
Data Structures and Algorithms
Lesson 1: Dat a St ruct ures and Algo rit hms using Java

Data Structures and Algorithms Overview

Algorithm Performance
Constant Performance
Logarithmic Performance
Linear Performance
Quadratic Performance
Comparing Classification Families

Lessons Learned
ArrayList Amortized Reallocation

Quiz 1 Pro ject 1
Lesson 2: Dat a St ruct ures and t he Java Co llect io ns Framewo rk

Introduction to Java Collections Framework
Set Interface
List Interface
Queue Interface
Map Interface
Summarizing the Implementations You Need To Know
Important Methods For Keys And Values
Lessons Learned

Quiz 1 Pro ject 1
Lesson 3: Algo rit hms Using Java

Designing Algorithms
Skyline Problem
Lessons Learned

Quiz 1 Pro ject 1
Lesson 4: Wo rking Wit h Big Dat a

Working with Big Data
Sorting Large Sets Using External Storage
Characterizing Storage Requirements for an Algorithm
MergeSort with O(n) Storage Requirements
Working with Large Datasets
Never Be Satisfied
Lessons Learned

Quiz 1 Pro ject 1
Lesson 5: Represent ing Graph Dat a St ruct ures

Representing Graphs
Using Adjacency Matrix To Represent Graph
Searching a Graph
Practical Application
Lessons Learned

Quiz 1 Pro ject 1
Lesson 6 : Graph Adjacency List and Sho rt est Pat h Algo rit hms

Searching For Optimal Paths

homework/overviewDataStructures_quiz.quiz.html
homework/overviewDataStructures_proj.project.html
homework/collections_quiz.quiz.html
homework/collections_proj.project.html
homework/overviewAlgorithms_quiz.quiz.html
homework/overviewAlgorithms_proj.project.html
homework/largeData_quiz.quiz.html
homework/largeData_proj.project.html
homework/graphDataStructures_quiz.quiz.html
homework/graphDataStructures_proj.project.html

Representing Graph By Adjacency List
Breadth-First Search
Lessons Learned

Quiz 1 Pro ject 1
Lesson 7: Prio rit y Queues

Priority Queue Data Structure
Minimum Spanning Tree
Heap Data Structure
Prim's Algorithm Implementation
Evaluating Minimum Spanning Tree Implementations
Lessons Learned

Quiz 1 Pro ject 1
Lesson 8 : Binary T ree Dat a St ruct ure

Binary Tree Data Structure
Naive Binary Tree Implementation
Evaluating Binary Tree Implementation
Rebalancing Binary Trees
Using Collections TreeSet
Lessons Learned

Quiz 1 Pro ject 1
Lesson 9 : Mult idimensio nal Algo rit hms

A Data Structure For Multidimensional Algorithms
Traversing a kd-tree
Using kd-trees to Search for Po ints
Lessons Learned
Pro ject

Quiz 1 Pro ject 1
Lesson 10: Mat hemat ical Algo rit hms and Flo at ing Po int Co mput at io ns

Mathematical Algorithms and Floating Po int Computations
Gauss Jordan Elimination
Rounding Errors
Partial Input Data
Matrix Determinant
Lessons Learned

Quiz 1 Pro ject 1
Lesson 11: Brut e Fo rce Algo rit hms

Using Brute Force To So lve Permutation Problems
Finding All Five-Letter words in PALINDROME
N Queens Problem
Lessons Learned

Quiz 1 Pro ject 1
Lesson 12: Pat h Finding f o r Single-Player Games

Path Finding For Single-Player Games
Breadth-First Search
Evaluating Search Tree Algorithms
Lessons Learned

homework/graphAdjacencyList_quiz.quiz.html
homework/graphAdjacencyList_proj.project.html
homework/priorityQueue_quiz.quiz.html
homework/priorityQueue_proj.project.html
homework/binaryTree_quiz.quiz.html
homework/binaryTree_proj.project.html
homework/multidimension_quiz.quiz.html
homework/multidimension_proj.project.html
homework/mathematical_quiz.quiz.html
homework/mathematical_proj.project.html
homework/bruteForce_quiz.quiz.html
homework/bruteForce_proj.project.html

Quiz 1 Pro ject 1
Lesson 13: Pat h Finding f o r T wo -Player Games

Path Finding For Two-Player Games
Minimax Implementation
Lessons Learned

Quiz 1 Pro ject 1
Lesson 14: Algo rit hms On So und Dat a

Signal Processing Algorithms
Composed Wave Forms
Analyzing Composed Wave Forms
Using FFT on WAV file samples
Lessons Learned

Quiz 1 Pro ject 1
Lesson 15: Co nclusio n

Concluding Lesson For Algorithms
Removing Elements From a Sorted Array
Removing Elements From Binary Search Trees
Removing Elements From AVL Trees
Removing Elements From KD-trees
Lessons Learned

Quiz 1 Pro ject 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/singlePlayer_quiz.quiz.html
homework/singlePlayer_proj.project.html
homework/twoPlayer_quiz.quiz.html
homework/twoPlayer_proj.project.html
homework/soundFiles_quiz.quiz.html
homework/soundFiles_proj.project.html
homework/conclusion_quiz.quiz.html
homework/conclusion_proj.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Data Structures and Algorithms using Java

Welcome to the O'Reilly School o f Technology course on Data Structures and Algorithms Using Java!

Course Objectives
When you complete this course, you will be able to :

identify the core data structures provided by the JDK.
identify appropriate data structures based on problems you are likely to face.
explain the essential design techniques necessary for developing algorithms.
develop algorithms that efficiently process data.
characterize the performance o f an algorithm in both space and time.

In this Java course, you'll learn how to write efficient Java code, which means learning about data structures and algorithms.
Here you'll refine your Java skills to identify the appropriate data structures to use when so lving real-world problems. These
data structures are already provided for you in the Java Development Kit (JDK) release. You'll learn key algorithms that you'll
use again and again so your code performs efficiently every time.

In each lab, you'll learn about data structures and algorithms within the context o f a so lution to a real-world problem. Once you
understand the so lution, you'll demonstrate mastery by extending the existing code in a pro ject. Throughout this course you will
write Java code from scratch while so lving real problems. There will also be references to Algo rit hms in a Nut shell, the
associated textbook for this course. The book comes with an online code base, the Algorithms Development Kit (ADK), that can
be used as a reference in addition to the code described in these lessons.

Each quiz will validate that you learned the key information and the pro jects and will describe likely extensions to the data
structures and algorithms.

As you progress through the course, you'll write pro fessional test cases to verify the behavior o f your data structures and
algorithms.

Lesson Objectives

When you complete this lesson, you will be able to :

explain the limitation o f using arrays to store dynamic co llections.
characterize the input, processing and output steps for an algorithm.
explain why using classes to model structured information is preferred to just using multiple arrays containing
primitive types.
characterize the run-time performance o f an algorithm based on the size o f a problem instance.

Welcome to the O'Reilly School o f Technology's course on Data Structures and Algorithms. Although it's unlikely that this sixth
course in the Java series is your first OST course, we'll describe how OST works, just in case. If you already have a so lid
understanding o f our too ls and methods, feel free to skip ahead to the Data Structures and Algorithms Overview section.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

Data Structures and Algorithms Overview
In 1976, Niklaus Wirth, the inventor o f the Pascal language and a pioneering figure in Computer Science, published a
fundamental textbook on Software Engineering called Algorithms + Data Structures = Programs. In short, he proposed
that developers must understand data structures and algorithms as a prerequisite to writing efficient programs.

In your earliest programs, you no doubt used variables to store information that you processed. For example, think o f
the first time you wrote a program that converted temperatures between Celsius and Fahrenheit (and you know that
you did). To understand how to write this program, a developer must identify the appropriate Algorithm and Data
Structure to use.

An algorithm is a step-by-step procedure for computation that pro cesses input dat a to produce an o ut put result .

We'll highlight input dat a, pro cesses, and o ut put result s with these co lors throughout this lesson to identify the
different functional parts o f the algorithm implementations.

The computation for temperature conversion is a straightforward calculation, so you only need to determine the format
of input. In most situations, the input is most easily represented as text strings typed by the user; however, you could
also retrieve input as a binary sequence o f bits, perhaps from an embedded microcontro ller.

A problem instance is a particular input data set to which a program is applied.

In practical terms, different programs will process their input using code that decodes or translates the input into the
proper data structures that they need to function. Let's try an example.

Create a new pro ject fo r this lesson named Dat aSt ruct , and assign the Java6_Lesso ns working set to it:

When prompted to open the perspective, check Remember my answer and click No .

 In the Dat aSt ruct pro ject /src source fo lder, create a T emperat ureCo nversio n class:

CODE TO TYPE: TemperatureConversion class

import java.util.*;

public class TemperatureConversion {
 public static void main(String[] args) {
 System.out.println("Enter Celsius: ");
 Scanner sc = new Scanner (System.in);

 double c = Double.valueOf(sc.nextLine());
 double f = c*9.0/5 + 32;

 System.out.println("Fahrenheit is: " + f);
 }
}

Right-click the class and select Run As | Java Applicat io n. When prompted "Enter Celsius:", enter a number. The
Fahrenheit equivalent prints:

Run TemperatureConversion

Enter Celsius:
100
Fahrenheit is: 212.0

Let's take a closer look at the program.

OBSERVE: TemperatureConversion class

import java.util.*;

public class TemperatureConversion {
 public static void main(String[] args) {
 System.out.println("Enter Celsius: ");
 Scanner sc = new Scanner (System.in);

 double c = Double.valueOf(sc.nextLine());
 double f = c*9.0/5 + 32;

 System.out.println("Fahrenheit is: " + f);
 }
}

The above program conforms to the generic Input - Pro cess - Out put structure o f most programs. The Celsius
t emperat ure is t yped by t he user and you co nvert it t o Fahrenheit , and mult iply by 9 .0 /5 to retain precision
in your computation. For output, print t he co mput ed Fahrenheit value t o t he co nso le .

The world gets more complicated when you need to process groups o f data. Let's extend the above program to
produce a table o f Fahrenheit conversions given a number o f Celsius values. This first attempt stores just the
co llection o f Celsius values and computes the Fahrenheit conversion values as needed. We'll assume that the user
enters the requested values correctly; adding error-handling logic would only complicate these small programs and
obscure the po ints we're trying to make in this lesson.

 In the Dat aSt ruct pro ject /src source fo lder, create a T emperat ureCo nversio nT able class, and modify it as
shown:

CODE TO TYPE: TemperatureConversionTable class

import java.util.*;

public class TemperatureConversionTable {

 public static void main(String[] args) {
 System.out.println("Enter Celsius values separated by spaces then press Enter: ");
 Scanner sc = new Scanner (System.in);
 String values = sc.nextLine();

 StringTokenizer st = new StringTokenizer(values, " ");
 double cValues[] = new double[st.countTokens()];

 int index = 0;
 while (st.hasMoreTokens()) {
 cValues[index] = Double.valueOf(st.nextToken());
 index++;
 }

 System.out.println("Celsius\tFahrenheit");
 for (int i = 0; i < cValues.length; i++) {
 double f = cValues[i]*9.0/5 + 32;
 System.out.println(cValues[i] + "\t" + f);
 }
 }
}

Save and run T emperat ureCo nversio nT able to see how it executes on a sample problem instance:

Run TemperatureConversionTable

Enter Celsius values separated by spaces then press Enter:
3 2.7 1.3 9.9 123.4
Celsius Fahrenheit
3.0 37.4
2.7 36.86
1.3 34.34
9.9 49.82
123.4 254.12000000000003

Let's look at the different functional elements o f this code.

TemperatureConversionTable broken down into its parts

import java.text.*;
import java.util.*;

public class TemperatureConversionTable {

 public static void main(String[] args) {
 System.out.println("Enter Celsius values separated by spaces then press Enter: ");
 Scanner sc = new Scanner (System.in);
 String values = sc.nextLine();

 StringTokenizer st = new StringTokenizer(values, " ");
 double cValues[] = new double[st.countTokens()];

 int index = 0;
 while (st.hasMoreTokens()) {
 cValues[index] = Double.valueOf(st.nextToken());
 index++;
 }

 System.out.println("Celsius\tFahrenheit");
 for (int i = 0; i < cValues.length; i++) {
 double f = cValues[i]*9.0/5 + 32;
 System.out.println(cValues[i] + "\t" + f);
 }
 }
}

The above code uses an array o f do uble cValues[] to store the Celsius values entered by the user. With arrays you
need to specify the size o f the co llection in advance. In many cases, you either know the proper size in advance or you
can set the size to be some value large enough for any conceivable program execution. The Input consists o f
Celsius values separated by spaces. You can use St ringT o kenizer to extract each o f these values as a String token,
which is then converted into a double value using the Do uble.valueOf () method. As an added bonus,
StringTokenizer can tell you the to tal number o f tokens that will be extracted using the co unt T o kens() method. The
above code uses an obvious array structure to store a set o f singularly typed values (doubles, in this case) and you
easily traverse each element in the array using a f o r loop to iterate over every element.

The output o f this program is still a bit rough. Let's make some enhancements:

1. Retrieve the Celsius values from the user one per line; after that, the user simply presses Ent er.
2. Present the conversion table sorted in ascending order.
3. Round Temperature values to two digits o f precision.
4. Don't display any duplicate values in the table.

The first enhancement changes the entire Input phase o f the program. The program no longer knows in advance how
many values are to be read; rather, it must read them one at a time until to ld to stop. Once the entire array o f values has
been created, you can satisfy the second enhancement by sorting the array. Finally, you need to do some extra

processing to ensure thet there are no duplicates for the fourth enhancement. The upcoming code handles all o f these
enhancements while still using a simple array to store its values. The structure o f the code has changed to allow you
to conduct testing at the end o f this lesson.

CODE TO TYPE: Modified TemperatureConversionTable class

import java.io.*;
import java.text.*;
import java.util.*;

public class TemperatureConversionTable {
 static double cValues[];
 static NumberFormat nf;

 public static void main(String[] args) {
 System.out.println("Enter Celsius values, one per line, then press Enter when done:
 ");
 Scanner sc = new Scanner (System.in);
 String values = sc.nextLine();

 StringTokenizer st = new StringTokenizer(values, " ");
 double cValues[] = new double[st.countTokens()];

 int index = 0;
 while (st.hasMoreTokens()) {
 cValues[index] = Double.valueOf(st.nextToken());
 index++;
 }
 process(System.in);
 output(System.out);
 }

 static void process(InputStream is) {
 Scanner sc = new Scanner (is);

 nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(2);

 cValues = new double[0];
 while (true) {
 String value = sc.nextLine();
 if (value.equals ("")) { break; }
 double val = Double.valueOf(value);
 String formatVal = nf.format(val);

 boolean found = false;
 for (double d : cValues) {
 if (nf.format(d).equals(formatVal)) {
 found = true;
 break;
 }
 }

 if (found) {
 System.err.println(" ** omitting duplicate value:" + formatVal);
 } else {
 cValues = java.util.Arrays.copyOf(cValues, cValues.length+1);
 cValues[cValues.length-1] = val;
 }
 }
 }

 static void output(PrintStream out) {
 java.util.Arrays.sort(cValues);

 System.out.println("Celsius\tFahrenheit");
 for (int i = 0; i < cValues.length; i++) {
 double f = cValues[i]*9.0/5 + 32;
 System.out.println(nf.format(cValues[i]) + "\t" + nf.format(f));
 }
 }
}

Try running this revised T emperat ureCo nversio nT able on the fo llowing problem instance:

INTERACTIVE SESSION: Sample Run

Enter Celsius values, one per line, then press Enter when done:
22.4
13.7
18.003
31
18
 ** omitting duplicate value:18

Celsius Fahrenheit
13.7 56.66
18 64.41
22.4 72.32
31 87.8

Let's break this code down and try to deal with a number o f separately identified code blocks:

OBSERVE: revised main and new process method

public static void main(String[] args) {
 System.out.println("Enter Celsius values, one per line, then press Enter when done: "
);
 process(System.in);
 output(System.out);
}

static void process(InputStream is) {
 Scanner sc = new Scanner (is);

 nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(2);

 cValues = new double[0];
 while (true) {
 String value = sc.nextLine();
 if (value.equals ("")) { break; }
 double val = Double.valueOf(value);
 String formatVal = nf.format(val);

 boolean found = false;
 for (double d : cValues) {
 if (nf.format(d).equals(formatVal)) {
 found = true;
 break;
 }
 }

 if (found) {
 System.err.println(" ** omitting duplicate value:" + formatVal);
 } else {
 cValues = java.util.Arrays.copyOf(cValues, cValues.length+1);
 cValues[cValues.length-1] = val;
 }
 }
}

The above code will read strings from Syst em.in which contain the Celsius values. All Celsius values will be stored
in an array o f do uble values; however, since the program cannot determine in advance the number o f Celsius values
entered, it starts—literally—with an empty array o f do uble . A NumberFo rmat instance accurate to two digits o f
precision is created to be used both during pro cessing and o ut put .

The bulk o f the work is handled by the code that reads one string line at a time to extract Celsius values to be added to
the array o f double values. The program must ensure that no duplicate value appears in the output table. Of course you
could filter the output to avo id printing duplicate values, but it's better idea to just avo id storing duplicate values in the
first place. Note that you must avo id having two values in the table which would o therwise "round" to the same two
digits o f precision. So, if the input contained both 15.234 and 15.2321, only the first value should be entered into the
array, because both values round to 15.23.

As each String value is read from the input, the code checks for the empty string as a signal that the user is done;
o therwise, it converts the string value into a do uble using Do uble.valueOf () and also constructs a f o rmat Val
String representing the two-digit rounded value that it would represent in the output table. The f o r (do uble d :
cValues) loop checks to see whether any o ther Celsius value (once formatted) also equals f o rmat Val. If it does, the
program considers the new value to be a duplicate and alerts the user that the value will be omitted.

If the value is not eliminated, you must add it to the cValues array. Since the size o f the array cannot be known in
advance, this code uses the java.ut il.Arrays.co pyOf () method to extend the array to be one greater in size. The
method copies values from the o ld array into the new one because the new array is allocated as a new Java object.
Note that the last value in the array will be the value typed in by the user, val.

OBSERVE: output method

static void output(PrintStream out) {
 java.util.Arrays.sort(cValues);

 out.println("Celsius\tFahrenheit");
 for (int i = 0; i < cValues.length; i++) {
 double f = cValues[i]*9.0/5 + 32;
 out.println(nf.format(cValues[i]) + "\t" + nf.format(f));
 }
}

The final logic in the code so rt s t he Celsius values in cValues using the java.ut il.Arrays.so rt () method provided
by Java. Once cValues is sorted, the Fahrenheit temperatures are converted as needed, and the table is output in
ascending Celsius order, line by line.

You may be satisfied with this program as it is. It looks like it so lves the problem. However, performance may be an
issue; the run-time performance on this small data is fine, but it might not work as well on a much larger data set.

With algorithms, the key performance question to consider is what happens when the size o f a random problem
instance grows; more specifically, when the size doubles. To anticipate the performance o f this code, you need to
understand how practitioners evaluate the performance o f algorithms.

Algorithm Performance
Choosing an algorithm depends on the problem being so lved and the problems it will likely face. Algorithms are
typically presented with three common cases in mind:

Wo rst case: The class o f problem instances for which an algorithm exhibits its worst runtime behavior.
Instead o f trying to identify the specific input, algorithm designers typically describe properties o f the input
that prevent an algorithm from running efficiently.
Average case: The expected behavior when executing the algorithm on random problem instances. This
measure describes the expectations an average user o f the algorithm should have.
Best case: The class o f problem instances for which an algorithm exhibits its best runtime behavior. In
reality, the best case rarely occurs.

We compare algorithms by evaluating their performance on problem instances o f size n. The goal is to determine the
number o f steps or operations the algorithm needs to so lve the problem. This is an abstract way o f measuring the cost
o f an algorithm. Intuitively, an operation can be the assignment o f a variable, comparing two numbers together, o r
performing a mathematical operation. This methodo logy is the standard means for comparing algorithms. By counting
the number o f operations, we can determine which algorithms scale to so lve problems o f nontrivial size by evaluating
the running time needed by the algorithm in relation to the size o f the provided input. This fo rm of evaluation is
consistent and does not depend on the programming language used or the specific processor on which the program
is run.

When you determine the number o f operations performed by an algorithm, you must represent the to tal count with
regards to the original size, n, o f the problem instance. For example, the fo llowing sample count counts the number o f
times an integer value appears in an arbitrary array o f integer values:

OBSERVE: sample count method

static int count (int[] A, int val) {
 int count = 0;
 for (int i = 0; i < A.length; i++) {
 if (A[i] == val) {
 count++;
 }
 }
 return count;
}

There are six individual statements in the above code. For each statement, you can determine the maximum number
of times it executes on a problem instance o f size n:

St at ement Execut io n Co unt

1. int co unt = 0 executes once

2. int i = 0 executes once

3. if (i < A.lengt h) executes n+1 times

4. if (A[i] == val) executes n times

5. co unt ++ executes NO MORE THAN n times

6. i++ executes n times

In to tal, there will be no more than 4*n+3 statements executed. If n is very large, the constant +3 becomes insignificant
and you can just say that the number o f operations will be four times the to tal number, n, o f values. The phrase used in
this course is that the number o f operations for the above algorithm is on the order of n o r O(n). The statement "an
order n algorithm"—written as O(n)—means that the to tal number o f operations is bounded by a constant (in this case
it was 4) multiplied by n.

In some cases, the number o f operations is constant and does not depend on the problem instance size. In these
cases, you would represent the behavior as O(1). For a more detailed discussion on the "big O" notation used here,
review Chapter 2 in the Algo rit hms In A Nut shell book.

There are a number o f classifications in this course. They are ordered here by decreasing efficiency:

Constant O(1)
Logarithmic O(log n)
Linear O(n)
Loglinear O(n log n)

Quadratic O(n2)

Exponential O(2n)

You will see examples o f each o f these classifications during this course. For now, let's focus on these four examples:

Constant Performance

Suppose you want to determine the first element o f an unordered array o f n elements. The effort you'd expend
to accomplish this task would be the same even if you had 2*n, o r twice as many, elements. When an
algorithm can so lve a problem in a f ixed number o f o perat io ns, regardless o f the size o f the problem
instance, the algorithm exhibits Constant Performance.

Logarithmic Performance

Consider looking for a given last name in the phone book with 1000 pages. You don't typically start on page
1; rather you start on page 500 and determine "which side" o f the phonebook you need to search further. You
repeat this process until you find the proper page. With each step o f work, you reduce the size o f the problem
by half. When an algorithm can so lve a problem in a number o f steps relative to the logarithm (base 2) o f the
problem instance size, we say that the algorithm exhibits Logarithmic Performance.

Linear Performance

When the number o f steps required by an algorithm to so lve a problem grows at the same rate as the
problem size grows, then the algorithm exhibits Linear Performance. If you're searching for a value in an
unordered array o f n elements, you would require twice as much work to search through an array with 2*n
elements.

Quadratic Performance

For some algorithms, doubling the size o f the problem instance makes the execution four times longer,
resulting in Quadratic Performance. Consider the problem of determining whether there are two values in an
unordered array o f n elements that are the same. For each value in the array, you may have to compare it
against each o f the o ther values in order to find a match.

Whenever you identify a nested loop over all elements in a co llection, you can be sure that the performance is
at least Quadratic.

OBSERVE: Sample nested for loop exhibiting quadratic performance

 for (int i = 0; i < values.length; i++) {
 for (int j = 0; j < values.length; j++) {
 Inner Code Block
 }
 }

The Inner Code Block executes n2 times, where n is the number o f elements in the values array. Here's
another common nesting pattern:

OBSERVE: Another sample nested for loop exhibiting quadratic performance

 for (int i = 0; i < values.length-1; i++) {
 for (int j = i+1; j < values.length; j++) {
 Inner Code Block
 }
 }

In that code, the Inner Code Block executes once for every unique pair o f elements in values. The to tal
number o f times this executes is n*(n-1)/2 o r n2/2 - n/2. The performance o f this nested for loop is still
considered to be Quadratic with respect to the size o f the problem instance, n, despite the subtraction o f n/2
and the coefficient 1/2. This is due to the dominance o f n2 in the equation. As n continues to increase, the
growth in size o f this equation will always be larger than a corresponding growth in a linear equation.

Comparing Classification Families

The run-time behaviors o f algorithms can be compared by classification. That is, an O(1) algorithm is
considered to be more efficient than an O(n) algorithm. When two algorithms exhibit the same performance
classification—say, O(n log n)—one might still be more efficient than another "because o f the constants."
Recall how earlier we said that the contants become insignificant with increasing sizes o f n? Theoretically this
is true, but one implementation o f an algorithm may be more efficient than another even when they belong to
the same classification. You may also find that an O(n2) algorithm is more efficient than a comparable O(n log
n) algorithm f o r small values o f N. The associated constants for the O(n log n) algorithm make the code
run slower than it does with the O(n2) algorithm for small values o f n. Once n increases, the O(n log n)
algorithm will outperform any O(n2) algorithm regardless o f constants.

Let's go back and evaluate the performance o f T emperat ureCo nversio nT able .

 In your Dat aSt ruct pro ject, Create a /perf o rmance source fo lder to store all performance-related classes.

 Create a T imeT emperat ureCo nversio n class in the default package o f the /perf o rmance source fo lder.

CODE TO TYPE: TimeTemperatureConversion class

import java.util.*;
import java.io.*;

public class TimeTemperatureConversion {
 public static void main(String[] args) throws Exception {
 Scanner sc = new Scanner (System.in);
 System.out.println("Enter number of different values to add.");
 int numItems = Integer.valueOf(sc.nextLine());

 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < numItems; i++) {
 sb.append(i).append("\n");
 }
 sb.append("\n"); // empty string to terminate the input

 // execute with timing in place
 double total = 0;
 int numTrials = 10;
 for (int run = 0; run < numTrials; run++) {
 ByteArrayInputStream is = new ByteArrayInputStream(sb.toString().getBytes());
 System.gc();

 long now = System.currentTimeMillis();
 TemperatureConversionTable.process(is);
 long end = System.currentTimeMillis();
 total += (end - now);
 }

 System.out.println(numItems + "," + (total/numTrials));
 }
}

 Run T imeT emperat ureCo nversio n now for 64, 128, 256, 512, 1024, 2048, and 4096 and note the results, then
we'll make some changes and re-run the code using the same values.

The above code creates a string, sb, from which the input is to be read. The pro cess() method o f
T emperat ureCo nversio nT able was designed to process its input from an Input St ream object; in the actual code,
input came from Syst em.in, but in this performance code a Byt eArrayInput St ream object is created and used
instead. This code design allows you to write automated test cases so you don't have to input your data manually like
we're do ing here. Ten trials are executed and the average over all executions is printed.

As the problem size doubles, the time required by T emperat ureCo nversio nT able to so lve each problem
increases (tripling or even quadrupling), suggesting that this implementation exhibits Quadratic Performance. But does
that mean that there is no faster implementation?

To improve our results, we'll use data structures provided by the JDK. (In the next lab, we'll introduce a number o f core
data structures with behaviors that will be useful as you write more advanced algorithms.)

Create a CelsiusValue class in the default package o f the Dat aSt ruct /src source fo lder.

CODE TO TYPE: CelsiusValue class

import java.text.NumberFormat;

public class CelsiusValue implements Comparable<CelsiusValue> {
 public String formatted;
 public double value;
 public String fahrenheit;

 static NumberFormat nf = null;

 public CelsiusValue(double v) {
 value = v;

 if (nf == null) {
 nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(2);
 }

 formatted = nf.format(v);
 fahrenheit = nf.format(9.0*v/5 + 32);
 }

 public boolean equals (Object o) {
 if (o == null) { return false; }
 if (o instanceof CelsiusValue) {
 CelsiusValue other = (CelsiusValue) o;
 return (formatted.equals (other.formatted));
 }

 return (false);
 }

 public int compareTo(CelsiusValue other) {
 return formatted.compareTo(other.formatted);
 }
}

This class represents an entry in the Celsius conversion table. The CelsiusValue constructor stores the f o rmat t ed
Celsius value (accurate to two digits) and its computed f ahrenheit equivalent. To increase efficiency, there's a static
NumberFo rmat field, nf , that is constructed the very first time a CelsiusValue object is constructed.

You need two o ther methods to arrive at this so lution. You may be familiar with the Java standard equals(Object)
method, which determines whether two objects are equal to each o ther. For this problem, two CelsiusValue objects
are equal if they have the same f o rmat t ed representation; this will prevent two duplicate entries from appearing in the
table when their fo rmatted values are the same. The co mpareT o method determines the ordering o f two
CelsiusValue objects, to sort entries in the table properly. The names o f these methods should be familiar to Java
programmers and in the next lesson we will further investigate the naming conventions and standard interfaces and
classes provided by the JDK. As you develop classes to represent information in the problem domain, you will see
that these classes are no longer exclusively Input o r Pro cess classes.

Now modify T emperat ureCo nversio nT able as shown:

CODE TO TYPE: Modified TemperatureConversionTable class

import java.io.*;
import java.text.*;
import java.util.*;

public class TemperatureConversionTable {
 static TreeSet<CelsiusValue> cValues;
 static double cValues[];
 static NumberFormat nf;

 public static void main(String[] args) {
 System.out.println("Enter Celsius values, one per line, then press Enter when done:
 ");
 process(System.in);
 output(System.out);
 }

 static void process(InputStream is) {
 Scanner sc = new Scanner (is);

 nf = NumberFormat.getInstance();
 nf.setMaximumFractionDigits(2);

 cValues = new TreeSet<CelsiusValue>();new double[0];
 while (true) {
 String value = sc.nextLine();
 if (value.equals ("")) { break; }
 double val = Double.valueOf(value);
 CelsiusValue cval = new CelsiusValue(val);
 String formatVal = nf.format(val);

 boolean found = false;
 for (double d : cValues) {
 if (nf.format(d).equals(formatVal)) {
 found = true;
 break;
 }
 }

 if (cValues.contains(cval)found) {
 System.err.println(" ** omitting duplicate value:" + valueformatVal);
 } else {
 cValues.add(cval);
 cValues = java.util.Arrays.copyOf(cValues, cValues.length+1);
 cValues[cValues.length-1] = val;
 }
 }
 }

 static void output(PrintStream out) {
 java.util.Arrays.sort(cValues);
 out.println("Celsius\tFahrenheit");
 for (CelsiusValue cv : cValues) {
 out.println(cv.formatted + "\t" + cv.fahrenheit);
 }
 for (int i = 0; i < cValues.length; i++) {
 double f = cValues[i]*9.0/5 + 32;
 out.println(nf.format(cValues[i]) + "\t" + nf.format(f));
 }
 }
}

Now rerun T imeT emperat ureCo nversio n fo r the same values we used in the earlier test (64, 128, 256, 512, 1024,
2048, and 4096).

The second co lumn below shows how T emperat ureCo nversio nT able performed the first time; the third co lumn
shows approximate performance after the last changes (your results may differ somewhat):

shows approximate performance after the last changes (your results may differ somewhat):

Pro blem
Size

T emperat ureCo nversio nT able
Average Execut io n T ime (milliseco nds)

T emperat ureCo nversio nT able wit h ArrayList
Average Execut io n T ime (milliseco nds)

64 3.0 2.6

128 8.0 3.0

256 22.8 6.0

512 79.7 7.0

1024 293.6 9.0

2048 949.8 13.7

4096 3814.8 24.2

8192 * 47.1

16384 * 97.4

You can see that, as the problem instance size increases, this revised implementation is ten times faster (size 512)
and even 100 times faster (size 4096). Clearly the second implementation is much more efficient! In this case, it
appears that the cho ice o f data structure vastly improved the efficiency o f the code, reaffirming the observation by Wirth
that Algorithms + Data Structures = Programs.

Lessons Learned
Real-world problems are not always as clean and simple as those presented here. In particular, you must routinely
maintain a highly dynamic co llection o f values. Sometimes you might want to add or remove a value to or from the
co llection. You might want to store the entire co llection to persistent storage (such as a database or the file system) so
you can retrieve it entirely at a later po int. Since release 1.5 o f the JDK, Java provides the Collections Framework, which
is a sophisticated set o f classes to represent and manipulate co llections. You have likely come across these classes
because o f their versatility (classes such as ArrayList and HashMap, fo r example). As a programmer, you need to
know about these classes and—more importantly—to know the specific circumstances under which to use each one.
There is no need for you to reimplement these data structures on your own, but you do need to understand how to
select the appropriate classes for your needs.

We started this course by completing a problem using the most primitive capabilities o ffered by the Java programming
language. The T imeT emperat ureCo nversio n class works correctly, but it's not efficient enough when tackling
larger problem instances. You can find ways to modify your programs to improve their efficiency, but in most cases it's
easier to use the available data structures rather than implement your own versions.

At the end o f each lab, we'll review key concepts regarding data structures and algorithms. Here is the first list o f key
concepts:

Use arrays in t he way t hey were designed: Use arrays when you have a fixed and bounded number o f
values and you need immediate access to any o f these values using a position index.
Avo id searching t hro ugh uno rdered arrays: It's inefficient. If searching for an item is a key part o f your
algorithm, do not store your items in an unordered array.
Avo id dynamically resizing arrays t o be just o ne size larger: If you are frequently adding an item to a
co llection, review the Java Collections Framework (described in next lesson) to find a more suitable data
structure for dynamic behavior.

ArrayList Amortized Reallocation

If you have access to the source code o f the JDK, review the ensureCapacit y() method o f the
java.ut il.ArrayList class. You can see that whenever a new element is added to an ArrayList object,
ensureCapacit y() first ensures that it has enough capacity fo r the new element. The size o f the new array is
roughly 1.5 times larger whenever it needs to expand the size o f the underlying element Dat a array.

OBSERVE: ArrayList add() method uses Amortization through ensureCapacity()

 public boolean add(E e) {
 ensureCapacity(size + 1); // Increments modCount!!
 elementData[size++] = e;
 return true;
 }

 public void ensureCapacity(int minCapacity) {
 modCount++;
 int oldCapacity = elementData.length;
 if (minCapacity > oldCapacity) {
 Object oldData[] = elementData;
 int newCapacity = (oldCapacity * 3)/2 + 1;
 if (newCapacity < minCapacity)
 newCapacity = minCapacity;

 // minCapacity is usually close to size, so this is a win:
 elementData = Arrays.copyOf(elementData, newCapacity);
 }
 }

When you expand an array to accommodate more elements, make sure that you don't call the operation too
frequently. Instead, increase the size o f the array by mulitplying it by some number rather than by adding room
for a constant number o f items.

The next lesson will introduce the Java Collections Framework, which we'll use extensively in this course.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Data Structures and the Java Collections Framework
Lesson Objectives

When you finish this lesson you will be able to :

identify the core interfaces provided by the Java Collections Framework.
explain the difference between a Set and a List.
implement equals(Object) and hashCode() methods as required by Set and List implementations.

Introduction to Java Collections Framework
In this course, we use the commonly-accepted term "Java Development Kit (JDK)" to refer to the platform for
developing Java applications. The JDK defines a range o f Application Programming Interfaces (APIs) fo r general
purpose functionality, including network programming packages (java.net) and graphical user interfaces (java.awt,
javax.swing). Altogether, the JDK release dated August 1, 2013 contains over 12,000 classes (18,000 classes if you
include anonymous and inner classes). In this lesson, we are concerned with the java.ut il package, which contains
the Collections Framework, legacy co llection classes, event model, date and time facilities, internationalization, and
miscellaneous utility classes (a string tokenizer, a random-number generator, and a bit array).

Before describing the classes in the Collections Framework, we need to discuss the nature o f an interface in Java.
Each Java class defines public methods to be used by external classes. The java.lang.St ring class, fo r example,
contains 82 public methods. Did you know that you can determine the last index position o f a character within a String?
You might if you had read the documentation and discovered that there is a last IndexOf (char ch) method. This class
also has a co mpareT o (St ring s) method that compares two strings in alphabetical o rder; it returns 0 if the two string
objects are equal to each o ther and returns a negative or positive number to determine the alphabetic order o f the two
String objects. Because comparing two objects is a fundamental operation for so many classes, Java designers
developed an interface that declares this behavior (here's part o f the documentation in the interface):

OBSERVE: java.lang.Comparable Interface

package java.lang;

public interface Comparable<T> {
 /**
 * Compares this object with the specified object for order. Returns a
 * negative integer, zero, or a positive integer as this object is less
 * than, equal to, or greater than the specified object.
 */
 public int compareTo(T o);
}

An interface contains a set o f methods that represents a behavior; in this case, the Co mparable interface represents
the ability to order two objects. This behavior is the same whether the object is a String, an Integer or a Double object.
The interface specifies the behavior and a class provides the behavior by declaring that the class implements the
interface. The String class, fo r example, declares this:

OBSERVE: String interfaces

public final class String implements java.io.Serializable, Comparable<String>, CharSequ
ence { ... }

Once you know that the String class implements Co mparable , you know that it must provide an implementation o f its
methods, and specifically that it will have the co mpareT o method defined by the interface.

To describe the Collections Framework, let's start with the java.ut il.Co llect io n<E> interface, which is the
fundamental interface in this package. A Co llect io n<E> represents a group o f elements o f type E defined using the
Java Generics concept. This general definition applies to a wide range o f behaviors. This interface defines 15
methods, including these six fundamental methods:

int size() returns size o f the co llection.
bo o lean isEmpt y() determines if the co llection is empty.

http://docs.oracle.com/javase/7/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html

co nt ains (Object e lement) determines whether it contains a given element.
It erat o r<E> it erat o r() enables retrieval o f elements in the co llection in some order.
bo o lean add(E e lement) adds an element to the co llection (optional method).
remo ve(Object e lement) removes an element from the co llection (optional method).

Because some co llection objects are immutable—that is, their elements cannot be changed—the last two methods
above are optional and a Collection object may or may not honor requests to add or remove an element. However, if
an add method returns t rue , the Collection guarantees that the element was added to the set. If the add method
returns f alse , the co llection already contains the element and will no t allow duplicates. If a Co llection refuses to add a
particular element fo r a reason o ther than it being a duplicate, it must throw an Exception.

The fo llowing code sample shows how to use all o f these methods with an ArrayList object to determine the unique
letters used in a given sentence.

Create a Co llect io ns pro ject and add it to the Java6_Lesso ns working set.

 In the default package o f the Co llect io ns/src source fo lder, create a UniqueLet t ers class as shown:

CODE TO TYPE: UniqueLetters class

import java.util.*;

public class UniqueLetters {
 static final String vowels = "aeiou";

 public static void main(String[] args) {
 System.out.println("Enter at least one character:");
 Scanner sc = new Scanner (System.in);
 String s = sc.nextLine();
 Collection<Character> unique = new ArrayList<Character>();

 for (int i = 0; i < s.length(); i++) {
 char c = Character.toLowerCase(s.charAt(i));
 if (Character.isWhitespace(c)) { continue; }

 if (!unique.contains(c)) {
 unique.add(c);
 }
 }

 if (unique.isEmpty()) {
 System.out.println("Please enter at least one character");
 System.exit(1);
 }

 System.out.println("There are " + unique.size() + " unique characters");
 System.out.print(" Vowels:");
 for (int i = 0; i < vowels.length(); i++) {
 char c = vowels.charAt(i);
 if (unique.contains(c)) {
 System.out.print(c);
 unique.remove(c);
 }
 }

 System.out.print("\n Consonants:");
 for (Iterator<Character> it = unique.iterator(); it.hasNext();) {
 System.out.print(it.next());
 }
 System.out.println();
 }
}

Run this program on the sample input below:

INTERACTIVE SESSION: Sample execution o f UniqueLetters

Enter at least one character:
Now is the time for all good men to come to the aid of their country
There are 18 unique characters
 Vowels:aeiou
 Consonants:nwsthmfrlgdcy

Let's take a closer look at this code.:

OBSERVE: Adding elements to a Collection

 Collection<Character> unique = new ArrayList<Character>();

 for (int i = 0; i < s.length(); i++) {
 char c = Character.toLowerCase(s.charAt(i));
 if (Character.isWhitespace(c)) { continue; }

 if (!unique.contains(c)) {
 unique.add(c);
 }
 }

The unique object is constructed as an ArrayList o f Charact er objects. For each no n-whit espace charact er in
the input st ring (co nvert ed t o lo wercase) , we check to make sure that the charact er is no t already a member
of unique before adding t he charact er t o it . Just keep in mind that once the add method completes, the element
is guaranteed to be a member o f the co llection. The specific implementation o f Co llection—in this case ArrayList —is
responsible for handling the add request; ArrayList appends the character to the end o f the growing list o f
Charact er o bject s.

OBSERVE: Searching for and removing elements from a Collection

 static final String vowels = "aeiou";
...
 for (int i = 0; i < vowels.length(); i++) {
 char c = vowels.charAt(i);
 if (unique.contains(c)) {
 System.out.print(c);
 unique.remove(c);
 }
 }

The code iterates over the kno wn vo wels and removes these characters from the co llection unique . Finally, all
Co llection classes provide a consistent means to iterate over their elements, as shown in this code:

OBSERVE: Iterate over elements in a Collection using an Iterator

 for (Iterator<Character> it = unique.iterator(); it.hasNext();) {
 System.out.print(it.next());
 }

The Collection classes also implement the It erable interface, which means you can use Java's enhanced for loop to
iterate over the elements. The above iteration code could have been written more simply as:

OBSERVE: Iterate over elements in a Collection using enhanced for loop

 for (Character c : unique) {
 System.out.print(c);
 }

The Collection interface forms the root o f the hierarchy for three important interfaces in the Collections Framework:
List, Set , and Queue. This code example uses the ArrayList class, which is a concrete implementation o f the List
class. We'll discuss each interface in the upcoming sections o f the lesson.

class. We'll discuss each interface in the upcoming sections o f the lesson.

Each implementation o f Co llection guarantees certain performance o f the methods defined earlier. In describing this
performance, the JDK documentation uses the same terms used in the previous lesson to describe the worst-case
run-time performance o f algorithms. Here is the "specification sheet" fo r ArrayList fo r the six fundamental Co llection
methods:

O(1): size, isEmpty
Amo rt ized Co nst ant T ime: add
O(n): remove, contains, iterate

The add method is declared to have amortized constant time because ArrayList must reallocate more memory when
it becomes full. Recall the discussion in the previous lesson about the dangers o f resizing arrays? When ArrayList
needs to resize its array o f n elements, it makes sure to request (3*n/2+1) elements to reduce the number o f times that
it has to reallocate memory. In the long run, adding n elements requires only a to tal o f O(n) time, which means each
individual add operation is considered to be amortized constant time.

There are two reasons to choose a particular data structure: (1) because o f the functional behavior that it provides; (2)
because o f the performance associated with that behavior. All operations for these classes will be described using the
algorithm performance classification.

Set Interface

We start with the Set interface because it adds no methods to the Collection interface; it only constrains
methods that add an element to a Set . Specifically, a Set is a Co llection that contains no duplicate elements
and never contains null as an element. The interface matches the mathematical concept o f a set. This
constraint changes the behavior o f add(E e lement) to return f alse if the provided element already exists in
the Set .

The Collections Framework is designed to conform to basic Java principles, so there are some subtle
changes to both the standard equals and hashCo de methods. The equals method is the standard means
in Java to determine whether two objects are equal. When dealing with two Collection objects, you'll o ften
want to determine if they represent the same co llection o f objects regardless of the actual concrete class
implementing this interface. However, it would be cumbersome to require this capability o f all Co llection
subclasses. Java's designers have so lved that problem by requiring that Set implementations only support
equals with o ther Set implementations. The main reason for this is that Set objects cannot be ordered, so
the equals method for all implementations o f Set return f alse whenever the provided object is itself no t a
class that implements Set . In o ther words, Set objects can only be compared for equality against o ther Set
objects.

Finally, when set 1.equals(set 2) is true, it must be the case that set 1.hashCo de() equals
set 2.hashCo de() . This is the essential relationship between the hashCo de and equals methods as
required by the Java specification. However, classes that implement Set may choose how to implement
these methods. To ensure the proper relationship between equals and hashCo de , regardless o f the specific
implementation, any implementation o f Set must make sure that its hashCo de method returns the sum of
the hashCo de o f all o f its members. Because addition is a commuting operation (that is, a+b equals b+a),
this ensures that the respective hashCo de values o f two Set objects will always be the same if they
represent the same elements. This design principle is incredibly insightful because it separates the contract o f
the interface from any o f its potential implementations.

Let's reimplement the sample problem described earlier, which actually seems more easily implemented
using sets. For this implemention, replace ArrayList with HashSet :

CODE TO TYPE: Modify UniqueLetters class

import java.util.*;

public class UniqueLetters {
 static final String vowels = "aeiou";

 public static void main(String[] args) {
 System.out.println("Enter at least one character:");
 Scanner sc = new Scanner (System.in);
 String s = sc.nextLine();
 Collection<Character> unique = new HashSetArrayList<Character>();

 for (int i = 0; i < s.length(); i++) {
 char c = Character.toLowerCase(s.charAt(i));
 if (Character.isWhitespace(c)) { continue; }

 if (!unique.contains(c)) {
 unique.add(c);
 }
 }

 if (unique.isEmpty()) {
 System.out.println("Please enter at least one character");
 System.exit(1);
 }

 System.out.println("There are " + unique.size() + " unique characters");
 System.out.print(" Vowels:");
 for (int i = 0; i < vowels.length(); i++) {
 char c = vowels.charAt(i);
 if (unique.contains(c)) {
 System.out.print(c);
 unique.remove(c);
 }
 }

 System.out.print("\n Consonants:");
 for (Iterator<Character> it = unique.iterator(); it.hasNext();) {
 System.out.print(it.next());
 }
 System.out.println();
 }
}

Now execute the modified UniqueLet t ers class using the same input as before to generate the same
output:

INTERACTIVE SESSIONS: Output o f UniqueLetter remains the same

Enter at least one character:
Now is the time for all good men to come to the aid of their country
There are 18 unique characters
 Vowels:aeiou
 Consonants:fgdcnlmhwtsry

A HashSet o ffers improved performance for the core operations described earlier by using a scheme that
subdivides a co llection into b buckets. Elements are placed into a bucket based on the hashing function,
hashCo de() ; these performance characteristics are valid if the hashing function disperses the elements
properly among the buckets.

O(1): size, isEmpty, contains, add, remove
O(n): iterate over the set o f elements

When you use a HashSet , you have the option o f predeclaring an initial Capacity which specifies the number
of buckets to use to store the co llection. If you set this too high, the iteration over all elements in the set
requires time proportional to n+b (where b is the number o f buckets in the HashSet); it's better to let
HashSet manage its own structure.

List Interface

The List interface provides a sequence-oriented perspective on a co llection. First, it is ordered, which
provides the first distinction with regard to Set . Second, a List may contain duplicate elements or even null
values. Third, this interface is much more powerful than the "list" concepts that most programmers intuitively
have in mind—specifically, the List interface o ffers additional behaviors to Co llection:

Index (po sit io nal) access. You can retrieve, remove or replace any element by its position in the
List. You can also insert elements into a List at a specific location, bumping all elements up by one
spot from that po int in the list.
Search. You can identify the ordinal location (0 .. n-1) in the list o f a given element (from either the
front or the end o f the list).

As with Set , any class implementing List must properly implement the equals() method to return f alse
whenever it is compared against a non-List object. Two List objects are considered to be equal if they are o f
the same size and they contain the same elements in the same order. However, the hashCo de method must
be defined to work with equals. For this reason, any class that implements List must be sure that its
hashCo de method fo llows the contract as defined by the List class.

You've already seen how useful ArrayList can be. Another useful List implementation is LinkedList , which
implements a doubly-linked list o f items. Why would you choose to use one class over the o ther? Suppose
you wanted to implement a double-ended queue (o r "dequeue" for short; pronounced "deek"). The fo llowing
benchmark directly compares ArrayList to LinkedList . First, it creates a list by adding integer elements at
the "end" o f the list and then randomly removing either the first o r he last element in the list. Once max
iterations have completed, it drains the remaining elements o f the list by repeatedly removing the first one.

Create a Co mpareDequeue class in the default package o f the /src source fo lder:

http://docs.oracle.com/javase/7/docs/api/java/util/List.html#hashCode()

CODE TO TYPE: CompareDequeue class

import java.util.*;

public class CompareDequeue {
 static long[] performance(int max, List<Integer> list) {
 long nanoTime = System.nanoTime();
 while (max > 0) {
 list.add(max);
 list.add(max+1);
 if (Math.random() < 0.5) {
 list.remove(0);
 } else {
 list.remove(list.size()-1);
 }
 max--;
 }
 long inner = System.nanoTime();
 while (!list.isEmpty()) {
 list.remove(0);
 }
 long lastTime = System.nanoTime();
 return new long[]{ inner-nanoTime, lastTime-inner};
 }

 public static void main(String[] args) {
 int max = 65536;
 float m = 1000000;

 System.out.println("\t\tConstruct\tDrain\t\tTotal");
 System.gc();
 long[] arraylist = performance(max, new ArrayList<Integer>());
 System.out.println("ArrayList\t" + arraylist[0]/m + "\t" + arraylist[1]/m +
 "\t" + (arraylist[0] + arraylist[1])/m);

 System.gc();
 long[] linkedlist = performance(max, new LinkedList<Integer>());
 System.out.println("Linkedlist\t" + linkedlist[0]/m + "\t" + linkedlist[1]/m
 +
 "\t" + (linkedlist[0] + linkedlist[1])/m);
 }
}

 Save and run this program to produce the performance pro file. The code measures the execution time o f
two phases o f the program (growing phase and draining phase). The final number in the co lumn is the to tal
time in milliseconds:

INTERACTICE SESSION: Output from CompareDequue (Time in milliseconds)

 Construct Drain Total
ArrayList 253.11002 469.56882 722.67883
Linkedlist 17.202131 1.695052 18.897184

In this benchmark, LinkedList performs much faster than ArrayList . ArrayList suffers in comparison
because it must constantly resize its internal array to meet the growing demand. In addition, when removing
the first element from the ArrayList , all subsequent items in the List must be copied down.

So, what if you made a small change to the benchmark? Remove a random element instead o f just removing
an element from either the head or tail o f the list. Modify the code as shown:

CODE TO TYPE: CompareDequeue class

import java.util.*;

public class CompareDequeue {
 static long[] performance(int max, List<Integer> list) {
 long nanoTime = System.nanoTime();
 while (max > 0) {
 list.add(max);
 list.add(max+1);
 list.remove(max % list.size());
 if (Math.random() < 0.5) {
 list.remove(0);
 } else {
 list.remove(list.size()-1);
 }
 max--;
 }
 long inner = System.nanoTime();
 while (!list.isEmpty()) {
 list.remove(0);
 }
 long lastTime = System.nanoTime();
 return new long[]{ inner-nanoTime, lastTime-inner};
 }

 public static void main(String[] args) {
 int max = 65536;
 float m = 1000000;

 System.out.println("\t\tConstruct\tDrain\t\tTotal");
 System.gc();
 long[] arraylist = performance(max, new ArrayList<Integer>());
 System.out.println("ArrayList\t" + arraylist[0]/m + "\t" + arraylist[1]/m +
 "\t" + (arraylist[0] + arraylist[1])/m);

 System.gc();
 long[] linkedlist = performance(max, new LinkedList<Integer>());
 System.out.println("Linkedlist\t" + linkedlist[0]/m + "\t" + linkedlist[1]/m
 +
 "\t" + (linkedlist[0] + linkedlist[1])/m);
 }
}

 Save and run it; the tables have turned!

INTERACTIVE SESSION: Output from CompareDequue (Time in milliseconds)

 Construct Drain Total
ArrayList 320.66714 466.6363 787.3034
Linkedlist 1834.3232 1.668898 1835.9921

When choosing the appropriate data structure, you need to understand exactly how the data structure is to be
used, especially if it is updated frequently, you need randomized access to any element, o r the ratio o f
add/remove compared to the number o f queries is used to determine whether an element exists in the
co llection.

Queue Interface

A Queue is a data structure that allows you to remove an element only at the head o f an ordered sequence
and insert elements only at the end o f the sequence. The actual implementation determines whether the
Queue is first- in, first-out (what would be expected) or a variation (such as a last- in, first-out). Further, one can
only remove an element from the head o f the queue as determined by the implementation. There is a Deque
interface that extends Queue to o ffer double-ended queueing behavior.

In the Collections Framework, a Queue specifies a co llection designed to ho ld elements prio r to processing.
The Queue interface extends Collection. This interface is designed to support co llections that have a
maximum size (such as bounded queues) in addition to more general queues with no restrictions. You can
offer an element to the Queue, which simply returns f alse if the Queue denies this request (usually because it
is a bounded queue). The remaining four methods (remo ve , po ll, element , and peek) each return (without
modifying the queue) or remove the element at the head o f the queue.

It may seem odd that a Queue is not predefined to be a subinterface o f List. However, it is critical when
designing frameworks to separate structure from behavior. Using list-based semantics is not the only way to
implement a queue (you could use circular buffers, fo r example, which is an efficient way to implement a
bounded queue). The LinkedList class chooses to implement both List and Deque (and thus by extension,
Queue). ArrayList does not implement Queue though, likely because its performance as a queue would be
horrible.

Map Interface

The Map interface in the Collections Framework allows you to create co llections that associate a value with a
unique key. Given a Map, you can add (or replace) a key mapping with put (key,value) ; to retrieve a value or
to determine whether the value exists in the Map, use get (key) .

The designers o f Map had to decide whether a Map was a Collection object; after all, it stores a co llection o f
values. However, the fundamental operation on a Collection is the add method, and there is no easy way to
apply this operation to a Map. Instead, Map objects o ffer two Collection views over its objects. Because the
keys in a Map are unique, you can retrieve the Set o f all keys in the Map, but their values might not be unique,
so Map only allows you to retrieve the Collection o f values in the map.

Map is designed to optimize the insertion and removal o f (key, value) pairs. In do ing so, any ordering
properties among the keys are lost. For example, try to order the keys in a Map alphabetically.

Create a So rt ingMap class in the default package o f the /src source fo lder:

CODE TO TYPE: Sorting key values in map

import java.util.*;

public class SortingMap {
 public static void main(String[] args) {

 float m = 1000000;
 Map<String,Integer> map = new HashMap<String,Integer>();

 long start = System.nanoTime();
 byte[] word = new byte[3];
 for (byte c0 = 'A'; c0 <= 'Z'; c0++) {
 word[0] = c0;
 for (byte c1 = 'A'; c1 <= 'Z'; c1++) {
 word[1] = c1;
 for (byte c2 = 'A'; c2 <= 'Z'; c2++) {
 word[2] = c2;
 String s = new String(word);
 map.put(s, c0*c1*c2);
 }
 }
 }

 long created = System.nanoTime();
 ArrayList<String> keys = new ArrayList<String>(map.keySet());
 Collections.sort(keys);
 long sorted = System.nanoTime();

 long total = 0;
 for (String k : keys) {
 total += map.get(k);
 }
 long done = System.nanoTime();
 System.out.println("Total\t" + total);
 System.out.println("Created\t" + (created-start)/m +
 "\nSorted\t" + (sorted-created)/m +
 "\nDone\t" + (done - sorted)/m);

 int print = 10;
 for (String s : map.keySet()) {
 if (--print < 0) { break; }
 System.out.println(s);
 }
 }
}

 Save and run it.

INTERACTIVE SESSION: Output o f SortedMap

Total 8181353375
Created 99.77721
Sorted 68.29778
Done 13.256433
GDC
GDD
GDA
GDB
GDK
GDL
GDI
GDJ
GDG
GDH

The code inserts pairs (s, n) fo r max entries and then outputs the keys in sorted value. To do that, it must
retrieve the keySet () from the Map, but the set must be converted into a List so it can be sorted, so an
ArrayList keys is constructed from the set o f keys. Finally, it sorts the keys using the Co llect io ns.so rt
method. The execution shows the performance, as well as the first ten keys in the Map; note that these keys
aren't sorted because the Map iteration does not maintain ordering.

Summarizing the Implementations You Need To Know

We refer to a number o f common implementations provided for you in the JDK. These are the "go to" classes
you'll use again and again to so lve your programming issues. You must never re-implement these data
structures on your own; these implementations have already been fine-tuned by experts.

Int erf ace Hash t able
Implement at io ns

Resizable array
Implement at io ns

T ree
Implement at io ns

Linked List
Implement at io ns

Set HashSet TreeSet

List ArrayList LinkedList

Map HashMap TreeMap

Each o f these default implementations provide distinct performance pro files for the Collection methods. In
addition, both List and Map add methods to their interface definitions. It's important to differentiate between
the behaviors o f the classes that implement these interfaces as well.

Important Methods For Keys And Values

All o f the classes in the Collection Framework support Java Generics, so you don't just refer to an ArrayList ,
but an ArrayList <St ring> . Do ing so makes your code more robust because it enables the compiler to
detect many class cast exceptions. The co nt ains method—common to many Collections classes— must be
implemented properly, o therwise the Collection class won't work. Consider this example:

Create a class T uple in the default package o f the /src source fo lder:

CODE TO TYPE: Tuple class

public class Tuple {
 String value;
 int x;
 int y;

 public Tuple (String v, int x, int y) {
 this.value = v;
 this.x = x;
 this.y = y;
 }

 public String toString () {
 return "(" + value + "," + x + "," + y + ")";
 }
}

 Now, create the fo llowing driver class named T upleDriver in the default package o f the /src source fo lder:

CODE TO TYPE: TupleDriver class

import java.util.*;

public class TupleDriver {
 public static void main(String[] args) {
 ArrayList<Tuple> al = new ArrayList<Tuple>();

 Tuple t1 = new Tuple("Sample", 10, 20);
 al.add(t1);
 System.out.println("ArrayList Contains tuple:" + al.contains(t1));

 Tuple t2 = new Tuple("Sample", 10, 20);
 System.out.println("ArrayList Contains tuple:" + al.contains(t2));
 }
}

 Save and run the above code to see some surprising output:

INTERACTIVE SESSION: Output o f TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:false

Although T uple t1 and t2 are exactly the same, only one o f them is found in the ArrayList . You see this
behavior because you haven't implemented the requisite equals(Object o) method required by the
Collections Framework. The co nt ains(o) method will return t rue if there is an object in the Collection for
which equals(o) is t rue . Go ahead and add the equals method now:

CODE TO TYPE: Modified Tuple class

public class Tuple {
 String value;
 int x;
 int y;

 public Tuple (String v, int x, int y) {
 this.value = v;
 this.x = x;
 this.y = y;
 }

 public boolean equals (Object o) {
 if (o == null) { return false; }
 if (!(o instanceof Tuple)) { return false; }
 Tuple other = (Tuple) o;

 if (value == null) {
 if (other.value != null) {
 return false;
 }
 } else if (!value.equals(other.value)) {
 return false;
 }

 return x == other.x && y == other.y;
 }

 public String toString () {
 return "(" + value + "," + x + "," + y + ")";
 }
}

Review the equals method. It should not throw any Exception, but rather handle all cases (such as null
object references). This code is able to work with T uple objects that have a value String attribute o f null. Now
go back and rerun the T upleDriver:

INTERACTIVE SESION: Output o f TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:true

Now let's try to use this T uple as a key in HashSet . Modify T upleDriver as shown:

CODE TO TYPE: Modified TupleDriver class

import java.util.*;

public class TupleDriver {
 public static void main(String[] args) {
 ArrayList<Tuple> al = new ArrayList<Tuple>();

 Tuple t1 = new Tuple("Sample", 10, 20);
 al.add(t1);
 System.out.println("ArrayList Contains tuple:" + al.contains(t1));

 Tuple t2 = new Tuple("Sample", 10, 20);
 System.out.println("ArrayList Contains tuple:" + al.contains(t2));

 HashSet<Tuple> values = new HashSet<Tuple>();
 values.add(t1);
 System.out.println("HashSet Contains tuple:" + values.contains(t1));
 System.out.println("HashSet Contains tuple:" + values.contains(t2));
 }
}

 save and run it again:

INTERACTIVE SESSION: Output o f TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:true
HashSet Contains tuple:true
HashSet Contains tuple:false

When using a class as a key value in any o f the "Hash" co llection classes (that is, HashSet , HashMap,
LinkedHashSet , o r LinkedHashMap) you need to implement the hashCo de() method. Specifically, if two
objects are equal, their hashCo de() values must be identical. If you don't provide your own hashCo de
method, then you will inherit the default from java.lang.Object which means hashCo de() values must be
identical. Modify T uple to add a reasonable implementation o f hashCo de .

CODE TO TYPE: Modified Tuple class

public class Tuple {
 String value;
 int x;
 int y;

 public Tuple (String v, int x, int y) {
 this.value = v;
 this.x = x;
 this.y = y;
 }

 public boolean equals (Object o) {
 if (o == null) { return false; }
 if (!(o instanceof Tuple)) { return false; }
 Tuple other = (Tuple) o;

 if (value == null) {
 if (other.value != null) {
 return false;
 }
 } else if (!value.equals(other.value)) {
 return false;
 }

 return x == other.x && y == other.y;
 }

 public int hashCode() {
 int hash = 0;
 if (value != null) { hash += value.hashCode(); }
 return hash + x + y;
 }

 public String toString () {
 return "(" + value + "," + x + "," + y + ")";
 }
}

The hashCo de method must always return the same value upon each execution. Because all o f the
fundamental classes in the JDK have suitable hashCo de methods, you may want to compose your own
methods using their values in numerical computations. Rerun T upleDriver:

INTERACTIVE SESSION: Output o f TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:true
HashSet Contains tuple:true
HashSet Contains tuple:true

But wait—we're not done. You have to be especially careful with classes that have objects that will be key
values. Specifically, you must make these classes immutable, o therwise strange things can happen. For
example, modify T upleDriver as shown:

CODE TO TYPE: Modified TupleDriver class

import java.util.*;

public class TupleDriver {
 public static void main(String[] args) {
 ArrayList<Tuple> al = new ArrayList<Tuple>();

 Tuple t1 = new Tuple("Sample", 10, 20);
 al.add(t1);
 System.out.println("ArrayList Contains tuple:" + al.contains(t1));

 Tuple t2 = new Tuple("Sample", 10, 20);
 System.out.println("ArrayList Contains tuple:" + al.contains(t2));

 HashSet<Tuple> values = new HashSet<Tuple>();
 values.add(t1);
 System.out.println("HashSet Contains tuple:" + values.contains(t1));
 t1.value = "Other";
 System.out.println("HashSet Contains tuple:" + values.contains(t1));
 System.out.println("HashSet Contains tuple:" + values.contains(t2));
 }
}

 save and run it again:

INTERACTIVE SESSIONS: Output o f TupleDriver

ArrayList Contains tuple:true
ArrayList Contains tuple:true
HashSet Contains tuple:true
HashSet Contains tuple:false
HashSet Contains tuple:false

Once you change the value o f an object that has been used as a key value within HashSet , you may not be
able to find it again. Use the f inal modifier fo r the attributes o f your key classes to avo id these situations:

CODE TO TYPE: Modified Tuple class

public class Tuple {
 final String value;
 final int x;
 final int y;

 public Tuple (String v, int x, int y) {
 this.value = v;
 this.x = x;
 this.y = y;
 }

 public boolean equals (Object o) {
 if (o == null) { return false; }
 if (!(o instanceof Tuple)) { return false; }
 Tuple other = (Tuple) o;

 if (value == null) {
 if (other.value != null) {
 return false;
 }
 } else if (!value.equals(other.value)) {
 return false;
 }

 return x == other.x && y == other.y;
 }

 public int hashCode() {
 int hash = 0;
 if (value != null) { hash += value.hashCode(); }
 return hash + x + y;
 }

 public String toString () {
 return "(" + value + "," + x + "," + y + ")";
 }
}

With this change, the T upleDriver class no longer compiles because it's trying to modify the (now
immutable) attribute. Delete the o ffending line in T upleDriver. Now you have a working implementation o f a
class suitable for use as a key value in any o f the "Hash" Collections classes.

Lessons Learned

The Collections Framework contains many implementations o f the fundamental data structures that you'll use
in your algorithms. When you Understand these structures it will help you write efficient code:

Rat her t han re implement yo ur o wn, use def ault implement at io ns o f Set , List , and
Queue. The default implementations are made to work efficiently under the most common
usages.
Seek dat a st ruct ures t hat lead t o O(n lo g n) behavio r. Many problems have "naive"
so lutions that result in O(n2) run-time performance. In most cases you'll be able to increase
performance to O(n log n) by applying the appropriate data structure. You'll see this happen o ften in
furture lessons.

The Collections Framework contains a Co llect io ns class that has a number o f static methods useful fo r
your algorithms. Again, these methods are optimized for use by the various classes in the Collections
Framework. Use these methods rather than reimplementing them. Each o f these methods has a published
performance contract to which it adheres, which makes it possible to use them and be assured o f reasonably
good performance. Review the class in the API documentation when you get a chance. Here are four that
you'll use o ften:

sort(List): efficiently sort the List in place in O(n log n) time.
binarySearch(List): assuming that List is ordered, locate the index o f the given key in O(log n) time.

reverse(List, key): locate the key in the ordered List object in O(log n) time.
shuffle(List): permutes the List in place in O(n) time.

This lesson covered just the highlights o f the Collections Framework. The java.ut il package contains 283
classes and 19 interfaces. To delve deeper into Collections, fo llow the standard Tutorial on the Collections
framework after you complete this course.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://docs.oracle.com/javase/tutorial/collections/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Algorithms Using Java
Lesson Objectives

After completing this lesson, you will be able to :

maintain the ordering property o f a List when inserting values.
use a TreeSet to iterate over the elements o f a set in their natural o rdering.

Designing Algorithms
There are well-known algorithms you can use to sort an array o f strings, such as QuickSort, but the real value o f an
algorithm is that it is a concise explaination o f an efficient way to so lve a specific problem. The algorithms you will
encounter are as varied as the problems they so lve. Let's start by trying to so lve a given problem. As you work toward
a so lution, you'll so lve numerous sub-tasks and make important decisions and develop are essential in the process.
Let's get started.

Skyline Problem

Let's say you have a set o f rectangular building pro files in two dimensions, compute the Skyline view based
on the partially overlapping and fully obstructed building pro files at your disposal. Assume there are seven
buildings as shown. Note that two buildings (4 and 5) share the same left coordinate, although building 5 is
taller:

The Skyline for the so lution is shown in red with black shadow highlights:

If you so lve this problem by hand, you'd probably have no trouble tracing the appropriate edges, but you
might find it hard to explain the exact sequence o f steps you took. No doubt, you would be able to determine
the skyline for any conceivable set o f rectangular buildings. So, how can you write a program to do the same
thing? Let's start by identifying the Input - Pro cess - Out put phases for this problem.

Each skyline problem instance is defined by a set o f buildings. A building can be represented any number o f
ways; here we'll represent a building with three integers: left, right, and height. Building 1 above, fo r example,
can be defined as (left=1, right=4, height=3). The Input to our final program will be a sequence o f text lines,
each o f which contains three integers separated by spaces. When considering the input, ask yourself these
questions: Will the sequence o f buildings in the Input already be sorted somehow from left to right? Is it
possible for two buildings in the input to share the same left coordinate? Can two buildings have the exact
same values for all three coordinates? As you consider these questions, make the fewest possible
assumptions. This will help make your code more robust and able to handle diverse situations.

For this problem, assume that each building coordinate is represented by an integer value greater than 0 . This
prevents bizarre situations (a building with zero or negative height). Also , assume left < right fo r each building.
This ensures you will know that the smaller coordinate is truly "left" o f a building's right coordinate. There may
be duplicate coordinates (even buildings) in the input. It would be more difficult to try to find and remove
duplicate buildings from the input set than to write your program to work even when the input contains
duplicate buildings.

To record the input, you will need data structures to store the information about each building. First you need
to define a way to store information about a building.

Create a pro ject named Algo rit hms and assign it to your Java6_Lesso ns working set.

 In the Algo rit hms pro ject /src source fo lder, create a package named skyline to contain all the code you
need to so lve this problem.

 Create a Building class in the /src source fo lder skyline package to represent a building:

CODE TO TYPE: Building class

package skyline;

public class Building {
 final public int left;
 final public int right;
 final public int height;

 public Building(int left, int right, int height) {
 this.left = left;
 this.right = right;
 this.height = height;

 if (left <= 0 || right <= 0 || height <= 0 || left >= right) {
 throw new IllegalArgumentException ("Invalid building parameters: " +
 left + "," + right + "," + height);
 }
 }

 public String toString () {
 return "[" + left + "," + right + "] @ " + height;
 }
}

This class represents a valid building; any attempt to construct an invalid Building object will throw an
Exception. The input fo r a Skyline problem instance consists o f a set o f Building objects which you can store
as an ArrayList <Building> object.

 Create a Skyline class in the skyline package o f the /src source fo lder and enter the code as shown (the
code processes a set o f text lines representing buildings and the outputs the buildings it found):

CODE TO TYPE: Skyline class

package skyline;

import java.io.*;
import java.util.*;

public class Skyline {

 public static Collection<Building> retrieveInput(InputStream is) {
 ArrayList<Building> buildings = new ArrayList<Building>();
 Scanner sc = new Scanner (is);
 while (sc.hasNextLine()) {
 String s = sc.nextLine();
 if (s.equals("")) { break; }

 try {
 StringTokenizer st = new StringTokenizer(s);
 int left = Integer.valueOf(st.nextToken());
 int right = Integer.valueOf(st.nextToken());
 int height = Integer.valueOf(st.nextToken());

 Building b = new Building (left, right, height);
 buildings.add(b);
 } catch (NumberFormatException nfe) {
 System.err.println(" ** Ignoring " + s + ": all values must be integers.
");
 } catch (Exception e) {
 System.err.println(" ** Ignoring " + s + ": " + e.getMessage());
 }
 }

 return (buildings);
 }

 public static void main(String[] args) {
 Collection<Building> buildings = retrieveInput(System.in);

 for (Building b : buildings) {
 System.out.println("[" + b.left + "," + b.right + "] @ " + b.height);
 }
 }
}

This "scaffo lding" code contains a ret rieveInput method that reads a series o f lines that represent the
buildings in the Skyline problem instance. ret rieveInput returns an ArrayList o f Building objects that it
parsed. When in doubt as to which class to use when representing a list, start with ArrayList . The main
method outputs the building information for all buildings retrieved from the input.

Run Skyline with the input set below (press Ent er twice when you finish); the output shows that all buildings
were properly processed by this scaffo lding class:

INTERACTIVE SESSION: Demonstrate Skyline processes sample input

1 4 3
6 7 1
8 15 4
8 11 5
9 12 3
2 5 4
13 16 5

[1,4] @ 3
[6,7] @ 1
[8,15] @ 4
[8,11] @ 5
[9,12] @ 3
[2,5] @ 4
[13,16] @ 5

Now you are ready to consider how to represent a valid so lution to the Skyline problem—how the Output
should be represented. In the above graphic, the so lution is represented as a sequence o f "(x,y)" po ints that
determines the Skyline from left to right. The bottom of each building is y=0 and the first po int in the so lution is
(L, 0) where L is the left coordinate o f the leftmost building. Finally, the last po int in the so lution is (R, 0) where
R is the right coordinate o f the rightmost building. Because the buildings are rectangular, you know that the
Skyline is composed o f a sequence o f alternating vertical and horizontal edges. With this information in hand,
you can see that your program should compute the set o f edges from the building information in the Input.
From the sequence o f edges, you can easily compute the sequence o f po ints in the Skyline.

When tackling a complex problem, it really helps to spend the time (like you did) to understand the input and
output requirements. Now you're ready to address the Process phase o f this algorithm. When trying to
determine how to so lve the Skyline problem, start with what you know. You know that the leftmost vertical
(red) edge o f the leftmost building will fo rm the start o f the Skyline; the first po int is (1,0) and the "end" o f the
Skyline is (1,3) . Let's use two variables to compute the Skyline; right X=1 and t o pY=3 are the x- and y-
coordinates o f the rightmost po int in the Skyline. Starting with a first (blue) building, consider three different
possibilities when processing the "next" second building to determine how to extend the Skyline. The second
building is the building in the input set with the left coordinate that is closest to the left coordinate o f the first
building.

In Case One , the second building is taller than the first building, so the Skyline rises (as shown by thick black
lines) adding the po int (2,3) and ending at the "next end" o f (2,4) . However, in Case T wo , the second building
is smaller than the first building, so the Skyline will come back down (again, shown in thick black lines) adding
the po int (4 ,3) and ending at the "next end" o f (4 ,2) . In addition to maintaining the "end po int" o f the Skyline
(right X, t o pY) you also need to know buildingRight , o r the right coordinate o f the current building being
processed (in Case T wo you need this value so you know where to "turn").

Now, neither o f these cases handles the situation when the second building doesn't actually overlap the first

building (as shown by Case T hree). We can handle this case though because the Skyline comes back down
to "ground zero" and then continues back up the left edge o f the second building. Here three po ints are added
to the Skyline—(2,3) , (2,0) , (3,0) and you end up with a "next end" o f (3,2) .

These cases lay the foundation for an algorithm. Now you need to consider the initialization phase o f the
algorithm (where do you start?) and the termination phase (how do you end?). To start this algorithm, you
need to find the leftmost building with tallest height (just in case two or more buildings start with the same
smallest coordinate) and start the Skyline with its vertical edge. To terminate this algorithm, there will be no
second building (since they will have all been processed), so you can "close" the algorithm by extending the
Skyline to buildingRight and then back down to the "ground zero".

Before implementing the algorithm, you should describe its logic using pseudocode; this allows you to see
the structure without the complicated syntax o f a regular programming language. When sketching an
algorithm using pseudocode, you can define helper functions as needed. Define a next T allest (x) function
that returns the building whose left coordinate is closest to the right o f x. In the event o f a "tie," this function
must return the tallest o f all such buildings starting at that coordinate. Review the fo llowing pseudocode
description and note how Case T hree is handled first, since that detects when the next building doesn't
intersect the "current building." With each pass through the loop, current and next are updated accordingly
to represent the index o f the current building being processed and the next building to process.

OBSERVE: Pseudocode description o f algorithm

compute ()
 current = nextTallest(0)
 rightX = current.left
 topY = current.height
 skyline starts with (rightX, 0) and (rightX, topY)

 buildingRight = current.right

 while exists next = nextTallest(rightX) do
 if next.left > buildingRight then
 add edges to skyline according to Case Three
 rightX = next.left
 else if next.height > topY then
 add edges to skyline according to Case One
 rightX = next.left
 else if next.height < topY then
 add edges to skyline according to Case Two
 rightX = current.right

 topY = next.height
 buildingRight = next.right
 current = next

 close skyline by adding (buildingRight, topY) and (buildingRight, 0)

Before jumping into implementation, review how this algorithm would work on the sample problem you saw
earlier. If you fo llow the above pseudocode on the sample data, you will see that it inco rrect ly co mput es
this Skyline:

The actual po ints in the Skyline are:

OBSERVE: Skyline processes sample input

[(1,0) - (1,3)]
[(1,3) - (2,3)]
[(2,3) - (2,4)]
[(2,4) - (5,4)]
[(5,4) - (5,0)]
[(5,0) - (6,0)]
[(6,0) - (6,1)]
[(6,1) - (7,1)]
[(7,1) - (7,0)]
[(7,0) - (8,0)]
[(8,0) - (8,5)]
[(8,5) - (11,5)]
[(11,5) - (11,3)] ** Here is where the Skyline is incorrect **
[(11,3) - (12,3)]
[(12,3) - (12,0)]
[(12,0) - (13,0)]
[(13,0) - (13,5)]
[(13,5) - (16,5)]
[(16,5) - (16,0)]

Note
In my first attempt to so lve this problem, I coded the so lution before I considered all possible
cases, then realized the implementation was incorrect. You can avo id wasting time on faulty
implementations by checking your pseudocode against a real example.

As you uncover the missing case that you hadn't considered before, it looks like the whole approach will have
to change.

In Case Fo ur, once you have processed the second building, the height o f the next Skyline po int will be at the
original first building, not the third building processed. The original approach focused too much on the le f t
coordinates o f the buildings; now you can see that the right coordinate o f the buildings is just as important.

Let's approach the problem from another perspective. Another way to define the Skyline for a set o f buildings
is to consider only the tops o f buildings, that is, just the horizontal edges. The top o f a building at a given x-
coordinate is part o f the Skyline if no other building at that x-coordinate is taller. This is a simpler way to
approach the whole problem; o ften after you have worked on a problem for some time, a simpler so lution will
materialize. The earlier observation that the Skyline contained alternating vertical and horizontal edges was
actually a distraction from this simpler approach.

The revised approach to this problem (as shown above in Case Four) still invo lves attempts to "sweep" the
buildings from left to right, but now it gives equal weight to both the left- and right- coordinates o f a building.
Now you need to maintain an ordered heightList o f buildings (from tallest down to smallest) as the x-
coordinate sweeps from left to right. The ordered list (represented by a chain o f circles) keeps track o f the
buildings. When you sweep x from left to right and discover the left edge o f a building at that x-coordinate, add
the building to this ordered list at its proper location (according to its height). When the x-coordinate matches
the right-coordinate o f a building in heightList, remo ve that building from the list. Now comes the key
observation: Whenever the top of the ordered list changes, the Skyline changes as well.

Here's the expected behavior when we manage the heightList structure for the sample input set described
earlier:

Let's get started with adding code to sweep through the coordinates and constructs heightList. Modify the
Skyline class as shown:

CODE TO TYPE: Modifications to Skyline class

package skyline;

import java.io.*;
import java.util.*;

public class Skyline {

 public static Collection<Building> retrieveInput(InputStream is) {
 ArrayList<Building> buildings = new ArrayList<Building>();
 Scanner sc = new Scanner (is);
 while (sc.hasNextLine()) {
 String s = sc.nextLine();
 if (s.equals("")) { break; }

 try {
 StringTokenizer st = new StringTokenizer(s);
 int left = Integer.valueOf(st.nextToken());
 int right = Integer.valueOf(st.nextToken());
 int height = Integer.valueOf(st.nextToken());

 Building b = new Building (left, right, height);
 buildings.add(b);
 } catch (NumberFormatException nfe) {
 System.err.println(" ** Ignoring " + s + ": all values must be integers.
");
 } catch (Exception e) {
 System.err.println(" ** Ignoring " + s + ": " + e.getMessage());
 }
 }

 return (buildings);
 }

 public static void compute(Collection<Building> buildings) {
 TreeSet<Integer> S = new TreeSet<Integer>();
 HashMap<Integer,ArrayList<Building>> lefts = new HashMap<Integer,ArrayList<B
uilding>>();
 HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>>();
 ArrayList<Building> list = null;
 for (Building b : buildings) {
 S.add(b.left);
 list = lefts.get(b.left);
 if (list == null) {
 list = new ArrayList<Building>();
 lefts.put(b.left, list);
 }
 list.add(b);

 S.add(b.right);
 list = rights.get(b.right);
 if (list == null) {
 list = new ArrayList<Building>();
 rights.put(b.right, list);
 }
 list.add(b);
 }

 ArrayList<Building> heightList = new ArrayList<Building>();
 for (int x : S) {
 list = rights.get(x);
 if (list != null) {
 for (Building b : list) {
 heightList.remove(b);
 }
 }

 list = lefts.get(x);
 if (list != null) {
 for (Building b : list) {
 int i;
 for (i = 0; i < heightList.size(); i++) {
 if (heightList.get(i).height < b.height) {
 heightList.add(i, b);
 break;
 }
 }
 if (i == heightList.size()) {
 heightList.add(b);
 }
 }
 }

 System.out.println(x + ":" + heightList);
 }
 }

 public static void main(String[] args) {
 Collection<Building> buildings = retrieveInput(System.in);

 compute(buildings);
 for (Building b : buildings) {
 System.out.println("[" + b.left + "," + b.right + "] @ " + b.height);
 }
 }
}

Execute this program on the sample input from before:

INTERACTIVE SESSION: Maintaining HeightList

1 4 3
6 7 1
8 15 4
8 11 5
9 12 3
2 5 4
13 16 5

1:[[1,4] @ 3]
2:[[2,5] @ 4, [1,4] @ 3]
4:[[2,5] @ 4]
5:[]
6:[[6,7] @ 1]
7:[]
8:[[8,11] @ 5, [8,15] @ 4]
9:[[8,11] @ 5, [8,15] @ 4, [9,12] @ 3]
11:[[8,15] @ 4, [9,12] @ 3]
12:[[8,15] @ 4]
13:[[13,16] @ 5, [8,15] @ 4]
15:[[13,16] @ 5]
16:[]

Each line o f output shows the heightList o f buildings, in reverse order o f height. Compare the output to the
heightList image we just saw; the results at each x-coordinate accurately reflect the order o f buildings in
heightList at each coordinate. Let's take a closer look at the code:

OBSERVE: Creating initial data structures S, lefts and rights

 public static void compute(Collection<Building> buildings) {
 TreeSet<Integer> S = new TreeSet<Integer>();
 HashMap<Integer,ArrayList<Building>> lefts = new HashMap<Integer,ArrayList<B
uilding>>();
 HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>>();
 ArrayList<Building> list = null;
 for (Building b : buildings) {
 S.add(b.left);
 list = lefts.get(b.left);
 if (list == null) {
 list = new ArrayList<Building>();
 lefts.put(b.left, list);
 }
 list.add(b);

 S.add(b.right);
 list = rights.get(b.right);
 if (list == null) {
 list = new ArrayList<Building>();
 rights.put(b.right, list);
 }
 list.add(b);
 }

This code constructs a set S from the left- and right- coordinates o f the buildings so it can sweep through the
coordinates from left to right. In the previous lesson, we learned that sets have no inherent ordering
associated with them; they simply maintain a co llection o f unique elements. In practice, however, the
T reeSet class in the Collections Framework can store the elements o f a set efficiently and allow you to
iterate over these elements in sorted order. The algorithm pseudocode shows that you need to be able to
retrieve quickly, all buildings whose left- (o r right-) coordinate is a specific value. This behavior calls fo r an
associative Map o f some kind. Here the code creates two HashMap objects. le f t s enables the retrieval o f an
ArrayList o f Building objects that all share the same left x-coordinate. Similarly, the right s HashMap stores
an ArrayList o f Building objects that all share the same right x-coordinate.

To compute the number o f operations in the above code, consider these actions:

The f o r loop executes n times.
Each add to a T reeSet is guaranteed to perform with O(log n) behavior.
Each get on a HashMap is O(1) time.
Each put operation on a HashMap is O(1) time.
Each add on a ArrayList is amortized constant time.

The to tal number o f operations is 2*n*(O(log n) + O(1) + O(1) + Amortized Constant). The above is classifed as
an O(n log n) algorithm because those are the dominant terms in the computation.

Throughout this course you will be asked to evaluate the run-time performance o f an algorithm in the same
manner. Make sure you understand the reason behind classifying the performance o f this initialization code
as O(n log n).

Once le f t s, right s, and S are constructed, the co mput e method must sweep through the coordinates from
left to right. It does so by iterating over all integer values in S , which are processed in ascending order.

OBSERVE: Manage heightList

 ArrayList<Building> heightList = new ArrayList<Building>();
 for (int x : S) {
 list = rights.get(x);
 if (list != null) {
 for (Building b : list) {
 heightList.remove(b);
 }
 }

 list = lefts.get(x);
 if (list != null) {
 for (Building b : list) {
 int i;
 for (i = 0; i < heightList.size(); i++) {
 if (heightList.get(i).height < b.height) {
 heightList.add(i, b);
 break;
 }
 }
 if (i == heightList.size()) {
 heightList.add(b);
 }
 }
 }

 System.out.println(x + ":" + heightList);
 }

The f o r lo o p iterates over every coordinate value x. First it remo ves f ro m height List all buildings with the
right-coordinate o f x; these buildings can no longer affect the Skyline. Then the f o r lo o p insert s int o
height List all o f the buildings with a left-coordinate o f x. If any exist , the Building objects in that list are
inserted at the proper location in heightList. Observe how the above code keeps heightList in order (from
tallest to shortest). The closing println statement outputs heightList so you can validate that the sweep is
working properly.

Now that you have a working sweep that maintains the heightList, it's time to design the revised pseudocode
for the algorithm.

OBSERVE: Pseudocode description o f revised algorithm

compute ()
 S = set of integers containing all left- and right-coordinates of buildings
 lefts = HashMap of buildings by left-coordinate
 rights = HashMap of buildings by right-coordinate
 heightList = empty

 skyline = empty
 foreach x in S in sorted order do
 if heightList is empty then
 top = 0
 else
 top = tallest building in heightList

 foreach building b whose b.right=x do
 remove b from heightList
 foreach building b whose b.left=x do
 insert b into heightList at appropriate location

 if heightList is empty then
 newTop = 0
 else
 newTop = tallest building in heightList

 if top is 0 then
 left = x
 else if top != newTop then
 add edge (left, top) - (x, top) into skyline
 left = x

 return skyline

The pseudocode demonstrates how to generate a set o f edges while sweeping the coordinates from left to
right. With each pass through the foreach loop, the algorithm determines if the top o f the tallest building in
heightList changes because a building is removed from or added to the heightList. If a change happens, then
newT o p != t o p and a horizontal edge can be determined for the Skyline. With each pass through the
f o reach loop, left records the most recent x-coordinate for processing.

To complete the implementation, you need a class to represent the edges in the Skyline.

 Create an Edge class in the skyline package o f the /src source fo lder:

CODE TO TYPE: Edge class

package skyline;

import java.awt.Point;

public class Edge {
 final Point start;
 final Point end;

 public Edge (Point start, Point end) {
 this.start = start;
 this.end = end;
 }

 public String toString() {
 return "[(" + start.x + "," + start.y + ") - (" + end.x + "," + end.y + ")]"
;
 }
}

The Edge class simply records an edge by using two java.awt .Po int objects. It has a convenient t o St ring
method for debugging.

To compute the Skyline o f horizontal edges you need to record whenever the top of the ordered heightList
changes. Make these code modifications to Skyline :

CODE TO TYPE: Modifications to Skyline to compute edges o f Skyline

package skyline;

import java.io.*;
import java.util.*;
import java.awt.Point;

public class Skyline {

 public static Collection<Building> retrieveInput(InputStream is) {
 ArrayList<Building> buildings = new ArrayList<Building>();
 Scanner sc = new Scanner (is);
 while (sc.hasNextLine()) {
 String s = sc.nextLine();
 if (s.equals("")) { break; }

 try {
 StringTokenizer st = new StringTokenizer(s);
 int left = Integer.valueOf(st.nextToken());
 int right = Integer.valueOf(st.nextToken());
 int height = Integer.valueOf(st.nextToken());

 Building b = new Building (left, right, height);
 buildings.add(b);
 } catch (NumberFormatException nfe) {
 System.err.println(" ** Ignoring " + s + ": all values must be integers.
");
 } catch (Exception e) {
 System.err.println(" ** Ignoring " + s + ": " + e.getMessage());
 }
 }

 return (buildings);
 }

 public static ArrayList<Edge>void compute(Collection<Building> buildings) {
 TreeSet<Integer> S = new TreeSet<Integer>();
 HashMap<Integer,ArrayList<Building>> lefts = new HashMap<Integer,ArrayList<B
uilding>>();
 HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>>();
 ArrayList<Building> list = null;
 for (Building b : buildings) {
 S.add(b.left);
 list = lefts.get(b.left);
 if (list == null) {
 list = new ArrayList<Building>();
 lefts.put(b.left, list);
 }
 list.add(b);

 S.add(b.right);
 list = rights.get(b.right);
 if (list == null) {
 list = new ArrayList<Building>();
 rights.put(b.right, list);
 }
 list.add(b);
 }

 int left = 0, top = 0;
 ArrayList<Edge>skyline = new ArrayList<Edge>();
 ArrayList<Building> heightList = new ArrayList<Building>();
 for (int x : S) {
 if (heightList.isEmpty()) {
 top = 0;
 } else {

 top = heightList.get(0).height;
 }

 list = rights.get(x);
 if (list != null) {
 for (Building b : list) {
 heightList.remove(b);
 }
 }

 list = lefts.get(x);
 if (list != null) {
 for (Building b : list) {
 int i;
 for (i = 0; i < heightList.size(); i++) {
 if (heightList.get(i).height < b.height) {
 heightList.add(i, b);
 break;
 }
 }
 if (i == heightList.size()) {
 heightList.add(b);
 }
 }
 }

 int newTop;
 if (heightList.isEmpty()) {
 newTop = 0;
 } else {
 newTop = heightList.get(0).height;
 }

 if (top == 0) {
 left = x;
 } else if (top != newTop) {
 Edge e = new Edge(new Point (left, top), new Point (x, top));
 skyline.add(e);
 left = x;
 }
 System.out.println(x + ":" + heightList);
 }
 return (skyline);
 }

 public static void main(String[] args) {
 Collection<Building> buildings = retrieveInput(System.in);

 for (Edge e : compute(buildings)) {;
 System.out.println(e);
 }
 }
}

This approach will record all o f the horizontal lines (shown in red in previous images) that fo rm the tops o f
buildings. Execute this program on the original set o f buildings to produce this set o f horizontal edges:

INTERACTIVE SESSION: Output o f horizontal edges in Skyline

1 4 3
6 7 1
8 15 4
8 11 5
9 12 3
2 5 4
13 16 5

[(1,3) - (2,3)]
[(2,4) - (5,4)]
[(6,1) - (7,1)]
[(8,5) - (11,5)]
[(11,4) - (13,4)]
[(13,5) - (16,5)]

Compare these edges with the image below that highlights the edges in the Skylinein red; these are the
horizontal edges in the final Skyline:

To complete this algorithm, you add a helper method that completes the Skyline which contains only
horizontal edges forming the tops o f each building. Since the edges in the Skyline were added from left to
right, you must "stitch together" vertical edges to connect them, but you must also handle gaps that fo rm
when there is a space between two buildings. The pseudocode below for co mplet e() describes this
process. In the pseudocode, edge.st art refers to the left po int o f a horizontal edge and edge.end refers to
its right po int. Each po int has an x-coordinate and a y-coordinate, so edge.end.x refers to the x-coordinate
of the right po int o f the given edge:

OBSERVE: Pseudocode for complete() method

complete(skyline)
 skylinepoints = empty
 left = leftmost coordinate of edges in skyline
 right = rightmost coordinate of edges in skyline

 append (left, 0) to skylinepoints
 foreach edge in skyline do
 append edge.start to skylinepoints
 append edge.end to skylinepoints

 nextEdge = next edge in skyline
 if nextEdge exists then
 if edge.end does not have same x-coordinate as nextEdge.start then
 append (edge.end.x, 0) to skylinepoints
 append (nextEdge.start.x, 0) to skylinepoints

 append (right, 0) to skylinepoints
 return skylinepoints

The fo llowing implementation shows the final modifications to complete the Skyline problem.

Skyline Final Implementation

package skyline;

import java.io.*;
import java.util.*;
import java.awt.Point;

public class Skyline {

 public static Collection<Building> retrieveInput(InputStream is) {
 ArrayList<Building> buildings = new ArrayList<Building>();
 Scanner sc = new Scanner (is);
 while (sc.hasNextLine()) {
 String s = sc.nextLine();
 if (s.equals("")) { break; }

 try {
 StringTokenizer st = new StringTokenizer(s);
 int left = Integer.valueOf(st.nextToken());
 int right = Integer.valueOf(st.nextToken());
 int height = Integer.valueOf(st.nextToken());

 Building b = new Building (left, right, height);
 buildings.add(b);
 } catch (NumberFormatException nfe) {
 System.err.println(" ** Ignoring " + s + ": all values must be integers.
");
 } catch (Exception e) {
 System.err.println(" ** Ignoring " + s + ": " + e.getMessage());
 }
 }

 return (buildings);
 }

 public static ArrayList<Edge> compute(Collection<Building> buildings) {
 TreeSet<Integer> S = new TreeSet<Integer>();
 HashMap<Integer,ArrayList<Building>> lefts = new HashMap<Integer,ArrayList<B
uilding>>();
 HashMap<Integer,ArrayList<Building>> rights = new HashMap<Integer,ArrayList<
Building>>();
 ArrayList<Building> list = null;
 for (Building b : buildings) {
 S.add(b.left);
 list = lefts.get(b.left);
 if (list == null) {
 list = new ArrayList<Building>();
 lefts.put(b.left, list);
 }
 list.add(b);

 S.add(b.right);
 list = rights.get(b.right);
 if (list == null) {
 list = new ArrayList<Building>();
 rights.put(b.right, list);
 }
 list.add(b);
 }

 int left = 0, top = 0;
 ArrayList<Edge>skyline = new ArrayList<Edge>();
 ArrayList<Building> heightList = new ArrayList<Building>();
 for (int x : S) {
 if (heightList.isEmpty()) {
 top = 0;
 } else {

 top = heightList.get(0).height;
 }

 list = rights.get(x);
 if (list != null) {
 for (Building b : list) {
 heightList.remove(b);
 }
 }

 list = lefts.get(x);
 if (list != null) {
 for (Building b : list) {
 int i;
 for (i = 0; i < heightList.size(); i++) {
 if (heightList.get(i).height < b.height) {
 heightList.add(i, b);
 break;
 }
 }
 if (i == heightList.size()) {
 heightList.add(b);
 }
 }
 }

 int newTop;
 if (heightList.isEmpty()) {
 newTop = 0;
 } else {
 newTop = heightList.get(0).height;
 }

 if (top == 0) {
 left = x;
 } else if (top != newTop) {
 Edge e = new Edge(new Point (left, top), new Point (x, top));
 skyline.add(e);
 left = x;
 }
 }
 return (skyline);
 }

 public static Collection<Point> complete(ArrayList<Edge> skyline) {
 ArrayList<Point> skylinepoints = new ArrayList<Point>();
 if (skyline.isEmpty()) { return skylinepoints; }

 int left = skyline.get(0).start.x;
 int right = skyline.get(skyline.size()-1).end.x;

 skylinepoints.add(new Point (left, 0));

 for (int i = 0; i < skyline.size(); i++) {
 Edge edge = skyline.get(i);
 skylinepoints.add(edge.start);
 skylinepoints.add(edge.end);

 Edge nextEdge = null;
 if (i+1 < skyline.size()) {
 nextEdge = skyline.get(i+1);

 if (edge.end.x != nextEdge.start.x) {
 skylinepoints.add(new Point (edge.end.x, 0));
 skylinepoints.add(new Point (nextEdge.start.x, 0));
 }
 }
 }

 skylinepoints.add(new Point (right, 0));
 return (skylinepoints);
 }

 public static void main(String[] args) {
 Collection<Building> buildings = retrieveInput(System.in);

 ArrayList<Edge> skyline = compute(buildings);
 Collection<Point> skylinepoints = complete(skyline);
 for (Point p : skylinepoints) {
 System.out.print("(" + p.x + "," + p.y + ") ");
 }
 for (Edge e : compute(buildings)) {
 System.out.println(e);
 }
 }
}

Execute the final program to validate that it works on the sample input set:

INTERACTIVE SESSION: Final output from Skyline program

1 4 3
6 7 1
8 15 4
8 11 5
9 12 3
2 5 4
13 16 5

(1,0) (1,3) (2,3) (2,4) (5,4) (5,0) (6,0) (6,1) (7,1) (7,0) (8,0) (8,5) (11,5) (
11,4)
(13,4) (13,5) (16,5) (16,0)

Lessons Learned

This lesson demonstrates an iterative approach to algorithm development. The challenge is to identify
milestones along the way where you can validate your progress. Instead o f trying to so lve the whole problem
all at once, find ways to break the problem into sub-tasks. Our first attempt to so lve the Skyline problem
identified a number o f cases that we believed to be every possible way that the Skyline would grow when
buildings intersected with each o ther. In retrospect, this ad hoc so lution didn't capture all the ways that n
buildings could intersect each o ther. You need to find meaningful milestones that represent the different
stages with the processing phase o f an algorithm. Each milestone has a well-defined validation condition that
you could test using test cases. In Skyline, everything started to work once the heightList abstraction was
identified; that's allowed us to identify the horizontal edges in the Skyline. Once that work was completed and
validated, the second stage o f the algorithm just stitched the edges together to fo rm the Skyline.

1. When yo u canno t f ully o rder t he e lement s, t ry t o f ind a way t o sweep f ro m lef t t o
right acro ss a part ially o rdered set : the sweeping technique described in this lesson can be
used to fully process each element in a set that cannot be completely ordered.
2. Even t ho ugh a set is inherent ly uno rdered, t he T reeSet allo ws yo u t o it erat e o ver
it s e lement s in o rder: while Set implementations cannot be sorted in the same way that List
implementations can, you can use its efficient iterator to inspect each o f the elements in sorted
order.
3. Use ArrayList when yo u need t o maint ain a list in so me so rt ed o rder and t hen insert
new element s int o t heir pro per lo cat io ns wit hin t he list : while LinkedList and ArrayList are
both Lists that can be sorted, you cannot insert the element into its proper location efficiently in
LinkedList because its get (idx) method executes in O(n) time where n represents the number o f
elements in the list. Only ArrayList guarantees a constant time performance for this operation.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Working With Big Data
Lesson Objectives

When you finish this lesson you will be able to :

characterize the storage requirement fo r an algorithm.
access the contents o f a structured binary file in the same way that you would an array stored in main memory.
read from and write to a memory-mapped file.

Working with Big Data
What if you had to sort a co llection o f integers? The fo llowing example shows how to use the built- in sorting
capabilities provided by the JDK.

Create a BigDat a pro ject, and assign it to the Java6_Lesso ns working set.

 Then, create a So rt Rando mInt egers class in the default package o f the /src source fo lder:

CODE TO TYPE: SortingExample

import java.util.Arrays;

public class SortRandomIntegers {
 public static void main(String[] args) {
 int numIntegers = 1000;
 int[] group = new int[numIntegers];

 for (int i = 0; i < numIntegers; i++) {
 group[i] = (int)(Math.random()*numIntegers);
 }

 Arrays.sort(group);

 for (int i = 0; i < 10; i++) {
 System.out.println(group[i]);
 }
 }
}

 Run the code to verify that it prints out ten numbers in sorted order.

This small program generates a random array containing 1000 integers, sorts them, and prints out the smallest ten in
the array. You should always use the Arrays.so rt built- in methods to sort arrays because it provides tuned
algorithms with a performance that is nearly always O(n log n). For comparison-based sorting algorithms (where you
can only sort the elements by directly comparing the individual elements) this is the best we've got.

Now what if you have a large co llection o f integers? Like 450 million? If you modify the settings o f the above program
to generate 450000000 integers instead o f 1000 integers, you'll see this error message:

OBSERVE: Unable to create large arrays in memory

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at SortRandomIntegers.main(SortRandomIntegers.java:8)

The primary issue with this code is that it is simply impossible to create a contiguous array to contain a large co llection
of elements. You can try to increase the heap space available to your Java virtual machine, but eventually the computer
on which you are running will exhaust its available memory. So how is it possible to deal with extremely large data
sets? You will need to develop techniques that manage the transfer o f data from external storage (such as a hard disk)
into main memory (what is commonly called RAM). In the early days o f computing, main memory was measured in
kilobytes (not gigagbytes!) and programmers learned how to work within these constraints. In this era o f "Big Data"
where data can be measured in terabytes and petabytes, even modern programmers have to make some fundamental

adjustments.

In this lesson, you'll learn how to sort large sets stored on disk, sets that may be too large to store in main memory.
We'll show examples using small data sets, but they can scale to much larger data sets as needed.

Sorting Large Sets Using External Storage

Most sorting algorithms operate over an array o f values, swapping elements in the array until the elements
are in order. The earlier so rt method does that. However, when the number o f elements being sorted is too
large to store in main memory, there are sorting algorithms that allow us to use external storage. The
fundamental algorithm to learn is called MergeSort. You've probably used this technique in the real world
already. Suppose that you had a stack o f 50 notecards, each containing a single number. To sort the whole
stack, divide it into two stacks o f 25 notecards each. Sort each o f these two stacks individually, which results
in two sorted stacks o f notecards where you can see the topmost visible card in each stack. You can "merge"
these two smaller stacks into a third sorted stack by repeatedly taking the card whose visible number is the
smaller o f the two. This merging process gives the algorithm its name.

MergeSort is recursive, since it breaks up a problem instance into two smaller instances o f half the size. To
stop the recursion, consider two cases:

1. Sorting a co llection o f two values: swap the first value with the second if they are out o f order.
2. Sorting a co llection with a single value: the co llection is already sorted, so stop.

You have enough information to write the pseudocode now. The notation |A| represents the size o f the
co llection A:

OBSERVE: pseudocode for Mergesort

 MergeSort (A)
 if |A| < 2 then return A
 if |A| = 2 then
 swap elements of A if out of order
 return A

 sub1 = MergeSort(left half of A)
 sub2 = MergeSort(right half of A)

 merge sub1 and sub2 into a new array B
 return B

Try this out by manually executing MergeSort on the co llection [6 , 2, 1, 5, 3]. In the fo llowing graphic, the blue
arrows represent invocations o f MergeSort and the red arrows represent the returned sorted arrays. The
newly created arrays are depicted in red and contain three or more elements (that is, [1,3,5] and [1,2,3,5,6]):

Now it's your turn to implement this algorithm:

 Create a so rt package in the /src source fo lder.

 Create a Co pyMergeSo rt class in the so rt package as shown.

CODE TO TYPE: CopyMergeSort class

package sort;

import java.util.Arrays;

public class CopyMergeSort {
 public static void main(String[] args) {
 int[] group = new int []{6, 2, 1, 5, 3};
 group = copymergesort(group);
 for (int i : group) {
 System.out.print (i + " ");
 }
 }

 static int[] copymergesort(int[] A) {
 if (A.length < 2) {
 return A;
 }

 if (A.length == 2) {
 if (A[0] > A[1]) {
 int tmp = A[0];
 A[0] = A[1];
 A[1] = tmp;
 }
 return A;
 }

 int mid = A.length/2;
 int[] left = Arrays.copyOfRange(A, 0, mid);
 int[] right = Arrays.copyOfRange(A, mid, A.length);

 left = copymergesort(left);
 right = copymergesort(right);

 for (int i = 0, j = 0, idx=0; idx < A.length; idx++) {
 if (j >= right.length || (i < left.length && left[i] < right[j])) {
 A[idx] = left[i++];
 } else {
 A[idx] = right[j++];
 }
 }

 return A;
 }
}

Run this code to verify that it works. You might experiment with different initial arrays to see how the code
handles arrays with just 1 or 2 (or larger number o f) elements:

OBSERVE: Output o f CopyMergeSort

1 2 3 5 6

Let's take a closer look at this code. The base cases o f the recursion are as fo llows:

OBSERVE: Base cases o f CopyMergeSort recursion

 static int[] copymergesort(int[] A) {
 if (A.length < 2) {
 return A;
 }

 if (A.length == 2) {
 if (A[0] > A[1]) {
 int tmp = A[0];
 A[0] = A[1];
 A[1] = tmp;
 }
 return A;
 }

 ...
}

The co pymergeso rt method must return an int [] array, so these if statements both return the input array,
A. When there are two elements in the array, the second if statement swaps t he t wo element s if they are
out o f order.

OBSERVE: Recursive steps

 int mid = A.length/2;
 int[] left = Arrays.copyOfRange(A, 0, mid);
 int[] right = Arrays.copyOfRange(A, mid, A.length);

 left = copymergesort(left);
 right = copymergesort(right);

The true logic o f this algorithm occurs when the array A is subdivided int o t wo arrays, le f t and right ,
which are then recursively sorted using co pymergeso rt .

OBSERVE: Merging two sorted arrays

 for (int i = 0, j = 0, idx=0; idx < A.length; idx++) {
 if (j >= right.length || (i < left.length && left[i] < right[j])) {
 A[idx] = left[i++];
 } else {
 A[idx] = right[j++];
 }
 }

 return A;
}

Once the two recursive calls return, le f t and right will be sorted (this is the fundamental property o f any
recursive function). All that remains is the process o f selecting the smaller o f the two elements while merging
these two lists. The code above reuses array A to store the sorted values. Variable i will iterate over the
indices in le f t , while j will iterate over the indices in right . idx identifies the index location in A into which the
smaller value o f le f t [i] o r right [j] will be written. The loop terminates once all values have been transferred
into A (that is, when idx = A.length). Once right has exhausted its elements (because j >= right .lengt h),
elements o f le f t are transferred to A. Similarly, once le f t has exhausted its elements (because i >=
lef t .lengt h), elements o f right are transferred to A.

This code works, and it's reasonably efficient on small sets o f numbers, but we also need space for the le f t
and right arrays. To address this issue, you need to learn how to characterize the storage requirements for
an algorithm.

Characterizing Storage Requirements for an Algorithm

Throughout this course, you have characterized the running time o f an algorithm to determine its efficiency.
This is how algorithms are most o ften compared. You can also compare algorithms by their storage
requirements. There is a "Time vs. Space" tradeoff in programming that explains many o f the design

decisions that a programmer must make. For example, each Java class that is used as a key value in a
HashMap must implement a hashCo de() method as part o f the Collections Framework. As we've
mentioned, if two objects are equal to each o ther, then the value returned by hashCo de must also be the
same. For immutable classes (such as St ring), a program can save computation time by computing the
hash value just once and then caching the result fo r subsequent invocations. Here is the code from
java.lang.St ring:

OBSERVE: String.hashCode() method

public int hashCode() {
 int h = hash;
 int len = count;

 if (h == 0 && len > 0) {
 int off = offset;
 char val[] = value;

 for (int i = 0; i < len; i++) {
 h = 31*h + val[off++];
 }
 hash = h;
 }

 return h;
}

Whenever hashCo de is executed, it checks to see if the cached value hash is equal to zero ; only then does it
compute and store the value in the hash class attribute. This code is more efficient because o f the extra
integer being stored. How much extra storage is required? In this case it's a fixed amount o f storage—just
one additional int value. When addressing more complicated algorithms, you will need to determine whether
the amount o f extra storage is fixed, or is based on the size o f the problem instance. For example, if you
needed 2*n additional stored array elements to sort an existing array o f n elements, you would characterize
the storage requirements as being O(n). If, however, you needed n*n additional array elements to sort an
existing array o f n elements, the required storage is O(n2). We use the fo llowing notation in this course. T(n)
refers to the running time characterization o f an algorithm, S(n) refers to the storage requirements o f an
algorithm. Modify the Co pyMergeSo rt code as shown:

CODE TO TYPE: Modifications to CopyMergeSort to compute storage requirements

package sort;
import java.util.Arrays;

public class CopyMergeSort {
 static int total=0;
 public static void main(String[] args) {
 int[] group = new int []{6, 2, 1, 5, 3};
 int numIntegers = 512;
 for (; numIntegers < 65536; numIntegers *= 2) {
 int[]group = new int[numIntegers];

 for (int i = 0; i < numIntegers; i++) {
 group[i] = (int)(Math.random()*numIntegers);
 }
 total = 0;
 group = copymergesort(group);
 System.out.println(total + " locations for " + numIntegers);
 }
 for (int i : group) {
 System.out.print (i + " ");
 }
 }

 static int[] copymergesort(int[] A) {
 if (A.length < 2) {
 return A;
 }
 if (A.length == 2) {
 if (A[0] > A[1]) {
 int tmp = A[0];
 A[0] = A[1];
 A[1] = tmp;
 }
 return A;
 }

 int mid = A.length/2;
 int[] left = Arrays.copyOfRange(A, 0, mid);
 int[] right = Arrays.copyOfRange(A, mid, A.length);

 left = copymergesort(left);
 right = copymergesort(right);

 for (int i = 0, j = 0, idx=0; idx < A.length; idx++) {
 if (j >= right.length || (i < left.length && left[i] < right[j])) {
 A[idx] = left[i++];
 } else {
 A[idx] = right[j++];
 }
 }

 total += A.length;
 return A;
 }
}

Execute this revised code to produce this table:

OBSERVE: Output showing storage requirements for CopyMergeSort

4096 locations for 512
9216 locations for 1024
20480 locations for 2048
45056 locations for 4096
98304 locations for 8192
212992 locations for 16384
458752 locations for 32768

When sorting 512 elements you need 8 times as much temporary storage; worse, when sorting 2,048
elements you need 10 times as much temporary storage. Based on the above table, when sorting n elements
you need 2*n*log2(n) temporary storage where log2(n) is the logarithm of n in base 2. So, the storage
requirement fo r CopyMergeSort is O(n log n). Even though CopyMergeSort executes efficiently, there is a
serious issue regarding its storage requirements. Can something be done to remedy this? Yes.

MergeSort with O(n) Storage Requirements

Most sorting algorithms already perform "in place" with no additional storage requirements, so you might
think that some intermediate compromise can be reached to reduce the storage requirements. You don't
need to instantiate two sub-arrays le f t and right if you inst ead pass paramet ers t hat ref er t o
subranges wit hin t he array it self . Let's start by revising the pseudocode for MergeSort to create a method
that takes an array, A, and two internal indices, [st art , end) where index location st art is inclusive in the
range 0 .. A.lengt h-1 while end is exclusive in the range 0 .. A.lengt h. So, to sort an array one would
invoke MergeSo rt (A, 0 , A.lengt h) . Note that the sorting is done "in place" so an array is no longer returned
by this function.

OBSERVE: potential revised pseudocode for Mergesort

 MergeSort (A, start, end)
 if end - start < 2 then return
 if end - start = 2 then
 swap elements of A if out of order

 mid = (end + start)/2;
 MergeSort(A, start, mid);
 MergeSort(A, mid, end);

 merge A's left- and right- sorted sub-arrays

The trouble with this approach is that merging in place will ultimately require just as many comparisons (and
possibly more element swaps) as sorting in place. To avo id this situation, consider making these change to
the pseudocode which introduces a copy o f the initial array being sorted, which means the storage
requirement is O(n):

OBSERVE: final pseudocode for Mergesort

 MergeSort (A)
 copy = copy of A
 MergeSort (copy, A, 0, |A|)

 MergeSort (A, result, start, end)
 if end - start < 2 then return
 if end - start = 2 then
 swap elements of result if out of order

 mid = (end + start)/2;
 MergeSort(result, A, start, mid);
 MergeSort(result, A, mid, end);

 merge A's left- and right- sorted sub-arrays
 merge left- and right- of A into result

Because co py is a true copy o f the entire array, the terminating base cases o f the recursion will work because
they reference the original elements of the array directly at their respective index locations. This observation is
a sophisticated one; when you run this implementation in the debugger, you can validate it fo r yourself. In

addition, the final merge step requires only O(n) operations.

Now it's your turn to implement this pseudocode.

 In the so rt package o f the /src source fo lder, create a MergeSo rt Int eger class as shown.

COE TO TYPE: MergeSortInteger class

package sort;

import java.util.Arrays;

public class MergeSortInteger {
 public static void main(String[] args) {
 int numIntegers = 1024;
 int[] group = new int[numIntegers];
 for (int i = 0; i < numIntegers; i++) {
 group[i] = (int)(Math.random()*numIntegers);
 }
 mergesort(group);

 for (int i = 0; i < 10; i++) {
 System.out.println(group[i]);
 }
 }

 static void mergesort (int[] A) {
 int[] copy = Arrays.copyOf(A, A.length);
 mergesort (copy, A, 0, A.length);
 }

 static void mergesort(int[] A, int[] result, int start, int end) {
 if (end - start < 2) {
 return;
 }

 if (end - start == 2) {
 if (result[end-2] > result[end-1]) {
 int tmp = result[end-2];
 result[end-2] = result[end-1];
 result[end-1] = tmp;
 }
 return;
 }

 int mid = (end + start)/2;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 for (int i = start, j = mid, idx=start; idx < end; idx++) {
 if (j >= end || (i < mid && A[i] < A[j])) {
 result[idx] = A[i++];
 } else {
 result[idx] = A[j++];
 }
 }
 }
}

 Run this code; you see the first ten randomly generated integers in sorted order. Let's review this code
more closely:

OBSERVE: MergeSort invocation

 static void mergesort (int[] A) {
 int[] copy = Arrays.copyOf(A, A.length);
 mergesort (copy, A, 0, A.length);
 }

To sort the array, we make a full copy and then internally invoke mergeso rt to sort the copy with A as the
ultimate destination. Note that the arguments to pass in are 0 and A.lengt h, which reflect the index values
into A, namely inclusive on the left side with 0 and exclusive on the right side with A.lengt h.

All logic once again resides in the recursive method. Let's review the base cases:

OBSERVE: Recursive base case o f MergeSort

 static void mergesort(int[] A, int[] result, int start, int end) {
 if (end - start < 2) {
 return;
 }

 if (end - start == 2) {
 if (result[end-2] > result[end-1]) {
 int tmp = result[end-2];
 result[end-2] = result[end-1];
 result[end-1] = tmp;
 }
 return;
 }

If end - st art is less t han 2, there is either no element or a single element to be sorted, which means
nothing needs to be done. When end-st art equals 2, there are two elements to be sorted. This code
executes only as a base case in the recursion, which means that it's the first time the method is inspecting the
array subrange o f [st art ,end) . Because the result must be stored in the result array, this code reorders the
values it finds there.

The final elements in mergeso rt show how to merge the sorted left and right sub-arrays:

OBSERVE: Merging in O(n) time

 int mid = (end + start)/2;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 for (int i = start, j = mid, idx=start; idx < end; idx++) {
 if (j >= end || (i < mid && A[i] < A[j])) {
 result[idx] = A[i++];
 } else {
 result[idx] = A[j++];
 }
 }

This code first recursively so rt s t he lef t half and right half o f t he range [st art , end) , placing the
properly ordered elements in the array referenced as A. Then it uses two indices, i and j, to iterate over each
of these sub-ranges, always copying the smaller o f A[i] and A[j] into the properly located result [idx] . There
are three cases to consider:

1. The right side is exhausted (j >= end), in which case you can grab the remaining elements from
A[i] .
2. The left side is exhausted (i >= mid), in which case you can grab the remaining elements from
A[j] .
3. The left and right side have elements; if A[i] < A[j] , insert A[i] , o therwise insert A[j] .

Once the for loop completes, result has the merged (and sorted) elements from the subarray [st art , end)
of the original array A.

Working with Large Datasets

You are go ing to use MergeSort to sort large co llections o f values. You're go ing to need additional storage
for that to work. You don't actually need to store the entire co llection in main memory to sort its contents.
Let's start by defining the problem instance. The input o f n integers will be stored in a binary file containing 4*n
bytes. Practice using this structure by writing this sample program:

 In the so rt package o f the /src source fo lder, create a class BinaryInt egerFile as shown:

CODE TO TYPE: BinaryIntegerFile

package sort;

import java.io.*;

public class BinaryIntegerFile {
 public static void main(String[] args) throws IOException {
 int numIntegers = 4096;
 File f = new File ("IntegerFile.bin");
 DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
 for (int i = 0; i < numIntegers; i++) {
 dos.writeInt((int)(Math.random()*numIntegers));
 }
 dos.close();

 DataInputStream dis = new DataInputStream(new FileInputStream(f));

 System.out.println("First five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.skipBytes(4*(numIntegers-10));
 System.out.println("Last five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.close();
 }
}

 Run this program; you'll see something like this (your numbers will be different because they are
randomly generated):

INTERACTIVE SESSION: Output from BinaryIntegerFile. Note that sort function is not yet implemented.

First five sorted numbers
2935
3918
245
2885
2496
Last five sorted numbers
2748
3716
1972
2086
1350

Let's take a closer look at this code. The java.io package contains a number o f classes to read and write
information to the file system. The fundamental abstraction is a stream, which represents a sequence o f data.
An Input St ream reads data from a source and an Out put St ream writes data to a source. In the code, a
Dat aInput St ream is used t o read primit ive Java dat a t ypes f ro m t he input st ream (such as int
and f lo at values) while a Dat aOut put St ream writ es primit ive Java dat a t ypes t o an o ut put
st ream .

OBSERVE: Creating a random binary file o f integers

 int numIntegers = 4096;
 File f = new File ("IntegerFile.bin");
 DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
 for (int i = 0; i < numIntegers; i++) {
 dos.writeInt((int)(Math.random()*numIntegers));
 }
 dos.close();

Using a Dat aOut put St ream object, the above code writes 4,096 integers in binary format to the file and
closes it. Once created, this file will contain 16,384 bytes because the integers are written in binary format
where each integer value requires four bytes. Don't bother trying to open this file in Eclipse because the data
is stored in binary format so Eclipse will just present you with the raw data. You can retrieve the integer values
that were stored using Dat aInput St ream , which properly decodes the binary formatted encoding o f the
integer values in the file. The second part o f the code reads in this file and prints the first five integers and the
last five integers in the file.

OBSERVE: Read integers from file

 DataInputStream dis = new DataInputStream(new FileInputStream(f));

 System.out.println("First five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.skipBytes(4*(numIntegers-10));
 System.out.println("Last five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.close();

This code uses a Dat aInput St ream to retrieve the values from the file. Note that it reads the first five
integers and then skips t he requisit e number o f byt es (there are four bytes for each integer) so it can
then read the last five numbers from the file. Clearly this file isn't sorted; you'll so lve this by implementing a
MergeSort that operates over a File containing integer values, rather than an in-memory array o f integer
values.

To make this work, you have to access a file in the same way that you would o therwise access an array. You
know the structure o f MergeSort from the implementation you completed earlier, all you need to do now is
map those concepts to a file. Consider using Rando mAccessFile , provided by the java.io package, which
allows you to access any byte within a file randomly. Knowing that the file contains a co llection o f integers in
4-byte format, you can determine that to read the nth int value from the file, you need to start reading 4 bytes
from position n*4. Similar logic is used to write an integer to replace the nth int value in the file. All o f these
operations will succeed with index values o f type lo ng, which means you can process extremely large files if
you want.

 In the so rt package o f the /src source fo lder, create a MergeSo rt File class as shown:

CODE TO TYPE: MergeSortFile class

package sort;

import java.io.*;

public class MergeSortFile {

 static void mergesort (File A) throws IOException {
 File copy = new File (A.getPath() + ".tmp");
 copyFile(A, copy);

 // TBA: invoke MergeSort

 }

 static void copyFile(File src, File dest) throws IOException {
 FileInputStream fis = new FileInputStream(src);
 FileOutputStream fos = new FileOutputStream (dest);
 byte[] bytes = new byte[4*1048576];
 int numRead;
 while ((numRead = fis.read(bytes)) > 0) {
 fos.write(bytes, 0, numRead);
 }
 fis.close();
 fos.close();
 }
}

The mergeso rt method prepares for the algorithm by making a full copy o f the source file, A. For
demonstration purposes, the file copy is created in your workspace, but normally you would use the static
method File .creat eT empFile instead to create a temporary file in the default temporary directory. The
co pyFile method copies bytes in chunks o f four megabytes to replicate the file. To test out the above code,
modify BinaryInt egerFile to use the mergeso rt method in MergeSo rt File .

CODE TO TYPE: Modified BinaryIntegerFile

package sort;

import java.io.*;

public class BinaryIntegerFile {
 public static void main(String[] args) throws IOException {
 int numIntegers = 4096;
 File f = new File ("IntegerFile.bin");
 DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
 for (int i = 0; i < numIntegers; i++) {
 dos.writeInt((int)(Math.random()*numIntegers));
 }
 dos.close();

 long now = System.currentTimeMillis();
 MergeSortFile.mergesort(f);
 System.out.println((System.currentTimeMillis() - now) + " ms.");

 DataInputStream dis = new DataInputStream(new FileInputStream(f));

 System.out.println("First five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.skipBytes(4*(numIntegers-10));
 System.out.println("Last five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.close();
 }
}

Now execute BinaryInt egerFile and refresh your workspace. You will see two top-level files:
Int egerFile .bin and Int egerFile .bin.t mp. Select both o f these files in the Java package browser (ho lding
down the Shif t key and click each icon), and right-click on either file to select Co mpare Wit h | Each Ot her.
The files are identical, because you haven't yet written any code to sort the data.

You are now ready to complete the MergeSort implementation. Modify MergeSo rt File as fo llows:

Modified MergeSortFile

package sort;

import java.io.*;

public class MergeSortFile {

 static void mergesort (File A) throws IOException {
 File copy = new File (A.getPath() + ".tmp");
 copyFile(A, copy);

 // TBA: invoke MergeSort
 RandomAccessFile src = new RandomAccessFile(A, "rw");
 RandomAccessFile dest = new RandomAccessFile(copy, "rw");

 mergesort (dest, src, 0, A.length());
 src.close();
 dest.close();
 copy.delete();
 }

 static void copyFile(File src, File dest) throws IOException {
 FileInputStream fis = new FileInputStream(src);
 FileOutputStream fos = new FileOutputStream (dest);
 byte[] bytes = new byte[4*1048576];
 int numRead;
 while ((numRead = fis.read(bytes)) > 0) {
 fos.write(bytes, 0, numRead);
 }
 fis.close();
 fos.close();
 }

 static void mergesort(RandomAccessFile A, RandomAccessFile result,
 long start, long end) throws IOException {

 if (end - start < 8) {
 return;
 }

 if (end - start == 8) {
 result.seek(end-8);
 int left = result.readInt();
 int right = result.readInt();
 if (left > right) {
 result.seek(end-8);
 result.writeInt(right);
 result.writeInt(left);
 }
 return;
 }

 long mid = (end + start)/8*4;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 result.seek(start);
 for (long i = start, j = mid, idx=start; idx < end; idx += 4) {
 A.seek(i);
 int Ai = A.readInt();
 int Aj = 0;
 if (j < end) { A.seek(j); Aj = A.readInt(); }
 if (j >= end || (i < mid && Ai < Aj)) {
 result.writeInt(Ai);
 i += 4;
 } else {
 result.writeInt(Aj);

 j += 4;
 }
 }
 }
}

The modified mergeso rt method now opens two Rando mAccessFile objects on the two files and they are
both opened in read/write mode because they will bo th be updated during the MergeSort algorithm. The
mergeso rt method is invoked by requesting to sort the contents o f the copied file into the original file. Once
done, the copied file can be deleted.

The mergesort(RandomAccessFile A, RandomAccessFile result, long start, long end) method performs the
recursive MergeSort o f the given range [st art , end) o f the underlying files. These parameters are both o f type
lo ng to enable this method to sort files that can be several gigabytes in size. For this lesson, the files will
only be several megabytes in size; feel free to generate files o f this size on your home computer!

The structure o f this method fo llows the earlier examples.

Go back and execute BinaryInt egerFile and the output will appear properly (though your random numbers
will be different):

Output from BinaryIntegerFile

First five sorted numbers
1
3
4
6
6
Last five sorted numbers
4091
4091
4093
4093
4095

Refresh the files in your workspace; the temporary file used during the sort has been deleted. Let's take a
closer look at this code. First, let's inspect the base cases o f the recursion:

OBSERVE: mergesort base cases for recursion

 static void mergesort(RandomAccessFile A, RandomAccessFile result,
 long start, long end) throws IOException {

 if (end - start < 8) {
 return;
 }

 if (end - start == 8) {
 result.seek(end-8);
 int left = result.readInt();
 int right = result.readInt();
 if (left > right) {
 result.seek(end-8);
 result.writeInt(right);
 result.writeInt(left);
 }
 return;
 }

Recall that integers are stored using 4 bytes. The o ffsets st art and end are index locations within the
Rando mAccessFile ; in addition, st art and end must be evenly divisible by 4. The condition end - st art <
8 determines when the subrange [st art , end) contains zero or one element; when this occurs, no sorting
needs to take place and the method can simply return.

The second base case needs to swap the two neighboring integers in result if they are out o f order. When
end - st art == 8 you know that [st art , end) contains two elements exactly. The above code uses the seek

method to find that location in the file fo r the first o f these two integers. It then reads in two integers
sequentially from the 8 bytes stored at that position in that file. If these two numbers are out o f order, it goes
back to the beginning o f that range in the file and writes the two integers in the proper order.

The final case demonstrates how to merge the two sub-ranges together. It starts with a little mathematical
optimization. Mergesort must divide the range into two parts, but each sub-range must contain a number o f
bytes that is divisible by four. For example, if the range contained 7 integers for a to tal o f 28 bytes, it might be
represented as [0 ,28) . Simply dividing (0+28)/2 would give 14, which is not divisible by 4. Instead, divide
(0+28)/8 (to get 3 using integer division) and then multiply by 4 to get 12, which is roughly half o f the range.

OBSERVE: Merging case in MergeSort

 long mid = (end + start)/8*4;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 result.seek(start);
 for (long i = start, j = mid, idx=start; idx < end; idx += 4) {
 A.seek(i);
 int Ai = A.readInt();
 int Aj = 0;
 if (j < end) { A.seek(j); Aj = A.readInt(); }
 if (j >= end || (i < mid && Ai < Aj)) {
 result.writeInt(Ai);
 i += 4;
 } else {
 result.writeInt(Aj);
 j += 4;
 }
 }

The above code recursively invo kes mergeso rt o n t he lef t and right sub-ranges, after which the file on
disk referenced by A will contain the two sorted sub-ranges waiting to be merged. The code takes advantage
of a nice optimization in that the integers written to result will be written sequentially, so it only needs to seek
t o t he st art ing lo cat io n o f that output sequence in result before starting the f o r loop. When the code
determines the Ai and Aj values, it must seek the proper file position within A and then read the integer
encoded there.

Note that, in this f o r loop, the index values i, j, and idx are all incremented by 4 because they reference
positions inside the file that contains the 4-byte integer encodings.

The condition (j >= end || (i < mid && Ai < Aj)) takes advantage o f "short-circuit" logical evaluation. That is,
if j >= end, the second part o f the condition (after the "||") is not executed. However, if j < end, you can
retrieve Aj from the file. For this reason, the code first loads up Aj if it exists to prepare for the short-circuit
conditional.

Never Be Satisfied

Despite the success o f the code, it still feels like it takes too long to complete. The problem is likely that as the
files get larger, the number o f disk accesses begins to dominate the performance o f the algorithm. Fortunately
there is a "drop-in replacement" fo r file access based on an operating-system capability known as "Memory
Mapped Files." The implementation is found in the java.nio package, known as the "new input/output" Java
package that contains many high-performance classes.

 In the so rt package o f the /src source fo lder, create a class named MergeSo rt FileMapped. Much o f this
code will be familiar to you because it fo llows the exact implementation style o f the earlier MergeSort.

CODE TO TYPE: MergeSortFileMapped class

package sort;

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MergeSortFileMapped {

 static void mergesort (File A) throws IOException {
 File copy = File.createTempFile("Mergesort", ".bin");
 MergeSortFile.copyFile(A, copy);

 RandomAccessFile src = new RandomAccessFile(A, "rw");
 RandomAccessFile dest = new RandomAccessFile(copy, "rw");
 FileChannel srcC = src.getChannel();
 FileChannel destC = dest.getChannel();
 MappedByteBuffer srcMap = srcC.map(FileChannel.MapMode.READ_WRITE, 0, src.le
ngth());
 MappedByteBuffer destMap = destC.map(FileChannel.MapMode.READ_WRITE, 0, dest
.length());

 mergesort (destMap, srcMap, 0, (int) A.length());
 src.close();
 dest.close();
 }

 static void mergesort(MappedByteBuffer A, MappedByteBuffer result,
 int start, int end) throws IOException {

 if (end - start < 8) {
 return;
 }

 if (end - start == 8) {
 result.position(start);
 int left = result.getInt();
 int right = result.getInt();
 if (left > right) {
 result.position(start);
 result.putInt(right);
 result.putInt(left);
 }
 return;
 }

 int mid = (end + start)/8*4;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 result.position(start);
 for (int i = start, j = mid, idx=start; idx < end; idx += 4) {
 int Ai = A.getInt(i);
 int Aj = 0;
 if (j < end) { Aj = A.getInt(j); }
 if (j >= end || (i < mid && Ai < Aj)) {
 result.putInt(Ai);
 i += 4;
 } else {
 result.putInt(Aj);
 j += 4;
 }
 }
 }
}

To execute this code instead o f the earlier version, modify BinaryInt egerFile as shown:

CODE TO TYPE: Modifications to BinaryIntegerFile

package sort;

import java.io.*;

public class BinaryIntegerFile {
 public static void main(String[] args) throws IOException {
 int numIntegers = 655364096;
 File f = new File ("IntegerFile.bin");
 DataOutputStream dos = new DataOutputStream(new FileOutputStream(f));
 for (int i = 0; i < numIntegers; i++) {
 dos.writeInt((int)(Math.random()*numIntegers));
 }
 dos.close();

 long now = System.currentTimeMillis();
 MergeSortFile.mergesort(f);
 MergeSortFileMapped.mergesort(f);
 System.out.println((System.currentTimeMillis() - now) + " ms.");

 DataInputStream dis = new DataInputStream(new FileInputStream(f));
 System.out.println("First five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.skipBytes(4*(numIntegers-10));
 System.out.println("Last five sorted numbers");
 for (int i = 0; i < 5; i++) {
 System.out.println(dis.readInt());
 }
 dis.close();
 }
}

 Run it to sort just over 65,000 integer values. The code spends most o f its time writing the random
numbers to the disk file to prepare for the algorithm. The execution now takes far less time (32 milliseconds
instead o f 10276 milliseconds). This code executes so much faster because when you're working with data
on disk, you need to limit the frequency o f disk access to maximize the efficiency o f your code. Inside the
Java Virtual Machine, the java.nio package is integrated with the virtual memory manager o f the operating
system. Memory-mapped files are loaded into memory one entire page at a time, and each operating system
is fine-tuned so these operations execute as efficiently as possible. When you modify information in a
memory-mapped file, it will be written out to the file one page at a time; the operating system is responsible
for carrying this operation out efficiently as well. Now your program is no longer in charge o f reading and
writing bytes from a file directly; it updates memory directly, as managed by the MappedByt eBuf f er class.
Ultimately this class determines when the updated memory is written to the file.

Let's review this code:

OBSERVE: Using MappedByteBuffers to access file data

 static void mergesort (File A) throws IOException {
 File copy = File.createTempFile("Mergesort", ".bin");
 MergeSortFile.copyFile(A, copy);

 RandomAccessFile src = new RandomAccessFile(A, "rw");
 RandomAccessFile dest = new RandomAccessFile(copy, "rw");
 FileChannel srcC = src.getChannel();
 FileChannel destC = dest.getChannel();
 MappedByteBuffer srcMap = srcC.map(FileChannel.MapMode.READ_WRITE, 0, src.le
ngth());
 MappedByteBuffer destMap = destC.map(FileChannel.MapMode.READ_WRITE, 0, dest
.length());

 mergesort (destMap, srcMap, 0, (int) A.length());
 src.close();
 dest.close();
 }

One unfortunate drawback with using MappedByteBuffer is that on many operating systems (and on Windows
in particular) once a file has been mapped, it cannot be deleted from within the Java program. The above
code, therefore, creat es a t empo rary f ile in t he designat ed def ault t empo rary direct o ry which will
eventually be cleaned up by the user. From a Rando mAccessFile , it is po ssible t o ret rieve it s
FileChannel descript o r, which is used to co nst ruct t he respect ive MappedByt eBuf f er o bject s.

Changes to the mergeso rt method are more subtle:

OBSERVE: mergesort revised to use MappedByteBuffer

 static void mergesort(MappedByteBuffer A, MappedByteBuffer result,
 int start, int end) throws IOException {

 if (end - start < 8) {
 return;
 }

 if (end - start == 8) {
 result.position(start);
 int left = result.getInt();
 int right = result.getInt();
 if (left > right) {
 result.position(start);
 result.putInt(right);
 result.putInt(left);
 }
 return;
 }

 int mid = (end + start)/8*4;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 result.position(start);
 for (int i = start, j = mid, idx=start; idx < end; idx += 4) {
 int Ai = A.getInt(i);
 int Aj = 0;
 if (j < end) { Aj = A.getInt(j); }
 if (j >= end || (i < mid && Ai < Aj)) {
 result.putInt(Ai);
 i += 4;
 } else {
 result.putInt(Aj);
 j += 4;
 }
 }
 }

st art and end are int values again. The MappedByteBuffer class only supports integer indexing, which
means the files to be sorted cannot be greater than 232 bytes in size (roughly 4 gigabytes).

Let's review the base cases o f the recursion:

OBSERVE: MergeSortFileMapped base recursive cases

 if (end - start < 8) {
 return;
 }

 if (end - start == 8) {
 result.position(start);
 int left = result.getInt();
 int right = result.getInt();
 if (left > right) {
 result.position(start);
 result.putInt(right);
 result.putInt(left);
 }
 return;
 }

When asked to sort two elements, the code uses the get Int method o f the MappedByteBuffer class to
retrieve the integer stored at the proper o ffset o f st art . If the MappedByteBuffer does not have this information
in main memory, it will read the information into memory one page at a time. If this memory is updated (using
the put Int methods) it won't be written to disk until the MappedByt eBuf f er determines that it can be written
eficiently. As a programmer, you no longer know whether a get Int o r end method accesses the file system;
you can simply program it correctly while leaving MappedByteBuffer responsible for the persistent storage o f
the information.

OBSERVE: Completing the mergesort

 int mid = (end + start)/8*4;
 mergesort(result, A, start, mid);
 mergesort(result, A, mid, end);

 result.position(start);
 for (int i = start, j = mid, idx=start; idx < end; idx += 4) {
 int Ai = A.getInt(i);
 int Aj = 0;
 if (j < end) { Aj = A.getInt(j); }
 if (j >= end || (i < mid && Ai < Aj)) {
 result.putInt(Ai);
 i += 4;
 } else {
 result.putInt(Aj);
 j += 4;
 }
 }

Despite the large number o f read and write statements that access the result and A files, the
MappedByteBuffer class ensures that these operations act on information stored in main memory. You can't
predict when (Java) will write the info to a file, so the MappedByteBuffer class ensures that data is read from
memory (instead o f the file). It'll be more efficient because it's faster to read from memory than from a file (in
this case, almost 300 times faster).

Lessons Learned

Often you can improve the efficiency o f an algorithm by storing additional state information. You see this on a
small scale in java.lang.St ring, which caches its computed hash value to improve the performance o f
hashCo de . Often you can achieve efficient O(n log n) performance by storing additional O(n) storage
information.

To determine the appropriate algorithm to use, be sure to characterize the storage requirements in addition to
the run-time performance. In most cases, the additional storage will be O(n), which typically is an acceptable

trade-off to make.

Accessing information on disk is typically thousands of times slower than accessing information in main
memory. When designing algorithms that access data on disk, you must find ways to reduce the number o f
individual reads and writes, choosing instead to let the operating system optimize input/output access.

Practice some of the things you learned in this lesson in the pro ject. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Representing Graph Data Structures
Lesson Objectives

After completing this lesson, you will be able to :

compute the adjacency matrix fo r any graph.
explain the concept o f backtracking.
use a backtracking depth-first search algorithm to traverse a graph.

Representing Graphs
You've already seen how to use Set and List classes from the Java Collections Framework to represent unordered
sets or lists ordered linearly. However, sometimes you need to represent more than a co llection o f items; you also
need to capture relationships between the items themselves. One common way to accomplish this is to define a Graph
construct composed o f a set o f vertices, V, representing a set o f items, and a set o f edges, E, connecting pairs o f these
vertices, representing the relationships. In this lesson, we'll focus on learning how to represent graphs. Along the way,
you'll also learn how to explore a graph by traversing its edges from one vertex to another.

Let's start with an example. Assume you live in a city with a subway system with three subway lines and ten stations as
shown:

You would like to determine a route from a given starting station to a destination station. For example, to go from
station 4 to 10 you can likely see two distinct paths to take: (4, 5, 3, 10) and (4, 2, 8 , 9 , 10). If the subway system has
dozens o f stations, the problem increases in complexity and you might not always be able to "see a path" at a glance.
To write a program that so lves this problem, you need to develop an algorithm to traverse the subway from a starting
station to an ending station. The algorithm needs a data structure that represents the subway system so it can execute
efficiently. None o f the classes provided by the JDK can be used "as is" to so lve this problem, so you have to do this
yourself.

Using Adjacency Matrix To Represent Graph

Since you only need to know whether two stations are connected with each o ther, you could create a two-
dimensional array bo o lean mat rix[][] in which a given element mat rix[i][j] is t rue when there is a direct
connection between stations i and j. This array is symmetric so mat rix[i][j] equals mat rix[j][i] .

Note
This representation doesn't include part o f the structure o f a subway system, namely the multiple
subway lines that may traverse the same link between two stations. However, fo r the purposes
of this lesson, it's okay.

 Create a new Java Pro ject named Graphs and assign it to the Java6_Lesso ns working set.

 In the /src fo lder o f the Graphs pro ject, create a subway package.

 In the subway package o f the /src source fo lder, create a SubwayMat rix class. This class will represent a

graph using an adjacency matrix.

CODE TO TYPE: SubwayMatrix class

package subway;

public class SubwayMatrix {
 final int n;
 final boolean matrix[][];

 public SubwayMatrix(int numStations) {
 n = numStations;
 matrix = new boolean[n+1][n+1];
 }
}

The SubwayMat rix constructor requires the to tal number o f vertices so it can construct the mat rix[][] two-
dimensional array. Because stations (hence vertices) are numbered from 1 .. numVert ices, this array is one
number larger than it needs to be; this makes the code easier to read and write.

The example subway system could be represented by auto-initializing the matrix in SubwayMat rix as
shown:

OBSERVE: potential compiled initialization o f matrix fo r subway problem

 boolean matrix[][] = new boolean[][] {
 /* 1 2 3 4 5 6 7 8 9
 10 */
 {false, false, false, false, false, false, false, false, false, fals
e, false},
 /* 1 */ {false, false, false, false, true, false, false, false, false, fals
e, false},
 /* 2 */ {false, false, false, false, true, false, false, false, true, fals
e, false},
 /* 3 */ {false, false, false, false, false, true, false, false, false, fals
e, true},
 /* 4 */ {false, true, true, false, false, true, false, false, false, fals
e, false},
 /* 5 */ {false, false, false, true, true, false, false, false, false, fals
e, false},
 /* 6 */ {false, false, false, false, false, false, false, true, false, fals
e, false},
 /* 7 */ {false, false, false, false, false, false, true, false, true, fals
e, false},
 /* 8 */ {false, false, true, false, false, false, false, true, false, true
, false},
 /* 9 */ {false, false, false, false, false, false, false, false, true, fals
e, true},
 /* 10 */ {false, false, false, true, false, false, false, false, false, true
, false}};
}

Instead o f defining the subway system in this way, add the method below to the end o f SubwayMat rix, which
will allow you to update matrix dynamically, given an array o f int values in sequence:

CODE TO STYLE: Method to dynamically add stations in a line

 public void addLine(int[] stations) {
 for (int i = 1; i < stations.length; i++) {
 matrix[stations[i-1]][stations[i]] = true;
 matrix[stations[i]][stations[i-1]] = true;
 }
 }

We prefer this approach because you can construct subway lines dynamically without compilation.

Searching a Graph

To compute a path in a graph from any vertex X to another vertex Y, make these assumptions:

The graph is connected; that is, it is possible to travel from any vertex to any o ther vertex by
fo llowing the edges in the graph.
The path must not visit the same vertex twice.

To find a route from station 4 to 10, fo r example, imagine that you have a copy o f the map that you can mark
up with a pencil. Start by shading station 4 in gray, and then consider traveling next to one o f its unvisited
neighbors, such as station 1. Draw an arrow connecting stations 4 and 1. Once you see that station 1 has no
neighboring station that you haven't visited, co lor station 1 in black to indicate that there is no need to
consider that station again. Now, like encountering a dead end in a maze, you have to "backtrack" to the
previous station 4 to see if another route is possible:

Continue the search by moving on from station 4 to station 2, shading station 2 in gray:

Repeat this procedure with stations 8 , 7, and then 6 :

Station 6 is a dead end because there are no neighboring stations that you have not already visited, so you
can co lor station 6 black and backtrack to station 7. You get he same result at station 7, so co lor 7 black and
backtrack to station 8 .

Observe that station 8 still has an unvisited neighbor (station 9), so head in that direction and eventually you
will reach station 10, your destination:

In the above graphic, you can see that you have three different station co lors:

1. Black vertices have been visited and are fully processed.
2. Gray vertices have been visited, but they may have an unvisited neighbor.
3. White vertices have not been visited at all yet.

Instead o f stopping when you reach the destination vertex (at station 10), it's just to let the algorithm explore
the entire graph such that, when it's finished, all vertices are co lored black. You need to make one more
enhancement since this algorithm is trying to find a path from the designated start vertex (station 4) to a
destination vertex (station 10). In the images above, you connected stations with arrows in the direction o f the
search. However, if instead you "flip" the arrows so they record where the search came from, you can recreate
the path from the start vertex to any o ther vertex in the graph by fo llowing the arrows in reverse:

You can reconstruct the path from the start vertex to any destination vertex quickly by starting at a destination
vertex and fo llowing the black "previous" arrows all the way back to the start vertex. The computed path here
is 4, 2, 8, 9 , 10 . This algorithm is not designed to compute the shortest path between two vertices. For
example, although stations 4 and 5 are directly connected by the blue subway line, the computed path is 4, 2,
8, 9 , 10, 3, 5 .

This brief example highlights a Depth-First Search over a graph. When faced with that decision, try visiting
some vertex that you haven't yet visited; when you reach a dead end, backtrack to the previous vertex to see if
you missed a route to an unvisited vertex. Continue this approach until all vertices are visited.

It's time to apply these concepts to your program. Modify SubwayMat rix as shown:

CODE TO TYPE: SubwayMatrix class

package subway;

public class SubwayMatrix {
 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 final int n;
 final boolean matrix[][];
 int src;
 final int previous[];
 final int color[];

 public SubwayMatrix(int numStations) {
 n = numStations;
 matrix = new boolean[n+1][n+1];
 previous = new int[n+1];
 color = new int[n+1];
 src = 0;
 }

 public void addLine(int[] stations) {
 for (int i = 1; i < stations.length; i++) {
 matrix[stations[i-1]][stations[i]] = true;
 matrix[stations[i]][stations[i-1]] = true;
 }
 }
}

The SubwayMat rix constructor requires the to tal number o f vertices so it can construct the previo us and
co lo r arrays, as well as the mat rix[][] two-dimensional array. Because stations (hence vertices) are
numbered from 1 .. numVert ices (which makes the code easier to read and write), these arrays are all one
size larger than they need to be. SubwayMatrix also stores the source vertices, src, from which the desired
search is made. This is important because this algorithm ultimately determines the path between the source
vertex, src, and every o ther vertex to which it is connected in the graph. Initially we see, src=0 , which means
that the algorithm has not yet executed.

To implement Depth-First Search over a graph, you need to know about recursion. Instead o f trying to so lve a
problem all at once, recursion breaks a problem into smaller pieces. For example, instead o f trying to find the
full path, start by visiting the start vertex. To visit a vertex u you shade it gray to remember that vertex u is no
longer unvisited. Then, recursively visit all neighboring vertices of u. Once these recursive tasks are done, you
shade u black to indicate that you are done with the vertex. This approach works because you use the co lor o f
the vertices to record your progress. When visiting a neighbor v o f u, be sure to record that previo us[v]=u
so you can reconstruct the path from the source vertex to any o ther connected vertex in the graph. Note that in
a connected graph, after completing the search, only the starting vertex has no computed previo us vertex.

The fo llowing pseudocode describes the Depth-First Search algorithm:

OBSERVE: pseudocode for Depth-First Search

dfsSearch(s)
 foreach v in V do
 color[v] = White
 dfsVisit(s)

dfsVisit(u)
 color[u] = Gray
 foreach neighbor v of u do
 if (color[v] = White) then
 previous[v] = u
 dfsVisit(v)
 color[u] = Black

The algorithm starts by co loring every vertex in the graph whit e before it visits the starting vertex, s. The visit
function, df sVisit (u) , is a recursive function which invokes df sVisit (v) on each unvisited neighbor v o f u.

As with previous lessons, it is worth "stepping through" the execution to make sure that it will work properly.
In do ing so, you will see exactly how recursion allows you to backtrack in your search. Let's start by
graphically representing the state o f the algorithm and its progress through the pseudocode when
df sVisit (4) is called. Each executing pseudocode statement is shown in red on the right.

Once vertex 4 is co lored gray, the f o reach loop processes each o f its neighbors; let's start with vertex 1.
Since its co lor is Whit e , set previo us[1]=4 and recursively call df sVisit (1) . When this call returns, the
f o reach loop will continue where it left o ff, and then process the o ther two neighbors o f 4 (namely vertex 2
and 5). In o ther words, the algorithm will backtrack to vertex 4. This graphic shows the "call stack" and the
second invocation o f df sVisit () :

The second df sVisit (1) function first co lors vertex 1 gray. It then tries to find a neighbor o f vertex 1 that is
white (indicating that it remains unvisited). Since there are no unvisited neighbors o f vertex 1, the function
co lors vertex 1 black and then returns. This is the key backtracking step—going back to an earlier po int in the
computation. The call stack shows that df sVisit (4) is still waiting for df sVisit (1) to complete so it can move
on to the o ther neighbors o f 4. Assuming that vertex 2 is visited next (after vertex 1), the next recursive call
(and corresponding graph state) looks like this:

You can continue this exercise as long as you want, ultimately producing the final graphic described earlier
where every vertex is co lored black. With this pseudocode in hand, you're ready to begin programming.

Modify SubwayMat rix as shown to implement Depth-First Search over a graph represented using an
adjacency matrix representation:

CODE TO TYPE: Modifications to SubwayMatrix

package subway;

import java.util.*;

public class SubwayMatrix {
 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 final int n;
 final boolean matrix[][];
 int src;
 final int previous[];
 final int color[];

 public SubwayMatrix(int numStations) {
 n = numStations;
 matrix = new boolean[n+1][n+1];
 previous = new int[n+1];
 color = new int[n+1];
 src = 0;
 }

 public void dfsSearch(int s) {
 for (int v = 1; v <= n; v++) {
 color[v] = White;
 previous[v] = 0;
 }

 dfsVisit(s);
 src = s;
 }

 void dfsVisit(int u) {
 color[u] = Gray;

 for (int v = 1; v <= n; v++) {
 if (matrix[u][v] && color[v] == White) {
 previous[v] = u;
 dfsVisit (v);
 }
 }

 color[u] = Black;
 }

 public void addLine(int[] stations) {
 for (int i = 1; i < stations.length; i++) {
 matrix[stations[i-1]][stations[i]] = true;
 matrix[stations[i]][stations[i-1]] = true;
 }
 }
}

This code fo llows the pseudocode fairly faithfully. Let's investigate more closely.

OBSERVE: Initializing and executing search

 public void dfsSearch(int s) {
 for (int v = 1; v <= n; v++) {
 color[v] = White;
 previous[v] = 0;
 }

 dfsVisit(s);
 src = s;
 }

The df sSearch(int s) method first initializes the algorithm's state by reset t ing t he co lo r o f each vert ex
whit e and clearing t he previous links. Using an array-based storage o f the graph allows you to write a
simple f o r loop to iterate over all vertices in the graph. Recall that one o f the fundamental tasks o f a depth first
search algorithm is to identify the neighbors for a vertex u. With an array-based storage, you only need to use
a f o r (int v = 1; v <= n; v++) loop to locate the t rue mat rix[u][v] entries for different v values. Remember
that the vertices are numbered from 1 to n. Once the search is complete, it set s t he src variable t o reco rd
t he so urce vert ex used f o r t he search. Now let's investigate the recursive df sVisit (int u) method:

OBSERVE: Recursive dfsVisit method

 void dfsVisit(int u) {
 color[u] = Gray;

 for (int v = 1; v <= n; v++) {
 if (matrix[u][v] && color[v] == White) {
 previous[v] = u;
 dfsVisit (v);
 }
 }

 color[u] = Black;
 }

df sVisit (int u) must first co lo r vert ex u gray to signal that the vertex is no longer unvisited. Remember
that the algorithm recursively visits all unvisited neighbors o f this vertex. With the array-based implementation,
you only need to it erat e t hro ugh all po ssible vert ices, v, to see if mat rix[u][v] is no n-zero (which
means t here is an edge bet ween u and v) and t hat co lo r[v] is Whit e (which means vertex v has not
yet been visited). As its final act, dfsVisit(u) co lo rs u black to signal that vertex v is fully processed. With
recursion, you just have to trust that it will visit all vertices required. At this po int, you could insert a
mathematical proof to show that this algorithm will terminate; instead, let me convince you not to by sharing
two observations. First, df sVisit starts by co loring a vertex gray. Second, df sVisit recursively calls df sVisit
only on vertices that are co lored white. If you put these two observations together, df sVisit will never be
called twice on the same vertex. Since there is a fixed number o f vertices in the graph, eventually df sVisit will
run out o f unvisited vertices to process.

To complete the implementation, add a pat h(d) method that returns a List o f integers representing the
stations between the original source vertex and the given destination vertex, d. This method traverses the
previo us links and prepends each vertex identifier to ensure proper ordering. Add this method to the end o f
SubwayMat rix:

CODE TO TYPE: Add path() method to SubwayMatrix

 public List<Integer> path (int d) {
 LinkedList<Integer> path = new LinkedList<Integer>();
 if (src != 0 && src != d) {
 while (d != 0) {
 path.add(0, d);
 d = previous[d];
 }
 }

 return path;
 }

To validate the above code, write some performance tests:

 Create a new perf o rmance source fo lder:

 Create a subway package in the /perf o rmance source fo lder:

 In the /perf o rmance fo lder subway package, create a Demo nst rat e class as shown:

CODE TO TYPE: Demonstrate class

package subway;

public class Demonstrate {
 public static void main(String[] args) {
 SubwayMatrix sm = new SubwayMatrix(10);
 sm.addLine(new int[]{1, 4, 2, 8, 7, 6});
 sm.addLine(new int[]{3, 5, 4, 2, 8, 9, 10});
 sm.addLine(new int[]{3, 10});

 sm.dfsSearch(4);

 for (int i = 1; i <= 10; i++) {
 System.out.println("4-" + i + " : " + sm.path(i));
 }
 }
}

 Save and run it. This code creates the subway described earlier and prints out the path one would fo llow
from station 4 to all o ther stations in the subway system:

OBSERVE: Sample Output From Demonstrate

4-1 : [4, 1]
4-2 : [4, 2]
4-3 : [4, 2, 8, 9, 10, 3]
4-4 : []
4-5 : [4, 2, 8, 9, 10, 3, 5]
4-6 : [4, 2, 8, 7, 6]
4-7 : [4, 2, 8, 7]
4-8 : [4, 2, 8]
4-9 : [4, 2, 8, 9]
4-10 : [4, 2, 8, 9, 10]

You can verify that all o f these are valid paths in the subway system; this code even handles the case where
the source and destination stations are the same by producing the empty path.

Practical Application

Let's put the Depth-First Search Algorithm to use on a related problem: generating a rectangular grid maze.
It's a related problem because you can frame the problem starting with a rectangular grid maze with every
interio r wall present. It's not much o f a maze though since you can't move through it. Now start with a cell on

the topmost row of the maze. If you can randomly move in one o f the (potentially four) valid directions, either
horizontally or vertically, to a cell that has not yet been visited, then do so and remove the wall in between.
Repeat this process until all cells have been visited.

 In the /src source fo lder subway package, create a MazeApplet class as shown:

CODE TO TYPE: MazeApplet class

package maze;

import javax.swing.*;
import java.awt.*;
import java.util.*;

public class MazeApplet extends JApplet {
 int size = 10, offset = 50;
 int width = 500, height = 500;

 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 int color[][];
 LinkedList<Point> neighbors[][];
 boolean hasEastWall[][];
 boolean hasSouthWall[][];

 void clearWall(int fromR, int fromC, int toR, int toC) {
 if (fromC == toC) {
 hasSouthWall[Math.min(fromR, toR)][fromC] = false;
 } else {
 hasEastWall[fromR][Math.min(fromC, toC)] = false;
 }
 }

 public MazeApplet() {
 hasEastWall = new boolean[height/size][width/size];
 hasSouthWall = new boolean[height/size][width/size];
 color = new int[height/size][width/size];
 neighbors = new LinkedList[height/size][width/size];

 for (int r = 0; r < height/size; r++) {
 for (int c = 0; c < width/size; c++) {
 hasEastWall[r][c] = true;
 hasSouthWall[r][c] = true;
 neighbors[r][c] = new LinkedList<Point>();

 if (r != 0) { neighbors[r][c].add(new Point(r-1, c)); }
 if (r != height/size-1) { neighbors[r][c].add(new Point(r+1, c)); }
 if (c != 0) { neighbors[r][c].add(new Point(r, c-1)); }
 if (c != width/size-1) { neighbors[r][c].add(new Point(r, c+1)); }

 Collections.shuffle(neighbors[r][c]);
 }
 }

 dfsVisit(0,width/size/2);
 hasSouthWall[height/size-1][width/size/2] = false;
 }

 void dfsVisit(int r, int c) {
 color[r][c] = Gray;
 while (!neighbors[r][c].isEmpty()) {
 Point cell = neighbors[r][c].remove();
 if (color[cell.x][cell.y] == White) {
 clearWall(r,c, cell.x,cell.y);
 dfsVisit(cell.x, cell.y);
 }
 }
 color[r][c] = Black;
 }

 public void paint(Graphics g) {
 g.drawLine(offset, offset, offset, offset+(height/size)*size);

 g.drawLine(offset, offset, offset + (width/size/2)*size, offset);
 g.drawLine(offset + size*(1+(width/size)/2), offset, offset+(width/size)*siz
e, offset);

 for (int r = 0; r < height/size; r += 1) {
 for (int c = 0; c < width/size; c += 1) {
 if (hasSouthWall[r][c]) {
 g.drawLine (offset+c*size, offset + (r+1)*size, offset+(c+1)*size, off
set + (r+1)*size);
 }
 if (hasEastWall[r][c]) {
 g.drawLine (offset+(c+1)*size, offset + r*size, offset+(c+1)*size, off
set + (r+1)*size);
 }
 }
 }
 }
}

 Save and run this applet and you'll see a window like this:

Let's take a closer look at the code. It has the skeletal structure o f Depth-First Search:

OBSERVE: dfsVisit(int r, int c) method

 void dfsVisit(int r, int c) {
 color[r][c] = Gray;

 while (!neighbors[r][c].isEmpty()) {
 Cell cell = neighbors[r][c].remove();
 if (color[cell.row][cell.col] == White) {
 clearWall(r,c, cell.row,cell.col);
 dfsVisit(cell.row, cell.col);
 }
 }
 color[r][c] = Black;
 }

Here the co lo r array is two-dimensional because each cell is identified by a row and a co lumn. The code
uses a java.awt .Po int class to record a given cell position. First it marks the designated cell as Gray and
then, as lo ng as t here is an unvisit ed neighbo r remaining f o r t hat cell, it clears t he wall between
the cell r,c and the neighbor cell.x, cell.y, before recursively visit ing t hat cell. Once all recursions have
completed, it sets co lo r[r][c] t o Black because it has completed all processing for that cell.

OBSERVE: clearWall method

 void clearWall(int fromR, int fromC, int toR, int toC) {
 if (fromC == toC) {
 hasSouthWall[Math.min(fromR, toR)][fromC] = false;
 } else {
 hasEastWall[fromR][Math.min(fromC, toC)] = false;
 }
 }

The maze contains two arrays, hasSo ut hWall and hasEast Wall, that determine whether there is a wall at a
given row and co lumn. There is no need to worry about north or west walls, because the maze is symmetric
(meaning if you can get from cell u to v, you can get from v back to u). Using Mat h.min, the above code
clears the south or east walls as required. Drawing takes place like this:

OBSERVE: paint(Graphics) method

 public void paint(Graphics g) {
 g.drawLine(offset, offset, offset, offset+(height/size)*size);
 g.drawLine(offset, offset, offset + (width/size/2)*size, offset);
 g.drawLine(offset + size*(1+(width/size)/2), offset, offset+(width/size)*siz
e, offset);

 for (int r = 0; r < height/size; r += 1) {
 for (int c = 0; c < width/size; c += 1) {
 if (hasSouthWall[r][c]) {
 g.drawLine (offset+c*size, offset + (r+1)*size, offset+(c+1)*size, off
set + (r+1)*size);
 }
 if (hasEastWall[r][c]) {
 g.drawLine (offset+(c+1)*size, offset + r*size, offset+(c+1)*size, off
set + (r+1)*size);
 }
 }
 }
 }

The f irst g.drawLine invo cat io n draws the vertical line representing the "western" vertical line o f the maze.
The next t wo invo cat io ns o f g.drawLine leave a space at the top o f the maze where the start cell exists—
exactly half-way through the first row of the maze. The nested f o r loops iterate over all possible cells in the
maze and draw the southern and/or eastern walls fo r those cells if necessary.

OBSERVE: Create Maze

 public MazeApplet() {
 hasEastWall = new boolean[height/size][width/size];
 hasSouthWall = new boolean[height/size][width/size];
 color = new int[height/size][width/size];
 neighbors = new LinkedList[height/size][width/size];

 for (int r = 0; r < height/size; r++) {
 for (int c = 0; c < width/size; c++) {
 hasEastWall[r][c] = true;
 hasSouthWall[r][c] = true;
 neighbors[r][c] = new LinkedList<Point>();

 if (r != 0) { neighbors[r][c].add(new Point(r-1, c)); }
 if (r != height/size-1) { neighbors[r][c].add(new Point(r+1, c)); }
 if (c != 0) { neighbors[r][c].add(new Point(r, c-1)); }
 if (c != width/size-1) { neighbors[r][c].add(new Point(r, c+1)); }

 Collections.shuffle(neighbors[r][c]);
 }
 }

 dfsVisit(0,width/size/2);
 hasSouthWall[height/size-1][width/size/2] = false;
 }

The MazeApplet constructor creates the co lo r storage array used for Depth-First Search. It also creates the
arrays for whether hasSo ut hWall and hasEast Wall exist. Finally, each cell has a number o f neighbo rs—
between 2 and 4, depending on where that cell exists in the maze. There is a two-dimensional array,
neighbo rs, where each element is a LinkedList o f Cell objects. The nest ed f o r lo o p inst ant iat es t he
list o f all neighbo rs f o r each cell and then uses Co llect io ns.shuf f le to ensure that when dfsVisit(0,0)
executes, it will search through the maze randomly.

The search starts in the middle o f the first row, at cell (0 , width/size/2). The end po int o f the maze is identified
by removing the south wall o f the cell in the middle o f the final row.

Lessons Learned

T wo -dimensio nal bo o lean mat rices can capt ure re lat io nships bet ween n e lement s. A
simple graph is composed o f unique edges between any two elements in a set. The range o f the
matrix represents the vertices, and each value in the matrix is a boo lean that represents the
existence o f an edge between two vertices in the graph.
A mat rix o f co mplex t ypes can capt ure met adat a abo ut t he edges. Instead o f simply
recording the existence o f an edge, the value in matrix[u][v] can contain information about the
relationship, including real-world properties such as distance or cost.
Dept h-First Search is blind and needs t o kno w t he t arget dest inat io n so it kno ws when
it is do ne. Instead o f trying to conduct an intelligent search, Depth-First Search tries each
available cho ice, relying on recursion and backtracking to ensure that the entire space will be
searched in pursuit o f the goal.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Graph Adjacency List and Shortest Path Algorithms
Lesson Objectives

After completing this lesson, you will be able to :

represent graphs using Adjacency Lists.
explain how Breadth-First Search uses a Queue to search a graph.

Searching For Optimal Paths
In the last lesson, you applied a Depth-First Search algorithm to traverse a graph. However, Depth-First Search will no t
help you compute the sho rt est path between two vertices. In this lesson, we'll learn how to compute the path with the
fewest number o f edge traversals between a given source and destination vertex. In tackling this problem, you'll also
revise the way that graphs are stored.

Representing Graph By Adjacency List

The SubwayMat rix class you designed in the prio r lesson represents a graph using a two-dimensional
array known as the adjacency matrix. An alternate representation for graphs is an adjacency list, which is a
more efficient data structure to use for sparse graphs. A graph with n vertices may potential have n*(n-1)/2
edges (which demonstrates quadratic growth), but a sparse graph has much fewer edges. For example,
suppose you want to use Breadth-First Search to determine the fewest number o f subway stations to visit in
the New York City subway system given a source and destination station. Start by constructing a graph where
the vertices represent the 421 subway stations (468 if you individually count the subway stations that belong
to one o f the 32 station complexes). Theoretically, a graph with 421 vertices could have up to 421*420/2, or
88,410, individual tracks connecting pairs o f stations. The actual number o f station pairings will be much
smaller, given the physical reality o f subway construction.

Now you'll develop an adjacency list implementation that stores a co llection o f neighboring vertices for each
vertex. As graphs become larger (and sparser) this fo rm of representation will decrease the storage
requirements o f a graph significantly. Also , instead o f being forced to use a f o r loop to iterate over all
possible edges that might exist, code using an adjacency list will only iterate over the existing known
neighbors. The performance benefits will be negligible for small graphs, but when you tackle larger graphs,
you'll see the improved performance.

We'll continue working in the Graphs pro ject fo r this lesson.

 In the /src source fo lder subway package, create a SubwayList class. This class borrows much o f the
implementation from SubwayMat rix:

CODE TO TYPE: SubwayList

package subway;

import java.util.*;

public class SubwayList {
 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 final int n;
 final Set<Integer>[] neighbors;
 int src;
 final int previous[];
 final int color[];

 public SubwayList(int numStations) {
 n = numStations;
 neighbors = new TreeSet[n+1];
 for (int i = 1; i <= n; i++) {
 neighbors[i] = new TreeSet<Integer>();
 }

 previous = new int[n+1];
 color = new int[n+1];
 src = 0;
 }

 public void addLine(int[] stations) {
 for (int i = 0; i < stations.length-1; i++) {
 neighbors[stations[i]].add(stations[i+1]);
 neighbors[stations[i+1]].add(stations[i]);
 }
 }

 public ArrayList<Integer> path (int d) {
 ArrayList<Integer> path = new ArrayList<Integer>();
 if (src != 0 && src != d) {
 while (d != 0) {
 path.add(0, d);
 d = previous[d];
 }
 }
 return path;
 }
}

Let's take a closer look at this class:

OBSERVE: SubwayList Structure

public class SubwayList {
 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 final int n;
 final Set<Integer>[] neighbors;
 int src;
 final int previous[];
 final int color[];

 public SubwayList(int numStations) {
 n = numStations;
 neighbors = new TreeSet[n+1];
 for (int i = 1; i <= n; i++) {
 neighbors[i] = new TreeSet<Integer>();
 }

 previous = new int[n+1];
 color = new int[n+1];
 src = 0;
 }

 ...
}

Instead o f using a two-dimensional array, we use a single array, neighbo rs, to represent the Set o f
neighboring vertices for each vertex in the graph. The index into neighbo rs is the vertex identifier (a number
from 1 .. n). Note that each element in the neighbo rs array is a Set <Integer>. With this change, the addLine
method now invokes the add method to insert each vertex. You don't need to check whether two vertices are
already connected because the T reeSet implements set-based semantics, so duplicates are prevented. The
same White, Gray, and Black constants are used, in addition to the color and previous arrays.

Breadth-First Search

While Depth-First Search computes valid paths between two vertices in a connected graph, there is no
guarantee that the computed path is the shortest that exists. You'll need to try another approach. A Breadth-
First Search through a graph starts at a source vertex, s, then proceeds to visit all vertices that are one edge
away from s, then vertices no more than two edges away, then vertices no more than three edges away, and
so on. The search proceeds methodically from the source vertex, radiating outwards until all vertices in the
connected graph are visited.

Using the same subway system from the previous lesson, let's compute the shortest path from station 4 to
all o ther stations in the system. Start by co loring vertex 4 Gray:

Now three stations are directly connected to station 4, so they are just one edge away. Co lor station 4 Black
(to signal that it's done) and co lor in Gray stations 1, 2, and 5. Record the previous station in the path (in this
case, station 4) using an arrow for each o f these stations:

At this po int, station 1 is a dead end because it has no unvisited neighbors. However, you can continue to
extend the search outwards from stations 2 and 5. Be sure to co lor stations 2 and 5 Black because they are
now fully processed and update previous links for stations 3 and 8 :

Continue this process until all vertices are co lored Black and all previous links are assigned. Trace a path
from any destination station to station 4 (the source station for the search) and you won't be able to find a
shorter path than the one computed by Breadth-First Search:

We've reused the concept o f co loring vertices developed in the last lesson for Depth-First Search.
Specifically,:

black vertices have been visited and are fully processed.
gray vertices have been visited but they may have an unvisited neighbor.
white vertices have not been visited yet at all.

The fundamental question for implementing Breadth-First Search is how to keep track o f the state o f the
algorithm as it progresses. Depth-First Search maintains only one "current vertex" as it searches through the

graph, backtracking to overcome dead ends. However, Breadth-First Search needs to keep track o f the Gray
vertices that it has identified for exploration. It also must make sure to process the vertices in order. In the
subway system above, the shortest path from station 4 to station 9 contains three edges (4, 2, 8, 9); another
longer path exists (4, 5 , 3, 10, 9).

To enable Breadth-First Search to keep track o f the Gray vertices, let's review the behavior o f a First- in First-
out Queue, a versatile data structure that stores an ordered sequence o f items. Using the termino logy from
the Java Collections Framework, a Queue is a Co llection that supports this behavior:

Items are added to the tail o f a Queue using the add operation.
Items are removed from the head o f a Queue using the remo ve operation.

Breadth-First Search uses a Queue to maintain all Gray vertices, which represents the "boundary" o f the
search radiating outwards from the initial source vertex, s. While this Queue is not empty, there may still be
other unvisited vertices to be processed. This pseudocode describes the Breadth-First Search algorithm:

OBSERVE: pseudocode for Breadth-First Search

bfsSearch(s)
 foreach v in V do
 previous[v] = 0
 color[v] = White

 color[s] = Gray
 Q = empty Queue
 add s to Q

 while (Q is not empty) do
 u = remove head of Q
 foreach neighbor v of u do
 if (color[v] = White) then
 previous[v] = u
 color[v] = Gray
 add v to Q
 color[u] = Black

In this lesson, we'll complete the Breadth-First Search and Depth-First Search implementations in both the
SubwayMat rix and SubwayList classes.

Modify the existing SubwayMat rix implementation described in the previous lesson, to convert this
pseudocode to Java:

CODE TO TYPE: Modifications to SubwayMatrix class

package subway;

import java.util.*;

public class SubwayMatrix {
 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 final int n;
 final boolean matrix[][];
 int src;
 final int previous[];
 final int color[];

 public SubwayMatrix(int numStations) {
 n = numStations;
 matrix = new boolean[n+1][n+1];
 previous = new int[n+1];
 color = new int[n+1];
 src = 0;
 }

 public void addLine(int[] stations) {
 for (int i = 1; i < stations.length; i++) {
 matrix[stations[i-1]][stations[i]] = true;
 matrix[stations[i]][stations[i-1]] = true;
 }
 }

 public void dfsSearch(int s) {
 for (int v = 1; v <= n; v++) {
 color[v] = White;
 previous[v] = 0;
 }

 dfsVisit(s);
 src = s;
 }

 void dfsVisit(int u) {
 color[u] = Gray;

 for (int v = 1; v <= n; v++) {
 if (matrix[u][v] && color[v] == White) {
 previous[v] = u;
 dfsVisit (v);
 }
 }

 color[u] = Black;
 }

 public List<Integer> path (int d) {
 LinkedList<Integer> path = new LinkedList<Integer>();
 if (src != 0 && src != d) {
 while (d != 0) {
 path.add(0, d);
 d = previous[d];
 }
 }

 return path;
 }

 public void bfsSearch(int s) {

 for (int v = 1; v <= n; v++) {
 color[v] = White;
 previous[v] = 0;
 }

 Queue<Integer> q = new LinkedList<Integer>();
 color[s] = Gray;
 q.add(s);

 while (!q.isEmpty()) {
 int u = q.remove();

 for (int v = 1; v <= n; v++) {
 if (matrix[u][v] && color[v] == White) {
 previous[v] = u;
 color[v] = Gray;
 q.add(v);
 }
 }

 color[u] = Black;
 }

 src = s;
 }
}

Let's review this code in more detail:

OBSERVE: Initializing Breadth-First Search

 public void bfsSearch(int s) {
 for (int v = 1; v <= n; v++) {
 color[v] = White;
 previous[v] = 0;
 }

 Queue<Integer> q = new LinkedList<Integer>();
 color[s] = Gray;
 q.add(s);

 ...
}

The f o r lo o p iterates over all vertices in the graph to reset their co lo r and previo us values. It then
co nst ruct s a Queue o f int egers st art ing wit h s as it s init ial e lement . When analyzing an algorithm,
it's helpful to identify some invariants that are always true. From the pseudocode you saw earlier, observe
that any vert ex in t he Queue is co lo red Gray.

There are many classes in the Java Collections Framework that implement the Queue interface; we chose the
LinkedList class because it implements add (to the tail o f the queue) and remo ve (from the head o f the
queue) efficiently. Also , observe a common idiom when using the Collections Framework: referring to the
instantiated object, q, by its interface Queue rather than the instantiating class LinkedList :

OBSERVE: Computing Breadth-First Search

 while (!q.isEmpty()) {
 int u = q.remove();

 for (int v = 1; v <= n; v++) {
 if (matrix[u][v] && color[v] == White) {
 previous[v] = u;
 color[v] = Gray;
 q.add(v);
 }
 }

 color[u] = Black;
 }
 src = s;

The algorithm proceeds by remo ving t he head e lement , u, f ro m t he Queue and adding t o t he t ail
t ho se unvisit ed vert ices t hat are neighbo rs o f u.

As long as there are vertices in the Queue that need to be processed, the while lo o p will remove the head
vertex from the Queue. At some po int the while lo o p must terminate because only the unvisited vertices
(co lored White) are ever considered for addition to the Queue, and there are a finite number o f vertices in the
graph. Note that this code maintains the invariant that only Gray vertices are added to the Queue. The add
method properly inserts the vertex at the tail to maintain proper ordering o f the vertices within the Queue. That
is, there is no o ther Gray or White vertex in the graph that is closer to the source vertex, s.

To validate this implementation, write this performance code:

 In the /perf o rmance source fo lder subway package, create a Co mpare class as shown:

CODE TO TYPE: Compare Class

package subway;

import java.util.*;

public class Compare {
 public static void main(String[] args) {
 SubwayMatrix sm = new SubwayMatrix(10);
 sm.addLine(new int[]{1, 4, 2, 8, 7, 6});
 sm.addLine(new int[]{3, 5, 4, 2, 8, 9, 10});
 sm.addLine(new int[]{3, 10});

 sm.dfsSearch(4);
 List dfsPaths[] = new List[11];
 for (int i = 1; i <= 10; i++) {
 dfsPaths[i] = sm.path(i);
 }

 sm.bfsSearch(4);
 List bfsPaths[] = new List[11];
 for (int i = 1; i <= 10; i++) {
 bfsPaths[i] = sm.path(i);
 }

 for (int i = 1; i <= 10; i++) {
 if (bfsPaths[i].size() < dfsPaths[i].size()) {
 System.out.println("4-" + i + " : " + bfsPaths[i] + " (instead of " + df
sPaths[i] + ")");
 }
 }
 }
}

 Save and run it. As you can see, this code directly compares Breadth-First Search against Depth-First

Search on the same subway system and prints only the paths that are shorter when computed by Breadth-
First Search. The output below is computed and you can verify that it finds three shorter paths in the graph:

OBSERVE: Comparison o f Breadth-First and Depth-First Search on Subway System

4-3 : [4, 5, 3] (instead of [4, 2, 8, 9, 10, 3])
4-5 : [4, 5] (instead of [4, 2, 8, 9, 10, 3, 5])
4-10 : [4, 5, 3, 10] (instead of [4, 2, 8, 9, 10])

Now you can complete SubwayList by implementing the Breadth-First Search algorithm also:.

CODE TO TYPE: Modifications to SubwayList class

package subway;

import java.util.*;

public class SubwayList {
 final static int White = 0;
 final static int Gray = 1;
 final static int Black = 2;

 final int n;
 final Set<Integer>[] neighbors;
 int src;
 final int previous[];
 final int color[];

 public SubwayList(int numStations) {
 n = numStations;
 neighbors = new TreeSet[n+1];
 for (int i = 1; i <= n; i++) {
 neighbors[i] = new TreeSet<Integer>();
 }

 previous = new int[n+1];
 color = new int[n+1];
 src = 0;
 }

 public void addLine(int[] stations) {
 for (int i = 1; i < stations.length; i++) {
 neighbors[stations[i-1]].add(stations[i]);
 neighbors[stations[i]].add(stations[i-1]);
 }
 }

 public ArrayList<Integer> path (int d) {
 ArrayList<Integer> path = new ArrayList<Integer>();
 if (src != 0 && src != d) {
 while (d != 0) {
 path.add(0, d);
 d = previous[d];
 }
 }
 return path;
 }

 public void dfsSearch(int s) {
 for (int v = 1; v <= n; v++) {
 color[v] = White;
 previous[v] = 0;
 }

 dfsVisit(s);
 src = s;
 }

 void dfsVisit(int u) {
 color[u] = Gray;
 for (int v : neighbors[u]) {
 if (color[v] == White) {
 previous[v] = u;
 dfsVisit(v);
 }
 }
 color[u] = Black;
 }
}

Because you can iterate over just the neighbors o f a given vertex, there is don't have to use a f o r loop within
df sVisit to check for all possible edges that might exist like you did when the graph was represented as an
Adjacency Matrix.

To understand which representation option to choose (Adjacency Matrix or Adjacency List), figure out which
types o f graphs you'll be processing. In a dense graph, the number o f edges can grow proportional to the
square o f the number o f vertices. In a sparse graph, the number o f edges grows linearly with the number o f
vertices.

The fo llowing performance code generates stylized graphs (representing subway lines) on which to test
these algorithms. Specifically, these graphs have n=k2+2 vertices and k3-k2+2k edges. The number o f edges
is roughly n1.5, where n is the number o f vertices. The fo llowing is the example for k=4 which contains n=16
vertices and 56 edges (vertex 1 is the leftmost vertex and vertex 18 is the rightmost one):

 In the /perf o rmance source code fo lder subway package, create a St ylizedDemo nst rat io n class as
shown:

CODE TO TYPE: StylizedDemonstration

package subway;

public class StylizedDemonstration {
 static int Max = 20;
 static int m = 1000000;
 static SubwayMatrix mat;
 static SubwayList list;
 static int numVertices;

 public static void main(String[] args) {
 System.out.println("n\tMatrix\t\tList");
 for (int k = 2; k <= 64; k *= 2) {
 float totalMatrix = 0, totalList = 0;
 for (int numTrials = 1; numTrials <= Max; numTrials++) {
 generate(k);

 System.gc();
 long now = System.nanoTime();
 mat.dfsSearch(1);
 totalMatrix += (System.nanoTime()-now);

 System.gc();
 now = System.nanoTime();
 list.dfsSearch(1);
 totalList += (System.nanoTime()-now);
 }
 System.out.println(numVertices + "\t" + totalMatrix/Max/m + "\t" + totalLi
st/Max/m);
 }
 }

 public static void generate(int k) {
 int n = k*k;
 numVertices = n+2;
 mat = new SubwayMatrix(n+2);
 list = new SubwayList(n+2);
 int[] pairs;

 for (int i = 2; i <= k+1; i++) {
 pairs = new int[]{1,i};
 list.addLine(pairs);
 mat.addLine(pairs);
 }
 for (int i = n-k+2; i <= n+1; i++) {
 pairs = new int[]{n+2,i};
 list.addLine(pairs);
 mat.addLine(pairs);
 }
 for (int i = 0; i < k-1; i++) {
 for (int j = 0; j < k-1; j++) {
 int u = 2 + i*k + j;
 for (int m = 0; m < k; m++) {
 pairs = new int[]{u, 2+(i+1)*k+m};
 list.addLine(pairs);
 mat.addLine(pairs);
 }
 }
 }
 }
}

 Save and run it; you see output similar to this:

OBSERVE: Comparing Adjacency List with Adjacency Matrix

n Matrix List
6 0.0047069504 0.031076651
18 0.0098863 0.05587125
66 0.033456147 0.0704818
258 0.24323966 0.18596876
1026 3.4497294 1.659615
4098 52.31373 26.572315

The Adjacency Matrix implementation initially outperforms the Adjacency List implementation, but the situation
changes quickly, and the Adjacency Matrix implementation progresses twice as slowly. Note that the
algorithm has not changed, but rather the structural representation o f the graph.

Lessons Learned

Represent at io n o f a dat a st ruct ure impact s t he perf o rmance f o r an algo rit hm. Even
when you have identified the proper algorithm to use, make sure that you are not using a sub-
optimal data structure. The Adjacency List is preferred for sparse graphs while Adjacency Matrix is
optimal fo r dense graphs. Only you know which types o f graphs that you intend to process, so
choose wisely!
St acks suppo rt last -in, f irst -o ut while Queues suppo rt f irst -in, f irst -o ut . The difference
between Depth-First Search and Breadth-First Search can be traced directly to the data structures
used to represent the active search. Depth-First Search uses the call stack to store progress,
backtracking whenever it hits a dead end; Breadth-first Search uses a queue to methodically search
a graph.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Priority Queues
Lesson Objectives

After completing this lesson you will be able to :

write your own heap implementation using array-based storage.
describe two distinct implementations o f prio rity queues.
compute the resulting heap structure after a number o f insertions and removals.
compute a Minimum Spanning Tree for a graph using Prim's Algorithm.

Priority Queue Data Structure
A Queue is the data structure used when you need First- in, First-out behavior as items are added to , and removed
from, a co llection. Normally a queue is used to model a sequence o f items using the insertion time as the comparator
between elements. The Priority Queue is a related structure that behaves like a queue, except that the items in the
queue all have an associated priority value (typically an integer). In a prio rity queue, each item is added with an
associated prio rity. When removing an element from the prio rity queue, the item with the smallest prio rity value is
removed first. That is, the most important item in the prio rity queue is the one with the smallest prio rity value. Typically,
prio rity values are non-negative, so zero has the highest importance while +Infinity has the lowest prio rity.

Note If two or more items have the same lowest prio rity value, either one may be returned when you request
the removal o f an item from the prio rity queue.

To see a prio rity queue in operation, let's introduce the Pair class, which contains an integer key value and its
associated integer prio rity.

 Create a new Java Pro ject named Prio rit y and assign it to the Java6_Lesso ns working set.

 In the /src source fo lder, create a package named mst .

 In the mst package, create a class named Pair as shown:

CODE TO TYPE: Pair class

package mst;

public class Pair {
 int key;
 int priority;

 public Pair (int k, int p) {
 key = k;
 priority = p;
 }

 public String toString() {
 return "(" + key + ",p=" + priority + ")";
 }
}

The Pair class associates a prio rity value with each key value. The class below codifies that smaller priority values
represent more important items in the priority queue.

 In the mst package, create a class Prio rit yCo mparat o r as shown:

CODE TO TYPE: PriorityComparator class

package mst;

import java.util.Comparator;

public class PriorityComparator implements Comparator<Pair> {
 public int compare(Pair first, Pair second) {
 return first.priority - second.priority;
 }
}

This Co mparat o r class determines how to compare two Pair objects in the Prio rit yQueue . Pair objects with lower
priority values are considered to be more important, so the co mpare method must return zero when the two objects
have the same prio rity and a negative number when the first object's prio rity value is smaller than the second object's
prio rity value (in o ther words, when the first object has higher importance).

Now you can create a Prio rit yQueue object to which you add Pair objects and from which you retrieve Pair objects,
in order o f their importance:

 In the mst package, create a class SamplePrio rit yQueue as shown:

CODE TO TYPE: SamplePriorityQueue class

package mst;

import java.util.*;

public class SamplePriorityQueue {
 public static void main(String[] args) {
 PriorityComparator comp = new PriorityComparator();
 PriorityQueue<Pair> pq = new PriorityQueue<Pair>(10, comp);

 pq.add(new Pair(1000, 5));
 pq.add(new Pair(2000, 10));
 pq.add(new Pair(3000, 7));
 pq.add(new Pair(4000, 3));

 while (!pq.isEmpty()) {
 System.out.println(pq.remove());
 }
 }
}

 Save and runit; you see this output.

OBSERVE: Output o f SamplePriorityQueue

(4000,p=3)
(1000,p=5)
(3000,p=7)
(2000,p=10)

Your first thought might be that a Prio rit yQueue only sorts its elements by their respective prio rities. However, it isn't
mandatory to sort queue elements by their respective prio rity values. You can make your sort more efficient by
removing the item with highest prio rity from the queue. Once again, efficiency will be based on achieving O(log n)
performance on both the add and remo ve methods.

In this lesson, you'll learn how to apply prio rity queues to compute a Minimum Spanning Tree (MST) o f a graph.
Computing the MST is central to many network problems, because it determines the lowest aggregate to tal fo r a set o f
edges that maintains the connected property o f a graph. So lving MST is useful fo r chip design and the
telecommunications industry because they are o ften concerned with computing a connectivity scheme that uses the
lowest to tal length o f wire. In this lesso, you'll learn some limitations o f the existing Prio rit yQueue implementation
as found in the Java Collections Framework, and you'll develop your own prio rity queue class using a novel data
structure, known as a heap.

Minimum Spanning Tree

A connected graph allows you to go from any vertex in the graph to any o ther vertex in the graph over its
edges. Given a connected graph G=(V,E), it's possible that the graph will still be connected even if you discard
many o f its edges. A Spanning Tree fo r a graph is simply a graph STG=(V,SE) where SE is a subset o f the
original edges in the graph such that the removal o f any edge in SE from STG results in a disconnected graph.
There are many such spanning trees for a given graph. If each edge in the graph is associated with a positive
weight, you might want to find a minimum spanning tree for a graph whose accumulated edge weights is
minimum for all possible spanning trees.

To so lve this problem efficiently, you can't just generate all possible spanning trees and select the one whose
accumulated edge weights is minimum; there are simply too many possible spanning trees. At the same
time, you are not trying to find a unique spanning tree; there may be many spanning trees with accumulated
edge weights that all match the same minimum value.

Prim's Algorithm is an elegant so lution to constructing a minimum spanning tree (MST) for a given graph by
using a greedy approach in which each step o f the algorithm makes forward progress towards a so lution
without reversing earlier decisions; That is, no backtracking is necessary.

This pseudocode describes the algorithm:

OBSERVE: pseudocode for Prim's Algorithm

 computeMST(G)
 MST = empty
 S = some vertex in V
 T = V - S

 while (T is not empty) do
 find edge (u,v) with lowest weight such that (u in S) and (v in T)
 add (u,v) to MST
 remove v from T
 add v to S
 return MST

At each step through the while lo o p, the algorithm finds the edge with lowest weight that crosses the
boundary from the set S (representing the vertices in the MST) and T (representing the vertices still to be
processed). This greedy approach will ensure that the accumulated weights o f the MST grows by the smallest
possible increment with each step, ultimately resulting in a minimum spanning tree for the graph.

Let's go over this pseudocode on a specific example to make sure it's designed properly. Here is a sample
graph for which you will compute a minimum spanning tree:

Start with vertex 0 as the initial vertex in set S, which means T = {1, 2, 3, 4}. The edge (0 ,1) highlighted in red is
the edge between S and T with the lowest edge weight.

The edge (0 ,1) is added to the MST and S and T are updated accordingly. In the middle graph above, the edge
(1,2) is the edge between S and T with the lowest edge weight, so this edge is added to the MST, and S and T
are updated. In the third image above, the edge (2,4) is the edge between S and T with the lowest edge weight,
so it is added to the MST.

The final step in the algorithm below shows that edge (2,3) is the edge between S and T with the lowest edge
weight, so it is added to the MST and the algorithm completes. You won't be able to find another spanning
tree for this graph with accumulated weights that is lower than the 11 computed here.

What data structures should you use to implement this algorithm? Well, you can use Co llect io n objects to
represent sets S and T, but the most costly operation is within the while loop where you have to efficiently
find the edge with the lowest weight fo r all edges (u,v) where u belongs to S and v belongs to T. It seems like,
as S grows in size, it will be increasingly complicated to compute this edge. If you had to check each edge that
exists between S and T, the performance o f the algorithm would suffer.

How can a prio rity queue be used to so lve this problem? The MST above is computed by starting at vertex 0 ,
so the three edges being inspected first are those directly connected to vertex 0 : the edges to vertices 1, 3,
and 4. Note that vertex 2 is not yet "on the search horizon" so the distance from vertex 0 to vertex 2 must be
considered to be +Infinity. So, what if you were able to maintain a prio rity queue that contained all vertices with
a computed prio rity o f the current shortest distance from any vert ex in S? For example, at the start you could
insert the vertices 1, 3, and 4 into the prio rity queue with prio rities 2, 8 , and 4 respectively; vertex 2 would also
be in the prio rity queue, but its prio rity would be +Infinity. The prio rity queue would look like this: (1, p=2) > (4 ,
p=4) > (3, p=8) > (2, p=INF) . The ordering in the prio rity queue is done according to increasing distance, so
the first vertex to be removed from the prio rity queue would be vertex 1. At this po int, you could review the
neighbors o f vertex 1 (in this case vertex 2) and determine to insert (2, p=3) into the prio rity queue; however,
this vertex already exists in the prio rity queue. Somehow you need to decrease the prio rity value associated
with a vertex that already exists in the prio rity queue. Technically, you want to find the key value associated with
vertex 2 in the queue and decrease its priority value from +INF to 3, such that the resulting prio rity queue is (2,
p=3) > (4 , p=4) > (3, p=8) .

Continuing from this prio rity queue, remove vertex 2 since it has the smallest prio rity value and you can
observe from the presence o f the edge (2,4) that you can connect to vertex 4 with a distance o f 1 instead of the
current distance of 4 as maintained in the priority queue. Similarly, with edge (2,3) you can connect to vertex 3

current distance of 4 as maintained in the priority queue. Similarly, with edge (2,3) you can connect to vertex 3
with a distance o f 4 instead of the current distance of 8 as shown in the priority queue. To do that, you need to
find the key value associated with these two vertices in the queue and decrease that key value so that the
resulting prio rity queue is (4 , p=1) > (3, p=5) .

Now you're faced with a dilemma: locating a given element in a prio rity queue is potentially an O(n) operation.
Altering the prio rity associated with an element in the prio rity queue seems like it can only be done safely by
removing the element first and then reinserting it with the new priority.

Start by creating a class to represent an edge in the computed minimum spanning tree.

 In the mst package, create an Edge class as shown:

CODE TO TYPE: Edge class

package mst;

public class Edge {
 int start;
 int end;

 public Edge (int s, int e) {
 start = s;
 end = e;
 }

 public String toString() {
 return "" + start + "-" + end;
 }
}

The code below demonstrates the naive use o f Prio rit yQueue from the Java Collections Framework. The
initial graph is represented as a two-dimensional adjacency matrix where the value o f graph[i][j] is the
weight associated with the edge (i,j); if no such edge exists, then graph[i][j] = 0 .

 In the mst package, create a Driver class as shown:

CODE TO TYPE: Driver

package mst;

public class Driver {
 public static void main (String[] args) {
 int[][] graph = new int[][] {
 {0, 2, 0, 8, 4},
 {2, 0, 3, 0, 0},
 {0, 3, 0, 5, 1},
 {8, 0, 5, 0, 7},
 {4, 0, 1, 7, 0}};

 Edge[] mst = MST.compute(graph);

 for (Edge e : mst) {
 System.out.println(e + "(" + graph[e.start][e.end] + ")");
 }
 }
}

The above code represents the graph used in the earlier example by an adjacency matrix. It computes a
minimum spanning tree (using the MST class that you will write shortly). The returned array mst[k] represents
the n-1 edges in the computed minimum spanning tree.

 In the mst package, create an MST class as shown:

CODE TO TYPE: MST class

package mst;

import java.util.*;

public class MST {
 static Edge[] compute(int[][] graph) {
 int n = graph.length;
 Edge[] mst = new Edge[n-1];

 PriorityQueue<Pair> pq = new PriorityQueue<Pair>(n, new PriorityComparator()
);
 for (int i = 1; i < n; i++) {
 pq.add(new Pair(i, Integer.MAX_VALUE));
 mst[i-1] = new Edge(i, -1);
 }
 pq.add(new Pair(0, 0));

 while (!pq.isEmpty()) {
 int u = pq.remove().key;

 for (int v = 0; v < n; v++) {
 int weight = graph[u][v];
 if (weight > 0) {
 for (Pair pv : pq) {
 if ((pv.key == v) && (weight < pv.priority)) {
 mst[v-1].end = u;
 pq.remove(pv);
 pv.priority = weight;
 pq.add(pv);
 break;
 }
 }
 }
 }
 }

 return mst;
 }
}

 Save all o f the new files and run the Driver class; you see output which corresponds to the manual
computation from earlier. When given a connected graph o f n vertices, the corresponding output will have n-1
edges:

INTERACTIVE SESSION: Output o f Driver

1-0(2)
2-1(3)
3-2(5)
4-2(1)

Let's look at this code more closely:

OBSERVE: MST initialization

 int n = graph.length;
 Edge[] mst = new Edge[n-1];

 PriorityQueue<Pair> pq = new PriorityQueue<Pair>(n, new PriorityComparator());
 for (int i = 1; i < n; i++) {
 pq.add(new Pair(i, Integer.MAX_VALUE));
 mst[i-1] = new Edge(i, -1);
 }
 pq.add(new Pair(0, 0));

This code initializes the data structures used by the algorithm. Prim's Algorithm starts at some vertex—for the
implementation, you will start at vertex 0 , so the prio rity queue will initially contain Pair objects fo r each o f the
other n-1 vertices with +Infinity as the computed minimum distance. The final initialization code insert s
vert ex 0 int o t he prio rit y queue with a prio rity o f 0 , which ensures that this Pair object will be the first one
removed from the prio rity queue.

All o f the logic is contained in this while loop:

OBSERVE: Main loop o f Prim's Algorithm

 while (!pq.isEmpty()) {
 int u = pq.remove().key;

 for (int v = 0; v < n; v++) {
 int weight = graph[u][v];
 if (weight > 0) {
 for (Pair pv : pq) {
 if ((pv.key == v) && (weight < pv.priority)) {
 mst[v-1].end = u;
 pq.remove(pv);
 pv.priority = weight;
 pq.add(pv);
 break;
 }
 }
 }
 }
 }

This code implements Prim's Algorithm. While t he prio rit y queue pq is no t empt y, the Pair o bject
wit h lo west prio rit y is remo ved and its vert ex u is ident if ied. The first f o r lo o p checks all o ther
vertices, v, t o see if t here is a direct edge co nnect ing u and v. If a direct edge is found, weight will be
a value great er t han zero , so you have to determine if this new distance is smaller than the current
shortest distance to v already being maintained in pq. If it turns out that weight is smaller, t he o ld pair pv
must be remo ved f ro m pq and re insert ed wit h t he lo wer prio rit y.

You can evaluate the performance o f this implementation by reviewing the number o f loops in the code.
Essentially there is a triply nested loop, each o f which iterates over all n vertices. This gives the worst-case
estimate o f O(n3) fo r how frequently elements in the prio rity queue are adjusted. The add and remo ve
operations on a PriorityQueue perform in O (log n), so the performance for the entire algorithm is O (n3 log n).
Surely we can do better!

Heap Data Structure

The previous section requires a data structure that returns the smallest element o f a co llection in constant
time; but it also needs to be able to locate a particular element in the co llection and reprioritize it efficiently
(which means in O(log n) time).

There is an interesting data structure known as a heap that can serve our purposes. A heap is a binary tree
with a structure that ensures two properties:

Shape pro pert y: A leaf node at depth k > 0 can exist only if all 2k- 1 nodes at the previous level k-
1 exist. Additionally, nodes at a partially filled level must be added from left to right.
Heap pro pert y: Each node in the tree contains a value smaller than or equal to either o f its two

Heap pro pert y: Each node in the tree contains a value smaller than or equal to either o f its two
children (if it has any).

The image below represents a sample heap o f 16 integer values from 0 to 15:

The heap consists o f a number o f levels. The value associated with each node in the heap is guaranteed to
be smaller than or equal to both o f its children. For this reason, the root o f the heap always contains the
smallest value in the entire heap. Note that each level in the heap is fully filled before new elements are added
to the next level.

Given the rigid structure imposed by the shape property, a heap can be implemented efficiently within an array
A without losing any o f its structural information. The image below demonstrates how a heap can be stored in
an array by storing the element value for a node in the array position identified by the node's label. The order
o f the elements within A can be read from left to right as deeper levels o f the tree are explored.

Develop code that allows you to create a heap efficiently. In this lesson, we assume that you know the
maximum size o f the heap in advance when you construct it. Let's get started.

 In the mst package, create a new class named Heap as shown:

CODE TO TYPE: Heap class

package mst;

public class Heap {
 int n = 0;
 Pair[] elements;

 public Heap(int n) {
 elements = new Pair[n];
 }

 public boolean isEmpty() {
 return (n == 0);
 }

 public void insert (int key, int priority) {
 int idx = n++;
 while (idx > 0) {
 int parent = (idx-1)/2;
 Pair p = elements[parent];

 if (priority >= p.priority) { break; }

 elements[idx] = p;
 idx = parent;
 }

 elements[idx] = new Pair (key, priority);
 }
}

Let's take a closer look at this code:

OBSERVE: Construct Heap Storage

 int n = 0;
 Pair[] elements;

 public Heap(int n) {
 elements = new Pair[n];
 }

 public boolean isEmpty() {
 return (n == 0);
 }

The element s array will store the Pair objects representing the elements in the prio rity queue. Attribute n
counts the number o f elements in the prio rity queue.

This heap will be used as a prio rity queue so each element in the heap stores a Pair o f values, where each
key has an associated priority with lower integer values that represent greater importance. To onstruct a heap
of a maximum size you just need to reserve room for n po tential Pair elements. The heap is empty when its
n attribute is 0 .

To insert an element, recognize that the values in the heap are not fully ordered. Rather, the only global
property is that the values on any path o f nodes from the root to a leaf stay the same or increase. The heap
was created with sufficient space for all values that you will insert, so when it comes time to insert a value, you
can place it in the "next" array location. In do ing so, you continue to conform to the Shape Property o f the
heap. However, when inserting an element at this location, you may vio late the Heap Property, so you'll have
to make some adjustments. The good news is that you don't have to reorder all elements in the heap; rather,
you need to focus on the ancestor nodes o f the new element, go ing all the way back to the root o f the heap.

Suppose you insert "05" into the heap o f 16 elements shown earlier. First, it's placed in the 17th location:

Since 05 is smaller than 09, the two values in the nodes are swapped. Continue up to the parent node on
level 2 to see if its contents are smaller than 05.

Once again, the two values in the nodes are swapped. Keep go ing, checking with the parent node on level 1 to
see if its contents are smaller than 05.

Once you hit a node with a value that's smaller than the newly added element, you're done. The heap is now
guaranteed to have both its Heap and Shape properties. In the worst case, you only have to check and

potentially swap O (log n) values in the heap, so inserting an element is O(log n) and constructing a heap o f n
elements in the is O(n log n).

Let's look closer at the insert method:

OBSERVE: Insert (key, prio rity) into Heap

 public void insert (int key, int priority) {
 int idx = n++;
 while (idx > 0) {
 int parent = (idx-1)/2;
 Pair p = elements[parent];

 if (priority >= p.priority) { break; }

 elements[idx] = p;
 idx = parent;
 }

 elements[idx] = new Pair (key, priority);
 }

The heap is aware that you are trying to add a key value with an associated prio rity. The insert method first
increment s t he co unt o f e lement s n and considers the new Pair location at index location idx. Given
an index location in the heap o f idx, the parent no de is co mput ed as (idx-1)/2. If t he new prio rit y being
added is larger t han t his Pair's prio rit y, yo u're do ne , and the final line o f the method creat es a Pair
o bject in lo cat io n idx t o co nt ain t he asso ciat ed key and priority values. If, however, you still have to
swap node values, move the parent Pair p within the while loop into the child's location idx and repeat,
setting idx to the parent location to move up a level to check once again for the Heap Property. If you continue
to swap values all the way up to the root (which has index location 0), the while loop will exit and the new
Pair will be placed there. In the worst case, the while loop requires O (log n) iterations.

To use the heap data structure as a prio rity queue, you must be able to locate and remove the element with
the lowest prio rity. As stated earlier, the root o f the heap will always contain the Pair o f the lowest prio rity.
However, you can't simply remove this node because that would vio late both the Heap and Shape properties.
Instead, remove the root and replace it with the last Pair in the heap. In do ing so, you will maintain the Shape
property, but now you'll have to manipulate the heap to restore the Heap property, which states that each
node must be smaller than both o f its children.

Add this method to the end o f the Heap class:

CODE TO TYPE: smallest() method for Heap

 public int smallest () {
 int key = elements[0].key;
 Pair last = elements[--n];
 elements[0] = last;

 int idx = 0;
 int child = 2*idx+1;
 while (child <= n) {
 Pair smaller = elements[child];
 if (child < n) {
 if (smaller.priority > elements[child+1].priority) {
 smaller = elements[++child];
 }
 }

 if (last.priority <= smaller.priority) { break; }

 elements[idx] = smaller;
 idx = child;
 child = 2*idx+1;
 }

 elements[idx] = last;
 return key;
 }

Let's look at this code more closely.

OBSERVE: smallest() method for Heap

 public int smallest () {
 int key = elements[0].key;
 Pair last = elements[--n];
 elements[0] = last;

 int idx = 0;
 int child = 2*idx+1;
 while (child <= n) {
 Pair smaller = elements[child];
 if (child < n) {
 if (smaller.priority > elements[child+1].priority) {
 smaller = elements[++child];
 }
 }

 if (last.priority <= smaller.priority) { break; }

 elements[idx] = smaller;
 idx = child;
 child = 2*idx+1;
 }

 elements[idx] = last;
 return key;
 }

It starts by remembering t he key o f t he Pair wit h lo west prio rit y (that is, the root o f the heap), since
that's the value being returned by the method. Then it takes the last Pair in t he heap and mo ves it int o
t he ro o t po sit io n. Now the while loop is similar to the loop within the insert method. The difference is
that you are starting from idx=0 (the root) and working down some path in the heap, to find the smaller o f the
two children o f position idx. The first child is found at index location 2*idx+1 and the second at idx*2+2. The
above code f inds t he child wit h t he lo west prio rit y and breaks o ut o f t he lo o p if t he Heap
pro pert y is st ill maint ained. Otherwise it swaps the smaller value with the parent location o f idx and
continues down that child path. This while loop will never iterate more than log n times.

 To test the heap in use, create a new class named HeapDriver in the mst package as shown:

CODE TO TYPE: HeapDriver class

package mst;

public class HeapDriver {
 public static void main(String[] args) {
 Heap heap = new Heap(16);
 for (int i = 15; i >= 0; i--) {
 heap.insert(i, i);
 }

 for (Pair p : heap.elements) {
 System.out.print(p.priority + " ");
 }
 System.out.println();

 while (!heap.isEmpty()) {
 System.out.println(heap.smallest());
 }
 }
}

 Save and run this class; it constructs a heap o f 16 values and repeatedly adds the integers from 15 down
to 0 to fill the heap. The program prints out a representation o f the array-based storage o f the heap (shown
earlier) and then demonstrates that it can return the smallest element in the heap, one at a time.

INTERACTIVE SESSION: Output o f HeapDriver

0 1 2 6 7 5 3 9 12 13 8 14 10 11 4 15
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Prim's Algorithm Implementation

To complete this lesson, you need to modify the Heap to be able to support Prim's Algorithm, which needs to
locate a value within the heap and decrease its prio rity value. To make this work, you need to make a number
of modifications to Heap:

CODE TO TYPE: Modifications to Heap

package mst;

public class Heap {
 int n = 0;
 Pair[] elements;
 int[] positions;

 public Heap(int n) {
 elements = new Pair[n];
 positions = new int[n];
 }

 public boolean isEmpty() {
 return (n == 0);
 }

 public void insert (int key, int priority) {
 int idx = n++;
 while (idx > 0) {
 int parent = (idx-1)/2;
 Pair p = elements[parent];

 if (priority >= p.priority) { break; }

 elements[idx] = p;
 positions[p.key] = idx;
 idx = parent;
 }

 elements[idx] = new Pair (key, priority);
 positions[key] = idx;
 }

 public int smallest () {
 int key = elements[0].key;
 Pair last = elements[--n];
 elements[0] = last;

 int idx = 0;
 int child = 2*idx+1;
 while (child <= n) {
 Pair smaller = elements[child];
 if (child < n) {
 if (smaller.priority > elements[child+1].priority) {
 smaller = elements[++child];
 }
 }

 if (last.priority <= smaller.priority) { break; }

 elements[idx] = smaller;
 positions[smaller.key] = idx;
 idx = child;
 child = 2*idx+1;
 }

 elements[idx] = last;
 positions[last.key] = idx;
 return key;
 }

 void decreasePriority (int key, int newPriority) {
 int size = n;
 n = positions[key];
 insert(key, newPriority);
 n = size;

 }
}

The essence o f the change is to be able to store the location in the array-based heap o f each key value in the
heap. This works because the key values themselves are integers in the range [0, n). Every time a Pair object
p is inserted into elements[idx], there is a corresponding positions[p.key] = idx to record that fact.

The reason to maintain positions is evident in the final method being added to Heap, which decreases the
priority fo r a given key value found in the heap. In order to decrease prio rity o f a Pair, you need to reduce the
associated prio rity value with the Pair. This method only works if you are truly decreasing the prio rity
(increasing the prio rity would break the Heap Property). This method works by reusing the insert method.
First it truncates the heap up to , but not including the location where key is currently stored in the heap (it does
this by set t ing n t o be t he key's lo cat io n in t he heap). Then it invo kes insert using t he o riginal key
value, but t he new prio rit y; as discussed earlier, this will reestablish the Heap Property. Finally, since the
newPriority must be lower, you can expand t he size o f t he heap back t o it s o riginal size and still have
a working heap.

Now you're ready to write a revised Prim's Algorithm that uses the heap data structure as a prio rity queue.

 In the mst package, create a HeapMST class as shown:

CODE TO TYPE: HeapMST class

package mst;

public class HeapMST {
 PriorityComparator comp = new PriorityComparator();

 static Edge[] compute(int [][] graph) {
 int n = graph.length;
 Edge[] mst = new Edge[n-1];

 boolean inQueue[] = new boolean [n];
 Heap heap = new Heap(n);
 int[] priorities = new int[n];

 heap.insert(0,0);
 for (int i = 1; i < n; i++) {
 priorities[i] = Integer.MAX_VALUE;
 heap.insert(i, priorities[i]);
 inQueue[i] = true;
 mst[i-1] = new Edge(i, -1);
 }

 while (!heap.isEmpty()) {
 int u = heap.smallest();
 inQueue[u] = false;

 for (int v = 0; v < n; v++) {
 int weight = graph[u][v];
 if (weight > 0 && inQueue[v]) {
 if (weight < priorities[v]) {
 mst[v-1].end = u;
 priorities[v] = weight;
 heap.decreasePriority(v, weight);
 }
 }
 }
 }

 return mst;
 }
}

The structure o f this code is probably familiar to you from the MST class. Let's take a closer look:

OBSERVE: Initializing for Prim's Algorithm

 static Edge[] compute(int [][] graph) {
 int n = graph.length;
 Edge[] mst = new Edge[n-1];

 boolean inQueue[] = new boolean [n];
 BinaryHeap heap = new BinaryHeap(n);
 int[] priorities = new int[n];

 heap.insert(0,0);
 for (int i = 1; i < n; i++) {
 priorities[i] = Integer.MAX_VALUE;
 heap.insert(i, priorities[i]);
 inQueue[i] = true;
 mst[i-1] = new Edge(i, -1);
 }

This implementation uses two additional arrays: prio rit ies stores the current best distance from any vertex
in set S to the vertices remaining in T. inQueue determines whether a given vertex is currently in the prio rity
queue. Initially the heap is constructed with the designat ed st art vert ex 0 being insert ed wit h great est
impo rt ance (a prio rit y o f 0) , while the o ther n-1 vertices are inserted with least importance (maximum
priority). inQueue is set to true for the n-1 vertices in the prio rity queue. The mst array will store the
computed edges for each vertex. Currently their end values are -1 to declare that they have yet to be
computed.

The real logic occurs in the while loop:

OBSERVE: Prim's Algorithm Implementation

 while (!heap.isEmpty()) {
 int u = heap.smallest();
 inQueue[u] = false;

 for (int v = 0; v < n; v++) {
 int weight = graph[u][v];
 if (weight > 0 && inQueue[v]) {
 if (weight < priorities[v]) {
 mst[v-1].end = u;
 priorities[v] = weight;
 heap.decreasePriority(v, weight);
 }
 }
 }
 }

As long as the heap is not empty, it ret rieves t he vert ex u wit h t he smallest dist ance t o any vert ex in
set S . Now that this vertex is out o f the queue, inQueue[u] is set t o f alse . The inner f o r loop still must
iterate over all the o ther n vertices to find if there is an edge (u,v) with a distance that's shorter than previously
recorded. The prio rit ies array lets the code determine this quickly. If so , the prio rity is adjusted in the
prio rit ies array and the element 's lo cat io n is adjust ed in t he prio rit y queue using t he
decreasePrio rit y met ho d.

To evaluate the performance o f this algorithm, assume there are n vertices and k edges in the graph. During
the initialization phase, each vertex is inserted into the prio rity queue for a to tal cost o f O(n log n). The
decreasePrio rit y method requires no less than O (log n) time. It can be called 2*k times at most since each
vertex is removed once from the prio rity queue and each edge in the graph is visited exactly twice. So, to tal
performance is O ((n+2*k) log n). If the graph is dense, k can be as high as n*(n-1)/2, so the worst case
performance is O(n2 log n). If the graph is really sparse, then k is on the order o f O(n) which results in O(n log
n) performance.

Evaluating Minimum Spanning Tree Implementations

Compare these two implementations head to head on the same graph.

 In the mst package, create a Co mpariso n class as shown:

CODE TO TYPE: Comparison class

package mst;

public class Comparison {
 public static void main (String[] args) {
 System.out.println("n\tHeapMST\t\tMST");
 for (int n = 16; n <= 1024; n*= 2) {
 int[][] graph = new int[n][n];
 for (int i = 0; i < n-1; i++) {
 for (int j = i+1; j < n; j++) {
 int w = (int)(Math.random()*n);
 graph[i][j] = w;
 graph[j][i] = w;
 }
 }

 System.gc();
 long now = System.nanoTime();
 Edge[] mst = MST.compute(graph);
 long then = System.nanoTime();
 System.gc();
 Edge[] mst2 = HeapMST.compute(graph);
 long last = System.nanoTime();

 for (int i = 0; i < mst.length; i++) {
 if ((mst[i].start != mst2[i].start) ||
 (mst[i].end != mst[i].end)) {
 System.err.println("ERROR");
 System.exit(0);
 }
 }

 float m = 1000000;
 System.out.println(n + "\t" + (last-then)/m + " \t" + (then-now)/m);
 }
 }
}

 Save and run the code:

INTERACTIVE SESSION: Comparison Output

k HeapMST MST
16 4.720959 2.177451
32 3.310271 2.00772
64 3.199684 1.886284
128 4.528132 10.268524
256 5.046072 76.359505
512 5.648354 596.32855
1024 12.14046 4683.4565

For small values o f n, the original MST implementation outperforms the HeapMST implementation.
However, the true nature o f the heap implementation demonstrates rapidly that it's incredible efficiency when
compared against the obvious counterpart.

Lessons Learned

The Collection Framework o ffers a well-designed set o f classes that will be useful when you apply the
common data list, hash, and tree data structures. At the same time, the designers created a uniform interface
to all Co llection classes. In do ing so, they created methods that do not behave as efficiently as o ther
specialized data structures. In particular, the PriorityQueue Collection class will provide the exact behavior fo r
prio rity queues with elements that cannot change prio rity once they've been inserted into the queue. Prim's
Algorithm demands this behavior, so the default Prio rityQueue implementation will no t suffice. You must

always read the documentation that accompanies the Collection Framework classes, because each class
provides information about the performance o f their important methods.

You can improve performance by storing additional information to reduce the number o f computations
needed. The HeapMST implementation is able to reduce performance time with only a modest investment in
storage. In your own algorithms, try to make this tradeoff to achieve the same benefits.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Binary Tree Data Structure
Lesson Objectives

After completing this lesson, you will be able to :

describe the structure o f a Binary Search Tree (BST).
draw the BST after inserting a number o f elements in a specific order.
demonstrate how to rebalance an AVL tree after inserting a node.

Binary Tree Data Structure
A Binary Search Tree is a recursive data structure central to computer science. In earlier lessons we saw how Linked
Lists provide dynamic behavior that improves on contiguous arrays. However, Linked Lists only provide O(n) behavior
for determining whether an element is in the list.

Given an array o f sorted items, you can use Binary Array Search to determine efficiently whether the array contains a
given item in O(log n) time. This code shows how to implement the algorithm:

 Create a new Java pro ject named BinaryT ree fo r this lesson's work, and assign it to the Java6_Lesso ns
working set.

 In the BinaryT ree pro ject's /src source fo lder, create a binary package.

 In the binary package, create a BinaryArraySearch class as shown:

CODE TO TYPE: BinaryArraySearch

package binary;

public class BinaryArraySearch {
 public static void main (String[] args) {
 int[] vals = new int [] { 2, 5, 8, 11, 15, 17 };

 System.out.println("7 goes in position " + binarySearch (vals, 7));
 System.out.println("2 found in position " + binarySearch (vals, 2));
 }

 public static int binarySearch(int[] A, int val) {
 int low = 0;
 int high = A.length-1;
 while (low <= high) {
 int mid = (low + high)/2;
 if (val < A[mid]) {
 high = mid-1;
 } else if (val > A[mid]) {
 low = mid + 1;
 } else {
 return mid;
 }
 }

 return -(low + 1);
 }
}

 Save and run it:

OBSERVE: Sample execution o f BinaryArraySearch

7 goes in position -3
2 found in position 0

Because 7 does not appear in the array, you can use the return value from binarySearch to determine where in the
array 7 could be inserted to maintain the sorted order. When the return value is less than zero , negate it and subtract 1
to find the correct location to store the value in A. In this case, 7 should be inserted at index location 2, which would
place it between 5 and 8 as it should be. The second line o f output shows that the search is able to locate element 2 at
index location 0 .

Arrays are unable to delete and insert items efficiently while maintaining a specific ordering o f elements. However,
Linked Lists can insert elements anywhere in the co llection, but then searching for a given item wil require O(n) time.
Binary Search Trees o ffer the impressive ability to maintain items in a structured order and on average, it can support
adding, removing, and searching for items in O(log n) time.

In this lesson, you will construct a Binary Search Tree implementation from scratch. Through various performance
code you'll see that the naive implementation can lead to worst-case performance o f O(n) fo r all key operations. At the
end o f the lesson, you'll learn how to "balance" the tree to improve the average case performance.

Naive Binary Tree Implementation

A Binary Search Tree is a finite set o f nodes where each node stores a typed value known as the key fo r the
node. A non-empty BST contains a special root node that is the ancestor o f all o ther nodes in the BST. Each
node n in the BST refers to two binary search subtrees, left and right, and obeys the property that if k is the key
for node n, then all keys in left are <=k and all keys in right are >k. This property is known as the binary search
tree property. If subtrees left and right are null, the node is called a leaf node.

Given a BST, the three primary operations are:

Add a new key.
Remove a key.
Determine if a key value exists.

There can be two or more nodes in the search tree with the same key value, but if you want to restrict the tree
to conform to Set-based semantics as defined in the Java Collections Framework while ensuring that the
same implementation will work, you need to prevent the insertion o f duplicate keys. For this lesson, assume
that duplicate keys may exist in the BST.

 In the /src source fo lder binary package, create a BinaryNo de class as shown:

CODE TO TYPE: BinaryNode class

package binary;

public class BinaryNode<E extends Comparable<E>> {
 final E key;
 BinaryNode<E> left;
 BinaryNode<E> right;

 public BinaryNode(E k) {
 this.key= k;
 }

 public int size() {
 return 1 + size(left) + size(right);
 }

 int size(BinaryNode<E> n) {
 if (n == null) { return 0; }
 return n.size();
 }
}

A BinaryNo de<E> class represents a node in the BST with a corresponding key value. BinaryNode is a
generic class with the parameter, E, that determines the type o f the key attribute. The only restriction is that the

type o f the key must implement Co mparable , o therwise there will be no way to order the key values.

BinaryNode defines left and right attributes to refer to the left and right subtrees, respectively. The size()
method counts the nodes in a BST rooted at a given node. Because a BST is a recursive data structure, the
implementation o f size() is also recursive. Throughout this lesson, you see how to apply recursion to
implement the required BST operations. The size(n) 'll helper method allows size() to be written in its
simplest fo rm. So, the size o f a BST rooted at a given node n is 1 plus the respective sizes o f the left and right
subtrees or n.

Because the BST is composed o f BinaryNode objects representing keys in the BST, we need to write an
add(E) method that inserts a key into the BST rooted at a given node. Add these methods to the end o f the
BinaryNo de class:

CODE TO TYPE: Modifications to BinaryNode

 void add (E k) {
 int rc = k.compareTo(key);
 if (rc <= 0) {
 left = add(left, k);
 } else {
 right = add(right, k);
 }
 }

 BinaryNode<E> add(BinaryNode<E> parent, E k) {
 if (parent == null) {
 return new BinaryNode<E>(k);
 }

 parent.add(k);
 return parent;
 }

The binary search tree property states that all keys in the left subtree o f a node are less than or equal to the
node's key, and all keys in the right subtree o f a node are greater than the node's key. For this discussion,
assume that add(k) is invoked on node n where k is less than or equal to n 's key. There are two cases to
consider:

The node n has no left subtree.
The node n has a left subtree.

If there is no left subtree then a new node containing this key is created to be the left subtree o f n. This is the
case in add(parent ,k) when parent is null. If, however, the left subtree does exist, then add(parent ,k)
requests to add k recursively to that subtree. add(parent ,k) either returns the new node which was created or
the existing node that now has a descendant node representing the newly added key. These two functions
present another example o f double recursion, where each function calls the o ther repeatedly until the
computation terminates. Note that the structure o f these two methods is similar to the size() method
presented earlier.

Now you can create a BinaryT ree class to take advantage o f this add capability.

 In the binary package, create a BinaryT ree class as shown:

CODE TO TYPE: BinaryTree class

package binary;

public class BinaryTree<E extends Comparable<E>> {

 BinaryNode<E> root = null;

 public int size() {
 if (root == null) { return 0; }

 return root.size();
 }

 public void add (E k) {
 if (root == null) {
 root = new BinaryNode<E>(k);
 return;
 }

 root = root.add(root,k);
 }
}

Let's take a closer look at a couple o f things.

OBSERVE:

 public int size() {
 if (root == null) { return 0; }

 return root.size();
 }

 public void add (E k) {
 if (root == null) {
 root = new BinaryNode<E>(k);
 return;
 }

 root = root.add(root,k);
 }

The BinaryNode attribute ro o t represents the top o f the BST; all nodes in the BST are descendants o f ro o t .
When ro o t == null, the BST is considered to be empty.

The add(E k) code demonstrates an implementation style necessary for BinaryTree. If ro o t is null, all
methods have to handle the special case where the BST is empty. In this case, if ro o t is null, the ro o t o f
t he BST is set t o a new BinaryNo de wit h t he given key. Otherwise, t his key is added t o t he
subt ree ro o t ed at ro o t , using the add(parent ,k) method described earlier. Do ing so allows the ro o t to
be updated as needed.

Until you add a co nt ains(E k) method, there will be no easy way to validate that the above methods work.
Add these methods to the end o f BinaryT ree :

CODE TO TYPE: Modifications to BinaryTree

 public boolean contains (E k) {
 return contains(root, k);
 }

 boolean contains (BinaryNode<E> parent, E k) {
 if (parent == null) { return false; }

 int rc = k.compareTo(parent.key);
 if (rc == 0) {
 return true;
 } else if (rc < 0) {
 return contains(parent.left, k);
 } else {
 return contains(parent.right, k);
 }
 }

 public int height () {
 if (root == null) { return 0; }

 return height(root);
 }

 int height (BinaryNode<E> n) {
 if (n == null) { return 0; }

 return 1 + Math.max(height(n.left), height(n.right));
 }

This method is placed in the BinaryT ree class, rather than BinaryNode, because the notion o f "containment"
is a property o f the BST, not an individual node. Also, do ing so allows you to avo id constantly checking to find
out whether the le f t o r right subtree is empty. Specifically, co nt ains(parent ,k) returns f alse when parent
node is null. This method recursively calls itself on either the left subtree or the right subtree if the node's key
doesn't match the target key. Naturally, once a match is found, t rue is returned.

You can demonstrate proper functioning o f BinaryT ree with this JUnit test case:

 Create a t est source fo lder if it doesn't already exist.

 Create a binary package.

 in the /t est source fo lder binary package, create a JUnit T est Case named T est BinaryT ree as
shown:

Note
You may be prompted to choose JUnit 3 or JUnit 4. If you're don't know which to choose, go
with JUnit 3. Either is okay, but the resulting file may look slightly different from the one shown
here.

CODE TO TYPE: TestBinaryTree

package binary;

import java.util.*;

import junit.framework.TestCase;

public class TestBinaryTree extends TestCase {

 public void testAdditions() {
 int numToAdd = 100;
 ArrayList<Integer> vals = new ArrayList<Integer>();
 for (int i = 1; i < numToAdd; i += 2) {
 vals.add(i);
 }
 Collections.shuffle(vals);
 Integer[] add = vals.toArray(new Integer[]{});

 BinaryTree<Integer> bst = new BinaryTree<Integer>();

 for (int i : add) {
 bst.add(i);
 }

 assertEquals (numToAdd/2, bst.size());

 for (int i = 1; i < numToAdd; i++) {
 if (i % 2 == 1) {
 assertTrue (bst.contains(i));
 } else {
 assertFalse (bst.contains(i));
 }
 }
 }
}

Launch this JUnit test case; it validates that the BST only contains the odd numbers from 1 to 100.

Evaluating Binary Tree Implementation

To determine the efficiency o f BinaryT ree , you need to identify the worst case and average case execution o f
its methods. You might be able to identify the worst case behavior, that is, when keys are inserted into a BST
in increasing sorted order. For example, consider adding the numbers from 1 to 10 into a BST. Each newly
inserted key becomes the right-most node in the BST. In fact, the structure more closely resembles a linked
list than a tree because none o f the nodes in the BST have a left subtree.

To demonstrate the performance o f the add(k) method in BinaryT ree , write this class:

 In the BinaryT ree pro ject, create a /perf o rmance source fo lder.

 In the /perf o rmance source fo lder, create a binary package.

 In the binary package, create an Evaluat e class as shown:

CODE TO TYPE: Evaluate class

package binary;

import java.util.*;

public class Evaluate {
 static int numTrials = 100;

 public static void main(String[] args) {

 System.out.println("N\tShuffled Stats & Time\tOrdered Stats & Time");
 System.out.println("----\t---------------------\t--------------------");
 for (int n = 128; n <= 65536; n *= 2) {
 int totalShuffledHeight = 0;
 int totalOrderedHeight = 0;
 long totalShuffled = 0;
 long totalOrdered = 0;
 int min = n;
 int max = 0;
 for (int t = 0; t < numTrials; t++) {
 ArrayList<Integer> vals = new ArrayList<Integer>();
 for (int i = 1; i < n; i++) {
 vals.add(i);
 }
 Integer[] ordered = vals.toArray(new Integer[]{});
 Collections.shuffle(vals);
 Integer[] shuffled = vals.toArray(new Integer[]{});

 BinaryTree<Integer> bst = new BinaryTree<Integer>();
 long now = System.nanoTime();
 for (int i : shuffled) {
 bst.add(i);
 }
 totalShuffled += (System.nanoTime() - now);

 int h = bst.height();
 if (h < min) { min = h; }
 if (h > max) { max = h; }
 totalShuffledHeight += h;

 bst = new BinaryTree<Integer>();
 now = System.nanoTime();
 for (int i : ordered) {
 bst.add(i);
 }
 totalOrdered += (System.nanoTime() - now);
 totalOrderedHeight += bst.height();
 }

 System.out.println(n + "\t[" + min + "-" + max + ", avg:" +
 totalShuffledHeight/numTrials + "] " +
 totalShuffled/numTrials + "\t[avg:" + totalOrderedHeight/numTrials + "
] " +
 totalOrdered/numTrials);
 }
 }
}

Evaluat e conducts 100 random trials o f creating BSTs with n nodes, ranging from n=128 to n=65536; n keys
(1 .. n) are inserted. Let's take a closer look at this code:

OBSERVE: Creating a BST from keys inserted in random order

 ArrayList<Integer> vals = new ArrayList<Integer>();
 for (int i = 1; i < n; i++) {
 vals.add(i);
 }
 Integer[] ordered = vals.toArray(new Integer[]{});
 Collections.shuffle(vals);
 Integer[] shuffled = vals.toArray(new Integer[]{});

 BinaryTree<Integer> bst = new BinaryTree<Integer>();
 long now = System.nanoTime();
 for (int i : shuffled) {
 bst.add(i);
 }
 totalShuffled += (System.nanoTime() - now);

 int h = bst.height();
 if (h < min) { min = h; }
 if (h > max) { max = h; }
 totalShuffledHeight += h;

Two arrays o f N keys are created; o rdered contains the keys in order while shuf f led is created by using the
Co llect io ns.shuf f le method to distribute the keys randomly. The code conducts 100 trials and records the
to tal time (in nanoseconds) required to add all keys to the BST. The code estimates the average cost o f
adding a random key to the BST by averaging the to tal time.

In addition, the code maintains statistics on the height o f the BSTs generated during this process. For the
random BSTs, it records the min and max heights o f the BSTs and computes the to tal height so it can report
on the average height fo r n keys. Similar code records statistics for the BST generated from the ordered
insertion o f keys. You want to know the average height o f the BST because that will determine the
performance o f the co nt ains method.

Here is sample output o f Evaluat e ; your mileage may vary:

OBSERVE: evaluating BinaryTree Implementation

N Shuffled Stats & Time Ordered Stats & Time
---- --------------------- --------------------
128 [11-18, avg:14] 26110 [avg:127] 90122
256 [14-23, avg:16] 35776 [avg:255] 326004
512 [16-25, avg:19] 83298 [avg:511] 1485010
1024 [19-26, avg:22] 168682 [avg:1023] 6234518
2048 [21-31, avg:25] 392221 [avg:2047] 26031424
Exception in thread "main" java.lang.StackOverflowError
 at binary.BinaryNode.add(BinaryNode.java:24)
 at binary.BinaryNode.add(BinaryNode.java:37)
 at binary.BinaryNode.add(BinaryNode.java:28)

The minimum height o f a BST with n nodes is log(n). The average height o f the BST created from the shuffled
values is about twice the minimum. Also, the average time (in nanoseconds) to search for all n items grows
proportionally with n. For example, when n grows from 128 to 512 (a four-fo ld increase) the time to search for
all n numbers takes 3.19 times as long. This is much different in the BST constructed from the ordered keys.
The height o f the BST is n-1 (which means that it's really a linked list). Also , when n grows from 128 to 512, it
takes more than 16 times as long to complete all n searches.

Typically you do not have advance warning o f the order o f the elements being added into the BST, so you
need some way to avo id poor performance due to the elements being close to sorted when they were added
into the BST. In addition, when the BST degenerates to a Linked List (because items are inserted in sorted
order) the recursive add method can cause a St ackOverf lo wErro r, as shown above.

Rebalancing Binary Trees

The smallest height fo r a tree with n elements is O(log n), which results in a perfectly balanced tree with the left
subtree o f the root containing roughly the same number o f values as the right subtree o f the root. This
balanced property should apply recursively to all nodes in the tree, not just the root. You could try to rebuild
the entire tree after each insertion to make sure that each node is balanced, but that would require way too

much work. Instead, find some incremental strategy that adjusts the structure o f the tree only when it becomes
unbalanced.

An AVL tree (named after its inventors, Adelson-Velskii, and Landis) is a self-balancing BST first described in
1962. In the Collections Framework, the T reeMap class is implemented using Red-Black trees, which are
another fo rm of self-balancing binary tree. After completing this lesson, you'll be able to compare these two
approaches to determine which provides the best performance.

Let's define the concept o f height with AVL nodes. The height o f a leaf node is 0 since it has no children.
Recursively define the height o f an AVL node to be 1 greater than the maximum of the height values o f its 2
children nodes (if at least 1 exists). To complete this definition, consider the height o f a non-existent child
node to be -1. The height difference fo r a node is defined as height(left) - height(right), that is, the height o f the
left subtree minus the height o f the right subtree. An AVL must enforce the AVL Property in every node,
namely, that the height difference for any node is either -1, 0 or 1.

 In the /src source fo lder, create an avl package.

 In the avl package, create an AVLBinaryNo de class as shown:

CODE TO TYPE: AVLBinaryNode class

package avl;

public class AVLBinaryNode<E extends Comparable<E>> {
 E key;
 int height;

 AVLBinaryNode<E> left;
 AVLBinaryNode<E> right;

 public AVLBinaryNode(E k) {
 height = 0;
 key = k;
 }

 void computeHeight (AVLBinaryNode<E> n) {
 int height = -1;
 if (n.left != null) {
 height = Math.max(height, n.left.height);
 }
 if (n.right != null) {
 height = Math.max(height, n.right.height);
 }

 n.height = height + 1;
 }

 int heightDifference(AVLBinaryNode<E> n) {
 if (n == null) { return 0; }

 int leftTarget = 0;
 if (n.left != null) {
 leftTarget = 1 + n.left.height;
 }
 int rightTarget = 0;
 if (n.right != null) {
 rightTarget = 1 + n.right.height;
 }
 return leftTarget - rightTarget;
 }
}

To be as efficient as possible, each AVLBinaryNo de stores its computed height in addition to the expected
attributes o f key, left, and right. That is, rather than dynamically computing the height o f a node when
requested, you only perform this computation when a node is added to the AVL tree. Finally, the
height Dif f erence method computes the height difference for a given node, n. As with a regular binary tree,
you need to define an AVLBinaryT ree class.

 In the avl package, create an AVLBinaryT ree class as shown:

CODE TO TYPE: AVLBinaryTree

package avl;

public class AVLBinaryTree<E extends Comparable<E>> {

 AVLBinaryNode<E> root = null;

 public void add (E k) {
 if (root == null) {
 root = new AVLBinaryNode<E>(k);
 return;
 }

 root = root.add(root, k);
 }

 public boolean contains (E k) {
 return contains(root, k);
 }

 boolean contains (AVLBinaryNode<E> parent, E k) {
 if (parent == null) { return false; }

 int rc = k.compareTo(parent.key);
 if (rc == 0) {
 return true;
 } else if (rc < 0) {
 return contains(parent.left, k);
 } else {
 return contains(parent.right, k);
 }
 }
}

This code is nearly identical to its BinaryT ree counterpart. The code won't compile until you complete the
add method in AVLBinaryNo de—be careful with this method. It is possible after just three additions to have
the root node o f a binary tree vio late the AVL Property. Consider an AVL tree with just two nodes, constructed
by adding 50 and then 30:

To demonstrate that this tree supports the AVL property, you must compare the heights o f the children o f the
root node (which stores the value 50). However, there is no right subtree for this node. In this situation, the
height o f an empty child subtree is -1. The height difference for the root node is 0 - (-1) o r +1, which satisfies
the AVL property.

Now insert the value 10 into the tree, which results in this structure:

First confirm that this binary tree is a BST by making sure that the value for each node is greater than or equal
to the value o f its left child, and smaller than the value o f its right child. The AVL property is maintained by all
nodes except for the root. The height difference for the root is +2 because the left height is +1 while the
(missing) right child's height is -1. The difference vio lates the AVL Property.

Now, consider this similar tree, which supports the AVL Property:

When the tree is rooted by the node for 30, each o f its subtrees is balanced.

After adding the value 10 to the original AVL tree, it is possible to detect that one o f its ancestor nodes (the
one representing 50) is unbalanced. You can recreate the balanced tree above by performing a rotate
operation. Imagine "grabbing" the 30 node in the original tree and ro tating the tree to the right (or clockwise),
pivo ting around the 30 node to make 30 the root, thereby creating the balanced tree above. In do ing so, only
the height o f the 50 node has changed (dropping from 2 to 0) and the AVL Property is restored.

This only works because the node 30 in the original tree had no right child. So, what if this tree had lo ts o f
o ther nodes, each o f which was perfectly balanced and satisfied the AVL Property? In the image below, each
of the shaded triangles represents a potential subtree o f the original tree; each is labeled by its position, so
30R is the subtree representing the right subtree o f node 30 . The situation on the left occurs immediately after
the 10 value is inserted into the tree. The root is the only node that doesn't support the AVL Property. The
various heights in the tree are computed assuming that the new node 10 has some height k.

Now when you Rotate Right, you can re-attach the entire subtree 30R so it becomes the left subtree for node
50 . This is possible because all o f these values are clearly smaller than 50 since the original tree was a
Binary Search Tree. The resulting tree is balanced and all nodes satisfy the AVL Property.

Note
It is possible that the subtree 30R had a height o f k in the tree on the left. In this case, the new
node 50 would have a computed height o f k+1 and the root node 30 would have a computed
height o f k+2. However, that the AVL Property would be properly maintained even in this case.

Add this code to the end o f the AVLBinaryNo de class:

CODE TO TYPE: Modifications to AVLBinaryNode

 AVLBinaryNode<E> rotateRight () {
 AVLBinaryNode<E> newRoot = left;
 AVLBinaryNode<E> grandson = newRoot.right;
 left = grandson;
 newRoot.right = this;

 computeHeight(this);
 return newRoot;
 }

This code is best described in the context o f the specific example presented above. You invoke ro t at eRight
on the unbalanced node, 50 , which is the this reference in the above code. newRoot is set to the 30 node
while grandson is the subtree labeled 30R. The code le f t = grandso n sets the left child o f 50 to be the
subtree 30R. The code newRo o t .right = t his makes 50 the right child o f 30 . Once this manipulation is
complete, the height fo r the 50 nodes is recomputed, but the original height o f the 10 node is unaffected.
Finally, the new root node o f this subtree, 30 , is returned. Observe that its height has not yet been
recomputed; that will be the responsibility o f the method that calls ro t at eRight .

You've seen how to Rotate Right to rebalance an AVL tree in the left-left case, so named because the new
value being added (10 in this case) was added to left-child of the left-child o f the (now-unbalanced) node 50 .
Yes, that word repetition is necessary! As you can imagine, there is also a Rotate Left operation which can be
used to rebalance a tree that is unbalanced in the right-right case shown below, so named because the new
value being added (60) was added to the right-child of the right-child o f the (now-unbalanced) node 20 :

In similar fashion, you can perform this Rotate Left even when these nodes have subtrees attached to them.
Add this code to the end o f the AVLBinaryNo de class:

CODE TO TYPE: Modifications to AVLBinaryNode

 AVLBinaryNode<E> rotateLeft () {
 AVLBinaryNode<E> newRoot = this.right;
 AVLBinaryNode<E> grandson = newRoot.left;
 this.right = grandson;
 newRoot.left = this;

 computeHeight(this);
 return newRoot;
 }

There are two additional cases that have to be handled. Let's consider the left-right case, which suggests that
the newly added node is added to the right child o f the left child o f the unbalanced node. To create this AVL
tree, add 50 then 10 to an empty tree. Finally, add 30 :

Once again, the root node is unbalanced, however this time you can't just Rotate Right to remedy the situation
because the "middle" node, 10 cannot become the root o f the tree because its value is smaller than both o f
the o ther two values. Fortunately, you can reso lve the issue by first completing a Rotate Left on the child node
10 ; then you'll be able to perform the Rotate Right step as described earlier. The image below demonstrates
this situation on a larger tree. The After the Rotate Left operation, the tree is identical to the earlier tree on
which the Rotate Right operation was described.

This code handles this left-right case. Add the fo llowing changes to the end o f the AVLBinaryNo de class:

CODE TO TYPE: Modifications to AVLBinaryNode

 AVLBinaryNode<E> leftRightRotation () {
 AVLBinaryNode<E> child = left;
 AVLBinaryNode<E> newRoot = child.right;
 AVLBinaryNode<E> grand1 = newRoot.left;
 AVLBinaryNode<E> grand2 = newRoot.right;
 child.right = grand1;
 left = grand2;

 newRoot.left = child;
 newRoot.right = this;

 computeHeight(child);
 computeHeight(this);
 return newRoot;
 }

In reference to the earlier left-right diagram, child is the 10 node, newRoot is the 30 node, grand1 is the 30L
subtree and grand2 is the 30R subtree. The four sequential operations must take place in exactly the order as
shown in order to complete the Rotate Left then Rotate Right operations efficiently. Once that's done, the
heights o f child and this are recomputed before newRoot is returned as the new root o f this subtree. Once
again, it is the responsibility o f the calling method to recompute the height fo r newRoot.

In exactly the same way, the right-left case (not shown here) would first Rotate Right before completing the
restructuring with a Rotate Left. The code for this case is shown below; add this method to the end o f the
AVLBinaryNo de class:

CODE TO TYPE: Modifications to AVLBinaryNode

 AVLBinaryNode<E> rightLeftRotation () {
 AVLBinaryNode<E> child = right;
 AVLBinaryNode<E> newRoot = child.left;
 AVLBinaryNode<E> grand1 = newRoot.left;
 AVLBinaryNode<E> grand2 = newRoot.right;
 child.left = grand2;
 right = grand1;

 newRoot.left = this;
 newRoot.right = child;

 computeHeight(child);
 computeHeight(this);
 return newRoot;
 }

All that remains now is to write the appropriate add method in AVLBinaryNo de . Add this code to the end o f
the AVLBinaryNo de class:

CODE TO TYPE: Modifications to AVLBinaryNode

 void add (E k) {
 int rc = k.compareTo(key);
 if (rc <= 0) {
 left = add(left, k);
 } else {
 right = add(right, k);
 }
 }

 AVLBinaryNode<E> add(AVLBinaryNode<E> parent, E k) {
 if (parent == null) {
 return new AVLBinaryNode<E>(k);
 }

 parent = parent.add(k);
 return parent;
 }

To satisfy the binary search tree property o f an AVL tree, the add method inserts the new value into either the
left o r right subtree. The above code is identical to the BinaryNode we wrote earlier in this lesson. However,
now you must modify this code to maintain the AVL Property. In each o f the ro tations described earlier,
observe how it was possible for the root o f the tree to change during a ro tation. For this reason, the add
method must change to return a potentially new node which becomes the new root o f a subtree. Modify
add(E k) as shown:

CODE TO TYPE: Modifications to add(E k)

AVLBinaryNode<E>void add (E k) {
 int rc = k.compareTo(key);
 AVLBinaryNode<E> newRoot = this;
 if (rc <= 0) {
 left = add(left, k);
 } else {
 right = add(right, k);
 }

 computeHeight(newRoot);
 return (newRoot);
 }

By default, the new root o f the subtree to which k is added will be this, which is the existing root o f the subtree.
The above code prepares for the ro tations by allowing a new root to be returned when a key is added to a
subtree. The height o f the new root is computed prio r to the end o f this method; do ing so completes each o f

the four ro tation methods where it was made clear that the invoking method o f the ro tation would be
responsible for computing the height o f newRoot.

After each invocation o f add(parent , key) it is possible that this has become unbalanced. Insert this new
code which handles all four cases:

CODE TO TYPE: Modifications to AVLBinaryNode

 AVLBinaryNode<E> add (E k) {
 int rc = k.compareTo(key);
 AVLBinaryNode<E> newRoot = this;
 if (rc <= 0) {
 left = add(left, k);
 if (heightDifference(this) == 2) {
 if (k.compareTo(left.key) <= 0) {
 newRoot = rotateRight();
 } else {
 newRoot = leftRightRotation();
 }
 }
 } else {
 right = add(right, k);
 if (heightDifference(this) == -2) {
 if (k.compareTo(right.key) > 0) {
 newRoot = rotateLeft();
 } else {
 newRoot = rightLeftRotation();
 }
 }
 }

 computeHeight(newRoot);
 return newRoot;
 }

When you add a key to the left subtree for a node, it's possible that the height difference fo r the parent node
(that is, this) no longer honors the AVL Property, but this only happens once the difference is 2 (because it is
acceptable for this value to be -1, 0 , o r 1). When the height difference fo r the parent this node is 2, a ro tation
must occur to bring this node back into balance. You need to determine whether a single Rotate Right is
needed (the left-left case) or a Rotate Left and Rotate Right (the left-right case). Fortunately a simple condition
can determine which is appropriate by comparing the newly added key k with the key o f the left child. The left-
left is appropriate if k <= lef t .key, o therwise use the left-right case. In both cases, the ro tation invocation
returns the newRoot o f the subtree. Similar code is used to handle unbalanced nodes when inserting k to the
right subtree.

Similarly, when the height o f the right subtree for a node exceeds the height o f the left subtree, the computed
height difference is negative; when the difference is -2, the add method determines whether the unbalanced
node is a right-right o r right-left case by comparing the newly added key with right.key.

You are now ready to try some head-to-head comparisons with the existing T reeSet implementations in the
Java Collections Framework.

Using Collections TreeSet

It is commonly accepted that AVL trees are easier to implement than the red-black self-balancing binary trees
implemented by TreeSet, although red-black o ffers better performance. Let's investigate and find out if this is
true. The performance code below evaluates all three types o f binary trees—BinaryT ree , AVLBinaryT ree ,
and T reeSet —against a single benchmark.

 In the /perf o rmance source fo lder, create an avl package.

 In the avl package, create an Evaluat e class as shown:

CODE TO TYPE: Evaluate class

package avl;

import java.text.*;
import java.util.*;
import binary.*;

public class Evaluate {
 static int numTrials = 100;
 static double m = 1000000;
 static NumberFormat nf;
 public static void main(String[] args) {
 nf = NumberFormat.getInstance();
 nf.setMinimumFractionDigits(3);

 System.out.println("N \tB_Time\tB_Find\tA_Time\tA_Find\tT_Time\tT_Find");
 System.out.println("----\t------\t------\t------\t------\t------\t------");
 for (int n = 128; n <= 65536; n *= 2) {
 long totalBSTCreate = 0;
 long totalBSTFind = 0;
 long totalAVLCreate = 0;
 long totalAVLFind = 0;
 long totalTreeSetCreate = 0;
 long totalTreeSetFind = 0;
 for (int t = 0; t < numTrials; t++) {
 ArrayList<Integer> vals = new ArrayList<Integer>();
 for (int i = 0; i < 2*n; i+=2) {
 vals.add(i);
 }
 Collections.shuffle(vals);
 Integer[] shuffled = vals.toArray(new Integer[]{});

 System.gc();
 AVLBinaryTree<Integer> avlTree = new AVLBinaryTree<Integer>();
 long now = System.nanoTime();
 for (int i : shuffled) {
 avlTree.add(i);
 }
 totalAVLCreate += (System.nanoTime() - now);

 System.gc();
 now = System.nanoTime();
 for (int i = 0; i < 2*n; i++) {
 if (avlTree.contains(i) != (i%2 == 0)) {
 System.err.println("Search fails for BST");
 }
 }
 totalAVLFind += (System.nanoTime()-now);

 System.gc();
 BinaryTree<Integer> btree = new BinaryTree<Integer>();
 now = System.nanoTime();
 for (int i : shuffled) {
 btree.add(i);
 }
 totalBSTCreate += (System.nanoTime() - now);

 System.gc();
 now = System.nanoTime();
 for (int i = 0; i < 2*n; i++) {
 if (btree.contains(i) != (i%2 == 0)) {
 System.err.println("Search fails for BST");
 }
 }
 totalBSTFind += (System.nanoTime()-now);

 System.gc();

 TreeSet<Integer> tree = new TreeSet<Integer>();
 now = System.nanoTime();
 for (int i : shuffled) {
 tree.add(i);
 }
 totalTreeSetCreate += (System.nanoTime() - now);

 System.gc();
 now = System.nanoTime();
 for (int i = 0; i < 2*n; i++) {
 if (tree.contains(i) != (i%2 == 0)) {
 System.err.println("Search fails for BST");
 }
 }
 totalTreeSetFind += (System.nanoTime()-now);
 }

 System.out.println(n + "\t" +
 nf.format(totalBSTCreate/numTrials/m) + "\t" +
 nf.format(totalBSTFind/numTrials/m) + "\t" +
 nf.format(totalAVLCreate/numTrials/m) + "\t" +
 nf.format(totalAVLFind/numTrials/m) + "\t" +
 nf.format(totalTreeSetCreate/numTrials/m) + "\t" +
 nf.format(totalTreeSetFind/numTrials/m));
 }
 }
}

 Save and run it.

OBSERVE: Output from Evaluate

N B_Time B_Find A_Time A_Find T_Time T_Find
---- ------ ------ ------ ------ ------ ------
128 0.031 0.043 0.054 0.042 0.045 0.036
256 0.044 0.063 0.051 0.050 0.037 0.046
512 0.091 0.129 0.105 0.106 0.076 0.095
1024 0.196 0.276 0.234 0.220 0.166 0.198
2048 0.440 0.616 0.514 0.480 0.359 0.430
4096 0.977 1.332 1.096 1.001 0.773 0.903
8192 2.173 2.994 2.417 2.159 1.682 1.979
16384 4.994 6.526 5.534 4.630 3.837 4.262
32768 11.769 14.662 12.753 10.062 8.844 9.381
65536 26.768 32.584 29.143 22.852 20.299 20.618

To reaffirm the need for rebalancing, comment out the Co llect io ns.shuf f le(vals) line o f code in Evaluat e
and reexecute. All too soon, the BinaryT ree implementation causes a stack overflow error, while the
AVLBinaryT ree and T reeSet bo th continue to function just fine.

OBSERVE: Reexecute comparison when inserting elements in order

N B_Time B_Find A_Time A_Find T_Time T_Find
---- ------ ------ ------ ------ ------ ------
128 0.105 0.155 0.040 0.039 0.037 0.034
256 0.408 0.580 0.041 0.051 0.034 0.046
512 1.732 2.326 0.085 0.098 0.069 0.122
1024 6.858 9.623 0.191 0.206 0.160 0.198
2048 26.588 36.689 0.380 0.429 0.310 0.400
Exception in thread "main" java.lang.StackOverflowError
 at binary.BinaryNode.add(BinaryNode.java:24)
 ...

If you plo t the searching results performance, be sure to do so using a logarithmic scale on the y-axis.

As the above graph shows, the performance graph for all three binary tree structures is a straight line, with
naive BST performing the worst. T reeSet performs best, but AVL trees are not that far behind. This graph
provides further evidence that the searching behavior is O(n log n).

Lessons Learned

So now you know:

Constructing an AVL Binary Tree consumes the most time o f the three constructions; it's up to 50%
slower than the T reeSet implementation. This happens because AVL trees must continually
rebalance to maintain the AVL Property which is a strong constraint on the structure o f the tree. By
contrast, the T reeSet self-balancing strategy only ensures that the path from the root to the
farthest leaf is no more than twice as long as the path from the root to the nearest leaf. This relaxed,
self-balancing strategy turns out to be more efficient.
The T reeSet code provides the fastest average search times, although AVL trees are not that
much slower.
The naive Binary Tree implementation performs well on randomized data, which might mistakenly
lead you to use these BSTs as is fo r your pro jects. Be warned that, when the data exhibits any
regularity, the construction and search times will rapidly degenerate into O(n) behavior.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multidimensional Algorithms
Lesson Objectives

When you finish this lesson, you will be able to :

describe the structure o f a k-dimensional tree.
implement a preorder traversal on any recursive search tree.
construct a k-dtree manually after the insertion o f a number o f po ints.

A Data Structure For Multidimensional Algorithms
In an earlier lesson, you saw how to use Binary Array Search to determine efficiently whether a sorted array contains a
given item in O(log n) time. However, if you have a co llection o f n Cartesian po ints (x,y) , there is no comparator
function that completely orders the po ints within a one-dimensional array to enable Binary Array Search to locate a
given po int in O(log n) time. Arrays are simply not powerful enough to support efficient algorithms when data has
multiple attributes or dimensions.

Real-world data is o ften represented in tabular fo rm, which makes it well-suited to being stored in an Excel
spreadsheet or a database table. Given such a table with n co lumns, each co lumn can be viewed as a dimension and
each row represents an n-dimensional po int. Unfortunately, efficiently processing multidimensional data is challenging
because there is no way to order all o f the rows in a table completely, using all dimensions simultaneously. You've
already seen how Binary Trees (when balanced) can store n elements effectively to guarantee O(log n) performance for
searching. In this lesson, we'll apply this concept to storing n elements, each o f which has k-dimensions o f
information. In this lesson we'll use k=2 so we can draw two-dimensional images more easily; this approach can also
be used for arbitrary dimensions higher than 2.

Assume you have a co llection o f n 2-dimensional po ints in the Cartesian plane. Here's an example where n=10:

In past lessons, we demonstrated the Divide and Conquer approach to sort an array by dividing it into left and right
sub-arrays, which were then sorted. But can you split a two-dimensional set o f po ints into a left set and a right set? If
you draw a vertical line through Po int 1, you have four po ints on the left and five po ints on the right—this looks
promising:

The dashed rectangle enclosing all po ints represents the infinite Cartesian plane [x_low = -Infinity, y_low = -Infinity,
x_high = +Infinity, y_high = +Infinity]. Let's associate this region with Po int 1 and consider its left sub-region to be the
shaded vertical rectangle on the left and the right sub-region to be the vertical rectangle on the right. It doesn't seem
possible to continue this division process by adding vertical lines. However, consider dividing these left and right sub-
regions by adding two horizontal lines, one through Po int 2 and the o ther through Po int 6 . These horizontal lines do
not extend across the whole plane, but rather divide the respective sub-regions into quadrants:.

Each o f these four quadrants contain just 1 or 2 po ints. This process o f using alternating vertical and horizontal lines to
subdivide the set o f po ints can be repeated recursively within each quadrant. Here you can see the final subdivision o f
these ten po ints:

Let's design a data structure to represent the partitioned information. A kd-tree (short fo r k-dimensional tree) is a
recursive binary tree structure with n nodes, each o f which contains:

a 2-dimensional po int in the co llection.
a partition direction (either vertical o r horizontal).
an associated rectangular subregion o f the two-dimensional plane.
two child node links (named below and above).

Given the above 10 po ints, here is its corresponding binary kd-tree:

Po int 1 partitions the maximum region into two halves. The child sub-tree rooted at the node for Po int 2 contains all
po ints to the left o f the vertical line partitioning the region through Po int 1. Similarly, the child sub-tree rooted at the
node for Po int 3 contains all po ints to the right o f the vertical line partitioning the region through Po int 1. Instead o f
using the terms "left" and "right" to refer to child nodes (which would only apply fo r vertical partitioning), kd-trees use
the concept o f "below" and "above." The nodes in the child sub-tree rooted at the node for Po int 2 all represent po ints
with an x-coordinate that is smaller than ("below") the x-coordinate o f Po int 1. Similarly, the nodes in the child sub-tree
rooted at the node for Po int 6 all represent po ints with an x-coordinate that is larger than or equal to ("above") the x-
coordinate o f Po int 1.

Structurally, the tree is a classic binary search tree, but each level in the tree alternates the partition directions o f the
nodes in the tree.

Let's get started by defining a class to represent the regions partitioned by the kd-tree. We can't just use the
java.awt .Rect angleClass because that defines rectangles using widths and heights.

 Create a new Java Pro ject named Mult idimensio n and assign it to the Java6_Lesso ns working set.

 In your Mult idimensio n pro ject /src source fo lder, create a kd package.

 In the kd package, create a Regio n class as shown:

CODE TO TYPE: Region class

package kd;

public class Region {
 int x_min;
 int x_max;
 int y_min;
 int y_max;

 public Region (int x1, int y1, int x2, int y2) {
 x_min = x1;
 y_min = y1;
 x_max = x2;
 y_max = y2;
 }

 public Region (Region r) {
 this(r.x_min, r.y_min, r.x_max, r.y_max);
 }

 static final int minValue = Integer.MIN_VALUE;
 static final int maxValue = Integer.MAX_VALUE;
 static final Region max = new Region(minValue, minValue, maxValue, maxValue);
}

We assume all coordinate po ints are integer values and all attributes are accessible within the kd package to simplify
the programming o f the algorithm. The max region represents the maximal region possible. Now that we have a
definition for the regions, we can design the class to represent the nodes in the kd-tree.

 In the kd package, create a KDNo de class as shown:

CODE TO TYPE: KDNode class

package kd;

import java.awt.Point;

public class KDNode {
 final Point point;
 final int direction;
 Region region;
 KDNode above;
 KDNode below;

 public static final int HORIZONTAL = 0;
 public static final int VERTICAL = 1;

 public KDNode(Point p, int dir, Region r) {
 this.point = new Point (p);
 this.direction = dir;

 this.region = new Region(r);
 }

 public KDNode(Point p, int dir) {
 this (p, dir, Region.max);
 }
}

Each KDNo de object represents a node in a kd-tree and stores three pieces o f information as described earlier: a
po int, a region, and a partition direction. KDNo de defines two constants that differentiate between HORIZ ONT AL and
VERT ICAL partitioning. By default, each KDNo de object is associated with the maximum region available, as defined
by the Regio n class. The values for HORIZ ONT AL and VERT ICAL are chosen such that 1-d gives the opposite
direction o f d.

For this node to define a recursive search tree, it must define children nodes. In this case, each KDNo de records two
children, one "below" the partitioning line and the o ther "above" the partitioning line. The notion o f a child node being
"above" is relative to the direction o f the KDNo de . When the partitioning for a node is HORIZ ONT AL, the child node
"above" a node is found vertically above the horizontal partitioning line with a y-coordinate that divides the node's
region. When the partitioning for a node is VERT ICAL, the child node "below" a node is found to the left o f the vertical
partitioning line with an x-coordinate that divides the node's region.

The kd-tree rooted at a KDNo de n defines a binary search tree because all po ints in the sub-tree rooted by the
"below" child will be "below" the partitioning line for node n, while all po ints in the sub-tree rooted by the "above" child
will be "above" the partitioning line for node n. To make this happen, you need to define some helper methods. Add
these methods to the end o f KDNo de :

CODE TO TYPE: Helper methods to add to KDNode

 public boolean isBelow(Point p) {
 if (direction == VERTICAL) {
 return p.x < point.x;
 } else {
 return p.y < point.y;
 }
 }

 public boolean isAbove(Point p) {
 if (direction == VERTICAL) {
 return p.x >= point.x;
 } else {
 return p.y >= point.y;
 }
 }

These methods help determine, fo r a given KDNo de , whether a po int p is "below" or "above" its partitioning line.
You'll need one more method that returns a properly configured child node for a given KDNo de . The trick is to
compute the region associated with the child node based on the region associated with its existing parent node:

CODE TO TYPE: Helper method for to add to KDNode

 KDNode createChild (Point p, boolean below) {
 Region r = new Region (region);
 if (direction == VERTICAL) {
 if (below) {
 r.x_max = point.x;
 } else {
 r.x_min = point.x;
 }
 } else {
 if (below) {
 r.y_max = point.y;
 } else {
 r.y_min = point.y;
 }
 }
 return new KDNode(p, 1-direction, r);
 }

The child node must have the opposite partioning o f its parent; that's why 1-direct io n is used as the direction o f the
child node. The po int to associate with the child, p is passed to the KDNo de constructor. The challenge is to compute
the sub-region associated with the newly created child node. There are four cases to consider as implemented in the
above code—we'll just explain one. If a node is horizontal, its point partitions its rectangular region into a region
"above" the y-coordinate o f its po int and a region "below" the y-coordinate. Invoking creat eChild(p, f alse) on a
horizontal node n means that the region for the child KDNo de must be "trimmed" to be a proper subset o f the current
node's region. To do this, the above code sets the y_min o f the child's region r. The o ther three cases are similar.

Now we can implement a method to add a po int to a given kd-tree rooted at a KDNo de :

CODE TO TYPE: Create add(Point) method in KDNode

 public void add (Point p) {
 if (p.equals(point)) { return; }

 if (isBelow(p)) {
 if (below == null) {
 below = createChild (p, true);
 } else {
 below.add(p);
 }
 } else {
 if (above == null) {
 above = createChild (p, false);
 } else {
 above.add(p);
 }
 }
 }

The kd-tree implementation here abides by Set semantics, as described earlier in this course. This means that the
same po int cannot exist more than once in a given kd-tree. When the add method returns without throwing an
Exception, the po int is guaranteed to be added to the kd-tree.

If the po int to be added is below its partitioning line, the add method either creates a new node to represent the
"below" child (if that node doesn't already exist) o r adds the po int to the kd-tree rooted at the "below" child. The logic
for the "above" case is similar.

We've completed the KDNo de class; now it's time to design the class to represent the kd-tree.

 In the kd package, create a KDT ree class as shown:

CODE TO TYPE: KDTree class

package kd;

import java.awt.Point;

public class KDTree {
 KDNode root;

 public KDTree() {
 root = null;
 }

 public void add (Point value) {
 if (root == null) {
 root = new KDNode(value, KDNode.VERTICAL);
 } else {
 root.add(value);
 }
 }
}

A KDT ree object is defined by a root KDNo de . This class o ffers an add method to add po ints to the kd-tree. If the kd-
tree is empty, it creates a new root node whose partitioning by default (arbitrarily) is VERT ICAL.

Traversing a kd-tree

You have enough code written to construct a kd-tree from a set o f po ints. The hard part is fuguring out
whether the code is working because the binary tree structure is stored in memory and it can't simply be
printed out to the conso le. You need to write a traversal routine that walks through the kd-tree in a specific
order; if the kd-tree is constructed properly, the output will be correct. There are many ways to traverse a
recursive tree. Using the example presented at the beginning o f this lesson, a pre-order traversal would:

1. process Po int 1.
2. recursively process all po ints to the left o f the partitioning line through Po int 1.
3. recursively process all po ints to the right o f the partitioning line through Po int 1.

The applet class below interactively draws a kd-tree whenever a po int is added because the mouse was
pressed. At last, you have something to run for your efforts!

 In the kd package, create a KDApplet class as shown:

CODE TO TYPE: KDApplet class

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet {
 KDTree tree = new KDTree();

 int toAWT(int y) {
 if (y == Region.maxValue) { return 0; }
 int awty = getHeight();
 if (y != Region.minValue) { awty -= y; }
 return awty;
 }

 int toCartesian(int awty) { return getHeight() - awty; }

 public void init() {
 setSize(400,400);
 addMouseListener (new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 tree.add(pt);
 repaint();
 }
 });
 }

 public void paint(Graphics g) {
 if (tree.root == null) {
 g.drawString("Click to add points", 150, 200);
 } else {
 visit(g, tree.root);
 }
 }

 void drawPartition (Graphics g, Region r, Point p, int type) {
 if (type == KDNode.VERTICAL) {
 g.drawLine(p.x, toAWT(r.y_min), p.x, toAWT(r.y_max));
 } else {
 int xlow = r.x_min;
 if (r.x_min == Region.minValue) { xlow = 0; }
 int xhigh = r.x_max;
 if (r.x_max == Region.maxValue) { xhigh = getWidth(); }
 g.drawLine(xlow, toAWT(p.y), xhigh, toAWT(p.y));
 }
 g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }

 void visit (Graphics g, KDNode n) {
 if (n == null) { return; }
 drawPartition(g, n.region, n.point, n.direction);

 visit (g, n.below);
 visit (g, n.above);
 }
}

 Save and run it. Add po ints to the kd-tree by clicking the mouse at different places in the Applet window.
The partitioning direction alternates as each po int is added. We've annotated the screenshot below using red
numbers to identify the order the po ints were added (these don't appear in the running program):

Let's take a closer look at this code:

OBSERVE: Setting Up The Applet

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet {
 KDTree tree = new KDTree();

 ...

 int toCartesian(int awty) { return getHeight() - awty; }

 public void init() {
 setSize(400,400);
 addMouseListener (new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 tree.add(pt);
 repaint();
 }
 });
 }

 public void paint(Graphics g) {
 if (tree.root == null) {
 g.drawString("Click to add points", 150, 200);
 } else {
 visit(g, tree.root);
 }
 }
 ...
}

The Java graphics coordinate system is different from the Cartesian plane. Specifically, the upper-left corner
o f the window is coordinate (0 ,0). From left to right, the x-coordinate increases, as it does with Cartesian
coordinates. However, when moving from top to bottom, the y-coordinate increases, which is opposite o f
Cartesian coordinates. The t o Cart esian helper method converts the y-coordinate o f an Abstract Windowing
Toolkit (AWT) po int into Cartesian coordinates. This method is used within the Mo useAdapt er that
responds to mouse-click events by adding a po int t o t he kd-t ree . After each po int is added, the applet is
repaint ed. The applet repaints itself by traversing the kd-tree using the visit method.

OBSERVE: Pre-order traversal o f the kd-tree

 void visit (Graphics g, KDNode n) {
 if (n == null) { return; }
 drawPartition(g, n.region, n.point, n.direction);

 visit (g, n.below);
 visit (g, n.above);
 }

All nodes in the tree will be visited by the above method. This declares a pre-order traversal because it first
"visits" the given node by drawing it s part it io ning line o n t he screen. Then it visit s it s child no des,
first the ones below it and then the ones above it. The base case o f the recursion st o ps when asked t o
visit a null no de .

The real drawing work is done in drawPart it io n:

OBSERVE: Draw Partitioning Line For KDNode

 int toAWT(int y) {
 if (y == Region.maxValue) { return 0; }
 int awty = getHeight();
 if (y != Region.minValue) { awty -= y; }
 return awty;
 }

 void drawPartition (Graphics g, Region r, Point p, int type) {
 if (type == KDNode.VERTICAL) {
 g.drawLine(p.x, toAWT(r.y_min), p.x, toAWT(r.y_max));
 } else {
 int xlow = r.x_min;
 if (r.x_min == Region.minValue) { xlow = 0; }
 int xhigh = r.x_max;
 if (r.x_max == Region.maxValue) { xhigh = getWidth(); }
 g.drawLine(xlow, toAWT(p.y), xhigh, toAWT(p.y));
 }
 g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }

To draw the partitioning line for a vertical node, one only needs to draw a vert ical line t hro ugh t he x-
co o rdinat e p.x using t he y-co o rdinat es f ro m t he asso ciat ed regio n f o r t he no de . However, since
these regions may reflect partially infinite regions in the plane, you need the t o AWT helper method that
converts a (potentially infinite) Cartesian y-coordinate into its AWT counterpart. If t he co o rdinat e is t he
maximum allo wed value f o r a Regio n, t he y-co o rdinat e is 0 , because that's the topmost coordinate in
the AWT coordinate system. If the Cartesian y-coordinate is the minimum allowed value for a Region, the
counterpart y-coordinate is simply t he height o f t he Applet windo w. Otherwise, the t o AWT method
co nvert s t he y-co o rdinat e based o n it s dist ance f ro m t he bo t t o m o f t he windo w (the height o f
t he applet windo w).

Using kd-trees to Search for Points

Now that we've demonstrated the proper construction o f a kd-tree, there are two kind o f queries we'd like to
support:

Contains—does the kd-tree contain a given po int P.
Selection—select the po ints in the kd-tree that are contained within a query rectangle.

To find whether a given po int exists in the tree, you can use the partitioning lines associated with each node to
direct the search, either to the child node below the line or the child node above the line. Add this code to the
end o f KDT ree :

CODE TO TYPE: Add find methods to KDTree

 public KDNode find(Point p) {
 return find(root, p);
 }

 KDNode find (KDNode node, Point p) {
 if (node == null) { return null; }
 if (node.point.distance(p) < 5) { return node; }

 if (node.isBelow(p)) {
 return find(node.below, p);
 } else {
 return find(node.above, p);
 }
 }

The f ind(no de,p) method must choose whether to investigate the child below or above, based on the
partitioning line. The recursive method will eventually terminate at a leaf node or when the node's Euclidian
distance to p is smaller than 5 pixels.

To highlight the po int over which the cursor moves, modify KDApplet as shown:

CODE TO TYPE: Modifications to KDApplet

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet {
 KDTree tree = new KDTree();
 KDNode match = null;
 boolean redraw = false;

 int toAWT(int y) {
 if (y == Region.maxValue) { return 0; }
 int awty = getHeight();
 if (y != Region.minValue) { awty -= y; }
 return awty;
 }

 int toCartesian(int awty) { return getHeight() - awty; }

 public void init() {
 setSize(400,400);
 addMouseListener (new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 tree.add(pt);
 repaint();
 }
 });

 addMouseMotionListener (new MouseAdapter() {
 public void mouseMoved(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 match = tree.find(pt);
 if (match != null) {
 redraw = true;
 Graphics g = getGraphics();
 g.setColor(Color.RED);
 g.fillRect(match.point.x - 4, toAWT(match.point.y) - 4, 8, 8);
 g.dispose();
 } else {
 if (redraw) {
 repaint();
 redraw = false;
 }
 }
 }
 });
 }

 public void paint(Graphics g) {
 if (tree.root == null) {
 g.drawString("Click to add points", 150, 200);
 } else {
 visit(g, tree.root);
 }
 }

 void drawPartition (Graphics g, Region r, Point p, int type) {
 if (type == KDNode.VERTICAL) {
 g.drawLine(p.x, toAWT(r.y_min), p.x, toAWT(r.y_max));
 } else {
 int xlow = r.x_min;
 if (r.x_min == Region.minValue) { xlow = 0; }
 int xhigh = r.x_max;
 if (r.x_max == Region.maxValue) { xhigh = getWidth(); }
 g.drawLine(xlow, toAWT(p.y), xhigh, toAWT(p.y));

 }
 g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }

 void visit (Graphics g, KDNode n) {
 if (n == null) { return; }
 drawPartition(g, n.region, n.point, n.direction);

 visit (g, n.below);
 visit (g, n.above);
 }
}

Let's take a closer look at the changes:

OBSERVE:

 KDNode match = null;
 boolean redraw = false;
 ...
 addMouseMotionListener (new MouseAdapter() {
 public void mouseMoved(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 match = tree.find(pt);
 if (match != null) {
 redraw = true;
 Graphics g = getGraphics();
 g.setColor(Color.RED);
 g.fillRect(match.point.x - 4, toAWT(match.point.y) - 4, 8, 8);
 g.dispose();
 } else {
 if (redraw) {
 repaint();
 redraw = false;
 }
 }
 }
 });

Two new fields are added. mat ch records the last po int in the kd-tree matched by the cursor; redraw
determines when to redraw the image upon matching the cursor.

The real logic occurs in the Mo useMo t io nList ener implementation, which activates with each move o f the
mouse. It co nvert s t he mo use po int int o Cart esian co o rdinat es and then t ries t o f ind t he po int
wit hin t he kd-t ree . If a po int is f o und, it is f illed in red. If t he mo use mo ves and t here is no
mat ching po int , the ent ire kd-t ree must be ref reshed.

 Save and run it; there is a flicker effect. We can use a technique called "double buffering" to eliminate most
o f the flickering. Make these changes:

CODE TO TYPE: Updates to KDApplet

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDApplet extends java.applet.Applet {
 KDTree tree = new KDTree();
 KDNode match = null;
 boolean redraw = false;
 Image bufferImage;
 Graphics bufferGraphics;

 int toAWT(int y) {
 if (y == Region.maxValue) { return 0; }
 int awty = getHeight();
 if (y != Region.minValue) { awty -= y; }
 return awty;
 }

 int toCartesian(int awty) { return getHeight() - awty; }

 public void init() {
 setSize(400,400);
 addMouseListener (new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 tree.add(pt);
 redraw();
 repaint();
 }
 });

 addMouseMotionListener (new MouseAdapter() {
 public void mouseMoved(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 KDNode newMatch = tree.find(pt);
 if (match != newMatch) {
 match = newMatch;
 redraw();
 if (match != null) {
 bufferGraphics.setColor(Color.RED);
 bufferGraphics.fillRect(match.point.x - 4, toAWT(match.point.y) - 4,
 8, 8);
 bufferGraphics.setColor(Color.BLACK);
 }
 repaint();
 }
 match = tree.find(pt);
 if (match != null) {
 redraw = true;
 Graphics g = getGraphics();
 g.setColor(Color.RED);
 g.fillRect(match.point.x - 4, toAWT(match.point.y) - 4, 8, 8);
 g.dispose();
 } else {
 if (redraw) {
 repaint();
 redraw = false;
 }
 }
 }
 });
 }

 public void paint(Graphics g) {
 if (bufferImage == null) {

 bufferImage = createImage(getWidth(), getHeight());
 bufferGraphics = bufferImage.getGraphics();
 }

 if (tree.root == null) {
 g.drawString("Click to add points", 150, 200);
 } else {
 g.drawImage(bufferImage, 0, 0, this);
 visit(g, tree.root);
 }
 }

 void redraw() {
 bufferGraphics.clearRect(0, 0, getWidth(), getHeight());
 visit(bufferGraphics, tree.root);
 }

 void drawPartition (Graphics g, Region r, Point p, int type) {
 if (type == KDNode.VERTICAL) {
 g.drawLine(p.x, toAWT(r.y_min), p.x, toAWT(r.y_max));
 } else {
 int xlow = r.x_min;
 if (r.x_min == Region.minValue) { xlow = 0; }
 int xhigh = r.x_max;
 if (r.x_max == Region.maxValue) { xhigh = getWidth(); }
 g.drawLine(xlow, toAWT(p.y), xhigh, toAWT(p.y));
 }
 g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }

 void visit (Graphics g, KDNode n) {
 if (n == null) { return; }
 drawPartition(g, n.region, n.point, n.direction);

 visit (g, n.below);
 visit (g, n.above);
 }
}

The key to flicker-free graphics is to have all drawing performed in an o ff-screen image and then have the
paint method draw that image to the screen. The o ffscreen image bufferImage is created the first time paint
is invoked. A newly added redraw method performs all drawing within the bufferGraphics object associated
with this o ffscreen image:

OBSERVE:

 public void mouseMoved(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 KDNode newMatch = tree.find(pt);
 if (match != newMatch) {
 match = newMatch;
 redraw();
 if (match != null) {
 bufferGraphics.setColor(Color.RED);
 bufferGraphics.fillRect(match.point.x - 4, toAWT(match.point.y) - 4,
 8, 8);
 bufferGraphics.setColor(Color.BLACK);
 }
 repaint();
 }

The real logic occurs within the modified mo useMo ved method. If t here is a new mat ch f o und t hat
dif f ers f ro m t he last (no n-null) mat ch, t he po int is redrawn in red in t he o f f screen buf f er;
o therwise the repaint never occurs.

 Save and run this code; there's a noticeable difference in performance. You can now move the mouse
around rapidly over the po ints in the kd-tree and see the highlighted red po ints appear and disappear.

A kd-tree can support Rectangle Queries that efficiently return the set o f po ints contained within a two-
dimensional rectangle. A kd-tree can also support Nearest Neighbor Queries that look for the closest po int in
the kd-tree to a query po int (x,y). For more details on kd-trees, you may want to refer to the Algorithms in a
Nutshell book.

Lessons Learned

Use a recursive st ruct ure t o part it io n an n-dimensio nal set o f po int s: In all examples so
far, you have seen recursion that separates an aggregate into a "left" and a "right" side. By
alternating dimensions, the kd-tree concept can accomodate n-dimensional data. This becomes
really exciting with high-dimensional data because the rectangular and nearest neighbor queries
can perform efficiently.
Use recursive t raversal t o visit every e lement in a recursive t ree: The pre-order traversal
is introduced in this lesson. The concept applies to any recursive data structure. In general, there
are three primary traversal orderings: pre-order, post-order, and in-order. Each fully traverses all
elements in the tree, but does so in a different order.

Project

Modify the existing KDApplet class to display the pre-order number associated with each po int. The pre-
order number is determined in a pre-order traversal o f a binary tree. If you refer to the sample screenshot
image shown earlier in the lesson, the po ints are drawn with numbers in red signifying the pre-order
numbering. As new po ints are added, the numbers will change.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://search.oreilly.com/?q=algorithms+in+a+nutshell
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Mathematical Algorithms and Floating Point
Computations

Lesson Objectives

When you finish this lesson, you will be able to :

explain the structure o f floating-po int numbers according to the IEEE standard.
demonstrate code techniques to mitigate rounding errors in floating po int computations.

Mathematical Algorithms and Floating Point Computations
Computers are finite machines that are designed to perform basic computations on values stored in registers by a
Central Processing Unit (CPU). The size o f these registers has evo lved as computer architectures have grown from
the popular 8-bit Intel processors in the 1970s to today's widespread acceptance o f 64-bit architectures.
Computations over integer-based values (such as Boo leans, 8-bit shorts, and 16- and 32-bit integers) have
traditionally been the most efficient computations performed by the processor. Most CPUs today are fully integrated
with a Floating Po int Unit (FPU) that supports the IEEE Standard for Binary Floating-Po int Arithmetic (IEEE 754). This
means that the performance o f floating-po int computations is o ften more efficient than their integer counterparts.

A floating-po int number is a finite representation designed to approximate a real number with a binary representation
that may be infinite. As you begin to experiment with floating-po int numbers, you may be surprised at some of the
results.

 Create a new Java Pro ject named Mat hemat ical and assign it to the Java6_Lesso ns working set.

 In your Mat hemat ical pro ject /src source fo lder, create a numeric package.

 In the numeric package, create a Flo at ing class:

http://en.wikipedia.org/wiki/IEEE_floating_point

CODE TO TYPE: Floating class

package numeric;

public class Floating {
 public static void main(String[] args) {
 float total = 3.9f;
 while (total > 3.7) {
 System.out.println(total);
 total = total - 0.01f;
 }

 float f = 3.88f - 0.01f;
 if (f == 3.87f) {
 System.out.println ("Same");
 }

 int bits = Float.floatToIntBits(3.88f);
 int signBit = 0;
 if ((bits & 0x80000000) != 0) { signBit = 1; }
 System.out.println ("3.88f is " + Integer.toHexString(bits));
 System.out.println ("3.88f is " + Integer.toBinaryString(bits));
 System.out.println ("[s][eeeeeeee][mmmmmmmmmmmmmmmmmmmmmmm]");
 System.out.print ("[" + signBit + "]");
 System.out.print ("[" + pad((bits & 0x7f800000) >> 23, 8) + "]");
 System.out.print ("[" + pad((bits & 0x007fffff), 23) + "]");
 }

 static String pad (int value, int len) {
 StringBuilder sb = new
 StringBuilder(Integer.toBinaryString(value));
 while (sb.length() < len) {
 sb.insert(0, '0');
 }
 return sb.toString();
 }
}

 Save and run it. This code prints a table o f values decreasing by 0 .01 each time:

OBSERVE: Floating output

3.9
3.89
3.88
3.8700001
3.8600001
3.8500001
3.8400002
3.8300002
3.8200002
3.8100002
3.8000002
3.7900002
3.7800002
3.7700002
3.7600002
3.7500002
3.7400002
3.7300003
3.7200003
3.7100003
3.7000003
3.88f is 407851ec
3.88f is 1000000011110000101000111101100
[s][eeeeeeee][mmmmmmmmmmmmmmmmmmmmmmm]
[0][10000000][11110000101000111101100]

Our program starts as expected, but shortly thereafter some of the the computations introduce an error. What's so
special about subtracting 0.01 from 3.88? Let's take a closer look at how Java represents 3.88, using the IEEE
Floating-Po int standard. The 32 bits used for this value are represented in hexadecimal notation as 0x407851ec.
These bits are numbered from 31 (on the left) to 0 (farthest to the right) and encode this information.

3.88f is represented in 32 bits as 407851ec, as explained by the floating po int standard. Any number represented in
floating-po int is equal to m * 2exp. Bit 31 (the bit that is selected by the mask 0x80000000) indicates whether the value
is positive or negative. Bits 30-23 (the eight bits that are selected by the mask 0x7f 800000) represent the exponent,
exp. Bits 22-0 (the twenty-three bits that are selected by the mask 0x007f f f f f) represent the mantissa, m, o f the
floating-po int number. In the output above, Int eger.t o BinarySt ring prints only 31 binary characters and doesn't print
the sign bit. The 32 bits are arranged from left to right as shown above, which produces the representation 407851ec
as a 32-bit Java floating po int number.

You can determine which power o f two to use by interpreting the exponent bits as a positive number and then
subtracting a bias from the positive number. For a float, the bias is 126. Given the encoding o f 0x80 = 128, the
exponent is 128 - 126 = 2.

To maintain the most precision in the representation, the mantissa is always normalized so its leftmost digit is a 1; this
means that digit can actually be omitted from the representation to increase the precision o f the final number by one bit.

To interpret the mantissa, remember that it is a binary fraction computed as the sum of fractional powers o f two. Here
mantissa = .[1]11110000101000111101100 , which shows that the first implied digit is a one. Expanding this
computation results in this:

mantissa = [1/2] + 1/4 + 1/8 + 1/16 + 1/32 + 1/1024 + 1/4096 + 1/65536 + 1/131072 + 1/262144 + 1/524288 + 1/2097152 +
1/4194304.

If you compute the above sum using a calculator, it is exactly 0.97000000286102294921875 .

The final value = 0.97000000286102294921875 * 22 which equals the exact number
3.880000011444091796875 . So, the actual error o f this representation o f 3.88f is on the order o f 0.0000001 o r 1
in 10,000,000.

Note
If the first bit in the mantissa is implied, how is the value 1/2 represented in floating po int? Well, the
mantissa must be zero (since the 1st bit is implied), the sign is 0 and the exponent must be 0 , so you
need to add the bias o f 126 to see that the encoding is 3F000000 .

Working with floating po int computations can introduce small rounding errors into your so lutions. In this lesson, you'll

so lve a common mathematical problem and learn how to manage rounding errors in your implementation.

Note Java has two floating-po int number formats: f lo at uses 32 bits, while do uble uses 64 bits. For the rest
o f this lesson, all computation will be done using do uble values.

Gauss Jordan Elimination

Given a set o f m linear equations o f m variables each, is there a unique so lution for these variables? For
example, let's say you are given these three equations over the three variables: x, y, z:

x + 3y + 5z = 9 E1

2x + 7y + 2z = 2 E2

x + y + 4z = 2 E3

You could use a trial and error approach, guessing values for these variables to see if they satisfy all
equations simultaneously. Instead, consider an approach that systematically determines the values. For
example, you could transform the equations by adding two or more o f the equations together, trying to
eliminate a variable.

If you subtract equation E1 twice from E2 and once from E3, the equations become simpler because you are
able to eliminate the x variable from the second and third equations:

x + 3y + 5z = 9 E1

y - 8z = -16 E2

 - 2y - z = -7 E3

Now just add equation E2 twice to equation E3:

x + 3y + 5z = 9 E1

y - 8z = -16 E2

-17z = -39 E3

Given these three equations, you can so lve for z = 39/17. Insert this value back into the second equation and
you can compute y = -16 + 312/17 = 40/17. Finally, insert these values o f y and z back into the first equation to
yield x = 9 - 120/17 - 195/17 = -162/17. So, the final so lution is (x = -162/17, y = 40/17, z = 39/17). Instead o f
substituting values, we could have repeated the elimination steps such that each o f the three equations above
has a single variable. In fact, that's the Gauss Jordan Elimination algorithm attempts to do that.

A problem instance is represented by an m*(m+1) matrix where there are m variables and m equations. In the
above example, m=3. Note that each equation has m+1 values because the last value is the constant value
equal to the sum of the variable terms. There is no singular so lution when there are fewer than m equations
with m variables. You have enough information to write the pseudocode for Gauss Jordan Elimination o f a
set o f linear equations represented by matrix A, where A[r][c] is the cth coefficient in the rth row. Row r is
defined in the range 0 .. m-1 and co lumn c is in the range 0 .. m because o f the constant value in each row.

This pseudocode captures the approach used on the problem instance shown earlier:

OBSERVE: pseudocode for Gauss Jordan Elimination

gaussJordan (A)
 foreach base=0 to m-1 do
 baseCoeff = A[base][base]
 foreach row=0 to m-1 do
 if (row != base) then
 innerCoeff = A[row][base]
 foreach column c=base to m do
 A[row][column] -= (innerCoeff/baseCoeff)*A[base][column]

It's hard to understand triply-nested loops just by looking at them. The best way to fo llow this logic is to write
the code and fo llow the logic within the debugger.

 In the numeric package, create a GaussJo rdan class as shown:

CODE TO TYPE: GaussJordan class

package numeric;

public class GaussJordan {

 public static void gaussJordan(double[][] A) {
 int m = A.length;

 for (int base = 0; base < m; base++) {
 double baseCoeff = A[base][base];
 for (int row = 0; row < m; row++) {
 if (row != base) {
 double innerCoeff = A[row][base];
 for (int c = base; c <= m; c++) {
 A[row][c] -= (innerCoeff/baseCoeff)*A[base][c];
 }
 }
 }
 }
 }

 public static void main(String[] args) {
 double [][]mat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,2}};

 gaussJordan(mat);

 for (int i = 0; i < mat.length; i++) {
 for (int j = 0; j < mat[0].length; j++) {
 System.out.print(mat[i][j] + " ");
 }
 System.out.println();
 }
 }
}

 Save and run it; it computes a so lution for the earlier problem instance:

OBSERVE: Sample execution o f GaussJordan

1.0 0.0 0.0 -9.529411764705884
0.0 1.0 0.0 2.352941176470587
0.0 0.0 -17.0 -39.0

You can confirm that these values correspond to the computed so lution earlier. That is, x = -162/17, y = 40/17,
and z = 39/17. Let's take a closer look at the code:

OBSERVE: Computing Gauss Jordan on a matrix

public static void gaussJordan(double[][] A) {
 int m = A.length;

 for (int base = 0; base < m; base++) {
 double baseCoeff = A[base][base];
 for (int row = 0; row < m; row++) {
 if (row != base) {
 double innerCoeff = A[row][base];
 for (int c = base; c <= m; c++) {
 A[row][c] -= (innerCoeff/baseCoeff)*A[base][c];
 }
 }
 }
 }
}

base iterates over each row in the matrix, and baseCo ef f stores the coefficient o f the variable being
eliminated in each pass. For every o ther row in the matrix (o t her t han base), t he innermo st lo o p
reduces t he co ef f icient s o f t hese ro ws pro po rt io nal t o baseCo ef f . innerCo ef f is used to
normalize the adjustment which should eliminate the coefficient o f the row base in all equations.

OBSERVE:

 public static void main(String[] args) {
 double [][]mat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,2}};

 gaussJordan(mat);

 for (int i = 0; i < mat.length; i++) {
 for (int j = 0; j < mat[0].length; j++) {
 System.out.print(mat[i][j] + " ");
 }
 System.out.println();
 }
 }

The final code in GaussJo rdan prints out the contents o f the matrix mat , which was modified in place by the
gaussJo rdan method. To better understand this algorithm's behavior, run it within the debugger. These
image shows the GaussJo rdan as it appears in Eclipse.

Set a breakpo int at the innermost fo r loop (do this by double-clicking within the blue vertical border on the line

corresponding to this loop) and run GaussJo rdan using the Eclipse debugger (Debug As | Java
Applicat io n). When the debugger stops the first time, select Windo w | Sho w View | Ot her | Debug |
Variables to show the variables as fo llows (depending on the current Eclipse version, your screen may be
slightly different):

The matrix A appears in the debugger as three rows o f four values each. This matches the equation set
described earlier exactly. Now use the debugger too ls to continue the execution four times. With each
continuation, the values o f A change and ultimately become this:

The x variable has been eliminated from the second row in A because the first value o f the second group o f
numbers is 0 . Do this five more times; the values o f the third row in A also change to eliminate its coefficient
for x.

Rounding Errors

Is this implementation complete and correct? Go back to the matrix definition in GaussJo rdan and change it
as shown:

CODE TO TYPE:

...
 public static void main(String[] args) {
 double [][]mat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,210000,10000,40000,20000}};.

 gaussJordan(mat);
...

Nothing has changed mathematically because you have only multiplied the coefficients in the last row by
10000, but check the output:

OBSERVE: Output o f revised matrix

1.0 0.0 -3.552713678800501E-15 -9.529411764705884
0.0 1.0 0.0 2.3529411764705905
0.0 0.0 -170000.0 -390000.0

Because o f this small change, the code was unable to eliminate the coefficient fo r z in the first equation. You
might be tempted to use the java.mat h.BigDecimal class to represent all values because it is designed to
store arbitrary-precision signed decimal numbers. However, the comment below that appears in the
documentation for the divide method o f BigDecimal states that, "if the exact quotient cannot be represented
(because it has a non-terminating decimal expansion) an ArithmeticException is thrown." So you can't use
BigDecimal.

To learn about o ther issues that pertain to floating-po int computations, read the technical document, What
Every Computer Scientist Should Know About Floating-Po int Arithmetic. This paper is the standard fo r
explaining challenges the you'll encounter when working with floating-po int. For now, let's focus on some
essential po ints o f floating-po int numbers.

Computations performed on floating numbers can produce infinitessimal differences in results, such as the
value above, which is on the order o f 10-15.

The usual strategy we use to deal with these very small numbers is to recognize that they typically occur only
through subtraction and addition, rather than multiplication and division. That's because in order to achieve
such low exponents, you would need to divide two numbers that are 15 orders o f magnitude apart; this may
happen in random data, but it is unlikely to occur with most real-world data.

Make these changes to GaussJo rdan with the revised mat matrix definition in the main() method:

OBSERVE: Modifications to GaussJordan

package numeric;

public class GaussJordan {
 static final double epsilon = 1e-9;

 static void gaussJordan(double[][] A) {
 int m = A.length;

 for (int base = 0; base < m; base++) {
 double baseCoeff = A[base][base];
 for (int row = 0; row < m; row++) {
 if (row != base) {
 double innerCoeff = A[row][base];
 for (int c = base; c <= m; c++) {
 A[row][c] -= (innerCoeff/baseCoeff)*A[base][c];
 if (A[row][c] < epsilon && A[row][c] > -epsilon) {
 A[row][c] = 0;
 }
 }
 }
 }
 }
 }

 public static void main(String[] args) {
 double [][]mat = {{1,3,5,9}, {2,7,2,2}, {10000,10000,40000,20000}};

 gaussJordan(mat);

 for (int i = 0; i < mat.length; i++) {
 for (int j = 0; j < mat[0].length; j++) {
 System.out.print(mat[i][j] + " ");
 }
 System.out.println();
 }
 }
}

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

 Save and run it. The problem has been masked:

OBSERVE: Output with larger coefficients, though same so lution

1.0 0.0 0.0 -9.529411764705884
0.0 1.0 0.0 2.3529411764705905
0.0 0.0 -170000.0 -390000.0

The above so lution reaches a nearly identical so lution (only the middle line is o ff by by a few fractional digits).
You can use this approach when your algorithm depends on detecting zero values in your computations.

Partial Input Data

There are o ther situations that could cause the existing implementation to fail. Many o f the equations are not
mathematically independent, which means that one o f the equations is equivalent to a sequence o f additions
(and subtractions) o f the o ther equations. For example, change the mat input matrix in the main() method as
shown:

CODE TO TYPE:

...
 public static void main(String[] args) {
 double [][]mat = {{1,3,5,9}, {2,7,2,2}, {10000,10000,40000,200002,6,10,18}};
.

 gaussJordan(mat);
...

The third row is simply twice the first row. Rerun the class:

OBSERVE: Output when equations are only partially so lvable

1.0 0.0 NaN NaN
0.0 1.0 NaN NaN
0.0 0.0 0.0 0.0

NaN stands for "Not a Number," which is defined in the Floating-Po int standard. This occurs typically when
dividing by zero . Java only throws an ArithmeticException when an integer division causes a divide by zero ;
floating-po int computations give no indication that anything has gone wrong. To understand why the problem
happens, go back to the pseudocode; you can see that there is no pro tection when baseCo ef f is zero . Fix it
now by treating any baseCo ef f value sufficiently close to zero as zero ; in o ther words, skip that co lumn:

CODE TO TYPE: Modifications to gaussJordan method

 static void gaussJordan(double[][] A) {
 int m = A.length;

 for (int base = 0; base < m; base++) {
 double baseCoeff = A[base][base];
 if (baseCoeff < epsilon && baseCoeff > -epsilon) { continue; }
 for (int row = 0; row < m; row++) {
 if (row != base) {
 double innerCoeff = A[row][base];
 for (int c = base; c <= m; c++) {
 A[row][c] -= (innerCoeff/baseCoeff)*A[base][c];
 if (A[row][c] < epsilon && A[row][c] > -epsilon) {
 A[row][c] = 0;
 }
 }
 }
 }
 }
 }

 Save and run it:

OBSERVE: Proper output when equations are only partially so lvable

1.0 0.0 29.0 57.0
0.0 1.0 -8.0 -16.0
0.0 0.0 0.0 0.0

While the matrix has not been fully reduced to one variable per row, the output clearly demonstrates that there
is no unique so lution for all variables, but rather a family o f so lutions.

Since you have just pro tected against zero coefficients, consider the set o f equations below, in which no
equation uses more than two variables; note that the coefficient o f x in the first equation is zero .

CODE TO TYPE:

...
 public static void main(String[] args) {
 double [][]mat = {{1,3,5,9}, {2,7,2,2}, {2,6,10,18}{0,2,1,7}, {1,2,0,3}, {2,
0,5,3}};.

 gaussJordan(mat);
...

 Save and run it:

OBSERVE: Invalid output when first coefficient is zero

0.0 0.0 0.0 3.4
1.0 2.0 0.0 3.0
2.0 0.0 5.0 3.0

However, if you reorder the rows—which ultimately should have no effect on the so lution—a so lution can be
found. Change it again as shown:

CODE TO TYPE:

...
 public static void main(String[] args) {
 double [][]mat = {{0,2,1,7}, {1,2,0,3}, {2,0,5,3}{1,2,0,3}, {0,2,1,7}, {2,0,
5,3}};.

 gaussJordan(mat);
...

 This results in a valid so lution:

OBSERVE: Valid output when reorganizing rows

1.0 0.0 0.0 -2.428571428571429
0.0 2.0 0.0 5.428571428571429
0.0 0.0 7.0 11.0

You must modify the algorithm slightly such that fo r each o f the first m co lumns, it finds a non-zero pivot value
to use, rather than simply choosing the assigned coefficient in that co lumn. It turns out that there are
mathematical advantages if the pivo t is the coefficient in that co lumn of greatest magnitude. The modified
pseudocode looks like this:

OBSERVE: pseudocode for Gauss Jordan Elimination

gaussJordan (A)
 foreach base=0 to m-1 do
 determine row r whose A[r][base] is highest magnitude; if zero skip and cont
inue
 if r is different from base, swap rows r and base
 baseCoeff = A[base][base]
 foreach row=0 to m-1 do
 if (row != base) then
 innerCoeff = A[row][base]
 foreach column c=base to m do
 A[row][c] -= (innerCoeff/baseCoeff)*A[base][c]

The actual code modifications to the gaussJo rdan method look like this:

CODE TO TYPE: Modifications to GaussJordan class

 static void gaussJordan(double[][] A) {
 int m = A.length;

 for (int base = 0; base < m; base++) {
 double pivot = 0;
 int r = -1;
 for (int k = base; k < m; k++) {
 if (Math.abs(A[k][base]) > pivot) {
 pivot = Math.abs(A[k][base]);
 r = k;
 }
 }
 if (pivot < epsilon && pivot > -epsilon) { continue; }
 if (r != base) {
 for (int c = base; c < m+1; c++) {
 double tmp = A[base][c];
 A[base][c] = A[r][c];
 A[r][c] = tmp;
 }
 }
 double baseCoeff = A[base][base];
 if (baseCoeff < epsilon && baseCoeff > -epsilon) { continue; }
 for (int row = 0; row < m; row++) {
 if (row != base) {
 double innerCoeff = A[row][base];
 for (int c = base; c <= m; c++) {
 A[row][c] -= (innerCoeff/baseCoeff)*A[base][c];
 if (A[row][c] < epsilon && A[row][c] > -epsilon) {
 A[row][c] = 0;
 }
 }
 }
 }
 }
 }

 Save and run it; the output is correct again:

OBSERVE: Valid output when reorganizing rows

2.0 0.0 0.0 -4.857142857142858
0.0 2.0 0.0 5.428571428571429
0.0 0.0 -3.5 -5.5

Matrix Determinant

There are a number o f useful algorithms over square matrices that demonstrate techniques you can use to

so lve worthwhile problems. In linear algebra, the determinant is a value associated with a square matrix.
When the square matrix represents a system of linear equations, there will be a unique so lution for the
equations if the determinant is non-zero . You can use the determinant to so lve for the linear system of
equations, much like the Gauss Jordan elimination.

Given the above two-dimensional matrix A, its determinant is:

You can visualize this computation by subtracting the product o f the Northeast diagonal (2*5) from the
product o f the Southwest diagonal (3*4). To show the utility o f the determinant, let's so lve this system of two
linear equations:

3x + 5y = 7 E1

2x + 4y = 5 E2

If you look at the 2x2 matrix fo rmed by just the coefficients o f the x and y variables, you'll recognize the earlier
2x2 matrix. Because this determinant has a non-zero value, you know that there is a valid unique so lution. To
determine the so lution for x and y, we need to compute four determinant values:

The denominators o f these two fractions are the determinant when using the coefficients o f the x and y
variables. The numerator o f the so lution for x is the determinant o f a 2x2 matrix that is fo rmed by replacing the
co lumn containing the x coefficients with the co lumn of the constant values. Similarly, the numerator o f the
so lution for y is the determinant o f a 2x2 matrix fo rmed by replacing the co lumn containing the y coefficients
with the co lumn of the constant values. The value o f the x numerator is 7*4 - 5*5 = 3 while the value o f the y
numerator is 3*5 - 2*7 = 1. These results show that the so lution to these equations is (x = 3/2 and y = 1/2).
You can verify these values by plugging them back into either o f the original equations.

Does this scale to equations with more than 2 variables? Yes! Let's revisit the earlier set o f three equations
used in the Gauss Jordan section and use determinants to compute the so lution. Here are those equations
again:

x + 3y + 5z = 9 E1

2x + 7y + 2z = 2 E2

x + y + 4z = 2 E3

Using the same determinant logic as the 2x2 case, the so lution to this equation is:

In the numerators, you replace the co lumn corresponding to the variable with the co lumn of constant values.

To so lve this, you need to be able to compute the determinant fo r a 3x3 matrix. Fortunately, you can compute
the determinant o f a 3x3 matrix by a computation invo lving the determinants o f 2x2 vertices. This image
shows how this is done:

To visualize this, take the top row of the 3x3 matrix which contains the values (1,9 ,5). For each o f these
values, compute the determinants o f the three 2x2 matrices that remain when you remove the top row and the
respective co lumn of each o f these values. Then, sum the computation above, alternating signs of the
constituent sub-parts. Instead o f do ing this operation by hand, you need to write a program (especially when
computing determinants for higher-order matrices).

 In the numeric package, create a Mat rix class as shown:

CODE TO TYPE: Matrix class

package numeric;

public class Matrix {

 public static double det(double[][] m) {
 switch (m.length) {
 case 1:
 return m[0][0];
 case 2:
 return m[0][0]*m[1][1] - m[0][1]*m[1][0];
 case 3:
 return m[0][0]*(m[1][1]*m[2][2] - m[2][1]*m[1][2]) -
 m[0][1]*(m[1][0]*m[2][2] - m[2][0]*m[1][2]) +
 m[0][2]*(m[1][0]*m[2][1] - m[2][0]*m[1][1]);
 }

 double result = 0;
 for (int i = 0; i < m[0].length; i++) {
 double temp[][] = new double[m.length - 1][m[0].length - 1];
 for (int j = 1; j < m.length; j++) {
 System.arraycopy(m[j], 0, temp[j-1], 0, i);
 System.arraycopy(m[j], i+1, temp[j-1], i, m[0].length-i-1);
 }

 result += m[0][i] * Math.pow(-1, i) * det(temp);
 }

 return result;
 }
}

Let's look at this code more closely. As a recursive implementation, there are three base cases to consider—
matrices o f size 1x1, 2x2, and 3x3:

OBSERVE: Determinant recursion base cases

 switch (m.length) {
 case 1:
 return m[0][0];
 case 2:
 return m[0][0]*m[1][1] - m[0][1]*m[1][0];
 case 3:
 return m[0][0]*(m[1][1]*m[2][2] - m[2][1]*m[1][2]) -
 m[0][1]*(m[1][0]*m[2][2] - m[2][0]*m[1][2]) +
 m[0][2]*(m[1][0]*m[2][1] - m[2][0]*m[1][1]);
 }

The above codes the computation as discussed earlier. For matrices o f size n>=4, the code must recreate n
sub-matrices o f size n-1 and recursively call det with these sub-matrices, similar to the 3x3 example
described earlier.

OBSERVE: Recursive invocations

 double result = 0;
 for (int i = 0; i < m[0].length; i++) {
 double temp[][] = new double[m.length - 1][m[0].length - 1];
 for (int j = 1; j < m.length; j++) {
 System.arraycopy(m[j], 0, temp[j-1], 0, i);
 System.arraycopy(m[j], i+1, temp[j-1], i, m[0].length-i-1);
 }

 result += m[0][i] * Math.pow(-1, i) * det(temp);
 }

 return result;

This code processes an nxn matrix by creating n smaller n-1 x n-1 sub-matrices in t emp. The two arrayco py
invocations copy the left and right side o f the smaller matrices, essentially skipping the ith co lumn with each
pass. Using the Mat h.po w(-1,i) statement, the result alternates between adding and subtracting the partial
computations.

Add this method to the end o f the Mat rix class to so lve a linear system of equations represented by the m x
m+1 matrix used earlier:

CODE TO TYPE: Modifications to Matrix class

 public static double[] solve(double[][] mat) {
 double[][] base = new double[mat.length][mat[0].length-1];
 for (int i = 0; i < mat.length; i++) {
 System.arraycopy(mat[i], 0, base[i], 0, mat[0].length-1);
 }
 double denom = det(base);
 if (denom == 0) {
 return null;
 }

 double[]solution = new double[mat.length];
 for (int k = 0; k < mat.length; k++) {
 for (int i=0, j=0; i < mat.length; i++, j++) {
 System.arraycopy(mat[i], 0, base[i], 0, mat[0].length-1);
 base[i][k] = mat[j][mat[0].length-1];
 }
 solution[k] = det(base)/denom;
 }

 return solution;
 }

When you review implementations o f mathematical algorithms, you must become familiar with array indices
and nested loops. One o f the qualities o f efficient mathematical code is dense nested looping logic. Let's take

a closer look at this code:

OBSERVE: Compute denominator determinant

 double[][] base = new double[mat.length][mat[0].length-1];
 for (int i = 0; i < mat.length; i++) {
 System.arraycopy(mat[i], 0, base[i], 0, mat[0].length-1);
 }
 double denom = det(base);
 if (denom == 0) {
 return null;
 }

The above code co nst ruct s a base array o f size m x m, where m is the number o f rows in the input mat
matrix. This matrix contains the variable coefficients only. If t he det erminant o f t his mat rix is zero , there
is no unique so lution:

OBSERVE: Computing partial sums

 double[]solution = new double[mat.length];
 for (int k = 0; k < mat.length; k++) {
 for (int i=0, j=0; i < mat.length; i++, j++) {
 System.arraycopy(mat[i], 0, base[i], 0, mat[0].length-1);
 base[i][k] = mat[j][mat[0].length-1];
 }
 solution[k] = det(base)/denom;
 }

 return solution;

The resulting so lution o f m variables is determined by computing the fractions o f determinants identified
earlier. The inner f o r lo o p o ver t he i variable creates an m x m matrix where t he kth co lumn in base is
replaced by t he co ef f icient s o f t he co nst ant co lumn, the rightmost co lumn in the original matrix,
mat .

To validate that this code works, add the main method to the end o f the Mat rix class as shown:

CODE TO TYPE: Main method to demonstrate working so lve

 public static void main(String[] args) {
 double[][] mat = {{1,3,5,9}, {2,7,2,2}, {1,1,4,2}};
 double[] vals = solve(mat);
 System.out.println("x=" + vals[0] + ", y=" + vals[1] + ", z=" + vals[2]);
 }

 Save and run it:

OBSERVE: So lution to linear equations using determinants

x=-9.529411764705882, y=2.3529411764705883, z=2.2941176470588234

Compare these values with earlier values computed in the Gauss Jordan section; they are nearly identical.
They only begin to differ in the last few digits. You'll see this phenomenon whenever you work with floating
po int numbers.

Lessons Learned

Working with floating-po int numbers can be suprising and challenging. You need to understand the ways that
rounding errors can be introduced into computations.

Use epsilo n-based co ndit io nals when co mparing t o zero . When trying to compare a
floating-po int number with zero , you must be careful to take into account the minute rounding error
that o ften happens in computations. Instead o f comparing with equality, use two conditionals that
check if (x < epsilo n && x > -epsilo n) o r call Mat h.abs() .

Ro unding Erro rs Can Accumulat e: Even though rounding errors by themselves are minute
values, they can rapidly accumulate through computations, decreasing the accuracy o f your
computations if you don't take time to review the computations in your code. Since each
computation invo lves some rounding errors, try to minimize the number o f operations you
perform. For example, even though a*(b-c) is equal mathematically to a*b-a*c, the latter
computation requires three floating po int operations while the former computation only requires
two (and this would be preferred in your code).
Flo at ing po int can st o re impo ssible numbers: In floating po int, a computation could actually
divide by zero without throwing an Exception. When both the numerator and denominator are o f
type int , Java throws an java.lang.Arit hmet icExcept io n.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Brute Force Algorithms
Lesson Objectives

After completing this lesson, you will be able to implement brute-force so lutions to permutation-style problems.

Using Brute Force To Solve Permutation Problems
These problems have something in common:

What are the 5-letter words that you can make using just the letters found in PALINDROME (without
repetition)?
Generate all 4x4 magic squares using the numbers 1 through 16 where all rows, co lumns, and two long
diagonals sum to the same value.
How many ways can you place N queens on an NxN chessboard such that no two queens attack each
other?

Each o f these problems relies on some combinatoric permutation o f input elements. There is a standard brute force
approach that can be used for those types o f problems, as long as the size o f the problem instance isn't too big. In
mathematics, a Permutation is defined for a set o f elements by imposing some particular order o f the elements. For
example, given the set {"A", "B", "C"}, there are six permutations: {"ABC", "ACB", "BAC", "BCA", "CAB", "CBA"}. To
so lve each o f the above problems, you must somehow compute the valid permutations. In this lesson, you'll see an
implementation that you can use as the structure for so lving such permutation problems.

Consider how to generate a 3x3 magic square using the digits 1 through 9 where all rows and co lumns and the two
long diagonals sum to the same value. Start by writing in the numbers from 1 to 9 , three to a row from top to bottom. Is
this a magic square? Nope. Here's an image o f six consecutive attempts.

These attempts were generated by backtracking from the initial attempt. Erase the 9 and 8 digit in the first attempt, and
instead try placing a 9 in the middle o f the bottom row. This second attempt is not a magic square either. Okay, so
backtrack and erase the 8 , 9 and 7 digits and instead place an 8 in the left corner o f the matrix. At this po int, you can
generate the third attempt with "8 , 7, 9" as the bottom row, which is still no t a so lution. Now erase the 9 and 7 digits
and write "8 , 9 , 7" as the bottom row of the fourth attempt—still no t a so lution, so backtrack by erasing the 7, 9 , and 8
digits and write a 9 in the left corner o f the matrix. You can generate the fifth attempt "9 , 7, 8" as the bottom row, which
is not a so lution. Now erase the 8 and 7 digits and write "9 , 8 , 7" as the sixth and final attempt—no so lution. This
certainly appears to be a tedious exercise and you've only tried six o f the possible so lutions! Fortunately, a computer
program can use this approach to try all such configurations.

Given how important backtracking is to that approach, expect to see recursion play an important ro le in the algorithm. If
you can divide your problem into a finite number o f steps, the pseudocode below describes a method so lve(int
st ep) which attempts to so lve the "next step" in a progression o f steps:

http://en.wikipedia.org/wiki/Combinatorics

OBSERVE: pseudocode for brute force so lver

 boolean solve(int step) {
 if (step is past the final step) {
 return isValid();
 }

 foreach possible value in step do
 update state with value
 if (solve(step+1)) then
 return true

 undo update of state

 return false;
 }

This recursive function first checks to see if t he given st ep number is o ne mo re t han t he f inal st ep. If so , it's
finished, and ret urns whet her t he co mput ed at t empt is a valid so lut io n. If there are more steps left to be
executed, then f o r each po ssible value allo wed in a given st ep, so lve() updat es t he st at e and recursively
tries to so lve t he next st ep. If so lve(st ep+1) ever returns true, then it has worked, and the algo rit hm st o ps
immediat e ly. If, however, this recursive execution returns false, the mo st recent st at e updat e must be undo ne
so the next possible value at the given step can be applied. If the f o reach loop completes without finding a so lution,
then the entire step fails, so the last st at ement in t he pseudo co de ret urns f alse .

Each problem using this approach has its own isValid() method to determine whether the computed attempt so lves
the stated problem. For the magic square problem, the final code only needs to check that the sums of each row,
co lumn, and long diagonal equal the same target value.

You may recall the definition o f the Factorial function n! in mathematics, which computes n * (n-1) * (n-2) * ... * 2 * 1.
This function grows incredibly fast! While 9 ! is a manageable 362,880 , 16 ! is 20,922,789,888,000 . If you review the six
earlier attempts, you can see that this brute-force approach is inefficient because it blindly tries all permutations. It does
have the benefit, however, o f being relatively easy to write and it takes advantage o f the incredible power o f computers
to try hundreds o f thousands o f possibilities per second.

 Create a new Java Pro ject named Brut eFo rce and assign it to the Java6_Lesso ns working set.

 In your Brut eFo rec pro ject /src source fo lder, create a package permut e .

 In the permut e package, create a MagicSquare class as shown:

CODE TO TYPE: MagicSquare

package permute;

public class MagicSquare {
 final int square[][];
 final boolean used[];
 final int n;

 public MagicSquare(int n) {
 square = new int[n][n];
 this.n = n;
 used = new boolean[n*n+1];
 }

 boolean solve(int step) {
 if (step == n*n) {
 return isValid();
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;
 if (solve(step+1)) {
 return true;
 }
 square[step/n][step%n] = 0;
 used[val] = false;
 }

 return false;
 }

 boolean validUpTo(int step) {
 for (int r = 0; r < n; r++) {
 if (step == (r+1)*n-1) {
 int sum = 0;
 for (int c = 0; c < n; c++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }
 for (int c = 0; c < n; c++) {
 if (step == n*(n-1)+c) {
 int sum = 0;
 for (int r = 0; r < n; r++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }
 return true;
 }
}

Let's look closer:

OBSERVE:

public class MagicSquare {
 final int square[][];
 final boolean used[];
 final int n;

 public MagicSquare(int n) {
 square = new int[n][n];
 this.n = n;
 used = new boolean[n*n+1];
 }

The state o f the algorithm is contained in two arrays: used[n] records whether the number n already appears
somewhere in the magic square. square[r][c] stores the number at the given row and co lumn index location. The
MagicSquare constructor determines the desired problem size, n. The size o f used[] is one larger than necessary
because the numbers in the magic square are from 1 to n*n.

OBSERVE:

 boolean solve(int step) {
 if (step == n*n) {
 return isValid();
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;
 if (solve(step+1)) {
 return true;
 }
 square[step/n][step%n] = 0;
 used[val] = false;
 }

 return false;
 }

The real logic is in the so lve(int st ep) method. The first invocation o f this method must be so lve(0) . Once all
numbers have been placed (when st ep is n*n o r one more than the number o f steps when counting from zero), the
method determines whether the state o f the magic square is a valid so lution using the isValid() method (which we'll
write shortly).

To determine "foreach possible value in step," this code re lies o n t he used[n] array so it do esn't place t he
same number mult iple t imes in t he magic square . To "update state with value," the code records
used[val]=t rue and places t he value in t he magic square at t he appro priat e ro w and co lumn. This code
uses a common idiom to convert a simple number into a two-dimensional row and co lumn placement. The integer
computation st ep/n properly truncates the step number to compute the row value, while st ep%n uses modulo
arithmetic to determine the proper co lumn. Once the state is updated, it recursively calls so lve(st ep+1) ; if this method
returns t rue , a so lution has been found. Otherwise, it must undo t he st at e change (bo t h in used and square)
before continuing the f o r loop. If this loop completes without having found a so lution, the method ret urns f alse and
backtracks to the previous step.

To complete the implementation o f MagicSquare , make the changes below. They'll take advantage o f the
mathematical fact that the target sum value for an n x n magic square is n*(n*n+1)/2. So, fo r a 3x3 magic square, the
sum of each row, co lumn and diagonal is 3*(3*3+1)/2 = 3*10/2 = 15 .

CODE TO TYPE: Modify MagicSquare

package permute;

public class MagicSquare {
 final int square[][];
 final boolean used[];
 final int n;
 final int magicSum;

 public MagicSquare(int n) {
 square = new int[n][n];
 this.n = n;
 used = new boolean[n*n+1];
 magicSum = n*(n*n+1)/2;
 }

 boolean isValid() {
 int sumD1 = 0;
 int sumD2 = 0;
 for (int i = 0; i < n; i++) {
 int sumR = 0;
 int sumC = 0;
 sumD1 += square[i][i];
 sumD2 += square[i][n-i-1];
 for (int j = 0; j < n; j++) {
 sumR += square[i][j];
 sumC += square[j][i];
 }
 if (sumR != magicSum || sumC != magicSum) { return false; }
 }

 // diagonals
 return (sumD1 == magicSum && sumD2 == magicSum);
 }

 boolean solve(int step) {
 if (step == n*n) {
 return isValid();
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;
 if (solve(step+1)) {
 return true;
 }
 square[step/n][step%n] = 0;
 used[val] = false;
 }

 return false;
 }

 boolean validUpTo(int step) {
 for (int r = 0; r < n; r++) {
 if (step == (r+1)*n-1) {
 int sum = 0;
 for (int c = 0; c < n; c++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }
 for (int c = 0; c < n; c++) {
 if (step == n*(n-1)+c) {
 int sum = 0;
 for (int r = 0; r < n; r++) { sum += square[r][c]; }

 return (sum == magicSum);
 }
 }
 return true;
 }

 public void outputSolution () {
 for (int r = 0; r < n; r++) {
 for (int c = 0; c < n; c++) {
 System.out.print(square[r][c]);
 System.out.print(' ');
 }
 System.out.println();
 }
 System.out.println();
 }
}

The o ut put So lut io n() method prints out the two-dimensional square using the values in square . The isValid()
method does the real work, using a nested f o r loop to compute the sum of each row, co lumn, and long diagonal. If
any sum fails to match magicSum , the isValid() method returns f alse , which forces the so lve() method to backtrack
and try to find another so lution.

To validate this so lution, write this performance code:

 In your Brut eFo rce pro ject, create a /perf o rmance source fo lder.

 In the /perf o rmance source fo lder, create a permut e package.

 In the permut e package, create a Main class as shown:

CODE TO TYPE: Main class

package permute;

public class Main {
 public static void main(String[] args) {
 MagicSquare m = new MagicSquare(3);
 m.solve(0);
 m.outputSolution();
 }
}

 Save and run Main.

OBSERVE: Output from Main for 3x3 magic square

2 7 6
9 5 1
4 3 8

This is a valid 3x3 magic square because all rows, co lumns, and long diagonals sum to 15.

Before go ing further, stop and think about how many 3x3 magic square so lutions might exist. This is a natural
extension to the problem. You can determine how many so lutions there are by adding a count() method that makes a
small modification to the basic algorithm. Modify MagicSquare as shown:

CODE TO TYPE: Updates to MagicSquare class

 int total = 0;

...

 void count(int step) {
 if (step == n*n) {
 if (isValid()) {
 total++;
 outputSolution();
 }
 return;
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;
 if (validUpTo(step)) {
 count(step+1);
 }
 square[step/n][step%n] = 0;
 used[val] = false;
 }
 }

Let's look closer:

OBSERVE:

 int total = 0;

 void count(int step) {
 if (step == n*n) {
 if (isValid()) {
 total++;
 outputSolution();
 }
 return;
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;
 count(step+1);
 square[step/n][step%n] = 0;
 used[val] = false;
 }
 }

The count(step) method stores the to tal number o f such magic squares found in an attribute, t o t al. The structure o f
this method is nearly identical to so lve(st ep) , except that it doesn't stop looking for so lutions when the first one is
found. Accordingly, this method is now defined as vo id co unt (int st ep) . So, when the final step is reached and
isValid() validates a so lution, the co unt () method increment s t he t o t al co unt and o ut put s t he so lut io n t o
t he screen. The recursive call always executes and the code backtracks after every recursive invocation. Together,
these changes ensure that all so lutions are inspected.

Modify Main as shown:

CODE TO TYPE: Main class

package permute;

public class Main {
 public static void main(String[] args) {
 MagicSquare m = new MagicSquare(3);
 m.solve(0);
 m.outputSolution();

 m = new MagicSquare(3);
 m.count(0);
 System.out.println("There are " + m.total + " possible squares.");
 }
}

 Save and run it.

INTERACTIVE SESSION: Output from revised Main

2 7 6
9 5 1
4 3 8

2 7 6
9 5 1
4 3 8

2 9 4
7 5 3
6 1 8

4 3 8
9 5 1
2 7 6

4 9 2
3 5 7
8 1 6

6 1 8
7 5 3
2 9 4

6 7 2
1 5 9
8 3 4

8 1 6
3 5 7
4 9 2

8 3 4
1 5 9
6 7 2

There are 8 possible squares.

These magic squares are all really the same so lution ro tated (and flipped) to produce eight different versions o f the
same magic square.

It's amazing how quickly this program computed these so lutions. However, if you change this to so lve a 4x4 magic
square, you'll have to wait a while longer fo r so lutions. How long? Well, a 4x4 magic square requires 16! permutations,
or 20,922,789,888,000 ; as a rough estimate, it will take 5,765,760 times as long to generate all 4x4 so lutions as it did
for the 3x3 so lution. Clearly, you have to optimize this approach, or you'll never be able to compute even slightly larger

problems.

Fortunately, you can modify the so lve() method to search through the so lution set more intelligently. Basically,
instead o f blindly pursuing each recursive step, you can validate partial results o f the search before go ing forward.
Revise MagicSquare as shown:

CODE TO TYPE: Revised MagicSquare

package permute;

public class MagicSquare {
 final int square[][];
 final boolean used[];
 final int n;
 final int magicSum;
 int total = 0;

 public MagicSquare(int n) {
 square = new int[n][n];
 this.n = n;
 used = new boolean[n*n+1];
 magicSum = n*(n*n+1)/2;
 }

 // handles only rows and columns
 boolean validUpTo(int step) {
 for (int r = 0; r < n; r++) {
 if (step == (r+1)*n-1) {
 int sum = 0;
 for (int c = 0; c < n; c++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }

 for (int c = 0; c < n; c++) {
 if (step == n*(n-1)+c) {
 int sum = 0;
 for (int r = 0; r < n; r++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }

 return true;
 }

 boolean isValid() {
 int sumD1 = 0;
 int sumD2 = 0;
 for (int i = 0; i < n; i++) {
 int sumR = 0;
 int sumC = 0;
 sumD1 += square[i][i];
 sumD2 += square[i][n-i-1];
 for (int j = 0; j < n; j++) {
 sumR += square[i][j];
 sumC += square[j][i];
 }
 if (sumR != magicSum || sumC != magicSum) { return false; }
 }

 // diagonals
 return (sumD1 == magicSum && sumD2 == magicSum);
 }

 boolean solve(int step) {
 if (step == n*n) {
 return isValid();
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;

 if (validUpTo(step) && solve(step+1)) {
 return true;
 }
 square[step/n][step%n] = 0;
 used[val] = false;
 }

 return false;
 }

 boolean validUpTo(int step) {
 for (int r = 0; r < n; r++) {
 if (step == (r+1)*n-1) {
 int sum = 0;
 for (int c = 0; c < n; c++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }
 for (int c = 0; c < n; c++) {
 if (step == n*(n-1)+c) {
 int sum = 0;
 for (int r = 0; r < n; r++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }
 return true;
 }

 public void outputSolution () {
 for (int r = 0; r < n; r++) {
 for (int c = 0; c < n; c++) {
 System.out.print(square[r][c]);
 System.out.print(' ');
 }
 System.out.println();
 }
 System.out.println();
 }

 void count(int step) {
 if (step == n*n) {
 if (isValid()) {
 total++;
 outputSolution();
 }
 return;
 }

 for (int val = 1; val <= n*n; val++) {
 if (used[val]) { continue; }

 used[val] = true;
 square[step/n][step%n] = val;
 if (validUpTo(step)) {
 count (step+1);
 }
 square[step/n][step%n] = 0;
 used[val] = false;
 }
 }
}

Let's take a closer look at the validUpT o () method:

OBSERVE: validUpTo method

 // handles only rows and columns
 boolean validUpTo(int step) {
 for (int r = 0; r < n; r++) {
 if (step == (r+1)*n-1) {
 int sum = 0;
 for (int c = 0; c < n; c++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }

 for (int c = 0; c < n; c++) {
 if (step == n*(n-1)+c) {
 int sum = 0;
 for (int r = 0; r < n; r++) { sum += square[r][c]; }
 return (sum == magicSum);
 }
 }

 return true;
 }

The algorithm partially reviews its progress after filling each row and co lumn completely. Given a st ep numbered from
0 to n*n-1, this means that whenever st ep equals (r+1)*n-1 fo r some row numbered 0 .. n-1, there is enough
information to determine if the sum to tal o f the row is magicSum . Similarly, whenever st ep equals n*(n-1)+c fo r
some co lumn numbered 0 .. n-1, there is enough information to determine if the sum to tal o f the co lumn is
magicSum .

With these changes in place, modify Main to count the number o f 4x4 magic squares, as shown:

CODE TO TYPE: Revised Main class

package permute;

public class Main {
 public static void main(String[] args) {
 MagicSquare m = new MagicSquare(34);
 m.solve(0);
 m.outputSolution();

 m = new MagicSquare(34);
 m.count(0);
 System.out.println("There are " + m.total + " possible squares.");
 }
}

 Save and run it. The first 4x4 magic square appears almost immediately:

OBSERVE: First computed magic square

1 2 15 16
12 14 3 5
13 7 10 4
8 11 6 9

If you let the program run for about three more minutes, it reports that 7,040 4x4 magic squares were found. You know
that each magic square appears 8 times in this set (ro tated and flipped); this means there are 880 unique 4x4 magic
squares. The revised code prints each o f these so lutions.

Of course, you can't use this approach for 5x5 magic squares (which have 1.5 x 1025 possible so lutions). You could
try to run this example on your own computer. After 41 hours o f computation on the 5x5 so lution, this so lution shows
up:

INTERACTIVE SESSION: So lution for 5x5 found

Sun Sep 29 13:33:58 EDT 2013
1 2 13 24 25
3 22 19 6 15
23 16 10 11 5
21 7 9 20 8
17 18 14 4 12

Tue Oct 01 06:21:05 EDT 2013

Even so, this powerful technique can be used to so lve many small, "human-scale" problems in which you might be
interested.

Finding All Five-Letter words in PALINDROME

Now, use this same algorithm to determine the five-letter words that you can make using just the letters found in the
word "PALINDROME." Perhaps you can already see how to apply the described algorithm to so lve this problem.
Using the same pseudocode from before, create this Wo rdFinder class.

 In the permut e package o f the /src source fo lder, create a Wo rdFinder class as shown:

CODE TO TYPE: WordFinder

package permute;

import java.util.*;

public class WordFinder {

 final char[] letters;
 final boolean[] used;
 final int n;

 char[] solution;
 Set<String> results;

 public WordFinder (String word) {
 letters = word.toCharArray();
 Arrays.sort(letters);
 n = letters.length;
 used = new boolean[n];
 }

 public void generate (int numChars) {
 solution = new char[numChars];
 results = new TreeSet<String>();
 generate(numChars, 0);
 }

 void generate(int numChars, int step) {
 if (step == numChars) {
 results.add(new String(solution));
 return;
 }

 for (int idx = 0; idx < n; idx++) {
 if (used[idx]) { continue; }

 used[idx] = true;
 solution[step] = letters[idx];
 generate(numChars, step+1);
 solution[step] = 0;
 used[idx] = false;
 }
 }
}

Let's break this so lution up into its constituent parts:

OBSERVE: Instantiating the WordFinder problem

public class WordFinder {

 final char[] letters;
 final boolean[] used;
 final int n;

 char[] solution;
 Set<String> results;

 public WordFinder (String word) {
 letters = word.toCharArray();
 Arrays.sort(letters);
 n = letters.length;
 used = new boolean[n];
 }

 public void generate (int numChars) {
 solution = new char[numChars];
 results = new TreeSet<String>();
 generate(numChars, 0);
 }

 ...
}

The le t t ers array contains the letters from the original word in sorted order. If the original word repeats a letter, that
letter will appear multiple times in this array. The used array keeps track o f which letters have been already used, and
the result s object stores the set o f all computed words found.

The generat e(int numChars) method allows you to use this object repeatedly to generate all words that use a given
number o f characters. It set s t he size o f t he so lut io n array based o n t he desired number o f charact ers, and
it instantiates result s using a T reeSet object; this is done so it can produce the words in sorted order rapidly when
requested. This method uses the recursive generat e(numChars,st ep) method shown:

OBSERVE: Generating all words using a given number o f characters

 void generate(int numChars, int step) {
 if (step == numChars) {
 results.add(new String(solution));
 return;
 }

 for (int idx = 0; idx < n; idx++) {
 if (used[idx]) { continue; }

 used[idx] = true;
 solution[step] = letters[idx];
 generate(numChars, step+1);
 solution[step] = 0;
 used[idx] = false;
 }
 }

This recursive function terminates when the st ep number is t he same as t he number o f desired charact ers.
numChars is passed through as an unchanged parameter to each o f the recursive invocations. The so lut io n[] array
stores the permutation o f letters. Whenever an appropriate word is found, it is added t o t he result s set . Let's try to
run this code.

 Create a MainWo rdFinder class in the /perf o rmance source fo lder:

CODE TO TYPE: MainWordFinder demonstration class

package permute;

public class MainWordFinder {

 public static void main(String[] args) {
 WordFinder wf = new WordFinder("PALINDROME");
 wf.generate(5);

 System.out.println("There are " + wf.results.size() + " five letter words possible.
");
 System.out.println("First ten are:");
 int idx = 10;
 for (String word : wf.results) {
 System.out.println(word);
 if (--idx == 0) { break; }
 }
 }
}

 Save and run it.

INTERACTIVE SESSION: Output from MainWordFinder

There are 30240 five letter words possible.
The first ten words are:
ADEIL
ADEIM
ADEIN
ADEIO
ADEIP
ADEIR
ADELI
ADELM
ADELN
ADELO

N Queens Problem

As a final example, consider the N Queens problem, which asks you to place N queens on an NxN chessboard such
that no two queens attack each o ther. For N >= 4 the problem always has a so lution, but it may take you some time to
determine that so lution. If you could only find some way to convert this problem into a permutation problem, then you
could use the existing algorithm to so lve it. Start by breaking the problem into N steps, placing a non-attacking queen,
one at a time, into each o f the N co lumns on the chessboard. With this approach, you need some permutation o f
queen placements in each co lumn. Let's get started.

 In the /src source fo lder permut e package, create an NQueensPro blem class as shown:

CODE TO TYPE: NQueensProblem

package permute;

public class NQueensProblem {
 final int n;
 final int solution[];

 public NQueensProblem(int n) {
 this.n = n;
 solution = new int[n];
 }

 public void solve() {
 solve(0);
 outputSolution();
 }

 public int count() {
 total = 0;
 count(0);
 return total;
 }

 int total = 0;
 void count(int column) {
 // TBA
 }

 boolean solve(int column) {
 if (column == n) {
 return true;
 }

 // TBA

 return false;
 }

 public void outputSolution () {
 for (int r = 0; r < n; r++) {
 for (int c = 0; c < n; c++) {
 if (solution[c] == r) {
 System.out.print("Q");
 } else {
 if ((r-c) %2 == 0) {
 System.out.print(" ");
 } else {
 System.out.print(".");
 }
 }
 }
 System.out.println();
 }
 System.out.println();
 }
}

Using the model o f placing a queen in each co lumn, the so lut io n[i] array will record the row value (0 .. n-1) o f each
queen placed in the it h co lumn. How many ways can you place N queens on an NxN chess board? Well, there are N*N
squares and from these you choose N squares. When choosing B elements from a larger set o f unique A elements,
the mathematical fo rmula to use is A!/(B!*(A-B)!). This number is actually far smaller than the to tals we were dealing
with earlier. For example, given an 8x8 chess board on which to place 8 queens, the above formula is 64!/(8!*56!) o r
64*63*62*61*60*59*58*57/8*7*6*5*4*3*2*1, which equals 4,426,165,368.

We can make this code even more efficient by placing only non-attacking queens at each step instead o f placing N
queens in the N co lumns, and only then checking whether any two queens attack. Do ing this efficiently can be a bit

tricky. This code creates three arrays to keep track o f important state information:

CODE TO TYPE:

...
public class NQueensProblem {
 final int n;
 final boolean usedRow[];
 final boolean usedDiagonalNE[];
 final boolean usedDiagonalNW[];
 final int solution[];

 public NQueensProblem(int n) {
 this.n = n;
 solution = new int[n];
 usedRow = new boolean[n];
 usedDiagonalNE = new boolean[2*n-1];
 usedDiagonalNW = new boolean[2*n-1];
 }

...

usedRo w[i] records if a queen is placed in row i.
usedDiago nalNE[i] records if a queen is placed in one o f the northeast diagonals on the board.
usedDiago nalNW[i] records if a queen is placed in one o f the northwest diagonals on the board.

There are n elements in usedRo w, but 2*n-1 elements in each o f the diagonal arrays. When placing a queen at square
(co lumn, ro w), the code records that usedRo w[ro w] is true. Given the coordinates for co lumn and ro w, observe
that fo r all squares on the ith northeast diagonal fo r i in the range 0 .. 2*n-1, the sum of ro w+co lumn equals i. For
squares on the northwest diagonals, observe that the difference o f index values ro w-co lumn is in the range (-n+1) ..
(n-1) , so to normalize this array, the code uses ro w-co lumn+n-1 as the index values for i in the range 0 .. 2*n-1 into
usedDiago nalNW[i] .

Revise the so lve(int co lumn) method as shown below. You'll se that the recursive call is made only when it is clear
that placing the queen at (co lumn, ro w) does not attack any existing queen on the board. Once placed, these arrays
are updated prio r to the recursive invocation; they are reset after the invocation:

CODE TO TYPE: Revised so lve() method

 boolean solve(int column) {
 if (column == n) {
 return true;
 }

 // TBA
 for (int row = 0; row < n; row++) {
 if (usedRow[row]) { continue; }
 if (usedDiagonalNW[row-column+n-1]) { continue; }
 if (usedDiagonalNE[row+column]) { continue; }

 usedRow[row] = true;
 usedDiagonalNW[row-column+n-1] = true;
 usedDiagonalNE[row+column] = true;
 solution[column] = row;

 if (solve(column+1)) {
 return true;
 }

 usedDiagonalNE[row+column] = false;
 usedDiagonalNW[row-column+n-1] = false;
 usedRow[row] = false;
 }

 return false;
 }

The recursive method terminates when all co lumns have a queen. If there are more co lumns to process, the f o r loop
runs through all possible row indices to find one that doesn't currently contain a queen (as determined by the
usedRo w array). However, two queens can attack diagonally, so two different arrays are used to record whether there
is already a queen on any o f the northeast diagonals or northwest diagonals.

This code completes the co unt (int co lumn) implementation:

CODE TO TYPE: Modified count() method

 void count(int column) {
 // TBA
 if (column == n) {
 total++;
 return;
 }

 for (int row = 0; row < n; row++) {
 if (usedRow[row]) { continue; }
 if (usedDiagonalNW[row-column+n-1]) { continue; }
 if (usedDiagonalNE[row+column]) { continue; }

 usedRow[row] = true;
 usedDiagonalNW[row-column+n-1] = true;
 usedDiagonalNE[row+column] = true;
 solution[column] = row;

 count(column+1);

 usedDiagonalNE[row+column] = false;
 usedDiagonalNW[row-column+n-1] = false;
 usedRow[row] = false;
 }
 }

Write some validating code to demonstrate the proper execution o f this method.

 Create a MainNQueens class in the permut e package o f the /perf o rmance source fo lder:

CODE TO TYPE: MainNQueens class

package permute;

public class MainNQueens {
 public static void main(String[] args) {
 for (int i = 8; i < 10; i++) {
 NQueensProblem nqp = new NQueensProblem(i);
 nqp.solve();
 System.out.println("---------------------------------");
 }

 for (int i = 4; i < 14; i++) {
 NQueensProblem nqp = new NQueensProblem(i);
 System.out.println(i + ". " + nqp.count());
 }
 }
}

 Save and run it.

OBSERVE: Output from MainNQueens

Q. . . .
. . . Q
 . .Q. .
. . . .Q
 Q . . .
. .Q. .
 . . Q .
. Q . .

Q. . . .
. . Q . .
 Q . . .
. . .Q. .
Q
. Q . . .
 . . . Q
. .Q. . .
 . . .Q.

4. 2
5. 10
6. 4
7. 40
8. 92
9. 352
10. 724
11. 2680
12. 14200
13. 73712

The table at the end o f the output records the to tal number o f unique boards for different values o f n. You can validate
that these are correct by comparing against well-known tables o f these values, like those found at the On-Line
Encyclopedia o f Integer Sequences.

Lessons Learned

There are many permutation-style problems that can be so lved in small problem instances using a brute-
force approach. While the technique doesn't scale to larger problem instances, it can be a useful "cure-all"
when no known algorithm exists, o r you just want to conduct a quick search to see if some so lution exists.

http://oeis.org/A000170

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Path Finding for Single-Player Games
Lesson Objectives

After completing this lesson, you will be able to :

draw a search tree (o f a fixed depth) fo r a so litaire game.
design classes to represent the state in a so litaire game.
design move classes to represent allowable moves.
explain the difference between a Breadth First and Depth First search tree.

Path Finding For Single-Player Games
8-puzzle is a so litaire game formed using a three-by-three grid containing eight square tiles numbered 1 to 8 and an
empty space that contains no tile. A tile adjacent (either horizontally or vertically) to the empty space can be moved by
sliding it into the empty space. The aim is to start from a shuffled initial state and move tiles to achieve a goal state (fo r
example, with the numbers in clockwise order from the upper left corner, with the middle square being empty). There
are no competing players taking alternate turns for these problems, but the behavior is quite similar to game trees.

A search tree represents the set o f intermediate board states as the path-finding algorithm progresses. To be as
efficient as possible, the path-finding algorithm must avo id visiting the same board state twice, o therwise it might get
stuck in an infinite repetition o f useless moves. The result o f the computed search structure is a tree because the
algorithm ensures that it does not visit a board state twice. The algorithm decides the order o f board states to visit as it
attempts to reach its goal.

In order to write a program to so lve 8-puzzle, you need a class that represents the board state.

 Create a new Java Pro ject named SinglePlayer and assign it to the Java6_Lesso ns working set.

 In the /src source fo lder, create a puzzle package.

 In the puzzle package, create a Bo ard class as shown:

http://en.wikipedia.org/wiki/15_puzzle

CODE TO TYPE: Board class

package puzzle;

public class Board {
 int[][] tiles;

 public Board (int[][] initial) {
 tiles = new int[3][3];
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 tiles[r][c] = initial[r][c];
 }
 }
 }

 public Board (Board b) {
 tiles = new int[3][3];
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 tiles[r][c] = b.tiles[r][c];
 }
 }
 }

 public String toString() {
 StringBuilder sb = new StringBuilder();
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 if (tiles[r][c] == 0) {
 sb.append('-');
 } else {
 sb.append(tiles[r][c]);
 }
 }
 sb.append('\n');
 }
 return sb.toString();
 }
}

A two-dimensional array o f int values, t iles, stores the location o f each tile, using the number 0 to represent an
empty tile. The first constructor passes in a sample state representation with three rows o f three co lumns each. The
second constructor makes a copy o f a Bo ard object. The t o St ring() method prepares a human-readable string
depicting the board.

The most common operation on a board state is to determine the valid moves where the player can slide a tile—
horizontally or vertically—into the adjacent empty space. When the empty space is in the middle o f the board, there are
four possible moves, but when the empty space is in one o f the corners o f the board, only two moves are available.

If you have ever played a so litaire puzzle, you know how frustrating it can be to make (o ften random) long sequences
of moves without knowing whether you are actually making real progress towards so lving the problem! You could
prevent repeating a series o f moves if only you could remember whether you had visited a board state previously. In
fact the algorithm presented here demands this functionality. The ability to detect whether a state has been visited is
directly analogous to the ability to co lor vertices in a graph during Depth-First Search.

Let's try to so lve a sample 8-puzzle problem instance. The initial state reading from left to right is: {{1,2,3} , {4 ,0 ,6} ,
{7 ,5 ,8}} where 0 represents the empty square in the middle o f the board. Let's make the final goal state {{1,2,3} ,
{8,0 ,4} , {7 ,6 ,5}} (highlighted in yellow below). The search tree below shows all six possible board states reachable in
two or fewer moves from the initial state. The nodes o f a search tree are the board states.

From the initial state (depth 0), there are two possible moves that result in two new board states on depth 1. In each o f
these two board states, there are three moves; however, depth 2 has only two children states for each. That's because
the search tree never contains any board states that have already been visited. The goal o f this lesson is to
demonstrate how to automate this process to determine the sequence o f moves that leads from the initial state to a
desired goal state.

We've already used Depth-First Search to search through a graph. In this case, the algorithm constructs a search tree
by blindly exploring ahead, choosing moves to make from the available set o f moves in each board state. When using
Depth-First Search on an actual graph, the algorithm backtracks when it runs out o f new vertices to visit. However, the
search tree continually expands as you execute moves to uncover new board states to explore. To avo id having a
"runaway" DepthFirstSearch, let's introduce a new parameter, maxDept h, which determines the maximum depth to
explore a particular branch o f the search tree. If it doesn't reach the goal state by this maximum depth, it begins to
backtrack to try alternate sequences o f moves.

To keep track o f the so lution through the search tree, you need to make some modifications to the Bo ard class
structure:

CODE TO TYPE: Modifications to Board class

package puzzle;

import java.util.*;

public class Board {
 int[][] tiles;
 Board previous;
 int depth;

 ...
}

The dept h attribute records the depth o f a Board in the search tree, while previo us will be a link to the previous Board
in the search tree, which will always be the parent board state for each board state in the search tree.

This pseudocode presents an approach to so lve so litaire puzzles like the 8-puzzle:

OBSERVE: pseudocode for so lving so litaire puzzles with depth restriction

 search(initial, goal, maxDepth)
 solution = {}
 if initial is goal then return "Solution"

 open = new Set
 closed = new Set
 insert (open, initial)
 while open is not empty do
 board = select state from open
 insert (closed, board)
 foreach valid move m at board do
 next = board state after playing m
 if closed doesn't contain next then
 if next = goal then return "Solution"
 else if not exceeded maxDepth then
 insert (open, next)

 return "No Solution"

The algorithm maintains o pen and clo sed sets to guide the search. o pen represents the active horizon o f the
search, and contains board states that will be explored. clo sed remembers the past board states that were visited.
The algorithm proceeds by select ing a bo ard st at e f ro m o pen t o explo re . Then it generat es po t ent ial bo ard
st at es t o visit based o n t he available mo ves. If it hasn't exceeded it s maximum dept h and the newly
generat ed bo ard st at es haven't been visit ed, the bo ard st at es are insert ed int o t he o pen co llect io n.

The behavior o f the search algorithm changes based on the strategy used to decide the next board state in o pen to
process. As you've seen in past lessons, if you use a Stack to store the open states, the algorithm pursues a Depth-
First Search approach; if you use a Queue, the algorithm implements Breadth-First Search.

To complete the implementation o f 8-puzzle you need to create a class to represent a valid move.

 In the puzzle package, create a SlideMo ve class as shown:

CODE TO TYPE: SlideMove class

package puzzle;

public class SlideMove {
 final int fromR, fromC;
 final int toR, toC;

 public SlideMove (int fromR, int fromC, int toR, int toC) {
 this.fromR = fromR;
 this.fromC = fromC;
 this.toR = toR;
 this.toC = toC;
 }

 public boolean execute(Board b) {
 if (!isValid(b)) { return false; }
 b.swap(fromR, fromC, toR, toC);
 return true;
 }

 public boolean isValid(Board b) {
 if (fromR < 0 || fromR >= 3) { return false; }
 if (fromC < 0 || fromC >= 3) { return false; }
 if (toR < 0 || toR >= 3) { return false; }
 if (toC < 0 || toC >= 3) { return false; }

 return b.isAdjacentAndEmpty(fromR, fromC, toR, toC);
 }
}

Let's look at this class more closely. It won't compile just yet, but you'll soon add the required new methods to the

Bo ard class.

OBSERVE:

public class SlideMove {
 final int fromR, fromC;
 final int toR, toC;

 public SlideMove (int fromR, int fromC, int toR, int toC) {
 this.fromR = fromR;
 this.fromC = fromC;
 this.toR = toR;
 this.toC = toC;
 }

 public boolean execute(Board b) {
 if (!isValid(b)) { return false; }
 b.swap(fromR, fromC, toR, toC);
 return true;
 }

 public boolean isValid(Board b) {
 if (fromR < 0 || fromR >= 3) { return false; }
 if (fromC < 0 || fromC >= 3) { return false; }
 if (toR < 0 || toR >= 3) { return false; }
 if (toC < 0 || toC >= 3) { return false; }

 return b.isAdjacentAndEmpty(fromR, fromC, toR, toC);
 }
}

A SlideMo ve represents the movement o f a tile from a given (f ro mR, f ro mC) location to a destination (t o R, t o C)
location. Such a move is valid if t he index values are all valid, t here is an empt y square in t he (t o R, t o C)
lo cat io n, and t he t wo lo cat io ns are neighbo rs. The move executes by swapping t he co nt ent s o f t he t wo
lo cat io ns.

Add these two methods to the end o f the Bo ard class to enable SlideMo ve to compile:

CODE TO TYPE: Add methods to end o f Board class

 public boolean isAdjacentAndEmpty(int fromR, int fromC, int toR, int toC) {
 if (tiles[toR][toC] != 0) { return false; }

 int dC = Math.abs(fromR-toR);
 int dR = Math.abs(fromC-toC);
 if ((dC == -1 && dR == 0) || (dC == +1 && dR == 0) ||
 (dC == 0 && dR == -1) || (dC == 0 && dR == +1)) {
 return true;
 }

 return false;
 }

 public void swap (int fromR, int fromC, int toR, int toC) {
 int tmp = tiles[toR][toC];
 tiles[toR][toC] = tiles[fromR][fromC];
 tiles[fromR][fromC] = tmp;
 }

OBSERVE:

 public boolean isAdjacentAndEmpty(int fromR, int fromC, int toR, int toC) {
 if (tiles[toR][toC] != 0) { return false; }

 int dC = Math.abs(fromR-toR);
 int dR = Math.abs(fromC-toC);
 if ((dC == -1 && dR == 0) || (dC == +1 && dR == 0) ||
 (dC == 0 && dR == -1) || (dC == 0 && dR == +1)) {
 return true;
 }

 return false;
 }

The swap method swaps the location o f two tiles in the board. isAdjacent AndEmpt y performs some calculations to
determine if (t o R, t o C) represents an empty square neighboring another location (f ro mR, f ro mC) either horizontally
or vertically. Variables dC and dR compute the difference o f the indices and a neighbo r is just o ne co lumn o r ro w
away (but no t bo t h) .

The algorithm needs to know the valid moves at any given board state. Add the attribute below and validMo ves()
method to Bo ard to return a List o f the available sliding moves at that state:

CODE TO TYPE: Add attribute and method to the end o f the Board class

 static int deltas[][] = {{+1, 0}, {0, -1}, {-1, 0}, {0, 1}};

 public List<SlideMove> validMoves() {
 int br = -1, bc = -1;

 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 if (tiles[r][c] == 0) {
 br = r;
 bc = c;
 }
 }
 }

 ArrayList<SlideMove> list = new ArrayList<SlideMove>();
 for (int i = 0; i < deltas.length; i++) {
 int dr = deltas[i][0];
 int dc = deltas[i][1];

 SlideMove sm = new SlideMove (br+dr, bc+dc, br, bc);
 if (sm.isValid(this)) { list.add(sm); }
 }

 return list;
 }

This method determines the row and co lumn of the empty space and then constructs an ArrayList object that
represents the the available valid moves, using the SlideMo ve class designed earlier.

All the pieces are now ready to implement the Depth-First Search algorithm for so lving the 8-puzzle problem. To
implement a Depth-First Search you need to implement a search that uses a Stack to store the set o f o pen states that
have not yet been visited.

 In the puzzle package, create a Search class as shown:

CODE TO TYPE: Search class

package puzzle;

import java.util.*;

public class Search {
 public static Board depthFirst(Board initial, Board goal, int maxDepth) {
 if (initial.equals(goal)) { return initial; }

 Stack<Board> open = new Stack<Board>();
 HashSet<Board> closed = new HashSet<Board>();
 open.add(initial);
 while (!open.isEmpty()) {
 Board b = open.pop();
 closed.add(b);
 for (SlideMove sm : b.validMoves()) {
 Board next = new Board(b);
 sm.execute(next);

 next.previous = b;
 next.depth = b.depth + 1;

 if (next.equals(goal)) { return next; }

 if (!closed.contains(next)) {
 if (next.depth < maxDepth) {
 open.add(next);
 }
 }
 }
 }

 return null;
 }
}

Let's break this code down:

OBSERVE: Initializing the Depth First Search algorithm

 public static Board depthFirst(Board initial, Board goal, int maxDepth) {
 if (initial.equals(goal)) { return initial; }

 Stack<Board> open = new Stack<Board>();
 HashSet<Board> closed = new HashSet<Board>();
 open.add(initial);

If t he init ial bo ard st at e is t he go al st at e , t he met ho d exit s immediat e ly. Otherwise, it creates an o pen
object, using the existing Stack class from the Java Collections Framework. As we've seen in earlier lessons, the stack
is the fundamental structure to use when pursuing a depth-first algorithm, because it can save states to which the
algorithm can backtrack as necessary.

The clo sed object is a HashSet that represents states that have already been visited. This object cannot simply be an
ArrayList o r LinkedList because the size o f the clo sed set can be quite large and these classes only support O(n)
performance when checking whether the list contains an item. Also, you cannot use TreeSet immediately because that
demands that the elements being added all implement Comparable; there is no immediate way to compare to board
states to see which one is smaller (or larger). We'll use HashSet, which o ffers O(1) constant time performance to
locate an element. This object will represent a set because the algorithm will no t visit the same state twice in the search
tree.

For HashSet to work properly, the Bo ard class must implement a specialized hashCo de method. Specifically, if two
Bo ard state objects represent the same state, the hashCo de method must return the same value. In an earlier
lesson, we showed how the St ring class implements its hashCo de method efficiently by caching the computed hash
value. Here we take advantage o f the fact that once a Bo ard is added to the clo sed set, it never changes. When writing
classes that are used as key values in the Java Collections Framework, you must provide both the hashCo de
method and a compatible equals method.

Modify the Bo ard class as shown:

CODE TO TYPE: Modifications to Board

package puzzle;

import java.util.*;

public class Board {
 int[][] tiles;
 int hash;
 Board previous;
 int depth;

...

 public List<SlideMove> validMoves() {
 int br = -1, bc = -1;

 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 if (tiles[r][c] == 0) {
 br = r;
 bc = c;
 }
 }
 }

 ArrayList<SlideMove> list = new ArrayList<SlideMove>();
 for (int i = 0; i < deltas.length; i++) {
 int dr = deltas[i][0];
 int dc = deltas[i][1];

 SlideMove sm = new SlideMove (br+dr, bc+dc, br, bc);
 if (sm.isValid(this)) { list.add(sm); }
 }

 return list;
 }

 public boolean equals (Object o) {
 if (o == null) { return false; }
 if (!(o instanceof Board)) { return false; }
 Board other = (Board) o;
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 if (tiles[r][c] != other.tiles[r][c]) { return false; }
 }
 }
 return true;
 }

 public int hashCode() {
 if (hash == 0) {
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 hash = 31*hash + tiles[r][c];
 }
 }
 }

 return hash;
 }
}

Let's review this code:

OBSERVE: equals method for Board

 public boolean equals (Object o) {
 if (o == null) { return false; }
 if (!(o instanceof Board)) { return false; }

 Board other = (Board) o;
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 if (tiles[r][c] != other.tiles[r][c]) { return false; }
 }
 }
 return true;
 }

Two Bo ard objects are equal if they contain the same arrangement o f tiles. The structure is common to many equals
methods you may have seen. First, it makes sure that the o bject o is no t null, because the Java contract fo r equals
states that no object is ever equal to null. Second, any at t empt t o co mpare equalit y wit h a no n-Bo ard o bject
must f ail. Finally, this method iterates over all tiles to determine whether any two corresponding locations contain
different tiles, ret urning f alse at t he f irst dif f erence bet ween t he t wo Bo ard o bject s:

OBSERVE: hashCode method for Board

 public int hashCode() {
 if (hash == 0) {
 for (int r = 0; r < 3; r++) {
 for (int c = 0; c < 3; c++) {
 hash = 31*hash + tiles[r][c];
 }
 }
 }

 return hash;
 }

The hashCo de method uses the hash attribute to cache the computed hash value. This method computes the hash
by using the same multiplicative function found in the String class. For example, the hash value computed for the goal
state is 274869244 .

Everything is in place to try so lving an initial board state.

 In the puzzle package, create a Main class as shown:

CODE TO TYPE: Main class for searching

package puzzle;

public class Main {
 public static void printSolution(Board goal) {
 if (goal == null) {
 System.out.println("No Solution reached");
 } else {
 int count = -1;
 while (goal != null) {
 System.out.println(goal);

 goal = goal.previous;
 count++;
 }
 System.out.println(count + " total moves");
 }
 }

 public static void main(String[] args) {
 Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}});
 Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

 int maxDepth = 8;
 Board result = Search.depthFirst(initial, goal, maxDepth);
 printSolution(result);
 }
}

 Save and run it to confirm the so lution found earlier. The boards are displayed in reverse order, from the goal state
all the way back to the initial position:

OBSERVE: Sample Execution o f DepthFirstSearch algorithm on search tree

123
8-4
765

123
864
7-5

123
864
-75

2 total moves

Breadth-First Search

With only marginal changes, you can create an implementation that explores the search tree in Breadth-First
fashion. Add this method to the end o f the Search class:

CODE TO TYPE: Modifications to Search class

package puzzle;

import java.util.*;

public class Search {
 public static Board depthFirst(Board initial, Board goal, int maxDepth) {
 if (initial.equals(goal)) { return initial; }

 Stack<Board> open = new Stack<Board>();
 HashSet<Board> closed = new HashSet<Board>();
 open.add(initial);
 while (!open.isEmpty()) {
 Board b = open.pop();
 closed.add(b);
 for (SlideMove sm : b.validMoves()) {
 Board next = new Board(b);
 sm.execute(next);

 next.previous = b;
 next.depth = b.depth + 1;

 if (next.equals(goal)) { return next; }

 if (!closed.contains(next)) {
 if (next.depth < maxDepth) {
 open.add(next);
 }
 }
 }
 }

 return null;
 }

 public static Board breadthFirst(Board initial, Board goal) {
 if (initial.equals(goal)) { return initial; }

 Queue<Board> open = new LinkedList<Board>();
 HashSet<Board> closed = new HashSet<Board>();
 open.add(initial);
 while (!open.isEmpty()) {
 Board b = open.remove();
 closed.add(b);
 for (SlideMove sm : b.validMoves()) {
 Board next = new Board(b);
 sm.execute(next);

 next.previous = b;
 next.depth = b.depth + 1;

 if (next.equals(goal)) { return next; }

 if (!closed.contains(next)) {
 open.add(next);
 }
 }
 }

 return null;
 }
}

The code is identical to dept hFirst , except that it uses a Queue (implemented by LinkedList) to store the
open board states, and it removes the next board state from open using the remo ve method. The behavior is
very different from dept hFirst though; it methodically inspects all board states in increasing distance from

the initial state, based on the number o f moves that are used.

Modify Main to report on Breadth-First Search results as well:

CODE TO TYPE: Modifications to Main class

package puzzle;

public class Main {
 public static void printSolution(Board goal) {
 if (goal == null) {
 System.out.println("No Solution reached");
 } else {
 int count = -1;
 while (goal != null) {
 System.out.println(goal);

 goal = goal.previous;
 count++;
 }
 System.out.println(count + " total moves");
 }
 }

 public static void main(String[] args) {
 Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}});
 Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

 int maxDepth = 8;
 Board result = Search.depthFirst(initial, goal, maxDepth);
 printSolution(result);

 Board bfsResult = Search.breadthFirst(initial, goal);
 printSolution(bfsResult);
 }
}

 Save and run it.

OBSERVE: Compare DFS and BFS on simple board

123
8-4
765

123
864
7-5

123
864
-75

2 total moves
123
8-4
765

123
864
7-5

123
864
-75

2 total moves

When running on a board state that is only two moves removed from the so lution, both approaches locate
the so lution quickly, but which one is more efficient? You can judge efficiency in terms o f speed o f execution,
but also evaluate the efficiency o f a search by comparing the size o f the board states visited (clo sed) as well
as the size o f the board states yet to be processed (o pen). You need to instrument the Search and Main
classes to record this information.

Make these changes to Search:

CODE TO TYPE: Modifications to Search

package puzzle;

import java.util.*;

public class Search {
 static int numDFSOpen = 0;
 static int numDFSProcessed = 0;
 static int numBFSOpen = 0;
 static int numBFSProcessed = 0;

 public static Board depthFirst(Board initial, Board goal, int maxDepth) {
 if (initial.equals(goal)) { return initial; }

 Stack<Board> open = new Stack<Board>();
 HashSet<Board> closed = new HashSet<Board>();
 open.add(initial);
 numDFSOpen=1;
 numDFSProcessed=0;
 while (!open.isEmpty()) {
 Board b = open.pop();
 numDFSOpen--;
 numDFSProcessed++;
 closed.add(b);
 for (SlideMove sm : b.validMoves()) {
 Board next = new Board(b);
 sm.execute(next);

 next.previous = b;
 next.depth = b.depth + 1;

 if (next.equals(goal)) { return next; }

 if (!closed.contains(next)) {
 if (next.depth < maxDepth) {
 numDFSOpen++;
 open.add(next);
 }
 }
 }
 }

 return null;
 }

 public static Board breadthFirst(Board initial, Board goal) {
 if (initial.equals(goal)) { return initial; }

 Queue<Board> open = new LinkedList<Board>();
 HashSet<Board> closed = new HashSet<Board>();
 open.add(initial);
 numBFSOpen=1;
 numBFSProcessed=0;
 while (!open.isEmpty()) {
 Board b = open.remove();
 numBFSOpen--;
 numBFSProcessed++;
 closed.add(b);
 for (SlideMove sm : b.validMoves()) {
 Board next = new Board(b);
 sm.execute(next);

 next.previous = b;
 next.depth = b.depth + 1;

 if (next.equals(goal)) { return next; }

 if (!closed.contains(next)) {
 numBFSOpen++;
 open.add(next);
 }
 }
 }

 return null;
 }
}

The changes update two counts for each algorithm, recording the number o f board states in the o pen state
and the number o f board states that were processed.

Make these changes to Main to display this information for the individual runs:

CODE TO TYPE: Modifications to Main class

package puzzle;

public class Main {
 public static void printSolution(Board goal) {
 if (goal == null) {
 System.out.println("No Solution reached");
 } else {
 int count = -1;
 while (goal != null) {
 System.out.println(goal);

 goal = goal.previous;
 count++;
 }
 System.out.println(count + " total moves");
 }
 }

 public static void main(String[] args) {
 Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}});
 Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

 int maxDepth = 8;
 Board result = Search.depthFirst(initial, goal, maxDepth);
 printSolution(result);
 System.out.println("DFSOpen=" + Search.numDFSOpen + ", DFSProcessed=" + Sear
ch.numDFSProcessed);

 Board bfsResult = Search.breadthFirst(initial, goal);
 printSolution(bfsResult);
 System.out.println("BFSOpen=" + Search.numBFSOpen + ", BFSProcessed=" + Sear
ch.numBFSProcessed);
 }
}

 Save and run it to generate statistics for this initial test:

OBSERVE: Sample statistics for trivial board state

123
8-4
765

123
864
7-5

123
864
-75

2 total moves
DFSOpen=1, DFSProcessed=2
123
8-4
765

123
864
7-5

123
864
-75

2 total moves
BFSOpen=2, BFSProcessed=3

In both cases, a so lution o f 2 moves was found, but Breadth-First Search had more states in its o pen set to
be considered for the future and it also processed one more board state than Depth-First Search.

Evaluating Search Tree Algorithms

To evaluate these search algorithms properly, you have togenerate initial board states from which to search
for the goal state. However, you can't just randomly assign the eight digits and the empty space to a Bo ard,
because there may be no way to slide the tiles to achieve the goal state from the randomly selected initial
state. The so lution is to make a randomly number o f moves from some initial state, and then let the
algorithms try to search their way back to the original board state. Let's get started on that infrastructure now.

 In the puzzle package, create a Generat e class as shown:

CODE TO TYPE: Generate class

package puzzle;

import java.util.*;

public class Generate {
 public static Board generate(int n) {
 Board state = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});
 Set<Board> visited = new HashSet<Board>();
 visited.add(new Board(state));
 for (int i = 0; i < n; i++) {
 List<SlideMove> moves = state.validMoves();
 Collections.shuffle(moves);

 Board next = null;
 for (SlideMove sm : moves) {
 next = new Board(state);
 sm.execute(next);
 if (!visited.contains(next)) {
 visited.add(next);
 break;
 }
 }

 if (state.equals(next)) {
 System.err.println("Unable to generate " + n + " moves");
 return null;
 }
 state = next;
 }

 return state;
 }
}

Let's take a closer look at this code.

OBSERVE:

 Board state = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});
 Set<Board> visited = new HashSet<Board>();
 visited.add(new Board(state));
 for (int i = 0; i < n; i++) {
 List<SlideMove> moves = state.validMoves();
 Collections.shuffle(moves);

Starting from the goal state st at e , we instantiate a visit ed set to make sure that we properly generate a to tal
o f n steps without revisiting a previously visited board state. The f o r loop generat es a list o f po t ent ial
mo ves f ro m t he given st at e and shuf f les t his list so the moves are investigated in random order.

OBSERVE: Making a random move

 Board next = null;
 for (SlideMove sm : moves) {
 next = new Board(state);
 sm.execute(next);
 if (!visited.contains(next)) {
 visited.add(next);
 break;
 }
 }

The code above t ries each mo ve, o ne at a t ime , to see if it generat es a new bo ard st at e t hat has
no t already been visit ed. With each pass through the loop, it creat es a co py o f t he st at e bo ard st at e
in next so the move is executed on the copy without affecting the original st at e . If we find an unvisited board

state, we break out o f the f o r loop; o therwise, it repeats until all moves are exhausted. To complete the loop,
review this logic:

OBSERVE: Identifying when not possible to generate board

 if (state.equals(next)) {
 System.err.println("Unable to generate " + n + " moves");
 return null;
 }
 state = next;

When t his met ho d ret urns null, it means that it was unsuccessful in locating a board state n moves away;
the only reason for failure is that all board states with fewer number o f moves were visited. If the computed
next state is not the same as st at e though, it set s st at e t o next and advances to try another move. Once
the appropriate number o f moves has been applied, the method returns a sample board state n moves away.

Demonstrate the use o f this Generat e method by modifying the Main class as shown:

CODE TO TYPE: Modifications to Main class

package puzzle;

public class Main {
 public static void printSolution(Board goal) {
 if (goal == null) {
 System.out.println("No Solution reached");
 } else {
 int count = -1;
 while (goal != null) {
 System.out.println(goal);

 goal = goal.previous;
 count++;
 }
 System.out.println(count + " total moves");
 }
 }

 public static void main(String[] args) {
 Board initial = new Board(new int[][]{{1,2,3}, {8,6,4}, {0,7,5}});
 Board initial = Generate.generate(6);
 Board goal = new Board(new int[][]{{1,2,3}, {8,0,4}, {7,6,5}});

 int maxDepth = 89;
 Board result = Search.depthFirst(initial, goal, maxDepth);
 printSolution(result);
 System.out.println("DFSOpen=" + Search.numDFSOpen + ", DFSProcessed=" + Sear
ch.numDFSProcessed);

 Board bfsResult = Search.breadthFirst(initial, goal);
 printSolution(bfsResult);
 System.out.println("BFSOpen=" + Search.numBFSOpen + ", BFSProcessed=" + Sear
ch.numBFSProcessed);
 }
}

 Run the revised Main class; you'll get different results based on the generated board state. Here is a
sample run where a Depth-First approach finds an 8-move so lution (after processing just 21 board states),
while a Breadth-First approach finds a minimal 6-move so lution (after processing 45 board states).

OBSERVE: Sample run comparing Breadth-First and Depth-First

123
8-4
765

123
-84
765

-23
184
765

2-3
184
765

283
1-4
765

283
-14
765

-83
214
765

8-3
214
765

83-
214
765

8 total moves
DFSOpen=5, DFSProcessed=21
123
8-4
765

1-3
824
765

-13
824
765

813
-24
765

813
2-4
765

8-3
214
765

83-
214
765

6 total moves
BFSOpen=32, BFSProcessed=45

Run it multiple times and compare the results to see low, high, and average results. In general, the Breadth-
First approach will compute the shortest number o f moves to achieve the goal state, but it will process far
more states than the Depth-First approach. However, Depth-First is a blind algorithm and will generate
so lutions with perhaps hundreds or thousands o f moves if you don't set maxDept h—but there may not be
an easy way to determine the proper value to use for maxDept h because that implies that you have (more or
less) an idea as to how many moves away you are.

Lessons Learned

In this lesson you learned:

how to use a Queue structure to impose a Breadth-First approach when inserting and removing
states to search from the o pen set.
how to use a St ack structure to impose a Depth-First approach when inserting and removing
states to search.
that the HashSet class from the Java Collections Framework provides O(1) constant performance
for determining whether the set contains a given element.
how to avo id the need to implement an undo method in the moves by using a constructor to copy
the existing board state to which the moves execute their changes. This behavior is distinctly
different from the game trees from the upcoming two-player lesson.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Path Finding for Two-Player Games
Lesson Objectives

After completing this lesson you will be able to :

describe the structure o f a game tree for two-player games.
explain how Minimax computes best move for player in a game tree.
explain how an evaluation function guides Minimax to choosing the best move.

Path Finding For Two-Player Games
Chopsticks is a two-player hand game. The version presented here is just one out o f many possible variations. Each
player uses both hands, each o f which can represent the values 0 to 4 by the number o f extended fingers on that hand
(thumbs are not invo lved). To start, bo th players extend the index finger on each hand. The players alternate turns, and
when it is his turn, a player may:

T ap
Rebalance

To t ap, a player taps the hand o f an opponent with one o f his hands. When this happens the player's "po ints" in the
tapping hand (represented by the number o f extended fingers) are added to the opponent's tapped hand; the number o f
po ints in the player's hand does not change. Once a hand has five or more po ints, the player closes the hand into a fist
and the hand is considered to be "dead" with zero po ints.

To rebalance , a player must have one "dead" hand, and one hand with an even number o f po ints. On his turn, the
player taps his own "dead" hand with his o ther hand, and the po ints are evenly split between both hands.

The goal o f each player is to fo rce his opponent to have two "dead" hands.

This lesson shows how to use a path finding technique from Artificial Intelligence to compute the best move for a
player, that is, the move that has the highest likelihood o f leading that player to victory. To so lve this kind o f problem
you have to frame the problem computationally and correctly. At any given moment, the state o f the game can be
represented by:

which player's turn it is (Player1 or Player2).
Player1's left hand po ints (0 , 1, 2, 3, o r 4).
Player1's right hand po ints (0 , 1, 2, 3, o r 4).
Player2's left hand po ints (0 , 1, 2, 3, o r 4).
Player2's right hand po ints (0 , 1, 2, 3, o r 4).

So, there are 2x5x5x5x5 = 1,250 unique states o f the game. Consider creating a game tree with nodes that represent
valid states o f the chopsticks game as the players take their turns. Given a particular game state, there are no more
than five possible moves that can be made at any time:

Rebalance.
Use left hand to tap opponent's left hand.
Use left hand to tap opponent's right hand.
Use right hand to tap opponent's left hand.
Use right hand to tap opponent's right hand.

To construct the game tree from a given starting position, create a root node that represents the initial game state o f
(Player1, 1, 1, 1, 1) . In the graphic below, Player1 (the starting player) is depicted on top and his opponent (Player2) is
on the bottom. The two numbers, from left to right, represent the po ints on the left and right hand, respectively. Because
it's Player1's turn (the top player), his state is highlighted in orange. This is a convenient way to visualize the state
(Player1, 1, 1, 1, 1) .

http://en.wikipedia.org/wiki/Chopsticks_(hand_game)

The game tree is expanded by adding child nodes to the leaf nodes in the tree (the root node o f the initial game tree is
a leaf node). The game tree expands based upon the allowed moves for the active player. There are four possible
tapping moves here, but these result in only two distinct game states: if Player1 uses his left (o r right) hand to tap the
left hand o f Player2, the resulting state is (Player2, 1, 1, 2, 1) , which would become the left child in the game tree. If
Player1 uses his left (o r right) hand to tap the right hand o f Player2, the resulting state is (Player2, 1, 1, 1, 2) which
would become the right child in the game tree. Note that in each o f these two nodes, it will be Player2's turn.

At this po int, observe that these two child nodes are really equivalent. If a player has X po ints on the left hand and Y
points on the right hand, this is equivalent to having Y po ints on the left hand and X po ints on the right hand. So, you
can combine these child nodes into one. For consistency, a player's hand can be defined by two values (Lo w,High)
such that Lo w <= High. So, the game state is fully captured by (Player#, Player1Lo w, Player1High, Player2Lo w,
Player2High) , where Player1Lo w <= Player1High and Player2Lo w <= Player2High.

The above game tree has one level below the root node. Each successive level is known as a ply and represents a set
o f game states associated with the same active player. For example, the root node (o ften called ply 0) represents the
active state for Player1, while the next level (ply 1) represents the active states for Player2. Let's expand the tree so
there are four levels (ply 0 through ply 3):

The eight nodes in level 3 o f this game tree represent all possible game states after three moves have been made.

The game tree is expanded by adding children to nodes, so the resulting structure will have no cycles. The final level in
the tree represents the to tal number o f possible states after p=3 moves. As you can see, it's possible for Player2 to
have a "dead hand" after just three moves. You can find this state above because it uses the "*" character to indicate
that one o f the player's hands has no po ints. Each level (or ply) o f the tree contains nodes with an active player that is
the same. Even though there are five possible moves in each game state, not every node is expanded to have five
children nodes. The size o f the game tree is ultimately determined by an expansion factor k which is the average
number o f child nodes for any node in the game tree; fo r chopsticks, k <= 5.

The above image demonstrates how large these trees can grow, even for simple games. If we looked eight moves
ahead (ply=8), the game tree would contain up to 488,280 nodes if every node expanded by five children. The goal is
to select the best available move for a player in a given game state. In the chopsticks game tree above, Player1 can
make only one move in the initial state, so there is really no decision to make. However, Player2 can try to fo rce
Player1 to make a bad decision that would directly lead to Player2's victory. Let's expand one part o f the game tree
above to show this situation:

The highlighted state above is (Player2, 1, 3, 2, 4) . It's Player2's turn in this state, so she can guarantee a victory by
using her hand with 4 fingers to tap Player1's hand with 1 finger. This results in the state (Player1, *, 3, 2, 4) . Player1
would then have only two possible moves: (1) tap Player2's hand with two fingers to create a dead hand; or (2) tap
Player2's hand with 4 fingers to create a dead hand. However, in both o f these situations, Player2 can simply tap
Player1's remaining hand with three fingers to make it a dead hand, thus forcing Player1 to have two dead hands, and
victory is guaranteed.

The game tree represents the full set o f potential game states that result from a sequence o f valid moves from the
initial state; due to its size, it may never be computed fully. The goal o f a path-finding algorithm is to determine from a
starting game state, the player's move that maximizes (or even guarantees) his chance o f winning the game. So we
transform an intelligent set o f player decisions into a path-finding problem over the game tree. This approach works for
games with small game trees, but it also can be scaled to so lve more complex problems.

Given a node representing the current game state, the algorithm computes the best move for a player. Instead o f
considering only the current game state and available moves at that state, the program must consider any
countermoves that the opponent will make after each move. The program must assume that the opponent will select
his best move cho ice and make no mistakes. To make this work computationally, we need a function that can evaluate
a game state objectively and return an integer "score" value for that state. Smaller integer numbers (even negative
ones) reflect weaker positions, while larger integer numbers (including positive infinity) represent stronger positions
for the player.

Given a specific game state, it is easy to determine whether Player1 or Player2 has lost the game. For example, one o f
the final states above is (Player1, *, *, *, 4) so from Player1's perspective, this is a loss and the evaluation function
must rate this board as -Inf init y. However, from Player2's po int o f view, this state is a win so the evaluation function
would rate the same board as +Inf init y. Clearly, it matters from whose perspective the board is evaluated.

The first steps we'll take will be to write code that represents the game state. Here are two ways we could accomplish
that task:

Represent state with four int attributes: playerLo w, playerHigh, o ppo nent Lo w, o ppo nent High.
Represent state with two int arrays: playerPo int s[] and o ppo nent Po int s[] .

The first option above is inefficient, because you'd have to write special code constantly to compare the four different
sums that result from adding together the different possible values. The second option uses arrays which is better
(because you could use nested f o r loops to compute the sums), but you would spend a lo t o f time keeping these two
values in sorted order to take advantage o f the earlier observation regarding game state.

Use an array o f T reeSet objects to maintain the Set o f po ints fo r the players; when a player has two hands with the
same value, only one value is stored for that player's hand. This allows you to write simpler code, although the code
may look slightly complicated the first time that you see it.

 Create a new Java Pro ject named T wo Player and assign it to the Java6_Lesso ns working set.

 In your T wo Player pro ject /src source fo lder, create a cho pst icks package.

 In the cho pst icks package, create a GameSt at e class as shown:

CODE TO TYPE: GameState class

package chopsticks;

import java.util.*;

public class GameState {
 public static final int Player1 = 0;
 public static final int Player2 = 1;

 int player;
 Set<Integer> values[] = new TreeSet[2];

 public GameState (int player, int left1, int right1, int left2, int right2) {
 this.player = player;

 values[0] = new TreeSet<Integer>();
 values[0].add(left1);
 values[0].add(right1);

 values[1] = new TreeSet<Integer>();
 values[1].add(left2);
 values[1].add(right2);
 }

 public boolean hasWon(int p) {
 return values[1-p].size() == 1 && values[1-p].contains(0);
 }

 public String toString() {
 Iterator<Integer> pValues = values[0].iterator();
 Iterator<Integer> oppValues = values[1].iterator();

 StringBuilder sb = new StringBuilder("(Player").append(1+player).append(",");
 int left1 = pValues.next();
 sb.append(left1).append(",");
 if (pValues.hasNext()) { sb.append(pValues.next()); } else { sb.append(left1); }

 int left2 = oppValues.next();
 sb.append(",").append(left2).append(",");
 if (oppValues.hasNext()) { sb.append(oppValues.next()); } else { sb.append(left2);
}
 return sb.append(")").toString();
 }
}

Each game state must store the current player in that situation, using 0 fo r Player1 and 1 fo r Player2. These values
were chosen to make it easier to index into the Set <Int eger> values[] array that stores the T reeSet objects. By
using sets, the game state uses the optimization presented earlier where it only records one value when both hands
have the same value. The hasWo n(p) method determines whether a player p has won in a game state; this happens
when that player's opponent (1-p) has only one value (values[1-p].size() == 1) and that value is 0 .

The t o St ring() helper method is used only during debugging. It builds up a string representing the game state by
iterating over the values in each hand. For efficiency, it uses the St ringBuilder class.

Aside from an outright victory, how is it possible to compute a number that increases in value when a game state is
more likely to lead to victory for a given player? You must develop a heuristic based on properties o f the game state.
Let's start with some observations:

Having one dead hand is bad.
Having hands with 4 po ints is more risky than having hands with 1 po int.
A player has a strong position when one o f her hands can make an opponent's hand dead (and when the
opponent can do this, the player's hand is weaker).

Instead o f including an evaluation method inside GameSt at e , define an interface to be used by any evaluation
function. This lets you to experiment with different evaluation functions quickly.

 In the /src source fo lder cho pst icks package, create an IEvaluat e interface as shown:

CODE TO TYPE: IEvaluate interface

package chopsticks;

public interface IEvaluate {
 int evaluate(GameState state, int player);
}

 In the cho pst icks package, create an Evaluat o r class that implements the heuristics defined earlier:

CODE TO TYPE: Evaluator class

package chopsticks;

public class Evaluator implements IEvaluate {
 public int evaluate(GameState s, int p) {
 if (s.hasWon(p)) { return 10000; }
 if (s.hasWon(1-p)) { return -10000; }

 int sign = 1;
 if (s.player == 1-p) { sign = -1; }

 int value = 0;

 // Having one dead hand is bad
 if (s.values[s.player].contains(0)) { value -= sign*100; }
 if (s.values[1-s.player].contains(0)) { value += sign*100; }

 // Having hands with 4 points is more risky than having hands with 1 point (scale b
y 5 pts)
 for (int pt : s.values[s.player]) {
 value -= sign*pt*5;
 }
 for (int pt : s.values[1-s.player]) {
 value += sign*pt*5;
 }

 // Player has strong position when one of his hands can make an opponent's hand dea
d
 int numMakeDead = 0;
 for (int pt1 : s.values[s.player]) {
 for (int pt2 : s.values[1-s.player]) {
 if (pt1 + pt2 >= 5) { numMakeDead++; }
 }
 }
 value += sign * numMakeDead * 20;

 return value;
 }
}

The evaluat e(st at e ,p) method is symmetric; that is, evaluat e(st at e ,Player1) = -evaluat e(st at e ,Player2) . The
goal o f this method is to make it possible to compare the computed evaluation o f two game states, gs1 and gs2, to
determine which is more favorable to the current player. Accordingly, a victory is a clearly identified 10000 (used in
place o f infinity since no number computed by the evaluat e method will ever be larger than this value). The code
defines a sign variable that determines whether the resulting computation is negative (worse for the player p) o r
positive (better fo r the player p).

When developing heuristics, it is imperative that you write test cases so you can track changes to those heuristics.
Many o f the constants were chosen arbitrarily and you will have to experiment with minor tweaks, so test cases will
prove very useful.

 In your T wo Player pro ject, create a /t est source fo lder.

 In the /t est source fo lder, create a cho pst icks package.

 In the cho pst icks package, create a T est GameSt at e JUnit test case as shown:

CODE TO TYPE: TestGameState JUnit class

package chopsticks;

import junit.framework.TestCase;

public class TestGameState extends TestCase {

 public void testWinning() {
 GameState gs = new GameState(GameState.Player1, 0, 0, 0, 2);
 assertTrue (gs.hasWon(GameState.Player2));
 }

 public void testNotWinning() {
 GameState gs = new GameState(GameState.Player1, 1, 1, 1, 1);
 assertFalse (gs.hasWon(GameState.Player1));
 assertFalse (gs.hasWon(GameState.Player2));
 }

 public void testFourBoards() {
 GameState[] states = {
 new GameState(GameState.Player2, 1, 3, 1, 3),
 new GameState(GameState.Player2, 1, 3, 0, 1),
 new GameState(GameState.Player2, 1, 3, 2, 2)
 };

 GameState worst = new GameState(GameState.Player2, 1, 3, 2, 4);
 IEvaluate eval = new Evaluator();
 int worstRating = eval.evaluate(worst, GameState.Player1);
 System.out.println("Worst State:" + worstRating + " " + worst);

 System.out.println("Other Moves:");
 for (GameState gs : states) {
 int gsRating = eval.evaluate(gs, GameState.Player1);
 System.out.println(gsRating + " " + gs);
 assertTrue (eval.evaluate(gs, GameState.Player1) <= gsRating);
 }
 }
}

This test case ensures that the hasWo n(p) method works properly. It also compares the four game state children on
the right side o f the game tree depicted earlier to validate that the worst state evaluates to a number that is smallest o f
the o ther three sibling states. In o ther words, this should identify that this state is the worst possible arrangement from
Player1's po int o f view. You must be sure that you represent the board states accurately, as well as the player fo r
whom the evaluation is being made . In t est Fo urBo ards, all GameSt at e objects are associated with Player2 and
evaluat e() is called with Player1 as an argument, because the originating node in the game tree is Player1.

Run the test case now and check the output:

OBSERVE: Game State evaluation scores

Worst State:-50 (Player2,1,3,2,4)
Other Moves:
-20 (Player2,1,3,1,3)
85 (Player2,1,3,0,1)
-30 (Player2,1,3,2,2)

When evaluating these four game states from the perspective o f Player1, the (Player2, 1, 3, 2, 4) game state is rated
the lowest.

The game tree is expanded by considering future game states after n moves have been made. Each level o f the tree
alternates between MAX levels (where the goal is to benefit the player by maximizing the evaluated score o f a game

state) and MIN levels (where the goal is to benefit the opponent by minimizing the evaluated score o f a game state).
So, the levels alternate between MAX and MIN levels, which leads to an algorithm known as Minimax. In all cases, the
board is evaluated from the point of view of the player making the original move in the game tree (that is, the active player
in ply 0).

The next game tree shows, in dashed boxes, the score o f the evaluation function on each leaf node in a 2-ply game
tree starting from the (Player2, 1, 1, 1, 2) state where it is Player2's turn. Only leaf nodes are evaluated. Interio r nodes
on levels marked Max receive the maximum score o f their children nodes. Similarly, interio r nodes on levels marked
Min receive the minimum score o f their children nodes.

Of the eight nodes on the ply-2 level, the state (Player2, 1, 3, 2, 4) mentioned earlier is the highest-rated state for
Player2 with a rating o f 50 . However, the lowest rated state (Player2, 1, 3, *, 1) with a rating o f -85 is a sibling o f this
state. In the Min level in state (Player1, 1, 3, 1, 2) , it is Player1's turn to make a move. The algorithm must assume that
an opponent plays without making mistakes; thus given the chance, Player1 would force Player2 into the lowest rated
state. For this reason, the interio r nodes on the ply-1 level are rated as 5 and -85 respectively, representing the worst
positions that Player2 would find himself in after Player1 moves. Finally, the root node on ply 0 selects the move that
maximizes the evaluation o f its children nodes, thus the algorithm would choose the T ap move that results in the state
(Player2, 1, 2, 1, 2) .

Constructing the game tree above does not include writing code to automate this process. This pseudocode
describes that process:

OBSERVE: pseudocode for Minimax

 bestMove (s, player)
 original = player
 [move, score] = minimax(s, ply, MaxLevel)
 return move

 minimax (s, ply, player, opponent)
 best = [null, 0]
 if (ply = 0 or no valid moves) then
 score = evaluate s for original player
 return [null, score]

 foreach valid move m for player in state s do
 execute move m on s
 [move, score] = minimax(s, ply-1, not MaxLevel)
 undo move m on s

 if (player is original) then
 if (score > best.score) then best = [m, score]
 else
 if (score < best.score) then best = [m, score]
 return best

Because the game tree is a recursive structure, the Minimax implementation also recursively identifies game states to
explore. With each recursive call, the ply depth is decreased until ply=0 , at which case the state s is evaluated from the
perspective o f the original player.

The f o reach lo o p inside minimax evaluates the score for each o f the children nodes from state s and remembers
the highest score if that level is a Max level (that is, player at that level is the original player); alternatively, it remembers
the lowest score if that level is a Min level (i.e., no t a Maxlevel). Because the goal o f minimax is to return the best
move for the original player, it must return both the move and the ultimate best score that the player can hope for in the
game tree when making that move.

Now let's go write code to match the Minimax pseudocode.

Minimax Implementation

The goal o f Minimax is to identify a move for a player in a given game state. To represent a valid move, create
this interface.

 In the /src source fo lder cho pst icks package, create an IMo ve interface as shown:

CODE TO TYPE: IMove

package chopsticks;

public interface IMove {
 boolean valid(GameState state);
 boolean make(GameState state);
 boolean undo(GameState state);
}

Classes that claim to be a chopsticks move must be able to execute that move on a GameSt at e object,
changing its contents. All changes are made in place on a GameSt at e object, so a move class must also be
able to undo that move. Finally, the move class must be able to determine if it is even valid fo r a given
GameSt at e .

Define a class to represent the information returned by minimax.

 In the /src source fo lder cho pst icks package, create a Pair class as shown:

CODE TO TYPE: Pair class

package chopsticks;

public class Pair {
 IMove move;
 int score;

 Pair (IMove move, int score) {
 this.move = move;
 this.score = score;
 }
}

 In the /src source fo lder cho pst icks package, create a Minimax class as shown:

CODE TO TYPE: Minimax class

package chopsticks;

import java.util.*;

public class Minimax {
 int ply;
 int original;
 IEvaluate eval;

 public Minimax (int ply, IEvaluate ie) {
 this.ply = ply;
 this.eval = ie;
 }

 public IMove bestMove (GameState s, int player) {
 original = player;
 Pair bestMove = minimax (s, ply, true);
 return bestMove.move;
 }

 Pair minimax (GameState s, int ply, boolean maxLevel) {
 Collection<IMove> validMoves = null;
 if (ply > 0) { validMoves = computeMoves(s); }

 if (ply == 0 || validMoves.isEmpty()) {
 int score = eval.evaluate(s, original);
 return new Pair (null, score);
 }

 Pair best = null;
 for (IMove m : validMoves) {
 if (m.make(s)) {
 Pair next = minimax(s, ply-1, !maxLevel);
 next.move = m;
 m.undo(s);

 if (maxLevel) {
 if (best == null || next.score > best.score) { best = next; }
 } else {
 if (best == null || next.score < best.score) { best = next; }
 }
 }
 }

 return best;
 }
}

This code is missing the co mput eMo ves() method (we'll get to that in a minute.) Let's take a closer look at
this class:

OBSERVE: Constructing a Minimax instance

public class Minimax {
 int ply;
 int original;
 IEvaluate eval;

 public Minimax (int ply, IEvaluate ie) {
 this.ply = ply;
 this.eval = ie;
 }

 public IMove bestMove (GameState s, int player) {
 original = player;
 Pair bestMove = minimax (s, ply, true);
 return bestMove.move;
 }

 ...
}

Minimax st o res t he IEvaluat e implement at io n used to evaluate game states, as well as the ply
representing the maximum depth o f the game tree to expand. To find the best move for a given state s, call the
Minimax method best Mo ve(s, p) , which then st o res t he o riginal player t o use when evaluating game
states. All o f the interesting action happens in the minimax method:

OBSERVE: minimax recursive method

 Pair minimax (GameState s, int ply, boolean maxLevel) {
 Collection<IMove> validMoves = null;
 if (ply > 0) { validMoves = computeMoves(s); }

 if (ply == 0 || validMoves.isEmpty()) {
 int score = eval.evaluate(s, original);
 return new Pair (null, score);
 }

 Pair best = null;
 for (IMove m : validMoves) {
 if (m.make(s)) {
 Pair next = minimax(s, ply-1, !maxLevel);
 next.move = m;
 m.undo(s);

 if (maxLevel) {
 if (best == null || next.score > best.score) { best = next; }
 } else {
 if (best == null || next.score < best.score) { best = next; }
 }
 }
 }

 return best;
 }

Assuming that ply is greater than zero , minimax it erat es t hro ugh all o f t he valid mo ves o ne by o ne .
After applying each move to the game state, minimax() recursively invo kes minimax at a dept h o f ply-1
and negat es t he maxLevel t o alt ernat e bet ween Min and Max levels. When the recursive call ends,
t he mo ve is undo ne , minimax() records the maximum (or minimum) score o f the children nodes o f s, and
it associates that move with the computed score. This method ret urns t he best co mput ed mo ve .

When the recursive minimax method reaches ply o f 0 , it has reached the final depth (fo r completeness.
There may be some game trees where a player has no more available moves earlier than that depth; that
case is treated in the same way). minimax evaluat es t he game st at e f ro m t he perspect ive o f t he

o riginal player and ret urns t he evaluat ed sco re wit hin a Pair o bject that currently has no move
associated with it. The invoking method will associate the appropriate move object.

Now you just need to implement the co mput eMo ves(s) method that returns a co llection o f move objects
that represent the available moves at that state. First, you need to create a class that represents a T ap move.

 In the /src source fo lder cho pst icks package, create a T apMo ve class as shown:

CODE TO TYPE: TapMove class

package chopsticks;

public class TapMove implements IMove {

 final int fromPoints;
 final int toPoints;
 int newValue;

 public TapMove (int fromPoints, int toPoints) {
 this.fromPoints = fromPoints;
 this.toPoints = toPoints;
 }

 public String toString () {
 return "Tap " + toPoints + " with " + fromPoints;
 }

 public boolean valid(GameState s) {
 if (!s.values[s.player].contains(fromPoints)) { return false; }
 if (!s.values[1-s.player].contains(toPoints)) { return false; }
 return true;
 }

 public boolean make(GameState s) {
 if (!valid(s)) { return false; }

 newValue = fromPoints + toPoints;
 if (newValue >= 5) { newValue = 0; }
 if (s.values[1-s.player].size() == 2) {
 s.values[1-s.player].remove(toPoints);
 }
 s.values[1-s.player].add(newValue);

 s.player = 1-s.player;
 return true;
 }

 public boolean undo(GameState s) {
 s.player = 1-s.player;

 if (s.values[1-s.player].size() > 1) {
 s.values[1-s.player].remove(newValue);
 }
 s.values[1-s.player].add(toPoints);

 return true;
 }
}

Let's take a closer look.

TapMove class

public class TapMove implements IMove {

 final int fromPoints;
 final int toPoints;
 int newValue;

 public TapMove (int fromPoints, int toPoints) {
 this.fromPoints = fromPoints;
 this.toPoints = toPoints;
 }

 public String toString () {
 return "Tap " + toPoints + " with " + fromPoints;
 }

 public boolean valid(GameState s) {
 if (!s.values[s.player].contains(fromPoints)) { return false; }
 if (!s.values[1-s.player].contains(toPoints)) { return false; }
 return true;
 }

 ...
}

A TapMove object represents the Tap move with a tapping hand that has f ro mPo int s and with a tapped
hand that contains t o Po int s. To determine whether a given move is valid in GameSt at e s, the valid
method only needs to determine if t he values asso ciat ed wit h t he current player (s.player) co nt ain
f ro mPo int s. Similarly, the move is only valid if t he hand o f t he o ppo nent (1-s.player) co nt ains
t o Po int s. The newValue value is computed within the make move to allow undo to work.

The real logic occurs within make() :

OBSERVE: TapeMove make() method

 public boolean make(GameState s) {
 if (!valid(s)) { return false; }

 newValue = fromPoints + toPoints;
 if (newValue >= 5) { newValue = 0; }
 if (s.values[1-s.player].size() == 2) {
 s.values[1-s.player].remove(toPoints);
 }
 s.values[1-s.player].add(newValue);

 s.player = 1-s.player;
 return true;
 }

If t he mo ve is no t valid in t he st at e s, t hen it ret urns f alse ; o therwise it determines the newValue to
use for the opponent's hand. If newValue is f ive o r great er, the player has a dead hand. The only tricky
logic is to decide how to update the po ints fo r the opponent's hand. If t he o ppo nent 's hand already
co nt ained t wo dist inct values (as det ermined by s.values[1-s.player].size()) , you must remo ve
t he t o Po int s value because it is being replaced with newValue . However, if the hand has two fingers with
the same value (the set s.values[1-s.player] only has one value), you only have to add newValue t o t he
set . Finally, once the move is made, t he player asso ciat ed wit h t he st at e f lips t o t he o t her player.
To complete the T apMo ve class, there needs to be an undo () implementation.

OBSERVE: TapMove undo method

 public boolean undo(GameState s) {
 s.player = 1-s.player;

 if (s.values[1-s.player].size() > 1) {
 s.values[1-s.player].remove(newValue);
 }
 s.values[1-s.player].add(toPoints);

 return true;
 }

The undo method is invoked only after a successful move. Its operations reverse the effect o f the make
method. It first swit ches t he act ive player o f t he st at e , then replaces t he newValue value in t he
o ppo nent 's set wit h t he o riginal t o Po int s value. . If t he o ppo nent has t wo dist inct values,
newValue can be removed safely.

With T apMo ve available, you can now go back to the Minimax class and add the
co mput eMo ves(GameSt at e s) method:

CODE TO TYPE: Adding computeMoves to Minimax

 static Collection<IMove> computeMoves (GameState s) {
 ArrayList<IMove> set = new ArrayList<IMove>();

 for (int to : s.values[1-s.player]) {
 if (to == 0) { continue; }
 boolean alreadyOver = false;
 for (int from : s.values[s.player]) {
 if (from == 0) { continue; }
 if (!alreadyOver) {
 set.add(new TapMove (from, to));
 }
 if (from + to >= 5) {
 alreadyOver = true;
 }
 }
 }

 return set;
 }

This method checks the four possible T ap moves by iterating over all the po ints in the player's hands, and
trying to form T apMo ve objects with the po ints in each o f the opponent's hands. Note that it must avo id dead
hands with no po ints. This method also adds one more optimization that eliminates duplicate moves. For
example, in the state (Player1, 2, 3, 3, 4) , Player1 has four T ap moves (2 on 3, 3 on 3, 2 on 4, 3 on 4).
However, there are really only two potential states that can result from these moves: (Player2, 2, 3, *, 3) and
(Player2, 2, 3, *, 4) . The alreadyOver variable is set to t rue to avo id computing redundant T apMo ve
objects.

Now you're ready to put everything together! Write the code below to determine the best move for Player2
within the (Player2, 1, 1, 1, 2) state.

 In your T wo Player pro ject, create a /perf o rmance source fo lder.

 In the /perf o rmance source fo lder, create a cho pst icks package.

 In the cho pst icks package, create a Print GameT ree class as shown:

COE TO TYPE: PrintGameTree class

package chopsticks;

public class PrintGameTree {
 public static void main(String[] args) {
 GameState gs = new GameState(GameState.Player2, 1, 1, 1, 2);
 IEvaluate eval = new Evaluator();
 int ply = 2;

 Minimax m = new Minimax(ply, eval);

 IMove move = m.bestMove(gs, GameState.Player2);
 System.out.println("best move: " + move);
 }
}

 Save and run it. The output is best mo ve: T ap 1 wit h 1. This means that the best move is go ing to be to
the left o f the game tree presented earlier. So, how can you make sure that the code is working correctly?
Make these code changes to output information as the algorithm executes:

CODE TO TYPE: Changes to Minimax to expose information as it processes

package chopsticks;

import java.util.*;

public class Minimax {
 int ply;
 int original;
 IEvaluate eval;
 StringBuffer padding;

 public Minimax (int ply, IEvaluate ie) {
 this.ply = ply;
 this.eval = ie;
 }

 public IMove bestMove (GameState s, int player) {
 padding = new StringBuffer();
 original = player;
 Pair bestMove = minimax (s, ply, true);
 return bestMove.move;
 }

 Collection<IMove> computeMoves (GameState s) {
 ArrayList<IMove> set = new ArrayList<IMove>();

 for (int to : s.values[1-s.player]) {
 boolean alreadyOver = false;
 for (int from : s.values[s.player]) {
 if (!alreadyOver) {
 set.add(new TapMove (from, to));
 }
 if (from + to >= 5) {
 alreadyOver = true;
 }
 }
 }

 return set;
 }

 Pair minimax (GameState s, int ply, boolean maxLevel) {
 System.out.print(padding.toString() + s + " ");
 Collection<IMove> validMoves = null;
 if (ply > 0) { validMoves = computeMoves(s); }

 if (ply == 0 || validMoves.isEmpty()) {
 int score = eval.evaluate(s, original);
 System.out.println(" [" + score + "]");
 return new Pair (null, score);
 }

 System.out.println();
 Pair best = null;
 for (IMove m : validMoves) {
 if (m.make(s)) {
 padding.append(" ");
 Pair next = minimax(s, ply-1, !maxLevel);
 next.move = m;
 padding.setLength(padding.length()-2);
 m.undo(s);

 if (maxLevel) {
 if (best == null || next.score > best.score) { best = next; }
 } else {
 if (best == null || next.score < best.score) { best = next; }
 }

 }
 }

 System.out.println(padding.toString() + " returning best: " + best.move + "
, " + best.score);
 return best;
 }
}

 Now when you run it, you see this:

OBSERVE: Trace o f the Minimax algorithm

(Player2,1,1,1,2)
 (Player1,1,2,1,2)
 (Player2,1,2,2,2) [5]
 (Player2,1,2,2,3) [10]
 (Player2,1,2,1,3) [15]
 (Player2,1,2,1,4) [30]
 returning best: Tap 1 with 1, 5
 (Player1,1,3,1,2)
 (Player2,1,3,2,2) [30]
 (Player2,1,3,2,4) [50]
 (Player2,1,3,1,3) [20]
 (Player2,1,3,0,1) [-85]
 returning best: Tap 2 with 3, -85
 returning best: Tap 1 with 1, 5
best move: Tap 1 with 1

This output reflects the evaluation values presented in the earlier game tree. The indentation reflects the depth
in the game tree, and the evaluation o f each node (from the perspective o f Player2) appears in brackets at the
end o f each row.

Let's see if this algorithm can find the winning move described earlier fo r Player2 in the state (Player2, 1, 3, 2,
4) . Modify Print GameT ree as to expand only one level:

CODE TO TYPE: Modified PrintGameTree

package chopsticks;

public class PrintGameTree {
 public static void main(String[] args) {
 GameState gs = new GameState(GameState.Player2, 1, 3, 2, 41, 1, 1, 2);
 IEvaluate eval = new Evaluator();
 int ply = 12;

 Minimax m = new Minimax(ply, eval);

 IMove move = m.bestMove(gs, GameState.Player2);
 System.out.println("best move:" + move);
 }
}

 Run it. It determines that the best move is to tap the opponent's hand with 3 fingers to fo rce a dead hand
for Player1:

OBSERVE: Computed 1-ply Minimax search on (Player2, 1, 3, 2, 4)

(Player2,1,3,2,4)
 (Player1,3,3,2,4) [-55]
 (Player1,0,3,2,4) [45]
 (Player1,0,1,2,4) [55]
 returning best: Tap 3 with 2, 55
best move: Tap 3 with 2

Minimax works best when it explores sufficient levels o f the tree. Change the ply to 2 and observe that
Minimax now finds a better move:

OBSERVE: Computed 2-ply Minimax search on (Player2, 1, 3, 2, 4)

(Player2,1,3,2,4)
 (Player1,3,3,2,4)
 (Player2,3,3,0,4) [-85]
 (Player2,3,3,0,2) [-75]
 returning best: Tap 2 with 3, -85
 (Player1,0,3,2,4)
 (Player2,0,3,0,4) [15]
 (Player2,0,3,0,2) [25]
 returning best: Tap 2 with 3, 15
 (Player1,0,1,2,4)
 (Player2,0,1,3,4) [90]
 (Player2,0,1,0,2) [-5]
 returning best: Tap 4 with 1, -5
 returning best: Tap 1 with 4, 15
best move: Tap 1 with 4

In fact, you can increase ply to larger values, but the extra searches are redundant now that a victory has been
found. There is a more efficient path-finding algorithm called Alpha/Beta that can reduce the size o f game
trees dramatically by intelligently pruning redundant searches. You can read about this algorithm in the
Algorithms In A Nutshell companion book.

Lessons Learned

Much o f the success o f Minimax is derived from its ability to model both the game state and the available
moves in the game efficiently. For chopsticks, there were three potential ways to represent the game state.
Design the game state with care because each potential move class must implement three methods—valid,
make, and undo. If you select an overly complicated modeling structure, you will waste precious time
debugging the move classes. You must choose a design that o ffers the greatest benefits to the most move
classes.

Do not skip the step where the IEvaluat e interface was defined. The success o f Minimax ultimately depends
on having accurate and relevant evaluation classes to estimate the "strength" o f a board from a player's po int
o f view. Crafting these heuristics is almost an art fo rm and you'll want to experiment with a number o f
potential evaluation classes.

When implementing an algorithm, be sure to keep the logic o f the core algorithm fully encapsulated within its
own set o f classes. Use interfaces to identify the user-specified classes cleanly fo r the actual game problem
being so lved. That way, you can use the Minimax code as an engine for multiple two-player games.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://shop.oreilly.com/product/9780596516246.do
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Algorithms On Sound Data
Lesson Objectives

When you finish this lesson, you will be able to :

demonstrate how to invoke Fast Fourier Transform on a third-party library.
generate sound wave forms to play using Java's AudioFormat class.
convert a frequency into its note equivalent on a piano keyboard.

Signal Processing Algorithms
The algorithms in this course focus mostly on human-readable real-world data, such as string values, integers,
floating-po int numbers, and Cartesian po ints. Wouldn't it be great to be able to process sound data, fo r example, to
detect the pitch o f a note—or even a chord o f notes—being played? In this lesson, you'll learn how to create and
process sound data using the Fast Fourier Transform (FFT), which is o ften considered one o f the most important
numerical algorithms o f the 20th century. You will learn how to process Waveform Audio File Format (WAV) data
containing uncompressed audio encoded using a linear pulse code modulation (LPCM) format.

Sound is a traveling longitudinal wave which is an oscillation o f pressure. An individual wave is defined by its period
(the distance in time between two high po ints) and amplitude (the to tal distance vertically from the highest po int to the
lowest po int). The amplitude represents the energy o f the wave or its "loudness." For this lesson, we will assume that
all wave forms are normalized between [-1, 1] because the focus is on frequency analysis.

The human ear interprets a sound wave by converting it into a musical pitch (or note). Each musical note corresponds
to a specific frequency which is measured in hertz, o r the number o f complete cycles per second o f a periodic
phenomenon (in this case, the sound wave). Studies have demonstrated that the range o f hearing for an infant child is
20 Hertz to 20,000 Hertz. The middle C on a piano keyboard is tuned to the frequency o f 261.626 Hertz, which is well
within this range (for additional frequency values, see the Wikipedia entry on piano frequencies). If you were to sample
this sound wave 44,100 times per second, you would compute 44,100 individual values—the first 450 are shown
below in the blue time series. The horizontal axis (t-axis) represents time, while the vertical y-axis represents the
energy contained in the wave at time t.

To interpret the above blue sound wave, you need to know the sampling rate and the time when the blue sound wave
completes a full period. The blue wave period is about 169 time units. Since there are 44,100 to tal samples, the
computed frequency o f the blue wave is 44100/169 o r 260.95—close to the middle C frequency we mentioned earlier.

The red sound wave above represents the tone when playing the E key just above middle C. Based on a period o f 135
time units, its frequency is computed to be 326.66—close to its actual value o f 329.628.

Pulse Code Modulation (PCM) demonstrates how to represent the continuous properties o f the wave form discretely.
PCM represents an audio waveform as a sequence o f amplitude values recorded at a sequence o f times. LPCM is

http://en.wikipedia.org/wiki/Piano_key_frequencies

PCM with linear quantization. The standard audio file fo rmat fo r CDs, fo r example, is LPCM-encoded with two channels
of 44,100 samples per second. Each sample is recorded as an unsigned 16-bit integer value.

To begin our investigation into sound data, we'll write a small program that generates an 8-bit quality sound wave form
that plays a middle C note.

 Create a new Java Pro ject named So undFiles and assign it to the Java6_Lesso ns working set.

 In your So undFiles pro ject /src source fo lder, create an f f t package.

 In the f f t package, create a Generat e class as shown:

CODE TO TYPE: Generate class

package fft;

import javax.sound.sampled.*;

public class Generate {
 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f = 261.626;
 double a = 0.5;
 double twoPiF = 2*Math.PI*f;

 double[] buffer = new double [44100];
 for (int sample = 0; sample < buffer.length; sample++) {
 double time = sample / sampleRate;
 buffer[sample] = a * Math.sin(twoPiF*time);
 }

 final byte[] byteBuffer = new byte[buffer.length];
 int idx = 0;
 for (int i = 0; i < byteBuffer.length;) {
 int x = (int) (buffer[idx++]*127);
 byteBuffer[i++] = (byte) x;
 }

 boolean bigEndian = false;
 boolean signed = true;
 int bits = 8;
 int channels = 1;
 AudioFormat format = new AudioFormat(sampleRate,bits,channels,signed,bigEndian);

 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);
 SourceDataLine line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 line.start();
 long now = System.currentTimeMillis();
 line.write(byteBuffer, 0, byteBuffer.length);
 line.close();
 long total = System.currentTimeMillis() - now;
 System.out.println(total + " ms.");
 }
}

 Save and run it. You hear a tone that sounds like the middle C note on the piano. To create this sound, this class
generates a one-second wave form using 8-bit sound encoding. Let's take a closer look:

OBSERVE: Creating Wave Form

 float sampleRate = 44100;
 double f = 261.626;
 double a = 0.5;
 double twoPiF = 2*Math.PI*f;

 double[] buffer = new double[44100];
 for (int sample = 0; sample < buffer.length; sample++) {
 double time = sample / sampleRate;
 buffer[sample] = a * Math.sin(twoPiF*time);
 }

Sound data can be represented using a time series computed using the trigonometric Sine function. In a time series,
the value t represents the time unit, which increments from 0 to increasing positive numbers. The variable f specifies
the desired frequency (in this case, Middle C). The variable a represents a scaling factor (between 0 and 1) to apply to
the amplitude o f the wave. The wave will be at its "loudest" when a is 1.0 , and softer with decreasing values o f a. The
variable t wo PiF pre-computes the constant value used within the f o r loop for optimization. buf f er contains the
sequence o f 44,100 floating po int values representing the wave form. With each pass through the f o r loop, t ime
represents the t-coordinate for which the wave form is computed using the formula a*Sin(2*PI*f*t).

Once buf f er is computed, it must be converted into its corresponding byte encoding. For 8-bit sound quality, there are
256 different values that can be generated. Naturally, 16-bit sound quality is able to more accurately model a sound
wave form because it allows for a to tal o f 65,536 different values:

OBSERVE: Create byte buffer from floating-po int buffer

 final byte[] byteBuffer = new byte[buffer.length];
 int idx = 0;
 for (int i = 0; i < byteBuffer.length;) {
 int x = (int) (buffer[idx++]*127);
 byteBuffer[i++] = (byte) x;
 }

The floating po int values are "scaled" to become signed byte values (-128 to 127). The code actually only computes
255 possible values (from -127 to 127) because o f the conversion from int to byt e , but that's acceptable when
digitizing a Sine wave. The image below charts the sample byte values o f this buffer. The values only range from -63 to
+63 because the amplitude o f the generated wave form, a, is scaled at 0.5 :

The size o f byteBuffer is the same as the original buffer. The JDK plays the 8-bit encoded byte buffer:

OBSERVE: Playing bytes as sound

 boolean bigEndian = false;
 boolean signed = true;
 int bits = 8;
 int channels = 1;
 AudioFormat format = new AudioFormat(sampleRate,bits,channels,signed,bigEndian);

 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);
 SourceDataLine line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 line.start();
 long now = System.currentTimeMillis();
 int written = line.write(byteBuffer, 0, byteBuffer.length);
 line.close();
 System.out.println(written + " bytes written.");
 long total = System.currentTimeMillis() - now;
 System.out.println(total + " ms.");

The Audio Fo rmat object represents the encoding used so the underlying audio software can interpret the bytes it
receives properly. As you can imagine, there are numerous encoding styles and hardware devices available to
process these encodings. Here the code specifies that:

the bytes are encoded in little-Endian order, from least significant bit to greatest. This only matters for 16-bit
and higher encodings.
the bytes are signed (where negative numbers are "below" the x-axis).
there are 8 bits in each encoding, thus the audio hardware will read 8 bits at a time.
there is just a single channel o f output.

An AudioFormat object could have multiple streams of input, called channels. A stereo audio source, fo r example,
would have two channels (left and right). A mono source would have only a single channel.

Once the format is declared, the code creates a So urceDat aLine object to manage the transfer o f bytes. First, the
line is o pened wit h t he declared Audio Fo rmat o bject . Then the st art met ho d is invo ked to declare that it
must be ready to receive the data, which is writ t en as a single blo ck writ e . Finally, the line is clo sed and f inal
st at ist ics are o ut put .

 Run this code again; you might be surprised to hear that the sound seems to play for much less than one second.
The output shows that the program ran in about 1/2 second:

OBSERVE: Generate output

44100 bytes written.
565 ms.

What might be go ing wrong? Well, normally all sound information to be played is buffered prio r to being delivered to
the hardware. To determine the size o f the buffer, modify Generat e as shown:

CODE TO TYPE: Detect size o f sound buffer

...
 long now = System.currentTimeMillis();
 System.out.println("buffer size:" + line.available());
 int written = line.write(byteBuffer, 0, byteBuffer.length);
...

 Run it again; you see that the buffer size is 22,050, which supports about 1/2 second o f audio . The program
completes before the audio hardware finishes playing the sound. The simplest way to fix this is to make sure that all
bytes sent to the audio hardware are drained before it can be closed. This means calling drain() blocks until all data
has been played.

CODE TO TYPE: Properly drain buffer to play entire sound

...
 int written = line.write(byteBuffer, 0, byteBuffer.length);
 line.drain();
 line.close();
...

 Now in addition to playing the sound for a full second, the output shows something like this:

OBSERVE: Proper execution o f Generate

buffer size:22050
44100 bytes written.
1035 ms.

You can have lo ts o f fun with sound wave forms. The next change generates a stereo signal o f middle C being played,
but the amplitude changes in the left and right sides to provide the illusion o f sound depth over a two-second period:

CODE TO TYPE: Modify Generate to generate stereo output

package fft;

import javax.sound.sampled.*;

public class Generate {
 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f = 261.626;
 double a = .5;
 double twoPiF = 2*Math.PI*f;

 double[] buffer = new double[44100*4];
 for (int sample = 0; sample < buffer.length; sample++) {
 double time = (sample/2) / sampleRate;
 double a1 = a*Math.sin(Math.PI*time);
 double a2 = a*Math.cos(Math.PI*time);
 buffer[sample++] = a1 * Math.sin(twoPiF*time); // channel 1
 buffer[sample] = a2 * Math.sin(twoPiF*time); // channel 2
 }

 byte[] byteBuffer = new byte[buffer.length];
 int idx = 0;
 for (int i = 0; i < byteBuffer.length;) {
 int x = (int) (buffer[idx++]*127);
 byteBuffer[i++] = (byte) x;
 }

 boolean bigEndian = false;
 boolean signed = true;
 int bits = 8;
 int channels = 2;1;
 AudioFormat format = new AudioFormat(sampleRate,bits,channels,signed,bigEndian);

 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);
 SourceDataLine line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 line.start();
 long now = System.currentTimeMillis();
 System.out.println("buffer size:" + line.available());
 int written = line.write(byteBuffer, 0, byteBuffer.length);
 System.out.println(written + " bytes written.");
 line.drain();
 line.close();
 long total = System.currentTimeMillis() - now;
 System.out.println(total + " ms.");
 }
}

Experiment with the code some more. For example, change the frequency, f , to determine the lowest or highest pitch
that you can hear.

To be able to process actual sound files containing recorded music, you need to work with 16-bit sound data. Modify
Generat e as shown to recreate a 16-bit mono encoding o f just middle C:

CODE TO TYPE: Modifications to Generate class

package fft;

import javax.sound.sampled.*;

public class Generate {
 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f = 261.626;
 double a = .5;
 double twoPiF = 2*Math.PI*f;

 double[] buffer = new double [44100*42];
 for (int sample = 0; sample < buffer.length; sample++) {
 double time = (sample/2) / sampleRate;
 double a1 = a*Math.sin(Math.PI*time);
 double a2 = a*Math.cos(Math.PI*time);
 buffer[sample++] = a1 * Math.sin(twoPiF*time); // channel 1
 buffer[sample] = a2 * Math.sin(twoPiF*time); // channel 2
 }

 byte[] byteBuffer = new byte[buffer.length*2];
 int idx = 0;
 for (int i = 0; i < byteBuffer.length;) {
 int x = (int) (buffer[idx++]*25532767);
 byteBuffer[i++] = (byte) x;
 byteBuffer[i++] = (byte) (x >>> 8);
 }

 boolean bigEndian = false;
 boolean signed = true;
 int bits = 8;16;
 int channels = 2;1;
 AudioFormat format = new AudioFormat(sampleRate,bits,channels,signed,bigEndian);

 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);
 SourceDataLine line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 line.start();
 long now = System.currentTimeMillis();
 System.out.println("buffer size:" + line.available());
 int written = line.write(byteBuffer, 0, byteBuffer.length);
 System.out.println(written + " bytes written.");
 line.drain();
 line.close();
 long total = System.currentTimeMillis() - now;
 System.out.println(total + " ms.");
 }
}

 You probably won't detect any audible difference, since it still plays a middle C tone for just about two seconds.
We've only made minor changes to the earlier 8-bit mono version. Let's take a closer look at the way byteBuffer is
constructed:

OBSERVE: Create byte buffer with byte pairs

 byte[] byteBuffer = new byte[buffer.length*2];
 int idx = 0;
 for (int i = 0; i < byteBuffer.length;) {
 int x = (int) (buffer[idx++]*32767);
 byteBuffer[i++] = (byte) x;
 byteBuffer[i++] = (byte) (x >>> 8);
 }

To store 16-bit data, you need a byte buffer t wice as large as t he 8-bit so lut io n. In addition, the byte values are no

longer simply drawn from the range o f 256 values (or 28). Instead you need to represent 65,536 (or 216) different
values. To do this, the value is encoded into two neighboring byte values. This code will generate only 65,535
possible encodings, but that's acceptable. Using little-Endian encoding, the lower 8 bits o f the encoded value, x, is
writ t en o ut f irst , then the value o f x is shif t ed 8 bit s t o t he right before it is written out. Finally, the number o f
bits in the AudioFormat object is changed from 8 to 16 and the number o f channels is set to 1. To represent the audio
in big-Endian encoding, you would simply swap the order o f these two bytes in byteBuffer.

Composed Wave Forms

Let's return to the original plo t at the start o f this lesson, which contained a blue wave form representing
middle C and a red wave representing the E above middle C. Instead o f depicting these separately, the image
below represents the combined sound wave o f these two notes playing simultaneously. The wave data is
normalized so its values all remain within the [-1, 1] range:

Where before the sound waves showed clear signs o f periodicity, this wave form seems unintelligible.
However, if you plo t more samples, the periodic structure becomes visible:

Modify the Generat e class as shown:

CODE TO TYPE: Modifications to Generate

package fft;

import javax.sound.sampled.*;

public class Generate {
 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f1 = 261.626;
 double f2 = 329.628;
 double a = .5;
 double twoPiF1 = 2*Math.PI*f1;
 double twoPiF2 = 2*Math.PI*f2;

 double[] buffer = new double [44100*2];
 for (int sample = 0; sample < buffer.length; sample++) {
 double time = sample / sampleRate;
 buffer[sample] = a * (Math.sin(twoPiF1*time) + Math.sin(twoPiF2*time))/2;
 }

 byte[] byteBuffer = new byte[buffer.length*2];
 int idx = 0;
 for (int i = 0; i < byteBuffer.length;) {
 int x = (int) (buffer[idx++]*32767);
 byteBuffer[i++] = (byte) x;
 byteBuffer[i++] = (byte) (x >>> 8);
 }

 boolean bigEndian = false;
 boolean signed = true;
 int bits = 16;
 int channels = 1;
 AudioFormat format = new AudioFormat(sampleRate,bits,channels,signed,bigEndi
an);

 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);
 SourceDataLine line = (SourceDataLine) AudioSystem.getLine(info);
 line.open(format);
 line.start();
 long now = System.currentTimeMillis();
 System.out.println("buffer size:" + line.available());
 int written = line.write(byteBuffer, 0, byteBuffer.length);
 System.out.println(written + " bytes written.");
 line.drain();
 line.close();
 long total = System.currentTimeMillis() - now;
 System.out.println(total + " ms.");
 }
}

 Save and run it. You hear two notes playing simultaneously (Middle C at a frequency o f 261.626 and the E
note just above it at a frequency o f 329.638). The only real difference with earlier code is the construction o f
the floating-po int buffer. Let's review this code:

OBSERVE: Create composed Sound Wave

 float sampleRate = 44100;
 double f1 = 261.626;
 double f2 = 329.628;
 double a = 0.5;
 double twoPiF1 = 2*Math.PI*f1;
 double twoPiF2 = 2*Math.PI*f2;

 double[] buffer = new double [44100*2];
 for (int sample = 0; sample < buffer.length; sample++) {
 double time = sample / sampleRate;
 buffer[sample] = a * (Math.sin(twoPiF1*time) + Math.sin(twoPiF2*time))/2;
 }

The values in buf f er are the composition o f two sounds being played. The values in buf f er must be in the
range [-1, 1]. When adding two Sine values together, t he co de divides by 2 to ensure that the resulting value
remains within this range.

Analyzing Composed Wave Forms

To analyze a composed wave form, you want to identify the individual sound wave frequencies that represent
the dominant components o f the composition. In mathematics, there is a Discrete Fourier Transform (DFT)
that can convert a sampled function into a finite combination o f complex sinuso idal functions ordered by their
frequencies that has the same sample values. There are three important concepts presented in this one
sentence:

Co nvert a Sampled Funct io n: You may know that you can determine a line uniquely by just two
points. That is, given just two pairs o f (x,y) values on a line, you can determine its equation. By
analogy, the sampled sound frequencies are being treated like individual po ints, this time with a t-
coordinate representing the time o f that sample and a y-coordinate representing the amplitude o f
the wave at that time unit. Based so lely on this information, you're trying to determine a function f(t)
that satisfies all o f these po ints.
A f init e co mbinat io n o f sinuso idal f unct io ns: In the composed wave form example, the
resulting chord is computed by adding together two sinuso idal functions. In general, you cannot
know in advance how many sinuso idal functions are present in any complex wave form, but you
can assume that you are looking for only a finite number.
Co mplex sinuso idal f unct io ns: The DFT is defined over the set o f complex numbers, which are
numbers that can be expressed in the form a + bi, where a and b are real numbers and i is the
imaginary unit, defined as i2 = 1. Every real number is already a complex number (with the
imaginary part o f b=0). Second, we are concerned with the magnitude o f the complex numbers
being processed. For a complex number o f the form a + bi, its magnitude is the square root o f (a*a
+ b*b).

Here is the single formula that "explains" the DST:

Ok, that's a bit much. For this lesson you don't need to understand how this fo rmula was derived, but I'll show
you how to implement it in Java. Complex numbers use the special variable i to represent the imaginary unit;
because you can see i in the above formula, you know that it relies on computations over complex numbers.
You can reduce the right half o f the above formula by converting the exponential value o f e like this:

You accumulate X(k) by x(t) times the above, making sure to deal with the complex values that result from the
computation properly. You are given n, which is the number o f sampled values, x(t). You only need to
determine the range o f frequencies for k.

The term x(t) represents the sample value for time unit t; there are n sample values in all. You want to
determine X(k), which represents the signal level fo r frequency k. Now, for which values o f k are you go ing to
compute X? In any input sample, the highest frequency is 1/2 the to tal number o f samples (based on the
concept o f Nyquist Frequency). However, this still leaves you with n*n/2 computations, or O(n2) computations.
You can likely execute DFT on only a small number o f samples before it becomes too costly to execute.

Once the values o f X(k) are computed, you can investigate them to find those maximal values which directly
correlate to the existence o f a wave form in the input with frequency k.

Let's write some code to compute DFT. You can reuse the chord generation code above. Generally, DFT is
meant to process complex values as input; however, your input consists o f real valued samples, so the code
is a bit simpler than the generic DFT.

 In the f f t package, create a DFT class as shown:

CODE TO TYPE: DFT class

package fft;

public class DFT {

 static void dft(double[] inR, double[] outR, double[] outI) {
 for (int k = 0; k < inR.length; k++) {
 for (int t = 0; t < inR.length; t++) {
 outR[k] += inR[t]*Math.cos(2*Math.PI * t * k / inR.length);
 outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);
 }
 }
 }

 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f1 = 261.626;
 double f2 = 329.628;
 double a = .5;
 double twoPiF1 = 2*Math.PI*f1;
 double twoPiF2 = 2*Math.PI*f2;

 double[] bufferR = new double [2048];
 for (int sample = 0; sample < bufferR.length; sample++) {
 double time = sample / sampleRate;
 bufferR[sample] = a * (Math.sin(twoPiF1*time) + Math.sin(twoPiF2*time))/2;
 }

 double[] outR = new double[bufferR.length];
 double[] outI = new double[bufferR.length];

 dft(bufferR, outR, outI);

 double results[] = new double[outR.length];
 for (int i = 0; i < outR.length; i++) {
 results[i] = Math.sqrt(outR[i]*outR[i] + outI[i]*outI[i]);
 }

 java.io.PrintStream ps = new java.io.PrintStream("Sample.txt");
 for (double d : results) {
 ps.println(d);
 }
 ps.close();
 }
}

Let's look at this code more closely. The first half o f the main method is identical to earlier code that
constructs a composed wave form from playing two notes (C and E):

http://en.wikipedia.org/wiki/Nyquist_frequency

OBSERVE: Invoking DFT on the wave form

 double[] outR = new double[bufferR.length];
 double[] outI = new double[bufferR.length];

 dft(bufferR, outR, outI);

 double results[] = new double[outR.length];
 for (int i = 0; i < outR.length; i++) {
 results[i] = Math.sqrt(outR[i]*outR[i] + outI[i]*outI[i]);
 }

The dft method computes t wo buf f ers, o ut R and o ut I, which contain the n computed complex values o f
X(k). These are co mpo sed int o a single result s array by determining the magnitude o f the complex
number. The magnitude o f the complex number a + bi is computed as the square root o f a*a + b*b.

The actual DFT computation is performed in the df t method, which is simplified because the input contains
only real numbers, not complex numbers:

OBSERVE: DFT implementation

 static void dft(double[] inR, double[] outR, double[] outI) {
 for (int k = 0; k < inR.length; k++) {
 for (int t = 0; t < inR.length; t++) {
 outR[k] += inR[t]*Math.cos(2*Math.PI * t * k / inR.length);
 outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);
 }
 }
 }

Given n samples in inR, this loop performs n*n operations, ultimately accumulating the proper complex
number result in o ut R and o ut I. When this method completes, these two arrays contain the complex values
of X(k).

 Save and run DFT; this will create a file "Sample.txt" in the current Eclipse pro ject. To see this file, select the
enclosing pro ject and right-click to select Ref resh.

Because there are 44,100 sample values in just one second o f sound data, the DFT is inefficient fo r our
purposes. Here, only 2048 samples are used to enable the computation to complete in under a second.
However, how do you know that the result is accurate? Retrieve the values from "Sample.txt" and plo t them
using a program such as Excel.

This graph is symmetric. The x-axis represents a frequency index, which divides the 44,100 (the sample rate)
possible frequencies into 2,048 (the number o f samples being used for DFT) discrete ones. This graph
further demonstrates that you only need to consider the first half o f these frequencies. Let's focus on the first

35 values:

We are concerned with only the magnitude o f these values and the two highest po ints that occur are the 13th
and 16th po ints. These indices are based on counting from zero , so these are actually frequency indices o f 12
and 15. You can convert these frequency indices into actual frequencies like this:

12*44100/2048 = 258.3984375
15*44100/2048 = 322.998046875

These two values are really close to the frequencies o f the C and E notes in the composed wave form. Think
about what this code has accomplished! Given a buffer containing a composed wave form, the DFT was
somehow able to iso late the two dominant frequencies. Now let's add some quick and dirty processing code
to identify these maximum peaks within the results array o f a DFT, which will allow you to detect these
frequencies in the composed wave form. For more complex wave forms, you will need a more nuanced
approach, but this gives you an idea o f what's possible. Modify DFT as shown:

CODE TO TYPE: Modifications to DFT

package fft;

import java.util.*;

public class DFT {

 static void dft(double[] inR, double[] outR, double[] outI) {
 for (int k = 0; k < inR.length; k++) {
 for (int t = 0; t < inR.length; t++) {
 outR[k] += inR[t]*Math.cos(2*Math.PI * t * k / inR.length);
 outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);
 }
 }
 }

 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f1 = 261.626;
 double f2 = 329.628;
 double a = .5;
 double twoPiF1 = 2*Math.PI*f1;
 double twoPiF2 = 2*Math.PI*f2;

 double[] bufferR = new double [2048];
 for (int sample = 0; sample < bufferR.length; sample++) {
 double time = sample / sampleRate;
 bufferR[sample] = a * (Math.sin(twoPiF1*time) + Math.sin(twoPiF2*time))/2;
 }

 double[] outR = new double[bufferR.length];
 double[] outI = new double[bufferR.length];

 dft(bufferR, outR, outI);

 double results[] = new double[outR.length];
 for (int i = 0; i < outR.length; i++) {
 results[i] = Math.sqrt(outR[i]*outR[i] + outI[i]*outI[i]);
 }

 java.io.PrintStream ps = new java.io.PrintStream("Sample.txt");
 for (double d : results) {
 ps.println(d);
 }
 ps.close();

 List<Float> found = process(results, sampleRate, bufferR.length, 4);
 for (float freq : found) {
 System.out.println("Found: " + freq);
 }
 }

 static List<Float> process(double results[], float sampleRate, int numSamples,
 int sigma) {
 double average = 0;
 for (int i = 0; i < results.length; i++) {
 average += results[i];
 }
 average = average/results.length;

 double sums = 0;
 for (int i = 0; i < results.length; i++) {
 sums += (results[i]-average)*(results[i]-average);
 }

 double stdev = Math.sqrt(sums/(results.length-1));

 ArrayList<Float> found = new ArrayList<Float>();
 double max = Integer.MIN_VALUE;
 int maxF = -1;
 for (int f = 0; f < results.length/2; f++) {
 if (results[f] > average+sigma*stdev) {
 if (results[f] > max) {
 max = results[f];
 maxF = f;
 }
 } else {
 if (maxF != -1) {
 found.add(maxF*sampleRate/numSamples);
 max = Integer.MIN_VALUE;
 maxF = -1;
 }
 }
 }

 return (found);
 }
}

The pro cess method computes the average and standard deviation o f the result s array and it eliminates
from consideration any frequency index f with a results[f] that is smaller than average + 4*stdev which should
eliminate 99.73% of the frequency indices from consideration. If a magnitude for a particular index is higher
than this thresho ld, it warrants further consideration. Now sweeping f from 0 to n/2 where n is the number o f
computed values in result s the f o r loop seeks to find a local maximum, max, and its corresponding
frequency index value, maxF. Then it computes the detected frequency by multiplying the frequency index,
maxF, by the sampleRate and dividing by numSamples.

 Save and run it; these frequencies are detected in the output:

OBSERVE: Execute DFT

Found: 258.39844
Found: 322.99805

To validate that this code functions as expected, change the f 1 and f 2 values to two different frequencies in
the range 27 to 4,186, which represent the full range o f the 88 keys on the keyboard. The computations won't
identify the frequency precisely because the accuracy o f the computation is limited to 44100/2048 or 21.5
hertz. The only way to increase accuracy is to increase the number o f samples processed by DFT. However,
do ing so will dramatically slow the computation because o f the O(n2) behavior. If you rerun the above code
using different samples, 4096 and 8192 respectively, you get these results in roughly the identified time:

4096: (3 seconds) 258.39844, 333.76465
8192: (10 seconds) 263.78174, 328.38135

There is a more efficient version known as the Fast Fourier Transform (FFT). In this lesson, you will learn how
to use FFT, rather than implement it, because o f the numerical complexity o f the algorithm. There are a
number o f freely available implementations.

To get this library, right-click this link and save the file in your workspace.

Then, add the co mmo ns-mat h3-3.2.jar library to be part o f the build path in Eclipse. Right-click on your
pro ject icon within the workspace and select the Pro pert ies entry; on the left side, select Java Build Pat h.
You see this dialog:

https://courses.oreillyschool.com/data-structures-algorithms/software/commons-math3-3.2-bin.zip

Click the Add JARs... button on the right and use the provided window to browse in your pro ject to the libs
fo lder where the co mmo ns-mat h3-3.2.jar file exists. Select it and click OK. Now you are ready to start using
the FFT code which is part o f this JAR file.

The best way to learn FFT is to use it. Modify the DFT class to execute FFT on the buffer o f double values that
it creates. The only requirement that FFT has is that the input size is a perfect power o f 2. Otherwise, it
produces exactly the same result fo rmat as DFT:

CODE TO TYPE: Modifications to DFT

package fft;

import java.util.*;

import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.transform.*;

public class DFT {

 static void dft(double[] inR, double[] outR, double[] outI) {
 for (int k = 0; k < inR.length; k++) {
 for (int t = 0; t < inR.length; t++) {
 outR[k] += inR[t]*Math.cos(2*Math.PI * t * k / inR.length);
 outI[k] -= inR[t]*Math.sin(2*Math.PI * t * k / inR.length);
 }
 }
 }

 public static void main(String[] args) throws Exception {
 float sampleRate = 44100;
 double f1 = 261.626;
 double f2 = 329.628;
 double a = .5;
 double twoPiF1 = 2*Math.PI*f1;
 double twoPiF2 = 2*Math.PI*f2;

 double[] bufferR = new double [2048];
 for (int sample = 0; sample < bufferR.length; sample++) {
 double time = sample / sampleRate;
 bufferR[sample] = a * (Math.sin(twoPiF1*time) + Math.sin(twoPiF2*time))/2;
 }

 double[] outR = new double[bufferR.length];
 double[] outI = new double[bufferR.length];

 dft(bufferR, outR, outI);
 FastFourierTransformer fft = new FastFourierTransformer(DftNormalization.STA
NDARD);
 Complex resultC[] = fft.transform(bufferR, TransformType.FORWARD);

 double results[] = new double[outR.length];
 for (int i = 0; i < outR.length; i++) {
 results[i] = Math.sqrt(outR[i]*outR[i] + outI[i]*outI[i]);
 }
 for (int i = 0; i < resultC.length; i++) {
 double real = resultC[i].getReal();
 double imaginary = resultC[i].getImaginary();
 results[i] = Math.sqrt(real*real + imaginary*imaginary);
 }

 List<Float> found = process(results, sampleRate, bufferR.length, 4);
 for (float freq : found) {
 System.out.println("Found: " + freq);
 }
 }

 static List<Float> process(double results[], float sampleRate, int numSamples,
 int sigma) {
 double average = 0;
 for (int i = 0; i < results.length; i++) {
 average += results[i];
 }
 average = average/results.length;

 double sums = 0;
 for (int i = 0; i < results.length; i++) {

 sums += (results[i]-average)*(results[i]-average);
 }

 double stdev = Math.sqrt(sums/(results.length-1));

 ArrayList<Float> found = new ArrayList<Float>();
 double max = Integer.MIN_VALUE;
 int maxF = -1;
 for (int f = 0; f < results.length/2; f++) {
 if (results[f] > average+sigma*stdev) {
 if (results[f] > max) {
 max = results[f];
 maxF = f;
 }
 } else {
 if (maxF != -1) {
 found.add(maxF*sampleRate/numSamples);
 max = Integer.MIN_VALUE;
 maxF = -1;
 }
 }
 }

 return (found);
 }
}

 Save and run it; you get the same result as before, but much more quickly. FFT makes it practical to
accurately process composed wave forms. The next step, naturally, is to try to execute FFT on actual recorded
audio samples. Let's get started.

Using FFT on WAV file samples

Your pro ject should come with some existing WAV resources for you to use. Once you finish this lesson,
make your own sound recordings to see if you can replicate the processing done here. Working with real
sound files introduces a number o f additional issues. Let's see how to load up a WAV sound file containing
16-bit encoded data that needs to be converted into do uble values; this sequence is essentially the reverse
of the sound generation you did at the beginning o f this lesson.

There are five sound files to be processed:

CFA_MajorChord.wav: 7 seconds o f a C-F-A chord played on a regular piano
CMajorChord.wav: 7 seconds o f a C-E-G major chord played on a regular piano
ClavinovaCMajorChord.wav: 7 seconds o f a C-E-G major chord played on an electric Yamaha
Clavinova
CSeventhChord.wav: 7 seconds o f a C-E-G-Bb chord (Major C-7th) played on a regular piano
CrystalGlass.wav: 4 seconds o f the ringing o f a crystal glass

Let's process the clearest signal—the crystal glass.

 In the f f t package, create a WAVPro cessing class as shown:

https://courses.oreillyschool.com/data-structures-algorithms/software/CFA_MajorChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/CMajorChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/ClavinovaCMajorChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/CSeventhChord.wav
https://courses.oreillyschool.com/data-structures-algorithms/software/CrystalGlass.wav

CODE TO TYPE: WAVProcessing

package fft;

import java.io.*;
import java.util.*;
import javax.sound.sampled.*;
import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.transform.*;

public class WAVProcessing {
 public static void main(String[] args) throws Exception {
 File fileIn = new File("chords\\CrystalGlass.wav");
 AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(fileIn);
 System.out.println(audioInputStream.getFormat());
 int size = audioInputStream.available();
 byte[] bytesIn = new byte[size];
 audioInputStream.read(bytesIn);

 AudioFormat format = audioInputStream.getFormat();
 float rate = format.getFrameRate();

 int numChannels = format.getChannels();
 double[] buffer = new double [1048576];
 int idx = 0;
 for (int i = 0; i < bytesIn.length && idx < buffer.length; i += 2) {
 byte blow = bytesIn[i];
 byte bhigh = bytesIn[i+1];

 buffer[idx++] = (blow & 0xFF | bhigh << 8)/32767;
 if (numChannels == 2) { i += 2; }
 }

 FastFourierTransformer fft = new FastFourierTransformer(DftNormalization.STA
NDARD);
 Complex resultC[] = fft.transform(buffer, TransformType.FORWARD);

 double[] results = new double[resultC.length];
 for (int i = 0; i < resultC.length; i++) {
 double real = resultC[i].getReal();
 double imaginary = resultC[i].getImaginary();
 results[i] = Math.sqrt(real*real + imaginary*imaginary);
 }

 List<Float> found = DFT.process(results, rate, resultC.length, 7);
 HashMap<String,Float> keys = new HashMap<String,Float>();
 System.out.println("Found:" + found);
 for (float freq : found) {
 keys.put(closestKey(freq), freq);
 }
 for (String note : keys.keySet()) {
 System.out.println("Found: " + note + " @ freq=" + keys.get(note));
 }
 }

 static String[] notes = {"A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#",
 "G", "G#"};

 public static String closestKey(double freq) {
 int key = closestKeyIndex(freq);
 if (key <= 0) { return null; }
 int range = 1+(key-1)/notes.length;
 return notes[(key-1)%notes.length] + range;
 }

 public static int closestKeyIndex(double freq) {
 return 1+(int)((12*Math.log(freq/440)/Math.log(2) + 49) - 0.5);
 }

}

 Save and run it:

OBSERVE: CrystalGlass Analysis

PCM_SIGNED 44100.0 Hz, 16 bit, stereo, 4 bytes/frame, little-endian
Found:[1645.6919, 1646.7013, 1647.5845, 1651.4116, 1664.2811, 3217.153]
Found: G#6 @ freq=1664.2811
Found: G7 @ freq=3217.153

The code may have trouble distinguishing frequencies at the higher octaves on the piano. Ideally the sound o f
crystal glass would have only one harmonic subtone one octave above the base tone o f G#6 . You can see
that the identified frequences are nearly double each o ther.

Most o f this code is familiar to you by now. Let's review the new additions:

OBSERVE: Converting Frequency into a piano note

 static String[] notes = {"A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#",
 "G", "G#"};

 public static String closestKey(double freq) {
 int key = closestKeyIndex(freq);
 if (key <= 0) { return null; }
 int range = 1+(key-1)/notes.length;
 return notes[(key-1)%notes.length] + range;
 }

 public static int closestKeyIndex(double freq) {
 return 1+(int)((12*Math.log(freq/440)/Math.log(2) + 49) - 0.5);
 }

A number o f frequencies were detected by FFT. The code we write next conso lidates these frequencies into
distinct pitches using a HashMap to associate the detected frequency with the closest key as computed
above.

The no t es static field records the 12 distinct notes as found on a piano. Each tone occurs at a given octave
number. The lowest note on the 88-key piano keyboard is key number 1 (A0); the highest note is key number
88 (C8). The clo sest KeyIndex method takes a frequency and returns the corresponding key number on the
piano in the range from 1-88. This fo rmula is derived from the logarithmic nature o f the frequencies. The
clo sest Key function converts this number into a human-readable string representing the note on the piano
that most closely corresponds to the given frequency:

OBSERVE: conso lidate frequencies into pitches

 List<Float> found = DFT.process(results, rate, resultC.length, 7);
 HashMap<String,Float> keys = new HashMap<String,Float>();
 System.out.println("Found:" + found);
 for (float freq : found) {
 keys.put(closestKey(freq), freq);
 }

Frequencies that are "close together" become conso lidated in the HashMap, so only two detected notes
appear in the output.

The notes on an ideal piano range from a low frequency o f 27.5 to a high o f 4186.01. Instead o f being evenly
spaced, the notes are arranged in octaves that are multiples o f each o ther. For example, middle C is the
frequency 261.626, while the C one octave higher is 523.251. The clo sest KeyIndex method computes the
piano key index with 1 being the lowest key on the piano and 88 being the highest key. If the frequency is
lower than the lowest key on the piano, this method returns a number smaller than 1; that's why the
clo sest Key method pro tects against this situation.

Lessons Learned

So und wave dat a has a st ruct ure t hat yo u can manipulat e: Sound data is encoded in bytes
to represent the wave forms.
Real-wo rld so und dat a is no t perf ect : The sound data you generate has a near-perfect
representation as sinuso iudal wave forms. Recorded sounds rarely have this structure, so the FFT
results are indicative o f existing frequencies, rather than clear and definitive.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Conclusion
Lesson Objectives

When you finish this lesson, you will be able to :

implement a data structure that conforms to the Set interface.
write code to remove an element from an unbalanced binary search tree.
explain why kd-trees are unable to easily support element removal.
explain how to rebalance a self-balancing binary tree after deleting values.

Concluding Lesson For Algorithms
In this final lesson, we'll go over removing elements from a co llection. Throughout the course, you have learned how
to use a variety o f data structures to represent information. In all cases, the presentation focused on how to construct
entire representations from the beginning. However, it is also important to be able to describe how to remove an
element from a co llection that you have spent so much time constructing. We'll conduct this topic in these contexts:

Arrays
Binary Search Trees
AVL Binary Search Trees
kd-trees

This lesson provides a capstone experience by pulling together most o f the important data structures you've seen and
explaining new functionality that you might expect to see.

Removing Elements From a Sorted Array

Given a sorted array o f elements, you can use an Binary Array Search to locate an element in the array in
O(log n) time. To remove an element, however, you have two cho ices:

Allocate a new array to contain all elements from the original set minus the one being removed.
Shift elements down within the existing array and maintain an additional value, number, that
records the number o f elements in the array (note that number < length).

Past lessons have demonstrated both o f these options, and neither leads to an efficient implementation.
Specifically, inserting an element into—or removing an element from—an array-based structure requires O(n)
in the worst case because you have to copy n-1 elements within the same array. Neither o f these cho ices lets
you amortize the costs across multiple remove or add requests.

You might consider a third cho ice, using an ArrayList object to store the sorted elements, but then you
become responsible for inserting new values at their proper locations. This can be less difficult to implement
than either o f the first two cho ices. When you use ArrayList , make sure that So rt edSet conforms to the
Set interface o f the Java Collections Framework.

 Create a new Java pro ject named Co nclusio n and assign it to the Java6_Lesso ns working set.

Copy the packages and programs from your BinaryT ree pro ject into your Co nclusio n pro ject.

 In your Co nclusio n pro ject /src source fo lder, binary package, create a So rt edSet class as shown:

CODE TO TYPE: SortedSet class

package binary;

import java.util.*;

public class SortedSet<E extends Comparable<E>> implements Set<E> {
 ArrayList<E> list = new ArrayList<E>();

 int binarySearch(E e) {
 int low = 0;
 int high = list.size()-1;
 while (low <= high) {
 int mid = (low + high)/2;
 int rc = e.compareTo(list.get(mid));
 if (rc < 0) {
 high = mid - 1;
 } else if (rc > 0) {
 low = mid + 1;
 } else {
 return mid;
 }
 }
 return -(low + 1);
 }

 public boolean add(E e) {
 int idx = binarySearch(e);
 if (idx >= 0) { return false; }

 list.add(-(idx+1), e);
 return true;
 }

 public boolean remove(Object o) {
 int idx = binarySearch((E)o);
 if (idx < 0) { return false; }

 list.remove(idx);
 return true;
 }
}

The So rt edSet class uses an ArrayList object to store a set o f elements in sorted order; the set contains
no duplicates.

The code won't compile just yet because there are still some methods that you have to write to satisfy the
Set interface. Let's take a closer look at the initial functionality:

OBSERVE: binarySearch on a sorted ArrayList

int binarySearch(E e) {
 int low = 0;
 int high = list.size()-1;
 while (low <= high) {
 int mid = (low + high)/2;
 int rc = e.compareTo(list.get(mid));
 if (rc < 0) {
 high = mid - 1;
 } else if (rc > 0) {
 low = mid + 1;
 } else {
 return mid;
 }
 }
 return -(low + 1);
}

The binarySearch method assumes the underlying list ArrayList stores its items in order. The code is similar
to the binarySearch implemented in an earlier lesson; the only difference is that it must access each element
in list using the get () method. binarySearch returns a non-negative value (that is, greater than or equal to
zero), when it finds the desired element e in the ArrayList . When binarySearch returns a negative number x,
element e should be inserted at -(x+1). For example, when x=-1 is returned, element e is to be inserted at
position 0. You can see this behavior in the code for add:

OBSERVE: Methods to add element to and remove element from sorted ArrayList

 public boolean add(E e) {
 int idx = binarySearch(e);
 if (idx >= 0) { return false; }

 list.add(-(idx+1), e);
 return true;
 }

 public boolean remove(Object o) {
 int idx = binarySearch((E)o);
 if (idx < 0) { return false; }

 list.remove(idx);
 return true;
 }

In the contract defined by the Java Collections Framework, the add method in the Set interface must ret urn
t rue whenever its contents have changed. The remo ve method similarly ret urns t rue only when its
contents have changed. To conform to the Set contract, the remo ve method takes a generic Object as its
parameter.

The Set interface defines a co nt ains method that you can add to the end o f the So rt edSet class now:

CODE TO TYPE: Add method to the end o f SortedSet

...
 public boolean contains(Object o) {
 return (binarySearch((E)o) >= 0);
 }
}

The Collections Framework defines a number o f bulk operations to perform on a set. Add these methods to
the So rt edSet class.

CODE TO TYPE: Add bulk operation methods to end o f class

...
 public boolean addAll(Collection<? extends E> c) {
 boolean changed = false;
 for (E e : c) {
 changed |= add(e);
 }
 return changed;
 }

 public boolean removeAll(Collection<?> c) {
 boolean changed = false;
 for (E e : (Collection<E>)c) {
 changed |= remove(e);
 }
 return changed;
 }

 public boolean containsAll(Collection<?> c) {
 for (E e : (Collection<E>)c) {
 if (binarySearch(e) < 0) { return false; }
 }
 return true;
 }

 public boolean retainAll(Collection<?> c) {
 boolean changed = false;
 for (int idx = list.size() - 1; idx >= 0; idx--) {
 if (!c.contains(list.get(idx))) {
 list.remove(idx);
 changed = true;
 }
 }
 return changed;
 }
}

The addAll(c) and remo veAll(c) methods iterate over elements in the Co llect io n parameter c and add or
remove that element from the ArrayList storage.

The co nt ainsAll(c) method iterates over every element, e, in c to determine if the So rt edSet contains e,
returning f alse immediately when a non-member element, e, is detected. If all elements in c belong to the
So rt edSet , it returns t rue .

The ret ainAll(c) method demands a more complicated implementation. Specifically, this method removes
all elements in So rt edSet that do not exist within c; it does so by iterating through its elements in reverse
order, removing each element that does not exist in c. If the ret ainAll(c) method changes the set in any way,
it must return t rue , based on the contract fo r the Set interface.

To complete the implementation o f the necessary methods required by Set , add the fo llowing methods to the
end o f the So rt edSet class:

CODE TO TYPE: Complete SortedSet implementation

...
 public int size() { return list.size(); }
 public Object[] toArray() { return list.toArray(); }
 public <T> T[] toArray(T[] a) { return list.toArray(a); }
 public void clear() { list.clear(); }
 public boolean isEmpty() { return list.isEmpty(); }
 public Iterator<E> iterator() { return list.iterator(); }
}

In each case, the required method delegates each request to the internal list ArrayList object.

Even though the So rt edSet class now compiles, you still have to implement some methods to conform to

the Java Collections Framework. Specifically, fo r So rt edSet to truly satisfy the Set interface, its hashCo de
method must be implemented to return the sum of the hashCo de o f the values it contains. Add the fo llowing
method to the end o f So rt edSet :

CODE TO TYPE: Add hashCode method to SortedSet

...
 public int hashCode() {
 int hash = 0;
 for (int i = 0; i < list.size(); i++) {
 hash += list.get(i).hashCode();
 }
 return hash;
 }
}

The final change is to ensure that the equals(o) method returns t rue if and only if o is a set, the two sets
have the same size, and every member o f o is contained in this set. Add this method to the end o f the
So rt edSet class:

CODE TO TYPE: Add equals method to SortedSet

...
 public boolean equals(Object o) {
 if (o == null) { return false; }
 if (!(o instanceof Set)) { return false; }
 Set<E> s = (Set<E>) o;
 if (s.size() != list.size()) { return false; }
 for (E e : s) {
 if (binarySearch(e) < 0) { return false; }
 }
 return true;
 }
}

Once the equals method determines that it is comparing against another Set object, s, it iterates through
each element, e in s, to determine whether the So rt edSet contains e, returning f alse at the first difference.
Once all elements are determined to be contained within the So rt edSet , it can safely return t rue .

Congratulations! You have completed your first Set implementation! Write the St ressT est class to
demonstrate its functionality and compare its performance with the T reeSet implementation.

 In your Co nclusio n pro ject /src source fo lder, binary package, create a St ressT est class as shown:

CODE TO TYPE: StressTest class

package binary;

import java.util.*;
public class StressTest {
 final static double AddProb = 0.20;
 final static double ContainsProb = 0.70;
 final static int SetSize = 5000;
 final static int TrialSize = 50000;
 final static String[] Types = {"Add", "Contains", "Remove" };

 static void fail(String err) {
 System.err.println("Failed on:" + err);
 System.exit(-1);
 }

 public static void main(String[] args) {
 TreeSet<Integer> base = new TreeSet<Integer>();
 SortedSet<Integer> set = new SortedSet<Integer>();
 double baseCount[] = new double[3];
 double setCount[] = new double[3];
 int counts[] = new int[3];
 long start;
 boolean b,s;
 for (int t = 0; t < TrialSize; t++) {
 int n = (int)(Math.random()*SetSize);
 double choice = Math.random();
 if (choice < AddProb) {
 start = System.nanoTime();
 b = base.add(n);
 baseCount[0] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.add(n);
 setCount[0] += (System.nanoTime() - start);
 if (b != s) { fail(Types[0]); }
 counts[0]++;
 } else if (choice < ContainsProb) {
 start = System.nanoTime();
 b = base.contains(n);
 baseCount[1] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.contains(n);
 setCount[1] += (System.nanoTime() - start);
 if (b != s) { fail(Types[1]); }
 counts[1]++;
 } else {
 start = System.nanoTime();
 b = base.remove(n);
 baseCount[2] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.remove(n);
 setCount[2] += (System.nanoTime() - start);
 if (b != s) { fail(Types[2]); }
 counts[2]++;
 }
 }
 for (int i = 0; i < counts.length; i++) {
 if (counts[i] != 0) {
 baseCount[i] /= counts[i];
 setCount[i] /= counts[i];
 }
 System.out.println(Types[i] + " base=" + (int)baseCount[i]+ " set=" + (int
)setCount[i]);
 }
 }
}

 Run it to compare the behavior o f So rt edT est against T reeSet when 500,000 random operations are
performed on each co llection where 20% of the time a random integer (up to 5000) is added, 50% of the time
a contains query is executed, and 30% of the time a random integer (up to 5000) is requested to be deleted.
Fine-grained timing statistics are recorded for each operation on the two data structures. The sample output
below shows that, on average, So rt edSet is always slower than T reeSet (almost three times slower for
add and remove). Your performance results will likely vary from those shown:

OBSERVE: Output from StressTest execution

Add base=255 set=856
Contains base=215 set=283
Remove base=245 set=659

Ultimately the T reeSet class will outperform So rt edSet because o f the extra cost o f growing the array that
contains the elements o f the So rt edSet ; still this was a worthwhile exercise.

Now let's look at how to handle the removal o f elements from highly structured data structures.

Removing Elements From Binary Search Trees

Binary Search Trees (BSTs) o ffer the first data structure for which removing an element should be an O(log n)
operation; after all, it takes O(log n) performance to determine whether the BST contains the element in the first
place. You need to identify a deterministic way to reconstruct the BST after removing an element. If you are
removing a leaf node, the BST already is properly fo rmed; however, what if you remove an element that has
one or more children? Consider this small BST with seven elements from which you would like to remove the
element 4 :

As you can see, this value is currently the root node o f the tree. What can be done? You could always recreate
a new BST by starting from scratch and inserting all n-1 elements, but that would be inefficient; in fact, that
single operation would require on the order o f O(n log n) operations. Instead, compare the fo llowing six-
element BST with the earlier seven-element BST.

You can observe that the right sub-trees are the same in both BSTs and that the second tree continues to
support the Binary Search Tree Property. The second tree was not fo rmed by deleting the node 4 . Rather, the
value associated with this node was replaced with the largest element in its left sub-tree, in this case, 3. There
is one small caveat; if the node you want to delete has no left sub-tree, it can be replaced by the entire right
sub-tree o f the node to be deleted, as shown in the image below, which describes the result o f removing the
value 6 from a sample BST:

Given a node n with value that is to be removed from the tree, the largest element in its left sub-tree is exactly
the right-most descendant of the left child of n. As you can see, this value is smaller than all o f the values in the
right sub-tree o f the node being removed (because the tree is a BST). This value is also larger than all o f the
other nodes in the BST rooted by the left child o f the node being removed. Once you find X, the right-most
descendant o f the left child o f the node being removed, you can Well, you can swap its value with the node
being removed. Now, what if the node for X has any child nodes? Then it cannot have any right children,
o therwise it would not be the right-most descendant o f the left child o f the node being removed. However, X
might have a left child; indeed, it might have an entire sub-tree rooted by that left child. Fortunately, as with the
ro tations described earlier in the AVL lesson, you can "lift" up X's left sub-tree to replace X in the BST, and the
BST properties will once again ho ld. The image below shows the transformation o f the BST when requested
to remove the value 50 from the BST. X=30 , is the largest element in the left sub-tree o f 50 . The inner node
10 has only its right sub-tree changed to be the entire sub-tree 30L, as shown:

Make these changes to the BinaryT ree class in the binary package:

CODE TO TYPE: Modifications to BinaryTree

package binary;

public class BinaryTree<E extends Comparable<E>> {

 BinaryNode<E> root = null;

 public int size() {
 if (root == null) { return 0; }

 return root.size();
 }

 public int height () {
 if (root == null) { return 0; }

 return height(root);
 }

 int height (BinaryNode<E> n) {
 if (n == null) { return 0; }

 return 1 + Math.max(height(n.left), height(n.right));
 }

 public void add (E k) {
 if (root == null) {
 root = new BinaryNode<E>(k);
 return;
 }

 root = root.add(root, k);
 }

 public boolean contains (E k) {
 return contains(root, k);
 }

 boolean contains (BinaryNode<E> parent, E k) {
 if (parent == null) { return false; }

 int rc = k.compareTo(parent.key);
 if (rc == 0) {
 return true;
 } else if (rc < 0) {
 return contains(parent.left, k);
 } else {
 return contains(parent.right, k);
 }
 }

 public void remove (E k) {
 if (root == null) { return; }

 root = remove(root, k);
 }

 BinaryNode<E> remove (BinaryNode<E> parent, E k) {
 if (parent == null) { return null; }
 int rc = k.compareTo(parent.key);
 if (rc == 0) {
 return parent.updateNodes();
 } else if (rc < 0) {
 parent.left = remove(parent.left, k);
 } else {
 parent.right = remove(parent.right, k);
 }

 return parent;
 }
}

The structure o f the new remo ve method is similar to the co nt ains method—to delete an element, you must
first determine whether it exists in the BST. Once k.co mpareT o (parent .key) returns 0 , you have found the
node that contains the value to be removed. At this po int, you need to write an additional method in
BinaryNo de that properly updates the node.

Modify BinaryNo de as shown:

CODE TO TYPE: Modifications to BinaryNode

package binary;

public class BinaryNode<E extends Comparable<E>> {
 final E key;
 BinaryNode<E> left;
 BinaryNode<E> right;

 public BinaryNode(E k) {
 this.key = k;
 }

 public int size() {
 return 1 + size(left) + size(right);
 }

 int size(BinaryNode<E> n) {
 if (n == null) { return 0; }
 return n.size();
 }

 void add (E k) {
 int rc = k.compareTo(key);
 if (rc <= 0) {
 left = add(left, k);
 } else {
 right = add(right, k);
 }
 }

 BinaryNode<E> add(BinaryNode<E> parent, E k) {
 if (parent == null) {
 return new BinaryNode<E>(k);
 }

 parent.add(k);
 return parent;
 }

 public BinaryNode<E> updateNodes() {
 if (left == null && right == null) { return null; }
 if (left == null) { return right; }
 if (right == null) { return left; }

 BinaryNode<E> child = left;
 BinaryNode<E> grandChild = child.right;
 if (grandChild == null) {
 left = child.left;
 key = child.key;
 } else {
 while (grandChild.right != null) {
 child = grandChild;
 grandChild = grandChild.right;
 }
 key = grandChild.key;
 child.right = grandChild.left;
 }

 return this;
 }
}

The updat eNo des method is called on a node that has been targeted for deletion. The value returned must
be the (possibly new) node that will take the place o f this node in the BST and which may have its own left and
right sub-trees.

The first three if statements in the updat eNo des method handle the fo llowing cases (in this order):

The first three if statements in the updat eNo des method handle the fo llowing cases (in this order):

1. The node being deleted is a leaf node, in which case it can be removed entirely.
2. The node being deleted has only a right child, in which case that child is returned.
3. The node being deleted has only a left child, in which case that child is returned.

If the node to be deleted has both left and right children, the more complicated logic must be fo llowed. The
goal is to find the right-most descendant o f the left child o f the node being deleted (t his). To start, child is set
to the left child and grandChild is the right child (if it exists) o f child. If child has no right child (that is,
grandChild is null), then child itself is the right-most descendant o f t his. The image below describes this
case:

The code "lifts" the left sub-tree o f child to become the left sub-tree o f t his and the key value associated with
t his is set to the child's key value. However, if child has a right child, the code seeks to find the right-most
descendant by traversing the right links continually until grandChild.right is null (in o ther words,
grandChild is known to be the right-most child). The image below describes this case. Here the node
identified as z is the right-most descendant o f child. It has no right child o f its own.

In the resulting modified BST, the key o f the node with the value that was removed has been changed to z and
this will maintain the BST property o f the overall tree; in addition, the left sub-tree o f z (if it exists) has been
"lifted up" to be the right child o f y, which was z 's fo rmer parent.

Note You could also have selected the left-most descendant o f the right child o f the node being
removed and the logical results would have been the same.

With this modification, you have fully implemented the Binary Search Tree. Modify the St ressT est code you

have just written to compare BinaryT ree against T reeSet . BinaryT ree does not enforce set semantics, so
St ressT est makes sure to convert add requests for elements already in the set into contains requests:

CODE TO TYPE: StressTest class

package binary;

import java.util.*;
public class StressTest {
 final static double AddProb = 0.20;
 final static double ContainsProb = 0.70;
 final static int SetSize = 5000;
 final static int TrialSize = 50000;
 final static String[] Types = {"Add", "Contains", "Remove" };

 static void fail(String err) {
 System.err.println("Failed on:" + err);
 System.exit(-1);
 }

 public static void main(String[] args) {
 TreeSet<Integer> base = new TreeSet<Integer>();
 SortedSetBinaryTree<Integer> set = new SortedSetBinaryTree<Integer>();
 double baseCount[] = new double[3];
 double setCount[] = new double[3];
 int counts[] = new int[3];
 long start;
 boolean b,s;
 for (int t = 0; t < TrialSize; t++) {
 int n = (int)(Math.random()*SetSize);
 double choice = Math.random();
 if (choice < AddProb && !base.contains(n)) {
 start = System.nanoTime();
 b = base.add(n);
 baseCount[0] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.add(n);
 setCount[0] += (System.nanoTime() - start);
 if (b != s)if (base.contains(n) != set.contains(n)) { fail(Types[0]); }
 counts[0]++;
 } else if (choice < ContainsProb) {
 start = System.nanoTime();
 b = base.contains(n);
 baseCount[1] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.contains(n);
 setCount[1] += (System.nanoTime() - start);
 if (b != s) { fail(Types[1]); }
 counts[1]++;
 } else {
 start = System.nanoTime();
 b = base.remove(n);
 baseCount[2] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.remove(n);
 setCount[2] += (System.nanoTime() - start);
 if (b != s)if (base.contains(n) != set.contains(n)) { fail(Types[2]); }
 counts[2]++;
 }
 }
 for (int i = 0; i < counts.length; i++) {
 if (counts[i] != 0) {
 baseCount[i] /= counts[i];
 setCount[i] /= counts[i];
 }
 System.out.println(Types[i] + " base=" + (int)baseCount[i]+ " set=" + (int
)setCount[i]);
 }
 }
}

 Save and run St ressT est again; the results are much more favorable, although T reeSet still
outperforms all operations. Your results will likely vary:

OBSERVE: Output o f revised StressTest

Add base=252 set=330
Contains base=202 set=258
Remove base=247 set=302

Successive additions and removals will o ften result in an unbalanced BST. Since AVL trees are a self-
balancing structure, you must now add the removal functionality to AVL trees so they can rebalance
themselves after the removal o f an element.

Removing Elements From AVL Trees

We can reuse the same logic fo r deleting a value from an AVL tree to replace its value with the value o f the
right-most descendant o f the left child o f the node being removed. Once this action is done, you may have to
rebalance a number o f o ther nodes, along the path between the parent o f the right-most descendant to the
root.

Add this method to the end o f the AVLBinaryT ree class in the avl package:

CODE TO TYPE: Modifications to AVLBinaryTree

 public void remove (E k) {
 if (root == null) { return; }
 root = root.remove(root, k);
 }

All o f the real work takes place in the AVLBinaryNo de class. You'll need to add these methods to the end o f
the class:

CODE TO TYPE: Modifications to AVLBinaryNode

 AVLBinaryNode<E> remove(AVLBinaryNode<E> parent, E k) {
 if (parent == null) { return null; }
 return parent.remove(k);
 }

 AVLBinaryNode<E> remove (E k) {
 int rc = k.compareTo(key);
 AVLBinaryNode<E> newRoot = this;

 if (rc == 0) {
 if (left == null) {
 return right;
 }

 AVLBinaryNode<E> child = left;
 while (child.right != null) {
 child = child.right;
 }

 E childKey = child.key;
 left = remove(left, childKey);
 key = childKey;

 if (heightDifference(this) == -2) {
 if (heightDifference(right) <= 0) {
 newRoot = this.rotateLeft();
 } else {
 newRoot = this.rightLeftRotation();
 }
 }
 } else if (rc < 0) {
 left = remove(left, k);
 if (heightDifference(this) == -2) {
 if (heightDifference(right) <= 0) {
 newRoot = this.rotateLeft();
 } else {
 newRoot = this.rightLeftRotation();
 }
 }
 } else {
 right = remove(right, k);
 if (heightDifference(this) == 2) {
 if (heightDifference(left) >= 0) {
 newRoot = this.rotateRight();
 } else {
 newRoot = this.leftRightRotation();
 }
 }
 }

 computeHeight(newRoot);
 return newRoot;
 }
}

This is a lo t to take in! Let's start with the first helper method, remo ve(parent ,k) , which removes the value k
from the sub-tree rooted at parent . The real work occurs within the remo ve(k) method. This method has
nearly the same structure as the add(k) method that already exists (and is repeated below):

OBSERVE: Existing add method in AVLBinaryNode

 AVLBinaryNode<E> add (E k) {
 int rc = k.compareTo(key);
 AVLBinaryNode<E> newRoot = this;

 if (rc <= 0) {
 left = add(left, k);
 if (heightDifference(this) == 2) {
 if (k.compareTo(left.key) <= 0) {
 newRoot = rotateRight();
 } else {
 newRoot = leftRightRotation();
 }
 }
 } else {
 right = add(right, k);
 if (heightDifference(this) == -2) {
 if (k.compareTo(right.key) > 0) {
 newRoot = rotateLeft();
 } else {
 newRoot = rightLeftRotation();
 }
 }
 }

 computeHeight(newRoot);
 return newRoot;
 }

The key po int to observe is that whenever t he height Dif f erence o f a no de exceeds t he allo wed
t hresho lds, a ro tation occurs. The remo ve method will have three cases to handle; the two cases shown
below explain how ro tations take place whenever the removal o f an element from a node's left sub-tree (or
right sub-tree) causes that node to become unbalanced).

OBSERVE: remove method structure

 AVLBinaryNode<E> remove (E k) {
 int rc = k.compareTo(key);
 AVLBinaryNode<E> newRoot = this;

 if (rc == 0) {
 // perform the deletion
 } else if (rc < 0) {
 left = remove(left, k);
 if (heightDifference(this) == -2) {
 if (heightDifference(right) <= 0) {
 newRoot = this.rotateLeft();
 } else {
 newRoot = this.rightLeftRotation();
 }
 }
 } else {
 right = remove(right, k);
 if (heightDifference(this) == 2) {
 if (heightDifference(left) >= 0) {
 newRoot = this.rotateRight();
 } else {
 newRoot = this.leftRightRotation();
 }
 }
 }

 computeHeight(newRoot);
 return newRoot;
 }

Let's go o ver how to perform the deletion:

OBSERVE: Perform deletion o f node in AVL tree

if (rc == 0) {
 if (left == null) {
 return right;
 }

 AVLBinaryNode<E> child = left;
 while (child.right != null) {
 child = child.right;
 }

 E childKey = child.key;
 left = remove(left, child.key);
 key = childKey;

 if (heightDifference(this) == -2) {
 if (heightDifference(right) <= 0) {
 newRoot = this.rotateLeft();
 } else {
 newRoot = this.rightLeftRotation();
 }
 }
}

This code immediately checks whet her t here is even a lef t child f o r t he no de being delet ed; if no t,
the right sub-tree is "lifted" to take its place.

If the left child is present, the code lo cat es t he right -mo st descendant quickly, child. The method then
uses double recursion to invoke remo ve(lef t , child.key) to remove the child.key value from the sub-tree
rooted at le f t and replace the key for the node being deleted with child.key. Once this task is complete, you
know that the sub-tree rooted at le f t is balanced properly. Then our code checks t o see if any ro t at io n is
needed; because you only looked for the right-most descendant on the left side o f the tree, you only need to
consider two ro tation cases, which are complementary to the cases in the add method (except that you are
removing elements, not adding them).

As with the add method, the rebalancing may occur at any time between the original location o f the value
being deleted and the path from that node to the root in the tree. So, there may be a to tal o f O(log n) ro tations
whenever you remove an element from an AVL tree. For this reason, the Red-Black Tree implementation o f
T reeSet in the Java Collections Framework is more efficient than an AVL implementation when inserting
elements into the tree. At the same time, the AVL tree is more compact than the Red-Black Tree
implementation, which means the contains queries are go ing to be faster. Review the above code to make
sure you understand how each o f the constituent elements works to self-balance the tree automatically.

 In your Co nclusio n pro ject /src source fo lder, avl package, create an AVLSt ressT est class as shown.
This class is complicated because it contains code to validate that the AVL Property o f the AVLBinaryT ree is
not vio lated after any addition or deletion:

CODE TO TYPE: AVLStressTest class

package avl;

import java.util.*;
public class AVLStressTest {
 final static double AddProb = 0.20;
 final static double ContainsProb = 0.70;
 final static int SetSize = 5000;
 final static int TrialSize = 50000;
 final static String[] Types = {"Add", "Contains", "Remove" };

 static void fail(String err) {
 System.err.println("Failed on:" + err);
 System.exit(-1);
 }

 static int height (AVLBinaryNode<?> n) {
 if (n == null) { return 0; }
 return 1 + Math.max(height(n.left), height(n.right));
 }

 public static int height (AVLBinaryTree<?> tree) {
 if (tree.root == null) { return -1; }
 return height(tree.root);
 }

 static boolean validateAVLProperty (AVLBinaryNode<?> n) {
 if (n == null) { return true; }

 int leftHeight = 0;
 if (n.left != null) { leftHeight = height(n.left); }
 int rightHeight = 0;
 if (n.right != null) { rightHeight = height(n.right); }

 int diff = leftHeight - rightHeight;
 if (diff < -1 || diff > 1) { return false; }

 return validateAVLProperty (n.left) && validateAVLProperty (n.right);
 }

 static boolean validateAVLProperty(AVLBinaryTree<?> tree) {
 if (tree.root == null) { return true; }
 return validateAVLProperty(tree.root);
 }

 public static void main(String[] args) {
 TreeSet<Integer> base = new TreeSet<Integer>();
 AVLBinaryTree<Integer> set = new AVLBinaryTree<Integer>();
 double baseCount[] = new double[3];
 double setCount[] = new double[3];
 int counts[] = new int[3];
 long start;
 boolean b,s;
 for (int t = 0; t < TrialSize; t++) {
 int n = (int)(Math.random()*SetSize);
 double choice = Math.random();
 if (choice < AddProb && !base.contains(n)) {
 start = System.nanoTime();
 b = base.add(n);
 baseCount[0] += (System.nanoTime() - start);
 start = System.nanoTime();
 set.add(n);
 setCount[0] += (System.nanoTime() - start);
 if (!validateAVLProperty(set)) { fail(Types[0]); }
 if (base.contains(n) != set.contains(n)) { fail(Types[0]); }
 counts[0]++;
 } else if (choice < ContainsProb) {

 start = System.nanoTime();
 b = base.contains(n);
 baseCount[1] += (System.nanoTime() - start);
 start = System.nanoTime();
 s = set.contains(n);
 setCount[1] += (System.nanoTime() - start);
 if (b != s) { fail(Types[1]); }
 counts[1]++;
 } else {
 start = System.nanoTime();
 b = base.remove(n);
 baseCount[2] += (System.nanoTime() - start);
 start = System.nanoTime();
 set.remove(n);
 setCount[2] += (System.nanoTime() - start);
 if (!validateAVLProperty(set)) { fail(Types[2]); }
 if (base.contains(n) != set.contains(n)) { fail(Types[2]); }
 counts[2]++;
 }
 }
 for (int i = 0; i < counts.length; i++) {
 if (counts[i] != 0) {
 baseCount[i] /= counts[i];
 setCount[i] /= counts[i];
 }
 System.out.println(Types[i] + " base=" + (int)baseCount[i]+ " set=" + (int
)setCount[i]);
 }
 }
}

 Save and run it. It will take longer to complete because o f the validation code. The validat eAVLPro pert y
method validates that the height difference for every node in the AVL binary tree is within the required
to lerance as demanded by the AVL Property.

OBSERVE: AVLStressTest output

Add base=305 set=464
Contains base=270 set=227
Remove base=360 set=411

When reviewing this result, observe that the baseline T reeSet implementation still outperforms AVL binary
trees when it comes to adding and removing elements. However, the contains query is now almost 20% faster
in the AVL binary tree, because o f its more compact structure. It's always satisfying when empirical evidence
supports the expected results.

Removing Elements From KD-trees

Given the success we've had deleting nodes from binary trees, you'd expect to be able to do the same with
the kd-tree. Unfortunately, this will be impossible because the kd-tree alternates its horizontal and vertical
partitioning levels within its structure. That is, while the structure o f a kd-tree resembles a Binary Search Tree,
you cannot simply "lift" nodes one level up as you have been able to do for the BST and AVL trees described
earlier in this lesson.

Since you can't remove elements from a kd-tree easily, what can you do? Instead o f rebuilding the kd-tree
with each deletion, consider a strategy that marks elements as deleted (which takes O(log n) time) and then
the kd-tree can reconsitute itself automatically whenever the ratio o f deleted nodes to present nodes in the
tree exceeds some thresho ld.

There is a comparative precedent fo r this behavior in hashtables, such as HashMap, to automatically resize
themselves when the number o f entries exceeds some inner thresho ld based on the load capacity o f the
storage.

Copy the kd package from your Mult idimensio n pro ject into your Co nclusio n pro ject /src fo lder. In the kd
package, modify the KDNo de class as shown:

CODE TO TYPE: Modifications to KDNode

package kd;

import java.awt.Point;

public class KDNode {
 final Point point;
 final int direction;
 Region region;
 KDNode above;
 KDNode below;
 boolean deleted;

 public static final int HORIZONTAL = 0;
 public static final int VERTICAL = 1;

 public KDNode(Point p, int dir, Region r) {
 this.point = new Point (p);
 this.direction = dir;

 this.region = new Region(r);
 }

 public KDNode(Point p, int dir) {
 this (p, dir, Region.max);
 }

 public boolean isBelow(Point p) {
 if (direction == VERTICAL) {
 return p.x < point.x;
 } else {
 return p.y < point.y;
 }
 }

 public boolean isAbove(Point p) {
 if (direction == VERTICAL) {
 return p.x >= point.x;
 } else {
 return p.y >= point.y;
 }
 }

 public boolean isDeleted() { return deleted; }

 public voidboolean add (Point p) {
 if (p.equals(point)) {
 if (deleted) {
 deleted = false;
 return true;
 }
 return false;
 }

 if (isBelow(p)) {
 if (below == null) {
 below = createChild (p, true);
 return true;
 } else {
 return below.add(p);
 }
 } else {
 if (above == null) {
 above = createChild (p, false);
 return true;
 } else {
 return above.add(p);

 }
 }
 }

 KDNode createChild (Point p, boolean below) {
 Region r = new Region (region);
 if (direction == VERTICAL) {
 if (below) {
 r.x_max = point.x;
 } else {
 r.x_min = point.x;
 }
 } else {
 if (below) {
 r.y_max = point.y;
 } else {
 r.y_min = point.y;
 }
 }
 return new KDNode(p, 1-direction, r);
 }
}

The first modification is to associate a delet ed attribute with each KDNo de object. If this value is t rue fo r a
node, its associated po int no longer belongs in the set, but it remains within the kd-tree to provide the
necessary structure. An isDelet ed method is provided to determine the status o f a KDNo de object.

In the initial implementation, the add method had nothing to return. Now you need to know whether the set
changed as a result o f the invocation. This is the same behavior designed by the Java Collections
Framework. The code cannot return f alse if the po int being added already exists within the kd-tree because,
after all, it may have previously been deleted, in which case the code flips the delet ed attribute value to f alse
before returning t rue to signal that the set has changed.

We'll make more significant changes in the KDT ree class now:

CODE TO TYPE: Modifications to KDTree

package kd;

import java.awt.Point;

public class KDTree {
 KDNode root;
 int deletedCount;
 int totalCount;
 float loadFactor;
 static float DEFAULT_LOAD_FACTOR = 0.5f;

 public KDTree() {
 this (DEFAULT_LOAD_FACTOR);
 }

 public KDTree(float factor) {
 root = null;
 loadFactor = factor;
 }

 public booleanvoid add (Point value) {
 if (root == null) {
 root = new KDNode(value, KDNode.VERTICAL);
 totalCount = 1;
 return true;
 } else {
 if (root.add(value);) {
 totalCount++;
 return true;
 }
 return false;
 }
 }

 void recreate() {
 KDNode oldRoot = root;
 root = null;

 int remaining = totalCount - deletedCount;
 totalCount = deletedCount = 0;
 if (remaining == 0) {
 return;
 }

 fill(oldRoot);
 }

 void fill(KDNode n) {
 if (n == null) { return; }

 if (!n.deleted) {
 add(n.point);
 }

 fill(n.below);
 fill(n.above);
 }

 public boolean remove (Point p) {
 KDNode exist = find(p);
 if (exist != null && !exist.deleted) {
 exist.deleted = true;
 deletedCount++;

 if (deletedCount*1.0/totalCount >= loadFactor) {
 recreate();

 }
 return true;
 }
 return false;
 }

 public KDNode find(Point p) {
 return find(root, p);
 }

 KDNode find (KDNode node, Point p) {
 if (node == null) { return null; }
 if (node.point.distance(p) < 5) { return node; }

 if (node.isBelow(p)) {
 return find(node.below, p);
 } else {
 return find(node.above, p);
 }
 }
}

Let's look at the code more closely:

OBSERVE: KDTree Modified State

 int deletedCount;
 int totalCount;
 float loadFactor;
 static float DEFAULT_LOAD_FACTOR = 0.5f;

 public KDTree() {
 this (DEFAULT_LOAD_FACTOR);
 }

 public KDTree(float factor) {
 root = null;
 loadFactor = factor;
 }

Each KDT ree object maintains a t o t alCo unt o f values in the kd-tree, as well as the delet edCo unt o f
po ints that have been removed. Whenever the ratio o f deleted po ints to to tal po ints is greater than or equal to
lo adFact o r, the kd-tree is recreated to contain only the non-deleted po ints. The user can specify a lo ad
f act o r on construction; if they don't specify, t he def ault is 0 .5 .

OBSERVE: Modified add method

 public boolean add (Point value) {
 if (root == null) {
 root = new KDNode(value, KDNode.VERTICAL);
 totalCount = 1;
 return true;
 } else {
 if (root.add(value)) {
 totalCount++;
 return true;
 }
 return false;
 }
 }

The add method is changed to update the t o t alCo unt o f values in the kd-tree; now it also ret urns t rue to
reflect a change to its underlying set.

The new functionality is contained in the remo ve method:

OBSERVE: Remove method added to KDTree

 public boolean remove (Point p) {
 KDNode exist = find(p);
 if (exist != null && !exist.deleted) {
 exist.deleted = true;
 deletedCount++;

 if (deletedCount*1.0/totalCount >= loadFactor) {
 recreate();
 }
 return true;
 }
 return false;
 }

The remo ve method ret urns t rue when the set has changed. Accordingly, it must first check to see if t he
po int even exist s wit hin t he t ree ; if it does, it must make sure that t he asso ciat ed no de has no t
already been delet ed. Assuming it has not, t he no de is marked as being delet ed and t he
co rrespo nding delet edCo unt is increment ed fo r the kd-tree. At this po int it is possible that t he rat io
o f delet ed no des t o t o t al no des exceeds t he loadFactor t hresho ld, at which po int the entire kd-tree
is reconstructed to contain only the non-deleted nodes. This is accomplished in the recreat e and f ill
methods:

OBSERVE: Code to reconstruct kd-tree from non-deleted nodes

 void recreate() {
 KDNode oldRoot = root;
 root = null;

 int remaining = totalCount - deletedCount;
 totalCount = deletedCount = 0;
 if (remaining == 0) {
 return;
 }

 fill(oldRoot);
 }

 void fill(KDNode n) {
 if (n == null) { return; }

 if (!n.deleted) {
 add(n.point);
 }

 fill(n.below);
 fill(n.above);
 }

The recreat e method checks to see if all po int s have been delet ed. If so , it can ret urn after set t ing
ro o t t o null. If there are any po ints left though, all o f t he no n-delet ed po int s in t he o ldRo o t are
pro cessed by f ill.

The f ill method performs a pre-order traversal o f the kd-tree; f o r all no n-delet ed no des, the asso ciat ed
n.point is insert ed int o t he new kd-t ree . The recursive call makes sure to traverse both the belo w and
abo ve sub-trees for each node.

To demonstrate the new capability in action, write the fo llowing application, which allows the user to add
points to the kd-tree by clicking with the left button and to remove po ints by clicking with the right button.

The KDT ree class makes an important design decision to enable the f ind method to return the associated
KDNo de fo r the requested po int being searched. This is important because it is up to the caller to determine
whether the node represents a deleted po int in the kd-tree or a valid po int. In do ing so, the code is able to
draw deleted nodes with an "X" while non-deleted nodes are filled in squares.

 In the /src source fo lder kd package, create a KDApplet Delet e class as shown:

CODE TO TYPE: KDAppletDelete class

package kd;

import java.awt.*;
import java.awt.event.*;

public class KDAppletDelete extends java.applet.Applet {
 KDTree tree = new KDTree();
 KDNode match = null;
 Image bufferImage;
 Graphics bufferGraphics;

 int toAWT(int y) {
 if (y == Region.maxValue) { return 0; }
 int awty = getHeight();
 if (y != Region.minValue) { awty -= y; }
 return awty;
 }

 int toCartesian(int awty) { return getHeight() - awty; }

 public void init() {
 setSize(400,400);

 addMouseListener (new MouseAdapter() {
 public void mouseClicked(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 if (me.getButton() == MouseEvent.BUTTON3) {
 KDNode match = tree.find(pt);
 if (match != null) {
 tree.remove(match.point);
 redraw();
 drawNode(bufferGraphics, match.point, true, true);
 repaint();
 }
 } else {
 tree.add(pt);
 redraw();
 repaint();
 }
 }
 });

 addMouseMotionListener (new MouseAdapter() {
 public void mouseMoved(MouseEvent me) {
 Point pt = new Point (me.getX(), toCartesian(me.getY()));
 KDNode newMatch = tree.find(pt);
 if (match != newMatch) {
 match = newMatch;
 redraw();
 if (match != null) {
 drawNode(bufferGraphics, match.point, true, match.deleted);
 }
 repaint();
 }
 }
 });
 }

 void drawNode(Graphics g, Point p, boolean selected, boolean deleted) {
 if (selected) {
 g.setColor(Color.RED);
 g.clearRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }
 if (deleted) {
 g.drawRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 g.drawLine(p.x - 4, toAWT(p.y) - 4, p.x + 4, toAWT(p.y) + 4);

 g.drawLine(p.x - 4, toAWT(p.y) + 4, p.x + 4, toAWT(p.y) - 4);
 } else {
 g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }
 g.setColor(Color.BLACK);
 }

 public void paint(Graphics g) {
 if (bufferImage == null) {
 bufferImage = createImage(getWidth(), getHeight());
 bufferGraphics = bufferImage.getGraphics();
 }

 if (tree.root == null) {
 g.drawString("Click to add points", 150, 200);
 } else {
 g.drawImage(bufferImage, 0, 0, this);
 }
 }

 void redraw() {
 bufferGraphics.clearRect(0, 0, getWidth(), getHeight());
 visit(bufferGraphics, tree.root);
 }

 void drawPartition (Graphics g, Region r, Point p, int type, boolean deleted)
{
 if (type == KDNode.VERTICAL) {
 g.drawLine(p.x, toAWT(r.y_min), p.x, toAWT(r.y_max));
 } else {
 int xlow = r.x_min;
 if (r.x_min == Region.minValue) { xlow = 0; }
 int xhigh = r.x_max;
 if (r.x_max == Region.maxValue) { xhigh = getWidth(); }
 g.drawLine(xlow, toAWT(p.y), xhigh, toAWT(p.y));
 }
 drawNode(g, p, false, deleted);
 }

 void visit (Graphics g, KDNode n) {
 if (n == null) { return; }
 drawPartition(g, n.region, n.point, n.direction, n.deleted);

 visit (g, n.below);
 visit (g, n.above);
 }
}

Much o f this code is similar to the applets you wrote for an earlier lesson, but there are a some differences.
Let's look at the code more closely:

OBSERVE: draw Method

void drawNode(Graphics g, Point p, boolean selected, boolean deleted) {
 if (selected) {
 g.setColor(Color.RED);
 g.clearRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }
 if (deleted) {
 g.drawRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 g.drawLine(p.x - 4, toAWT(p.y) - 4, p.x + 4, toAWT(p.y) + 4);
 g.drawLine(p.x - 4, toAWT(p.y) + 4, p.x + 4, toAWT(p.y) - 4);
 } else {
 g.fillRect(p.x - 4, toAWT(p.y) - 4, 8, 8);
 }
 g.setColor(Color.BLACK);
}

The draw method draws a node accurately, whether it is marked for deletion or selected by the user. The
mo useClicked, mo useMo ved, and drawPart it io n methods all invoke draw as needed. The mouse
handlers operate as before, but now right mouse clicks (as designated by Mo useEvent .BUT T ON3) are
used to remove po ints from the kd-tree.

 Run KDApplet Delet e and add ten po ints using the left mouse button. Then select five different po ints fo r
deletion. As you select the first four po ints, the applet redraws those po ints using a small "x" as shown:

Once you select the fifth po int fo r deletion, the kd-tree will reassemble itself automatically with only five po ints
because the ration o f deleted po ints to actual po ints has hit the predetermined ratio o f 50%. The image below
shows the resulting kd-tree once reconstructed:

The resulting reconstructed kd-tree is not likely balanced, but there is an algorithm, described in the Algorithms
in a Nutshell book, which enables you to create a balanced kd-tree from any selection o f po ints.

Lessons Learned

Co mplicat ed dat a st ruct ures have invariant s t hat must be maint ained under addit io n
and remo val.
Met ho ds t hat ret urn vo id miss an o ppo rt unit y t o ret urn usef ul inf o rmat io n: Consider
the add method in the Collections Framework and how it returns t rue when the co llection changes
but f alse o therwise. This bit o f information is extremely helpful in several algorithms.
Divide and Co nquer is an ext remely po werf ul st rat egy: The algorithms that deliver O(n log
n) performance o ften do so by using this technique to divide a problem into two (or more) smaller
subproblems, whose results are combined to produce the appropriate answer. You have seen this
in MergeSo rt .

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

