority queue with a priority of 0, which ensures that this Pair object will be the firstone
removed from the priority queue.

All of the logic is contained in this while loop:

OBSERVE: Main loop of Prim's Algorithm

while ('pg.isEmpty()) {
int u = pqg.remove () .key;

for (int v = 0; v < n; v++) {

if (weight > 0) {
for (Pair pv : pq) {
if ((pv.key == v) && (weight < pv.priority)) {

mst[v-1l].end = u;
Pg.remove (pv) ;
pPv.priority = weight;
pg.add (pv) ;
break;

This code implements Prim's Algorithm. While the priority queue pq is not empty, the Pair object
with lowest priority isremoved and its vertex u is identified. The firstfor loop checks all other
vertices, v, .Ifa direct edge is found, weight will be
avalue greaterthan zero, so you have to determine if this new distance is smaller than the current
shortestdistance to v already being maintained in pq. Ifit turns out that weight is smaller,the old pair pv
must be removed from pq and reinserted with the lower priority.

You can evaluate the performance of this implementation by reviewing the number ofloops in the code.
Essentially there is a triply nested loop, each of which iterates over all n vertices. This gives the worst-case

estimate of O(n3) for how frequently elements in the priority queue are adjusted. The add and remove

operations on a PriorityQueue perform in O (log n), so the performance for the entire algorithm is O (n3 log n).
Surely we can do better!

Heap Data Structure

The previous section requires a data structure that returns the smallestelement ofa collection in constant
time; butitalso needs to be able to locate a particular elementin the collection and reprioritize it efficiently
(which means in O(log n) time).

There is an interesting data structure known as a heap that can serve our purposes. A heap is a binary tree
with a structure that ensures two properties:

e Shape property: Aleaf node atdepth k > 0 can existonly if all 251 hodes atthe previous level k-
1 exist. Additionally, nodes at a partially filled level must be added from left to right.

e Heap property: Each node in the tree contains a value smaller than or equal to either of its two

children (if it has any).

The image below represents a sample heap of 16 integer values from 0 to 15:

oo
o1 02
D& 07 05 03

NN N N

0s 12 13 08 14 10 11 04

/

15

The heap consists of a number of levels. The value associated with each node in the heap is guaranteed to
be smaller than or equal to both ofits children. For this reason, the root of the heap always contains the
smallest value in the entire heap. Note that each level in the heap is fully filled before new elements are added
to the nextlevel.

Given the rigid structure imposed by the shape property, a heap can be implemented efficiently within an array
A withoutlosing any of its structural information. The image below demonstrates how a heap can be stored in
an array by storing the element value for a node in the array position identified by the node's label. The order
of the elements within A can be read from left to right as deeper levels of the tree are explored.

leveld levell level 2 level 3 level 4

f_lﬂl' . 11 A L1 . lf_lﬂ

0010110210607)105]03109112]13]|08]14§10|11]04]15

Develop code that allows you to create a heap efficiently. In this lesson, we assume that you know the
maximum size of the heap in advance when you constructit. Let's get started.

& In the mst package, create a new class named Heap as shown:

CODE TO TYPE: Heap class

package mst;

public class Heap {
int n = 0;
Pair[] elements;

public Heap (int n) {
elements = new Pair[n];

}

public boolean isEmpty () {
return (n == 0);

}

public void insert (int key, int priority) {
int idx = n++;
while (idx > 0) {
int parent = (idx-1)/2;
Pair p = elements[parent];

if (priority >= p.priority) { break; }
elements[idx] = p;
idx = parent;

}

elements[idx] = new Pair (key, priority);

}

Let's take a closerlook at this code:

OBSERVE: Construct Heap Storage

int n = 0;
Pair|[] elements;

public Heap (int n) {
elements = new Pair([n];

}

public boolean isEmpty () {
return (n == 0);

}

The elements array will store the Pair objects representing the elements in the priority queue. Attribute n
counts the number of elements in the priority queue.

This heap will be used as a priority queue so each elementin the heap stores a Pair of values, where each
key has an associated priority with lower integer values that represent greater importance. To onstruct a heap
ofa maximum size you just need to reserve room for n potential Pair elements. The heap is empty when its
n attribute is 0.

To insertan element, recognize that the values in the heap are not fully ordered. Rather, the only global
property is that the values on any path of nodes from the rootto a leaf stay the same orincrease. The heap
was created with sufficient space for all values that you will insert, so when itcomes time to insert a value, you
can place itin the "next" array location. In doing so, you continue to conform to the Shape Property of the
heap. However, when inserting an element at this location, you may violate the Heap Property, so you'll have
to make some adjustments. The good news is that you don't have to reorder all elements in the heap; rather,
you need to focus on the ancestor nodes of the new element, going all the way back to the root of the heap.

Suppose you insert"05" into the heap of 16 elements shown earlier. First, it's placed in the 17th location:

oo

—

01 02

oe 07 05 03
os 12 13 08 14 0 11 04

15 05 Is 05 smaller than its parent 09?2 Swap values if true

Since 05 is smallerthan 09, the two values in the nodes are swapped. Continue up to the parentnode on
level 2 to see ifits contents are smaller than 05.

AN

06 07 05 03
05 12 13 08 14 10 11 04
15 09 Is 05 smaller than its parent 06? Swap values if true

Once again, the two values in the nodes are swapped. Keep going, checking with the parentnode on level 1to
see ifits contents are smaller than 05.

AN

07 05 03

05
0o 12 13 0B 14 o0 11 04

15 09 Is 05 smaller than its parent 01?7 NO! You're Done

Once you hita node with a value that's smaller than the newly added element, you're done. The heap is now
guaranteed to have both its Heap and Shape properties. In the worst case, you only have to check and

potentially swap O (log n) values in the heap, so inserting an elementis O(log n) and constructing a heap ofn
elements in the is O(n log n).

Let's look closer atthe insert method:

OBSERVE: Insert (key, priority) into Heap

public void insert (int key, int priority) {
int idx = n++;
while (idx > 0) {
int parent = (idx-1)/2;
Pair p = elements|[parent];

if (priority >= p.priority) { break; }
elements[idx] = p;

idx = parent;

idx Pair

The heap is aware that you are trying to add a key value with an associated priority. The insert method first
increments the count of elements n and considers the new Pair location atindex location idx. Given
an index location in the heap of idx, the parent node is computed as (idx-1)/2. If the new priority being
added is larger than this Pair's priority, you're done, and the final line of the method Pair

idx . If, however, you still have to
swap node values, move the parent Pair p within the while loop into the child's location idx and repeat,
setting idx to the parentlocation to move up a level to check once again for the Heap Property. If you continue
to swap values all the way up to the root (which has index location 0), the while loop will exit and the new
Pair will be placed there. In the worst case, the while loop requires O (log n) iterations.

To use the heap data structure as a priority queue, you must be able to locate and remove the element with
the lowest priority. As stated earlier, the root of the heap will always contain the Pair of the lowest priority.
However, you can't simply remove this node because that would violate both the Heap and Shape properties.
Instead, remove the root and replace it with the last Pair in the heap. In doing so, you will maintain the Shape
property, but now you'll have to manipulate the heap to restore the Heap property, which states that each
node mustbe smaller than both ofits children.

Add this method to the end of the Heap class:

CODE TO TYPE: smallest() method for Heap

public int smallest () {
int key = elements[0].key;
Pair last = elements[--n];
elements[0] = last;

int idx = 0;
int child = 2*idx+1;
while (child <= n) {
Pair smaller = elements[child];
if (child < n) {
if (smaller.priority > elements[child+1].priority) {
smaller = elements[++child];
}
}

if (last.priority <= smaller.priority) { break; }

elements[idx] = smaller;
idx = child;
child = 2*idx+1;

}

elements[idx] = last;
return key;

}

Let's look at this code more closely.

OBSERVE: smallest() method for Heap

public int smallest () {
int key = elements[0] .key;
Pair last = elements[--n];
elements[0] = last;

int idx = O0;
int child = 2*idx+1;
while (child <= n) {
Pair smaller = elements[child];
if (child < n) {
if (smaller.priority > elements[child+1].priority) ({
smaller = elements[++child];
}
}

if (last.priority <= smaller.priority) { break; }

elements[idx] = smaller;
idx = child;
child = 2*idx+1;

}

elements[idx] = last;
return key;

}

It starts by remembering the key of the Pair with lowest priority (thatis, the rootofthe heap), since
that's the value being returned by the method. Then it takes the last Pair in the heap and moves it into
the root position. Now the while loop is similar to the loop within the insert method. The difference is
that you are starting from idx=0 (the root) and working down some path in the heap, to find the smaller of the
two children of position idx. The first child is found atindex location 2*idx+1 and the second at idx*2+2. The
above code finds the child with the lowest priority and breaks out of the loop if the Heap
property is still maintained. Otherwise it swaps the smaller value with the parentlocation of idx and
continues down that child path. This while loop will never iterate more than /og n times.

& To testthe heap in use, create a new class named HeapDriver in the mst package as shown:

CODE TO TYPE: HeapDriver class

package mst;

public class HeapDriver
public static void main(String[] args) {
Heap heap = new Heap (16);
for (int i = 15; i >= 0; i--) {
heap.insert (i, 1i);

}

for (Pair p : heap.elements) {
System.out.print (p.priority + " ");

}

System.out.println () ;

while (!'heap.isEmpty()) {
System.out.println (heap.smallest());
}

Q’ Save and run this class; it constructs a heap of 16 values and repeatedly adds the integers from 15 down
to 0 to fill the heap. The program prints out a representation of the array-based storage of the heap (shown
earlier) and then demonstrates that it can return the smallest elementin the heap, one ata time.

INTERACTIVE SESSION: Output of HeapDriver

12675391213 8 14 10 11 4 15

0
0
1
2
3
4
5
6
7
8

9

10
11
12
13
14
15

Prim's Algorithm Implementation

To complete this lesson, you need to modify the Heap to be able to support Prim's Algorithm, which needs to
locate a value within the heap and decrease its priority value. To make this work, you need to make a number
of modifications to Heap:

CODE TO TYPE: Modifications to Heap

package mst;

public class Heap {
int n = 0;
Pair[] elements;
int[] positions;

public Heap (int n) {
elements = new Pair[n];
positions = new int[n];

}

public boolean isEmpty () {
return (n == 0);

}

public void insert (int key, int priority) ({
int idx = n++;
while (idx > 0) {
int parent = (idx-1)/2;
Pair p = elements|[parent];

if (priority >= p.priority) { break; }

elements[idx] = p;
positions|[p.key] = idx;
idx = parent;

}

elements[idx] = new Pair (key, priority);
positions[key] = idx;

}

public int smallest () {
int key = elements[0].key;
Pair last = elements[--n];
elements[0] = last;

int idx = 0;

int child = 2*idx+1;

while (child <= n) {
Pair smaller = elements[child];
if (child < n) {

if (smaller.priority > elements|[child+1l].priority)

smaller = elements[++child];

}

if (last.priority <= smaller.priority) { break;
elements[idx] = smaller;
positions[smaller.key] = idx;

idx = child;
child = 2*idx+1;
}

elements[idx] = last;
positions([last.key] = idx;
return key;

void decreasePriority (int key, int newPriority) {
int size = n;
n = positions[key];
insert (key, newPriority) ;
n = size;

{

The essence of the change is to be able to store the location in the array-based heap of each key value in the
heap. This works because the key values themselves are integers in the range [0, n). Every time a Pair object
pis inserted into elementsfidx], there is a corresponding positions[p.key] = idx to record that fact.

The reason to maintain positions is evidentin the final method being added to Heap, which decreases the
priority for a given key value found in the heap. In order to decrease priority of a Pair, you need to reduce the
associated priority value with the Pair. This method only works if you are truly decreasing the priority
(increasing the priority would break the Heap Property). This method works by reusing the insert method.
Firstit truncates the heap up to, but notincluding the location where key is currently stored in the heap (itdoes
this by setting nto be the key's location in the heap). Thenitinvokes insert using the original key
value, but the new priority; as discussed earlier, this will reestablish the Heap Property. Finally, since the
newPriority must be lower, you can expand the size of the heap back to its original size and still have
a working heap.

Now you're ready to write a revised Prim's Algorithm that uses the heap data structure as a priority queue.

& In the mst package, create a HeapMST class as shown:

CODE TO TYPE: HeapMST class

package mst;

public class HeapMST {
PriorityComparator comp = new PriorityComparator();

static Edge[] compute (int [][] graph) {
int n = graph.length;
Edge[] mst = new Edge[n-1];

boolean inQueue[] = new boolean [n];
Heap heap = new Heap(n);
int[] priorities = new int[n];

heap.insert (0, 0)
for (int i =

’ ;

1; 1 < n; i++) |
priorities[i] =

(

] Integer.MAX VALUE;
heap.insert (i, priorities[i]);
inQueue[i] true;
mst[i-1] = new Edge (i, -1);
}
while ('heap.isEmpty()) {
int u = heap.smallest();

inQueue[u] = false;

for (int v = 0; v < n; v++) {

int weight graphlu] [V];
if (weight > 0 && inQueue[v]) {
if (weight < priorities([v]) {
mst[v-1].end = u;
priorities[v] = weight;

heap.decreasePriority (v, weight);

}

}

return mst;

}

The structure of this code is probably familiar to you from the MST class. Let's take a closer look:

OBSERVE: Initializing for Prim's Algorithm

static Edge[] compute (int [][] graph) {
int n = graph.length;
Edge[] mst = new Edge[n-1];

boolean inQueue[] = new boolean [n];
BinaryHeap heap = new BinaryHeap (n);
int[] priorities = new int[n];

heap.insert(0,0) ;

for (int i = 1; i < n; i++) {
priorities[i] = Integer.MAX VALUE;
heap.insert (i, priorities([i]):;
inQueue[i] = true;
mst[i-1] = new Edge(i, -1);

This implementation uses two additional arrays: priorities stores the current best distance from any vertex
in set S to the vertices remaining in T. inQueue determines whether a given vertex is currently in the priority
queue. Initially the heap is constructed with the designated start vertex 0 being inserted with greatest
importance (a priority of 0), while the other n-1 vertices are inserted with leastimportance (maximum
priority). inQueue is setto true for the n-1 vertices in the priority queue. The mst array will store the
computed edges for each vertex. Currently their end values are -1 to declare that they have yet to be
computed.

The real logic occurs in the while loop:

OBSERVE: Prim's Algorithm Implementation

while ('heap.isEmpty()) {
int u = heap.smallest() ;
inQueue[u] = false;

for (int v = 0; v < n; v++) {
int weight = graphlu] [v];
if (weight > 0 && inQueue[v]) {
if (weight < priorities(v]) {
mst[v-1].end = u;
priorities[v] = weight;
heap.decreasePriority (v, weight) ;

}

As long as the heap is notempty, itretrieves the vertex uwith the smallest distance to any vertexin
set S. Now thatthis vertex is outofthe queue, inQueue[u] is set to false. The innerforloop still must
iterate over all the other n vertices to find if there is an edge (u,v) with a distance that's shorter than previously
recorded. The priorities array lets the code determine this quickly. If so, the priority is adjusted in the
priorities array and the element's location is adjusted in the priority queue using the
decreasePriority method.

To evaluate the performance of this algorithm, assume there are n vertices and k edges in the graph. During
the initialization phase, each vertex is inserted into the priority queue for a total costof O(n log n). The
decreasePriority method requires no less than O (log n) time. It can be called 2*k times at mostsince each
vertex is removed once from the priority queue and each edge in the graph is visited exactly twice. So, total
performance is O ((n+2*k) log n). If the graph is dense, k can be as high as n*(n-1)/2, so the worstcase

performance is O(n2 log n). If the graph is really sparse, then kis on the order of O(n) which results in O(n log
n) performance.

Evaluating Minimum Spanning Tree Implementations

Compare these two implementations head to head on the same graph.

& In the mst package, create a Comparison class as shown:

CODE TO TYPE: Comparison class

package mst;

public class Comparison {
public static void main (String[] args) {
System.out.println ("n\tHeapMST\t\tMST") ;
for (int n = 16; n <= 1024; n*= 2) {
int[][] graph = new int[n] [n];
for (int i = 0; 1 < n-1; i++) {
for (int j = i+1; j < n; J++) |
int w = (int) (Math.random() *n) ;
graph[i] [J] = w;
graph[j][1i]
}
}

wy

System.gc () ;

long now = System.nanoTime () ;

Edge[] mst = MST.compute (graph) ;

long then = System.nanoTime () ;
System.gc () ;

Edge[] mst2 = HeapMST.compute (graph) ;
long last = System.nanoTime () ;

for (int i = 0; i1 < mst.length; i++) {
if ((mst[i].start != mst2[i].start) |
(mst[i].end != mst[i].end)) {
System.err.println ("ERROR") ;
System.exit (0);
}
}

float m = 1000000;
System.out.println(n + "\t" + (last-then)/m + " \t" + (then-now)/m);

0 Save and run the code:

INTERACTIVE SESSION: Comparison Output

k HeapMST MST

16 4.720959 2.177451
32 3.310271 2.00772
64 3.199684 1.886284
128 4.528132 10.268524
256 5.046072 76.359505
512 5.648354 596.32855

1024 12.14046 4683.4565

For small values of n, the original MST implementation outperforms the HeapMST implementation.
However, the true nature of the heap implementation demonstrates rapidly thatit's incredible efficiency when
compared against the obvious counterpart.

Lessons Learned

The Collection Framework offers a well-designed set of classes that will be useful when you apply the
common data list, hash, and tree data structures. Atthe same time, the designers created a uniform interface
to all Collection classes. In doing so, they created methods that do not behave as efficiently as other
specialized data structures. In particular, the PriorityQueue Collection class will provide the exact behavior for
priority queues with elements that cannot change priority once they've been inserted into the queue. Prim's
Algorithm demands this behavior, so the default PriorityQueue implementation will not suffice. You must

always read the documentation that accompanies the Collection Framework classes, because each class
provides information about the performance of theirimportant methods.

You can improve performance by storing additional information to reduce the number of computations
needed. The HeapMST implementation is able to reduce performance time with only a modestinvestmentin
storage. In your own algorithms, try to make this tradeoff to achieve the same benefits.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Binary Tree Data Structure

Lesson Objectives

After completing this lesson, you will be able to:

e describe the structure of a Binary Search Tree (BST).
e draw the BST afterinserting a number of elements in a specific order.
e demonstrate how to rebalance an AVL tree after inserting a node.

Binary Tree Data Structure
A Binary Search Tree is a recursive data structure central to computer science. In earlier lessons we saw how Linked
Lists provide dynamic behavior thatimproves on contiguous arrays. However, Linked Lists only provide O(n) behavior
for determining whether an elementis in the list.

Given an array of sorted items, you can use Binary Array Search to determine efficiently whether the array contains a
given item in O(log n) time. This code shows how to implement the algorithm:

g Create a new Java project named BinaryTree for this lesson's work, and assign itto the Java6_Lessons
working set.

8 In the BinaryTree project's Isrc source folder, create a binary package.

& In the binary package, create a BinaryArraySearch class as shown:

CODE TO TYPE: BinaryArraySearch

package binary;

public class BinaryArraySearch {
public static void main (String[] args) {
int[] vals = new int [] { 2, 5, 8, 11, 15, 17 };

System.out.println ("7 goes in position " + binarySearch (vals, 7));
System.out.println ("2 found in position " + binarySearch (vals, 2));

}

public static int binarySearch(int[] A, int wval) {
int low = 0;
int high = A.length-1;
while (low <= high) {
int mid = (low + high)/2;
if (val < A[mid]) {
high = mid-1;
} else if (val > A[mid]) {
low = mid + 1;
} else {
return mid;
}
}

return - (low + 1);

}

0’ Save and run it:

OBSERVE: Sample execution of BinaryArraySearch

7 goes in position -3
2 found in position 0

Because 7 does notappear in the array, you can use the return value from binarySearch to determine where in the
array 7 could be inserted to maintain the sorted order. When the return value is less than zero, negate it and subtract 1
to find the correctlocation to store the value in A. In this case, 7 should be inserted atindex location 2, which would
place itbetween 5 and 8 as it should be. The second line of output shows that the search is able to locate element 2 at
index location 0.

Arrays are unable to delete and insertitems efficiently while maintaining a specific ordering of elements. However,
Linked Lists can insert elements anywhere in the collection, but then searching for a given item wil require O(n) time.
Binary Search Trees offer the impressive ability to maintain items in a structured order and on average, it can support
adding, removing, and searching for items in O(log n) time.

In this lesson, you will construct a Binary Search Tree implementation from scratch. Through various performance
code you'll see that the naive implementation can lead to worst-case performance of O(n) for all key operations. Atthe
end ofthe lesson, you'll learn how to "balance" the tree to improve the average case performance.

Naive Binary Tree Implementation

A Binary Search Tree is a finite set of nodes where each node stores a typed value known as the key for the
node. A non-empty BST contains a special root node thatis the ancestor of all other nodes in the BST. Each
node nin the BST refers to two binary search subtrees, left and right, and obeys the property thatif k is the key
for node n, then all keys in left are <=k and all keys in right are >k. This property is known as the binary search
tree property. If subtrees left and right are null, the node is called a leaf node.

Given a BST, the three primary operations are:

e Add anew key.

e Remove a key.

e Determine if a key value exists.
There can be two or more nodes in the search tree with the same key value, but if you want to restrict the tree
to conform to Set-based semantics as defined in the Java Collections Framework while ensuring that the

same implementation will work, you need to prevent the insertion of duplicate keys. For this lesson, assume
that duplicate keys may existin the BST.

& In the Isrc source folder binary package, create a BinaryNode class as shown:

CODE TO TYPE: BinaryNode class

package binary;

public class BinaryNode<E extends Comparable<E>> ({
final E key;
BinaryNode<E> left;
BinaryNode<E> right;

public BinaryNode (E k) {
this.key= k;
}

public int size() {
return 1 + size(left) + size(right);

}

int size (BinaryNode<E> n) {
if (n == null) { return 0; }
return n.size();

}

A BinaryNode<E> class represents a node in the BST with a corresponding key value. BinaryNode is a
generic class with the parameter, E, that determines the type of the key attribute. The only restriction is that the

type of the key mustimplement Comparable, otherwise there will be no way to order the key values.

BinaryNode defines left and right attributes to refer to the left and right subtrees, respectively. The size()
method counts the nodes in a BST rooted at a given node. Because a BST is a recursive data structure, the
implementation of size() is also recursive. Throughout this lesson, you see how to apply recursion to
implement the required BST operations. The size(n) 'll helper method allows size() to be written in its
simplestform. So, the size ofa BST rooted ata given node n is 1 plus the respective sizes of the left and right
subtrees orn.

Because the BST is composed of BinaryNode objects representing keys in the BST, we need to write an
add(E) method thatinserts a key into the BST rooted at a given node. Add these methods to the end ofthe
BinaryNode class:

CODE TO TYPE: Modifications to BinaryNode

void add (E k) {
int rc = k.compareTo (key) ;
if (rc <= 0) {
left = add(left, k);
} else {
right = add(right, k);
}
}

BinaryNode<E> add(BinaryNode<E> parent, E k) {
if (parent == null) {
return new BinaryNode<E> (k) ;

}

parent.add (k) ;
return parent;

}

The binary search tree property states that all keys in the left subtree of a node are less than or equal to the
node's key, and all keys in the right subtree of a node are greater than the node's key. For this discussion,
assume thatadd(k) is invoked on node n where k is less than or equal to n's key. There are two cases to
consider:

e The node n has no left subtree.
e The node n has a left subtree.

If there is no left subtree then a new node containing this key is created to be the left subtree of n. This is the
case in add(parent,k) when parent is null. If, however, the left subtree does exist, then add(parent k)
requests to add k recursively to that subtree. add(parent k) either returns the new node which was created or
the existing node that now has a descendant node representing the newly added key. These two functions
present another example of double recursion, where each function calls the other repeatedly until the
computation terminates. Note that the structure of these two methods is similar to the size () method
presented earlier.

Now you can create a BinaryTree class to take advantage of this add capability.

& In the binary package, create a BinaryTree class as shown:

CODE TO TYPE: BinaryTree class

package binary;
public class BinaryTree<E extends Comparable<E>> {
BinaryNode<E> root = null;

public int size() {
if (root == null) { return 0; }

return root.size();

}

public void add (E k) {

if (root == null) {
root = new BinaryNode<E> (k) ;
return;

}

root = root.add(root, k) ;

Let's take a closerlook ata couple of things.

OBSERVE:
public int size() {
if (root == null) { return 0; }

return root.size();

}

public void add (E k) {
if (root == null) {
root = new BinaryNode<E> (k) ;
return;

}

root = root.add(root,lk) ;

}

The BinaryNode attribute root represents the top of the BST; all nodes in the BST are descendants ofroot.

When root == null, the BST is considered to be empty.

The add(E k) code demonstrates an implementation style necessary for BinaryTree. If root is null, all

methods have to handle the special case where the BST is empty. In this case, ifroot is null,the root of

the BST is set to anewBinaryNode with the given key. Otherwise, this key is added to the

subtree rooted at root, using the add(parent k) method described earlier. Doing so allows the root to

be updated as needed.

Until you add a contains(E k) method, there will be no easy way to validate that the above methods work.

Add these methods to the end of BinaryTree:

CODE TO TYPE: Modifications to BinaryTree

public boolean contains (E k) {
return contains (root, k);

}

boolean contains (BinaryNode<E> parent, E k) {

if (parent == null) { return false; }
int rc = k.compareTo (parent.key);
if (rc == 0) {

return true;
} else if (rc < 0) {

return contains (parent.left, k);
} else {

return contains (parent.right, k);

}

public int height () {
if (root == null) { return 0; }

return height (root) ;

}

int height (BinaryNode<E> n) {
if (n == null) { return 0; }

return 1 + Math.max(height (n.left), height(n.right));
}

This method is placed in the BinaryTree class, rather than BinaryNode, because the notion of "containment”
is a property of the BST, not an individual node. Also, doing so allows you to avoid constantly checking to find
outwhether the left orright subtree is empty. Specifically, contains(parent k) returns false when parent
node is null. This method recursively calls itself on either the left subtree or the right subtree if the node's key
doesn't match the target key. Naturally, once a match is found, true is returned.

You can demonstrate proper functioning of BinaryTree with this JUnit test case:
7 Create a test source folder if it doesn't already exist.

H# Create a binary package.

ET in the Itest source folder binary package, create a JUnit Test Case named TestBinaryTree as
shown:

You may be prompted to choose JUnit3 or JUnit4. [fyou're don't know which to choose, go
' Note with JUnit 3. Either is okay, but the resulting file may look slightly different from the one shown '
' here. '

CODE TO TYPE: TestBinaryTree

package binary;

import java.util.*;

import junit.framework.TestCase;

public class TestBinaryTree extends TestCase {

public void testAdditions () {
int numToAdd = 100;
ArrayList<Integer> vals = new ArraylList<Integer>();
for (int 1 = 1; 1 < numToAdd; 1 += 2) {
vals.add (i) ;
}
Collections.shuffle(vals);
Integer[] add = vals.toArray(new Integer[]{});

BinaryTree<Integer> bst = new BinaryTree<Integer>();

for (int i : add) {
bst.add (1) ;
}

assertEquals (numToAdd/2, bst.size());

for (int i = 1; 1 < numToAdd; i++) {
if (1 % 2 == 1) {
assertTrue (bst.contains(i));
} else {
assertFalse (bst.contains(i));

}

Launch this JUnittest case; it validates that the BST only contains the odd numbers from 1to 100.

Evaluating Binary Tree Implementation

To determine the efficiency of BinaryTree, you need to identify the worst case and average case execution of
its methods. You might be able to identify the worst case behavior, thatis, when keys are inserted into a BST
in increasing sorted order. For example, consider adding the numbers from 1to 10 into a BST. Each newly
inserted key becomes the right-mostnode in the BST. In fact, the structure more closely resembles a linked
listthan a tree because none of the nodes in the BST have a left subtree.

To demonstrate the performance of the add(k) method in BinaryTree, write this class:
H In the BinaryTree project, create a I[performance source folder.
H# In the Iperformance source folder, create a binary package.

& In the binary package, create an Evaluate class as shown:

CODE TO TYPE: Evaluate class

package binary;
import java.util.*;

public class Evaluate {
static int numTrials = 100;

public static void main(String[] args) {

System.out.println ("N\tShuffled Stats & Time\tOrdered Stats & Time");
System.out.println("----\t-———=—————————mm \t——mmm ") ;
for (int n = 128; n <= 65536; n *= 2) {
int totalShuffledHeight = 0;
int totalOrderedHeight = O0;
long totalShuffled = 0;
long totalOrdered = 0;
int min = n;
int max = 0;
for (int t = 0; t < numTrials; t++) {
ArrayList<Integer> vals = new ArrayList<Integer>();
for (int i = 1; 1 < n; 1i++) {
vals.add (i) ;
}
Integer[] ordered = vals.toArray(new Integer[]{});
Collections.shuffle (vals);
Integer[] shuffled = vals.toArray(new Integer[]{});

BinaryTree<Integer> bst = new BinaryTree<Integer>();
long now = System.nanoTime () ;
for (int i : shuffled) {
bst.add (1) ;
}
totalShuffled += (System.nanoTime () - now);

int h = bst.height();

if (h < min) { min = h; }
if (h > max) { max h; }
totalShuffledHeight += h;

bst = new BinaryTree<Integer>();
now = System.nanoTime () ;
for (int i : ordered) {
bst.add (i) ;
}
totalOrdered += (System.nanoTime () - now);
totalOrderedHeight += bst.height();
}

System.out.println(n + "\t[" + min + "-" + max + ", avg:" +
totalShuffledHeight/numTrials + "] " +
totalShuffled/numTrials + "\t[avg:" + totalOrderedHeight/numTrials + "

totalOrdered/numTrials) ;

Evaluate conducts 100 random trials of creating BSTs with n nodes, ranging from n=128 to n=65536; n keys
(1..n)are inserted. Let's take a closer look at this code:

OBSERVE: Creating a BST from keys inserted in random order

ArraylList<Integer> vals = new ArrayList<Integer>();
for (int i = 1; 1 < n; i++) {

vals.add (1) ;
}
Integer|[] ordered = vals.toArray(new Integer[]{}):
Collections.shuffle(vals) ;
Integer[] shuffled = vals.toArray(new Integer[]{}):

BinaryTree<Integer> bst = new BinaryTree<Integer>();
long now = System.nanoTime () ;
for (int i : shuffled) {
bst.add (1) ;
}
totalShuffled += (System.nanoTime () - now);

int h = bst.height();

if (h < min) { min = h; }
if (h > max) { max = h; }
totalShuffledHeight += h;

Two arrays of N keys are created; ordered contains the keys in order while shuffled is created by using the
Collections.shuffle method to distribute the keys randomly. The code conducts 100 trials and records the
total time (in nanoseconds) required to add all keys to the BST. The code estimates the average costof
adding a random key to the BST by averaging the total time.

In addition, the code maintains statistics on the height of the BSTs generated during this process. For the
random BSTs, itrecords the min and max heights of the BSTs and computes the total height so it can report
on the average heightfor n keys. Similar code records statistics for the BST generated from the ordered
insertion of keys. You want to know the average height of the BST because that will determine the
performance of the contains method.

Here is sample output of Evaluate; your mileage may vary:

OBSERVE: evaluating BinaryTree Implementation

N Shuffled Stats & Time Ordered Stats & Time
128 [11-18, avg:14] 26110 [avg:127] 90122
256 [14-23, avg:16] 35776 [avg:255] 326004
512 [16-25, avg:19] 83298 [avg:511] 1485010
1024 [19-26, avg:22] 168682 [avg:1023] 6234518
2048 [21-31, avg:25] 392221 [avg:2047] 26031424
Exception in thread "main" java.lang.StackOverflowError
at binary.BinaryNode.add (BinaryNode. java:24)
at binary.BinaryNode.add (BinaryNode. java:37)
at binary.BinaryNode.add (BinaryNode. java:28)

The minimum heightofa BST with n nodes is log(n). The average height of the BST created from the shuffled
values is about twice the minimum. Also, the average time (in nanoseconds) to search for all nitems grows
proportionally with n. For example, when n grows from 128 to 512 (a four-fold increase) the time to search for
all n numbers takes 3.19 times as long. This is much differentin the BST constructed from the ordered keys.
The height of the BST is n-1 (which means thatit's really a linked list). Also, when n grows from 128 to 512, it
takes more than 16 times as long to complete all n searches.

Typically you do not have advance warning of the order of the elements being added into the BST, so you
need some way to avoid poor performance due to the elements being close to sorted when they were added
into the BST. In addition, when the BST degenerates to a Linked List (because items are inserted in sorted
order) the recursive add method can cause a StackOverflowError, as shown above.

Rebalancing Binary Trees

The smallest heightfor a tree with n elements is O(log n), which results in a perfectly balanced tree with the left
subtree of the root containing roughly the same number of values as the right subtree of the root. This
balanced property should apply recursively to all nodes in the tree, notjustthe root. You could try to rebuild
the entire tree after each insertion to make sure that each node is balanced, but that would require way too

much work. Instead, find some incremental strategy that adjusts the structure of the tree only when itbecomes
unbalanced.

An AVL tree (named after its inventors, Adelson-Velskii, and Landis) is a self-balancing BST first described in
1962. In the Collections Framework, the TreeMap class is implemented using Red-Black trees, which are
another form of self-balancing binary tree. After completing this lesson, you'll be able to compare these two
approaches to determine which provides the best performance.

Let's define the concept of height with AVL nodes. The height of a leaf node is 0 since it has no children.
Recursively define the height of an AVL node to be 1 greater than the maximum of the height values of its 2
children nodes (if atleast 1 exists). To complete this definition, consider the height of a non-existent child
node to be -1. The height difference for a node is defined as heighft(left) - height(right), thatis, the height of the
left subtree minus the height of the right subtree. An AVL must enforce the AVL Property in every node,
namely, that the height difference for any node is either-1,0 or 1.

H# In the Isrc source folder, create an avl package.

& In the avl package, create an AVLBinaryNode class as shown:

CODE TO TYPE: AVLBinaryNode class

package avl;

public class AVLBinaryNode<E extends Comparable<E>> {
E key;
int height;

AVLBinaryNode<E> left;
AVLBinaryNode<E> right;

public AVLBinaryNode (E k) {
height = 0;
key = k;

}

void computeHeight (AVLBinaryNode<E> n) {
int height = -1;
if (n.left != null) {
height = Math.max (height, n.left.height);
}
if (n.right != null) {
height = Math.max (height, n.right.height);
}

n.height = height + 1;
}

int heightDifference (AVLBinaryNode<E> n) {
if (n == null) { return 0; }

int leftTarget = 0;
if (n.left != null) {
leftTarget = 1 + n.left.height;

}
int rightTarget = 0;
if (n.right != null) {
rightTarget = 1 + n.right.height;
}

return leftTarget - rightTarget;

To be as efficient as possible, each AVLBinaryNode stores its computed heightin addition to the expected
attributes of key, left, and right. Thatis, rather than dynamically computing the height of a node when
requested, you only perform this computation when a node is added to the AVL tree. Finally, the
heightDifference method computes the height difference for a given node, n. As with a regular binary tree,
you need to define an AVLBinaryTree class.

& In the avl package, create an AVLBinaryTree class as shown:

CODE TO TYPE: AVLBinaryTree

package avl;
public class AVLBinaryTree<E extends Comparable<E>> {
AVLBinaryNode<E> root = null;

public void add (E k) {

if (root == null) {
root = new AVLBinaryNode<E> (k) ;
return;

}

root = root.add(root, k);

}

public boolean contains (E k) {
return contains (root, k);

}

boolean contains (AVLBinaryNode<E> parent, E k) {
if (parent == null) { return false; }

int rc = k.compareTo (parent.key);
if (rc == 0) {

return true;
} else if (rc < 0) {

return contains (parent.left, k);
} else {

return contains (parent.right, k);

}

This code is nearly identical to its BinaryTree counterpart. The code won't compile until you complete the
add method in AVLBinaryNo de—be careful with this method. Itis possible after just three additions to have

the rootnode of a binary tree violate the AVL Property. Consider an AVL tree with just two nodes, constructed
by adding 50 and then 30:

Height=1 50

d

Height=0 30

To demonstrate that this tree supports the AVL property, you must compare the heights of the children of the
root node (which stores the value 50). However, there is no right subtree for this node. In this situation, the
height of an empty child subtree is -1. The height difference for the rootnode is 0 - (-1) or +1, which satisfies
the AVL property.

Now insert the value 10 into the tree, which results in this structure:

Height=2 50

e

Height=1 30

g

Height=0 10

First confirm that this binary tree is a BST by making sure that the value for each node is greater than or equal
to the value ofits left child, and smaller than the value of its right child. The AVL property is maintained by all
nodes except for the root. The height difference for the rootis +2 because the left heightis +1 while the
(missing) right child's heightis -1. The difference violates the AVL Property.

Now, consider this similar tree, which supports the AVL Property:

Height=1 30

N

Height=0 10 50 Height=0

When the tree is rooted by the node for 30, each of its subtrees is balanced.

After adding the value 10 to the original AVL tree, itis possible to detect that one ofits ancestor nodes (the
one representing 50) is unbalanced. You can recreate the balanced tree above by performing a rotate
operation. Imagine "grabbing" the 30 node in the original tree and rotating the tree to the right (or clockwise),
pivoting around the 30 node to make 30 the root, thereby creating the balanced tree above. In doing so, only
the height of the 50 node has changed (dropping from 2 to 0) and the AVL Property is restored.

This only works because the node 30 in the original tree had no right child. So, what if this tree had lots of
other nodes, each of which was perfectly balanced and satisfied the AVL Property? In the image below, each
ofthe shaded triangles represents a potential subtree of the original tree; each is labeled by its position, so
30R is the subtree representing the right subtree of node 30. The situation on the left occurs immediately after
the 10 value is inserted into the tree. The rootis the only node that doesn't support the AVL Property. The
various heights in the tree are computed assuming thatthe new node 10 has some height k.

50
/\ Height=k-1
30 .
A Height=k+1 30

Height=k 10 —
¢ A Height=k 10 50 Height=k
Height=k-1 ‘/\

Height=k-1 Height=k-1

Height=k+1

Now when you Rotate Right, you can re-attach the entire subtree 30R so it becomes the left subtree for node
50. This is possible because all of these values are clearly smaller than 50 since the original tree was a
Binary Search Tree. The resulting tree is balanced and all nodes satisfy the AVL Property.

Itis possible that the subtree 30R had a height of kin the tree on the left. In this case, the new
Note node 50 would have a computed height of k+7 and the root node 30 would have a computed
height of k+2. However, that the AVL Property would be properly maintained even in this case.

Add this code to the end of the AVLBinaryNode class:

CODE TO TYPE: Modifications to AVLBinaryNode

AVLBinaryNode<E> rotateRight () {
AVLBinaryNode<E> newRoot = left;
AVLBinaryNode<E> grandson = newRoot.right;

left = grandson;
newRoot.right = this;

computeHeight (this) ;
return newRoot;

This code is best described in the context of the specific example presented above. You invoke rotateRight
on the unbalanced node, 50, which is the this reference in the above code. newRoot is setto the 30 node
while grandson is the subtree labeled 30R. The code left = grandson sets the left child of 50 to be the
subtree 30R. The code newRoot.right = this makes 50 the right child of 30. Once this manipulation is
complete, the height for the 50 nodes is recomputed, but the original height of the 10 node is unaffected.
Finally, the new root node of this subtree, 30, is returned. Observe thatits height has not yet been
recomputed; that will be the responsibility of the method that calls rotateRight.

You've seen how to Rotate Rightto rebalance an AVL tree in the /eft-left case, so named because the new
value being added (10 in this case) was added to left-child of the left-child of the (how-unbalanced) node 50.
Yes, that word repetition is necessary! As you can imagine, there is also a Rotate Left operation which can be

used to rebalance a tree thatis unbalanced in the right-right case shown below, so named because the new
value being added (60) was added to the right-child of the right-child of the (now-unbalanced) node 20:

20 Height=2

\ Height=1 40
40 Height=1 ‘/\\
\ Height=0 20 60 Height=0
Height=0

E0

In similar fashion, you can perform this Rotate Left even when these nodes have subtrees attached to them.
Add this code to the end of the AVLBinaryNode class:

CODE TO TYPE: Modifications to AVLBinaryNode

AVLBinaryNode<E> rotatelLeft () {
AVLBinaryNode<E> newRoot = this.right;
AVLBinaryNode<E> grandson = newRoot.left;
this.right = grandson;
newRoot.left = this;

computeHeight (this) ;
return newRoot;

There are two additional cases that have to be handled. Let's consider the left-right case, which suggests that
the newly added node is added to the right child of the left child of the unbalanced node. To create this AVL
tree, add 50 then 10 to an empty tree. Finally, add 30:

50 Height=2

1 Height=1

1]
30 Height=0

Once again, the root node is unbalanced, however this time you can't just Rofafe Rightto remedy the situation
because the "middle" node, 10 cannot become the root of the tree because its value is smaller than both of
the other two values. Fortunately, you can resolve the issue by first completing a Rotate Left on the child node
10; then you'll be able to perform the Rotate Right step as described earlier. The image below demonstrates
this situation on a larger tree. The After the Rotate Left operation, the tree is identical to the earlier tree on
which the Rotate Right operation was described.

30 a0

Height=k+1 "/\ Height=k-1 Height=k+1 "/\ Height=k-1
g 10 ! g g 30 ! g

B Height=k
! ﬁBD Height=k FIEn 10

This code handles this left-right case. Add the following changes to the end ofthe AVLBinaryNode class:

Height=k-1

CODE TO TYPE: Modifications to AVLBinaryNode

AVLBinaryNode<E> leftRightRotation () {
AVLBinaryNode<E> child = left;
AVLBinaryNode<E> newRoot = child.right;
AVLBinaryNode<E> grandl = newRoot.left;
AVLBinaryNode<E> grand2 = newRoot.right;
child.right = grandl;
left = grand2;

newRoot.left = child;
newRoot.right = this;

computeHeight (child) ;
computeHeight (this) ;
return newRoot;

In reference to the earlier left-right diagram, child is the 10 node, newRoot is the 30 node, grand? is the 30L
subtree and grand? is the 30R subtree. The four sequential operations must take place in exactly the order as
shown in order to complete the Rotfate Leftthen Rotate Right operations efficiently. Once that's done, the
heights of child and this are recomputed before newRootis returned as the new root of this subtree. Once
again, itis the responsibility of the calling method to recompute the height for newRoot.

In exactly the same way, the right-left case (not shown here) would first Rotate Right before completing the
restructuring with a Rotate Left. The code for this case is shown below; add this method to the end of the
AVLBinaryNode class:

CODE TO TYPE: Modifications to AVLBinaryNode

AVLBinaryNode<E> rightLeftRotation () {
AVLBinaryNode<E> child = right;
AVLBinaryNode<E> newRoot = child.left;
AVLBinaryNode<E> grandl = newRoot.left;
AVLBinaryNode<E> grand2 = newRoot.right;
child.left = grand2;
right = grandl;

newRoot.left = this;
newRoot.right = child;

computeHeight (child) ;
computeHeight (this) ;
return newRoot;

All that remains now is to write the appropriate add method in AVLBinaryNode. Add this code to the end of
the AVLBinaryNode class:

CODE TO TYPE: Modifications to AVLBinaryNode

void add (E k) {
int rc = k.compareTo (key) ;
if (rc <= 0) {
left = add(left, k);
} else {
right = add(right, k);
}
}

AVLBinaryNode<E> add (AVLBinaryNode<E> parent, E k) {
if (parent == null) {
return new AVLBinaryNode<E> (k) ;
}

parent = parent.add(k);
return parent;

}

To satisfy the binary search tree property of an AVL tree, the add method inserts the new value into either the
left or right subtree. The above code is identical to the BinaryNode we wrote earlier in this lesson. However,
now you must modify this code to maintain the AVL Property. In each of the rotations described earlier,
observe how itwas possible for the root of the tree to change during a rotation. For this reason, the add
method must change to return a potentially new node which becomes the new root of a subtree. Modify
add(E k) as shown:

CODE TO TYPE: Modifications to add(E k)

AVLBinaryNode<E>ve+ea add (E k) {
int rc = k.compareTo (key) ;
AVLBinaryNode<E> newRoot =
if (rc <= 0) {

left = add(left, k);
} else {

right = add(right, k);
}

this;

computeHeight (newRoot) ;
return (newRoot);

By default, the new root of the subtree to which kis added will be this, which is the existing root of the subtree.
The above code prepares for the rotations by allowing a new rootto be returned when a key is added to a
subtree. The height of the new rootis computed prior to the end of this method; doing so completes each of

the four rotation methods where itwas made clear that the invoking method of the rotation would be
responsible for computing the height of newRoot.

After each invocation of add(parent, key) itis possible that this has become unbalanced. Insert this new
code which handles all four cases:

CODE TO TYPE: Modifications to AVLBinaryNode

AVLBinaryNode<E> add (E k) {
int rc = k.compareTo (key) ;
AVLBinaryNode<E> newRoot = this;
if (rc <= 0) {
left = add(left, k);
if (heightDifference (this) == 2) {
if (k.compareTo (left.key) <= 0) {
newRoot = rotateRight();
} else {
newRoot = leftRightRotation();
}
}

} else {
right = add(right, k);
if (heightDifference(this) == -2) {

if (k.compareTo (right.key) > 0) {
newRoot = rotateleft();
} else {
newRoot = rightLeftRotation();
}

}

computeHeight (newRoot) ;
return newRoot;

When you add a key to the left subtree for a node, it's possible that the height difference for the parent node
(thatis, this) no longer honors the AVL Property, but this only happens once the difference is 2 (because itis
acceptable for this value to be -1, 0, or 1). When the height difference for the parent this node is 2, a rotation
must occur to bring this node back into balance. You need to determine whether a single Rotate Rightis
needed (the left-left case) or a Rotate Left and Rotate Right (the left-right case). Fortunately a simple condition
can determine which is appropriate by comparing the newly added key k with the key of the left child. The left-
leftis appropriate if k <= left.key, otherwise use the left-right case. In both cases, the rotation invocation
returns the newRoot of the subtree. Similar code is used to handle unbalanced nodes when inserting k to the
right subtree.

Similarly, when the height of the right subtree for a node exceeds the height of the left subtree, the computed
height difference is negative; when the difference is -2, the add method determines whether the unbalanced
node is a right-right or right-left case by comparing the newly added key with right.key.

You are now ready to try some head-to-head comparisons with the existing TreeSet implementations in the
Java Collections Framework.

Using Collections TreeSet

Itis commonly accepted that AVL trees are easier to implement than the red-black self-balancing binary trees
implemented by TreeSet, although red-black offers better performance. Let's investigate and find out if this is
true. The performance code below evaluates all three types of binary trees—BinaryTree, AVLBinaryTree,
and TreeSet—against a single benchmark.

In the Iperformance source folder, create an avl package.

C] In the avl package, create an Evaluate class as shown:

CODE TO TYPE: Evaluate class

package avl;

import java.text.*;
import java.util.*;
import binary.*;

public class Evaluate {
static int numTrials = 100;
static double m = 1000000;
static NumberFormat nf;
public static void main(String[] args) {
nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits (3) ;

System.out.println ("N \tB Time\tB Find\tA Time\tA Find\tT Time\tT Find");
System.out.println("----\t------ \t-——--- \t-————-- \t————-- \t————-- \t—————- ")
for (int n = 128; n <= 65536; n *= 2) {

long totalBSTCreate = 0;
long totalBSTFind = O;
long totalAVLCreate = 0;

long totalAVLFind = 0;
long totalTreeSetCreate = 0;
long totalTreeSetFind = 0;
for (int t = 0; t < numTrials; t++) {
ArrayList<Integer> vals = new ArrayList<Integer>();
for (int i = 0; 1 < 2*n; i+=2) {
vals.add (i) ;
}
Collections.shuffle (vals);
Integer[] shuffled = vals.toArray(new Integer[]{});

System.gc () ;
AVILBinaryTree<Integer> avlTree = new AVLBinaryTree<Integer>();
long now = System.nanoTime () ;
for (int i : shuffled) {
avlTree.add (1) ;
}

totalAVLCreate += (System.nanoTime () - now);

System.gc () ;
now = System.nanoTime () ;
for (int i = 0; 1 < 2*n; i++) {
if (avlTree.contains (i) != (i%2 == 0)) {
System.err.println ("Search fails for BST");

}
totalAVLFind += (System.nanoTime ()-now) ;

System.gc () ;
BinaryTree<Integer> btree = new BinaryTree<Integer>();
now = System.nanoTime () ;
for (int i : shuffled) {
btree.add (1) ;
}

totalBSTCreate += (System.nanoTime () - now);

System.gc () ;
now = System.nanoTime () ;
for (int i = 0; 1 < 2*n; i++) {
if (btree.contains (i) != (1i%2 == 0)) {
System.err.println ("Search fails for BST");

}
totalBSTFind += (System.nanoTime ()-now) ;

System.gc () ;

TreeSet<Integer> tree = new TreeSet<Integer>();
now = System.nanoTime () ;
for (int i : shuffled) {
tree.add (i) ;
}

totalTreeSetCreate += (System.nanoTime () - now);

System.gc () ;
now = System.nanoTime () ;
for (int 1 = 0; 1 < 2*n; i++) {
if (tree.contains (i) != (i%2 == 0)) {
System.err.println ("Search fails for BST");
}
}

totalTreeSetFind += (System.nanoTime ()-now) ;

System.out.println(n + "\t" +
nf.format (totalBSTCreate/numTrials/m) + "\t" +
nf.format (totalBSTFind/numTrials/m) + "\t" +
nf.format (totalAVLCreate/numTrials/m) + "\t" +
nf.format (totalAVLFind/numTrials/m) + "\t" +
nf.format (totalTreeSetCreate/numTrials/m) + "\t" +
nf.format (totalTreeSetFind/numTrials/m)) ;

0 Save and run it.

OBSERVE: Output from Evaluate

N B Time B Find A Time A Find T Time T Find
128 0.031 0.043 0.054 0.042 0.045 0.036

256 0.044 0.063 0.051 0.050 0.037 0.046

512 0.091 0.129 0.105 0.106 0.076 0.095

1024 0.196 0.276 0.234 0.220 0.166 0.198

2048 0.440 0.616 0.514 0.480 0.359 0.430

4096 0.977 1.332 1.096 1.001 0.773 0.903

8192 2.173 2.994 2.417 2.159 1.682 1.979

16384 4.994 6.526 5.534 4.630 3.837 4.262
32768 11.769 14.662 12.753 10.062 8.844 9.381
65536 26.768 32.584 29.143 22.852 20.299 20.618

To reaffirm the need for rebalancing, comment outthe Collections.shuffle(vals) line of code in Evaluate
and reexecute. All too soon, the BinaryTree implementation causes a stack overflow error, while the
AVLBinaryTree and TreeSet both continue to function just fine.

OBSERVE: Reexecute comparison when inserting elements in order

N B Time B Find A Time A Find T Time T Find

128 0.105 0.155 0.040 0.039 0.037 0.034

256 0.408 0.580 0.041 0.051 0.034 0.046

512 1.732 2.326 0.085 0.098 0.069 0.122

1024 6.858 9.623 0.191 0.206 0.160 0.198

2048 26.588 36.689 0.380 0.429 0.310 0.400

Exception in thread "main" java.lang.StackOverflowError
at binary.BinaryNode.add (BinaryNode. java:24)

If you plotthe searching results performance, be sure to do so using a logarithmic scale on the y-axis.

a4

32

16

8 /
4
X / =—BST

ANL

%
! // =—s==TreeSet
0.5
0.25 /
0125 /
0.0625 /

0.03125

As the above graph shows, the performance graph for all three binary tree structures is a straight line, with
naive BST performing the worst. TreeSet performs best, but AVL trees are not that far behind. This graph
provides further evidence that the searching behavioris O(n log n).

Lessons Learned

So now you know:

e Constructing an AVL Binary Tree consumes the mosttime of the three constructions;it's up to 50%
slower than the TreeSet implementation. This happens because AVL trees must continually
rebalance to maintain the AVL Property which is a strong constraint on the structure of the tree. By
contrast, the TreeSet self-balancing strategy only ensures that the path from the rootto the
farthestleafis no more than twice as long as the path from the rootto the nearestleaf. This relaxed,
self-balancing strategy turns outto be more efficient.

e The TreeSet code provides the fastest average search times, although AVL trees are not that
much slower.

e The naive Binary Tree implementation performs well on randomized data, which might mistakenly
lead you to use these BSTs as is for your projects. Be warned that, when the data exhibits any
regularity, the construction and search times will rapidly degenerate into O(n) behavior.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multidimensional Algorithms

Lesson Objectives

When you finish this lesson, you will be able to:

e describe the structure of a k-dimensional tree.
e implementa preorder traversal on any recursive search tree.
e construct a k-dtree manually after the insertion ofa number of points.

A Data Structure For Multidimensional Algorithms

In an earlier lesson, you saw how to use Binary Array Search to determine efficiently whether a sorted array contains a
given item in O(log n) time. However, if you have a collection of n Cartesian points (x,y), there is no comparator
function that completely orders the points within a one-dimensional array to enable Binary Array Search to locate a
given pointin O(log n) time. Arrays are simply not powerful enough to support efficient algorithms when data has
multiple attributes or dimensions.

Real-world data is often represented in tabular form, which makes it well-suited to being stored in an Excel
spreadsheet or a database table. Given such a table with n columns, each column can be viewed as a dimension and
each row represents an n-dimensional point. Unfortunately, efficiently processing multidimensional data is challenging
because there is no way to order all of the rows in a table completely, using all dimensions simultaneously. You've
already seen how Binary Trees (when balanced) can store n elements effectively to guarantee O(log n) performance for
searching. In this lesson, we'll apply this conceptto storing n elements, each of which has k-dimensions of
information. In this lesson we'll use k=2 so we can draw two-dimensional images more easily; this approach can also
be used for arbitrary dimensions higher than 2.

Assume you have a collection of n 2-dimensional points in the Cartesian plane. Here's an example where n=10:

1

O O 1

e

In pastlessons, we demonstrated the Divide and Conquer approach to sort an array by dividing itinto left and right
sub-arrays, which were then sorted. But can you splita two-dimensional set of points into a left setand a right set? If
you draw a vertical line through Point 1, you have four points on the left and five points on the right—this looks
promising:

O S . S . O O . .y

-:p 9 (13

Os

I © R

e

The dashed rectangle enclosing all points represents the infinite Cartesian plane [x_low = -Infinity, y_low = -Infinity,
X_high = +Infinity, y_high = +Infinity]. Let's associate this region with Point 1 and consider its left sub-region to be the
shaded vertical rectangle on the left and the right sub-region to be the vertical rectangle on the right. ltdoesn't seem
possible to continue this division process by adding vertical lines. However, consider dividing these left and right sub-
regions by adding two horizontal lines, one through Point 2 and the other through Point6. These horizontal lines do
notextend across the whole plane, but rather divide the respective sub-regions into quadrants:.

O Sy

1
> O
O
O 10

4 9 O

fan
L
2

fan
L\
6

O
3 O,

Each of these four quadrants contain just 1 or 2 points. This process of using alternating vertical and horizontal lines to
subdivide the setof points can be repeated recursively within each quadrant. Here you can see the final subdivision of
these ten points:

: o 9P :
P | £u
| S S
| 7 °
9 T
[3 -

. SCEE

Let's design a data structure to represent the partitioned information. A kd-tree (short for k-dimensional tree) is a
recursive binary tree structure with n nodes, each of which contains:

e a2-dimensional pointin the collection.
e a partition direction (either vertical or horizontal).
e an associated rectangular subregion of the two-dimensional plane.

e two child node links (named below and above).

Given the above 10 points, here is its corresponding binary kd-tree:

1

Point 1 partitions the maximum region into two halves. The child sub-tree rooted at the node for Point 2 contains all
points to the left of the vertical line partitioning the region through Point 1. Similarly, the child sub-tree rooted at the
node for Point 3 contains all points to the right of the vertical line partitioning the region through Point 1. Instead of
using the terms "left" and "right" to refer to child nodes (which would only apply for vertical partitioning), kd-trees use
the concept of "below" and "above." The nodes in the child sub-tree rooted at the node for Point 2 all represent points
with an x-coordinate thatis smaller than ("below") the x-coordinate of Point 1. Similarly, the nodes in the child sub-tree
rooted at the node for Point 6 all represent points with an x-coordinate thatis larger than or equal to ("above") the x-
coordinate of Point 1.

Structurally, the tree is a classic binary search tree, but each level in the tree alternates the partition directions of the
nodes in the tree.

Let's get started by defining a class to represent the regions partitioned by the kd-tree. We can'tjustuse the
java.awt.RectangleClass because that defines rectangles using widths and heights.

g Create a new Java Project named Multidimension and assign itto the Javaé_Lessons working set.

I your Multidimension project/src source folder, create a kd package.

& Inthe kd package, create a Region class as shown:

CODE TO TYPE: Region class

package kd;

public class Region {
int x min;
int x max;
int y min;
int y max;

public Region (int x1, int yl, int x2, int y2) {
x min = x1;

y min = yl;
X max = x2;
y max = y2;

}

public Region (Region r) {
this(r.x min, r.y min, r.x max, r.y max);

}

static final int minValue = Integer.MIN VALUE;
static final int maxValue = Integer.MAX VALUE;
static final Region max = new Region (minValue, minValue, maxValue, maxValue) ;

We assume all coordinate points are integer values and all attributes are accessible within the kd package to simplify
the programming of the algorithm. The max region represents the maximal region possible. Now that we have a
definition for the regions, we can design the class to represent the nodes in the kd-tree.

& Inthe kd package, create a KDNode class as shown:

CODE TO TYPE: KDNode class

package kd;
import java.awt.Point;

public class KDNode ({
final Point point;
final int direction;
Region region;
KDNode above;
KDNode below;

public static final int HORIZONTAL = O;

public static final int VERTICAL = 1;

public KDNode (Point p, int dir, Region r) {
this.point = new Point (p);
this.direction = dir;

this.region = new Region(r);

}

public KDNode (Point p, int dir) {
this (p, dir, Region.max);

}

Each KDNode objectrepresents a node in a kd-tree and stores three pieces of information as described earlier: a
point, a region, and a partition direction. KDNo de defines two constants that differentiate between HORIZONTAL and
VERTICAL partitioning. By default, each KDNode objectis associated with the maximum region available, as defined
by the Region class. The values for HORIZONTAL and VERTICAL are chosen such that 7-d gives the opposite
direction of d.

For this node to define a recursive search tree, it must define children nodes. In this case, each KDNode records two
children, one "below" the partitioning line and the other "above" the partitioning line. The notion of a child node being
"above" is relative to the direction of the KDNode. When the partitioning for a node is HORIZONT AL, the child node
"above" a node is found vertically above the horizontal partitioning line with a y-coordinate that divides the node's
region. When the partitioning for a node is VERTICAL, the child node "below" a node is found to the left of the vertical
partitioning line with an x-coordinate that divides the node's region.

The kd-tree rooted ata KDNode n defines a binary search tree because all points in the sub-tree rooted by the
"below" child will be "below" the partitioning line for node n, while all points in the sub-tree rooted by the "above" child
will be "above" the partitioning line for node n. To make this happen, you need to define some helper methods. Add
these methods to the end of KDNode:

CODE TO TYPE: Helper methods to add to KDNode

public boolean isBelow (Point p) {

if (direction == VERTICAL) {
return p.x < point.x;
} else {

return p.y < point.y;
}
}

public boolean isAbove (Point p) {

if (direction == VERTICAL) {
return p.x >= point.x;
} else {

return p.y >= point.y;

}

These methods help determine, for a given KDNode, whether a point p is "below" or "above" its partitioning line.
You'll need one more method that returns a properly configured child node for a given KDNode. The trick is to
compute the region associated with the child node based on the region associated with its existing parent node:

CODE TO TYPE: Helper method for to add to KDNode

KDNode createChild (Point p, boolean below) {

Region r = new Region (region);
if (direction == VERTICAL) {
if (below) {
r.Xx max = point.x;
} else {
r.x min = point.x;
}
} else {

if (below) {
r.y max = point.y;
} else {
r.y min = point.y;
}
}
return new KDNode (p, l-direction, r);

}

The child node must have the opposite partioning of its parent; that's why 1-direction is used as the direction of the
child node. The pointto associate with the child, p is passed to the KDNode constructor. The challenge is to compute
the sub-region associated with the newly created child node. There are four cases to consider as implemented in the

above code—we'll just explain one. If a node is horizontal, its point partitions its rectangular region into a region
"above" the y-coordinate ofits pointand a region "below" the y-coordinate. Invoking createChild(p, false) on a

horizontal node n means that the region for the child KDNode mustbe "trimmed" to be a proper subset of the current

node's region. To do this, the above code sets the y_min of the child's region r. The other three cases are similar.

Now we can implementa method to add a pointto a given kd-tree rooted ata KDNode:

CODE TO TYPE: Create add(Point) method in KDNode

public void add (Point p) {
if (p.equals(point)) { return; }

if (isBelow(p)) {
if (below == null) {
below = createChild (p, true);
} else {
below.add (p) ;
}

} else {
if (above == null) {
above = createChild (p, false);
} else {

above.add (p) ;
}

The kd-tree implementation here abides by Set semantics, as described earlier in this course. This means that the
same pointcannot existmore than once in a given kd-tree. When the add method returns without throwing an
Exception, the pointis guaranteed to be added to the kd-tree.

If the pointto be added is below its partitioning line, the add method either creates a new node to represent the
"below" child (if that node doesn't already exist) or adds the point to the kd-tree rooted at the "below" child. The logic
for the "above" case is similar.

We've completed the KDNode class; now it's time to design the class to represent the kd-tree.

& Inthe kd package, create a KDTree class as shown:

CODE TO TYPE: KDTree class

package kd;
import java.awt.Point;

public class KDTree ({
KDNode root;

public KDTree () {
root = null;

}

public void add (Point value) {

if (root == null) {
root = new KDNode (value, KDNode.VERTICAL) ;
} else {

root.add (value) ;

}

A KDTree objectis defined by aroot KDNode. This class offers an add method to add points to the kd-tree. If the kd-
tree is empty, it creates a new root node whose partitioning by default (arbitrarily) is VERTICAL.

Traversing a kd-tree

You have enough code written to construct a kd-tree from a set of points. The hard partis fuguring out
whether the code is working because the binary tree structure is stored in memory and it can't simply be
printed out to the console. You need to write a fraversal routine that walks through the kd-tree in a specific
order; if the kd-tree is constructed properly, the output will be correct. There are many ways to traverse a
recursive tree. Using the example presented at the beginning of this lesson, a pre-order traversal would:

1. process Point 1.
2.recursively process all points to the left of the partitioning line through Point 1.
3. recursively process all points to the right of the partitioning line through Point 1.

The applet class below interactively draws a kd-tree whenever a pointis added because the mouse was
pressed. At last, you have something to run for your efforts!

& Inthe kd package, create a KDApplet class as shown:

CODE TO TYPE: KDAppletclass

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet ({
KDTree tree = new KDTree();

int toAWT (int y) {

if (y == Region.maxValue) { return 0; }
int awty = getHeight();
if (v !'= Region.minValue) { awty -= y; }

return awty;

}
int toCartesian (int awty) { return getHeight() - awty; }

public void init () {
setSize (400,400);
addMouselListener (new MouseAdapter () {
public void mouseClicked (MouseEvent me) {
Point pt = new Point (me.getX (), toCartesian(me.get¥Y())):;
tree.add (pt) ;
repaint () ;

1)
}

public void paint (Graphics g) {

if (tree.root == null) {
g.drawString("Click to add points", 150, 200);
} else {

visit (g, tree.root);
}
}

void drawPartition (Graphics g, Region r, Point p, int type) {

if (type == KDNode.VERTICAL) {
g.drawlLine (p.x, tOAWT(r.y min), p.X, CtOAWT(r.y max));
} else {
int xlow = r.x min;
if (r.x min == Region.minValue) { xlow = 0; }
int xhigh = r.x max;
if (r.x max == Region.maxValue) { xhigh = getWidth(); }

g.drawLine (xlow, toAWT (p.y), xhigh, toAWT (p.y)):;
}
g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
}

void visit (Graphics g, KDNode n) {
if (n == null) { return; }
drawPartition(g, n.region, n.point, n.direction);

visit (g, n.below);
visit (g, n.above);

o Save and run it. Add points to the kd-tree by clicking the mouse at different places in the Applet window.
The partitioning direction alternates as each pointis added. We've annotated the screenshotbelow using red
numbers to identify the order the points were added (these don'tappear in the running program):

| 5| Applet Viewer: kd.KDApplet.classm .""Eh

Applet

Applet started.

A e T e

Let's take a closer look at this code:

OBSERVE: Setting Up The Applet

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet ({
KDTree tree = new KDTree();

int toCartesian(int awty) { return getHeight() - awty; }

public void init () {
setSize (400,400) ;
addMouselListener (new MouseAdapter () {
public void mouseClicked (MouseEvent me) {
Point pt = new Point (me.getX (), toCartesian(me.get¥())):
tree.add (pt) ;
repaint () ;

D) &
}

public void paint (Graphics g) {

if (tree.root == null) {
g.drawString ("Click to add points", 150, 200);
} else {

visit(g, tree.root);

}

The Java graphics coordinate system is different from the Cartesian plane. Specifically, the upper-left corner
ofthe window is coordinate (0,0). From left to right, the x-coordinate increases, as it does with Cartesian
coordinates. However, when moving from top to bottom, the y-coordinate increases, which is opposite of
Cartesian coordinates. The toCartesian helper method converts the y-coordinate of an Abstract Windowing
Toolkit (AWT) pointinto Cartesian coordinates. This method is used within the Mouse Adapter that
responds to mouse-click events by adding a point to the kd-tree. After each pointis added, the applet is
repainted. The applet repaints itself by traversing the kd-tree using the visit method.

OBSERVE: Pre-order traversal of the kd-tree

void visit (Graphics g, KDNode n) ({
drawPartition(g, n.region, n.point, n.direction) ;
visit (g, n.below) ;

visit (g, n.above) ;

}

All nodes in the tree will be visited by the above method. This declares a pre-order traversal because it first
"visits" the given node by drawing its partitioning line on the screen. Then itvisits its child nodes,
firstthe ones below it and then the ones above it. The base case of the recursion

The real drawing work is done in drawPartition:

OBSERVE: Draw Partitioning Line For KDNode

int toAWT (int y) {

if (y == Region.maxValue) { return 0; }
int awty = getHeight() ;
if (y '= Region.minValue) { awty -=y; }

return awty;

}

void drawPartition (Graphics g, Region r, Point p, int type) {

if (type == KDNode.VERTICAL) {
g.drawline (p.x, toAWT(r.y min), p.x, toAWT(r.y max));
} else {
int xlow = r.x min;
if (r.x min == Region.minValue) { xlow = 0; }
int xhigh = r.x max;
if (r.x max == Region.maxValue) { xhigh = getwWidth(); }

g.drawLine (xlow, toAWT (p.y), xhigh, toAWT(p.y)):
}
g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
}

To draw the partitioning line for a vertical node, one only needs to draw a vertical line through the x-
coordinate p.xusing the y-coordinates from the associated region forthe node. However, since
these regions may reflect partially infinite regions in the plane, you need the to AWT helper method that
converts a (potentially infinite) Cartesian y-coordinate into its AWT counterpart. If the coordinate is the
maximum allowed value for a Region,the y-coordinate is 0, because that's the topmost coordinate in
the AWT coordinate system. If the Cartesian y-coordinate is the minimum allowed value for a Region, the
counterparty-coordinate is simply the height of the Applet window. Otherwise, the to AWT method
converts the y-coordinate based on its distance from the bottom of the window (the height of
the applet window).

Using kd-trees to Search for Points

Now that we've demonstrated the proper construction of a kd-tree, there are two kind of queries we'd like to
support:

e Contains—does the kd-tree contain a given point P.
e Selection—select the points in the kd-tree that are contained within a query rectangle.
To find whether a given point exists in the tree, you can use the partitioning lines associated with each node to

direct the search, either to the child node below the line or the child node above the line. Add this code to the
end of KDTree:

CODE TO TYPE: Add find methods to KDTree

public KDNode find (Point p) {
return find(root, p);

}

KDNode find (KDNode node, Point p) {
if (node == null) { return null; }
if (node.point.distance(p) < 5) { return node; }

if (node.isBelow(p)) {

return find(node.below, p);
} else {

return find(node.above, p);

}

The find(node,p) method mustchoose whether to investigate the child below or above, based on the
partitioning line. The recursive method will eventually terminate at a leaf node or when the node's Euclidian
distance to p is smaller than 5 pixels.

To highlightthe point over which the cursor moves, modify KDApplet as shown:

CODE TO TYPE: Modifications to KDApplet

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet ({
KDTree tree = new KDTree();
KDNode match = null;
boolean redraw = false;

int toAWT (int y) {

if (y == Region.maxValue) { return 0; }
int awty = getHeight();
if (y !'= Region.minValue) { awty -= y; }

return awty;

}
int toCartesian(int awty) { return getHeight () - awty; }

public void init () {
setSize (400,400);
addMouselListener (new MouseAdapter () {
public void mouseClicked (MouseEvent me) {
Point pt = new Point (me.getX(), toCartesian(me.getY()));
tree.add(pt) ;
repaint () ;
}
1)

addMouseMotionListener (new MouseAdapter () {
public void mouseMoved (MouseEvent me) {
Point pt = new Point (me.getX(), toCartesian(me.getY()));
match = tree.find(pt);
if (match != null) {
redraw = true;
Graphics g = getGraphics();
g.setColor (Color.RED);
g.fillRect (match.point.x - 4, toAWT (match.point.y) - 4, 8, 8);
g.dispose();
} else {
if (redraw) {
repaint () ;
redraw = false;

1)
}

public void paint (Graphics g) {

if (tree.root == null) {
g.drawString ("Click to add points", 150, 200);
} else {

visit (g, tree.root);

}

void drawPartition (Graphics g, Region r, Point p, int type) {

if (type == KDNode.VERTICAL) {
g.drawlLine (p.x, tOAWT(r.y min), p.X, tOoAWT(r.y max));
} else {
int xlow = r.x min;
if (r.x min == Region.minValue) { xlow = 0; }
int xhigh = r.x max;
if (r.x _max == Region.maxValue) { xhigh = getWidth(); }

g.drawlLine (xlow, toAWT (p.y), xhigh, toAWT(p.y)):

}
g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
}

void visit (Graphics g, KDNode n) {
if (n == null) { return; }
drawPartition(g, n.region, n.point, n.direction);

visit (g, n.below);
visit (g, n.above);

Let's take a closer look at the changes:

OBSERVE:

KDNode match = null;
boolean redraw = false;

addMouseMotionListener (new MouseAdapter () {
public void mouseMoved (MouseEvent me) {
Point pt = new Point (me.getX(), toCartesian(me.get¥())):
match = tree.find(pt) ;
if (match '= null) {
redraw = true;
Graphics g = getGraphics () ;
g.setColor (Color.RED) ;
g.fillRect (match.point.x - 4, toAWT (match.point.y) - 4, 8, 8);
g.dispose () ;
} else {
if (redraw) {
repaint() ;
redraw = false;

}) i

Two new fields are added. match records the last pointin the kd-tree matched by the cursor; redraw
determines when to redraw the image upon matching the cursor.

The real logic occurs in the MouseMotionListener implementation, which activates with each move of the
mouse. ltconverts the mouse point into Cartesian coordinates and then triesto find the point

within the kd-tree.If apoint is found,itis filled in red. If the mouse moves and there is no
matching point, the entire kd-tree must be refreshed.

o Save and run it; there is a flicker effect. We can use a technique called "double buffering" to eliminate most

of the flickering. Make these changes:

CODE TO TYPE: Updates to KDApplet

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet {
KDTree tree = new KDTree();
KDNode match = null;

I h] <l —_—
© T rearraw TSty

Image bufferImage;
Graphics bufferGraphics;

int toAWT (int y) {

if (y == Region.maxValue) { return 0; }
int awty = getHeight();
if (y != Region.minValue) { awty -= y; }

return awty;

int toCartesian (int awty) { return getHeight() - awty; }
public void init () {

setSize (400,400);

addMouselListener (new MouseAdapter () {

public void mouseClicked (MouseEvent me) {
Point pt = new Point (me.getX (), toCartesian(me.get¥Y())):;
tree.add(pt);
redraw () ;
repaint () ;
}
1)

addMouseMotionListener (new MouseAdapter () {
public void mouseMoved (MouseEvent me) {

Point pt = new Point (me.getX (), toCartesian(me.get¥Y())):;
KDNode newMatch = tree.find(pt);

if (match != newMatch) ({
match = newMatch;
redraw () ;
if (match != null) {

bufferGraphics.setColor (Color.RED) ;
bufferGraphics.fillRect (match.point.x - 4, toAWT (match.point.y)

8, 8);
bufferGraphics.setColor (Color.BLACK) ;
repaint () ;
= =~ — 4= £ =L =
ferEetr tree—fird{et
= A= 1 1 1 1.\ L
T L \(nacctr . rar) 1
<=l A
LT oUW T CL T I
I o = N~ L)
UJ.at/llJ.k/ \j \j L,\JJ_(].E/J.JJ.\/ \WAZ
=0 1 fal 1 RO
gsetCotortcotor—RED
£ 1 11 A=/ = N~ = A = v v inal = N~ 4 = AY Q
\j.LLLLL k,L,\lHal,k_,ll.b}U;lll, =37 CUOURT T \lllOL,k,ii.LJuLiJL-Y[7 U, OTr
<l AY
- SPoOSTtT
hl 1 L
I E T
S = L <l AY L
- redray—
o = AY
TrTpPparIirc () s
<l £ 1
LT CTUOULTOW _ T LS 12

1)

public void paint (Graphics g) {
if (bufferImage == null) {

bufferImage = createlmage (getWidth (), getHeight()):;
bufferGraphics = bufferImage.getGraphics();
}

if (tree.root == null) {
g.drawString ("Click to add points", 150, 200);
} else {

g.drawImage (bufferImage, 0, 0, this);

= . . .
TSTC{S; Ccree-rooT) Y

}

void redraw() {

bufferGraphics.clearRect (0, 0, getWidth(), getHeight());
visit (bufferGraphics, tree.root);

}

void drawPartition (Graphics g, Region r, Point p, int type) {

if (type == KDNode.VERTICAL) {

g.drawlLine (p.x, toAWT(r.y min), p.xX, toAWT(r.y max));
} else {

int xlow = r.x min;

if (r.x min == Region.minValue) { xlow = 0; }

int xhigh = r.x max;
if (r.x max == Region.maxValue) { xhigh = getWidth(); }
g.drawlLine (xlow, toAWT(p.y), xhigh, toAWT(p.y)):;
}
g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
}

void visit (Graphics g, KDNode n) {
if (n == null) { return; }
drawPartition(g, n.region, n.point, n.direction);

visit (g, n.below);
visit (g, n.above);

The key to flicker-free graphics is to have all drawing performed in an off-screen image and then have the
paint method draw thatimage to the screen. The offscreen image bufferimage is created the firsttime paint

is invoked. A newly added redraw method performs all drawing within the bufferGraphics object associated
with this offscreen image:

OBSERVE:

public void mouseMoved (MouseEvent me) {
Point pt = new Point (me.getX (), toCartesian (me.get¥Y())):
KDNode newMatch = tree.find(pt);
if (match '= newMatch) {
match = newMatch;
redraw () ;
if (match != null) {
bufferGraphics.setColor (Color.RED) ;
bufferGraphics.fillRect (match.point.x - 4, toAWT (match.point.y) - 4,
8, 8);
bufferGraphics.setColor (Color.BLACK) ;
}

repaint () ;

The real logic occurs within the modified mouseMoved method. If there is anewmatch found that
differs from the last (non-null) match,the point isredrawn inred in the offscreen buffer;
otherwise the repaint never occurs.

Q’ Save and run this code; there's a noticeable difference in performance. You can now move the mouse
around rapidly over the points in the kd-tree and see the highlighted red points appear and disappear.

A kd-tree can support Rectangle Queries that efficiently return the setof points contained within a two-
dimensional rectangle. A kd-tree can also support Nearest Neighbor Queries thatlook for the closest pointin
the kd-tree to a query point (x,y). For more details on kd-trees, you may want to refer to the Algorithms in a
Nutshell book.

Lessons Learned

e Use arecursive structure to partition an n-dimensional set of points: In all examples so
far, you have seen recursion that separates an aggregate into a "left" and a "right" side. By
alternating dimensions, the kd-tree concept can accomodate n-dimensional data. This becomes
really exciting with high-dimensional data because the rectangular and nearest neighbor queries
can perform efficiently.

e Use recursive traversal to visit every element in arecursive tree: The pre-order traversal
is introduced in this lesson. The concept applies to any recursive data structure. In general, there
are three primary traversal orderings: pre-order, post-order, and in-order. Each fully traverses all
elements in the tree, but does so in a different order.

Project

Modify the existing KDApplet class to display the pre-order number associated with each point. The pre-
ordernumber is determined in a pre-order traversal of a binary tree. If you refer to the sample screenshot
image shown earlier in the lesson, the points are drawn with numbers in red signifying the pre-order
numbering. As new points are added, the numbers will change.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://search.oreilly.com/?q=algorithms+in+a+nutshell
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Mathematical Algorithms and Floating Point
Computations

Lesson Objectives

When you finish this lesson, you will be able to:

e explain the structure of floating-point numbers according to the IEEE standard.
e demonstrate code techniques to mitigate rounding errors in floating point computations.

Mathematical Algorithms and Floating Point Computations

Computers are finite machines that are designed to perform basic computations on values stored in registers by a
Central Processing Unit (CPU). The size of these registers has evolved as computer architectures have grown from
the popular 8-bit Intel processors in the 1970s to today's widespread acceptance of 64-bit architectures.
Computations over integer-based values (such as Booleans, 8-bitshorts, and 16- and 32-bitintegers) have
traditionally been the most efficient computations performed by the processor. Most CPUs today are fully integrated
with a Floating Point Unit (FPU) that supports the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This
means that the performance of floating-point computations is often more efficient than their integer counterparts.

A floating-point number is a finite representation designed to approximate a real number with a binary representation
that may be infinite. As you begin to experiment with floating-point numbers, you may be surprised atsome ofthe
results.

J . . L .
I=* Create a new Java Projectnamed Mathematical and assign itto the Java6_Lessons working set.
I your Mathematical project/src source folder, create a numeric package.

& In the numeric package, create a Floating class:

http://en.wikipedia.org/wiki/IEEE_floating_point

CODE TO TYPE: Floating class

package numeric;

public class Floating {
public static void main(String[] args) {
float total = 3.9f;
while (total > 3.7) {
System.out.println (total);
total = total - 0.01f;

float £ = 3.88f - 0.01f;
if (£ == 3.87f) {
System.out.println ("Same");

}

int bits = Float.floatToIntBits(3.88f);

int signBit = 0;

if ((bits & 0x80000000) != 0) { signBit = 1; }
System.out.println ("3.88f is " + Integer.toHexString(bits));
System.out.println ("3.88f is " + Integer.toBinaryString(bits));

System.out.println ("[s] [eceeceecee] [mmmmmmmmmmmmmmmmmmmmmmm] ") ;
System.out.print ("[" 4+ signBit + "]");

System.out.print ("[" + pad((bits & 0x7£800000) >> 23, 8) + "1");
System.out.print ("[" + pad((bits & 0x007fffff), 23) + "1");

static String pad (int value, int len) {
StringBuilder sb = new
StringBuilder (Integer.toBinaryString (value));
while (sb.length() < len) {
sb.insert (0, '0");
}

return sb.toString();

o Save and run it. This code prints a table of values decreasing by 0.01 each time:

OBSERVE: Floating output

3.9
3.89
3.88
3.8700001

3.8600001

3.8500001

3.8400002

3.8300002

3.8200002

3.8100002

3.8000002

3.7900002

3.7800002

3.7700002

3.7600002

3.7500002

3.7400002

3.7300003

3.7200003

3.7100003

3.7000003

3.88f is 40785lec

3.88f is 1000000011110000101000111101100
[s] [eeeeeeee] [mmmmmmmmmmmmmmmmmmmmmmmn |
[0][10000000]([11110000101000111101100]

Our program starts as expected, but shortly thereafter some of the the computations introduce an error. What's so
special about subtracting 0.01 from 3.887? Let's take a closerlook athow Java represents 3.88, using the IEEE
Floating-Point standard. The 32 bits used for this value are represented in hexadecimal notation as 0x407851ec.
These bits are numbered from 31 (on the left) to 0 (farthest to the right) and encode this information.

3.88f is represented in 32 bits as 407851ec, as explained by the floating point standard. Any number represented in

floating-pointis equal to m * 2°*P_ Bit 31 (the bit thatis selected by the mask 0x80000000) indicates whether the value
is positive or negative. Bits 30-23 (the eight bits that are selected by the mask 0x7f800000) represent the exponent,
exp. Bits 22-0 (the twenty-three bits that are selected by the mask 0x007fffff) represent the mantissa, m, of the
floating-point number. In the output above, Integer.toBinaryString prints only 31 binary characters and doesn't print
the sign bit. The 32 bits are arranged from left to right as shown above, which produces the representation 407851ec
as a 32-bit Java floating point number.

You can determine which power of two to use by interpreting the exponent bits as a positive number and then
subtracting a bias from the positive number. For a float, the bias is 126. Given the encoding of 0x80 = 128, the
exponentis 128 - 126 = 2.

To maintain the most precision in the representation, the mantissa is always normalized so its leftmost digitis a 1; this
means that digit can actually be omitted from the representation to increase the precision of the final number by one bit.

To interpret the mantissa, remember thatitis a binary fraction computed as the sum of fractional powers of two. Here
mantissa =.[1]11110000101000111101100, which shows that the first implied digitis a one. Expanding this
computation results in this:

mantissa = [1/2] + 1/4 + 1/8 + 1/16 + 1/32 + 1/1024 + 1/4096 + 1/65536 + 1/131072 + 1/262144 + 1/524288 + 1/2097152 +
1/4194304.

If you compute the above sum using a calculator, itis exactly 0.97000000286102294921875.

The final value =0.97000000286102294921875 * 22 which equals the exact number
3.880000011444091796875. So, the actual error of this representation of 3.88f is on the order of0.0000001 or 1
in 10,000,000.

If the first bitin the mantissa is implied, how is the value 1/2 represented in floating point? Well, the E
Note mantissa mustbe zero (since the 1stbitis implied), the sign is 0 and the exponent mustbe 0, so you '
need to add the bias of 126 to see that the encoding is 3F000000. '

Working with floating point computations can introduce small rounding errors into your solutions. In this lesson, you'll

solve a common mathematical problem and learn how to manage rounding errors in your implementation.

Note

ofthis lesson, all computation will be done using double values.

Gauss Jordan Elimination

Given a setof mlinear equations of m variables each, is there a unique solution for these variables? For
example, let's say you are given these three equations over the three variables: x, y, z:

x +3y+5z=9 |E1
2x+7y+2z=2|E2
x +y +4z=2 |E3

You could use a trial and error approach, guessing values for these variables to see if they satisfy all
equations simultaneously. Instead, consider an approach that systematically determines the values. For
example, you could transform the equations by adding two or more of the equations together, trying to
eliminate a variable.

If you subtract equation E1 twice from E2 and once from E3, the equations become simpler because you are
able to eliminate the x variable from the second and third equations:

x +3y+5z=9|E1
y-8z=-16 E2
-2y -z=-7 |E3

Now justadd equation E2 twice to equation E3:

x +3y+5z=9|E1
y-8z=-16 E2
-17z2=-39 E3

Given these three equations, you can solve for z = 39/17. Insert this value back into the second equation and
you can compute y =-16 + 312/17 = 40/17. Finally, insert these values of y and z back into the first equation to
yield x=9-120/17 - 195/17 =-162/17. So, the final solution is (x =-162/17, y = 40/17, z= 39/17). Instead of
substituting values, we could have repeated the elimination steps such that each of the three equations above
has a single variable. In fact, that's the Gauss Jordan Elimination algorithm attempts to do that.

A problem instance is represented by an m*(m+1) matrix where there are m variables and m equations. In the
above example, m=3. Note that each equation has m+17 values because the last value is the constant value
equal to the sum of the variable terms. There is no singular solution when there are fewer than m equations
with m variables. You have enough information to write the pseudocode for Gauss Jordan Elimination ofa

setoflinear equations represented by matrix A, where A[r][c] is the cth coefficientin the " row. Row ris
defined in the range 0 .. m-7 and column cis in the range 0 .. m because of the constant value in each row.

This pseudocode captures the approach used on the problem instance shown earlier:

OBSERVE: pseudocode for Gauss Jordan Elimination

gaussJordan (A)
foreach base=0 to m-1 do
baseCoeff = A[base] [base]
foreach row=0 to m-1 do
if (row != base) then
innerCoeff = A[row] [base]
foreach column c=base to m do
Alrow] [column] -= (innerCoeff/baseCoeff) *A[base] [column]

It's hard to understand triply-nested loops just by looking at them. The bestway to follow this logic is to write
the code and follow the logic within the debugger.

Java has two floating-point number formats: float uses 32 bits, while double uses 64 bits. For the rest

'@; In the numeric package, create a GaussJordan class as shown:

CODE TO TYPE: GaussJordan class

package numeric;
public class GaussJordan {

public static void gaussJordan (double[][] A) {
int m = A.length;

for (int base = 0; base < m; base++) {
double baseCoeff = Al[base] [base];
for (int row = 0; row < m; row++) {
if (row != base) {
double innerCoeff = A[row] [base];
for (int ¢ = base; ¢ <= m; c++) {
Alrow] [c] -= (innerCoeff/baseCoeff)*A[base] [c];

public static void main(String[] args) {
double [][Jmat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,2}};

gaussJordan (mat) ;

for (int 1 = 0; i < mat.length; i++) {
for (int j = 0; j < mat[0].length; Jj++) {
System.out.print (mat[i] [j] + " "),
}
System.out.println () ;
}

o Save and run it; it computes a solution for the earlier problem instance:

OBSERVE: Sample execution of GaussJordan

1.0 0.0 0.0 -9.529411764705884
0.0 1.0 0.0 2.352941176470587
0.0 0.0 =17.0 =39.0

You can confirm that these values correspond to the computed solution earlier. Thatis, x=-162/17, y = 40/17,
and z=39/17. Let's take a closer look at the code:

OBSERVE: Computing Gauss Jordan on a matrix

public static void gaussJordan (double[][] A) {
int m = A.length;

for (int base = 0; base < m; baset++) {
double baseCoeff = A[base] [base];
for (int row = 0; row < m; row++) {
if (row '= base) {
double innerCoeff = A[row] [base];
for (int c = base; c <= m; c++) {
A[row] [e] -= (innerCoeff/baseCoeff) *A[base] [c];

base iterates over each row in the matrix, and baseCoeff stores the coefficient of the variable being
eliminated in each pass. For every otherrow in the matrix (other than base),the innermost loop
reduces the coefficients of these rows proportional to baseCoeff.innerCoeff is used to
normalize the adjustment which should eliminate the coefficient of the row base in all equations.

OBSERVE:

public static void main(String[] args) {
double [][]mat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,2}};

gaussJordan (mat) ;

for (int i = 0; i < mat.length; i++) {
for (int j = 0; j < mat[0].length; Jj++) {
System.out.print (mat[i][j] + " ")
}
System.out.println () ;

}

The final code in GaussJordan prints out the contents of the matrix mat, which was modified in place by the
gaussJordan method. To better understand this algorithm's behavior, run it within the debugger. These

image shows the GaussJordan as itappears in Eclipse.

package numeric;

public class GaussJordan {

static void gaussJordan (douoble[][] &) {
int m = A.length;

m

for (int base = 0; base < m; base++) {
douoble baseCoeff = A[base] [base];
for (int row = 0; row < m; row++) {

if (row '= base) {
dooble innerCoeff = Alrow] [basel:
L] for (int c = base; c <= m; c++) {
Llrow] [c] -= (innerCoeff/baseCoeff)*L[base][c]:

Set a breakpoint atthe innermostforloop (do this by double-clicking within the blue vertical border on the line

corresponding to this loop) and run GaussJordan using the Eclipse debugger (Debug As | Java
Application). When the debugger stops the firsttime, select Window | Show View | Other | Debug |
Variables to show the variables as follows (depending on the current Eclipse version, your screen may be
slightly different):

()= Variables &3 ®g Breakpoints k= | = =08
Mame Value it
G A double[3][] (id=1&)
¥ m 2 =
@ base] [
) bazeCoeff 10
O row 1
@ innerCoeff 20 57
4 Tir 3
[(L.¢, 3.4, 5.4, 2.0, [2.9, 7.0, 2.0, 2.0], [1.0, 1.0, 4.0, 2.01] *

The matrix A appears in the debugger as three rows of four values each. This matches the equation set
described earlier exactly. Now use the debugger tools to continue the execution four times. With each
continuation, the values of A change and ultimately become this:

()= Variahles &3 B Breakpoints o = | ¥ =0
Mame WValue it
@ A double[3][] (id=1&)
O m 3 =
@ base 0
O bazeCoeff 1.0
3 row 1
@ innerCoeff 20 A

L T 3

(f(r.0, 3.0, 5.9, =.0], [O0.0, 1.0, -8.0, -16.0], [1.0, 1.0, 4.0, 2.0]1]

*

The x variable has been eliminated from the second row in A because the first value of the second group of
numbers is 0. Do this five more times; the values of the third row in A also change to eliminate its coefficient
for x.

Rounding Errors

Is this implementation complete and correct? Go back to the matrix definition in GaussJordan and change it
as shown:

CODE TO TYPE:

public static void main(String[] args) {
double [][lmat = {{1,3,5,9}, {2,7,2,2}, {++4+210000,10000,40000,20000}};.

gaussJordan (mat) ;

Nothing has changed mathematically because you have only multiplied the coefficients in the last row by
10000, but check the output:

OBSERVE: Output of revised matrix

1.0 0.0 -3.552713678800501E-15 -9.529411764705884
0.0 1.0 0.0 2.3529411764705905
0.0 0.0 -170000.0 -390000.0

Because of this small change, the code was unable to eliminate the coefficient for z in the first equation. You
might be tempted to use the java.math.BigDecimal class to represent all values because itis designed to
store arbitrary-precision signed decimal numbers. However, the comment below that appears in the
documentation for the divide method of BigDe cimal states that, "if the exact quotient cannot be represented
(because it has a non-terminating decimal expansion) an ArithmeticException is thrown." So you can'tuse
BigDecimal.

To learn about other issues that pertain to floating-point computations, read the technical document, What
Every Computer Scientist Should Know About Floating-Point Arithmetic. This paper is the standard for
explaining challenges the you'll encounter when working with floating-point. For now, let's focus on some
essential points of floating-point numbers.

Computations performed on floating numbers can produce infinitessimal differences in results, such as the
value above, which is on the order of 10775,

The usual strategy we use to deal with these very small numbers is to recognize that they typically occur only
through subtraction and addition, rather than multiplication and division. That's because in order to achieve
such low exponents, you would need to divide two numbers that are 15 orders of magnitude apart; this may
happen in random data, butitis unlikely to occur with most real-world data.

Make these changes to GaussJordan with the revised mat matrix definition in the main() method:

OBSERVE: Modifications to GaussJordan

package numeric;

public class GaussJordan {
static final double epsilon = 1le-9;

static void gaussJordan (double[][] A) {
int m = A.length;

for (int base = 0; base < m; base++) {
double baseCoeff = A[base] [base];
for (int row = 0; row < m; row++)
if (row != base) {
double innerCoeff = A[row] [base];
for (int ¢ = base; c <= m; c++) {

Alrow] [c] -= (innerCoeff/baseCoeff) *A[base] [c];
if (Alrow] [c] < epsilon && Alrow] [c] > -epsilon) {
Alrow] [c] = 0;

public static void main(String[] args) {
double [][]lmat = {{1,3,5,9}, {2,7,2,2}, {10000,10000,40000,20000}};

gaussJordan (mat) ;

for (int i = 0; i < mat.length; i++) {
for (int §7 = 0; j < mat[0].length; Jj++) {
System.out.print (mat[1][j] + " ");
}
System.out.println();
}

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

L)) Save and run it. The problem has been masked:

OBSERVE: Output with larger coefficients, though same solution

0.0 -9.529411764705884
0.0 2.3529411764705905
7

1.0 0.0
0.0 1.0
0.0 0.0 -170000.0 -390000.0

The above solution reaches a nearly identical solution (only the middle line is off by by a few fractional digits).
You can use this approach when your algorithm depends on detecting zero values in your computations.

Partial Input Data

There are other situations that could cause the existing implementation to fail. Many of the equations are not

mathematically independent, which means that one of the equations is equivalent to a sequence of additions
(and subtractions) of the other equations. For example, change the mat input matrix in the main() method as
shown:

CODE TO TYPE:

public static void main(String[] args) {
double [][lmat = {{1,3,5,9}, {2,7,2,2}, {66667

P
P
P
D
b
P

266662,6,10,18}};

H

gaussJordan (mat) ;

The third row is simply twice the first row. Rerun the class:

OBSERVE: Output when equations are only partially solvable

NaN stands for "Nota Number," which is defined in the Floating-Point standard. This occurs typically when
dividing by zero. Java only throws an ArithmeticException when an integer division causes a divide by zero;
floating-point computations give no indication that anything has gone wrong. To understand why the problem
happens, go back to the pseudocode; you can see that there is no protection when baseCoeff is zero. Fix it
now by treating any baseCoeff value sufficiently close to zero as zero;in other words, skip that column:

CODE TO TYPE: Modifications to gaussJordan method

static void gaussJordan (double[][] A) {
int m = A.length;

for (int base = 0; base < m; base++) {
double baseCoeff = A[base] [base];
if (baseCoeff < epsilon && baseCoeff > -epsilon) { continue; }
for (int row = 0; row < m; row++) {
if (row != base) {
double innerCoeff = A[row] [base];
for (int ¢ = base; c <= m; c++) {
Alrow] [c] —-= (innerCoeff/baseCoeff) *A[base] [c];
if (Alrow] [c] < epsilon && Alrow] [c] > -epsilon) {
Alrow] [c] = 0;

L)) Save and run it:

OBSERVE: Proper output when equations are only partially solvable

1.0 0.0 29.0 57.0
0.0 1.0 -8.0 -16.0
0.0 0.0 0.0 0.0

While the matrix has not been fully reduced to one variable per row, the output clearly demonstrates that there
is no unique solution for all variables, but rather a family of solutions.

Since you have just protected against zero coefficients, consider the set of equations below, in which no
equation uses more than two variables; note that the coefficient of x in the first equation is zero.

CODE TO TYPE:

public static void main(String[] args) {
3 }

double [][]lmat = {{F537575H7"1277+=272

7 {qlullnllu}{ol2lll7}l {1121013}1 {21

rTrEy

0,5,3}11};.

gaussJordan (mat) ;

L} Save and run it

OBSERVE: Invalid output when first coefficientis zero

0.0 0.0 0.0 3.4
1.0 2.0 0.0 3.0
2.0 0.0 5.0 3.0

However, if you reorder the rows—which ultimately should have no effect on the solution—a solution can be
found. Change it again as shown:

CODE TO TYPE:

public static void main (String[] args) {
double [][]lmat = {65257+ 711276+37
5,3}}:.

—t279v5-2r1(1,2,0,3}, {0,2,1,7}, {2,0,

gaussJordan (mat) ;

U This results in a valid solution:

OBSERVE: Valid output when reorganizing rows

.0 0.0 -2.428571428571429
.0 0.0 5.428571428571429
.0 7.0 11.0

o O =
o O O
o N O

You must modify the algorithm slightly such that for each of the first m columns, it finds a non-zero pivot value
to use, rather than simply choosing the assigned coefficientin that column. It turns out that there are
mathematical advantages if the pivotis the coefficientin that column of greatest magnitude. The modified
pseudocode looks like this:

OBSERVE: pseudocode for Gauss Jordan Elimination

gaussJordan (A)
foreach base=0 to m-1 do
determine row r whose A[r] [base] is highest magnitude; if zero skip and cont
inue
if r is different from base, swap rows r and base
baseCoeff = A[base] [base]
foreach row=0 to m-1 do
if (row != base) then
innerCoeff = A[row] [base]
foreach column c=base to m do
Alrow] [c] —-= (innerCoeff/baseCoeff) *A[base] [c]

The actual code modifications to the gaussJordan method look like this:

CODE TO TYPE: Modifications to GaussJordan class

static void gaussJordan (double[][] A) {
int m = A.length;
for (int base = 0; base < m; baset++) {
double pivot = 0;
int r = -1;
for (int k = base; k < m; k++) {
if (Math.abs (A[k] [base]) > pivot) {
pivot = Math.abs (A[k] [base]);

r = k;
}
}
if (pivot < epsilon && pivot > -epsilon) { continue; }
if (r != base) {

for (int ¢ = base; ¢ < m+l; c++) {
double tmp = Al[base] [c];
A[base] [c] = Alr][c];
Alr][c] = tmp;
}
}
double baseCoeff = A[base] [base];
if (baseCoeff < epsilon && baseCoeff > -epsilon) { continue; }
for (int row = 0; row < m; row++) {
if (row != base) {
double innerCoeff = A[row] [base];
for (int ¢ = base; ¢ <= m; c++) {

A[row] [c] -= (innerCoeff/baseCoeff)*A[base] [c];
if (Alrow] [c] < epsilon && Alrow] [c] > -epsilon) {
Alrow] [c] = 0;

Q Save and run it; the outputis correct again:

OBSERVE: Valid output when reorganizing rows

0.0 -4.857142857142858
0.0 5.428571428571429

Matrix Determinant

There are a number of useful algorithms over square matrices that demonstrate techniques you can use to

solve worthwhile problems. In linear algebra, the determinantis a value associated with a square matrix.
When the square matrix represents a system of linear equations, there will be a unique solution for the
equations if the determinantis non-zero. You can use the determinantto solve for the linear system of
equations, much like the Gauss Jordan elimination.

(3 5
A= (2 4)
Given the above two-dimensional matrix A, its determinant is:
3 5
det(4) = =3*%4 —2%5
et(a) =[5 7

You can visualize this computation by subtracting the product of the Northeast diagonal (2*5) from the
product of the Southwest diagonal (3*4). To show the utility of the determinant, let's solve this system oftwo
linear equations:

3x+5y=7|E1
2x+4y=5|E2

If you look atthe 2x2 matrix formed by just the coefficients of the x and y variables, you'll recognize the earlier
2x2 matrix. Because this determinant has a non-zero value, you know that there is a valid unique solution. To
determine the solution for x and y, we need to compute four determinant values:

ls al | |

X = |3

4| 4

The denominators of these two fractions are the determinant when using the coefficients ofthe xand y
variables. The numerator of the solution for x is the determinant of a 2x2 matrix thatis formed by replacing the
column containing the x coefficients with the column of the constant values. Similarly, the numerator of the
solution for y is the determinant of a 2x2 matrix formed by replacing the column containing the y coefficients
with the column of the constant values. The value of the x numeratoris 7*4 - 5*5 = 3 while the value ofthe y
numeratoris 3*5-2*7 = 1. These results show thatthe solution to these equations is (x=3/2and y = 1/2).
You can verify these values by plugging them back into either of the original equations.

Does this scale to equations with more than 2 variables? Yes! Let's revisit the earlier set of three equations
used in the Gauss Jordan section and use determinants to compute the solution. Here are those equations
again:

x +3y+5z=9 |E1
2x+7y+2z=2|E2
x +y +4z=2 |E3

Using the same determinantlogic as the 2x2 case, the solution to this equation is:

_ RN N N
=] W= N
N S, |y T, |
e
Il
N =N
= sl WN N
NS I, | N
N =N
= =] W= =] W
BN U BNOW

In the numerators, you replace the column corresponding to the variable with the column of constant values.

To solve this, you need to be able to compute the determinant for a 3x3 matrix. Fortunately, you can compute
the determinant of a 3x3 matrix by a computation involving the determinants of 2x2 vertices. This image
shows how this is done:

1 9 5
2 2 2[=1
1 2 4

To visualize this, take the top row of the 3x3 matrix which contains the values (1,9,5). For each of these
values, compute the determinants of the three 2x2 matrices that remain when you remove the top row and the
respective column of each of these values. Then, sum the computation above, alternating signs of the
constituent sub-parts. Instead of doing this operation by hand, you need to write a program (especially when
computing determinants for higher-order matrices).

2 2
*

2 4_9*§ i|+5*|i 3

& In the numeric package, create a Matrix class as shown:

CODE TO TYPE: Matrix class

package numeric;

public class Matrix {

public static double det (double[][] m) {
switch (m.length) {
case 1:
return m[0] [0];
case 2:
return m[0] [0]*m[1][1] - m[O][1]*m[1][O];
case 3:

return m[0] [0 m[1][1]*m([2][2] - m[2][1])*m[1][2]) -
m[0] [1]*(m[1][0]*m[2] [2] - m[2][O0]*m[1][2]) +
m[1]1[0]*m[2] [1] - m[2][0)*m[1][1]);

*

}

0;
0; 1 < m[0].length; i++) {
double temp[][] = new double[m.length - 1] [m[0].length - 1];
for (int j = 1; j < m.length; j++) {
System.arraycopy(m[j], 0, temp[j-1], 0, 1i);
System.arraycopy(m[j], i+l, temp[j-1], i, m[O].length-i-1);
}

double result =
for (int i =

result += m[0][i] * Math.pow(-1, i) * det(temp);
}

return result;

Let's look atthis code more closely. As a recursive implementation, there are three base cases to consider—
matrices of size 1x1, 2x2, and 3x3:

OBSERVE: Determinant recursion base cases

switch (m.length) {

case 1:
return m[0] [0];
case 2:
return m[0] [0]*m[1] [1] - m[O] [1]*m[1][O];
case 3:
return m[0] [O]*(m[1][1]*m([2] [2] - m([2] [1]*m[1][2]) -

m[0][1]1*(m[1][0]*m[2][2] - m[2][O]*m[1][2]) +
m[0][2]*(m[1][0]*m[2] [1] - m[2][O]*m[1][1]);

The above codes the computation as discussed earlier. For matrices of size n>=4, the code must recreate n
sub-matrices of size n-1 and recursively call det with these sub-matrices, similar to the 3x3 example
described earlier.

OBSERVE: Recursive invocations

double result = 0;
for (int i = 0; i < m[0].length; i++) {
double temp[][] = new double[m.length - 1] [m[0].length - 1];
for (int j = 1; j < m.length; j++) {
System.arraycopy (m[j], 0, temp[j-1], O, 1i);
System.arraycopy (m[j], i+l, temp[j-1], i, m[O0].length-i-1);
}

result += m[0] [1i] * Math.pow(-1, i) * det (temp);
}

return result;

This code processes an nxn matrix by creating n smaller n-1 x n-1 sub-matrices in temp. The two arrayco py

invocations copy the left and right side of the smaller matrices, essentially skipping the ih column with each
pass. Using the Math.pow(-1,i) statement, the result alternates between adding and subtracting the partial
computations.

Add this method to the end of the Matrix class to solve a linear system of equations represented by the m x
m+1 matrix used earlier:

CODE TO TYPE: Modifications to Matrix class

public static double[] solve(double[][] mat) {
double[][] base = new double[mat.length] [mat[0].length-1];
for (int 1 = 0; i1 < mat.length; i++) {
System.arraycopy(mat[i], 0, base[i], 0, mat[0].length-1);
}
double denom = det (base);
if (denom == 0) {
return null;

}

double[]solution = new double[mat.length];
for (int k = 0; k < mat.length; k++) {
for (int i=0, j=0; i < mat.length; i++, j++) {
System.arraycopy (mat[i], 0, base[i], 0, mat[0].length-1);
base[i] [k] = mat[j][mat[0].length-1];
}
solution[k] = det (base)/denom;

}

return solution;

When you review implementations of mathematical algorithms, you mustbecome familiar with array indices
and nested loops. One of the qualities of efficient mathematical code is dense nested looping logic. Let's take

acloserlook atthis code:

OBSERVE: Compute denominator determinant

double[] [] base = new double[mat.length] [mat[0].length-1];
for (int 1 = 0; i < mat.length; i++) {

System.arraycopy (mat[i], 0, base[i], 0, mat[0].length-1);
}
double denom = det (base);
if (denom == 0) {

return null;

}

The above code constructs a base array of size m x m, where mis the number of rows in the input mat
matrix. This matrix contains the variable coefficients only. If the determinant of this matrix is zero, there
is no unique solution:

OBSERVE: Computing partial sums

double[]solution = new double[mat.length];
for (int k = 0; k < mat.length; k++) {
for (int i=0, j=0; i < mat.length; i++, j++) {
System.arraycopy (mat[i], 0, base[i], 0, mat[0].length-1);
base[i] [k] = mat[]j] [mat[0].length-1];
}
solution[k] = det (base)/denom;

}

return solution;

The resulting solution of m variables is determined by computing the fractions of determinants identified

earlier. Theinner forloop over the i variable creates an m x m matrix where the k column in base is
replaced by the coefficients of the constant column, the rightmost column in the original matrix,
mat.

To validate that this code works, add the main method to the end ofthe Matrix class as shown:

CODE TO TYPE: Main method to demonstrate working solve

public static void main(String[] args) {
double[][] mat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,2}};
double[] vals = solve (mat);
System.out.println ("x=" + wvals[0] + ", y=" + vals[l] + ", z=" + vals[2]);

}

O Save and run it

OBSERVE: Solution to linear equations using determinants

x=-9.529411764705882, y=2.3529411764705883, z=2.2941176470588234

Compare these values with earlier values computed in the Gauss Jordan section; they are nearly identical.
They only begin to differ in the last few digits. You'll see this phenomenon whenever you work with floating
pointnumbers.

Lessons Learned

Working with floating-point numbers can be suprising and challenging. You need to understand the ways that
rounding errors can be introduced into computations.

e Use epsilon-based conditionals when comparing to zero. When trying to compare a
floating-point number with zero, you must be careful to take into account the minute rounding error
that often happens in computations. Instead of comparing with equality, use two conditionals that
check if (x < epsilon && x > -epsilon) or call Math.abs().

e Rounding Errors Can Accumulate: Even though rounding errors by themselves are minute
values, they can rapidly accumulate through computations, decreasing the accuracy of your
computations if you don't take time to review the computations in your code. Since each
computation involves some rounding errors, try to minimize the number of operations you
perform. For example, even though a*(b-c) is equal mathematically to a*b-a*c, the latter
computation requires three floating point operations while the former computation only requires
two (and this would be preferred in your code).

e Floating point can store impossible numbers: In floating point, a computation could actually
divide by zero without throwing an Exception. When both the numerator and denominator are of
type int, Java throws an java.lang.ArithmeticException.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Brute Force Algorithms

Lesson Objectives

After completing this lesson, you will be able to implement brute-force solutions to permutation-style problems.

Using Brute Force To Solve Permutation Problems

These problems have something in common:

e Whatare the 5-letter words that you can make using just the letters found in PALINDROME (witho ut
repetition)?

e Generate all 4x4 magic squares using the numbers 1 through 16 where all rows, columns, and two long
diagonals sum to the same value.

e How many ways can you place N queens on an NxN chessboard such that no two queens attack each
other?

Each of these problems relies on some combinatoric permutation of input elements. There is a standard brute force
approach that can be used for those types of problems, as long as the size of the problem instance isn'ttoo big. In
mathematics, a Permutation is defined for a set of elements by imposing some particular order of the elements. For
example, given the set {"A", "B", "C"}, there are six permutations: {"ABC", "ACB", "BAC", "BCA", "CAB", "CBA"}. To
solve each of the above problems, you must somehow compute the valid permutations. In this lesson, you'll see an
implementation that you can use as the structure for solving such permutation problems.

Consider how to generate a 3x3 magic square using the digits 1 through 9 where all rows and columns and the two
long diagonals sum to the same value. Start by writing in the numbers from 1to 9, three to a row from top to bottom. Is
this a magic square? Nope. Here's an image of six consecutive attempts.

12 |3 12 |3 12 |3 1(2 |3 1(2 |3 12 |3

4 15 |6 4 15 |6 4 15 |6 4 15 |6 4 15 |6 4 15 |6 | .ae
718 1|9 719 1|8 8|7 |9 8 19 |7 917 |8 9 18 |7

These attempts were generated by backtracking from the initial attempt. Erase the 9 and 8 digitin the first attempt, and
instead try placing a 9 in the middle of the bottom row. This second attemptis nota magic square either. Okay, so
backtrack and erase the 8,9 and 7 digits and instead place an 8 in the left corner of the matrix. At this point, you can
generate the third attempt with "8, 7, 9" as the bottom row, which is still nota solution. Now erase the 9 and 7 digits
and write "8, 9, 7" as the bottom row of the fourth attempt—still nota solution, so backtrack by erasing the 7,9, and 8
digits and write a 9 in the left corner of the matrix. You can generate the fifth attempt"9, 7, 8" as the bottom row, which
is nota solution. Now erase the 8 and 7 digits and write "9, 8, 7" as the sixth and final attempt—no solution. This
certainly appears to be a tedious exercise and you've only tried six of the possible solutions! Fortunately, a computer
program can use this approach to try all such configurations.

Given how important backtracking is to that approach, expect to see recursion play an importantrole in the algorithm. If
you can divide your problem into a finite number of steps, the pseudocode below describes a method solve(int
step) which attempts to solve the "next step" in a progression of steps:

http://en.wikipedia.org/wiki/Combinatorics

OBSERVE: pseudocode for brute force solver

boolean solve (int step) {
if (step is past the final step) {
return isValid() ;

}

foreach possible value in step do
update state with value
if (solve(step+l)) then
return true

undo update of state

return false;

}

This recursive function first checks to see if the given step numberis one more than the final step. Ifso,it's
finished, and returns whether the computed attempt is a valid solution. If there are more steps left to be
executed, then for each possible value allowed in a given step, solve() updates the state and recursively
tries to solve the next step. Ifsolve(step+1) everreturns true, then it has worked, and the algorithm stops
immediately. If, however, this recursive execution returns false, the most recent state update must be undone
so the next possible value at the given step can be applied. If the foreach loop completes without finding a solution,
then the entire step fails, so the last statement in the pseudocode returns false.

Each problem using this approach has its own isValid() method to determine whether the computed attempt solves
the stated problem. For the magic square problem, the final code only needs to check thatthe sums ofeach row,
column, and long diagonal equal the same target value.

You may recall the definition of the Factorial function n! in mathematics, which computes n * (n-1) * (n-2) * ... *2 * 1.
This function grows incredibly fast! While 9!is a manageable 362,880, 16!is 20,922,789,888,000. If you review the six
earlier attempts, you can see that this brute-force approach is inefficient because it blindly tries all permutations. ltdoes

have the benefit, however, of being relatively easy to write and it takes advantage of the incredible power of computers
to try hundreds of thousands of possibilities per second.

g Create a new Java Projectnamed BruteForce and assignitto the Java6_Lessons working set.
In your BruteForec project/src source folder, create a package permute.

& Inthe permute package, create a MagicSquare class as shown:

CODE TO TYPE: MagicSquare

package permute;

public class MagicSquare {
final int squarel[][];
final boolean used[];
final int n;

public MagicSquare (int n) {
square = new int[n] [n];
this.n = n;
used = new boolean[n*n+1];

boolean solve (int step) {
if (step == n*n) {
return isValid();

int sum = 0;
for (int r = 0; r < n; r++)
return (sum == magicSum) ;

}

return true;

for (int val = 1; val <= n*n; val++) {
if (used([val]) { continue; }
used[val] = true;
square [step/n] [step%n] = val;
if (solve(step+l)) {
return true;
}
square [step/n] [step%n] = 0;
used[val] = false;
}
return false;
}
boolean validUpTo (int step) {
for (int r = 0; r < n; r++) {
if (step == (r+l)*n-1) {
int sum = 0;
for (int ¢ = 0; ¢ < n; c++) { sum += square(r][c]l; }
return (sum == magicSum) ;
}
}
for (int ¢ = 0; ¢ < n; c++) {
if (step == n*(n-1)+c) {

{ sum += squarelr][c]l; }

Let's look closer:

OBSERVE:

public class MagicSquare {
final int squarel[][];
final boolean used][];
final int n;

public MagicSquare (int n) {
square = new int[n] [n];
this.n = n;
used = new boolean[n*n+l];

}

The state of the algorithm is contained in two arrays: used[n] records whether the number n already appears
somewhere in the magic square. square[r][c] stores the number at the given row and column index location. The
MagicSquare constructor determines the desired problem size, n. The size of used[] is one larger than necessary
because the numbers in the magic square are from 1 to n*n.

OBSERVE:

boolean solve(int step) ({
if (step == n*n) {
return isValid();

}

for (int val = 1; val <= n*n; val++) {
if (used[val]) { continue; }

used[val] = true;

square[step/n] [step%n] = val;

if () {
return true;

}

square[step/n] [step%n] = 0;

used[val] = false;

}

return false;

}

The real logicis in the solve(int step) method. The firstinvocation of this method mustbe solve(0). Once all
numbers have been placed (when step is n*n or one more than the number of steps when counting from zero), the
method determines whether the state of the magic square is a valid solution using the isValid() method (which we'll
write shortly).

To determine "foreach possible value in step," this code relies on the used[n] array so it doesn’'t place the
same number multiple times in the magic square. To "update state with value," the code records
used[val]=true and places the value in the magic square at the appropriate rowand column. This code
uses a common idiom to converta simple numberinto a two-dimensional row and column placement. The integer
computation step/n properly truncates the step number to compute the row value, while step%n uses modulo
arithmetic to determine the proper column. Once the state is updated, it recursively calls ; if this method
returns true, a solution has been found. Otherwise, it mustundo the state change (both in used and square)
before continuing the for loop. If this loop completes without having found a solution, the method returns false and
backtracks to the previous step.

To complete the implementation of MagicSquare, make the changes below. They'll take advantage of the
mathematical fact that the target sum value for an n x n magic square is n*(n*n+1)/2. So, for a 3x3 magic square, the
sum of each row, column and diagonal is 3*(3*3+1)/2 = 3*10/2 = 15.

CODE TO TYPE: Modify MagicSquare

package permute;

public class MagicSquare {
final int square[][];
final boolean used[];
final int n;
final int magicSum;

public MagicSquare (int n) {
square = new int[n] [n];
this.n = n;
used = new boolean[n*n+1];
magicSum = n* (n*n+1)/2;

}

boolean isValid() {
int sumDl = 0;
int sumD2 = 0;
for (int i = 0; 1 < n; i++) |
int sumR = 0
int sumC = 0;
sumDl += square[i] [i];
sumD2 += square[i] [n-i-1];
for (int §j = 0; j < n; Jj++) {
sumR += squareli][J];
sumC += square[j][i];
}
if (sumR != magicSum || sumC != magicSum) { return false; }

}

’

// diagonals
return (sumDl == magicSum && sumD2 == magicSum) ;

}

boolean solve (int step) {
if (step == n*n) {
return isValid();

for (int val = 1; val <= n*n; val++) {

if (used[val]) { continue; }
used([val] = true;
square [step/n] [step%n] = val;
if (solve(step+1l)) {

return true;
}
square [step/n] [step%n] = 0;

used[val] = false;

return false;

}

boolean validUpTo (int step) {
for (int r = 0; r < n; r++) {
if (step == (r+l)*n-1) {
int sum = 0;

for (int c¢ 0; ¢ < n; ct+) { sum += square(r][c]; }

return (sum == magicSum) ;
}
}
for (int ¢ = 0; ¢ < n; c++) {
if (step == n*(n-1)+c) {

int sum = 0
for (int r

o~

0; r < n; r++) { sum += square(r][c]l; }

return (sum == magicSum);
}
}
return true;

}

public void outputSolution () {
for (int r = 0; r < n; r++) {
for (int ¢ = 0; ¢ < n; c++) {
System.out.print (square(r] [c]);
System.out.print (' ');
}
System.out.println () ;
}
System.out.println();
}

The outputSolution() method prints out the two-dimensional square using the values in square. The isValid()
method does the real work, using a nested for loop to compute the sum of each row, column, and long diagonal. If
any sum fails to match magicSum, the isValid() method returns false, which forces the solve() method to backirack
and try to find another solution.

To validate this solution, write this performance code:
AT your BruteForce project, create a /[performance source folder.
H# In the Iperformance source folder, create a permute package.

& Inthe permute package, create a Main class as shown:

CODE TO TYPE: Main class

package permute;

public class Main {
public static void main(String[] args) {
MagicSquare m = new MagicSquare (3);
m.solve (0);
m.outputSolution () ;

}

-
€2 save and run Main.

OBSERVE: Output from Main for 3x3 magic square

S0 N
w o 3
@© = o

This is a valid 3x3 magic square because all rows, columns, and long diagonals sum to 15.

Before going further, stop and think about how many 3x3 magic square solutions might exist. This is a natural
extension to the problem. You can determine how many solutions there are by adding a count() method that makes a
small modification to the basic algorithm. Modify MagicSquare as shown:

CODE TO TYPE: Updates to MagicSquare class

int total = 0;

void count (int step) {

if (step == n*n) {
if (isvalid()) {
total++;

outputSolution() ;
}

return;

}

for (int val = 1; val <= n*n; val++) {

if (used[val]) { continue; }
used([val] = true;
square [step/n] [step%n] = val;

if (validUpTo (step)) {
count (step+1) ;

}

square [step/n] [step%n]

used[val] = false;

I
o
~

Let's look closer:

OBSERVE:

int total = 0;

void count (int step) {
if (step == n*n) {
if (isvalid()) {
total++;
outputSolution() ;
}
return;

}

for (int val = 1; val <= n*n; val++) {
if (used[val]) { continue; }

used[val] = true;
square [step/n] [step%n]
count (step+l) ;

square [step/n] [step%n] = 0;
used[val] = false;

val;

The count(step) method stores the total number of such magic squares found in an attribute, total. The structure of
this method is nearly identical to solve(step), exceptthatitdoesn'tstop looking for solutions when the firstone is
found. Accordingly, this method is now defined as void count(int step). So, when the final step is reached and
isValid() validates a solution, the count() method increments the total count and outputs the solution to
the screen. The recursive call always executes and the code backiracks after every recursive invocation. Together,
these changes ensure that all solutions are inspected.

Modify Main as shown:

CODE TO TYPE: Main class

package permute;

public class Main {
public static void main(String[] args) {
MagicSquare m = new MagicSquare (3);
m.solve (0) ;
m.outputSolution() ;

m = new MagicSquare (3);
m.count (0) ;
System.out.println ("There are " + m.total + " possible squares.");

0’ Save and run it.

INTERACTIVE SESSION: Output from revised Main

NeJ
[€)]
[

=
(6)]
Nej

There are 8 possible squares.

These magic squares are all really the same solution rotated (and flipped) to produce eight different versions of the
same magic square.

It's amazing how quickly this program computed these solutions. However, if you change this to solve a 4x4 magic

square, you'll have to wait a while longer for solutions. How long? Well, a 4x4 magic square requires 16! permutations,
0r20,922,789,888,000; as a rough estimate, it will take 5,765,760 times as long to generate all 4x4 solutions as itdid
for the 3x3 solution. Clearly, you have to optimize this approach, or you'll never be able to compute even slightly larger

problems.

Fortunately, you can modify the solve() method to search through the solution set more intelligently. Basically,
instead of blindly pursuing each recursive step, you can validate partial results of the search before going forward.
Revise MagicSquare as shown:

CODE TO TYPE: Revised MagicSquare

package permute;

public class MagicSquare {
final int square[][];
final boolean used[];
final int n;
final int magicSum;
int total = 0;

public MagicSquare (int n) {
square = new int[n] [n];
this.n = n;
used = new boolean[n*n+1];
magicSum = n* (n*n+1)/2;

}

// handles only rows and columns
boolean validUpTo (int step) {
for (int r = 0; r < n; r++) {
if (step == (r+l)*n-1) {
int sum = 0;
for (int ¢ = 0; ¢ < n; c++) { sum += square(r][cl; }
return (sum == magicSum) ;

for (int ¢ = 0; ¢ < n; c++) {
if (step == n*(n-1)+c) {
int sum = 0
for (int r 0; r < n; r++) { sum += squarelr][c]l; }
return (sum == magicSum) ;

I~

return true;

boolean isValid() {
int sumDl = 0;
int sumbD2 = 0

for (int i = 0; i < n; i++) {

s o n
TIrc St 7

D P O ~-

3t o
TIrT ST =

sumDl += square[i][i];
sumD2 += square[i] [n-i-1];

I

£ ot Ja s CUNEIRY (
TOr —(Titc J — 97 J 75T
o 1=
STt r—=—Sgtare Tt
o 1=
STt T (A5 1= 1= = R I B ==
2 c oo el [o el) L 4 £)
T (ST T g TrCooit T ST T MO g T Coditt 1 LteCcarit tarseyr [

// diagonals
return (sumDl == magicSum && sumD2 == magicSum);

boolean solve (int step) {
if (step == n*n) {
return isvValid();

for (int val = 1; val <= n*n; val++) {
if (used[val]) { continue; }

used[val] = true;
square [step/n] [step%n] = val;

if (validUpTo (step) && solve(step+l)) {
return true;

}

square [step/n] [step%n] = 0;

used[val] = false;

return false;

}

boolean validUpTo (int step) {
for (int r = 0; r < n; r++) {
if (step == (r+1l)*n-1) {
int sum = 0;

for (int c¢ 0; ¢ < n; ct+) { sum += square(r][c]; }

return (sum == magicSum) ;
}
}
for (int ¢ = 0; ¢ < n; c++) {
if (step == n*(n-1)+c) {
int sum = 0;
for (int r = 0; r < n; r++) { sum += square(r][c]; }
return (sum == magicSum);

}

return true;

}

public void outputSolution () {
for (int r = 0; r < n; r++) {
for (int ¢ = 0; ¢ < n; c++) {
System.out.print (square(r][c]);
System.out.print (' ');
}
System.out.println () ;
}
System.out.println();

void count (int step) {

if (step == n*n) {
if (isvalid()) {
total++;

outputSolution();
}

return;

for (int val = 1; val <= n*n; val++) {
if (used([val]) { continue; }

used[val] = true;

square [step/n] [step%n] = val;

if (validUpTo (step)) {
count (step+l);

}

square [step/n] [step%n]

used([val] = false;

I
o
~

Let's take a closer look at the validUpT o () method:

OBSERVE: validUpTo method

// handles only rows and columns
boolean validUpTo (int step) {
for (int r = 0; r < n; r++) {
if (step == (r+l)*n-1) {
int sum = 0;
for (int ¢ = 0; ¢ < n; c++) { sum += square[r][c]; }
return (sum == magicSum) ;

}

for (int ¢ = 0; ¢ < n; c++) {
if (step == n*(n-1)+c) {
int sum = 0;
for (int r = 0; r < n; r++) { sum += square(r][c]; }
return (sum == magicSum) ;

}

return true;

The algorithm partially reviews its progress after filling each row and column completely. Given a step numbered from
0 to n*n-1, this means that whenever step equals (r+1)*n-1 for some row numbered 0 .. n-1, there is enough
information to determine if the sum total of the row is magicSum. Similarly, whenever step equals n*(n-1)+c for
some column numbered 0 .. n-1, there is enough information to determine if the sum total of the column is
magicSum.

With these changes in place, modify Main to count the number of 4x4 magic squares, as shown:

CODE TO TYPE: Revised Main class

package permute;

public class Main {
public static void main(String[] args) {
MagicSquare m = new MagicSquare (34);
m.solve (0);
m.outputSolution() ;

m = new MagicSquare (34);
m.count (0) ;
System.out.println ("There are " + m.total + " possible squares.");

L) Save and run it. The first 4x4 magic square appears almostimmediately:

OBSERVE: First computed magic square

1 2 15 16
12 14 3 5
13 7 10 4
8 11 6 9

If you let the program run for about three more minutes, itreports that 7,040 4x4 magic squares were found. You know
that each magic square appears 8 times in this set (rotated and flipped); this means there are 880 unique 4x4 magic
squares. The revised code prints each of these solutions.

Of course, you can't use this approach for 5x5 magic squares (which have 1.5 x 1025 possible solutions). You could
try to run this example on your own computer. After 41 hours of computation on the 5x5 solution, this solution shows

up:

INTERACTIVE SESSION: Solution for 5x5 found

Sun Sep 29 13:33:58 EDT 2013
1 2 13 24 25
322 19 6 15
23 16 10 11 5
217 9 20 8
17 18 14 4 12

Tue Oct 01 06:21:05 EDT 2013

Even so, this powerful technique can be used to solve many small, "Thuman-scale" problems in which you might be
interested.

Finding All Five-Letter words in PALINDROME

Now, use this same algorithm to determine the five-letter words that you can make using just the letters found in the
word "PALINDROME." Perhaps you can already see how to apply the described algorithm to solve this problem.
Using the same pseudocode from before, create this WordFinder class.

& In the permute package ofthe Isrc source folder, create a WordFinder class as shown:

CODE TO TYPE: WordFinder

package permute;
import java.util.*;
public class WordFinder ({

final char[] letters;
final boolean[] used;
final int n;

char[] solution;
Set<String> results;

public WordFinder (String word) ({
letters word.toCharArray () ;
Arrays.sort (letters);
n letters.length;
used = new boolean|[n];

}

public void generate (int numChars) {
solution new char[numChars];
results new TreeSet<String>();
generate (numChars, 0);

}

void generate (int numChars, int step) {

if (step == numChars) {
results.add(new String(solution));
return;

}

for (int idx = idx < n; idx++) {

0;
if (used[idx]) { continue; }

used[idx] true;

solution[step]
generate (numChars
solution[step]
used[idx] false

letters[idx];
, step+l);
0;

’

Let's break this solution up into its constituent parts:

OBSERVE: Instantiating the WordFinder problem

public class WordFinder ({

final char[] letters;
final boolean[] used;
final int n;

char[] solution;
Set<String> results;

public WordFinder (String word) ({
letters = word.toCharArray();
Arrays.sort (letters);
n = letters.length;
used = new boolean[n];

}

public void generate (int numChars) {
solution = new char[numChars];
results = new TreeSet<String>() ;
generate (numChars, 0);

}

The letters array contains the letters from the original word in sorted order. If the original word repeats a letter, that
letter will appear multiple times in this array. The used array keeps track of which letters have been already used, and
the results object stores the set of all computed words found.

The generate(int numChars) method allows you to use this object repeatedly to generate all words thatuse a given
number of characters. It sets the size of the solution array based on the desired number of characters, and

itinstantiates results using a TreeSet object; this is done so it can produce the words in sorted order rapidly when
requested. This method uses the recursive generate(numChars,step) method shown:

OBSERVE: Generating all words using a given number of characters

void generate (int numChars, int step) {

if (step == numChars) ({
results.add (new String(solution)) ;
return;

}

for (int idx = 0; idx < n; idx++) {
if (used[idx]) { continue; }

used[idx] = true;
solution[step] = letters[idx];
generate (numChars, step+l);
solution[step] = 0;

used[idx] = false;

This recursive function terminates when the step number is the same as the number of desired characters.

numChars is passed through as an unchanged parameter to each of the recursive invocations. The solution[] array
stores the permutation of letters. Whenever an appropriate word is found, it is added to the results set. Let's try to

run this code.

(& Create a MainWordFinder class in the Iperformance source folder:

CODE TO TYPE: MainWordFinder demonstration class

package permute;
public class MainWordFinder {

public static void main (String[] args) {
WordFinder wf = new WordFinder ("PALINDROME") ;
wf.generate (5);

System.out.println ("There are " + wf.results.size() + " five letter words possible.

System.out.println ("First ten are:");
int idx = 10;
for (String word : wf.results) {
System.out.println (word) ;
if (--idx == 0) { break; }

0’ Save and run it.

INTERACTIVE SESSION: Output from MainWordFinder

There are 30240 five letter words possible.
The first ten words are:
ADEIL

ADEIM

ADEIN

ADEIO

ADEIP

ADEIR

ADELT

ADELM

ADELN

ADELO

N Queens Problem

As a final example, consider the N Queens problem, which asks you to place N queens on an NxN chessboard such

that no two queens attack each other. For N >= 4 the problem always has a solution, but it may take you some time to
determine that solution. If you could only find some way to convert this problem into a permutation problem, then you
could use the existing algorithm to solve it. Start by breaking the problem into N steps, placing a non-attacking queen,

one atatime, into each ofthe N columns on the chessboard. With this approach, you need some permutation of
queen placements in each column. Let's get started.

& In the Isrc source folder permute package, create an NQueensProblem class as shown:

CODE TO TYPE: NQueensProblem

package permute;

public class NQueensProblem {
final int n;
final int solution[];

public NQueensProblem(int n) {
this.n = n;
solution = new int[n];

}

public void solve () {
solve (0);
outputSolution();

}

public int count () {
total = 0;
count (0) ;
return total;

}

int total = 0;

void count (int column) {
// TBA

}

boolean solve (int column) {
if (column == n) {
return true;

}
// TBA

return false;

}

public void outputSolution () {
for (int r = 0; r < n; r++) {
for (int ¢ = 0; ¢ < n; c++) {
if (solution(c] == r) {
System.out.print ("Q");
} else {
if ((r-c) %2 == 0) {
System.out.print (" ");
} else {
System.out.print (".");
}
}
}
System.out.println();
}
System.out.println();
}

Using the model of placing a queen in each column, the solution[i] array will record the row value (0 .. n-1) ofeach

queen placed in the ith column. How many ways can you place N queens on an NxN chess board? Well, there are N*N
squares and from these you choose N squares. When choosing B elements from a larger set of unique A elements,
the mathematical formula to use is Al/(B!*(A-B)!). This number is actually far smaller than the totals we were dealing
with earlier. For example, given an 8x8 chess board on which to place 8 queens, the above formula is 64!/(8!*56!) or
64*63*62*61*60*59*58*57/8*7*6*5*4*3*2*1, which equals 4,426,165,368.

We can make this code even more efficient by placing only non-attacking queens at each step instead of placing N
queens in the N columns, and only then checking whether any two queens attack. Doing this efficiently can be a bit

tricky. This code creates three arrays to keep track of important state information:

CODE TO TYPE:

public class NQueensProblem {
final int n;
final boolean usedRow|[];
final boolean usedDiagonalNE[];
final boolean usedDiagonalNW][];
final int solution[];

public NQueensProblem (int n) {
this.n = n;
solution = new int[n];
usedRow = new boolean[n];
usedDiagonalNE = new boolean[2*n-1];
usedDiagonalNW = new boolean[2*n-1];

e usedRow][i] records ifa queen is placed inrow i.
e usedDiagonalNE[i] records if a queen is placed in one of the northeast diagonals on the board.

e usedDiagonalNWIJi] records if a queen is placed in one of the northwest diagonals on the board.

There are n elements in usedRow, but 2*n-1 elements in each of the diagonal arrays. When placing a queen at square
(column, row), the code records that usedRow[row] is true. Given the coordinates for column and row, observe

thatfor all squares on the ith northeastdiagonal foriin the range 0 .. 2*n-1, the sum of row+column equals i. For
squares on the northwest diagonals, observe that the difference ofindex values row-column is in the range (-n+1) ..
(n-1), so to normalize this array, the code uses row-column+n-1 as the index values foriin the range 0 .. 2*n-1 into
usedDiagonalNWIi].

Revise the solve(int column) method as shown below. You'll se that the recursive call is made only when itis clear
that placing the queen at (column, row) does not attack any existing queen on the board. Once placed, these arrays
are updated prior to the recursive invocation; they are reset after the invocation:

CODE TO TYPE: Revised solve() method

boolean solve (int column) {
if (column == n) {
return true;

}

—FBA

for (int row = 0; row < n; row++) {
if (usedRow[row]) { continue; }
if (usedDiagonallNW|[row-column+n-1]) { continue; }
if (usedDiagonallNE[row+column]) { continue; }

usedRow [row] = true;
usedDiagonalNW[row-column+n-1] = true;
usedDiagonalNE [row+column] = true;
solution[column] = row;

if (solve(column+1l)) {
return true;

}

usedDiagonalNE [row+column] = false;
usedDiagonalNW[row-column+n-1] = false;
usedRow [row] = false;

return false;

The recursive method terminates when all columns have a queen. If there are more columns to process, the forloop
runs through all possible row indices to find one that doesn't currently contain a queen (as determined by the
usedRow array). However, two queens can attack diagonally, so two different arrays are used to record whether there
is already a queen on any of the northeast diagonals or northwest diagonals.

This code completes the count(int column) implementation:

CODE TO TYPE: Modified count() method

void count (int column) {
—FBA
if (column == n) {
total++;
return;

for (int row = 0; row < n; row++) {
if (usedRow[row]) { continue; }
if (usedDiagonalNW|[row-column+n-1]) { continue; }
if (usedDiagonalNE [row+column]) { continue; }

usedRow [row] = true;
usedDiagonalNW[row-column+n-1] = true;
usedDiagonalNE [row+column] = true;
solution[column] = row;

count (column+1) ;

usedDiagonalNE [row+column] = false;
usedDiagonalNW[row-column+n-1] = false;
usedRow [row] = false;

Write some validating code to demonstrate the proper execution of this method.

(& Create a MainNQueens class in the permute package ofthe [performance source folder:

CODE TO TYPE: MainNQueens class

package permute;

public class MainNQueens {
public static void main (String[] args) {
for (int i = 8; i < 10; i++) {
NQueensProblem ngp = new NQueensProblem(i);
ngp.solve();
System.out.println("---—----""""""""""-—— ") ;
}

for (int 1 = 4; 1 < 14; i++) {
NQueensProblem ngp = new NQueensProblem (i) ;
System.out.println(i + ". " + ngp.count());

}

'U Save and runit.

OBSERVE: Output from MainNQueens

40

92

9. 352
10. 724
11. 2680
12. 14200
13. 73712

The table atthe end of the output records the total number of unique boards for different values of n. You can validate
that these are correct by comparing against well-known tables of these values, like those found at the On-Line
Encyclopedia of Integer Sequences.

Lessons Learned

There are many permutation-style problems that can be solved in small problem instances using a brute-
force approach. While the technique doesn't scale to larger problem instances, it can be a useful "cure-all"
when no known algorithm exists, or you just wantto conduct a quick search to see if some solution exists.

http://oeis.org/A000170

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Path Finding for Single-Player Games

Lesson Objectives

After completing this lesson, you will be able to:

e draw a search tree (of a fixed depth) for a solitaire game.

e design classes to represent the state in a solitaire game.

e design move classes to represent allowable moves.

e explain the difference between a Breadth First and Depth First search tree.

Path Finding For Single-Player Games

8-puzzle is a solitaire game formed using a three-by-three grid containing eight square tiles numbered 1to 8 and an
empty space that contains no tile. A tile adjacent (either horizontally or vertically) to the empty space can be moved by
sliding itinto the empty space. The aim is to start from a shuffled initial state and move tiles to achieve a goal state (for
example, with the numbers in clockwise order from the upper left corner, with the middle square being empty). There
are no competing players taking alternate turns for these problems, but the behavior is quite similar to game trees.

12]3 1 2]s

8|64 =) |8 | 4
7| 5 7lells

Initial state Goal state

A search tree represents the set of intermediate board states as the path-finding algorithm progresses. To be as
efficient as possible, the path-finding algorithm must avoid visiting the same board state twice, otherwise it might get
stuck in an infinite repetition of useless moves. The result of the computed search structure is a tree because the
algorithm ensures thatitdoes notvisita board state twice. The algorithm decides the order of board states to visitas it
attempts to reach its goal.

In order to write a program to solve 8-puzzle, you need a class that represents the board state.

é Create a new Java Project named SinglePlayer and assign itto the Java6_Lessons working set.
& In the Isrc source folder, create a puzzle package.

& In the puzzle package, create a Board class as shown:

http://en.wikipedia.org/wiki/15_puzzle

CODE TO TYPE: Board class

package puzzle;

public class Board {
int[][] tiles;

public Board (int[][] initial) {
tiles = new int[3][3];
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; c < 3; c++) {
tiles[r][c] = initiallr][c];

}

}

public Board (Board b) {
tiles = new int[3][3];
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢ < 3; c++) {
tiles[r][c] = b.tiles[r][c];

}
}

public String toString() {
StringBuilder sb = new StringBuilder();

for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢ < 3; c++) {
if (tiles[r][c] == 0) {
sb.append('-");
} else {

sb.append(tiles(r] [c]);
}
}
sb.append ('\n'") ;
}
return sb.toString();

}

Atwo-dimensional array of int values, tiles, stores the location of each tile, using the number 0 to representan
empty tile. The first constructor passes in a sample state representation with three rows of three columns each. The

second constructor makes a copy of a Board object. The toString() method prepares a human-readable string
depicting the board.

The mostcommon operation on a board state is to determine the valid moves where the player can slide a tile—
horizontally or vertically—into the adjacent empty space. When the empty space is in the middle of the board, there are
four possible moves, but when the empty space is in one of the corners of the board, only two moves are available.

If you have ever played a solitaire puzzle, you know how frustrating it can be to make (often random) long sequences
of moves without knowing whether you are actually making real progress towards solving the problem! You could
prevent repeating a series of moves if only you could remember whether you had visited a board state previously. In
fact the algorithm presented here demands this functionality. The ability to detect whether a state has been visited is
directly analogous to the ability to color vertices in a graph during Depth-First Search.

Let's try to solve a sample 8-puzzle problem instance. The initial state reading from left to rightis: {{1,2,3}, {4,0,6},
{7,5,8}} where 0 represents the empty square in the middle of the board. Let's make the final goal state {{1,2,3},
{8,0,4}, {7,6,5}} (highlighted in yellow below). The search tree below shows all six possible board states reachable in
two or fewer moves from the initial state. The nodes of a search tree are the board states.

8|64 depth =0

ﬁ|/|

[J[s]a] [s]e]
g|[7][5] [7][]
N

|| M

depth=1

~J

r\
-
e

213] [I1215 2151 [EI2G
1l612] [EL1Z g 12] [E15]2 depth =2
15 [E]715 71551 P

From the initial state (depth 0), there are two possible moves thatresultin two new board states on depth 1. In each of
these two board states, there are three moves; however, depth 2 has only two children states for each. That's because
the search tree never contains any board states that have already been visited. The goal of this lesson is to
demonstrate how to automate this process to determine the sequence of moves thatleads from the initial state to a
desired goal state.

We've already used Depth-First Search to search through a graph. In this case, the algorithm constructs a search tree
by blindly exploring ahead, choosing moves to make from the available set of moves in each board state. When using
Depth-First Search on an actual graph, the algorithm backtracks when it runs out of new vertices to visit. However, the
search tree continually expands as you execute moves to uncover new board states to explore. To avoid having a
"runaway" DepthFirstSearch, let's introduce a new parameter, maxDe pt h, which determines the maximum depth to
explore a particular branch of the search tree. Ifit doesn't reach the goal state by this maximum depth, it begins to
backtrack to try alternate sequences of moves.

To keep track of the solution through the search tree, you need to make some modifications to the Board class
structure:

CODE TO TYPE: Modifications to Board class

package puzzle;
import java.util.*;

public class Board {
int[][] tiles;
Board previous;
int depth;

The depth attribute records the depth of a Board in the search tree, while previous will be a link to the previous Board
in the search tree, which will always be the parent board state for each board state in the search tree.

This pseudocode presents an approach to solve solitaire puzzles like the 8-puzzle:

OBSERVE: pseudocode for solving solitaire puzzles with depth restriction

search(initial, goal, maxDepth)
solution = {}
if initial is goal then return "Solution"

open = new Set
closed = new Set
insert (open, initial)
while open is not empty do
board = select state from open
insert (closed, board)
foreach valid move m at board do
next = board state after playing m
if closed doesn't contain next then
if next = goal then return "Solution"
else if not exceeded maxDepth then
insert (open, next)

return "No Solution"

The algorithm maintains open and closed sets to guide the search. open represents the active horizon of the
search, and contains board states that will be explored. closed remembers the pastboard states that were visited.
The algorithm proceeds by selecting aboard state from open to explore. Thenitgenerates potential board
states to visit based on the available moves. If it hasn't exceeded its maximum depth and the newly
generated board states haven't been visited, the board states are inserted into the open collection.

The behavior of the search algorithm changes based on the strategy used to decide the nextboard state in open to
process. As you've seen in pastlessons, if you use a Stack to store the open states, the algorithm pursues a Depth-
First Search approach; if you use a Queue, the algorithm implements Breadth-First Search.

To complete the implementation of 8-puzzle you need to create a class to represent a valid move.

& Inthe puzzle package, create a SlideMove class as shown:

CODE TO TYPE: SlideMove class

package puzzle;

public class SlideMove ({
final int fromR, fromC;
final int toR, toC;

public SlideMove (int fromR, int fromC, int toR, int toC) {
this.fromR = fromR;
this.fromC = fromC;
this.toR = toR;
this.toC = toC;
}

public boolean execute (Board b) {
if (!isvValid(b)) { return false; }
b.swap (fromR, fromC, toR, toC);
return true;

public boolean isValid(Board b) {

if (fromR < 0 || fromR >= 3) { return false; }
if (fromC < 0 || fromC >= 3) { return false; }
if (toR < 0 || toR >= 3) { return false; }
if (toC < O || toC >= 3) { return false; }

return b.isAdjacentAndEmpty (fromR, fromC, toR, toC);

Let's look at this class more closely. twon't compile justyet, but you'll soon add the required new methods to the

Board class.

OBSERVE:

public class SlideMove {
final int fromR, fromC;
final int toR, toC;

public
this.
this.
this.
this.
}

SlideMove (int fromR,
fromR = fromR;

fromC = fromC;

toR toR;

toC toC;

int fromC, int toR, int toC) ({

public boolean execute (Board b) {
if (!'isValid (b)) { return false; }
b.swap (fromR, fromC, toR, toC);
return true;

}

public boolean isValid (Board b) {
if (fromR < 0 || fromR >= 3) { return false; }
if (fromC < 0 || fromC >= 3) { return false; }
if (toR < 0 || toR >= 3) { return false; }
if (to€C < 0 || toC >= 3) { return false; }

return b.isAdjacentAndEmpty (fromR, fromC, toR, toC);

A SlideMove represents the movementofa tile from a given (fromR, fromC) location to a destination (toR, toC)
location. Such a move is valid if the index values are all valid, there is an empty square inthe (toR,toC)
location, and the two locations are neighbors. The move executes by swapping the contents of the two

locations.

Add these two methods to the end ofthe Board class to enable SlideMo ve to compile:

CODE TO TYPE: Add methods to end of Board class

public boolean isAdjacentAndEmpty (int fromR, int fromC, int toR,
if (tiles[toR][toC] != 0) { return false; }
int dC = Math.abs (fromR-toR) ;
int dR = Math.abs (fromC-toC) ;
if ((dC == -1 && dR == 0) [| (dC == +1 && dR == 0) ||

(dC == && dR == -1) || (dC == && dR == +1)) {
return true;

}
return false;

}

public void swap (int fromR, int fromC, int toR, int toC) {
int tmp = tiles[toR] [toC];
tiles[toR] [toC] = tiles[fromR] [fromC];
tiles[fromR] [fromC] = tmp;

}

int toC) {

OBSERVE:

public boolean isAdjacentAndEmpty (int fromR, int fromC, int toR, int toC) {
if (tiles[toR][toC] != 0) { return false; }

int dC

Math.abs (fromR-toR) ;

int dR = Math.abs (fromC-toC) ;
if ((dC == -1 && dR == 0) || (dC == +1 && dR == 0) ||
(dC == && dR == -1) || (dC == 0 && dR == +1)) {

return true;

}

return false;

The swap method swaps the location of two tiles in the board. isAdjacent AndEmpty performs some calculations to
determine if (toR, to C) represents an empty square neighboring another location (fromR, fromC) either horizontally
or vertically. Variables dC and dR compute the difference of the indices and a neighbor is just one column orrow

away (but not both).

The algorithm needs to know the valid moves at any given board state. Add the attribute below and validMo ves()
method to Board to return a List of the available sliding moves at that state:

CODE TO TYPE: Add attribute and method to the end ofthe Board class

static int deltas[][] = {{+1, O}, {0, -1}, {-1, O}, {0, 1}};

public List<SlideMove> validMoves () {
int br = -1, bc = -1;

for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢ < 3; c++) {
if (tiles[r][c] == 0) {
br = r;
bc = ¢c;

}

ArrayList<SlideMove> list = new ArrayList<SlideMove>();
for (int 1 = 0; i < deltas.length; i++) {
int dr = deltas[i][0];
int dc = deltas[i][1];
SlideMove sm = new SlideMove (br+dr, bc+dc, br, bc);
if (sm.isValid(this)) { list.add(sm); }
}

return list;

This method determines the row and column of the empty space and then constructs an ArrayList object that
represents the the available valid moves, using the SlideMove class designed earlier.

All the pieces are now ready to implement the Depth-First Search algorithm for solving the 8-puzzle problem. To

implement a Depth-First Search you need to implement a search that uses a Stack to store the setof open states that

have notyet been visited.

& In the puzzle package, create a Search class as shown:

CODE TO TYPE: Search class

package puzzle;
import java.util.*;

public class Search {
public static Board depthFirst (Board initial, Board goal, int maxDepth) {
if (initial.equals(goal)) { return initial; }

Stack<Board> open = new Stack<Board>();
HashSet<Board> closed = new HashSet<Board>();
open.add(initial);
while (!open.isEmpty()) {
Board b = open.pop();
closed.add (b) ;
for (SlideMove sm : b.validMoves ()) {
Board next = new Board(b);
sm.execute (next) ;

next.previous = Db;
next.depth = b.depth + 1;

if (next.equals(goal)) { return next; }
if (!closed.contains (next)) {
if (next.depth < maxDepth) {
open.add (next) ;
}
}

return null;

Let's break this code down:

OBSERVE: Initializing the Depth First Search algorithm

public static Board depthFirst (Board initial, Board goal, int maxDepth) {
if (initial.equals(goal)) { return initial; }

Stack<Board> open = new Stack<Board> ()
HashSet<Board> closed = new HashSet<Board>() ;
open.add(initial) ;

If the initial board state isthe goal state,the method exits immediately. Otherwise, it creates an open
object, using the existing Stack class from the Java Collections Framework. As we've seen in earlier lessons, the stack
is the fundamental structure to use when pursuing a depth-first algorithm, because it can save states to which the
algorithm can backtrack as necessary.

The closed objectis a HashSet that represents states that have already been visited. This object cannot simply be an
ArrayList orLinkedList because the size of the closed set can be quite large and these classes only support O(n)
performance when checking whether the list contains an item. Also, you cannot use TreeSetimmediately because that
demands that the elements being added all implement Comparable; there is no immediate way to compare to board
states to see which one is smaller (or larger). We'll use HashSet, which offers O(7) constant time performance to
locate an element. This object will represent a set because the algorithm will not visit the same state twice in the search
tree.

For HashSet to work properly, the Board class mustimplement a specialized hashCode method. Specifically, if two
Board state objects represent the same state, the hashCode method must return the same value. In an earlier
lesson, we showed how the String class implements its hashCode method efficiently by caching the computed hash
value. Here we take advantage of the factthatonce a Board is added to the closed set, it never changes. When writing
classes that are used as key values in the Java Collections Framework, you must provide both the hashCode
method and a compatible equals method.

Modify the Board class as shown:

CODE TO TYPE: Modifications to Board

package puzzle;
import java.util.*;

public class Board {
int[][] tiles;
int hash;
Board previous;
int depth;

public List<SlideMove> validMoves () {

int br = -1, bc = -1;
for (int r = 0; r < 3; r++) {
for (int c¢c = 0; c < 3; c++) {
if (tiles[r][c] == 0) {
br = r;
bc = ¢;

ArrayList<SlideMove> list =

new ArrayList<SlideMove> () ;

for (int i = 0; i < deltas.length; i++) {
int dr = deltas[i][0];
int dc = deltas[i][1];
SlideMove sm = new SlideMove (br+dr, bc+dc, br, bc);

if (sm.isValid(this)) { list.add(sm); }

return list;

}

public boolean equals (Object o) {

if (o == null) { return false; }
if (! (o instanceof Board)) { return false; }
Board other = (Board) o;
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢ < 3; c++) {
if (tiles[r][c] !'= other.tiles[r][c]) { return false; }

}

return true;

}

public int hashCode () {

if (hash == 0) {
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢ < 3; c++) {
hash = 31*hash + tiles[r][c];

return hash;

Let's review this code:

OBSERVE: equals method for Board

public boolean equals (Object o) {
if (o == null) { return false; }
if (! (o instanceof Board)) { return false; }

Board other = (Board) o;
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢c < 3; c++) {
if (tiles[r][c] '= other.tiles[r][c]) { return false; }

}
}

return true;

Two Board objects are equal if they contain the same arrangement of tiles. The structure is common to many equals
methods you may have seen. First, it makes sure thatthe object o is not null, because the Java contract for equals
states that no objectis ever equal to null. Second, any attempt to compare equality with a non-Board object
must fail. Finally, this method iterates over all tiles to determine whether any two corresponding locations contain

different tiles, returning false at the first difference between the two Board objects:

OBSERVE: hashCode method for Board

public int hashCode () {
if (hash == 0) {
for (int r = 0; r < 3; r++) {
for (int ¢ = 0; ¢c < 3; c++) {
hash = 31*hash + tiles|[r] [c];
}

}

return hash;

}

The hashCode method uses the hash attribute to cache the computed hash value. This method computes the hash
by using the same multiplicative function found in the String class. For example, the hash value computed for the goal

state is 274869244 .
Everything is in place to try solving an initial board state.

& Inthe puzzle package, create a Main class as shown:

CODE TO TYPE: Main class for searching

package puzzle;

public class Main {
public static void printSolution (Board goal) {

if (goal == null) {

System.out.println ("No Solution reached");
} else {

int count = -1;

while (goal != null) {

System.out.println (goal) ;

goal = goal.previous;
count++;

}

System.out.println(count + " total moves");

}

public static void main(String[] args) {
Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}});
Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

int maxDepth = 8;
Board result = Search.depthFirst(initial, goal, maxDepth);
printSolution (result) ;

O Save and run itto confirm the solution found earlier. The boards are displayed in reverse order, from the goal state
all the way back to the initial position:

OBSERVE: Sample Execution of DepthFirstSearch algorithm on search tree

123
8-4
765

123
864
7=5

123
864
=75

2 total moves

Breadth-First Search

With only marginal changes, you can create an implementation that explores the search tree in Breadth-First
fashion. Add this method to the end ofthe Search class:

CODE TO TYPE: Modifications to Search class

package puzzle;
import java.util.*;

public class Search {
public static Board depthFirst (Board initial, Board goal, int maxDepth) {
if (initial.equals(goal)) { return initial; }

Stack<Board> open = new Stack<Board>();
HashSet<Board> closed = new HashSet<Board>();
open.add(initial);
while (!open.isEmpty()) {
Board b = open.popl();
closed.add (b) ;
for (SlideMove sm : b.validMoves()) {
Board next = new Board(b);
sm.execute (next) ;

next.previous = b;
next.depth = b.depth + 1;

if (next.equals(goal)) { return next; }

if (!'closed.contains (next)) {
if (next.depth < maxDepth) {
open.add (next) ;

}

return null;

}

public static Board breadthFirst (Board initial, Board goal) {
if (initial.equals(goal)) { return initial; }

Queue<Board> open = new LinkedList<Board>();
HashSet<Board> closed = new HashSet<Board>();
open.add(initial);
while (!open.isEmpty()) {
Board b = open.remove () ;
closed.add(b) ;
for (SlideMove sm : b.validMoves()) {
Board next = new Board(b);
sm.execute (next) ;

next.previous = b;
next.depth = b.depth + 1;

if (next.equals(goal)) { return next; }
if (!closed.contains (next)) {

open.add (next) ;

}

return null;

The code is identical to depthFirst, exceptthatituses a Queue (implemented by LinkedList) to store the
open board states, and itremoves the next board state from open using the remove method. The behavioris
very differentfrom depthFirst though; it methodically inspects all board states in increasing distance from

the initial state, based on the number of moves that are used.

Modify Main to report on Breadth-First Search results as well:

CODE TO TYPE: Modifications to Main class

package puzzle;

public class Main {
public static void printSolution (Board goal) {
if (goal == null) {
System.out.println ("No Solution reached");
} else {
int count = -1;
while (goal != null) {
System.out.println(goal) ;

goal = goal.previous;
count++;

}

System.out.println (count + " total moves");

}

public static void main(String[] args) {
Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}}):
Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

int maxDepth = 8;
Board result = Search.depthFirst(initial, goal, maxDepth);
printSolution (result) ;

Board bfsResult = Search.breadthFirst(initial, goal);
printSolution (bfsResult) ;

Q’ Save and runit.

OBSERVE: Compare DFS and BFS on simple board

123
8-4
765

123
864
7-5

123
864
=75

2 total moves
123
8-4
765

123
864
7-5

123
864
=75

2 total moves

When running on a board state thatis only two moves removed from the solution, both approaches locate
the solution quickly, but which one is more efficient? You can judge efficiency in terms of speed of execution,
but also evaluate the efficiency of a search by comparing the size of the board states visited (closed) as well
as the size of the board states yetto be processed (open). You need to insfrumentthe Search and Main
classes to record this information.

Make these changes to Search:

CODE TO TYPE: Modifications to Search

package puzzle;
import java.util.*;

public class Search {
static int numDFSOpen = 0;
static int numDFSProcessed = 0;
static int numBFSOpen = 0;
static int numBFSProcessed = 0;

public static Board depthFirst (Board initial, Board goal, int maxDepth) {
if (initial.equals(goal)) { return initial; }

Stack<Board> open = new Stack<Board>();
HashSet<Board> closed = new HashSet<Board>();
open.add(initial);
numDFSOpen=1;
numDFSProcessed=0;
while (!open.isEmpty()) {
Board b = open.pop();
numDFSOpen--;
numDFSProcessed++;
closed.add (b) ;
for (SlideMove sm : b.validMoves()) {
Board next = new Board(b);
sm.execute (next) ;

next.previous = b;
next.depth = b.depth + 1;

if (next.equals(goal)) { return next; }

if (!'closed.contains (next)) {
if (next.depth < maxDepth) {
numDESOpen++;
open.add (next) ;

}

return null;

public static Board breadthFirst (Board initial, Board goal) {
if (initial.equals(goal)) { return initial; }

Queue<Board> open = new LinkedList<Board>();
HashSet<Board> closed = new HashSet<Board>();
open.add(initial);
numBFSOpen=1;
numBFSProcessed=0;
while (l!open.isEmpty()) {
Board b = open.remove () ;
numBFSOpen--;
numBFSProcessed++;
closed.add (b) ;
for (SlideMove sm : b.validMoves()) {
Board next = new Board(b);
sm.execute (next) ;

next.previous = b;
next.depth = b.depth + 1;

if (next.equals(goal)) { return next; }

if (!closed.contains (next)) {
numBFSOpen++;
open.add (next) ;

}

return null;

The changes update two counts for each algorithm, recording the number of board states in the open state
and the number of board states that were processed.

Make these changes to Main to display this information for the individual runs:

CODE TO TYPE: Modifications to Main class

package puzzle;

public class Main {
public static void printSolution (Board goal) {
if (goal == null) {
System.out.println ("No Solution reached");
} else {
int count = -1;
while (goal != null) {
System.out.println(goal) ;

goal = goal.previous;
count++;

}

System.out.println(count + " total moves");

}

public static void main(String[] args) {
Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}});
Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

int maxDepth 8;

Board result = Search.depthFirst(initial, goal, maxDepth) ;

printSolution (result) ;

System.out.println ("DFSOpen=" + Search.numDFSOpen + ", DFSProcessed=" + Sear
ch.numDFSProcessed) ;

Board bfsResult = Search.breadthFirst(initial, goal);

printSolution (bfsResult) ;

System.out.println ("BFSOpen=" + Search.numBFSOpen + ", BFSProcessed=" + Sear
ch.numBFSProcessed) ;

}

O‘ Save and run itto generate statistics for this initial test:

OBSERVE: Sample statistics for trivial board state

123
8-4
765

123
864
7-5

123
864
=75

2 total moves

DFSOpen=1, DFSProcessed=2
123

8-4

765

123
864
7=3

123
864
=75

2 total moves
BFSOpen=2, BFSProcessed=3

In both cases, a solution of 2 moves was found, but Breadth-First Search had more states in its open setto
be considered for the future and italso processed one more board state than Depth-First Search.

Evaluating Search Tree Algorithms

To evaluate these search algorithms properly, you have togenerate initial board states from which to search
for the goal state. However, you can't just randomly assign the eight digits and the empty space to a Board,
because there may be no way to slide the tiles to achieve the goal state from the randomly selected initial
state. The solution is to make a randomly number of moves from some initial state, and then let the
algorithms try to search their way back to the original board state. Let's get started on that infrastructure now.

& In the puzzle package, create a Generate class as shown:

Let's take a closer look at this code.

CODE TO TYPE: Generate class

package puzzle;
import java.util.*;

public class Generate ({
public static Board generate (int n) {

Board state = new Board(new int[][]{{1,2,3},

Set<Board> visited = new HashSet<Board>():;

visited.add (new Board(state));

for (int i = 0; 1 < n; i++) |
List<SlideMove> moves = state.validMoves () ;
Collections.shuffle (moves) ;

{8,0,4}, {7,6,5}1});

Board next = null;
for (SlideMove sm : moves) {
next = new Board(state);

sm.execute (next) ;

if (!visited.contains (next)) {
visited.add (next) ;
break;
}
}
if (state.equals (next)) {

System.err.println ("Unable to generate "
return null;

}

state =

+ n + " moves");

next;

return state;

OBSERVE:

Board state = new Board(new int[][]{{1,2,3},

Set<Board> visited = new HashSet<Board>() ;

visited.add (new Board(state));

for (int i = 0; 1 < n; i++) {
List<SlideMove> moves = state.validMoves() ;
Collections.shuffle (moves) ;

(8,0,4}, {7,6,5}});

Starting from the goal state state, we instantiate a visited setto make sure that we properly generate a total
of n steps without revisiting a previously visited board state. The forloop generates alist of potential
moves from the given state and shuffles this list so the moves are investigated in random order.

OBSERVE: Making a random move

Board next =

null;
for (SlideMove sm : moves) ({
next = new Board(state) ;
sm.execute (next) ;
if ('visited.contains (next)) {
visited.add (next) ;
break;

The code above tries each move,one at atime, to see if it generates anewboard state that has
not already been visited. With each pass through the loop,itcreates a copy of the state board state
in next so the move is executed on the copy without affecting the original state. If we find an unvisited board

state, we break outofthe forloop; otherwise, it repeats until all moves are exhausted. To complete the loop,
review this logic:

OBSERVE: Identifying when not possible to generate board

if (state.equals (next)) {
System.err.println ("Unable to generate " + n + " moves");
return null;

}

state = next;

When this method returns null, it means thatitwas unsuccessful in locating a board state n moves away;
the only reason for failure is that all board states with fewer number of moves were visited. If the computed

next state is notthe same as state though, itsets state to next and advances to try another move. Once
the appropriate number of moves has been applied, the method returns a sample board state n moves away.

Demonstrate the use of this Generate method by modifying the Main class as shown:

CODE TO TYPE: Modifications to Main class

package puzzle;

public class Main {
public static void printSolution (Board goal) {
if (goal == null) {
System.out.println ("No Solution reached");
} else {
int count = -1;
while (goal != null) {
System.out.println (goal) ;

goal = goal.previous;
count++;
}

System.out.println (count + " total moves");
}

public static void main(String[] args) {
{

ko) g L, I n L fo 1] 2)
Do ra—IrIrrocrar — new oot thew—TIrc 1]

i) I
Ly ar T r 1

Q 4 fifaY L1y
Oy Yy =Ty WY T T T Ty

Board initial = Generate.generate(6);
Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

int maxDepth = 89;

Board result = Search.depthFirst(initial, goal, maxDepth) ;

printSolution (result) ;

System.out.println ("DFSOpen=" + Search.numDFSOpen + ", DFSProcessed=" + Sear
ch.numDFSProcessed) ;

Board bfsResult = Search.breadthFirst(initial, goal);

printSolution (bfsResult) ;

System.out.println ("BFSOpen=" + Search.numBFSOpen + ", BFSProcessed=" + Sear
ch.numBFSProcessed) ;

}

O Run the revised Main class; you'll get different results based on the generated board state. Here is a
sample run where a Depth-First approach finds an 8-move solution (after processing just 21 board states),
while a Breadth-First approach finds a minimal 6-move solution (after processing 45 board states).

OBSERVE: Sample run comparing Breadth-First and Depth-First

123
8-4
765

123
-84
765

=23
184
765

2-3
184
765

283
1-4
765

283
-14
765

-83
214
765

8-3
214
765

83—
214
765

8 total moves

DFSOpen=5, DFSProcessed=21
123

8-4

765

1-3
824
765

-13
824
765

813
-24
765

813
2-4
765

8-3
214
765

3=
214
765

6 total moves
BFSOpen=32, BFSProcessed=45

Run it multiple times and compare the results to see low, high, and average results. In general, the Breadth-
Firstapproach will compute the shortest number of moves to achieve the goal state, but it will process far
more states than the Depth-First approach. However, Depth-Firstis a blind algorithm and will generate
solutions with perhaps hundreds or thousands of moves ifyou don't set maxDe pt h—but there may not be
an easy way to determine the proper value to use for maxDe pth because thatimplies that you have (more or
less)an idea as to how many moves away you are.

Lessons Learned

In this lesson you learned:

e how to use a Queue structure to impose a Breadth-First approach when inserting and removing
states to search from the open set.

e how to use a Stack structure to impose a Depth-First approach when inserting and removing
states to search.

e thatthe HashSet class from the Java Collections Framework provides O(7) constant performance
for determining whether the set contains a given element.

e how to avoid the need to implement an undo method in the moves by using a constructor to copy
the existing board state to which the moves execute their changes. This behavior is distinctly
different from the game trees from the upcoming two-player lesson.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Path Finding for Two-Player Games

Lesson Objectives

After completing this lesson you will be able to:

e describe the structure of a game tree for two-player games.
e explain how Minimax computes best move for playerin a game tree.
e explain how an evaluation function guides Minimax to choosing the bestmove.

Path Finding For Two-Player Games

Chopsticks is a two-player hand game. The version presented here is just one out of many possible variations. Each
player uses both hands, each of which can represent the values 0 to 4 by the number of extended fingers on that hand
(thumbs are notinvolved). To start, both players extend the index finger on each hand. The players alternate turns, and
when itis his turn, a player may:

e Tap
e Rebalance

To tap, a player taps the hand of an opponent with one of his hands. When this happens the player's "points" in the
tapping hand (represented by the number of extended fingers) are added to the opponent's tapped hand; the number of
points in the player's hand does notchange. Once a hand has five or more points, the player closes the hand into a fist
and the hand is considered to be "dead" with zero points.

To rebalance, a player must have one "dead" hand, and one hand with an even number of points. On his turn, the
player taps his own "dead" hand with his other hand, and the points are evenly splitbetween both hands.

The goal of each playeris to force his opponentto have two "dead" hands.

This lesson shows how to use a path finding technique from Artificial Intelligence to compute the best move for a
player, thatis, the move that has the highest likelihood of leading that player to victory. To solve this kind of problem
you have to frame the problem computationally and correctly. At any given moment, the state of the game can be
represented by:

e which player's turn itis (Player1 or Player2).
e Player1's lefthand points (0, 1,2, 3, or 4).
e Player1's righthand points (0, 1,2, 3, or 4).
e Player2's lefthand points (0, 1,2, 3, or 4).
e Player2's righthand points (0, 1,2, 3, or 4).
So, there are 2x5x5x5x5 = 1,250 unique states of the game. Consider creating a game free with nodes that represent

valid states of the chopsticks game as the players take their turns. Given a particular game state, there are no more
than five possible moves that can be made atany time:

e Rebalance.

e Use lefthand to tap opponent's left hand.

e Use lefthand to tap opponent's right hand.
e Userighthand to tap opponent's left hand.
e Userighthand to tap opponent's right hand.

To construct the game tree from a given starting position, create a root node that represents the initial game state of
(Player1,1,1,1,1). In the graphic below, Player1 (the starting player) is depicted on top and his opponent (Player2) is
on the bottom. The two numbers, from left to right, represent the points on the left and right hand, respectively. Because
it's Player1's turn (the top player), his state is highlighted in orange. This is a convenient way to visualize the state
(Player1,1,1,1,1).

http://en.wikipedia.org/wiki/Chopsticks_(hand_game)

G

The game tree is expanded by adding child nodes to the leaf nodes in the tree (the root node of the initial game tree is
aleafnode). The game tree expands based upon the allowed moves for the active player. There are four possible
tapping moves here, but these resultin only two distinct game states: if Player1 uses his left (or right) hand to tap the
left hand of Player2, the resulting state is (Player2, 1,1, 2, 1), which would become the left child in the game tree. If
Player1 uses his left (or right) hand to tap the right hand of Player2, the resulting state is (Player2,1, 1, 1, 2) which
would become the right child in the game tree. Note thatin each of these two nodes, it will be Player2's turn.

Atthis point, observe that these two child nodes are really equivalent. If a player has X points on the lefthand and Y
points on the right hand, this is equivalent to having Y points on the left hand and X points on the right hand. So, you
can combine these child nodes into one. For consistency, a player's hand can be defined by two values (Low,High)
such thatLow <= High. So, the game state is fully captured by (Player#, PlayeriLow, Player1High, Player2Low,
Player2High), where Player1Low <= Player1High and Player2Low <= Player2High.

The above game tree has one level below the root node. Each successive level is known as a ply and represents a set
of game states associated with the same active player. For example, the root node (often called ply 0) represents the
active state for Player1, while the nextlevel (ply 1) represents the active states for Player2. Let's expand the tree so
there are four levels (ply 0 through ply 3):

i

o H]: [H
w(~) (s

J/ \
(1]2) 12
% m
12][1]2][2[2][1|2 FIERIFIERIFIERIFIE

The eight nodes in level 3 of this game tree represent all possible game states after three moves have been made.

The game tree is expanded by adding children to nodes, so the resulting structure will have no cycles. The final level in
the tree represents the total number of possible states after p=3 moves. As you can see, it's possible for Player2 to
have a "dead hand" after justthree moves. You can find this state above because it uses the "*" character to indicate
that one of the player's hands has no points. Each level (or ply) of the tree contains nodes with an active player thatis
the same. Even though there are five possible moves in each game state, not every node is expanded to have five
children nodes. The size of the game tree is ultimately determined by an expansion factor k which is the average
number of child nodes for any node in the game tree; for chopsticks, k <= 5.

The above image demonstrates how large these trees can grow, even for simple games. If we looked eight moves
ahead (ply=8), the game tree would contain up to 488,280 nodes if every node expanded by five children. The goal is
to select the best available move for a player in a given game state. In the chopsticks game tree above, Player1 can
make only one move in the initial state, so there is really no decision to make. However, Player2 can try to force
Player1to make a bad decision that would directly lead to Player2's victory. Let's expand one part of the game tree
above to show this situation:

Player 1 starts

Player 2 tries to force playerl
to make poor decision

g8

Player 1 makes
really bad move

1]2 1
12 [1f2][1]2 |[1]2 | [1]3][1]3

13]

Player 2 can
force win

Player 1 cannot

3 B avoid loss
n’| \

*3 ” Player 2 makes

= = WTnning .

2

The highlighted state above is (Player2, 1, 3, 2, 4). It's Player2's turn in this state, so she can guarantee a victory by
using her hand with 4 fingers to tap Player1's hand with 1 finger. This results in the state (Player1, *, 3, 2, 4). Player1
would then have only two possible moves: (1) tap Player2's hand with two fingers to create a dead hand; or (2) tap
Player2's hand with 4 fingers to create a dead hand. However, in both of these situations, Player2 can simply tap
Player1's remaining hand with three fingers to make ita dead hand, thus forcing Player1 to have two dead hands, and
victory is guaranteed.

Player 1 has lost

The game tree represents the full set of potential game states thatresult from a sequence of valid moves from the
initial state; due to its size, it may never be computed fully. The goal of a path-finding algorithm is to determine from a
starting game state, the player's move that maximizes (or even guarantees) his chance of winning the game. So we
transform an intelligent set of player decisions into a path-finding problem over the game tree. This approach works for
games with small game trees, butitalso can be scaled to solve more complex problems.

Given a node representing the current game state, the algorithm computes the best move for a player. Instead of
considering only the current game state and available moves at that state, the program must consider any
countermoves that the opponent will make after each move. The program mustassume that the opponent will select
his best move choice and make no mistakes. To make this work computationally, we need a function that can evaluate
a game state objectively and return an integer "score" value for that state. Smaller integer numbers (even negative
ones) reflect weaker positions, while larger integer numbers (including positive infinity) represent stronger positions
for the player.

Given a specific game state, itis easy to determine whether Player1 or Player2 has lost the game. For example, one of
the final states above is (Player1,*, *,*, 4) so from Player1's perspective, this is a loss and the evaluation function
must rate this board as -Infinity. However, from Player2's point of view, this state is a win so the evaluation function
would rate the same board as +Infinity. Clearly, it matters from whose perspective the board is evaluated.

The first steps we'll take will be to write code that represents the game state. Here are two ways we could accomplish
that task:

e Representstate with four int attributes: playerLow, playerHigh, opponentLow, opponentHigh.
e Represent state with two int arrays: playerPoints[] and opponentPoints]].

The first option above is inefficient, because you'd have to write special code constantly to compare the four different
sums that result from adding together the different possible values. The second option uses arrays which is better
(because you could use nested for loops to compute the sums), but you would spend a lot of time keeping these two
values in sorted order to take advantage of the earlier observation regarding game state.

Use an array of TreeSet objects to maintain the Set of points for the players; when a player has two hands with the
same value, only one value is stored for that player's hand. This allows you to write simpler code, although the code
may look slightly complicated the firsttime that you see it.

i . L .
= Create a new Java Project named TwoPlayer and assign it to the Java6_Lessons working set.
#n your TwoPlayer project Isrc source folder, create a cho psticks package.

& In the cho psticks package, create a GameState class as shown:

CODE TO TYPE: GamesState class

package chopsticks;
import java.util.*;

public class GameState {

public static final int Playerl = 0;
public static final int Player2 = 1;
int player;

Set<Integer> values[] = new TreeSet[2];

public GameState (int player, int leftl, int rightl, int left2, int right2) {
this.player = player;

values[0] = new TreeSet<Integer>();
values[0].add (leftl);
values[0] .add (rightl);

values[l] = new TreeSet<Integer>();
values[1l].add(left2);
values[1l].add (right2);

}

public boolean hasWon (int p) {
return values[l-p].size() == 1 && values[l-p].contains(0);

}

public String toString() {
Iterator<Integer> pValues = values[0].iterator():;
Iterator<Integer> oppValues = values[l].iterator();

StringBuilder sb = new StringBuilder (" (Player") .append(l+player) .append(",");
int leftl = pValues.next();

sb.append(leftl) .append(",");

if (pValues.hasNext()) { sb.append(pValues.next()); } else { sb.append(leftl); }

int left2 = oppValues.next () ;
sb.append (", ") .append (left2) .append (", ") ;
if (oppValues.hasNext()) { sb.append(oppValues.next()); } else { sb.append(left2);

return sb.append(")").toString() ;

Each game state must store the current player in that situation, using 0 for Player1 and 1 for Player2. These values
were chosen to make it easier to index into the Set<Integer> values[] array that stores the TreeSet objects. By
using sets, the game state uses the optimization presented earlier where it only records one value when both hands
have the same value. The hasWo n(p) method determines whether a player p has won in a game state; this happens
when that player's opponent (1-p) has only one value (values[1-p].size() == 1) and thatvalue is 0.

The toString() helper method is used only during debugging. It builds up a string representing the game state by
iterating over the values in each hand. For efficiency, ituses the StringBuilder class.

Aside from an outright victory, how is it possible to compute a number thatincreases in value when a game state is
more likely to lead to victory for a given player? You must develop a heuristic based on properties of the game state.
Let's start with some observations:

e Having one dead hand is bad.

e Having hands with 4 points is more risky than having hands with 1 point.

e Anplayerhas a strong position when one of her hands can make an opponent's hand dead (and when the
opponent can do this, the player's hand is weaker).

Instead of including an evaluation method inside Game State, define an interface to be used by any evaluation
function. This lets you to experiment with different evaluation functions quickly.

& In the /src source folder cho psticks package, create an IEvaluate interface as shown:

CODE TO TYPE: |IEvaluate interface

package chopsticks;

public interface IEvaluate {
int evaluate (GameState state, int player);

}

& In the cho psticks package, create an Evaluator class thatimplements the heuristics defined earlier:

CODE TO TYPE: Evaluator class

package chopsticks;

public class Evaluator implements IEvaluate {
public int evaluate (GameState s, int p) {
if (s.hasWon(p)) { return 10000; }
if (s.hasWon(l-p)) { return -10000; }

int sign = 1;
if (s.player == 1-p) { sign = -1; }

int value = 0;
// Having one dead hand is bad
if (s.values[s.player].contains(0)) { value -= sign*100; }

if (s.values[l-s.player].contains(0)) { value += sign*100; }

// Having hands with 4 points is more risky than having hands with 1 point (scale b
y 5 pts)

for (int pt : s.values[s.player]) {
value -= sign*pt*5;

}

for (int pt : s.values[l-s.player]) {

value += sign*pt*5;

}

// Player has strong position when one of his hands can make an opponent's hand dea

int numMakeDead = 0;
for (int ptl : s.values[s.player]) {
for (int pt2 : s.values[l-s.player]) {
if (ptl + pt2 >= 5) { numMakeDead++; }
}
}

value += sign * numMakeDead * 20;

return value;

The evaluate(state,p) method is symmetric; thatis, evaluate(state,Player1) = -evaluate(state,Player2). The
goal of this method is to make it possible to compare the computed evaluation oftwo game states, gs1and gs2, to
determine which is more favorable to the current player. Accordingly, a victory is a clearly identified 10000 (used in
place of infinity since no number computed by the evaluate method will ever be larger than this value). The code
defines a sign variable that determines whether the resulting computation is negative (worse for the player p) or
positive (better for the player p).

When developing heuristics, itis imperative that you write test cases so you can track changes to those heuristics.

Many of the constants were chosen arbitrarily and you will have to experiment with minor tweaks, so test cases will
prove very useful.

#n your TwoPlayer project, create a Itest source folder.

£ In the /test source folder, create a chopsticks package.

E! In the cho psticks package, create a TestGameState JUnittest case as shown:

CODE TO TYPE: TestGameState JUnit class

package chopsticks;
import junit.framework.TestCase;
public class TestGameState extends TestCase {

public void testWinning() {
GameState gs = new GameState (GameState.Playerl, 0, 0, 0, 2);
assertTrue (gs.hasWon (GameState.Player?2));

public void testNotWinning() {
GameState gs = new GameState (GameState.Playerl, 1, 1, 1, 1);
assertFalse (gs.hasWon (GameState.Playerl));
assertFalse (gs.hasWon (GameState.Player?2));

}

public void testFourBoards () {
GameState[] states = {
new GameState (GameState.Player2, 1, 3, 1, 3),
new GameState (GameState.Player2, 1, 3, 0, 1),
new GameState (GameState.Player2, 1, 3, 2, 2)
}i

GameState worst = new GameState (GameState.Player2, 1, 3, 2, 4);
IEvaluate eval = new Evaluator();

int worstRating = eval.evaluate (worst, GameState.Playerl);
System.out.println ("Worst State:" + worstRating + " " + worst);

System.out.println ("Other Moves:");

for (GameState gs : states) {
int gsRating = eval.evaluate(gs, GameState.Playerl);
System.out.println(gsRating + " " + gs);

assertTrue (eval.evaluate(gs, GameState.Playerl) <= gsRating);

This test case ensures that the hasWo n(p) method works properly. It also compares the four game state children on
the right side of the game tree depicted earlier to validate that the worst state evaluates to a number thatis smallest of
the other three sibling states. In other words, this should identify that this state is the worst possible arrangement from
Player1's point of view. You must be sure that you represent the board states accurately, as well as the player for
whom the evaluation is being made . In testFourBoards, all GameState objects are associated with Player2 and
evaluate() is called with Player1 as an argument, because the originating node in the game tree is Player1.

Run the test case now and check the output:

OBSERVE: Game State evaluation scores

Worst State:-50 (Player2,1,3,2,4)
Other Moves:

-20 (Player2,1,3,1,3)

85 (Player2,1,3,0,1)

-30 (Player2,1,3,2,2)

When evaluating these four game states from the perspective of Player1, the (Player2, 1, 3, 2,4) game state is rated
the lowest.

The game tree is expanded by considering future game states after n moves have been made. Each level of the tree
alternates between MAX levels (where the goal is to benefit the player by maximizing the evaluated score ofa game

state) and MIN levels (where the goal is to benefit the opponent by minimizing the evaluated score of a game state).
So, the levels alternate between MAX and MIN levels, which leads to an algorithm known as Minimax. In all cases, the
board is evaluated from the point of view of the player making the original move in the game ftree (thatis, the active player

in ply 0).

The next game tree shows, in dashed boxes, the score of the evaluation function on each leafnode in a 2-ply game
tree starting from the (Player2,1, 1,1, 2) state where itis Player2's turn. Only leaf nodes are evaluated. Interior nodes
on levels marked Max receive the maximum score of their children nodes. Similarly, interior nodes on levels marked
Min receive the minimum score of their children nodes.

Max 5 EB
/

¥
vin :
|12

p— e %ﬂm
12) 1]2 [2]2][12 | 13][1]3 | 1|3
m

-85

|-
| N
NP

=
.“*l

Of the eight nodes on the ply-2 level, the state (Player2, 1, 3, 2, 4) mentioned earlier is the highest-rated state for
Player2 with a rating of 50. However, the lowest rated state (Player2, 1, 3, *, 1) with a rating of -85 is a sibling of this
state. In the Min level in state (Player1,1, 3,1, 2), itis Player1's turn to make a move. The algorithm must assume that
an opponent plays without making mistakes; thus given the chance, Player1 would force Player2 into the lowest rated
state. For this reason, the interior nodes on the ply-1level are rated as 5 and -85 respectively, representing the worst
positions that Player2 would find himself in after Player1 moves. Finally, the root node on ply 0 selects the move that
maximizes the evaluation of its children nodes, thus the algorithm would choose the Tap move thatresults in the state
(Player2,1,2,1, 2).

Constructing the game tree above does notinclude writing code to automate this process. This pseudocode
describes that process:

OBSERVE: pseudocode for Minimax

bestMove (s, player)
original = player
[move, score] = minimax(s, ply, MaxLevel)
return move

minimax (s, ply, player, opponent)
best = [null, 0]
if (ply = 0 or no valid moves) then
score = evaluate s for original player
return [null, score]

foreach valid move m for player in state s do
execute move m on S
[move, score] = minimax(s, ply-1, not MaxLevel)
undo move m on s

if (player is original) then
if (score > best.score) then best = [m, score]
else
if (score < best.score) then best
return best

[m, score]

Because the game tree is a recursive structure, the Minimax implementation also recursively identifies game states to
explore. With each recursive call, the ply depth is decreased until ply=0, at which case the state s is evaluated from the
perspective of the original player.

The foreach loop inside minimax evaluates the score for each of the children nodes from state s and remembers
the highest score if that level is a Max level (thatis, player at that level is the original player); alternatively, it remembers
the lowest score if thatlevel is a Min level (i.e., not a Maxlevel). Because the goal of minimax is to return the best
move for the original player, it must return both the move and the ultimate best score that the player can hope for in the
game tree when making that move.

Now let's go write code to match the Minimax pseudocode.

Minimax Implementation

The goal of Minimax is to identify a move for a player in a given game state. To represent a valid move, create
this interface.

& In the Isrc source folder cho psticks package, create an IMove interface as shown:

CODE TO TYPE: IMove

package chopsticks;

public interface IMove {
boolean valid (GameState state);
boolean make (GameState state);
boolean undo (GameState state);

Classes that claim to be a chopsticks move must be able to execute thatmove on a GameState object,
changing its contents. All changes are made in place on a GameState object, so a move class mustalso be
able to undo that move. Finally, the move class mustbe able to determine ifitis even valid for a given
GameState.

Define a class to represent the information returned by minimax.

& In the Isrc source folder cho psticks package, create a Pair class as shown:

CODE TO TYPE: Pair class

package chopsticks;

public class Pair ({
IMove move;
int score;

Pair (IMove move, int score) {
this.move = move;
this.score = score;

& In the Isrc source folder cho psticks package, create a Minimax class as shown:

CODE TO TYPE: Minimax class

package chopsticks;
import java.util.*;

public class Minimax {
int ply;
int original;
IEvaluate eval;

public Minimax (int ply, IEvaluate ie) {
this.ply = ply;
this.eval = ie;

public IMove bestMove (GameState s, int player) {
original = player;
Pair bestMove = minimax (s, ply, true);
return bestMove.move;

Pair minimax (GameState s, int ply, boolean maxLevel) {
Collection<IMove> validMoves = null;

if (ply > 0) { validMoves = computeMoves(s); }
if (ply == 0 || validMoves.isEmpty()) {
int score = eval.evaluate (s, original);

return new Pair (null, score);

Pair best = null;
for (IMove m : validMoves) {
if (m.make(s)) {
Pair next = minimax (s, ply-1, !maxLevel);
next.move = m;
m.undo (s) ;

if (maxLevel) {

if (best == null || next.score > best.score) { best = next;
} else {
if (best == null || next.score < best.score) { best = next;

return best;

This code is missing the computeMoves() method (we'll getto thatin a minute.) Let's take a closer look at
this class:

OBSERVE: Constructing a Minimax instance

public class Minimax {
int ply;
int original;
IEvaluate eval;

public Minimax (int ply, IEvaluate ie) {
this.ply = ply;
this.eval = ie;

}

public IMove bestMove (GameState s, int player) ({
original = player;
Pair bestMove = minimax (s, ply, true);
return bestMove.move;

Minimax stores the IEvaluate implementation used to evaluate game states, as well as the ply
representing the maximum depth of the game tree to expand. To find the best move for a given state s, call the
Minimax method bestMove(s, p), which then stores the original player to use when evaluating game
states. All of the interesting action happens in the minimax method:

OBSERVE: minimax recursive method

Pair minimax (GameState s, int ply, boolean maxLevel) {
Collection<IMove> validMoves = null;
if (ply > 0) { validMoves = computeMoves(s); }

if (ply == || validMoves.isEmpty()) {
int score = eval.evaluate(s, original) ;
return new Pair (null, score);

}

Pair best = null;
for (IMove m : validMoves) {
if (m.make(s)) {
Pair next = minimax(s, ply-1, !'maxLevel);
next.move = m;
m.undo (s) ;

if (maxLevel) {

if (best == null || next.score > best.score) { best = next; }
} else {
if (best == null || next.score < best.score) { best = next; }

}

}

return best;

Assuming that ply is greater than zero, minimax iterates through all of the valid moves one by one.
After applying each move to the game state, minimax() recursively invokes minimax at a depth of ply-1
and negates the maxLevel to alternate between Min and Max levels. When the recursive call ends,
the move is undone, minimax() records the maximum (or minimum) score of the children nodes ofs, and
itassociates that move with the computed score. This method returns the best computed move.

When the recursive minimax method reaches ply of 0, it has reached the final depth (for completeness.
There may be some game trees where a player has no more available moves earlier than that depth; that
case is treated in the same way). minimax evaluates the game state from the perspective of the

original player and returns the evaluated score within a Pair object that currently has no move
associated with it. The invoking method will associate the appropriate move object.

Now you justneed to implement the computeMoves(s) method thatreturns a collection of move objects
that represent the available moves at that state. First, you need to create a class thatrepresents a Tap move.

@ In the Isrc source folder cho psticks package, create a TapMove class as shown:

CODE TO TYPE: TapMove class

package chopsticks;
public class TapMove implements IMove {

final int fromPoints;
final int toPoints;
int newValue;

public TapMove (int fromPoints, int toPoints) {
this.fromPoints = fromPoints;
this.toPoints = toPoints;

}

public String toString () {
return "Tap " + toPoints + " with " + fromPoints;

}

public boolean valid(GameState s) {
if (!s.values[s.player].contains (fromPoints)) { return false; }
if (!s.values[l-s.player].contains (toPoints)) { return false; }
return true;

public boolean make (GameState s) {
if (!'valid(s)) { return false; }

newValue = fromPoints + toPoints;

if (newValue >= 5) { newValue = 0; }

if (s.values[l-s.player].size() == 2) {
s.values[l-s.player] .remove (toPoints) ;

}

s.values[l-s.player].add (newValue) ;

s.player = l-s.player;
return true;

}

public boolean undo (GameState s) {
s.player = l-s.player;

if (s.values[l-s.player].size() > 1) {
s.values[l-s.player].remove (newValue) ;

}

s.values[l-s.player].add(toPoints) ;

return true;

Let's take a closerlook.

TapMove class

public class TapMove implements IMove {

final int fromPoints;

final int toPoints;

int newValue;

public TapMove (int fromPoints, int toPoints) ({
this.fromPoints = fromPoints;

this.toPoints = toPoints;

}

public String toString () {

}

public boolean valid(GameState s) {

if (!s.values[s.player].contains (fromPoints))
if (!s.values[l-s.player].contains (toPoints))

return "Tap " + toPoints + " with " + fromPoints;

{ return false;
{ return false;

}
}

return true;

}

A TapMove object represents the Tap move with a tapping hand that has fromPoints and with a tapped
hand that contains toPoints. To determine whether a given move is valid in GameState s, the valid
method only needs to determine if the values associated with the current player (s.player) contain
fromPoints. Similarly, the move is only valid if the hand of the opponent (1-s.player) contains
toPoints. The newValue value is computed within the make move to allow undo to work.

The real logic occurs within make():

OBSERVE: TapeMove make() method

public boolean make (GameState s) {
if ('valid(s)) { return false; }

newValue = fromPoints + toPoints;
if (newValue >= 5) { newValue = 0; }
if (s.values[l-s.player].size() == 2) {

s.values[l-s.player] .remove (toPoints) ;

}

s.values[l-s.player] .add (newValue) ;

s.player = 1l-s.player;
return true;

If the move is not valid in the state s,then it returns false; otherwise it determines the newValue to
use for the opponent's hand. If newValue is five or greater, the player has a dead hand. The only tricky
logicis to decide how to update the points for the opponent's hand. If the opponent’s hand already
contained two distinct values (as determined by s.values[1-s.player].size()), you mustremove
the toPoints value because itis being replaced with newValue. However, if the hand has two fingers with
the same value (the sets.values[1-s.player] only has one value), you only have to add newValue to the
set. Finally, once the move is made, the player associated with the state flipsto the other player.
To complete the TapMove class, there needs to be an undo() implementation.

OBSERVE: TapMove undo method

public boolean undo (GameState s) {
s.player = l-s.player;

if (s.values[l-s.player].size() > 1) {
s.values[l-s.player] . remove (newValue) ;

}
s.values[l-s.player] .add(toPoints) ;

return true;

}

The undo method is invoked only after a successful move. Its operations reverse the effect of the make
method. It first switches the active player of the state, thenreplaces the newValue value inthe
opponent's set with the original toPoints value. .Ifthe opponent has two distinct values,
newValue can be removed safely.

With TapMo ve available, you can now go back to the Minimax class and add the
computeMoves(GameState s) method:

CODE TO TYPE: Adding computeMoves to Minimax

static Collection<IMove> computeMoves (GameState s) {
ArrayList<IMove> set = new ArrayList<IMove>();

for (int to : s.values[l-s.player]) {
if (to == 0) { continue; }
boolean alreadyOver = false;
for (int from : s.values[s.player]) {
if (from == 0) { continue; }
if (l'alreadyOver) {
set.add (new TapMove (from, to));
}
if (from + to >= 5) {
alreadyOver = true;

}

}

return set;

This method checks the four possible Tap moves by iterating over all the points in the player's hands, and
trying to form TapMove objects with the points in each of the opponent's hands. Note thatit mustavoid dead
hands with no points. This method also adds one more optimization that eliminates duplicate moves. For
example, in the state (Player1, 2, 3, 3, 4), Player1 has four Tap moves (2on3,30n3,20n4,30n4).
However, there are really only two potential states that can result from these moves: (Player2, 2, 3, *, 3) and
(Player2,2, 3,*,4). The alreadyOver variable is setto true to avoid computing redundant TapMo ve
objects.

Now you're ready to put everything together! Write the code below to determine the best move for Player2
within the (Player2,1,1,1, 2) state.

1n your TwoPlayer project, create a [performance source folder.
In the Iperformance source folder, create a chopsticks package.

& In the cho psticks package, create a PrintGameTree class as shown:

COE TO TYPE: PrintGameTree class

package chopsticks;

public class PrintGameTree {
public static void main(String[] args) {
GameState gs = new GameState (GameState.Player2, 1, 1, 1, 2);
IEvaluate eval = new Evaluator();
int ply = 2;

Minimax m = new Minimax(ply, eval);

IMove move = m.bestMove (gs, GameState.Player2?);
System.out.println ("best move: " + move);

O Save and run it. The outputis best move: Tap 1 with 1. This means that the best move is going to be to
the left of the game tree presented earlier. So, how can you make sure that the code is working correctly?
Make these code changes to outputinformation as the algorithm executes:

CODE TO TYPE: Changes to Minimax to expose information as it processes

package chopsticks;
import java.util.*;

public class Minimax {
int ply;
int original;
IEvaluate eval;
StringBuffer padding;

public Minimax (int ply, IEvaluate ie) {
this.ply = ply;
this.eval = ie;

public IMove bestMove (GameState s, int player) {
padding = new StringBuffer();
original = player;
Pair bestMove = minimax (s, ply, true);
return bestMove.move;

Collection<IMove> computeMoves (GameState s) {
ArrayList<IMove> set = new ArrayList<IMove>();

for (int to : s.values[l-s.player]) {
boolean alreadyOver = false;
for (int from : s.values[s.player]) {
if (lalreadyOver) {
set.add (new TapMove (from, to));
}
if (from + to >= 5) {
alreadyOver = true;

return set;

Pair minimax (GameState s, int ply, boolean maxLevel) {
System.out.print (padding.toString() + s + " ");
Collection<IMove> validMoves = null;

if (ply > 0) { validMoves = computeMoves(s); }
if (ply == || validMoves.isEmpty()) {
int score = eval.evaluate (s, original);
System.out.println(" [" + score + "]");

return new Pair (null, score);

System.out.println();
Pair best = null;
for (IMove m : validMoves) {
if (m.make(s)) {
padding.append (" ");
Pair next = minimax(s, ply-1, !maxLevel);
next.move = m;
padding.setlLength (padding.length () -2);
m.undo (s) ;

if (maxLevel) {

if (best == null || next.score > best.score) { best = next;
} else {

if (best == null || next.score < best.score) { best = next;

}

}

}

System.out.println (padding.toString() + " returning best: " + best.move + "
" + best.score);
return best;

}

£2 Now when you run it, you see this:

OBSERVE: Trace of the Minimax algorithm

(Player2,1,1,1,2)

(Playerl,1,2,1,2)
(Player2,1,2,2,2)
(Player2,1,2,2,3) [10]
(Player2,1,2,1,3) [15]
(Player2,1,2,1,4) [30]
returning best: Tap 1 with 1, 5

(Playerl,1,3,1,2)

[5]

(Player2,1,3,2,2) [30]
(Player2,1,3,2,4) [50]
(Player2,1,3,1,3) [20]
(Player2,1,3,0,1) [-85]

returning best: Tap 2 with 3, -85
returning best: Tap 1 with 1, 5
best move: Tap 1 with 1

This output reflects the evaluation values presented in the earlier game tree. The indentation reflects the depth
in the game tree, and the evaluation of each node (from the perspective of Player2) appears in brackets at the
end of each row.

Let's see if this algorithm can find the winning move described earlier for Player2 in the state (Player2, 1, 3, 2,
4). Modify PrintGameTree as to expand only one level:

CODE TO TYPE: Modified PrintGameTree

package chopsticks;

public class PrintGameTree {
public static void main(String[] args) {
GameState gs = new GameState (GameState.Player2, 1, 3, 2, 4+—F—"F+—72);
IEvaluate eval = new Evaluator();
int ply = 12;

Minimax m = new Minimax(ply, eval);

IMove move = m.bestMove (gs, GameState.Player2?);
System.out.println ("best move:" + move);

L)) Run it. It determines that the best move is to tap the opponent's hand with 3 fingers to force a dead hand
for Player1:

OBSERVE: Computed 1-ply Minimax search on (Player2, 1, 3, 2, 4)

(Player2,1,3,2,4)
(Playerl,3,3,2,4) [-55]
(Playerl,0,3,2,4) [45]
(Playerl,0,1,2,4) [55]
returning best: Tap 3 with 2, 55
best move: Tap 3 with 2

Minimax works bestwhen it explores sufficient levels of the tree. Change the ply to 2 and observe that
Minimax now finds a better move:

OBSERVE: Computed 2-ply Minimax search on (Player2, 1, 3, 2, 4)

(Player2,1,3,2,4)
(Playerl,3,3,2,4)
(Player2,3,3,0,4) [-85]
(Player2,3,3,0,2) [-75]
returning best: Tap 2 with 3, -85
(Playerl,0,3,2,4)
(Player2,0,3,0,4) [15]
(Player2,0,3,0,2) [25]
returning best: Tap 2 with 3, 15
(Playerl,0,1,2,4)
(Player2,0,1,3,4) [90]
(Player2,0,1,0,2) [-5]
returning best: Tap 4 with 1, -5
returning best: Tap 1 with 4, 15
best move: Tap 1 with 4

In fact, you can increase ply to larger values, but the extra searches are redundant now that a victory has been
found. There is a more efficient path-finding algorithm called Alpha/Beta that can reduce the size of game
trees dramatically by intelligently pruning redundant searches. You can read about this algorithm in the
Algorithms In A Nutshell companion book.

Lessons Learned

Much of the success of Minimax is derived from its ability to model both the game state and the available
moves in the game efficiently. For chopsticks, there were three potential ways to represent the game state.
Design the game state with care because each potential move class mustimplement three methods—valid,
make, and undo. If you select an overly complicated modeling structure, you will waste precious time
debugging the move classes. You mustchoose a design that offers the greatest benefits to the most move
classes.

Do notskip the step where the IEvaluat e interface was defined. The success of Minimax ultimately depends
on having accurate and relevant evaluation classes to estimate the "strength" of a board from a player's point
of view. Crafting these heuristics is almostan artform and you'll want to experiment with a number of
potential evaluation classes.

When implementing an algorithm, be sure to keep the logic of the core algorithm fully encapsulated within its
own setofclasses. Use interfaces to identify the user-specified classes cleanly for the actual game problem
being solved. That way, you can use the Minimax code as an engine for multiple two-player games.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://shop.oreilly.com/product/9780596516246.do
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Algorithms On Sound Data

Lesson Objectives

When you finish this lesson, you will be able to:

e demonstrate how to invoke Fast Fourier Transform on a third-party library.
e generate sound wave forms to play using Java's AudioFormatclass.
e converta frequency into its note equivalenton a piano keyboard.

Signal Processing Algorithms

The algorithms in this course focus mostly on human-readable real-world data, such as string values, integers,
floating-point numbers, and Cartesian points. Wouldn'tit be great to be able to process sound data, for example, to
detect the pitch of a note—or even a chord of notes—being played? In this lesson, you'll learn how to create and
process sound data using the Fast Fourier Transform (FFT), which is often considered one of the mostimportant
numerical algorithms ofthe 20th century. You will learn how to process Waveform Audio File Format (WAV) data
containing uncompressed audio encoded using a linear pulse code modulation (LPCM) format.

Sound is a traveling longitudinal wave which is an oscillation of pressure. An individual wave is defined by its period
(the distance in time between two high points) and amplitude (the total distance vertically from the highest pointto the
lowest point). The amplitude represents the energy of the wave or its "loudness." For this lesson, we will assume that
all wave forms are normalized between [-1, 1] because the focus is on frequency analysis.

The human ear interprets a sound wave by converting itinto a musical pitch (or note). Each musical note corresponds
to a specific frequency which is measured in hertz, or the number of complete cycles per second of a periodic
phenomenon (in this case, the sound wave). Studies have demonstrated that the range of hearing for an infant child is
20 Hertz to 20,000 Hertz. The middle C on a piano keyboard is tuned to the frequency of261.626 Hertz, which is well
within this range (for additional frequency values, see the Wikipedia entry on piano frequencies). If you were to sample
this sound wave 44,100 times per second, you would compute 44,100 individual values—the first 450 are shown
below in the blue time series. The horizontal axis (t-axis) represents time, while the vertical y-axis represents the
energy contained in the wave attime t.

15

Period —)|

: /ﬂ\\
os 4 ' A [¥ /‘
% Y ! f'f E Voo 1/ A
1 f7 s v F i
i y ‘f;‘ H i % ‘;T g '._’?f Am pl itu d e
T - + u ! ¥ s %
<0 ._... E‘;DD .._.- 150; 2[!;_: 256, i.. 300 ;:._. 350 ;,‘.bu 1'& 450 500
. S ! A ;3 { x

-15

To interpret the above blue sound wave, you need to know the sampling rate and the time when the blue sound wave
completes a full period. The blue wave period is about 169 time units. Since there are 44,100 total samples, the
computed frequency of the blue wave is 447100/169 or 260.95—close to the middle C frequency we mentioned earlier.

The red sound wave above represents the tone when playing the E key just above middle C. Based on a period of 135
time units, its frequency is computed to be 326.66—close to its actual value of329.628.

Pulse Code Modulation (PCM) demonstrates how to represent the continuous properties of the wave form discretely.
PCM represents an audio waveform as a sequence of amplitude values recorded at a sequence oftimes. LPCM is

http://en.wikipedia.org/wiki/Piano_key_frequencies

PCM with linear quantization. The standard audio file format for CDs, for example, is LPCM-encoded with two channels
0f44,100 samples per second. Each sample is recorded as an unsigned 16-bit integer value.

To begin ourinvestigation into sound data, we'll write a small program that generates an 8-bit quality sound wave form
that plays a middle C note.

é Create a new Java Projectnamed SoundFiles and assign itto the Java6_Lessons working set.
I your SoundFiles project/src source folder, create an fft package.

& In the fft package, create a Generate class as shown:

CODE TO TYPE: Generate class

package fft;
import javax.sound.sampled.*;

public class Generate {
public static void main(String[] args) throws Exception {
float sampleRate = 44100;
double f = 261.626;
double a = 0.5;
double twoPiF = 2*Math.PI*f;

double[] buffer = new double [44100];

for (int sample = 0; sample < buffer.length; sample++) {
double time = sample / sampleRate;
buffer[sample] = a * Math.sin (twoPiF*time) ;

}

final byte[] byteBuffer = new byte[buffer.length];
int idx = 0;
for (int i 0; i < byteBuffer.length;) {
int x = (int) (buffer[idx++]*127);
byteBuffer[it++] = (byte) x;

I~

}

boolean bigEndian = false;

boolean signed = true;

int bits = 8;

int channels = 1;

AudioFormat format = new AudioFormat (sampleRate,bits,channels, signed,bigEndian);

DataLine.Info info = new DatalLine.Info (SourceDatalLine.class, format):;
SourceDataline line = (SourceDataline) AudioSystem.getLine (info);
line.open (format) ;

line.start();

long now = System.currentTimeMillis();

line.write (byteBuffer, 0, byteBuffer.length);

line.close();

long total = System.currentTimeMillis () - now;
System.out.println(total + " ms.");

o Save and run it. You hear a tone that sounds like the middle C note on the piano. To create this sound, this class
generates a one-second wave form using 8-bit sound encoding. Let's take a closerlook:

OBSERVE: Creating Wave Form

float sampleRate = 44100;
double £ = 261.626;

double a = 0.5;

double twoPiF = 2*Math.PI*f;

double[] buffer new double[44100];

for (int sample = 0; sample < buffer.length; sample++) {
double time = sample / sampleRate;
buffer[sample] = a * Math.sin (twoPiF*time) ;

}

Sound data can be represented using a time series computed using the trigonometric Sine function. In a time series,
the value trepresents the time unit, which increments from 0 to increasing positive numbers. The variable f specifies
the desired frequency (in this case, Middle C). The variable a represents a scaling factor (between 0 and 1) to apply to
the amplitude of the wave. The wave will be atits "loudest” when a is 1.0, and softer with decreasing values ofa. The
variable two PiF pre-computes the constant value used within the for loop for optimization. buffer contains the
sequence of 44,100 floating point values representing the wave form. With each pass through the for loop, time
represents the t-coordinate for which the wave form is computed using the formula a*Sin(2*PI*f*t).

Once bufferis computed, it must be converted into its corresponding byte encoding. For 8-bit sound quality, there are
256 different values that can be generated. Naturally, 16-bit sound quality is able to more accurately model a sound
wave form because it allows for a total of 65,536 different values:

OBSERVE: Create byte buffer from floating-point buffer

final bytel

int idx = 0

for (int i 0; i < byteBuffer.length;) {
int x = (int) (buffer[idx++]1*127);
byteBuffer[i++] = (byte) x;

}

] byteBuffer = new byte[buffer.length];

The floating point values are "scaled" to become signed byte values (-128 to 127). The code actually only computes
255 possible values (from -127 to 127) because of the conversion from int to byte, but that's acceptable when
digitizing a Sine wave. The image below charts the sample byte values of this buffer. The values only range from -63 to
+6 3 because the amplitude of the generated wave form, a, is scaled at0.5:

80

50
40 d " ||
0 Mﬂuu”

T
H ;oo M
—

T
.
—

217
253
293
339
37
415
45
49
53
57
61
65
69 3
733
7T
813
857
af
Can
e

==TS

-20

il
1l

-60

-80

The size of byteBuffer is the same as the original buffer. The JDK plays the 8-bit encoded byte buffer:

OBSERVE: Playing bytes as sound

boolean bigEndian = false;

boolean signed = true;

int bits = 8;

int channels = 1;

AudioFormat format = new AudioFormat (sampleRate,bits,channels,signed,bigEndian) ;

DatalLine.Info info = new DatalLine.Info (SourceDatalLine.class, format):;
SourceDataline line = (SourceDataline) AudioSystem.getLine (info) ;
line.open (format) ;

line.start() ;

long now = System.currentTimeMillis () ;

int written = line.write (byteBuffer, 0, byteBuffer.length) ;
line.close() ;

System.out.println(written + " bytes written.");

long total = System.currentTimeMillis() - now;
System.out.println(total + " ms.");

The AudioFormat object represents the encoding used so the underlying audio software can interpret the bytes it
receives properly. As you can imagine, there are numerous encoding styles and hardware devices available to
process these encodings. Here the code specifies that:

e the bytes are encoded in little-Endian order, from least significant bit to greatest. This only matters for 16-bit
and higher encodings.

e the bytes are signed (where negative numbers are "below" the x-axis).
e there are 8 bits in each encoding, thus the audio hardware will read 8 bits ata time.
e thereis justa single channel of output.

An AudioFormat object could have multiple streams ofinput, called channels. A stereo audio source, for example,
would have two channels (left and right). Amono source would have only a single channel.

Once the formatis declared, the code creates a SourceDatalLine objectto manage the transfer of bytes. First, the
line is opened with the declared AudioFormat object. Then the start method is invoked to declare that it
must be ready to receive the data, which is written as a single block write. Finally, the line is closed and final
statistics are output.

0’ Run this code again; you might be surprised to hear that the sound seems to play for much less than one second.
The output shows that the program ran in about 1/2 second:

OBSERVE: Generate output

44100 bytes written.
565 ms.

What might be going wrong? Well, normally all sound information to be played is buffered prior to being delivered to
the hardware. To determine the size of the buffer, modify Generate as shown:

CODE TO TYPE: Detect size of sound buffer

long now = System.currentTimeMillis();
System.out.println ("buffer size:" + line.available());
int written = line.write(byteBuffer, 0, byteBuffer.length);

0’ Run it again; you see that the buffer size is 22,050, which supports about 1/2 second of audio. The program
completes before the audio hardware finishes playing the sound. The simplest way to fix this is to make sure thatall
bytes sent to the audio hardware are drained before it can be closed. This means calling drain() blocks until all data
has been played.

CODE TO TYPE: Properly drain buffer to play entire sound

int written = line.write (byteBuffer, 0, byteBuffer.length);

line.drain () ;
line.close () ;

2 Now in addition to playing the sound for a full second, the output shows something like this:

OBSERVE: Proper execution of Generate

buffer size:22050
44100 bytes written.
1035 ms.

You can have lots of fun with sound wave forms. The next change generates a stereo signal of middle C being played,
but the amplitude changes in the left and right sides to provide the illusion of sound depth over a two-second period:

CODE TO TYPE: Modify Generate to generate stereo output

package fft;
import javax.sound.sampled.*;

public class Generate {
public static void main(String[] args) throws Exception ({
float sampleRate = 44100;
double f = 261.626;
double a = .5;
double twoPiF = 2*Math.PI*f;

double[] buffer = new double[44100%*47;
for (int sample = 0; sample < buffer.length; sample++) {
double time = (sample/2) / sampleRate;
double al = a*Math.sin(Math.PI*time) ;
double a2 = a*Math.cos (Math.PI*time);
buffer[sample++] = al * Math.sin(twoPiF*time) ; // channel 1
buffer[sample] = a2 * Math.sin(twoPiF*time) ; // channel 2

byte[] byteBuffer = new byte[buffer.length];

int idx = 0;

for (int 1 = 0; i < byteBuffer.length;) {
int x = (int) (buffer[idx++]*127);
byteBuffer[it++] = (byte) x;

}

boolean bigEndian = false;

boolean signed = true;

int bits = 8;

int channels = 2;3+

AudioFormat format = new AudioFormat (sampleRate,bits,channels,signed,bigEndian) ;

DataLine.Info info = new DatalLine.Info (SourceDatalLine.class, format):;
SourceDataline line = (SourceDataline) AudioSystem.getLine (info);
line.open (format) ;

line.start () ;

long now = System.currentTimeMillis();

System.out.println ("buffer size:" + line.available());

int written = line.write (byteBuffer, 0, byteBuffer.length);
System.out.println(written + " bytes written.");

line.drain () ;
line.close();
long total = System.currentTimeMillis () - now;
System.out.println(total + " ms.");

Experiment with the code some more. For example, change the frequency, f, to determine the lowest or highest pitch
thatyou can hear.

To be able to process actual sound files containing recorded music, you need to work with 16-bit sound data. Modify
Generate as shown to recreate a 16-bitmono encoding of just middle C:

CODE TO TYPE: Modifications to Generate class

package fft;
import javax.sound.sampled.*;

public class Generate {
public static void main(String[] args) throws Exception ({
float sampleRate = 44100;
double f = 261.626;
double a = .5;
double twoPiF = 2*Math.PI*f;

double[] buffer = new double [44100*42];
for (int sample = 0; sample < buffer.length; sample++) {
double time = -sample/2 / sampleRate;

<l 1ol b L2V, N P VAV PN DT .
\CAWAD S W) [egun 7 (=8 I CIT . LTIT (TIaCTIT . T LT C L1107 T r
<l 1o 2 2V N VA VNN DT ks o
\CAWAD S W n (=3 T (=3 TITTCIT \A) (T CIT . T T CLTIT T r
— 3 3 3 . 1 1 1
buffer[sample++] = at+ * Math.sin(twoPiF*time) ; Fraarred—
la. = L 1 ul = ML =lo o L Do T o AY N~ 1
[P I S o LDC;U[[LJLCJ — [} I CIT . TITTCOCWOTITT C I TIITITCT T

byte[] byteBuffer = new byte[buffer.length*2];
int idx = 0;
for (int 1 = 0; i < byteBuffer.length;) {
int x = (int) (buffer[idx++]*25532767);
byteBuffer[it++] = (byte) x;
byteBuffer[i++] = (byte) (x >>> 8);
}

boolean bigEndian = false;

boolean signed = true;

int bits = 8+16;

int channels = 2+1;

AudioFormat format = new AudioFormat (sampleRate,bits,channels,signed,bigEndian);

DatalLine.Info info = new DatalLine.Info (SourceDatalLine.class, format);
SourceDataline line = (SourceDataline) AudioSystem.getLine (info);
line.open (format) ;

line.start () ;

long now = System.currentTimeMillis();

System.out.println ("buffer size:" + line.available());

int written = line.write (byteBuffer, 0, byteBuffer.length);
System.out.println(written + " bytes written.");

line.drain () ;
line.close();
long total = System.currentTimeMillis () - now;
System.out.println(total + " ms.");

i} You probably won't detect any audible difference, since it still plays a middle C tone for just about two seconds.
We've only made minor changes to the earlier 8-bit mono version. Let's take a closerlook at the way byteBuffer is
constructed:

OBSERVE: Create byte buffer with byte pairs

byte[] byteBuffer = new byte[buffer.length*2];
int idx = 0;
for (int i = 0; i < byteBuffer.length;) {
int x = (int) (buffer[idx++]*32767);
byteBuffer[i++] = (byte) x;
byteBuffer[i++] = (byte) (x >>> 8);
}

To store 16-bit data, you need a byte buffer twice as large as the 8-bit solution. In addition, the byte values are no

longer simply drawn from the range of 256 values (or 28). Instead you need to represent 65,536 (or216) different
values. To do this, the value is encoded into two neighboring byte values. This code will generate only 65,535
possible encodings, but that's acceptable. Using little-Endian encoding, the lower 8 bits of the encoded value, x, is
written out first, then the value of xis shifted 8 bits to the right before itis written out. Finally, the number of
bits in the AudioFormat objectis changed from 8 to 16 and the number of channels is setto 1. To represent the audio
in big-Endian encoding, you would simply swap the order of these two bytes in byteBuffer.

Composed Wave Forms

Let's return to the original plot at the start of this lesson, which contained a blue wave form representing
middle C and a red wave representing the E above middle C. Instead of depicting these separately, the image
below represents the combined sound wave of these two notes playing simultaneously. The wave data is
normalized so its values all remain within the [-1, 1] range:

0.6
04 fyf\%
Y
s L Y 7N\
1 3
R !\ /~\
o+ % . + . erinte . ;)
“i 100 ,f 200 UM e 0 \ 500 600
% #
-0.2 % i+
kY /
e \V \/
-0.6
Where before the sound waves showed clear signs of periodicity, this wave form seems unintelligible.
However, if you plot more samples, the periodic structure becomes visible:
0.6
e LA A N N A
A U U A U A UPNERPU § A
02 F—3 % 5: ‘g 3
F i b4 S i ;’
o+—4 SN e ~ i -
E!zm\/vm\f 5203 i&f W K%ﬂo% glmii 1600
MY, VARVARY, \VARVERY,
-04 NV U %‘U
-0.6

Modify the Generate class as shown:

CODE TO TYPE: Modifications to Generate

package fft;
import javax.sound.sampled.*;

public class Generate ({
public static void main(String[] args) throws Exception {

float sampleRate = 44100;
double fl = 261.626;
double f2 = 329.628;
double a = .5;
double twoPiFl = 2*Math.PI*fl;
double twoPiF2 2*Math.PI*f2;

double[] buffer = new double [44100*2];
for (int sample = 0; sample < buffer.length; samplet++) {

double time = sample / sampleRate;

buffer[sample] = a * (Math.sin(twoPiFl*time) + Math.sin (twoPiF2*time))/2;
}

byte[] byteBuffer = new byte[buffer.length*2];
int idx = 0;
for (int i = 0; i < byteBuffer.length;) {

int x = (int) (buffer[idx++]*32767);
byteBuffer[it++] = (byte) x;
byteBuffer[i++] = (byte) (x >>> 8);

}

boolean bigEndian = false;

boolean signed = true;

int bits = 16;

int channels = 1;

AudioFormat format = new AudioFormat (sampleRate,bits,channels,signed,bigEndi
an) ;

DatalLine.Info info = new DatalLine.Info (SourceDatalLine.class, format);
SourceDataline line = (SourceDataline) AudioSystem.getLine (info);
line.open (format) ;

line.start () ;

long now = System.currentTimeMillis();

System.out.println ("buffer size:" + line.available());

int written = line.write (byteBuffer, 0, byteBuffer.length);
System.out.println (written + " bytes written.");

line.drain () ;
line.close();
long total = System.currentTimeMillis () - now;
System.out.println(total + " ms.");

o Save and run it. You hear two notes playing simultaneously (Middle C at a frequency of261.626 and the E
note justabove it ata frequency of 329.638). The only real difference with earlier code is the construction of
the floating-point buffer. Let's review this code:

OBSERVE: Create composed Sound Wave

float sampleRate = 44100;
double f1 = 261.626;
double f2 = 329.628;
double a = 0.5;
double twoPiF1
double twoPiF2

2*Math.PI*fl;
2*Math.PI*f2;

double[] buffer new double [44100*2];
for (int sample = 0; sample < buffer.length; sample++) {

double time = sample / sampleRate;

buffer[sample] = a * (Math.sin(twoPiFl*time) + Math.sin (twoPiF2*time)) /2;
}

The values in buffer are the composition of two sounds being played. The values in buffer mustbe in the
range [-1, 1]. When adding two Sine values together, the code divides by 2 to ensure that the resulting value
remains within this range.

Analyzing Composed Wave Forms

To analyze a composed wave form, you want to identify the individual sound wave frequencies that represent
the dominant components of the composition. In mathematics, there is a Discrete Fourier Transform (DFT)
that can convert a sampled function into a finite combination of complex sinusoidal functions ordered by their
frequencies that has the same sample values. There are three important concepts presented in this one
sentence:

e Convert aSampled Function: You may know that you can determine a line uniquely by just two
points. Thatis, given justtwo pairs of (x,y) values on a line, you can determine its equation. By
analogy, the sampled sound frequencies are being treated like individual points, this time with a t-
coordinate representing the time of that sample and a y-coordinate representing the amplitude of
the wave at that time unit. Based solely on this information, you're trying to determine a function)
that satisfies all of these points.

e Afinite combination of sinusoidal functions: In the composed wave form example, the
resulting chord is computed by adding together two sinusoidal functions. In general, you cannot
know in advance how many sinusoidal functions are presentin any complex wave form, but you
can assume that you are looking for only a finite number.

e Complexsinusoidal functions: The DFT is defined over the set of complex numbers, which are
numbers that can be expressed in the form a + bi, where a and b are real numbers andiis the

imaginary unit, defined as i?2=1. Every real number is already a complex number (with the
imaginary part of b=0). Second, we are concerned with the magnitude of the complex numbers
being processed. For a complex number of the form a + bi, its magnitude is the square rootof (a*a
+b*b).

Here is the single formula that "explains" the DST:
n—1 ‘
(—zmtk)
X(k) = x(t) xe\” n
t=0

Ok, that's a bit much. For this lesson you don't need to understand how this formula was derived, but I'll show
you how to implementitin Java. Complex numbers use the special variable i to represent the imaginary unit;
because you can see i in the above formula, you know thatitrelies on computations over complex numbers.
You can reduce the right half of the above formula by converting the exponential value of e like this:

—2mitk 2mtk . [2mtk
e n = cos|——|— i*sin| ——
n n

You accumulate X(k) by x(t) times the above, making sure to deal with the complex values that result from the
computation properly. You are given n, which is the number of sampled values, x(f). You only need to
determine the range of frequencies for k.

The term x(t) represents the sample value for time unit £, there are n sample values in all. You want to
determine X(k), which represents the signal level for frequency k. Now, for which values of k are you going to
compute X? In any input sample, the highest frequency is 1/2 the total number of samples (based on the

concept of Nyquist Frequency). However, this still leaves you with n*n/2 computations, or O(n2) computations.
You can likely execute DFT on only a small number of samples before itbecomes too costly to execute.

Once the values of X(k) are computed, you can investigate them to find those maximal values which directly
correlate to the existence of a wave form in the input with frequency k.

Let's write some code to compute DFT. You can reuse the chord generation code above. Generally, DFT is

meant to process complex values as input; however, your input consists of real valued samples, so the code
is a bit simpler than the generic DFT.

& In the fft package, create a DFT class as shown:

CODE TO TYPE: DFT class

package fft;
public class DFT {

static void dft (double[] inR, double[] outR, double[] outI) {
for (int k = 0; k < inR.length; k++) {
for (int t = 0; t < inR.length; t++) {
outR[k] += inR[t]*Math.cos(2*Math.PI * t * k / inR.length);
outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);

}

public static void main(String[] args) throws Exception {
float sampleRate = 44100;
double f1 = 261.626;
double f2 329.628;
double a = .5;
double twoPiFl = 2*Math.PI*fl;
double twoPiF2 2*Math.PI*f2;

double[] bufferR = new double [2048];
for (int sample = 0; sample < bufferR.length; sample++) {

double time = sample / sampleRate;

bufferR[sample] = a * (Math.sin(twoPiFl*time) + Math.sin (twoPiF2*time)) /2;
}

double[] outR = new double[bufferR.length];
double[] outl new double[bufferR.length];

dft (bufferR, outR, outI);

double results[] = new double[outR.length];
for (int 1 = 0; 1 < outR.length; i++) {

results[i] = Math.sgrt (outR[i]*outR[1] + outI[i]*outI[i]);
}

java.io.PrintStream ps = new java.io.PrintStream("Sample.txt");
for (double d : results) {

ps.println(d);
}

ps.close();

Let's look at this code more closely. The first half of the main method is identical to earlier code that
constructs a composed wave form from playing two notes (C and E):

http://en.wikipedia.org/wiki/Nyquist_frequency

OBSERVE: Invoking DFT on the wave form

double[] outR
double[] outI

new double[bufferR.length] ;
new double[bufferR.length];

dft (bufferR, outR, outI);

double results[] = new double[outR.length];
for (int i = 0; i < outR.length; i++) {

results[i] = Math.sqgrt (outR[i] *outR[i] + outI[i]*outI[i])
}

The dft method computes two buffers, outR and outl, which contain the n computed complex values of
X(k). These are composed into a single results array by determining the magnitude of the complex
number. The magnitude of the complex number a + biis computed as the square rootofa*a + b*b.

The actual DFT computation is performed in the dft method, which is simplified because the input contains
only real numbers, notcomplex numbers:

OBSERVE: DFT implementation

static void dft (double[] inR, double[] outR, double[] outI) {
for (int k = 0; k < inR.length; k++) {
for (int t = 0; t < inR.length; t++) {
outR[k] += inR[t]*Math.cos (2*Math.PI * t * k / inR.length);
outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);
}
}

Given nsamples in inR, this loop performs n*n operations, ultimately accumulating the proper complex
number resultin outR and outl. When this method completes, these two arrays contain the complex values
of X(k).

ﬁ Save and run DFT; this will create a file "Sample.txt" in the current Eclipse project. To see this file, select the
enclosing project and right-click to select Refresh.

Because there are 44,100 sample values in justone second of sound data, the DFT is inefficient for our
purposes. Here, only 2048 samples are used to enable the computation to complete in under a second.
However, how do you know that the resultis accurate? Retrieve the values from "Sample.txt" and plot them
using a program such as Excel.

300
» &
250
200 # »
150
100 * -
50
0
0 500 1000 1500 2000 2500

This graph is symmetric. The x-axis represents a frequency index, which divides the 44,100 (the sample rate)
possible frequencies into 2,048 (the number of samples being used for DFT) discrete ones. This graph
further demonstrates that you only need to consider the first half of these frequencies. Let's focus on the first

35 values:

300

250 ﬁ

200

150

100

50

O T 1 1 1 1 1 1 1
a 5 10 15 20 25 30 35 40

We are concerned with only the magnitude of these values and the two highest points that occur are the 13th
and 16th points. These indices are based on counting from zero, so these are actually frequency indices of 12
and 15. You can convert these frequency indices into actual frequencies like this:

e 12*44100/2048 =258.3984375
e 15"44100/2048 =322.998046875

These two values are really close to the frequencies ofthe C and E notes in the composed wave form. Think
about what this code has accomplished! Given a buffer containing a composed wave form, the DFT was
somehow able to isolate the two dominant frequencies. Now let's add some quick and dirty processing code
to identify these maximum peaks within the results array of a DFT, which will allow you to detect these
frequencies in the composed wave form. For more complex wave forms, you will need a more nuanced
approach, but this gives you an idea of what's possible. Modify DFT as shown:

CODE TO TYPE: Modifications to DFT

package fft;
import java.util.*;
public class DFT {

static void dft (double[] inR, double[] outR, double[] outI) {
for (int k = 0; k < inR.length; k++) {
for (int t = 0; t < inR.length; t++) {
outR[k] += inR[t]*Math.cos(2*Math.PI * t * k / inR.length);
outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);

}

public static void main(String[] args) throws Exception {
float sampleRate = 44100;
double f1 261.626;
double f2 = 329.628;
double a = .5;
double twoPiF1l
double twoPiF2

2*Math.PI*fl;
2*Math.PI*f2;

double[] bufferR = new double [2048];
for (int sample = 0; sample < bufferR.length; sample++) {

double time = sample / sampleRate;

bufferR[sample] = a * (Math.sin(twoPiFl*time) + Math.sin (twoPiF2*time))/2;
}

double[] outR
double[] outI

new double[bufferR.length];
new double[bufferR.length];

dft (bufferR, outR, outI);

double results[] = new double[outR.length];
for (int 1 = 0; 1 < outR.length; i++) {
results[i] = Math.sgrt (outR[i]*outR[1] + outI[i]*outI[i]);

. . Does ot Cli . . Dot ot i VRiNal k1 |
JavVa . oL Iircocreait o =—ITCW Java.rIo.rLrIficocreaitr oalpre-scXxc /7
£ S| 1al] 1o 1
TOLr—(CotoT (= resStTrTST—
S| S|
PSPt
k]
1= cCToSTe{T7

List<Float> found = process(results, sampleRate, bufferR.length, 4);
for (float freqg : found) {
System.out.println ("Found: " + freq);
}
}

static List<Float> process (double results[], float sampleRate, int numSamples,
int sigma) {
double average = 0;
for (int i = 0; i < results.length; i++) {
average += results[i];
}

average = average/results.length;

double sums = 0;
for (int i = 0; i < results.length; i++) {
sums += (results[i]-average) * (results[i]-average);

double stdev = Math.sqgrt (sums/ (results.length-1));

ArrayList<Float> found = new ArrayList<Float>();
double max = Integer.MIN VALUE;
int maxF = -1;
for (int £ = 0; f < results.length/2; f++) {
if (results[f] > average+sigma*stdev) {
if (results[f] > max) {
max = results[f];
maxkF = f;
}
} else {
if (maxF != -1) {
found.add (maxF*sampleRate/numSamples) ;
max = Integer.MIN_VALUE;
maxF = -1;

}

return (found);

The process method computes the average and standard deviation of the results array and it eliminates
from consideration any frequency index fwith a results[flthatis smaller than average + 4*stdev which should
eliminate 99.73% of the frequency indices from consideration. If a magnitude for a particular index is higher
than this threshold, it warrants further consideration. Now sweeping ffrom 0 to n/2 where nis the number of
computed values in results the for loop seeks to find a local maximum, max, and its corresponding
frequency index value, maxF. Then it computes the detected frequency by multiplying the frequency index,
maxF, by the sampleRate and dividing by numSamples.

-
@ Save and run it; these frequencies are detected in the output:

OBSERVE: Execute DFT

Found: 258.39844
Found: 322.99805

To validate that this code functions as expected, change the f1 and f2 values to two different frequencies in
the range 27 to 4,186, which represent the full range of the 88 keys on the keyboard. The computations won't
identify the frequency precisely because the accuracy of the computation is limited to 44100/2048 or 21.5
hertz. The only way to increase accuracy is to increase the number of samples processed by DFT. However,

doing so will dramatically slow the computation because of the O(n2) behavior. If you rerun the above code
using different samples, 4096 and 8192 respectively, you get these results in roughly the identified time:

e 4096: (3 seconds) 258.39844, 333.76465
e 8192:(10 seconds) 263.78174, 328.38 135

There is a more efficient version known as the Fast Fourier Transform (FFT). In this lesson, you will learn how
to use FFT, rather than implement it, because of the numerical complexity of the algorithm. There are a
number of freely available implementations.

To get this library, right-click this link and save the file in your workspace.

Then, add the commons-math3-3.2.jar library to be part of the build path in Eclipse. Right-click on your
projecticon within the workspace and select the Properties entry; on the left side, select Java Build Path.
You see this dialog:

https://courses.oreillyschool.com/data-structures-algorithms/software/commons-math3-3.2-bin.zip

2 Properties for lava6-OST S e
type filter text Java Build Path P v =

Resource WY
Builders | % Source I = Projactsl = Libraries H’q} Order and Exportl
Coverage JARs and class folders on the build path:
Java Build Path > =h JRE System Library [jre6] Add JARS...

» Java Code Style =, JUnit3

» Java Compiler . =) Layout Extension Add External JARs...

» Java Editor
Javadoc Location fdd¥agahlecs
Project References Add Library
Refactaring History
Run/Debug Settings Add Class Felder...

+ Task Repository
Task Tags Add External Class Folder...
Validation

Edit...
Remove
Migrate JAR File...

Click the Add JARs... button on the right and use the provided window to browse in your project to the libs
folder where the commons-math3-3.2.jar file exists. Selectitand click OK. Now you are ready to startusing
the FFT code which is part of this JAR file.

The bestway to learn FFT is to use it. Modify the DFT class to execute FFT on the buffer of double values that
it creates. The only requirement that FFT has is that the input size is a perfect power of 2. Otherwise, it
produces exactly the same resultformatas DFT:

CODE TO TYPE: Modifications to DFT

package fft;
import java.util.*;

import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.transform.*;

public class DFT {

static void dft (double[] inR, double[] outR, double[] outI) {
for (int k = 0; k < inR.length; k++) {
for (int t = 0; t < inR.length; t++) {
outR[k] += [t]*Math.cos (2*Math.PI * t * k / inR.length);

inR
outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);

public static void main(String[] args) throws Exception {
float sampleRate = 44100;
double fl = 261.626;
double f2 = 329.628;
double a = .5;
double twoPiFl = 2*Math.PI*fl;
double twoPiF2 = 2*Math.PI*f2;

double[] bufferR = new double [2048];
for (int sample = 0; sample < bufferR.length; sample++) {
double time = sample / sampleRate;
bufferR[sample] = a * (Math.sin(twoPiFl*time) + Math.sin (twoPiF2*time))/2;

}

double[] outR = new double[bufferR.length];
double[] outl = new double[bufferR.length];

F
T

1o £ n N S ¥
oorrerny; outn, ouctt /)y

@,

£
FastFourierTransformer fft = new FastFourierTransformer (DftNormalization.STA

NDARD) ;
Complex resultC[] = fft.transform(bufferR, TransformType.FORWARD) ;

double results[] = new double[outR.length];
£ L= A 3 0 2 =1 =l A L
[S \ LITC T T T . OCT . l.l\jL,lj,, [S 1
1 = Lo] e Mo = s W 3 s W | L = T [1 % =T [=]
resutHesH——Mathsaretont R ontRHT——eout S out 1~
—
for (int 1 = 0; 1 < resultC.length; i++) {
double real = resultC[i].getReal();
double imaginary = resultC[i].getImaginary():;
results[i] = Math.sqgrt (real*real + imaginary*imaginary);

}

List<Float> found = process(results, sampleRate, bufferR.length, 4);
for (float freqg : found) {
System.out.println ("Found: " + freq);
}
}

static List<Float> process (double results[], float sampleRate, int numSamples,
int sigma) {
double average = 0;
for (int i = 0; i < results.length; i++) {
average += results[i];

}

average = average/results.length;

double sums = 0;
for (int 1 = 0; i < results.length; i++) {

sums += (results[i]-average) * (results[i]-average);

}
double stdev = Math.sqgrt (sums/ (results.length-1));

ArrayList<Float> found = new ArrayList<Float>();
double max = Integer.MIN VALUE;
int maxF = -1;
for (int £ = 0; f < results.length/2; f++) {
if (results[f] > average+sigma*stdev) {
if (results[f] > max) {
max = results[f];
maxF = f;
}
} else {
if (maxF != -1) {
found.add (maxF*sampleRate/numSamples) ;
max = Integer.MIN_VALUE;
maxF = -1;

}

return (found);

Q’ Save and run it; you get the same result as before, but much more quickly. FFT makes it practical to
accurately process composed wave forms. The next step, naturally, is to try to execute FFT on actual recorded

audio samples. Let's get started.

Using FFT on WAV file samples

Your project should come with some existing WAV resources for you to use. Once you finish this lesson,
make your own sound recordings to see if you can replicate the processing done here. Working with real
sound files introduces a number of additional issues. Let's see how to load up a WAV sound file containing
16-bit encoded data that needs to be converted into double values; this sequence is essentially the reverse

ofthe sound generation you did at the beginning of this lesson.

There are five sound files to be processed:

CFA_MajorChord.wav: 7 seconds ofa C-F-A chord played on a regular piano

CMajorChord.wav: 7 seconds ofa C-E-G major chord played on a regular piano

ClavinovaCMajorChord.wav: 7 seconds ofa C-E-G major chord played on an electric Yamaha

Clavinova

CSeventhChord.wav: 7 seconds ofa C-E-G-Bb chord (Major C-7th) played on a regular piano

CrystalGlass.wav: 4 seconds of the ringing of a crystal glass

Let's process the clearest signal—the crystal glass.

& In the fft package, create a WAVProcessing class as shown:

https://courses.oreillyschool.com/data-structures-algorithms/software/CFA_MajorChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/CMajorChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/ClavinovaCMajorChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/CSeventhChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/CrystalGlass.wav

CODE TO TYPE: WAVProcessing

package fft;

import java.io.*;

import java.util.*;

import javax.sound.sampled.*;

import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.transform.*;

public class WAVProcessing {
public static void main(String[] args) throws Exception ({

File fileIn = new File ("chords\\CrystalGlass.wav");
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(fileln);
System.out.println (audioInputStream.getFormat ()) ;
int size = audioInputStream.available();
byte[] bytesIn = new byte[size];
audioInputStream.read (bytesln);

AudioFormat format = audioInputStream.getFormat () ;
float rate = format.getFrameRate () ;

int numChannels = format.getChannels();

double[] buffer new double [1048576];

int idx = 0;

for (int i = 0; i < bytesIn.length && idx < buffer.length; 1 += 2) {
byte blow = bytesIn[i];
byte bhigh = bytesIn[i+l];

buffer[idx++] = (blow & OxFF | bhigh << 8)/32767;
if (numChannels == 2) { 1 += 2; }

FastFourierTransformer fft = new FastFourierTransformer (DftNormalization.STA
NDARD) ;

Complex resultC[] = fft.transform(buffer, TransformType.FORWARD) ;

double[] results = new double[resultC.length];
for (int i = 0; i < resultC.length; i++) {
double real = resultC[i].getReal();
double imaginary = resultC[i].getImaginary():;
results[i] = Math.sqrt(real*real + imaginary*imaginary);

}

List<Float> found = DFT.process (results, rate, resultC.length, 7);
HashMap<String,Float> keys = new HashMap<String, Float>();
System.out.println ("Found:" + found);
for (float freqg : found) {

keys.put (closestKey (freq), freq):;
}
for (String note : keys.keySet()) {

System.out.println ("Found: " + note + " @ freg=" + keys.get (note));
}

static Strlng[] notes = {"A", "A#ll, "B", ncvv, nc#"’ "D", "D#H, "E", an, HF#",
"G“, "G#"},’

public static String closestKey (double freq) {
int key = closestKeyIndex (freq);
if (key <= 0) { return null; }
int range = 1+ (key-1)/notes.length;
return notes|[(key-1)$notes.length] + range;

}

public static int closestKeyIndex (double freq) {
return 1+ (int) ((12*Math.log(freq/440)/Math.log(2) + 49) - 0.5);
}

| }

2 Save and run it

OBSERVE: CrystalGlass Analysis

PCM SIGNED 44100.0 Hz, 16 bit, stereo, 4 bytes/frame, little-endian
Found: [1645.6919, 1646.7013, 1647.5845, 1651.4116, 1664.2811, 3217.153]
Found: G#6 @ freg=1664.2811

Found: G7 @ freg=3217.153

The code may have trouble distinguishing frequencies at the higher octaves on the piano. Ideally the sound of
crystal glass would have only one harmonic subtone one octave above the base tone of G#6. You can see
that the identified frequences are nearly double each other.

Most of this code is familiar to you by now. Let's review the new additions:

OBSERVE: Converting Frequency into a piano note

static Strlng[] notes = {"A“, "A#", IIB", "c", "c#ll, llD", HD#II, "E", an, IIF#III
"G", "G#"},’

public static String closestKey (double freq) {
int key = closestKeyIndex (freq) ;
if (key <= 0) { return null; }
int range = 1+ (key-1)/notes.length;
return notes][(key-1) %$notes.length] + range;

}

public static int closestKeyIndex (double freq) ({
return 1+ (int) ((12*Math.log(freq/440)/Math.log(2) + 49) - 0.5);
}

A number of frequencies were detected by FFT. The code we write next consolidates these frequencies into
distinct pitches using a HashMap to associate the detected frequency with the closest key as computed
above.

The notes static field records the 12 distinct notes as found on a piano. Each tone occurs at a given octave
number. The lowestnote on the 88-key piano keyboard is key number 1 (A0); the highest note is key number
88 (C8). The closestKeylndex method takes a frequency and returns the corresponding key number on the
piano in the range from 1-88. This formula is derived from the logarithmic nature of the frequencies. The
closestKey function converts this number into a human-readable string representing the note on the piano
thatmost closely corresponds to the given frequency:

OBSERVE: consolidate frequencies into pitches

List<Float> found = DFT.process (results, rate, resultC.length, 7);
HashMap<String, Float> keys = new HashMap<String, Float>();
System.out.println ("Found:" + found) ;
for (float freqg : found) {

keys.put (closestKey (freq), freq):;
}

Frequencies that are "close together" become consolidated in the HashMap, so only two detected notes
appear in the output.

The notes on an ideal piano range from a low frequency of 27.5 to a high 0f4186.01. Instead of being evenly
spaced, the notes are arranged in octaves that are multiples of each other. For example, middle C is the
frequency 26 1.626, while the C one octave higher is 523.251. The closest Keylndex method computes the
piano key index with 1 being the lowest key on the piano and 88 being the highest key. If the frequency is
lower than the lowest key on the piano, this method returns a number smaller than 1; that's why the
closestKey method protects against this situation.

Lessons Learned

e Sound wave data has a structure that you can manipulate: Sound data is encoded in bytes
to represent the wave forms.

e Real-world sound datais not perfect: The sound data you generate has a near-perfect
representation as sinusoiudal wave forms. Recorded sounds rarely have this structure, so the FFT
results are indicative of existing frequencies, rather than clear and definitive.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Conclusion

Lesson Objectives

When you finish this lesson, you will be able to:

e implementa data structure that conforms to the Set interface.

e write code to remove an elementfrom an unbalanced binary search tree.
e explain why kd-trees are unable to easily supportelementremoval.

e explain how to rebalance a self-balancing binary tree after deleting values.

Concluding Lesson For Algorithms

In this final lesson, we'll go over removing elements from a collection. Throughout the course, you have learned how
to use a variety of data structures to representinformation. In all cases, the presentation focused on how to construct
entire representations from the beginning. However, itis also importantto be able to describe how to remove an
elementfrom a collection that you have spent so much time constructing. We'll conduct this topic in these contexts:

e Arrays

e Binary Search Trees

e AVL Binary Search Trees
e kd-trees

This lesson provides a capstone experience by pulling together most of the important data structures you've seen and
explaining new functionality that you might expectto see.

Removing Elements From a Sorted Array

Given a sorted array of elements, you can use an Binary Array Search to locate an elementin the array in
O(log n) time. To remove an element, however, you have two choices:

e Allocate a new array to contain all elements from the original set minus the one being removed.

e Shift elements down within the existing array and maintain an additional value, number, that
records the number of elements in the array (note that number < length).

Pastlessons have demonstrated both of these options, and neither leads to an efficientimplementation.
Specifically, inserting an elementinto—orremoving an element from—an array-based structure requires O(n)
in the worst case because you have to copy n-1 elements within the same array. Neither of these choices lets
you amortize the costs across multiple remove or add requests.

You might consider a third choice, using an ArrayList objectto store the sorted elements, butthen you
become responsible forinserting new values at their proper locations. This can be less difficult to implement

than either of the firsttwo choices. When you use ArrayList, make sure that SortedSet conforms to the
Set interface of the Java Collections Framework.

é Create a new Java project named Conclusion and assign itto the Java6é_Lessons working set.

Copy the packages and programs from your BinaryTree projectinto your Conclusion project.

& In your Conclusion project /src source folder, binary package, create a SortedSet class as shown:

CODE TO TYPE: SortedSet class

package binary;
import java.util.*;

public class SortedSet<E extends Comparable<E>> implements Set<E> ({
ArrayList<E> list = new ArrayList<E>();

int binarySearch(E e) {
int low = O;
int high = list.size()-1;
while (low <= high) {
int mid = (low + high)/2;
int rc = e.compareTo(list.get (mid));
if (rc < 0) {
high = mid - 1;
} else if (rc > 0) {
low = mid + 1;
} else {
return mid;

}

return - (low + 1);

}

public boolean add(E e) {
int idx = binarySearch (e);
if (idx >= 0) { return false; }

list.add (- (idx+1), e);:
return true;

}

public boolean remove (Object o) {
int idx = binarySearch ((E)o);
if (idx < 0) { return false; }

list.remove (idx) ;
return true;

The SortedSet class uses an ArrayList objectto store a setof elements in sorted order; the set contains
no duplicates.

The code won't compile just yet because there are still some methods that you have to write to satisfy the
Set interface. Let's take a closer look at the initial functionality:

OBSERVE: binarySearch on a sorted ArrayList

int binarySearch(E e) {
int low = O;
int high = list.size()-1;
while (low <= high) {
int mid = (low + high)/2;
int rc = e.compareTo(list.get (mid)) ;
if (rc < 0) {
high = mid - 1;
} else if (rc > 0) {
low = mid + 1;
} else {
return mid;

}

return - (low + 1);

The binarySearch method assumes the underlying list ArrayList stores its items in order. The code is similar
to the binarySearch implemented in an earlier lesson; the only difference is thatit must access each element
in listusing the get() method. binarySearch returns a non-negative value (thatis, greater than or equal to
zero), when itfinds the desired element e in the ArrayList. When binarySearch returns a negative number x,
element e should be inserted at -(x+7). For example, when x=-1 is returned, element e is to be inserted at
position 0. You can see this behavior in the code for add:

OBSERVE: Methods to add elementto and remove element from sorted ArrayList

public boolean add(E e) {
int idx = binarySearch (e);
if (idx >= 0) { return false; }

list.add (- (idx+1), e);
return true;

}

public boolean remove (Object o) {
int idx = binarySearch ((E)o);
if (idx < 0) { return false; }

list.remove (idx) ;
return true;

}

In the contract defined by the Java Collections Framework, the add method in the Set interface must return
true whenever its contents have changed. The remove method similarly returns true only when its
contents have changed. To conform to the Set contract, the remove method takes a generic Object as its
parameter.

The Set interface defines a contains method that you can add to the end ofthe SortedSet class now:

CODE TO TYPE: Add method to the end of SortedSet

public boolean contains (Object o) {
return (binarySearch((E)o) >= 0);

}

The Collections Framework defines a number of bulk operations to perform on a set. Add these methods to
the SortedSet class.

CODE TO TYPE: Add bulk operation methods to end of class

public boolean addAll (Collection<? extends E> c) {
boolean changed = false;
for (E e : ¢c) {
changed |= add(e);
}
return changed;

}

public boolean removeAll (Collection<?> c) {
boolean changed = false;
for (E e : (Collection<E>)c) {
changed |= remove (e);
}
return changed;

}

public boolean containsAll (Collection<?> c) {
for (E e : (Collection<E>)c) {
if (binarySearch(e) < 0) { return false; }
}
return true;

}

public boolean retainAll (Collection<?> c) {
boolean changed = false;
for (int idx = list.size() - 1; idx >= 0; idx--) {
if (!c.contains(list.get (idx))) {
list.remove (idx) ;
changed = true;
}
}
return changed;

}

The addAll(c) and removeAll(c) methods iterate over elements in the Collection parameter c and add or
remove that element from the ArrayList storage.

The containsAll(c) method iterates over every element, e, in c to determine ifthe SortedSet contains e,
returning false immediately when a non-member element, e, is detected. If all elements in c belong to the
SortedSet,itreturns true.

The retainAll(c) method demands a more complicated implementation. Specifically, this method removes
all elements in SortedSet that do not exist within ¢; itdoes so by iterating through its elements in reverse
order, removing each elementthat does notexistin c. If the retainAll(c) method changes the setin any way,
itmustreturn true, based on the contract for the Set interface.

To complete the implementation of the necessary methods required by Set, add the following methods to the
end ofthe SortedSet class:

CODE TO TYPE: Complete SortedSetimplementation

public int size() { return list.size(); }

public Object[] toArray() { return list.toArray(); }
public <T> T[] toArray (T[] a) { return list.toArray(a); }
public void clear() { list.clear(); }

public boolean isEmpty () { return list.isEmpty(); }
public Iterator<E> iterator() { return list.iterator(); }

In each case, the required method delegates each request to the internal /ist ArrayList object.

Even though the SortedSet class now compiles, you still have to implement some methods to conform to

the Java Collections Framework. Specifically, for SortedSet to truly satisfy the Set interface, its hashCode
method must be implemented to return the sum ofthe hashCode of the values it contains. Add the following
method to the end of SortedSet:

CODE TO TYPE: Add hashCode method to SortedSet

public int hashCode () {
int hash = 0;
for (int 1 = 0; i < list.size(); i++) {
hash += list.get (i) .hashCode () ;
}

return hash;

The final change is to ensure thatthe equals(o) method returns true ifand only if o is a set, the two sets
have the same size, and every member of o is contained in this set. Add this method to the end ofthe
SortedSet class:

CODE TO TYPE: Add equals method to SortedSet

public boolean equals (Object o) {
if (o == null) { return false; }
if (! (o instanceof Set)) { return false; }
Set<E> s = (Set<E>) o;
if (s.size() != list.size()) { return false; }
for (E e : s) {
if (binarySearch(e) < 0) { return false; }
}

return true;

Once the equals method determines thatitis comparing againstanother Set object, s, ititerates through
each element, e in s, to determine whether the SortedSet contains e, returning false at the first difference.
Once all elements are determined to be contained within the SortedSet, it can safely return true.

Congratulations! You have completed your first Set implementation! Write the StressTest class to
demonstrate its functionality and compare its performance with the TreeSet implementation.

& your Conclusion project/src source folder, binary package, create a StressTest class as shown:

CODE TO TYPE: StressTest class

package binary;

import java.util.*;
public class StressTest {

final static double AddProb = 0.20;
final static double ContainsProb = 0.70;
final static int SetSize = 5000;
final static int TrialSize = 50000;
final static String[] Types = {"Add", "Contains", "Remove" };

static void fail(String err) {
System.err.println ("Failed on:" + err);
System.exit (-1);

}

public static void main(String[] args) {
TreeSet<Integer> base = new TreeSet<Integer>();
SortedSet<Integer> set = new SortedSet<Integer>();

double baseCount[] = new double[3];
double setCount[] = new double[3];
int counts[] = new int[3];

long start;
boolean b, s;
for (int t = 0; t < TrialSize; t++) {
int n = (int) (Math.random () *SetSize) ;
double choice = Math.random() ;
if (choice < AddProb) {
start = System.nanoTime () ;
b = base.add(n);
baseCount[0] += (System.nanoTime () - start);
start = System.nanoTime () ;
s = set.add(n);
setCount [0] += (System.nanoTime () - start);
if (b !'= s) { fail(Types[0]); }
counts [0]++;
} else if (choice < ContainsProb) {

start = System.nanoTime () ;

b = base.contains(n);

baseCount[1l] += (System.nanoTime () - start);
start = System.nanoTime () ;

s = set.contains (n);

setCount[1] += (System.nanoTime () - start);

if (b !'=s) { fail(Types[1l]); }
counts[1]++;

} else {
start = System.nanoTime () ;
b = base.remove (n);
baseCount[2] += (System.nanoTime () - start);
start = System.nanoTime () ;
s = set.remove (n);
setCount[2] += (System.nanoTime () - start);

if (b !'= s) { fail(Types[2]); }
counts[2]++;

}
for (int i = 0; i < counts.length; i++) {
if (counts[i] !'= 0) {
baseCount[i] /= counts[i];
setCount[i] /= counts[i];
}
System.out.println (Types[i] + " base=" + (int)baseCount[i]+ " set=" + (int
) setCount[i]) ;
}

-
2 Runitto compare the behaviorof SortedTest against TreeSet when 500,000 random operations are
performed on each collection where 20% of the time a random integer (up to 5000) is added, 50% of the time
a contains query is executed, and 30% ofthe time a random integer (up to 5000) is requested to be deleted.
Fine-grained timing statistics are recorded for each operation on the two data structures. The sample output
below shows that, on average, SortedSet is always slowerthan TreeSet (almostthree times slower for
add and remove). Your performance results will likely vary from those shown:

OBSERVE: Output from StressTest execution

Add base=255 set=856
Contains base=215 set=283
Remove base=245 set=659

Ultimately the TreeSet class will outperform SortedSet because of the extra cost of growing the array that
contains the elements ofthe SortedSet; still this was a worthwhile exercise.

Now let's look at how to handle the removal of elements from highly structured data structures.

Removing Elements From Binary Search Trees

Binary Search Trees (BSTs) offer the first data structure for which removing an element should be an O(log n)
operation; after all, it takes O(log n) performance to determine whether the BST contains the elementin the first
place. You need to identify a deterministic way to reconstruct the BST after removing an element. If you are
removing a leaf node, the BST already is properly formed; however, whatif you remove an element that has
one or more children? Consider this small BST with seven elements from which you would like to remove the

element4:
a4
2 6
1 3 5 7

As you can see, this value is currently the root node of the tree. What can be done? You could always recreate
a new BST by starting from scratch and inserting all n-7 elements, but that would be inefficient; in fact, that
single operation would require on the order of O(n log n) operations. Instead, compare the following six-
element BST with the earlier seven-element BST.

S

You can observe that the right sub-trees are the same in both BSTs and that the second tree continues to
support the Binary Search Tree Property. The second tree was notformed by deleting the node 4. Rather, the
value associated with this node was replaced with the largest element in its left sub-tree, in this case, 3. There
is one small caveat; if the node you wantto delete has no left sub-tree, it can be replaced by the entire right
sub-tree of the node to be deleted, as shown in the image below, which describes the result of removing the
value 6 from a sample BST:

=
¥

Given a node n with value thatis to be removed from the tree, the largest elementin its left sub-tree is exactly
the right-most descendant of the left child of n. As you can see, this value is smaller than all of the values in the
right sub-tree of the node being removed (because the tree is a BST). This value is also larger than all of the
other nodes in the BST rooted by the left child of the node being removed. Once you find X, the right-most
descendant of the left child of the node being removed, you can Well, you can swap its value with the node
being removed. Now, what if the node for X has any child nodes? Then it cannot have any right children,
otherwise itwould not be the right-most descendant of the left child of the node being removed. However, X
might have a left child; indeed, it might have an entire sub-tree rooted by that left child. Fortunately, as with the
rotations described earlier in the AVL lesson, you can "lift" up X's left sub-tree to replace X in the BST, and the
BST properties will once again hold. The image below shows the transformation of the BST when requested
to remove the value 50 from the BST. X=30, is the largest elementin the left sub-tree 0f50. The inner node
10 has only its right sub-tree changed to be the entire sub-tree 30L, as shown:

m -

Make these changes to the BinaryTree class in the binary package:

CODE TO TYPE: Modifications to BinaryTree

package binary;
public class BinaryTree<E extends Comparable<E>> {
BinaryNode<E> root = null;

public int size() {
if (root == null) { return 0; }

return root.size();

}

public int height () {
if (root == null) { return 0; }

return height (root) ;
int height (BinaryNode<E> n) {
if (n == null) { return 0; }

return 1 + Math.max(height(n.left), height(n.right));
}

public void add (E k) {

if (root == null) {
root = new BinaryNode<E> (k) ;
return;

root = root.add(root, k);

}

public boolean contains (E k) {
return contains (root, Kk);

}

boolean contains (BinaryNode<E> parent, E k) {
if (parent == null) { return false; }

int rc = k.compareTo (parent.key);
if (rc == 0) {

return true;
} else if (rc < 0) {

return contains (parent.left, k);
} else {

return contains (parent.right, k);

}

public void remove (E k) {
if (root == null) { return; }

root = remove (root, k);

BinaryNode<E> remove (BinaryNode<E> parent, E k) {

if (parent == null) { return null; }
int rc = k.compareTo (parent.key);
if (rc == 0) {

return parent.updateNodes () ;
} else if (rc < 0) {
parent.left = remove (parent.left, k);
} else {
parent.right = remove (parent.right, k);

}

return parent;

}

The structure of the new remove method is similar to the contains method—to delete an element, you must
first determine whether it exists in the BST. Once k.compareTo(parent.key) returns 0, you have found the

node that contains the value to be removed. At this point, you need to write an additional method in
BinaryNode that properly updates the node.

Modify BinaryNode as shown:

CODE TO TYPE: Modifications to BinaryNode

package binary;

public class BinaryNode<E extends Comparable<E>> {
firat E key;
BinaryNode<E> left;
BinaryNode<E> right;

public BinaryNode (E k) {
this.key = k;
}

public int size() {
return 1 + size(left) + size(right);

}

int size (BinaryNode<E> n) {
if (n == null) { return 0; }
return n.size();

}

void add (E k) {
int rc = k.compareTo (key) ;
if (rc <= 0) {
left = add(left, k);
} else {
right = add(right, k);
}
}

BinaryNode<E> add(BinaryNode<E> parent, E k) {
if (parent == null) {
return new BinaryNode<E> (k) ;

}
parent.add (k) ;
return parent;

}

public BinaryNode<E> updateNodes () {

if (left == null && right == null) { return null; }
if (left == null) { return right; }
if (right == null) { return left; }

BinaryNode<E> child = left;
BinaryNode<E> grandChild = child.right;
if (grandChild == null) {
left = child.left;
key = child.key;
} else {
while (grandChild.right != null) {
child = grandChild;
grandChild = grandChild.right;
}
key = grandChild.key;
child.right = grandChild.left;

return this;

The updateNodes method is called on a node that has been targeted for deletion. The value returned must
be the (possibly new) node that will take the place of this node in the BST and which may have its own left and
right sub-trees.

The first three if statements in the updateNodes method handle the following cases (in this order):

1. The node being deleted is a leaf node, in which case it can be removed entirely.
2. The node being deleted has only a right child, in which case that child is returned.
3. The node being deleted has only a left child, in which case that child is returned.

If the node to be deleted has both left and right children, the more complicated logic must be followed. The
goal is to find the right-most descendant of the left child of the node being deleted (this). To start, child is set
to the left child and grandChild is the right child (if it exists) of child. If child has no right child (thatis,
grandChild is null), then child itselfis the right-most descendant of this. The image below describes this
case:

The code "lifts" the left sub-tree of child to become the left sub-tree of this and the key value associated with
this is setto the child's key value. However, if child has a right child, the code seeks to find the right-most
descendant by traversing the rightlinks continually until grandChild.right is null (in other words,
grandChild is known to be the right-most child). The image below describes this case. Here the node
identified as z is the right-most descendant of child. It has no right child of its own.

In the resulting modified BST, the key of the node with the value that was removed has been changed to z and
this will maintain the BST property of the overall tree; in addition, the left sub-tree of z (if it exists) has been
"lifted up" to be the right child ofy, which was z's former parent.

You could also have selected the left-most descendant of the right child of the node being
removed and the logical results would have been the same.

With this modification, you have fully implemented the Binary Search Tree. Modify the StressTest code you

have just written to compare BinaryTree against TreeSet. BinaryTree does notenforce set semantics, so
StressTest makes sure to convert add requests for elements already in the setinto contains requests:

CODE TO TYPE: StressTest class

package binary;

import java.util.*;
public class StressTest {

final static double AddProb = 0.20;
final static double ContainsProb = 0.70;
final static int SetSize = 5000;
final static int TrialSize = 50000;
final static String[] Types = {"Add", "Contains", "Remove" };

static void fail (String err) {
System.err.println("Failed on:" + err);
System.exit (-1);

public static void main(String[] args) {
TreeSet<Integer> base = new TreeSet<Integer>();
SortedSetBinaryTree<Integer> set = new SortedSetBinaryTree<Integer>();

double baseCount[] = new double[3];
double setCount[] = new double[3];
int counts[] = new int[3];

long start;

boolean b, s;
for (int t = 0; t < TrialSize; t++) {
int n = (int) (Math.random () *SetSize) ;
double choice = Math.random() ;
if (choice < AddProb && !base.contains(n)) {
start = System.nanoTime () ;
b = base.add(n);
baseCount[0] += (System.nanoTime () - start);
start = System.nanoTime () ;
s——set.add(n);
setCount[0] += (System.nanoTime() - start);
+f—t—+=—=rif (base.contains(n) != set.contains(n)) { fail (Types[0]); }
counts[0]++;
} else if (choice < ContainsProb) {

start = System.nanoTime () ;
b = base.contains(n);
baseCount[1l] += (System.nanoTime () - start);
start = System.nanoTime () ;
s = set.contains(n);
setCount[1l] += (System.nanoTime() - start);
if (b '=s) { fail(Types[1l]); }
counts[1]++;
} else {

start = System.nanoTime () ;

b = base.remove (n);

baseCount[2] += (System.nanoTime () - start);

start = System.nanoTime () ;

s=———set.remove (n) ;

setCount[2] += (System.nanoTime() - start);

+f—t—+=—=rif (base.contains(n) != set.contains(n)) { fail (Types[2]); }
counts[2]++;

}
for (int i = 0; i < counts.length; i++) {
if (counts[i] != 0) {
baseCount[i] /= counts[i];
setCount[i] /= counts[i];
}
System.out.println (Types[i] + " base=" + (int)baseCount[i]+ " set=" + (int
) setCount[i]);
}

-
U Save and run StressTest again; the results are much more favorable, although TreeSet still
outperforms all operations. Your results will likely vary:

OBSERVE: Output of revised StressTest

Add base=252 set=330
Contains base=202 set=258
Remove base=247 set=302

Successive additions and removals will often resultin an unbalanced BST. Since AVL trees are a self-
balancing structure, you must now add the removal functionality to AVL trees so they can rebalance
themselves after the removal of an element.

Removing Elements From AVL Trees

We can reuse the same logic for deleting a value from an AVL tree to replace its value with the value of the
right-most descendant of the left child of the node being removed. Once this action is done, you may have to

rebalance a number of other nodes, along the path between the parent of the right-most descendant to the
root.

Add this method to the end of the AVLBinaryTree class in the avl package:

CODE TO TYPE: Modifications to AVLBinaryTree

public void remove (E k) {
if (root == null) { return; }
root = root.remove (root, k);

All of the real work takes place in the AVLBinaryNode class. You'll need to add these methods to the end of
the class:

CODE TO TYPE: Modifications to AVLBinaryNode

AVLBinaryNode<E> remove (AVLBinaryNode<E> parent, E k) {
if (parent == null) { return null; }
return parent.remove (k) ;

AVLBinaryNode<E> remove (E k) {
int rc = k.compareTo (key);
AVLBinaryNode<E> newRoot = this;

if (rc == 0) {
if (left == null) {
return right;

AVLBinaryNode<E> child = left;

while (child.right != null) {
child = child.right;

}

E childKey = child.key;
left = remove (left, childKey);
key = childKey;

if (heightDifference(this) == -2) {
if (heightDifference(right) <= 0) {
newRoot = this.rotatelLeft();
} else {
newRoot = this.rightLeftRotation();
}
}
} else if (rc < 0) {
left = remove (left, k);
if (heightDifference(this) == -2) {
if (heightDifference(right) <= 0) {
newRoot = this.rotatelLeft();
} else {
newRoot = this.rightLeftRotation();

}

} else {
right = remove (right, k);
if (heightDifference (this) == 2) {

if (heightDifference(left) >= 0) {
newRoot = this.rotateRight();

} else {
newRoot = this.leftRightRotation();

}

computeHeight (newRoot) ;
return newRoot;

This is a lotto take in! Let's start with the first helper method, remove(parent k), which removes the value k
from the sub-tree rooted at parent. The real work occurs within the remove (k) method. This method has
nearly the same structure as the add(k) method that already exists (and is repeated below):

OBSERVE: Existing add method in AVLBinaryNode

AVLBinaryNode<E> add (E k) {
int rc = k.compareTo (key) ;
AVLBinaryNode<E> newRoot = this;

if (rc <= 0) {
left = add(left, k);
if (heightDifference (this) == 2) {

if (k.compareTo (left.key) <= 0) {
newRoot = rotateRight () ;

} else {
newRoot = leftRightRotation () ;

}

} else {
right = add(right, k);
if (heightDifference (this) == -2) ({

if (k.compareTo (right.key) > 0) {
newRoot = rotatelLeft();

} else {
newRoot = rightLeftRotation () ;

}

computeHeight (newRoot) ;
return newRoot;

The key pointto observe is that whenever the heightDifference of anode exceeds the allowed
thresholds, a rotation occurs. The remove method will have three cases to handle; the two cases shown
below explain how rotations take place whenever the removal of an element from a node's left sub-tree (or
right sub-tree) causes that node to become unbalanced).

OBSERVE: remove method structure

AVLBinaryNode<E> remove (E k) {
int rc = k.compareTo (key) ;
AVLBinaryNode<E> newRoot = this;

if (rc == 0) {

// perform the deletion

} else if (rc < 0) {
left = remove (left, k);
if (heightDifference (this) == -2) {

if (heightDifference (right) <= 0) {
newRoot = this.rotateleft () ;

} else {
newRoot = this.rightLeftRotation () ;

}

} else {
right = remove (right, k);
if (heightDifference (this) == 2) {

if (heightDifference (left) >= 0) {
newRoot = this.rotateRight () ;

} else {
newRoot = this.leftRightRotation () ;

}

computeHeight (newRoot) ;
return newRoot;

Let's go o ver how to perform the deletion:

OBSERVE: Perform deletion of node in AVL tree

if (rc == 0) {
if (left == null) {
return right;

}

AVLBinaryNode<E> child = left;

while (child.right !'= null) {
child = child.right;

}

E childKey = child.key;
left = remove (left, child.key) ;
key = childKey;

if (heightDifference (this) == -2) {
if (heightDifference (right) <= 0) {
newRoot = this.rotatelLeft () ;
} else {
newRoot = this.rightLeftRotation();
}

This code immediately checks whether there is even aleft child forthe node being deleted;if not,
the right sub-tree is "lifted" to take its place.

If the left child is present, the code locates the right-most descendant quickly, child. The method then
uses double recursion to invoke remove(left, child.key) to remove the child.key value from the sub-tree
rooted atleft and replace the key for the node being deleted with child.key. Once this task is complete, you
know thatthe sub-tree rooted atleft is balanced properly. Then our code checks to see if any rotation is
needed; because you only looked for the right-most descendant on the left side of the tree, you only need to
consider two rotation cases, which are complementary to the cases in the add method (except that you are
removing elements, notadding them).

As with the add method, the rebalancing may occur at any time between the original location of the value
being deleted and the path from that node to the rootin the tree. So, there may be a total of O(log n) rotations
whenever you remove an elementfrom an AVL tree. For this reason, the Red-Black Tree implementation of
TreeSet in the Java Collections Framework is more efficient than an AVL implementation when inserting
elements into the tree. Atthe same time, the AVL tree is more compact than the Red-Black Tree
implementation, which means the contains queries are going to be faster. Review the above code to make
sure you understand how each of the constituent elements works to self-balance the tree automatically.

& In your Conclusion project /src source folder, avl package, create an AVLStressTest class as shown.
This class is complicated because it contains code to validate that the AVL Property of the AVLBinaryTree is
notviolated after any addition or deletion:

CODE TO TYPE: AVLStressTest class

package avl;

import java.util.*;
public class AVLStressTest {

final static double AddProb = 0.20;
final static double ContainsProb = 0.70;
final static int SetSize = 5000;
final static int TrialSize = 50000;
final static String[] Types = {"Add", "Contains", "Remove" };

static void fail(String err) {
System.err.println("Failed on:" + err);
System.exit (-1);

static int height (AVLBinaryNode<?> n) {
if (n == null) { return 0; }
return 1 + Math.max(height(n.left), height(n.right));

public static int height (AVLBinaryTree<?> tree) {
if (tree.root == null) { return -1; }
return height (tree.root);

static boolean validateAVLProperty (AVLBinaryNode<?> n) {
if (n == null) { return true; }

int leftHeight = 0;

if (n.left != null) { leftHeight = height(n.left); }
int rightHeight = 0;

if (n.right != null) { rightHeight = height(n.right); }

int diff = leftHeight - rightHeight;
if (diff < -1 || diff > 1) { return false; }

return validateAVLProperty (n.left) && validateAVLProperty (n.right);

static boolean validateAVLProperty (AVLBinaryTree<?> tree) {
if (tree.root == null) { return true; }
return validateAVLProperty (tree.root) ;

public static void main(String[] args) {
TreeSet<Integer> base = new TreeSet<Integer>();
AVLBinaryTree<Integer> set = new AVLBinaryTree<Integer>();

double baseCount[] = new double[3];
double setCount[] = new double[3];
int counts[] = new int[3];

long start;

boolean b, s;
for (int t = 0; t < TrialSize; t++) {

int n = (int) (Math.random() *SetSize);
double choice = Math.random() ;
if (choice < AddProb && !base.contains(n)) {

start = System.nanoTime () ;
b = base.add(n);

baseCount [0] += (System.nanoTime () - start);

start = System.nanoTime () ;

set.add(n);

setCount[0] += (System.nanoTime () - start);

if (!validateAVLProperty(set)) { fail (Types[0]); }

if (base.contains(n) != set.contains(n)) { fail (Types[0]); }

counts [0]++;
} else if (choice < ContainsProb) {

start = System.nanoTime () ;
b = base.contains(n);

baseCount[1l] += (System.nanoTime () - start);
start = System.nanoTime () ;

s = set.contains(n);

setCount[1l] += (System.nanoTime () - start);

if (b !'= s) { fail(Types[1l]); }
counts[1]++;

} else {
start = System.nanoTime () ;
b = base.remove (n);
baseCount[2] += (System.nanoTime () - start);

start = System.nanoTime () ;
set.remove (n) ;

setCount[2] += (System.nanoTime () - start);
if (!validateAVLProperty(set)) { fail(Types([2]); }
if (base.contains(n) != set.contains(n)) { fail (Types[2]); }

counts[2]++;
}
}
for (int i = 0; i < counts.length; i++) {
if (counts[i] != 0) {
baseCount[i] /= counts[i];
setCount[i] /= counts[i];
}
System.out.println (Types[i] + " base=" + (int)baseCount[i]+ " set=" + (int
) setCount[i]);
}
}

o Save and run it. It will take longer to complete because of the validation code. The validate AVLProperty
method validates that the height difference for every node in the AVL binary tree is within the required
tolerance as demanded by the AVL Property.

OBSERVE: AVLStressTest output

Add base=305 set=464
Contains base=270 set=227
Remove base=360 set=411

When reviewing this result, observe that the baseline TreeSet implementation still outperforms AVL binary
trees when itcomes to adding and removing elements. However, the contains query is now almost 20% faster
in the AVL binary tree, because of its more compact structure. It's always satisfying when empirical evidence
supports the expected results.

Removing Elements From KD-trees

Given the success we've had deleting nodes from binary trees, you'd expect to be able to do the same with
the kd-tree. Unfortunately, this will be impossible because the kd-tree alternates its horizontal and vertical
partitioning levels within its structure. Thatis, while the structure of a kd-tree resembles a Binary Search Tree,
you cannotsimply "lift" nodes one level up as you have been able to do for the BST and AVL trees described
earlierin this lesson.

Since you can'tremove elements from a kd-tree easily, what can you do? Instead of rebuilding the kd-tree

with each deletion, consider a strategy that marks elements as deleted (which takes O(log n) time) and then
the kd-tree can reconsitute itself automatically whenever the ratio of deleted nodes to presentnodes in the
tree exceeds some threshold.

There is a comparative precedent for this behavior in hashtables, such as HashMap, to automatically resize
themselves when the number of entries exceeds some inner threshold based on the load capacity of the
storage.

Copy the kd package from your Multidimension projectinto your Conclusion project/src folder. In the kd
package, modify the KDNode class as shown:

CODE TO TYPE: Modifications to KDNode

package kd;
import java.awt.Point;

public class KDNode {
final Point point;
final int direction;
Region region;
KDNode above;
KDNode below;
boolean deleted;

public static final int HORIZONTAL
public static final int VERTICAL

= 0;
1;

public KDNode (Point p, int dir, Region r)

this.point = new Point (p);
this.direction = dir;

this.region = new Region(r);

public KDNode (Point p, int dir) {

this (p, dir, Region.max);

}

public boolean isBelow (Point p) {

if (direction == VERTICAL)
return p.x < point.x;
} else {

return p.y < point.y;
}
}

public boolean isAbove (Point p) {

if (direction == VERTICAL)
return p.x >= point.x;
} else {

return p.y >= point.y;
}
}

{

public boolean isDeleted() { return deleted;

public setdboolean add (Point p) {

if (p.equals(point)) {
if (deleted) {
deleted = false;
return true;

}

return false;

if (isBelow(p)) {
if (below == null) {
below = createChild (p,
return true;
} else {
return below.add(p);
}
} else {
if (above == null) {
above = createChild (p,
return true;
} else {
return above.add(p);

true) ;

false);

}

}

KDNode createChild (Point p, boolean below) {
Region r = new Region (region);
if (direction == VERTICAL) {
if (below) {
r.x max = point.x;
} else {
r.x min = point.x;
}
} else {
if (below) {
r.y max = point.y;
} else {
r.y min = point.y;
}
}
return new KDNode (p, l-direction, r);

}

The first modification is to associate a deleted attribute with each KDNo de object. If this value is true for a
node, its associated pointno longer belongs in the set, butit remains within the kd-tree to provide the
necessary structure. An isDeleted method is provided to determine the status ofa KDNode object.

In the initial implementation, the add method had nothing to return. Now you need to know whether the set
changed as a result of the invocation. This is the same behavior designed by the Java Collections
Framework. The code cannotreturn false if the point being added already exists within the kd-tree because,
after all, it may have previously been deleted, in which case the code flips the deleted attribute value to false
before returning true to signal that the set has changed.

We'll make more significant changes in the KDTree class now:

CODE TO TYPE: Modifications to KDTree

package kd;
import java.awt.Point;

public class KDTree {
KDNode root;
int deletedCount;
int totalCount;
float loadFactor;
static float DEFAULT LOAD FACTOR = 0.5f;

public KDTree () {
this (DEFAULT LOAD FACTOR) ;

public KDTree (float factor) {
root = null;
loadFactor = factor;

public booleanwei+d add (Point value) {
if (root == null) {
root = new KDNode (value, KDNode.VERTICAL);
totalCount = 1;
return true;
} else {
if (root.add(value)+) {
totalCount++;
return true;
}

return false;

void recreate() {
KDNode oldRoot = root;
root = null;

int remaining = totalCount - deletedCount;
totalCount = deletedCount = 0;
if (remaining == 0) {

return;

fill (oldRoot) ;

void fill (KDNode n) {
if (n == null) { return; }

if (!n.deleted) {
add (n.point) ;

fill(n.below);
fill (n.above) ;

public boolean remove (Point p) {
KDNode exist = find(p):;

if (exist != null && l!'exist.deleted) {
exist.deleted = true;
deletedCount++;

if (deletedCount*1.0/totalCount >= loadFactor)
recreate();

}

return true;

}

return false;

}

public KDNode find(Point p) {
return find(root, p);

}

KDNode find (KDNode node, Point p) {
if (node == null) { return null; }
if (node.point.distance(p) < 5) { return node; }

if (node.isBelow(p)) {
return find(node.below, p);
} else {

return find(node.above, p);

}

Let's look atthe code more closely:

OBSERVE: KDTree Modified State

int deletedCount;

int totalCount;

float loadFactor;

static float DEFAULT LOAD FACTOR = 0.5f;

public KDTree () {
this (DEFAULTiLOADiFACTOR);
}

public KDTree (float factor) {
root = null;
loadFactor = factor;

Each KDTree object maintains a totalCount of values in the kd-tree, as well as the deletedCount of
points that have been removed. Whenever the ratio of deleted points to total points is greater than or equal to
loadFactor, the kd-tree is recreated to contain only the non-deleted points. The user can specify a load
factor on construction; if they don't specify, the default is 0.5.

OBSERVE: Modified add method

public boolean add (Point value) {
if (root == null) {
root = new KDNode (value, KDNode.VERTICAL) ;
totalCount = 1;
return true;
} else {
if (root.add(value)) {
totalCount++;
return true;
}

return false;

The add method is changed to update the totalCount ofvalues in the kd-tree; now italso returns true to
reflect a change to its underlying set.

The new functionality is contained in the remove method:

OBSERVE: Remove method added to KDTree

public boolean remove (Point p) {
KDNode exist = find(p);
if (exist !'= null && 'exist.deleted) {

if (deletedCount*1.0/totalCount >= loadFactor) {
recreate() ;

}

return true;

}

return false;

}

The remove method returns true when the sethas changed. Accordingly, it mustfirst check to see ifthe
point even exists within the tree;ifitdoes, it must make sure thatthe associated node has not
already been deleted. Assuming it has not,

deletedCount for the kd-tree. At this pointitis possible thatthe ratio
of deleted nodesto total nodes exceeds the loadFactor threshold, at which point the entire kd-tree
is reconstructed to contain only the non-deleted nodes. This is accomplished in the recreate and fill
methods:

OBSERVE: Code to reconstruct kd-tree from non-deleted nodes

vold recreate() {
KDNode oldRoot = root;
root = null;

int remaining = totalCount - deletedCount;
totalCount = deletedCount = 0;
if (remaining == 0) {

return;

}

fill (oldRoot) ;
}

void fill (KDNode n) {
if (n == null) { return; }

if ('n.deleted) {
add (n.point) ;
}

fill (n.below) ;
£fill (n.above) ;

The recreate method checks to see if all points have been deleted. [fso,itcanreturn after setting
root to null. Ifthere are any points leftthough, all of the non-deleted pointsinthe oldRoot are
processed by fill.

The fill method performs a pre-order traversal of the kd-tree; for all non-deleted nodes, the associated
n.pointis inserted into the new kd-tree. The recursive call makes sure to traverse both the below and
above sub-trees for each node.

To demonstrate the new capability in action, write the following application, which allows the user to add
points to the kd-tree by clicking with the left button and to remove points by clicking with the right button.

The KDTree class makes an importantdesign decision to enable the find method to return the associated
KDNode for the requested point being searched. This is important because itis up to the caller to determine
whether the node represents a deleted pointin the kd-tree or a valid point. In doing so, the code is able to
draw deleted nodes with an "X" while non-deleted nodes are filled in squares.

& In the Isrc source folder kd package, create a KDAppletDelete class as shown:

CODE TO TYPE: KDAppletDelete class

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDAppletDelete extends java.applet.Applet {
KDTree tree = new KDTree();
KDNode match = null;
Image bufferImage;
Graphics bufferGraphics;

int toAWT (int y) {

if (y == Region.maxValue) { return 0; }
int awty = getHeight();
if (y !'= Region.minValue) { awty -= y; }

return awty;

int toCartesian(int awty) { return getHeight () - awty; }

public void init () {
setSize (400,400);

addMouselListener (new MouseAdapter () {
public void mouseClicked (MouseEvent me) {
Point pt = new Point (me.getX (), toCartesian(me.get¥Y())):;
if (me.getButton() == MouseEvent.BUTTON3) ({
KDNode match = tree.find(pt);
if (match != null) {
tree.remove (match.point) ;
redraw () ;
drawNode (bufferGraphics, match.point, true, true);
repaint () ;
}
} else {
tree.add (pt) ;
redraw () ;
repaint () ;

1)

addMouseMotionListener (new MouseAdapter () {
public void mouseMoved (MouseEvent me) {

Point pt = new Point (me.getX(), toCartesian(me.getY()));

KDNode newMatch = tree.find(pt);

if (match != newMatch) {
match = newMatch;
redraw () ;
if (match != null) {

drawNode (bufferGraphics, match.point, true, match.deleted);

}

repaint () ;

1)
}

void drawNode (Graphics g, Point p, boolean selected, boolean deleted) {
if (selected) {
g.setColor (Color.RED) ;
g.clearRect(p.x - 4, toAWT (p.y) - 4, 8, 8);
}
if (deleted) {
g.drawRect (p.x - 4, toAWT(p.y) -

8)
g.drawLine(p.x - 4, toAWT (p.y) - 4, p.x + 4, toAWT(p.y) + 4);

g.drawLine (p.x - 4, toAWT(p.y) + 4, p.x + 4, toAWT(p.y) - 4);
} else {
g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
}
g.setColor (Color.BLACK) ;
}

public void paint (Graphics g) {
if (bufferImage == null) {
bufferImage = createlmage (getWidth(), getHeight()):;
bufferGraphics = bufferImage.getGraphics();
}

if (tree.root == null) {
g.drawString ("Click to add points", 150, 200);
} else {

g.drawImage (bufferImage, 0, 0, this);
}
}

void redraw () {
bufferGraphics.clearRect (0, 0, getWidth (), getHeight());
visit (bufferGraphics, tree.root);

}

void drawPartition (Graphics g, Region r, Point p, int type, boolean deleted)

if (type == KDNode.VERTICAL) {
g.drawlLine (p.x, tOAWT(r.y min), p.X, toAWT(r.y max));
} else {
int xlow = r.x min;
if (r.x min == Region.minValue) { xlow = 0; }
int xhigh = r.x max;
if (r.x max == Region.maxValue) { xhigh = getWidth(); }

g.drawlLine (xlow, toAWT (p.y), xhigh, toAWT(p.vy)):
}
drawNode (g, p, false, deleted);
}

void visit (Graphics g, KDNode n) {
if (n == null) { return; }
drawPartition(g, n.region, n.point, n.direction, n.deleted);

visit (g, n.below);
visit (g, n.above);

Much of this code is similar to the applets you wrote for an earlier lesson, but there are a some differences.
Let's look atthe code more closely:

OBSERVE: draw Method

void drawNode (Graphics g, Point p, boolean selected, boolean deleted) ({
if (selected) {
g.setColor (Color.RED) ;
g.clearRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
}
if (deleted) {

g.drawRect (p.x - 4, toAWT(p.y) - 4, 8, 8);

g.drawlLine (p.x — 4, toAWT(p.y) - 4, p.x + 4, toAWT(p.y) + 4);

g.drawLine (p.x — 4, toAWT (p.y) + 4, p.x + 4, toAWT(p.y) - 4);
} else {

g.fillRect (p.x - 4, toAWT(p.y) - 4, 8, 8);

}
g.setColor (Color.BLACK) ;

}

The draw method draws a node accurately, whether itis marked for deletion or selected by the user. The
mouseClicked, mouseMoved, and drawPartition methods all invoke draw as needed. The mouse

handlers operate as before, but now right mouse clicks (as designated by MouseEvent.BUTTON3) are
used to remove points from the kd-tree.

V] Run KDAppletDelete and add ten points using the left mouse button. Then select five different points for
deletion. As you select the first four points, the applet redraws those points using a small "x" as shown:

L,| Applet Vi : deletekd. KDAppl:
5| Applet Viewer: delete pp
Applet
B | |
|]
|
23]
| |
-
Applet started.

Once you select the fifth point for deletion, the kd-tree will reassembile itself automatically with only five points

because the ration of deleted points to actual points has hit the predetermined ratio of 50 %. The image below
shows the resulting kd-tree once reconstructed:

| £ Applet Viewer: deletekd KDAppletDelete.class y l-:"'l"'@"LiE-]
Applet

Applet started.

The resulting reconstructed kd-tree is notlikely balanced, but there is an algorithm, described in the Algorithms
in a Nutshell book, which enables you to create a balanced kd-tree from any selection of points.

Lessons Learned

e Complicated data structures have invariants that must be maintained under addition
and removal.

e Methods that return void miss an opportunity to return useful information: Consider
the add method in the Collections Framework and how it returns true when the collection changes
butfalse otherwise. This bit ofinformation is extremely helpful in several algorithms.

e Divide and Conqueris an extremely powerful strategy: The algorithms that deliver O(n log
n) performance often do so by using this technique to divide a problem into two (or more) smaller
subproblems, whose results are combined to produce the appropriate answer. You have seen this
in MergeSort.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

