
Python 1
Lesson 1: Get t ing St art ed

A Bit o f Python History

Unix and CodeRunner

Programming in Python
A First Program
The Interactive Interpreter

Data in Python
String Representations
Numbers in Python
Program 2: Printing Simple Python Expressions
A Few Sample Expressions

First Hurdle Cleared

Quiz 1 Quiz 2 Pro ject 1
Lesson 2: Ent ering and St o ring Dat a

Binding Values to Names
Names in Python
Namespaces and Object Space

More Python Syntax Basics
Line Continuations
Multiple Statements on One Line
Indentation
Comments
Docstrings
Using String Methods: Case Conversion

Reading and Converting User Input
The input() Function
Type Conversions

Calculating with Stored Values

Getting It Done

Quiz 1 Quiz 2 Pro ject 1
Lesson 3: Making Decisio ns: T he if St at ement

Conditions in Python

Making Decisions: if Statements

Choosing Between Alternatives: the else Clause

Multiple Choice Decisions

Combining Conditions: 'and' and 'o r'

Testing for a Range o f Values: Chaining Comparisons

Wrapping It Up

Quiz 1 Quiz 2 Pro ject 1
Lesson 4: It erat io n: Fo r and While Lo o ps

A Basic For Loop

Breaking Out o f a Loop

homework/gettingStarted_quiz1.quiz.html
homework/gettingStarted_quiz2.quiz.html
homework/gettingStarted_proj1.project.html
homework/enteringData_quiz1.quiz.html
homework/enteringData_quiz2.quiz.html
homework/enteringData_proj1.project.html
homework/makingDecisions_quiz1.quiz.html
homework/makingDecisions_quiz2.quiz.html
homework/makingDecisions_proj1.project.html

While Loops

Terminating the Current Iteration

Feel the Power

Quiz 1 Pro ject 1
Lesson 5: Sequence Co nt ainers: List s and T uples

Lists and Tuples

Writing Lists and Tuples

Accessing Sequence Values

Modifying Lists

Slices with a Stride: Skipping Sequences

Other Functions and Methods to Use with Sequences

Testing for Presence in a Sequence

Manipulating Lists and Tuples

It Slices, It Dices...

Quiz 1 Quiz 2 Pro ject 1
Lesson 6 : Set s and Dict s

Creating Sets

Working with Sets

Working with Dicts

Applying Dicts: Counting Words

A More Complex Application: Word Pair Frequencies

Nice Work!

Quiz 1 Quiz 2 Pro ject 1
Lesson 7: St ring Fo rmat t ing

The format() Method

Function Arguments

Format Field Names

Format Specifications
Padding and Alignment
Sign
Base Indicator
Digit Separator
Field Width
Precision
Field Type

Variable-Width Fields

A Simple Listing Program

Check You Out!

Quiz 1 Quiz 2 Pro ject 1
Lesson 8 : Mo re Abo ut Lo o ping

Fun with the range() function.

Using the enumerate() function

A More Complex While Loop Example

While Loops and User Input Validation

homework/interation_quiz1.quiz.html
homework/iteration_proj1.project.html
homework/sequenceContainers_quiz1.quiz.html
homework/sequenceContainers_quiz2.quiz.html
homework/sequenceContainers_proj1.project.html
homework/setsAndDicts_quiz1.quiz.html
homework/setsAndDicts_quiz2.quiz.html
homework/setsAndDicts_proj1.project.html
homework/stringFormatting_quiz1.quiz.html
homework/stringFormatting_quiz2.quiz.html
homework/stringFormatting_proj1.project.html

Dicts and Loops

A More Complex Example

Loop This

Quiz 1 Quiz 2 Pro ject 1
Lesson 9 : Reading and Writ ing Files

Creating a New File

Writing to a File

Reading Files as Text

Appending to a File

Seeking to Arbitrary Positions

More File Details

Creating a File-Based To-Do List

Reading Binary Data

Files for Miles

Quiz 1 Quiz 2 Pro ject 1
Lesson 10: Pyt ho n's Built -In Funct io ns

Party Fun with Built-In Functions

abs(x)

all(iterable)

any(iterable)

boo l(x)

chr(i)

dict(arguments)

dir(arguments)

globals()

help(object)

len(s)

locals()

max(iterable)

min(iterable)

ord(c)

pow(x, y[, z])

reversed(seq)

round(x[, n])

sorted(iterable)

sum(iterable)

zip(*iterables)

Fun with Built-In Functions

Quiz 1 Quiz 2 Pro ject 1
Lesson 11: Def ining and Calling Yo ur Own Funct io ns

Exploring Functions

Write Your First Function

Parameters and Arguments

homework/moreAboutLooping_quiz1.quiz.html
homework/moreAboutLooping_quiz2.quiz.html
homework/moreAboutLooping_proj1.project.html
homework/readingAndWritingFiles_quiz1.quiz.html
homework/readingAndWritingFiles_quiz2.quiz.html
homework/readingAndWritingFiles_proj1.project.html
homework/pythonsBuiltInFunctions_quiz1.quiz.html
homework/pythonsBuiltInFunctions_quiz2.quiz.html
homework/pythonsBuiltInFunctions_proj1.project.html

Parameters and Arguments

Returning Values

Multiple Return Values

Functions and Namespaces

Parameters That Receive Multiple Arguments

Putting It All Together

A So lid Foundation

Quiz 1 Quiz 2 Pro ject 1
Lesson 12: T he Pyt ho n St andard Library

Increased Versatility

Namespaces

Python Modules

Writing Modules to be Testable

Splitting Up Your Programs

Other Ways to Import a Module
import ... as
from ... import ...

The System Path

Reduce, Reuse, Recycle!

Quiz 1 Quiz 2 Pro ject 1
Lesson 13: Mo re Abo ut Funct io ns

Arbitrary Keyword Parameters

Parameters, Sequence-Parameters, and Dict-Parameters

Importing Functions and help()

Function Execution by Dispatch

What's Your Function?

Quiz 1 Quiz 2 Pro ject 1
Lesson 14: Classes and Object -Orient ed Pro gramming

The Nature o f Objects

Defining Your Own Object Classes

Class and Instance Namespaces

Defining Object Behavior

Defining Behavior as Methods

Python Deep Magic: Hooking into Python's Class Mechanism
Using __init__()
More on Python's Dunder Methods
Being Selfish
A Solid Foundation

Quiz 1 Quiz 2 Pro ject 1
Lesson 15: Except io n Handling

Working through Exceptions
How to Catch an Exception
Verifying Numeric Input
Handling Multiple Exception Types
Handling Multiple Exceptions with One Handler

homework/definingAndCallingYourOwnFunctions_quiz1.quiz.html
homework/definingAndCallingYourOwnFunctions_quiz2.quiz.html
homework/definingAndCallingYourOwnFunctions_proj1.project.html
homework/pythonStandardLibrary_quiz1.quiz.html
homework/pythonStandardLibrary_quiz2.quiz.html
homework/pythonStandardLibrary_proj1.project.html
homework/moreAboutFunctions_quiz1.quiz.html
homework/moreAboutFunctions_quiz2.quiz.html
homework/moreAboutFunctions_proj1.project.html
homework/classesAndOOP_quiz1.quiz.html
homework/classesAndOOP_quiz2.quiz.html
homework/classesAndOOP_proj1.project.html

Raising Exceptions
Specific and Generic Exceptions
When to Use Exceptions
Exceptional Work So Far!

Quiz 1 Pro ject 1
Lesson 16: Building and Debugging Who le Pro grams

Putting it All Together
The Art o f Computer Programming
Design Techniques
Agile Programming
Documenting and Testing Python Code
'Keep It Simple, Stupid' (KISS)
Refactoring
Go Forth and Code in Python!

Quiz 1 Pro ject 1 Pro ject 2 Pro ject 3

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/exceptionHandling_quiz1.quiz.html
homework/exceptionHandling_proj1.project.html
homework/buildingAndDebuggingWholePrograms_quiz1.quiz.html
homework/buildingAndDebuggingWholePrograms_proj1.project.html
homework/buildingAndDebuggingWholePrograms_proj2.project.html
homework/buildingAndDebuggingWholePrograms_proj3.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Getting Started

Welcome to the O'Reilly School o f Technology's (OST) Int ro duct io n t o Pyt ho n course! We're happy you've chosen to learn
Python programming with us.

Course Objectives
When you complete this course, you will be able to :

store and manipulate user-input data using Python.
implement basic Python decisions, iteration, sequence containers, sets, and dicts.
read and write files using Python.
define custom functions and call built- in Python functions.
import modules and namespaces from the Python Standard Library.
define classes and instantiate objects using Python's Class mechanism.
handle exceptions and document code.
build and debug an entire program written in Python.

In this course, you will learn the basics o f programming with Python. Using the CodeRunner integrated learning environment,
you'll learn about expressions, variables, conditionals, loops, lists, sets, dicts, functions, objects and exceptions.

Besides a browser and internet connection, all so ftware is provided online by the O'Reilly School o f Technology.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.

Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

The CodeRunner Screen
This course is presented in CodeRunner, OST's self-contained environment. We'll discuss the details later, but here's
a quick overview of the various areas o f the screen:

These videos explain how to use CodeRunner:

File Management Demo

Code Editor Demo

Coursework Demo

A Bit of Python History
First, here's a little background information to introduce you to Python. No cringing please—this will be the most
textbookish part o f the course. We like to provide a little history for our students with a more philosophical and
academic bent. Plus you'll have a better understanding o f your programming tasks if you have a better idea about what
makes Python tick.

The Python language was created by Guido van Rossum in the late 1980s. It was intended to be simple to use and
easy to understand. The most interesting new feature o f the language was its use o f indentation to illustrate structure,
similar to the way we use indentation in our everyday prose and written language.

Python was built to have a small "core," to keep it accessible, and a large library to make it versatile. Van Rossum was
interested in networking. That interest prompted quick development o f a useful set o f network libraries for the language;
many more libraries have been added since then.

Today, Python is used just about everywhere. Major users include YouTube, Google, Yahoo!, CERN, and NASA, and
ITA—the company that produces the route search engine used by Orbitz, CheapTickets, travel agents—as well as
many domestic and international airlines.

Python is an interpreted language, which means Python code isn't translated into the binary instructions that
computers actually run. Instead, bytecode is created, and the interpreter uses that bytecode to tell it what to do. Python
is also a dynamic language. This means that aspects o f your program which become fixed early on in some
languages, remain available for you to change in Python, even while your program is running.

In this course, we'll be using the latest version o f Python (3.1). You may find that o ther people are using o lder versions.
Fortunately, the differences between versions are minor. We'll go over the changes you'll need to be aware o f in order
to work with o lder versions as well.

Unix and CodeRunner
We use our CodeRunner Integrated Development Environment on the Unix operating system for this course. Unix and
CodeRunner allow you to write Python programs on our computers so you don't need to worry about having any
special so ftware on your own computer. We have an entire OST course devoted to Unix if you'd like a deeper
understanding o f that operating system. For this course, we'll just cover the concepts you need to know, when you

http://www.youtube.com/watch?v=45sATp529Mw
http://www.youtube.com/watch?v=SvbM6vPAG9k
http://www.youtube.com/watch?v=WmajY8bIXrA

need to know them.

In the next section, we'll finally enter some Python code and run it!

Programming in Python

A First Program

It is a tradition when learning a new language in computer programming to print the words "hello world" as a
first example. Python can print "hello world" in a single line o f code, so that doesn't make for a great example
here. Instead, we'll look at a slightly more complicated example that not only prints "hello" and "goodbye," but
also does a little calculation along the way.

Usually you'll enter a Python program in your favorite text edito r and then run it by typing a command in a
command shell (that's the term for one o f those special programs whose job in life is to display a prompt and
then let you type in a command that executes when you press Enter). On a Unix or Linux type o f system (that
includes OS X), the shell is bash, or tcsh, or some other -sh, and the editor is vim or Emacs or one o f many
other possibilities. On Windows, the shell is the DOS window (what you get by running "cmd") and the editor
is Notepad or Wordpad or vim or, again, any o f many o ther possibilities. (You can also run programs on
Windows by double-clicking their icons, but then the usual input and output streams are not available.)

In this course we're go ing to use a completely integrated environment because we want the course to be
about learning Python, not about learning a particular editor and operating system. Later in the course, there
is a brief lesson on basic Unix commands and editors so that, when you're ready, you can transfer your
knowledge o f Python to the real world.

Let's get started on your first program! First, we'll create a fo lder to keep all o f our Python stuff o rganized. In
the left panel o f your CodeRunner window, right-click Ho me , and select New f o lder... as shown:

Enter the fo lder name pyt ho n1:

Note You won't see this many fo lders in your File Browser. OST editors work on a lo t o f courses!

Now you should be able to see your pyt ho n1 fo lder listed in the File Bro wser on the left side o f your
screen:

Now, in the editor window area below this lesson text, enter the code below:

CODE TO TYPE:

print("Hello World")
print("I have", 3 + 4, "bananas")
print("Goodbye, World")

In the editor menu bar, click the Save icon: (we'll show that icon from now on when we want you to save a
file). Select your /pyt ho n1 fo lder and enter the file name hello _wo rld.py:

To run the program, open a Unix shell. Click the New T erminal icon at the top o f the editor window and,
when prompted, enter your OST username and password (the password won't appear as you type it):

INTERACTIVE SESSION:

cold1 login: username
Password: yourpassword

Once logged in, you'll see a co ld1:~$ prompt. Change to your /pyt ho n1 fo lder and then run the program as
shown:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$ python3 ./hello_world.py
Hello World
I have 7 bananas
Goodbye, World
cold1:~/python1$

Congratulations! You're o fficially a Python programmer! Of course this program isn't very complex, but the
interpreter has done the calculation you asked it to do. Pat yourself on the back! You're o ff to a strong start.
Experiment with o ther calculations.

How did this work? Let's look a little closer:

OBSERVE:

cold1:~$ cd python1
cold1:~/python1$ python3 ./hello_world.py

First we used the Unix changed directory (cd) command to change to the pyt ho n1 fo lder where our program
is located. Then we ran pyt ho n3, the current version o f the Python interpreter, telling it to run the

hello _wo rld.py program located in the current fo lder (./)

Note When you want to exit from the interactive session, type exit and press Ent er, o r press Ct rl+d.

The Interactive Interpreter

In Python, you can run the interpreter in interactive mode when you want to try things out and see results
printed right away. That instant feedback is really handy when you're learning a new language.

CodeRunner gives you access to interactive Python sessions—click the New Terminal icon, and in the
Terminal window, type your OST login and password (again, it doesn't appear while you're typing it), and then
type pyt ho n3:

INTERACTIVE SESSION:

cold1 login: your OST login
Password: your OST password
cold1:~$ python3
Python 3.1.4 (default, Oct 13 2011, 10:08:29)
[GCC 4.4.5 20110214 (Red Hat 4.4.5-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The prompt >>> indicates that the interpreter is ready for your input.

If you enter one o f the lines from the program you just ran, the output will appear. This interactive interpreter
window allows you to enter both statements and expressions (we'll cover those in detail later). Statements
are executed pretty much as if they were part o f a program; the expressions are evaluated and the resulting
value is printed (as long as you're in interactive mode).

Type the commands below in the interpreter window (Remember: when we say TYPE the code, do it. It's good
for you!). The interpreter prints a result fo r each expression. (You'll see a different prompt after the fourth line.
We'll talk about that in a minute):

INTERACTIVE SESSION:

>>> "hello" + " world"
'hello world'
>>> 'hello' + ' world'
'hello world'
>>> """hello""" + ''' world'''
'hello world'
>>> """hello
... world"""
'hello\nworld'
>>>

So, what happened here? The first three lines are all examples o f string concatenation—a second string is
appended to the first, giving a longer string as a result. Strings can have either single (') o r double (")
quotation marks around them, and either one quotation mark or three at the beginning and end o f the string.
Use exactly the same combination at both ends.

The last expression shows an important difference between the one-quotation mark and the three-quotation
mark forms. A string given in one-quotation mark form must begin and end on the same line. Three-quotation
mark strings can spread across more than one line.

The fourth example actually does extend across two lines, so the interpreter changed its prompt from >>> to
... (an ellipsis) after you entered the first line. The ellipsis lets you know that you've got an incomplete
statement or expression, and the interpreter is waiting for you to finish it. When you completed the string with
the second line o f input, the interpreter then printed the value o f the two-line expression, and returned the
normal >>> prompt. You can see that the line feed between hello and wo rld is represented by \n, which is

known in Python as a string escape sequence.

Data in Python
In Python there are various types o f data you can manipulate. The simplest are strings. There are also various numeric
data types: integers, floats, and complex numbers. Let's see how to write those values in your programs.

String Representations

We've seen that Python has several ways o f representing strings. For regular strings, we use either o f the
one-quotation mark forms. Use three-quotation mark strings if, fo r example, the value you need to represent
contains newlines, or contains quotation marks itself. The interpreter represents certain characters using
escape sequences. You can put escape sequences into your strings to insert certain literal o r non-printing
characters. Here's a list o f the most common sequences:

Escape Sequence Is t ranslat ed int o

\" Double quote

\' Single quote (apostrophe)

\\ Backslash

\r Carriage return

\n Line feed (newline)

\{newline} Ignores the newline, allowing you to run a string across multiple program lines

\0nn Character whose value in octal is nn

\xnn Character whose value in hexadecimal is nn

You can build a really long string using triple-quotation mark strings and escaping the newlines, or by placing
several different strings one after the o ther in your source code. Usually you'll extend those types o f
statements across multiple lines using parentheses; the interpreter will assume a statement or expression is
incomplete if it runs into unmatched parentheses. Continue the interpreter session or start a new one and try
these commands:

INTERACTIVE SESSION:

>>> """One\
... Two\
... Three"""
'OneTwoThree'
>>> ("One" "Two" "Three")
'OneTwoThree'
>>> 'OneTwoThree'
'OneTwoThree'

The interpreter should print the same value back after you enter each o f the three strings. The first string you
entered spans three lines, but only printed out one.

Numbers in Python

In Python, numbers are represented as you might expect. Integers are strings o f digits. The digits can be
preceded by a minus sign (-) fo r negative numbers. There is no limit on integer values in Python, although the
larger they get, the longer it takes you to do anything with them!

Note In Python, you cannot use commas to separate groups o f digits like you sometimes do in text
documents.

A floating-po int number is made up o f an integer fo llowed by a decimal po int and a fractional part. You may
also use exponential notation if you like, by placing the letter E after the integer.

Complex numbers generally consist o f a real part and an imaginary part that's fo llowed by a J ; the real part is

separated from the imaginary part by a plus or minus sign. The imaginary number fo llowed by the J can
comprise a complex number in Python as well. (For you mathematicians wondering why i wasn't used, this is
standard engineering notation. The rest o f us can just carry on.)

Let's try some of this stuff out. If you don't have an interpreter session open, click the New T erminal icon and
type pyt ho n3 again. Then, try these numbers:

INTERACTIVE SESSION:

>>> 1
>>> -1000
>>> 12.34
>>> 1.234E2
>>> 1+2j
>>> 1j

Huh. it seems the interpreter doesn't always print a value the way you enter it. Floating po int numbers aren't
always exact, though the interpreter gets as close as possible. Although the errors are relatively small, you
want to keep them from accumulating too much in long strings o f calculations. (More on that later.) If some of
this isn't quite clear to you yet, don't worry. We're just getting started. We'll be talking about it all lo ts more and
you'll have many chances to try things out and ask questions.

Program 2: Printing Simple Python Expressions

You've seen that you can concatenate strings by adding them together. There are many more operations you
can perform on your numbers in Python:

Symbo l Operat io n

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

A Few Sample Expressions

Create another program file in the editor window:

CODE TO TYPE:

print("""--------------------
Some Calculations
--------------------""")
print(314159E-5)
print(10**6, 1j**2)
print(3 + 2 * 4, 1 / 3)
print("-" * 20)
print((3.14159 * 16) ** 2)
print(3.14159 * 16 ** 2)
print(20 * "-")
print("--------------------\nEnd of Calculations\n--------------------")

 Save it in your /pyt ho n1 fo lder as calculat io ns.py and run it in the Terminal tab:

INTERACTIVE SESSION:

cold1:~/python1$ python3 ./calculations.py

Some Calculations

3.14159
1000000 (-1+0j)
11 0.333333333333

2526.6144583935998
804.24704

End of Calculations

cold1:~/python1$

Take a minute to ponder. Think deeply and make sure you understand all o f your results before go ing further.
For example, you might wonder, why does 3 + 2 * 4 give 11, and not 20? Hmm... something to think about!
Feel free to talk with your instructor if you are in any way befuddled.

First Hurdle Cleared
Phew! That was a whole lo t o f introduction there. Thanks for sticking with me. Keep it up, you're do ing great so far. See
you at the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Entering and Storing Data
Lesson Objectives

When you complete this lesson, you will be able to :

give data meaningful names.
extract data from the user.
store data.

Welcome back. Let's get right to it, shall we? In Python, explicit is better than implicit. The interpreter won't try to convert the string
"3.14159" into a number for you implicitly—if you try to add that string to the integer 1, you'll get an error message:

We'll talk about that more later in the lesson; fo r now, just let those terms marinate in your mind. In the last lesson, you saw how
to represent string and numeric data in Python programs, and use the print () function to send expression values to the user.
Now we'll look at how to store data and how to extract data from the user. Because interactive user input arrives to us in string
form, we'll also need to be able to convert strings into o ther data types.

Binding Values to Names
Most programming languages let you name your data. Giving meaningful names to data makes your code easier to
read and helps you to recall its purpose. It also allows you to run the same code with different data values. And most
importantly, giving your data meaningful names means you can refer to the same piece o f data at different places in
your program: you can store data and then use it later.

In Python, a value is given a name with the assignment statement. In its simplest fo rm, the assignment statement
consists o f a name, an equals sign, and a value. The value can be a single data item or an expression.

Click to start a new interactive session, and type these Python statements:

INTERACTIVE SESSION:

cold1:~$ python3
>>> r = 32
>>> pi = 3.14159
>>> area = pi * r ** 2
>>> print(area)
3216.98816
>>> item = { 'link': "http://holdenweb.com", 'value': 99.99 }
>>> targetURL = item['link']
>>> print(targetURL)
http://holdenweb.com
>>> lst = range(5)
>>> print(lst)
range(0, 5)
>>> r = r + 1
>>> print(r)
33

These assignment statements all have pretty much the same format: name = value . They don't represent
mathematical equations, they are instructions to the computer. The statements are telling the computer to associate the
value on the right side o f the equals sign with the name on the left side o f it. Once a name is bound to a value, it stays
that way unless you change it.

When you read a statement like r = r + 1, be sure to read it like a programmer, not a math student! For us, it means to
take the value currently associated with the name r, add one to it, and then associate this new value with the name. So if
the value o f r was 1112 before the statement was executed, it would be 1113 afterward.

Names in Python

Every programming language has rules about which names are acceptable. In Python, the interpreter requires
every name to begin with a letter (upper- or lower-case) or the underscore character. The rest o f the name can
be made up o f letters, digits, o r underscores. So, i, _privat e , CamelCase , and very_lo ng_name_127 are
all valid names. But 12_name isn't valid, because it begins with a digit. my-name is also invalid, because it
contains a hyphen.

Namespaces and Object Space

Values in Python are stored in memory allocated from a heap (also known as "object space"). The heap is an
expandable storage space. Namespaces ho ld names, which refer to values (objects in object space). Memory
usage in Python is conveniently automatic. When you bind a name to a value with an assignment statement,
that binding takes place in the "current namespace." In a complex Python program, namespaces are created
and destroyed continually.

Each Python file you create is a module. Each module has its own namespace (o ften called the global
namespace). An assignment statement at module level affects the module's global namespace. When the
interpreter needs the value associated with a specific name, it looks for the name in a predefined list o f
places. For module-level code, there are only two namespaces to consider: the module global namespace
and the built- in namespace that ho lds Python's essential functions. You'll learn to write functions and classes
later when we create instances o f classes. Every time you call a function or create a new class or instance, the
Python interpreter creates a new namespace. That namespace becomes unavailable when the related object
is destroyed.

Start the interactive interpreter window again and try these commands (remember, the >>> is a prompt, not
something you have to type):

INTERACTIVE SESSION:

cold1:~$ python3
>>> a = 23
>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'a']
>>> dir(a)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delatt
r__', '__divmod__',
'__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__
ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', '__int__', '__i
nvert__', '__le__',
'__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '_
_or__', '__pos__',
'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__',
 '__repr__', '__rfloordiv__',
'__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rr
shift__', '__rshift__',
'__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__',
'__sub__', '__subclasshook__',
'__truediv__', '__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator',
 'imag', 'numerator', 'real']

Note You may see different results.

Consider these questions and answers as they relate to the code you just typed:

Q. In which namespace was a value bound to a?
A. The module global namespace o f the interactive session.

Q. In which namespace did the interpreter locate the dir() function?
A. The built- in namespace.

Q. Which namespace does dir() report on when called with no argument?
A. The module global namespace.

More Python Syntax Basics

Line Continuations

Under normal circumstances, each line o f your Python program is a single statement. The exceptions are
when a line is explicitly continued by the addition o f a backslash, or when a line ends before an opening
paired delimiter (curly bracket, parenthesis, o r square bracket) is closed. When you enter statements and
expressions in the interactive interpreter, you normally see a >>> prompt, indicating that the interpreter is
waiting for you to enter a new statement or expression. If you see a ... prompt instead, it means the interpreter
does not regard the current statement or expression as complete. There are different ways to lay out a Python
assignment. These next few assignments all bind the value 927 to the name "a." Type these commands in an
interactive session:

INTERACTIVE SESSION:

cold1:~$ python3
>>> z = 100
>>> a = (3 + z) * 9
>>> print(a)
927
>>> a = \
... (3 + z) * 9
>>> print(a)
927
>>> a = (
... (3 + z)
... * 9
...)
>>> print(a)
927

Multiple Statements on One Line

Although multiple statements on a single line can be separated by semico lons, we don't recommend it. As
you'll discover down the road, leading spaces are significant! Python uses leading space to mark blocks o f
code, so if you start a command line with a space, the command generally will fail with an syntax error.

Let's try a few more examples in the interactive interpreter window (if you closed it, click to start a new
interactive session):

INTERACTIVE SESSION:

cold1:~$ python3
>>> a = 1
>>> z = 2
>>> print(a, z)
1 2
>>> a = 1; z = 2
>>> print(a, z)
1 2
>>> a, z = 1, 2
>>> print(a, z)
1 2

In our first example, we have a different single assignment statement. Next, those same two statements
appear, separated by a semico lon. Finally, there is an example o f what is called an unpacking assignment.
This has a comma-separated list o f names on the left and another list o f values on the right. Each value is
bound to the corresponding name.

Indentation

In the programs you've written so far, all statements have started in the first co lumn of the line. Statements can
be indented when they are the object o f one o f Python's compound statements. A set o f statements at the
same indentation level (including any code indented within a statement) fo rm a block, also called a suite. We'll
look more closely at suites when we discuss compound statements in future lessons. For now, just be sure
to start your lines without any leading spaces.

Comments

In a Python program text, the "#" character (pound sign, octo thorp, hash mark, call it what you will) introduces
a comment. The comment runs to the end o f the line—it is disregarded by the interpreter. Comments should
only occur where whitespace is legal (fo r readability). Comments help o ther programmers to make sense o f
your program, so include them often. As your skill level increases, your comments may be less detailed, but
your code should always be easy to read for both intent (the desired result o f the code) and implementation
(the way the code accomplishes the intent). Use comments as necessary to keep your code readable!

Docstrings

Any Python expression is a valid statement (though statements are never expressions). A string on its own,
as the first statement o f various Python constructs (like module, function, class, and method), is interpreted by
many too ls as documentation. Using a three-quote string allows you to add lo ts o f documentation to your
programs. Use docstrings extensively to document your code. Later examples will show you some practical
docstring content. For now, let's try a new program. Type this code in the editor window below:

CODE TO TYPE:

#
This is a program that prints its own docstring
#
"""print_docstring.py prints its own docstring
(the string that's the first executable statement,
which in this case extends to three lines)."""
print(__doc__)

 Save the program in your /pyt ho n1 fo lder as print _do cst ring.py, and go to an interactive session to
change to the /python1 fo lder and run it:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$ python3 ./print_docstring.py
print_docstring.py prints its own docstring
(the string that's the first executable statement,
which in this case extends to three lines).
cold1:~/python1$

Note
__do c__ in t he Mo dule Namespace : In the code above, the interpreter reso lves the name
__do c__ by looking in the module namespace. The name is always present, but if the module
has no docstring, it is set to the special value No ne .

Now what happens if we remove the docstring—what happens when the print statement runs? Turn the string
into an assignment statement by putting "x = " at the beginning o f the first line after the comments, as shown:

CODE TO TYPE:

#
This is a program that prints its own docstring
#
x="""print_docstring.py prints its own docstring
(the string that's the first executable statement,
which in this case extends to three lines)."""
print(__doc__)

Save and run it. Can you think o f any o ther interesting variations on this program? Go ahead and try a few of
your own experiments!

Using String Methods: Case Conversion

In the example below, replace each comment with a Python expression that returns the value described.

Do not use any literal strings—write expressions using methods of s only! For example: s.capit alize() .

To see a list o f the methods o f a string, use dir("") in the interactive interpreter.

Type in this code:

CODE TO TYPE:

#
case_convert.py
#
s = "this Is a Simple string"
slower = # s converted to lower case <--
supper = # s converted to UPPER CASE <--
stitle = # s converted to Title Case <--
print(s, slower, supper, stitle, sep="\n")

 Save it in your /pyt ho n1 fo lder as case_co nvert .py and run it.

Test your program on various strings by modifying the assignment statement. Play with using the dir("string")
function to investigate string methods. For example, try s.capitalize(), s.islower(), s.swapcase()...

It's a little tedious to have to edit the program each time you want to see what happens with a new value,
right? Next we will look at a way o f allowing the user to provide the strings that our program operates on and
avo id all that extra work!

Reading and Converting User Input

The input() Function

To read data entered (interactively) by the user, you use the input () function. If you provide input () with a
string argument, that string (and only that string) will be printed as a prompt, immediately before reading an
input string from the user. Once the user types their input (ending it by pressing Ent er), the function returns
the user's input (less the Enter) as a string. Unlike the lines you will read from files, user input has no trailing
newline. This is fine, but if you need a number from the user, you must perform some sort o f conversion. You
also need to handle any errors that may arise from your attempts to convert (we'll let that slide for now though
and push onward!)

A couple o f lines o f input are shown in the fo llowing screen shot. Notice that the input () function always
returns a string—even when the user actually types in a number:

Type Conversions

As we mentioned earlier, in Python, "explicit is better than implicit," so we cannot add a string (even a string
whose value is a valid number) to a number. Instead, we have to explicitly convert the string first. The int ()
function takes a single string as an argument, and returns the integer represented by the string (or raises an
exception). The f lo at () function is similar, but takes any valid string representation o f a floating-po int number
instead (again raising an exception if the string cannot be converted).

You'll need an interactive terminal now. Remember, if you don't have one available, just click the icon.
Type in these commands interactively:

INTERACTIVE SESSION:

cold1:~$ python3
>>> n = int(input("Enter a number: "))
Enter a number: 33
>>> x = float(input("Another number: "))
Another number: 45.67
>>> n, x
(33, 45.67)
>>> y = float(input("Final number: "))
Final number: abc.def
Traceback (most recent call last):
 File "<console>", line 1, in <module>
ValueError: could not convert string to float: abc.def>>>

Feel free to try o ther inputs. Observe, too, that the floating-po int number system used on computers cannot
express 45.67 exactly, though it gets pretty close. This usually only happens with floating-po int numbers, not
integers. If you haven't programmed before, just remember these "rounding errors" make arithmetic slightly
inexact, so be sure they don't make a difference to your results. They can sometimes add up surprisingly
quickly. In the last o f the three cases above, the user is entering text that cannot be converted into a number.
So Python calls the action to a halt with an exception traceback that tells you what happened. (Pretty coo l,
huh?)

Because the observations were made in an interactive interpreter after the traceback, you see another >>>
prompt. If an unhandled exception occurs when running a program, the program run is terminated. But this
isn't always your desired result. Fortunately, there are ways you can handle these exceptions and avo id
program termination. For now, let's just type carefully when we need to provide numeric input!

Calculating with Stored Values
Okay! Let's put all this together in a short sample program that asks for the height, width, and depth o f a room, and
calculates the surface area o f the walls. It'll give you an idea o f how real code is written.

Type this code in the editor window below:

CODE TO TYPE:

#
wall_area.py
#
h = float(input("Room height: "))
w = float(input("Room width : "))
d = float(input("Room depth : "))
area = 2 * (h * (w + d))
print("Area of walls:", area)

 Save it in your /pyt ho n1 fo lder as wall_area.py, and run it in an interactive session a few times, using different
inputs:

INTERACTIVE SESSION:

cold1:~/python1$ python3 ./wall_area.py
Room height: 12
Room width : 14
Room depth : 32
Area of walls: 1104.0
cold1:~/python1$

What happens if you give the program a non-numeric input? (Never fear. We'll show you how to deal with those
circumstances later.)

Getting It Done
We're covering a lo t o f material in these early lessons, and we still have a long way to go. You're do ing really well so
far—stick with it—see you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Making Decisions: The if Statement
Lesson Objectives

When you complete this lesson, you will be able to :

take different actions depending on whether a specific condition is true.
compare and evaluate two values using the comparison operator.
determine whether one string appears inside another, using the in test.
test fo r several different conditions.
use the elif keyword instead o f else ... if ..
use the o r operator between the conditions.

So far, we've covered basic types o f statements in Python—the assignment statement and the statement that calls a function.
The function we've used most o ften is print () , which has the handy side effect o f printing out the value o f one or more
expressions.

One o f the most common needs in programming is to make a decision and act on it—for example, do ing one thing if a
customer answers Yes to a question, and another if they answer No. The if statement gives us this power, allowing us to take
different actions depending on whether a specific condition is true.

Conditions in Python
In order to be able to make a decision, you need to evaluate some condition. The conditions we compare most
frequently in Python are o f two values, using the comparison operator. You can compare for various kinds o f equality
or inequality:

Operat o r T rue when

a == b a and b have the same value

a != b a and b do not have the same value

a < b a's value is less than b's

a <= b a's value is less than or equal to b's

a > b a's value is greater than b's

a >= b a's value is greater than or equal to b's

Comparing numbers is pretty intuitive, but keep in mind that you can't use these operators to compare complex
numbers. The operands are two-dimensional, so they can't be laid out in a straight line; simple comparisons like that
aren't valid. Instead, you must compare the abso lute values o f complex numbers, using the abs() function.

Comparing strings is fairly straightforward as long as you can alphabetize a list o f items. The characters in strings
have a defined order, sometimes called the collation sequence. Let's suppose we want to compare strings a and b.
The interpreter looks at the first character o f each string. If the first character o f a occurs earlier in the co llation sequence
than the first character o f b, then a is less than b. If the first character in a is greater than the first character in b, then a is
greater than b. If this initial attempt to compare the strings is inconclusive, then the next characters in the sequence o f
the strings are compared until a determination is made.

If the end o f one o f the strings is reached and additional characters still remain in the o ther, then the longer o f the two
strings is greater. If bo th strings have exactly the same characters in them, they are considered equal. You may see the
term "lexical comparison" used to describe this method o f comparing strings. Start a new terminal session and verify
the fo llowing results:

INTERACTIVE SESSION:

cold1:~$ python3
>>> a = 23.0
>>> b = 22
>>> a == b
False
>>> a != b
True
>>> a < b
False
>>> a <= b
False
>>> a > b
True
>>> a >= b
True
>>> p1 = "Python"
>>> p2 = "Perl"
>>> p1 == p2
False
>>> p1 != p2
True
>>> p1 < p2
False
>>> p1 <= p2
False
>>> p1 > p2
True
>>> p1 >= p2
True
>>> "this+" > "this"
True
>>> "that" == "that"
True
>>> "That" == "that"
False
>>> "That".upper() == "thAT".upper()
True
>>>

The last tests show that string comparisons are case-sensitive. If you want to avo id case-sensitivity, use the upper()
or lo wer() method to convert both strings to the same case.

In addition, you can determine whether one string appears inside another, using the in test:

INTERACTIVE SESSION:

cold1:~$ python3
>>> x = "nan"
>>> s = "Banana"
>>> x in s
True

The result o f the expression x in s is True when the substring x appears somewhere inside the string s. You can also
test to find out whether a string is a member o f a list o r a tuple (a tuple is a sequence or ordered list, o f finite length); x
in lt is true if x is an element o f lt , whether lt is a list o r a tuple.

Also, strings have several methods for you to use to determine whether the string has specific characteristics. The
most important ones are shown in this table:

Met ho d Example T rue when ...

s.startswith(x) String s starts with the substring x

s.endswith(x) String s ends with the substring x

s.isalnum() All characters in s are alphanumeric and there is at least one character

s.isalpha() All characters in s are alphabetic and there is at least one character

s.isdigit() All characters in s are digits and there is at least one character

s.islower() All cased characters in s are lowercase and there is at least one cased character

s.isupper() All cased characters in s are uppercase and there is at least one cased character

All o f these conditions can be tested individually or, as we'll see later, in combination. You can use the if statement to
choose whether or not to execute one or more statements by testing a condition and executing the statement if the
condition is true. You can also choose which sets o f statements to execute.

Making Decisions: if Statements
Expressions that the Python interpreter will evaluate as True or False (also called conditions) can be used to modify the
actions o f your program, using a basic if statement.

The if statement begins with the keyword if , fo llowed by an expression, and ends with a co lon. This line is always
fo llowed by an indented suite—one or more statements with an indentation level greater than that o f the if line. If the
condition is true, then the indented suite is executed. All the statements in the suite must be indented to exactly the
same level. In the Python world, we use four additional spaces for each new indentation level.

Okay, let's program!

CODE TO TYPE:

#!/usr/local/bin/python3
"""Detect any mention of Python in the user's input."""

uin = input("Please enter a sentence: ")
if "python" in uin.lower():
 print("You mentioned Python.")

Note
By default, the CodeRunner editor and your web browser likely display tab characters as taking up eight
spaces. It is proper Python programming practice to indent four spaces. As such, we recommend that
you indent code using the space bar rather than the Tab key. Alternatively, if you are familiar with a Linux
text editor, you are welcome to use emacs or vim, which are available on the OST server.

Save it in your /pyt ho n1 fo lder as f ind_pyt ho n.py and run it:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$./find_python.py
Please enter a sentence: My python is a happy snake.
You mentioned Python.
cold1:~/python1$./find_python.py
Please enter a sentence: There's a pylon in the road.
cold1:~/python1$

Run the program several times to verify that when the string "python" is present in your input, the program prints "You
mentioned Python." and when "python" is NOT present, it does not. Make sure you test in all circumstances.

Note
Because we added #!/usr/lo cal/bin/pyt ho n3 at the beginning o f the program, we didn't need to call
pyt ho n3 specifically in the interactive session. We'll use this from now on in our programs, but it might
not work on o ther systems.

Choosing Between Alternatives: the else Clause
The basic if statement allows you to choose whether to execute an indented suite made up o f one or more
statements. If you want to execute one set o f actions if the condition is true and execute another set if it is false, add an
else clause to the if statement. The else clause fo llows the first indented suite, and is fo llowed by the indented suite
to execute if the if condition is false. When the condition is true, the first suite is executed; when it is false, the second
suite is executed. Modify f ind_pyt ho n.py as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Detect any mention of Python in the user's input."""

uin = input("Please enter a sentence: ")
if "python" in uin.lower():
 print("You mentioned Python.")
else:
 print("Didn't see Python there.")

 Save and run it. Test your program several times, using both types o f input. When your program includes alternative
behaviors, it's important to test all the possible paths.

Multiple Choice Decisions
Sometimes a decision isn't as simple as choosing between A or B. You may need to test fo r several different
conditions, then take an action on the first condition that's true. In this case, using if ... e lse repeatedly gives rise to a
small problem. Chained if ... else statements move code to the right. else adds a level o f indentation, so if we have a
long chain o f tests, the code moves over towards the right margin, which can make your code difficult to read. That's
nothing we can't handle, though! Take a look:

OBSERVE:

if (condition 1):
 suite 1
else:
 if (condition 2):
 suite 2
 else:
 if (condition 3):
 suite 3
 else:
 ...

To overcome this, Python has the elif keyword, which you can use instead o f else ... if . Because a single elif
incorporates the functions o f both the else and the if statements, elif does not introduce an additional level o f
indentation:

OBSERVE:

if (condition 1):
 suite 1
elif (condition 2):
 suite 2
elif (condition 3):
 suite 3
else:
 ...

Both o f our examples do the same thing, but the second one is easier to read, and presents the chain o f cho ices much
more clearly. The else clause at the end is optional; if it's included, then the suite under it will be executed if none o f
the conditions are true. Without an else clause, the program won't do anything at all if none o f the conditions are true
(it will just continue on the line after suite 3).

Now suppose we want to analyze a user's input to detect different programming languages, and respond if we don't
find any o f our languages mentioned. Modify your program so that it uses elif to select among the alternatives. Edit

f ind_pyt ho n.py again so it looks like this:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Detect any mention of several languages in the user's input."""

uin = input("Please enter a sentence: ")
if "python" in uin.lower():
 print("You mentioned Python.")
elif "perl" in uin.lower():
 print("Aha, a Perl user!")
elif "ruby" in uin.lower():
 print("So you use Ruby, then?")
else:
 print("Didn't see any languages there.")

 Save and run the program. Test your results a few times. The first three times, mention one o f the target languages;
the fourth time don't mention a language at all. Now let's ponder a few questions together: What happens if our input
contains two languages? Does the program detect them both? Why or why not?

Combining Conditions: 'and' and 'or'
Sometimes you want to take a particular action only when several conditions are true. You could do this by putting one
if inside another, o r you could use the and operator between the conditions. Similarly, if you want your program to
execute a particular action when at least one o f several conditions is true, you could use the o r operator between the
conditions.

Let's test the and and o r operations interactively:

INTERACTIVE SESSION:

cold1:~$ python3
>>> s = "ABC"
>>> if s.isupper() and s.startswith("A"):
... print("s is upper case starting with A")
...
s is upper case starting with A
>>>> s = "BBC"
>>> if s.isupper() and s.startswith("A"):
... print("s is upper case starting with A")
...
(Nothing prints.)
>>> if 1 == 2 or s.endswith("C"):
... print("Impossible happened or s ends with C")
...
Impossible happened or s ends with C
>>>

If two conditions are jo ined by and, the result is true only if both conditions are true. If two conditions are jo ined by o r,
the result is true if either condition is true, so even though 1 can never be equal to 2, in the second example, the
condition was still true.

Testing for a Range of Values: Chaining Comparisons
Comparison operators have a special feature; they can be "chained." Instead o f writing a < b and b < c, you can write
a < b < c. Although there are slight differences between the way the Python interpreter evaluates the two expressions,
for now you can regard them as equivalent.

Here are some of the o ther tests you can create with if statements. This program uses the while statement. Create
this new program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
target = 63
guess = 0

while guess != target:
 guess = int(input("Guess an integer: "))
 if guess > target:
 print ("Too high...")
 elif guess < target:
 print ("Too low...")
 else:
 print ("Just right!")

 Save it in your /pyt ho n1 fo lder as guesser.py and run it, entering a few guesses. For every guess you make, the
program reports whether your guess is too high or too low. With every guess, you close in on the target number.
Below is the output fo r a typical run o f the program:

INTERACTIVE SESSION:

cold1:~/python1$./guesser.py
Guess an integer: 22
Too low...
Guess an integer: 88
Too high...
Guess an integer: 50
Too low...
Guess an integer: 67
Too high...
Guess an integer: 58
Too low...
Guess an integer: 63
Just right!

Wrapping It Up
You're looking good so far. But there's plenty more to learn still!

In the next lesson, we'll look at how we can write more powerful programs using loops. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Iteration: For and While Loops
Lesson Objectives

When you complete this lesson, you will be able to :

use a f o r statement to loop over the characters in a string you enter, and an if statement to determine whether each
character is a vowel.
execute a break during a loop to terminate the loop immediately.

Glad to see you here again! We've covered a couple o f basic "object" types in Python—strings and numbers. We've also
encountered one o f Python's sequence types—strings. Other Python sequence types may contain more than just characters.
But before we try to understand Python's container objects, let's take a look at loops.

Modern computers execute millions or even billions o f instructions per second. If we had to write out every instruction, it would
take a lifetime to write less than a second's worth o f code. Fortunately, we have loops at our disposal. Loops tell the computer
to execute the same sequence o f actions over and over. Through the use o f loops, we can tell the computer to repeat the same
operations on different pieces o f data, without typing the instructions again each time.

At the end o f the last lesson we worked with a program that contained a while loop. Using a while loop, we can apply the same
logic repeatedly—in this case, until a specific condition is true. Similarly, f o r loops allow you to repeat the same actions on
each o f a number o f things. We'll take a closer look at f o r loops first.

A Basic For Loop
Suppose you wanted to count the number o f vowels in a string. How would you approach this task? Traditionally, you
would set a counter to zero , then loop over the characters in the string, adding one to the counter when a vowel
character was found. After all the characters in the string were processed, the counter would contain the to tal number o f
vowels in the string.

Let's try an example that uses a f o r statement to loop over the characters in a string you enter, and an if statement to
determine whether each character is a vowel. Type this code in the editor window:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Counts the vowels in a user input string."""

s = input("Enter any string: ")
vcount = 0
for c in s:
 if c in "aeiouAIEOU":
 vcount += 1
 print("C is ", c, "; Vowel count:", vcount)

 Save it in your /pyt ho n1 fo lder as vo wel_co unt er.py and run it in the Terminal tab. The "Enter any string:" prompt
appears. The program counts the number o f vowels in any string you enter and returns a to tal.

The f o r statement is fo llowed by an indented suite (in this case, a single if statement). When the f o r statement
executes, the name s is bound to a string. For each character in the string, the interpreter executes the indented suite
with the name c, bound to the current character. So, suppose you entered "the." The first time through the loop, c would
be "t." The second time, it would be "h," and the third time, it would be "e." Each time around, the if statement checks to
see whether c contains a vowel. If it does, we add 1 to the vco unt counter; o therwise nothing happens because there
is no else clause for the if . After all characters have been processed, vco unt contains a count o f the vowels within
the input string.

We had the program print every time it went through the loop so you could see how it works. Now, let's change our
program to print only when it finishes reading the input string. To do that, we simply unindent the print statement so that
it falls outside o f the loop. We'll also remove the code that prints the value o f "c":

CODE TO TYPE:

#!/usr/local/bin/python3
"""Counts the vowels in a user input string."""

s = input("Enter any string: ")
vcount = 0
for c in s:
 if c in "aeiouAIEOU":
 vcount += 1
print("C is ", c, "; Vowel count:", vcount)

 Save and run it again to see the difference.

Breaking Out of a Loop
The f o r loop is useful fo r processing each element in a sequence. We'll look at more complex sequences in the next
lesson, but fo r now we'll just use strings.

Suppose you wanted to know where the first space appears in a string. One way to find out would be to loop through
the string, counting characters until you found a space. But once you found it, how would you stop counting? You
could set a flag to tell your computer to stop counting after you found the space and completed the loop, but then why
bother completing the loop? It would be more efficient to stop looking at characters once you found the first space. To
do that, we use the break statement. If you execute a break during a loop, the loop terminates immediately.

Let's write a program that prints out the position where the first space appears in a string. Enter this code:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Program to locate the first space in the input string."""

s = input("Please enter a string: ")
pos = 0
for c in s:
 if c == " ":
 break
 pos += 1
print("First space occurred at position", pos)

 Save it in your /pyt ho n1 fo lder as space_f inder.py and run it:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$./space_finder.py
Please enter a string: Space, the final frontier.
First space occurred at position 6

The count (po s) starts at 0 because that's the first position o f a string or any o ther Python sequence. Each time
through the loop, we test to see if the current character (c) is a space (" "). If it is, we hit the break, exit the loop, and
print the value from po s; o therwise we add 1 to po s and the loop continues. Be sure you get things in the right order!
Incrementing the count before testing and terminating the loop would cause what's known as an "o ff by 1 error."

But what does the program do if there's no space in the input? I'm glad you asked! It prints out a result as though a
space fo llowed the input string, because the loop terminates after it has inspected each character in the string. Check it
out in your program by running it with an input containing no spaces.

We need separate logic to verify that there really is a space in the string. Python loops come with such extra logic built
in, in the shape o f the optional else clause. This clause is placed at the same indentation level as the f o r o r while
loop that it matches, and (just as with the if statement) is fo llowed by an indented suite o f one or more statements.
This suite is only executed if the loop terminates normally. If the loop ends because a break statement is executed,
then the interpreter just skips over the else suite. In the case o f the space detection program, we execute the break
when we detect a space, so an else clause on the f o r loop would only run if there were no spaces in the input.

We need to modify our code a bit more. In the first version, the print was located at the end o f the loop, where it
always runs no matter what the outcome of the testing. Now we want it to be part o f the suite guarded by the if
statement, so it only runs when a space is found. Modify your space_finder.py file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Program to locate the first space in the input string."""

s = input("Please enter a string: ")
pos = 0
for c in s:
 if c == " ":
 print("First space occurred at position", pos)
 break
 pos += 1
else:
 print("No spaces in that string")
print("First space occurred at position", pos)

 Save and run it with a string that contains a space and then with a string that doesn't. The program runs just fine either
way.

As your programs become more complex, you will find that there are sometimes different ways to express the same
logic. In those cases, you should "do the simplest thing that works." For example, in the body o f the loop, we could
have put the statement that increments the counter in the suite o f an else clause. We chose not to use an else
because if the expression c == " " tests as true, the break statement will guarantee that po s isn't incremented (by
immediately exiting from the loop) before the assignment statement is executed.

While Loops
The f o r loop is useful when you want to apply the same logic to each member o f a sequence. But sometimes (like in
the guessing game at the end o f the last lesson) you don't have a finite sequence; you want actions to be repeated
until some condition is true.

Suppose we want to split a string into words. Defining words by the spaces between them, we can locate the first
space with a f o r loop. Now we can modify the string each time we find a word (by re-binding the name of the string to a
new string with the word removed) until there are no more words left. That's the idea behind the next program. Create a
new file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Program to split a sentence into words."""

s = input("Please enter a sentence: ")
while True:
 pos = 0
 for c in s:
 if c == " ":
 print(s[:pos])
 s = s[pos+1:]
 break
 pos += 1
 else:
 print(s)
 break

 Save it in your /pyt ho n1 fo lder as sent ence_split t er.py and run it. The while T rue clause in this program sets up
a loop that will keep running until logic in the if /e lse suites causes a break. When you see while T rue in a program,
either the programmer has included a break statement to terminate the loop, or the program is designed for
continuous operation—or the programmer has made a terrible mistake and the program will never stop running! In this
case, it's the former: the break to terminate the while loop is inside the f o r loop's else clause. Run the program and
enter a sentence. You should see each word in the sentence on a separate line.

Note In s[:po s] and s = s[po s+1:] , we use a feature that we haven't covered yet. Stay tuned!

Of course this program isn't perfect—very few programs are! Try entering a sentence where the words are separated by
multiple spaces. The program prints empty lines, corresponding to the "empty words" between the spaces. We can fix
that, though. One way would be to remove leading spaces before go ing into the f o r loop each time. Let's modify our
sentence_splitter.py to allow multiple spaces between words. Edit the program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Program to split a sentence into words."""

s = input("Please enter a sentence: ")
while True:
 while s.startswith(" "):
 s = s[1:]
 pos = 0
 for c in s:
 if c == " ":
 print(s[:pos])
 s = s[pos+1:]
 break
 pos += 1
 else:
 print(s)
 break

 Save and run it.

When you run your updated program, you can enter as many spaces as you like between the words and still get one
word per line in the output. Can you figure out how you might use o r to ignore extra tabs between words? What part o f
the program would you need to change to treat tabs as completely equivalent to spaces? (Hint: you would have to
accept sentences with just tabs between the words.)

Terminating the Current Iteration
The break statement can be used to terminate either a f o r o r a while loop. There is another statement you can use to
terminates only the current iteration o f a loop, moving on to the next iteration immediately.

In the final example for this lesson, we'll process lines o f input from the user. The user will indicate the end o f their
input by entering a blank line (simply pressing the Ent er key), but we want them to be able to add comments to their
input by entering lines beginning with the # character. These lines shouldn't be processed; they are just there to inform
the reader. (Python also accepts comments—the # character tells the interpreter to ignore everything else up to the end
of the line). We aren't especially concerned with the processing that's done on each line, so in this example we'll just
use the len() function to print.

A comment should be indicated by the first printable character. Create a new file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Demonstrating the continue statement."""

while True:
 s = input("Enter a line (or Enter to quit): ")
 if not s:
 break
 if s.startswith("#"):
 continue
 print("Length", len(s))

 Save it in your /pyt ho n1 fo lder as lengt h_co unt er.py and run it. Enter several lines, including at least one
comment line that begins with "#." Comment lines are processed differently from regular lines because o f the
co nt inue statement, which immediately causes the program to loop and ask for another input. There are o ther ways

you could have achieved the same result.

Feel the Power
Once you understand how looping logic works, you're well on the way to comprehending the real power o f computers.
Looping allows you to tell the computer to repeat the same set o f instructions again and again and again...

We must confess, there are easier ways to perform the tasks that you programmed in this lesson, but we want you to
understand what's go ing on behind the scenes first. Start o r switch to an interactive session and enter the fo llowing
expressions:

INTERACTIVE SESSION:

>>> "spaces are our friends".find(" ")
6
>>> "What\tis a word?".split()
['What', 'is', 'a', 'word?']
>>>

The f ind() string method locates a given character inside the string (it finds the first occurrence o f the string passed as
its argument). The split () string method, when called without arguments, splits the string up into its constituent words,
which are assumed to be separated by one or more white space characters. The strings inside the square brackets
constitute a list. We'll be looking at those (and their cousins, the tuples) in the next lesson.

Well done. Good for you for sticking with it! Now you have a grasp o f a lo t o f the basics, you'll be able to take on more
complex programming challenges. See you at the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Sequence Containers: Lists and Tuples
Lesson Objectives

When you complete this lesson, you will be able to :

write Lists and Tuples.
access the individual elements in a sequence with indexing.
index and slice elements.
modify lists.
use a third component o f the slice specification: the stride.
determine whether a sequence contains a specific value, using the in keyword.

Welcome back, my favorite student! So far, we've covered basic object types in Python, such as strings and numbers. Now
we're ready to look at Python's "container" objects, starting with lists and tuples. Both lists and tuples are sequence types.
Because strings are sequence types as well, much o f what we learn here can be applied to strings as well.

Sequence types have a specific order, so it's easy to spot a string's first and last characters. Similarly, lists and tuples present
elements in a particular order. Each element o f a sequence is numbered. The numbering always starts at zero . You refer to an
individual element by fo llowing the sequence name with a number in square brackets [].

Lists and Tuples
Python uses both lists and tuples. In general, tuples are used when the position o f an element indicates something
about its capability, and lists are used to ho ld elements that will be treated in the same manner. Python doesn't enforce
these constraints, though; the only hard and fast rule for using lists and tuples is don't use tuples if you want to change
the sequence. Tuples are primarily fo r use when you need a non-modifiable sequence.

Writing Lists and Tuples
Sometimes you'll want to write the contents o f a list right inside o f your code. To do that, write a comma-separated list
o f the element values, surrounded by square brackets [].

Tuples are usually written as a comma-separated list o f values surrounded by parentheses () rather than brackets [],
but in many cases the parentheses () are optional. (Okay, I will refrain from including illustrations o f brackets [] and
parentheses () now. You get the picture, right?) The interactive interpreter always puts parentheses around a tuple
when asked to display its representation, and we recommend you do the same, in order to facilitate readability.

Let's look at some sequences in action. Start an interactive terminal session and type:

INTERACTIVE SESSION:

cold1:~$ python3
>>> lst1 = [1, 3, 5]
>>> lst2 = [2, 4, 6]
>>> tup1 = (9, 7, 5)
>>> tup2 = (8, 6, 4)
>>> dir(lst1)
['__add__', '__class__', '__contains__', ... , 'append', 'count', 'extend',
'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
>>> dir(tup1)
['__add__', '__class__', '__contains__', ... , 'count', 'index']
>>> lst1+lst2
[1, 3, 5, 2, 4, 6]
>>> tup1+tup2
(9, 7, 5, 8, 6, 4)
>>> lst1+tup1
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: can only concatenate list (not "tuple") to list
>>> clist = [lst1, lst2, tup1, tup2]
>>> print(clist)
[[1, 3, 5], [2, 4, 6], (9, 7, 5), (8, 6, 4)]

The results o f the calls to the dir() function show that a list has methods that a tuple doesn't have. We abbreviated the
output by removing many o f the special names beginning with a double underscore. We'll learn more about those
methods later, but fo r now we'll focus on the regular methods.

You can put whatever you like in a list. Usually you'll enter simple values like strings and numbers. The clist list in the
example above contains two o ther lists and two tuples.

Accessing Sequence Values
Once you have created a sequence, you can access its individual elements using indexing. To index a single element
from a sequence, you fo llow it with a numeric value in square brackets (remember—the first element is numbered
zero!). You can also take slices from the sequence, creating a new and usually smaller sequence. To slice a sequence,
you write two numeric values, separated by a co lon (:), inside the square brackets. If you omit the first value, the new
sequence starts with the first element o f the sliced sequence. If you omit the last value, the new sequence ends with its
last element. Continue the interactive terminal session as shown:

INTERACTIVE SESSION:

>>> clist = [1, (2, 3, 4), "a", "Bright", "c"]
>>> clist [1]
(2, 3, 4)
>>> clist[1][1]
3
>>> clist[3][1:3]
'ri'
>>> stuff = clist[2:4]
>>> stuff
['a', 'Bright']
>>> stuff2 = clist[2:5]
>>> stuff2
['a', 'Bright', 'c']
>>> stuff[0]
'a'
>>> "Strings are sequences too"[:7]
'Strings'

Indexing and slicing are fundamental operations in Python, so make sure that you understand why each expression
evaluates the way it does. Be aware that when you slice a sequence, the second index isn't the index o f the last

element in the slice. This is actually very useful. It would be confusing if clist [2:4] didn't give you a list 2 elements
long, so element 4 isn't included in that slice. So, to get the fourth element in our slice, we referenced the nonexistent
element 5. Because strings are also sequences, we can chop strings up without too much difficulty.

Modifying Lists
Although strings and tuples are also sequences, they are immutable. Once created, they can't be changed (although
you can still index and slice them to extract individual elements or sub-sequences). Lists, however, can be changed. In
the same way that you can bind a new value to a name with an assignment, you can also bind a new value to an
element o f a list. Let's check out one way you can modify a list. Start o r continue the interactive terminal session as
shown:

INTERACTIVE SESSION:

>>> stuff = [1, (2, 3, 4), "a", "Bright", "c"]
>>> stuff[1] = "Not a tuple"
>>> stuff
[1, 'Not a tuple', 'a', 'Bright', 'c']
>>> stuff[0] = 0
>>> stuff[3] = 'b'
>>> stuff
[0, 'Not a tuple', 'a', 'b', 'c']
>>> stuff[2:4]
['a', 'b']
>>> stuff[2:4] = [1, 2, 3]
>>> stuff
[0, 'Not a tuple', 1, 2, 3, 'c']
>>>

So far, we've just been just replacing single elements o f the list. It's also possible to replace a slice. When you do that,
make sure that you also assign another sequence. Any sequence will do—a list, tuple, or string. If you assign a string
to a slice, each character in the string becomes a new element o f the list. Try experimenting with these possibilities.

Because you can replace any slice o f a list, you can delete the slice by assigning an empty sequence to it. But there are
less labor-intensive ways to replace a slice o f a list. Python's del statement was designed especially fo r deleting
things. You can use it on a single element or a slice. If you know that a list contains a certain value, but you don't know
the value's index, you can use the list's remo ve() method to delete it from the list. If the same value occurs more than
once, only the first occurrence is deleted. Let's give it a try. Type the commands below as shown:

INTERACTIVE SESSION:

>>> dlist = ['a', 'b', 'c', '1', '2', 1, 2, 3]
>>> dlist[6]
2
>>> del dlist[6]
>>> dlist
['a', 'b', 'c', '1', '2', 1, 3]
>>> dlist[:3]
['a', 'b', 'c']
>>> del dlist[:3]
>>> dlist
['1', '2', 1, 3]
>>> dlist.remove(1)
>>> dlist
['1', '2', 3]

Note

In the last example, element 2 (the integer 1) was removed, not element 0 (the string '1'). In Python,
numbers and strings are distinctive, and it doesn't convert from one to the o ther unless you specifically
tell it to do so.

Also, remember that deletion only works for lists. Deleting an element o f a sequence would be the same
as modifying the sequence, and you can't modify tuples and strings.

As we saw in an earlier example, we can add elements to a list. Another way to include more elements is to use the
list's append() method. You call the method and give it a new element to be appended to the list. It's also possible to
insert elements at a specific position, and again there are two ways to do this. The simplest way is to use the list's
insert () method, which you call with a position (index value) and a value to be inserted. Or you could also assign the
new value to an empty slice—any slice with the same value for the lower and upper indexes is bound to be empty.
Let's experiment with adding new elements to a list. Type the commands below as shown:

INTERACTIVE SESSION:

>>> elist = [] # The empty list
>>> elist.append('a')
>>> elist
['a']
>>> elist.append('b')
>>> elist
['a', 'b']
>>> elist.append((1, 2, 3))
>>> elist
['a', 'b', (1, 2, 3)]
>>> len(elist)
3
>>> elist[1:1]
[]
>>> elist[1:1] = ["new second element"]
>>> elist
['a', 'new second element', 'b', (1, 2, 3)]
>>> elist.insert(3, "4th")
>>> elist
['a', 'new second element', 'b', '4th', (1, 2, 3)]
>>> len(elist)
5

One of the limitations we run into with slice assignment is that the replacement must be a sequence, so we usually
append or insert it. If you have a sequence o f elements that you want to insert, keep in mind that slice assignment
requires much less code than most o ther techniques.

Note If you call a list's append() method with a sequence argument (like you did with elist .append((1, 2, 3))
in the example above), that entire sequence becomes the last element o f the list.

Slices with a Stride: Skipping Sequences
A slice specifies a subsequence o f a sequence. Now suppose you don't want to include every element, but instead
you want to use every second or third element. The easiest way to do this would be to use a third component o f the
slice specification: the stride. The stride specifies how many elements to skip in the slice before extracting the next
element. The stride is separated from the first two components with a co lon; so your slice specification is like
[first:last:stride].

When you specify only two slice components, by default the stride is 1; it takes every element in the slice. A stride o f 2
takes every second element, and so on. Stride values can be negative as well as positive. Slicing always works by
setting the index to the first slicing component and then increasing the index by the stride value, until the index reaches
or goes past the second slicing component. When the stride is negative, the first slicing component must be higher
than the second. Type the commands below as shown:

INTERACTIVE SESSION:

>>> alf = "abcdefghijklmnopqrstuvwxyz"
>>> alf[2:13]
'cdefghijklm'
>>> alf[2:13:2]
'cegikm'
>>> alf[2:13:-2]
''
>>> alf[13:2:-2]
'nljhfd'
>>> alf[13:2]
''
>>> alf[::-1]
'zyxwvutsrqponmlkjihgfedcba'

One way to get the reverse o f a sequence is to slice the whole thing by omitting the first and second slice components
and then use a stride o f -1. So, if you want to replace a list with its reverse, rather than use the list's reverse() method
lst.reverse(), you can write lst = lst[::-1]. Python sequences are nothing if no t versatile!

Other Functions and Methods to Use with Sequences
Sometimes you'll have a string that you want to break up into a list o f words. The split () method helps you to do just
that. If you call the string without any arguments, it will split the string. If you call it with one argument (fo r example, a
space " "), it will use that argument as a separator, returning a list o f the strings that appear between its occurrences.

If you give a second argument, it should be an integer. This informs the interpreter o f the maximum number o f times to
recognize the separator, which limits the number o f elements in the returned list.

To get the sum of the numbers in a sequence, pass the sequence to the sum() function as an argument. The
interpreter will raise an exception if there is a non-numeric element in the sequence. To get the length o f any sequence,
use the len() function.

To find the number o f times a particular element appears in a list o r tuple, use the co unt () method, with the element
value you are seeking as the argument.

Testing for Presence in a Sequence
To determine whether a sequence contains a specific value, use the in keyword, which returns either T rue o r False .
Sequences also have an index() method that will return the lowest index value at which a given element occurs. You
have to be careful using index() though, as it will raise an exception if the element isn't present. To avo id the
exception, you can use an if test to ensure that the value is present, but it's better just to handle the exception, and
avo id do ing the search twice. We'll cover the if statement and exception handling in detail later.

Manipulating Lists and Tuples
Create a new program file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Simpler program to list the words of a string."""

s = input("Enter your string: ")
words = s.strip().split()
for word in words:
 print(word)

 Save it in your /pyt ho n1 fo lder as bet t er_sent ence_split t er.py and run it. This code performs the same tasks as
the one we wrote in the last lesson, but it uses features built into the Python language. Now type in a string that
contains some white space, press Ent er, and examine the result. You should see the list o f words, printed one per
line.

OBSERVE:

s = input("Enter your string: ")
words = s.strip().split()
for word in words:
 print(word)

This code applies the st rip() method to string s, which returns a string with no leading or trailing white space. The
split () method is then applied to the already stripped string, returning a list o f the words. The f o r loop iterates over the
list, printing each word on a separate line.

Now let's do something a little more complex with lists. We'll take a long piece o f text and find out how many lines,
words, and characters it contains. To determine the number o f characters, use the len() method. We count the lines by
splitting the text to get a list o f them. Finally, we split each line into words and accumulate a to tal by adding the number
of words in each line together.

Create a new file in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Count the words, lines and characters in a chunk of text."""

gettysburg = """\
Four score and seven years ago our
fathers brought forth on this continent,
a new nation, conceived in Liberty, and
dedicated to the proposition that
all men are created equal.

Now we are engaged in a great civil war,
testing whether that nation, or
any nation so conceived and so dedicated,
can long endure. We are met on
a great battle-field of that war. We have
come to dedicate a portion of that
field, as a final resting place for those
who here gave their lives that that
nation might live. It is altogether
fitting and proper that we should do this."""

charct = len(gettysburg)

lines = gettysburg.split("\n")
linect = len(lines)

wordct = 0
for line in lines:
 words = line.split()
 wordct += len(words)

print("The text contains", linect, "lines,", wordct, "words, and", charct, "characters.
")

 Save it in your /pyt ho n1 fo lder as paragraph_st at s.py and run it. If you typed in exactly the same input text, you'll
see T he t ext co nt ains 16 lines, 102 wo rds, and 557 charact ers.

Note Some operating systems may give different results; fo r example, Unix records a newline as one
character, while Windows records it as two.

Okay, now let's modify our program to keep a count o f word lengths, so we know how many one-letter, two-letter, and
three-letter words there are, and so on. Modify your paragraph_stats.py file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Count the words, lines and characters in a chunk of text."""

gettysburg = """\
Four score and seven years ago our
fathers brought forth on this continent,
a new nation, conceived in Liberty, and
dedicated to the proposition that
all men are created equal.

Now we are engaged in a great civil war,
testing whether that nation, or
any nation so conceived and so dedicated,
can long endure. We are met on
a great battle-field of that war. We have
come to dedicate a portion of that
field, as a final resting place for those
who here gave their lives that that
nation might live. It is altogether
fitting and proper that we should do this."""

lengthct = [0]*20 # a list of 20 zeroes
charct = len(gettysburg)

lines = gettysburg.split("\n")
linect = len(lines)

wordct = 0
for line in lines:
 words = line.split()
 wordct += len(words)
 for word in words:
 lengthct[len(word)] += 1

print("The text contains", linect, "lines,", wordct, "words, and", charct, "characters.
")
for i, ct in enumerate(lengthct):
 if ct:
 print("Length", i, ":", ct)

In the new program, we begin by creating a list o f counts. The idea is that the count o f n- letter words will be kept in
lengt hct [n] , and we assume that no word will be longer than 19 characters. Sometimes that kind o f assumption can
be dangerous, but fo r now, for experimentation's sake, we'll just go with it. In the loop that processes each line, we
have added a loop to iterate over the words. The length o f each word is used as an index into the lengt hct list, and
that element is incremented by one (they all start at zero). Finally, when the text has been fully processed, there is a bit
more code used to output the count o f words o f each length. The only real wrinkle here is the if statement that omits
those lengths for which there aren't any words.

 Save and run it. Your output will look like this:

So far, so good. Go on and experiment some more. Modify the text so it contains a word o f twenty characters or more
(like "deinstitutionalizing"). What happens when you run the program? How could you make the program work again?
Can you think o f a way you might modify the program to keep a count o f the individual words, so you could see how
many times each word was used? Using only sequences, this is pretty difficult, but not impossible.

It Slices, It Dices...
You've learned quite a bit about Python's sequence types and just how useful they can be. Next, we'll check out
Python's mapping types.

Phew. This isn't easy, but you're do ing really well. Keep it up, and I'll see you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Sets and Dicts
Lesson Objectives

When you complete this lesson, you will be able to :

create sets.
use sets and dicts.

Good to have you back! We'll go over some background information first and then get to work on some examples. Lists and
tuples are versatile data structures, but they have one fundamental property that you just can't get around: elements are retrieved
by number. That's fine when you're working with elements that are numbered, but on occasion you'll want to be less specific.
That's when sets and dicts come in handy.

Sets are similar to lists. You can use the in keyword to find out whether a particular value appears as an element within a list o r
a set. The interpreter finds members within lists by checking each element o f the list, one after the o ther, until it finds the value it's
looking for, o r gets to the end o f the list. The interpreter finds elements in sets using a much faster method "under the hood"
than the linear scan used for lists.

Using a list is fine when your program contains just a few elements, but the number may grow over time, particularly when the
data is being stored in a file or a database. As the number o f elements in your program grows, program performance becomes
increasingly slow. That could cause problems. In those cases, it's better to use a set in the first place.

The same value can appear multiple times in a list, but in a set, a value can appear only once. When you "add" an element to a
set that contains that particular element already, the set remains the same. Because o f this feature, you can't predict the order in
which the set elements will occur if you loop over them with a f o r loop. When you add an element, the order may change
completely. In o ther words, although sets are collections o r containers, sets aren't sequences. There is no concept o f "position"
for set elements. Conversely, in a list, you can determine the position o f a given element, using the index() method.

Dicts are similar to lists as well. A dict stores values that can be retrieved by indexing, but the index values in a dict don't need to
be numerical. All o f this will make more sense after we work through a few examples.

Creating Sets
You write a set as a comma-separated list o f elements inside braces { }—for example, you'd type the first three natural
numbers as {1, 2, 3} . You can also use Python's built- in set () function. This is usually called with a single sequence
argument, and creates a set that contains all the sequence's elements.

Python includes two separate data types for handling sets. As with lists and tuples, you build regular sets, then you can
add or remove elements. You can also build frozen sets, which stay the same once you have created them and raise
an exception at any attempt to change them. A set is an unordered co llection o f items with no duplicate elements; lists
are ordered and sets are not. Set objects also support various operations like union, intersection, and difference. If
you're not familiar with all this stuff yet, don't panic! We'll go over all o f it in detail here and in later lessons.

Working with Sets
Okay, now it's time to get friendly with set operations! Start an interactive terminal session and enter the fo llowing
commands:

INTERACTIVE SESSION:

cold1:~$ python3
>>> {1, 2, 3, 1, 2, 3, 1, 2, 3, 1}
{1, 2, 3}
>>> vowels1 = {"a", "e", "i", "o", "u"}
>>> vowels2 = set("aieou")
>>> vowels1 == vowels2
True
>>> languages = {"perl", "python", "c++", "ruby"}
>>> languages.add("php")
>>> languages
{'python', 'php', 'ruby', 'c++', 'perl'}
>>> "perl" in languages
True
>>> "java" in languages
False
>>> {'python', 'ruby'} < languages
True
>>> set("the quick brown fox") & vowels1
{'i', 'u', 'e', 'o'}
>>> vowels1 - set("the quick brown fox")
{'a'}
>>> set("the quick brown fox") - vowels1
{' ', 'c', 'b', 'f', 'h', 'k', 'n', 'q', 'r', 't', 'w', 'x'}
>>>

Note In the result from set ("t he quick bro wn f o x") & vo wels, the duplicate elements are eliminated.

The examples above used integers, characters, and strings, but most Python objects can be elements o f a set. You
can compute the intersection o f two sets using the & operator, and the difference between two sets with the - operator.
There are a number o f o ther operations you can perform on sets as well. Many, but not all, o f the operations can be
performed using either operators or a method call on one o f the sets.

Assume that s and t are sets in the fo llowing table:

Operat io n Met ho d Call Ret urns

x in s - True if x is an element o f set s.

s <= t s.issubset (t) True if every element o f s is also an element o f t .

s < t - True if every element o f s is also an element o f t but there is
also an element o f t that is not in s.

s >= t s.issuperset (t) True if every element o f t is also an element o f s.

s > t - True if every element o f t is also an element o f s but there is
also an element o f s that is not in t .

- s.isdisjo int (t) True if s and t have no element in common.

s | t s.unio n(t) The set containing all elements o f s and all elements o f t .

s & t s.int ersect io n(t) The set containing all elements that are in both s and t .

s - t s.dif f erence(t) The set containing all elements that are in s but not in t .

s ^ t s.symmet ric_dif f erence(t) The set containing all elements that are in s o r t but not in
both.

s |= t s.updat e(t) No ne , but adds all elements o f t to s.

s &= t s.int ersect io n_updat e(t) No ne , but leaves s containing only elements that originally
belonged to both t and s.

s -= t s.dif f erence_updat e(t) No ne , but removes any elements o f t from s.

s ^= t s.symmet ric_dif f erence_updat e(t) No ne , but leaves s containing all elements that belong to t o r
s but not both.

Let's use a set to keep track o f how many different words there are in a given piece o f text. Create a new file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Count the number of different words in a text."""

text = """\
Baa, baa, black sheep,
Have you any wool?
Yes sir, yes sir,
Three bags full;
One for the master,
And one for the dame,
And one for the little boy
Who lives down the lane."""

for punc in ",?;.":
 text = text.replace(punc, "")
print(text)
words = set(text.lower().split())
print("There are", len(words), "distinct words in the text.")

 Save it in your /pyt ho n1 fo lder as wo rd_co unt er.py and run it.

This is a classic problem we can run into when working with text in our programs. Python lets you so lve it in a unique
way. First, it uses a f o r loop to remove all the punctuation (punc) characters (,?;.) from the string, replacing each one
with an empty string (""). Next, it prints the text so you can confirm that the punctuation has been removed. Finally, it
converts the text to lower-case, splits the text at each run o f white space, and creates a set from the resulting list.

Python removes the punctuation to ensure that only words are present in the text. "Baa" is not the same as "Baa," (with
a comma), so the punctuation must be removed. The text is converted to lower case before splitting so that, fo r
example, "One" and "one" will no t be treated as unique words. A set cannot contain duplicate entries. The number o f
elements in the set (given by the len() function) is comprised o f the number o f different words in the text.

To see another application o f sets, let's write a program that compares two inputs and prints out the words they have
in common and various o ther pieces o f information. Type the code below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Find matching words in two input lines."""

words1 = set(input("Sentence 1: ").lower().split())
words2 = set(input("Sentence 2: ").lower().split())
print("Words in both strings", words1 & words2)
print("Unique to sentence 1:", words1 - words2)
print("Unique to sentence 2:", words2 - words1)

 Save it in your /pyt ho n1 fo lder as wo rd_mat cher.py and run it, and then enter two different sentences with some
words in common, as shown:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$./word_matcher.py
Sentence 1: Four score and seven years ago
Sentence 2: Four and twenty blackbirds were baked in a pie
Words in both strings {'and', 'four'}
Unique to sentence 1: {'ago', 'seven', 'score', 'years'}
Unique to sentence 2: {'a', 'blackbirds', 'in', 'pie', 'twenty', 'were', 'baked'}
cold1:~/python1$

The program prints the sets o f words, telling you which are common to both sentences and which are unique to each
sentence. Because the sets are not sorted, the program prints them in unpredictable order. To overcome this issue,
modify the program to make use o f Python's so rt ed() function. Edit your code as shown in blue:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Find matching words in two input lines."""

words1 = set(input("Sentence 1: ").lower().split())
words2 = set(input("Sentence 2: ").lower().split())
print("Words in both strings", sorted(words1 & words2))
print("Unique to sentence 1:", sorted(words1 - words2))
print("Unique to sentence 2:", sorted(words2 - words1))

 Save and run it, and enter the same two sentences. The output o f the first version o f this program printed sets as its
results, but this modified version prints lists. When applied to a set, the so rt ed() function sorts the elements o f the set
into a list. This displays our results in a predictable (alphabetical) o rder.

Working with Dicts
The dict is a useful structure for storing values against arbitrary keys. Let's take a look. Start an interactive interpreter
session and type the commands shown below:

INTERACTIVE SESSION:

>>> d = {'Steve': 'Python', 'Peter': 'Perl', 'Rob': 'Ruby'}
>>> d['Rob']
'Ruby'
>>> d['Peter'] = "C#"
>>> d
{'Steve': 'Python', 'Peter': 'C#', 'Rob': 'Ruby'}
>>> d['Peter']
'C#'
>>> del d['Peter']
>>> d
{'Steve': 'Python', 'Rob': 'Ruby'}
>>> d['Guido'] = 'Python'
>>> d
{'Steve': 'Python', 'Rob': 'Ruby', 'Guido': 'Python'}
>>> d.keys()
dict_keys(['Steve', 'Guido', 'Rob'])
>>> for k in d.keys():
... print(k)
...
Steve
Rob
Guido
>>> for k in d.items():
... print(k)
...
('Steve', 'Python')
('Rob', 'Ruby')
('Guido', 'Python')
>>> d[(1, 2)] = "Tuple"
>>> d[1] = "Integer"
>>> d
{(1, 2): 'Tuple', 1: 'Integer', 'Rob': 'Ruby', 'Steve': 'Python', 'Guido': 'Python'}
>>> d[1]
'Integer'
>>> d[1.0] = "Hello there"
>>> d[1+0j]
'Hello there'

Here you can see some of the most important aspects o f dict behavior. Dict literals use braces { } like sets do, but each
element is represented by a key, fo llowed by a co lon and the value associated with that key. In the example above, you
can see strings, numbers and tuples being used as keys. There are some types o f object you can't use as keys, but
let's not worry about that just yet. We've got enough to wrap our brains around for now!

In addition to creating dicts with a literal representation, you can also add new key-value pairs, and replace the value
associated with an existing key, using assignment statements. If you assign to an existing key in the dict, then the
assigned value replaces the previously associated value. If no value is associated with the key (in o ther words, if the
key does not currently exist in the dict), then the key is added and the assigned value is associated with the key.

Numeric keys receive slightly different treatment. You might expect that d[1] , d[1.0] , and d[1+0j] would refer to
different values in the dict, but those three keys are all numerically equal, and so assigning to d[1.0] overwrites the
value assigned to d[1] , and the same value can be retrieved by referencing d[1+0j] .

You can also see in our example that dicts have a keys() method that returns the keys o f the dict. This is known in
Python as an iterator. We'll look at iterators in some detail in a later course, but fo r the moment all you need to know is
that you can iterate over it, and each time around the loop, you get another key from the dict. The same is true o f the
dict's it ems() method, only this iterator yields key-value pairs rather than the keys from the dict.

The dict is a flexible object type. You can perform the fo llowing operations on a dict d:

Expressio n Descript io n

d[k] Returns the item from d associated with key k, raising a KeyError exception if k is not present.

len(d) Returns the number o f items in the dict.

del d[k] Removes d[k] from d, raising a KeyError exception if k is not present.

k in d Returns True if d has a key k; o therwise returns False.

k not in d Returns True if d does not have a key k; o therwise returns False.

d.get(k, default) Returns the value o f d[k] if that key exists; o therwise returns def ault (if the default value is not
given, returns None rather than raising a KeyError exception).

d.update(o ther) Updates the dict, overwriting any existing keys that appear in o t her, which can either be another dict
or a sequence o f key-value pairs.

Remember, you learn more by experimenting. Play around with a dict o r two in an interactive conso le until you are
comfortable with the way they work.

Applying Dicts: Counting Words
Now that you know how dicts work, let's apply the concept to a classic text processing problem: counting the
occurrences o f words within a text. In a previous exercise, we put the words from a piece o f text into a set, but there
was no way to associate a count with each word—all we can do with a set is detect whether an item is present.

Because the dict is able to associate a value with the key, we can use each word as a key in the dict and have the
associated value be the number o f times the word appears in the text. Open your wo rd_co unt er.py program, click

the Save As () icon, and save it in the /pyt ho n1 fo lder as a new file named wo rd_f requency.py. Then, edit it as
shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Count the frequency of each word in a text."""

text = """\
Baa, baa, black sheep,
Have you any wool?
Yes sir, yes sir,
Three bags full;
One for the master,
And one for the dame,
And one for the little boy
Who lives down the lane."""

for punc in ",?;.":
 text = text.replace(punc, "")
freq = {}
for word in text.lower().split():
 if word in freq:
 freq[word] += 1
 else:
 freq[word] = 1
for word in sorted(freq.keys()):
 print(word, freq[word])

 Save and run it. You'll see output showing the number o f times each word appears in the text. Word splitting works in
the same way as before, but now, each time a word is examined, the program checks to find out whether the word has
appeared before. If it has not, then a new entry is made in the dict with a value o f one. If it has (if it is already found in the
f req dict), the current count is incremented.

A slight modification to the program allows us to dispense with the if statement. Edit wo rd_f requency.py as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Count the frequency of each word in a text."""

text = """\
Baa, baa, black sheep,
Have you any wool?
Yes sir, yes sir,
Three bags full;
One for the master,
And one for the dame,
And one for the little boy
Who lives down the lane."""

for punc in ",?;.":
 text = text.replace(punc, "")
freq = {}
for word in text.lower().split():
 freq[word] = freq.get(word, 0)+1
for word in sorted(freq.keys()):
 print(word, freq[word])

 Save and run it. You see the same results as before. This version o f the program uses the same statement to update
the count, even if the word has been seen before. It uses the get () method with a default value o f zero to retrieve the
existing count, so if the word hasn't been seen before, the assignment inserts a value o f one against the new key.

A More Complex Application: Word Pair Frequencies
In the final example o f this lesson, we'll do a slightly more complex counting task. For each word in the input, we will
keep a count o f the number o f times it was fo llowed by each o f the o ther words that immediately fo llow it in the text.
This invo lves keeping a dict fo r each word. The keys o f this second dict will be the words that immediately fo llow the
original word. The values will be the number o f times that particular word fo llowed the original word.

With your word_frequency.py program open in the editor window, click the Save As () icon and save the file in your
/pyt ho n1 fo lder as pair_f requency.py. Edit the new program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Count the frequency of each word in a text."""

text = """\
Baa, baa, black sheep,
Have you any wool?
Yes sir, yes sir,
Three bags full;
One for the master,
And one for the dame,
And one for the little boy
Who lives down the lane."""

for punc in ",?;.":
 text = text.replace(punc, "")
words = {}
textwords = text.lower().split()
firstword = textwords[0]
for nextword in textwords[1:]:
 if firstword not in words:
 words[firstword] = {}
 words[firstword][nextword] = words[firstword].get(nextword, 0)+1
 firstword = nextword
for word in sorted(words.keys()):
 d = words[word]
 for word2 in sorted(d.keys()):
 print(word, ":", word2, d[word2])

 Save and run it.

Since we have to process words in pairs, we set f irst wo rd to be the first word in the text. The loop then loops over the
rest o f the text (t ext wo rds[1:]), assigning the word to next wo rd. At the end o f each pass through the loop,
next wo rd is assigned to f irst wo rd, so that at the start o f each iteration we have a consecutive pair o f words in
f irst wo rd and next wo rd.

The program makes sure that there is an entry fo r the first word in the wo rds dict: each entry starts out as an empty dict,
which will be used to store the number o f occurrences o f individual following words. Then it uses the same technique
that the second version o f word_frequency.py did to update the count o f the following word. The printing o f the output
has become a little more complex, because each word requires you to print out each following word. So in the output
phase, we have nested loops: one loop inside another.

Nice Work!
You've just added sets and dicts to your programming too l kit—no easy feat! Excellent! In the next lesson, we'll focus
on output, and ways to contro l the format o f the output produced by your programs.

I like what I'm seeing so far! Keep it up and see you in the next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

String Formatting
Lesson Objectives

When you complete this lesson, you will be able to :

use the format() Method.
create a string to be used as a format, then call the string's f o rmat () method to produce a formatted value or set o f
values.
use the field name to tell the formatting engine which value is to be formatted.
specify a field's type, specifications, and alignment.
create a simple listing program.

Up until now your programs created output using the print () function, which simply sends the output to the screen without
embellishment. But sometimes you'll need your output to be formatted in a particular way. Python has some really convenient
formatting features that can help with that.

The format() Method
To produce a formatted value or set o f values, you create a string to be used as a format, then call the string's
f o rmat () method. The format string can be made up o f literal text (which becomes part o f the formatted string) and
replacement fields. The replacement fields are surrounded by curly brackets ({ }). You provide the values you want to
format as arguments to the method. The values are interpo lated into the format string to produce a formatted string,
which becomes the result o f the method call. The replacement fields contain either the position or the name of the
argument whose value should be used (you'll learn more about named arguments later).

Let's look at some of the capabilities that this o ffers. Start an interactive session and enter the fo llowing commands to
see how formatting works:

INTERACTIVE SESSION:

cold1:~$: python3
>>> "{2}, {1}, and {0}".format("George", "Paul", "John")
'John, Paul, and George'
>>> "{who} is a smart {what}".format(what='cookie', who='Sylvia')
'Sylvia is a smart cookie'
>>> "The fifth element of the first argument is {0[5]}".format(
... ["Dallas", "Zorg", "Cornelius", "Ruby", "Billy", "Leelo"])
'The fifth element of the first argument is Leelo'
>>> d = {'Cher': "Sarkisian", 'Sonny': "Bono"}
>>> "Sonny's surname is {0[Sonny]}".format(d)
"Sonny's surname is Bono"
>>> "Cher's surname is {lookup[Cher]}".format(lookup=d)
"Cher's surname is Sarkisian"
>>> for first, last in d.items():
... print("{0:10} {1:10}".format(first, last))
...
Cher Sarkisian
Sonny Bono
>>> fmt = "{0:>6} = {0:>#16b} = {0:#06x}"
>>> for i in 1, 23, 456, 7890:
... print(fmt.format(i))
...
 1 = 0b1 = 0x0001
 23 = 0b10111 = 0x0017
 456 = 0b111001000 = 0x01c8
 7890 = 0b1111011010010 = 0x1ed2

You can see that Python has some very powerful string-formatting capabilities. Now we need to understand the rules
and ways to write fo rmats that will give us the output we want. We'll go over these rules in the next few sections.

The curly brackets play a vital ro le in fo rmatting strings. Each sequence o f characters surrounded by a pair o f curly
brackets is replaced by some representation o f an argument to the f o rmat () method.

Function Arguments
The f o rmat () method, like all Python functions, can be called with two types o f argument. The first type, and the one
you are most familiar with, is called positional, because it is identified by the position it occupies in the argument list.
The second type is called keyword; it's preceded by a name and an equals sign.

If a call has any positional arguments, they must always appear before any keyword arguments. Thus, " ..." .f o rmat (a,
b, k1=c, k2=d) is legal, but " ..." .f o rmat (k1=c, k2=d, a, b) is not (it will be flagged as a syntax error by the interpreter).

The arguments to the f o rmat () method call are the values to be formatted. The format string on which the method is
called specifies how the values are to be represented, by including replacement fields. Other text in the format string
(that does not appear between curly brackets) is simply copied to the output literally.

Note To include actual curly brackets in the output, simply put two curly brackets together, {{ o r }} . These
doubled curly brackets can never occur in a replacement field, and so they are treated specially.

Format Field Names
The first part o f the replacement field, immediately fo llowing the opening curly bracket, is the field name. This tells the
formatting engine which value is to be formatted. The field name begins with either a number, which specifies a
positional argument to the f o rmat () method, or a name, which specifies a named argument. This can be fo llowed by
extra information that allows you to index the selected argument (which will presumably be an indexable object such
as a list, tuple, or dict) o r access one o f its attributes.

Example Fie ld Name Meaning

1 The second positional argument

name The keyword argument called name

0.at t r The at t r attribute o f the first positional argument

2[0] Element 0 o f the third positional argument (which must be a list, tuple, or dict)

t est [key] The element associated with key key in the keyword argument named t est

These features alone can get you pretty far. Let's experiment now and get more comfortable programming by writing a
slightly unusual program. Usually we expect to provide variable data to a program and format its results in a standard
way. This time we'll provide you with standard data and let you enter fo rmat specifications that will select specific
elements for display.

Type the fo llowing code as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Accept format strings from the user and format fixed data."""
i = 42
r = 31.97
c = 2.2 + 3.3j
s = "String"
lst = ["zero", "one", "two", "three", "four", "five"]
dct = {"Jim": "Dandy",
 "Stella": "DuBois",
 1: "integer"}
while True:
 fmt = input("Format string: ")
 if not fmt:
 break
 fms = "{"+fmt+"}"
 print("Format:", fms, "output:", fms.format(i, r, c, s, e=lst, f=dct))

 Save it in your /pyt ho n1 fo lder as f o rmat t ing.py and run it; verify that you get the answers shown for the inputs

given in the fo llowing table:

Input Out put Explanat io n

0 {0} : 42 First positional argument

1 {1} : 31.97 Second positional argument

2.imag {2.imag} :
3.3 The imag attribute o f the third positional argument

{{3}} {{{3}}} :
{String}

A left curly bracket (specified by {{) fo llowed by the fourth positional argument, fo llowed by a
right curly bracket (specified by }})

e[0] {e[0]} : zero Element zero o f the keyword argument named e

f[Stella] {f[Stella]} :
DuBois The element o f the keyword argument named f indexed by the string "St ella"

f[1] integer The element o f the keyword argument named f , indexed by the integer 1

To exit the program, press Ent er. The program takes whatever you enter, wraps it inside curly brackets, and uses the
constructed string as a formatting string against four positional arguments and two keyword arguments. The print ()
call will only output a single value, but you can vary the format to get all kinds o f results.

If you don't understand the results, your instructor can help cast some light on the topic.

Format Specifications
The formatting mechanism has some pretty sophisticated ways to select what is fo rmatted. Now let's see about
actually formatting the selected value. We do that by fo llowing the field name with a co lon and a format specification.
This can include details about the filling mechanism to be used, how the output is to be aligned in the field, how to treat
the signs o f numbers, how wide the field should be, how many digits o f precision to allow, or what type o f conversion
should be performed on the selected value.

The various components o f the format specification must appear in a prescribed order. No component is required.

Padding and Alignment

Padding clears an area around the content (inside the border) o f an element. You don't need to specify a
padding character, but if you do specify padding, you must specify the field's alignment as well. There are four
different characters that you can use to specify the field's alignment. If the alignment specifier is preceded by
some other character, that character is used to pad the field to the requested width; o therwise the space
character is used. The alignment options are:

Alignment
Opt io n Meaning

< The field is left-aligned in the available space, with any padding to its right. This is the default
when no alignment is specified.

> The field is right-aligned in the available space, with any padding to its left.

=
(Valid only fo r numeric types). Forces the padding to be placed after the sign but before any
digits. This can be used to print padded numeric values with the signs all aligned above each
other. Pad characters are typically "0" or "*".

^ The field is centered within the available space. Padding characters will be added on the left
and right.

No padding is required if the value occupies the whole width o f the field. If no width is specified, this will
always be the case, and no padding will ever be inserted.

Sign

As you may have guessed, we don't specify signs for non-numeric values. The interpreter would raise a
ValueErro r exception if it found such a sign specification. There are three ways we can use signs:

Opt io n Meaning

+ Insert a + sign for positive values, a - sign for negative values.

- Insert a - sign for negative values, no sign for positive values.

space Insert a - sign for negative values, a space for positive values

Base Indicator

The base indication can only be requested for integers whose values are being displayed in hexadecimal,
octal, o r binary (simmer down, we're go ing to talk about this stuff more in a few minutes). To request it,
include a hash mark (#) in the format specification. When a base indicator is requested, binary numbers are
preceded by 0b, octal numbers by 0o and hexadecimal numbers by 0x.

Digit Separator

To use commas as thousands separators (fo r example, 9 ,999,999), insert a comma in the format
specification. This may restrict your programs' portability, as some locales use a comma as a decimal po int
and a period as a thousands separator. To keep your code as portable as possible, use locale-dependent
types o f specifications (more on this in a few minutes).

Field Width

The field width is a decimal integer specifying the to tal width o f the output generated by the format specifier. As
a special case, if the field width begins with a zero character ('0 '), it is treated as a shorthand for a pad
character o f '0 ' and a fill type o f '=' (zeroes between the sign and the digits). This is illegal fo r non-numeric
values and will raise a ValueErro r exception under those circumstances.

Precision

Precision is specified as a period fo llowed by a decimal number. For numeric values, this indicates how
many significant digits to display:

INTERACTIVE SESSION:

>>> "{0:15.5}".format(987.654)
' 987.65'
>>> "{0:15.5}".format(98765.432)
' 9.8765e+04'

For o ther types o f values, it indicates how many characters will be used from the field content.

Field Type

Last o f all comes a letter that dictates which type o f value should be formatted. For string values, the letter can
be omitted, or can be s. All numeric types can also be formatted with a field type o f s, in which case the
resulting value before alignment and truncation (yeah, I said it: truncation—aka limiting the number o f digits
right o f the decimal po int) is the same as that produced by applying the built- in st r() conversion. Complex
number values cannot be formatted in the same way as real and integer values; instead, you must fo rmat the
real and imaginary parts separately. You can access these parts using the .real and .imag attribute qualifiers
in the field names. Integer and long values can be formatted with these field types:

T ype Field T ype

b Binary: fo rmats the number in base 2.

c Character: converts the number to the corresponding Unicode character.

d Decimal: fo rmats the integer in base 10.

o Octal: fo rmats the integer in base 8 .

x Hexadecimal: fo rmats the number in base 16, using lower-case letters a through f fo r the digits
from 10 to 15.

X Hexadecimal: like x, but uses upper-case letters.

n Like d, but uses the locale settings to determine the decimal po int and thousands separator
characters.

No
code Treated the same as d.

Floating-po int and decimal values use a separate set o f type codes:

T ype Field T ype

e Exponential notation: fo rmats in scientific notation using e to indicate the exponent.

E Same as e but uses an upper-case exponent indicator.

f Fixed-po int. Displays the number as a fixed-po int number, using "nan" to represent "not a number"
and "inf" to represent infinity.

F Same as f but upper-case: uses "NAN" and "INF."

g General fo rmat. Uses fixed-po int fo rmat unless the number is too large, in which case it uses
exponent notation with lower-case indicators.

G Like g but uses upper-case indicators.

n Like g but uses the current locale settings to determine decimal po int and thousands separators.

% Multiplies the number by 100 and displays in f fo rmat fo llowed by a percent sign.

No
co de

Treated similarly to g except that it always produces at least one digit after the decimal po int and by
default uses a precision o f 12.

Variable-Width Fields
The field width and the precision are numeric values. If you want these values to be reliant on program data, you can
pass the width and precision as arguments to the f o rmat () method and then use a nested field name inside the
format specification. This nested field name (which must refer to an integer value) is substituted for the field width or
precision as the formatting takes place. So, fo r example, "{0:{1} .{2} f }" .f o rmat (1234.5678, 18, 3) displays the
number 1234.5678 to three decimal places in a field 18 characters wide.

Let's try a few examples. Start up an interactive session and enter the commands shown:

INTERACTIVE SESSION:

>>> "{0:010.4f}".format(-123.456)
'-0123.4560'
>>> "{0:+010.4f}".format(-123.456)
'-0123.4560'
>>> for i in 1, 2, 3, 4, 5:
... "{0:10.{1}f}".format(123.456, i)
...
' 123.5'
' 123.46'
' 123.456'
' 123.4560'
' 123.45600'
>>> n = {'value': 987.654, 'width': 15, 'precision': 5}
>>> "{0[value]:{0[width]}.{0[precision]}}".format(n)
' 987.65'

The numerical rounding is always correct. And by using dict access, you can carry the value, field width, and precision
(along with o ther values you might need) all within a single object.

A Simple Listing Program
This example program lists the names, ages, and weights o f a number o f individuals. Currently the data is stored as a
list o f tuples. We'll list the data using formatting statements. Enter this code in the editor window:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Produce a listing of people's names, ages and weights."""
data = [
 ("Steve", 59, 202),
 ("Dorothy", 49, 156),
 ("Simon", 39, 155),
 ("David", 61, 135)]
for row in data:
 print("{0[0]:<12s} {0[1]:4d} {0[2]:4d}".format(row))

 Save it in your /pyt ho n1 fo lder as perso n_list .py and run it. While this program works, the correspondence
between related data items seems a little obscure. Modify the program as shown below to extract the individual items
from the row and pass them as separate arguments to the f o rmat () call:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Produce a listing of people's names, ages and weights."""
data = [
 ("Steve", 59, 202),
 ("Dorothy", 49, 156),
 ("Simon", 39, 155),
 ("David", 61, 135)]
for name, age, weight in data:
 print("{0:<12s} {1:4d} {2:4d}".format(name, age, weight))

 Save and run it again. The results are the same, but which code do you think is easier to read?

Okay, now let's make the name field wider. We'll use the period as a pad character to help the reader fo llow the line
from the name to the age and weight. Modify the program a third time—add a padding character before the alignment
indication and increase the field width:

CODE TO TYPE:

#!/usr/local/bin/python3
#!/usr/local/bin/python3
"""Produce a listing of people's names, ages and weights."""
data = [
 ("Steve", 59, 202),
 ("Dorothy", 49, 156),
 ("Simon", 39, 155),
 ("David", 61, 135)]
for name, age, weight in data:
 print("{0:.<30s} {1:4d} {2:4d}".format(name, age, weight))

 Save and run it again.

Check You Out!
You've learned so much about Python's fo rmatting features! They can really help make the output from your programs
readable and usable.

In the next lesson, we'll return to functions and talk about the ro le o f keyword arguments and parameters like the ones
we used with the string f o rmat () method in this lesson.

See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More About Looping
Lesson Objectives

When you complete this lesson, you will be able to :

use the range() function with loops.
use the enumerate() function.
use the While loop when you need to validate user input.
use loops to add, retrieve, and delete data.
create a dictionary using an enumerated loop.
combine the pieces o f code and programming skills you learn in this lesson to make a program that prepares a list
o f invitations.

Earlier, you learned about f o r and while loops. The f o r loop repeats the loop body once for each element o f a container. The
while loop repeats the loop body continuously, testing before each execution whether some condition is true; it stops only
when the condition becomes false (or a break statement is executed, which terminates any loop). In this lesson, we'll show
you some other coo l things you can do with loops.

Fun with the range() function.
Can you say 'Python is fun' 1,000 times fast? You might not be able to , but Python can!

INTERACTIVE SESSION:

>>> for i in range(1000):
... print("Python is fun!")
...
Python is fun!
Python is fun!
[... 996 lines omitted ...]
Python is fun!
Python is fun!
>>> range(1000)
range(0, 1000)
>>> type(range(1000))
<class 'range'>

You just printed Pyt ho n is f un! one thousand times, using the range() function, which generates arithmetic
progressions. When we ask the interpreter to print out the result o f a call to range(1000) , it doesn't print out a list o r a
tuple, as you might expect. In fact, range() returns a special type o f object known as a range object. You can iterate
over this object just like you can iterate over a list [0 , 1, 2, ..., 998, 999]. Using the object is different from using a list
because it produces the numbers one by one as needed. This saves time and storage space that would be needed to
construct a list instead.

The last example printed a string constant. In this next example, we'll print out some numbers:

INTERACTIVE SESSION:

>>> for i in range(4):
... print(i)
...
0
1
2
3

Did you notice that the 4 did not print? The range starts at zero , so the given end po int is never part o f the generated

sequence. This may be confusing at first, but the interpreter has good reason for do ing it like that. You'll see in this next
example:

INTERACTIVE SESSION:

>>> names = ['John', 'Paul', 'George', 'Ringo']
>>> for i in range(3):
... print(names[i])
...
John
Paul
George

(Nothing personal, Ringo; we just wanted to make a po int.) Generally, if you want to print only the names, you wouldn't
loop over the indexes and use them to select the appropriate list elements. Instead you would loop over the list
directly. If you ever see code like f o r i in range(len(so met hing)) , that normally indicates what's sometimes called a
code smell. I know, funny, right? It's code that works, but still stinks a little. Code smells are usually an indication that
something needs to be changed.

By now you can see that range() is a bit like indexing—it starts counting at zero (unless you tell it to start somewhere
else) and goes on until just before it gets to the end value. What if you want a range o f numbers that starts at 5 and
ends at 7? You give range() two arguments instead o f one:

INTERACTIVE SESSION:

>>> for i in range(5, 8):
... print(i)
...
5
6
7

Remember the stride we used with lists? We can do it in range() as well. Add a third argument as shown:

INTERACTIVE SESSION:

>>> for i in range(10, 40, 10):
... print(i)
...
10
20
30

You can also use a negative stride if you want a numerically descending sequence. In the next example, you'll see that
again, the sequence stops before it actually reaches the final value:

INTERACTIVE SESSION:

>>> for i in range(10, -30, -10):
... print(i)
...
10
0
-10
-20

Using the enumerate() function

The range function is really useful and powerful. But what if you need to step through a set o f numbers by tens and
track which iteration you are in? For example, when counting by tens:

OBSERVE:

0 10
1 20
2 30
3 40
4 50

We can do that, right? We'll provide a counter variable and increase it with each iteration:

INTERACTIVE SESSION:

>>> c = 0
>>> for i in range(10, 60, 10):
... print(c, i)
... c += 1
...
0 10
1 20
2 30
3 40
4 50

This method works, but Python gives us a better way: the function enumerat e() . Like range() , it generates a
sequence o f values, but in this case, the values are tuples, each containing two elements. The first element is a counter
that starts at zero , and the second element is the current item from the sequence that was given as an argument to
enumerat e() . In a f o r loop, you can use a tuple o f two names to receive the elements, similar to the unpacking
assignments we used earlier. In the example below, i is the index and e is the element from the sequence:

INTERACTIVE SESSION:

>>> for i, e in enumerate(range(10, 60, 10)):
... print(i, e)
0 10
1 20
2 30
3 40
4 50

Now we'll take a look at two ways to print out a numbered list o f names. There's more than one way to do it; Python
has an o lder way o f fo rmatting, not deprecated, still works, based on the C language printf. Then it has a new
"formatting mini- language" more like C#, introduced with Python 3 but also back-ported to 2.6 and above, using
numbers in {curly brackets} to identify objects to fo rmat, and the .fo rmat() function we learned about in the last lesson.
The format() version has more bells and whistles and makes it easier to do certain things. Also, one could argue it's
cleaner in not requiring a separate operator. Here's an example using the o ld way:

INTERACTIVE SESSION:

>>> names = ['John', 'Paul', 'George']
>>> for i, name in enumerate(names):
... print('%s. %s' % (i+1, name))
...
1. John
2. Paul
3. George

Now, the same thing using the new way o f fo rmatting:

INTERACTIVE SESSION:

>>> for i, name in enumerate(names):
... print('{0}. {1}'.format(i+1, name))
...
1. John
2. Paul
3. George

Same results, different methods. We'll usually use the .fo rmat method in this course, but you're likely to encounter the
%s method in the real world, so we'll use it occasionally.

Note In the above examples, we add one to the count because, although Python counts from zero , we humans
normally prefer to start at one.

A More Complex While Loop Example
Suppose you want to print a list o f all the factorials under 1000. In mathematics, N factorial is written as "N!" A factorial
is calculated by multiplying successive numbers together:

OBSERVE: Factorial Calculations

1! = 1 = 1
2! = 1 x 2 = 2
3! = 1 x 2 x 3 = 6
4! = 1 x 2 x 3 x 4 = 24

I'm about to get mathematical and academic on you for a minute here, so settle in. The textbook definition o f n factorial
(as long as n is a non-negative integer) is the product o f all positive integers less than or equal to n. Factorials are
used in calculus, combinatorics, and probability theory.

You could figure out all factorials under 1000 by figuring out the pattern o f calculations manually, but that would get
pretty tedious with larger sets, don't you think? In order to avo id that agony and its inherent potential fo r errors, let's
use a while loop to reso lve the calculation instead. Create a new file in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Print all factorials less than 1000."""

c = 0
f = 1
while (f < 1000):
 print(f)
 c += 1
 f = 1
 for n in range(c, 0, -1):
 f = f * n

 Save it in your /pyt ho n1 fo lder as f act o rial.py and run it. The program prints all the factorials under 1000.

There are actually two loops here. The first (or outer) loop uses the c variable to simply count upwards. The second (or
inner) loop generates the factorial, based on the value o f the counter.

Each iteration o f the outer loop increments our counter variable c by 1, copies that to n, and resets the factorial variable
f to 1. The inner loop does its work by taking the value o f n, which is simply a copy o f the counter, and multiplying that
repeatedly against the factorial variable.

So, if you already know N!, then you can produce (N+1)! (the next value in the sequence) by multiplying N! by N+1. You
can make this program even more efficient by avo iding the second loop, since the second loop would be run for each

factorial. This saves a lo t o f work. Give it a try. Edit the code as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Print all factorials less than 1000."""

c = 1
f = 1
while (f < 1000):
 print(f)
 c += 1
 f *= c

 Save and run it. The program produces the same sequence o f values, but it does not repeat work unnecessarily. This
becomes more important as your programs expand.

While Loops and User Input Validation
We can use the While loop when we need to validate user input. It lets us return the user back to the prompt until they
provide a valid response. To implement this feature, we create an infinite loop that can only be broken by correct action
by the user.

Suppose we want to fo rce the user to provide a yes or no response. Create a new file in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Validate user input"""

while True:
 s = input("Type 'yes' or 'no':")
 if s == 'yes':
 break
 if s == 'no':
 break
 print("Wrong! Try again.")
print(s)

 Save it in your /pyt ho n1 fo lder as validat e_input .py and run it. The conso le asks you to type yes or no. Instead,
type spam and press Ent er. The conso le responds with Wro ng! T ry again.. If you enter anything besides yes o r no ,
you'll get the same response. When you finally enter yes o r no , you break the While loop and your entry is printed.

The problem with this program is that it doesn't adapt itself well to more options. For example, if you need to add
maybe as a possible response, that invo lves adding two lines o f code and modifying a third. With your

validat e_input .py in the editor window, click the Save As icon to save it in your /pyt ho n1 fo lder as
bet t er_validat e_input .py, and edit it as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Validate user input"""

valid_inputs = ['yes', 'no', 'maybe']
input_query_string = 'Type %s: ' % ' or '.join(valid_inputs)
while True:
 s = input(input_query_string)
 if s in valid_inputs:
 break
 print("Wrong! Try again.")
print(s)

 Save and run it. In this new program, the valid_input s list variable is used to build the string that queries the user fo r

input. It's also used to validate the user's input. So in order to add an option, you can just replace valid_input s =
['yes', 'no ', 'maybe'] with valid_input s = ['yes', 'no ', 'maybe', 'another option'] .

More sophisticated user interface validation while loops are used in applications such as operating systems and web
site registration systems.

Dicts and Loops
Earlier, we learned about a useful construct fo r handling data called Dicts. In this next set o f examples, we'll use loops
to add, retrieve, and delete data. Eventually we'll combine everything into one large example to handle invitations to a
party.

In the first example, you'll create a dictionary using the words o f the phrase Pyt ho n is aweso me , using an
enumerated loop to do all the hard work:

INTERACTIVE SESSION:

>>> data = {}
>>> for index, word in enumerate('Python is awesome'.split(' ')):
... data[index] = word
...
>>> print(data)
{0: 'Python', 1: 'is', 2: 'awesome'}

Keep this interactive session open. First you created an empty dict, then enumerated over a list containing the words
split out o f the "Python is awesome" string. With each execution o f the loop body, you added the index o f the loop as a
dict key, using the word as the value o f the dict element. You can do this over any list o f data, from a list o f words to
lines o f text in a file.

Our next example uses the it ems() method for retrieving data from a dict. it ems() returns a generator object, which
then produces two-element tuples o f keys and their corresponding values from the dict:

INTERACTIVE SESSION:

>>> data.items()
dict_items([(0, 'Python'), (1, 'is'), (2, 'awesome')])
>>> for element in data.items():
... print(element)
...
(0, 'Python')
(1, 'is')
(2, 'awesome')
>>> for key, value in data.items():
... print(key, value)
...
0 Python
1 is
2 awesome

The last two commands you entered are extremely useful, because they allow you to access all the data in a dict
quickly. This is a very common pattern in working with dicts in Python. The dict's it ems() method produces (key,
value) pairs, and the f o r loop unpacks the tuples and binds them to key and value , respectively.

Of course, there will be times when you'll need to remove key/value pairs from a dict. Suppose you had a dict whose
keys were words, and you wanted to remove all noise words (words that are not normally indexed, such as 'is ' and
'at'). You can use a loop to accomplish this task:

INTERACTIVE SESSION:

>>> noise = ['is', 'at']
>>> data
{0: 'Python', 1: 'is', 2: 'awesome'}
>>> for key, value in data.items():
... if value in noise:
... del data[key]
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration
>>> data
{0: 'Python', 2: 'awesome'}

The data was deleted, but the deletion changed the size o f data.items, which Python reports as an error. To avo id this
problem, you need to produce a separate list rather than iterating over the dict's items (or keys) directly:

INTERACTIVE SESSION:

>>> data = {}
>>> for index, word in enumerate('Python is awesome'.split(' ')):
... data[index] = word
...
>>> for key, value in list(data.items()):
... if value in noise:
... del data[key]
...
>>> data
{0: 'Python', 2: 'awesome'}

We used the same techniques here that we used in earlier examples to loop through the key/values o f the dictionary.
And in this new example, when one key/value matched one o f the listed prepositions, it deleted the element o f the dict
that contained that no ise word. Can you think o f a data structure that would have been better than a list to ho ld the
no ise words?

A More Complex Example
Good programmers build applications out o f smaller code pieces. Our final example in this lesson will give you a
chance to do just that. You'll combine the pieces o f code and programming skills you've learned in this lesson to
make a program that prepares a list o f invitations. The program will take input as commands from the user. There are
five commands: "add" to add a name to the invitation list, "delete" to delete a name, "approve" to approve an invitation
that has been added, "list" to list the current invitations, and "quit" to terminate the program's operations.

Create a new file in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
invites = {}
options = ['add', 'list', 'approve', 'delete', 'quit']
prompt = 'Pick an option from the list (%s): ' % ', '.join(options)
status_1 = 'unapproved'
status_2 = 'approved'
while True:
 inp = input(prompt)
 if inp not in options:
 print('Please pick a valid option')
 continue
 if inp == 'add':
 name = input('Enter name:')
 if not name:
 continue
 invites[name] = status_1
 elif inp == 'list':
 for name, status in invites.items():
 print('%s (%s)' % (name, status))
 elif inp == 'approve':
 for name in invites:
 if invites[name] == status_1:
 break
 else:
 print('There must be %s status invites. Please pick another option' % statu
s_1)
 continue
 while True:
 print('Please enter a valid name from the list below')
 unapproved = []
 for name in invites:
 if invites[name] == status_1:
 unapproved.append(name)
 print(", ".join(unapproved))
 name = input('Enter name:')
 if not name:
 break # user changed mind about approving
 if name in unapproved:
 invites[name] = status_2
 print('%s %s' % (name, status_2))
 break
 elif inp == 'delete':
 if not invites:
 print('There must be invites before you delete any of them')
 continue # user changed mind about deleting
 while True:
 print('Please enter a valid name from the list below')
 for name, status in invites.items():
 print('%s (%s)' % (name, status))
 name = input('Enter name:')
 if not name:
 break
 if name in invites:
 del invites[name]
 print('%s deleted' % name)
 break
 elif inp == 'quit':
 print('Quitting invites')
 print('The final invitation list follows')
 for name, status in invites.items():
 print('%s (%s)' % (name, status))
 break

 Save it in your /pyt ho n1 fo lder as invit e .py and run it. The program is really just one input validation loop that
checks to make sure that the user has entered one o f the five available commands. If the user has not done this, the

program repeats the request fo r input. Most o f the commands require further input, and each command allows the user
to just press the Ent er key to ignore the command and request another.

Note We used the %s method for fo rmatting our prompts here. You should be able to change the program to
use the .fo rmat() method.

Loop This
We love loops because they let us repeat the same logic again and again as necessary. This means that your
program can execute some pretty complex behaviors, particularly when one loop contains o thers.

In the next lesson, we'll learn how programs can use and store information in files. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Reading and Writing Files
Lesson Objectives

When you complete this lesson, you will be able to :

create a file.
write to a file.
read files as text.
append to a file.
seek to arbitrary positions.
create a file-based to-do list.
read binary data.

So far, your programs have used values that were either encoded in the program or provided by the user, and the data
disappeared after the session ended. But sometimes you'll need to use data from outside sources, or to permanently save
data you've created or modified in a program. Python has built- in functions to handle actions such as creating, writing, and
reading files. In this lesson, you'll learn how to use files to create, retrieve, and change data.

Creating a New File
To create a file, you use the o pen() function. This function returns a file object. If you try to open a file that does not
exist, the interpreter creates a file with that name for you. To see how the o pen() function works to create a file, start an
interactive session and enter these commands:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$ python3
>>> f = open('funnies.txt', 'w')
>>> f
<_io.TextIOWrapper name='funnies.txt' encoding='UTF-8'>

This statement assigns the result o f the call to the o pen() function to the variable f . The o pen() function opens a file
to read, write, o r append. The first argument gives the name ' f unnies.t xt ' to the working file (because we changed to
the /pyt ho n1 fo lder before we started the python3 interpreter, this file will reside in that fo lder). The second argument
'w' tells o pen() that we want to writ e to the file.

When you ask the interpreter to display that variable, it displays the name of the open file associated with a particular
object. Right-click the /pyt ho n1 fo lder in your File Browser on the left, and select Relo ad—it now contains an empty
f unnies.t xt file. (Don't delete the file or close the interactive conso le because you'll need access to it in the next
section!)

Note Depending on your environment, you might see an encoding type o ther than UTF-8.

Writing to a File
Writing to a file is a good way to save information. Python provides two different ways to write to a text file. Let's return
to the interactive seesion and take a look:

INTERACTIVE SESSION:

>>> f = open('funnies.txt', 'w')
>>> f.write('Larry\n')
6
>>> f.write('Curly\n')
6
>>> f.write('Moe\n')
4
>>> names = ['Groucho\n', 'Chico\n', 'Harpo\n']
>>> f.writelines(names)
>>> f.close()

The writ e() method adds the string (fo r example, 'Mo e\n') to the current content o f your funnies.txt file, and returns the
length o f the string added (for example, 4—including the \n as one character). The writ e lines() method takes a list o f
strings and adds each element to the funnies.txt file. Unlike the print () function, neither method adds newlines to the
content it writes, so we include '\n' with each string so it will be on a separate line in the file. The clo se() method
makes sure that all data is written out to the file and that the connection between it and the program is dropped.

Note Look at f unnies.t xt now if you like—you'll see the six names you added. Be sure to close it before you
continue with the lesson.

Reading Files as Text
Now that you have some sample data in the f unnies.t xt file, let's see what Python provides to read its contents.
Reopen the file in a readable mode. When you open a file fo r reading, the file object returned by the o pen() function is
iterable, which means that if you use it in a f o r loop, each iteration gets the next line from the file until there are no
more lines left. Go back to the interactive session and type in the commands as shown:

INTERACTIVE SESSION:

>>> f = open('funnies.txt', 'r')
>>> f.read()
'Larry\nCurly\nMoe\nGroucho\nChico\nHarpo\n'
>>> f = open('funnies.txt', 'r')
>>> f.readline()
'Larry\n'
>>> f.readlines()
['Curly\n', 'Moe\n', 'Groucho\n', 'Chico\n', 'Harpo\n']
>>> f = open('funnies.txt', 'r')
>>> for line in f:
... print(line)
...
Larry

Curly

Moe

Groucho

Chico

Harpo

>>> f.read()
''
>>> f.close()

Notice that we opened the f unnies.t xt file three times. That's because the file content is "used up" by using the
read() , readline() , and readlines() methods, and we have to reopen the file to return to the top. read() returns all o f

the content o f the file as a single string. readlines() returns the file content as a list o f lines. readline() returns the
next line from the file, so when you called it once and then called readlines() , the second call returned a list that didn't
include the first line o f the file. The last method, f .read() returns nothing because the "po inter" is at the end o f the file.

When we're done with the file, we close it with the clo se() method. This releases resources that Python was using to
look at or write to the file. Some programmers assume files will close automatically at the end o f a program, but it's
better programming "hygiene" to close files when you finish using them.

Appending to a File
There are six lines o f text in your funnies.txt file. Let's add some more. If you open an existing file with the write option
w, you truncate the file's contents and produce an empty file—any new input will replace the file's original contents. So
we don't use the write (w) option, using the append option (a) instead, as the second argument to o pen() . The next
example shows the append functionality at work. Enter these commands in your interactive Python conso le:

INTERACTIVE SESSION:

>>> f = open('funnies.txt','a')
>>> f.write('A child of five could understand this. Fetch me a child of five.\n')
65
>>> f.write('Room service? Send up a larger room.\n')
37
>>> f.close()
>>> f = open('funnies.txt', 'r')
>>> for line in f:
... print(line[:-1])
...
Larry
Curly
Moe
Groucho
Chico
Harpo
A child of five could understand this. Fetch me a child of five.
Room service? Send up a larger room.
>>>
>>> f.close()

So, you opened an existing file to append content, and wrote in two new lines before closing it. When you opened it
again, all o f the o ld content was fo llowed by the new content you had just written. In this example, you used [:-1] to
slice each line to exclude the last character (the newline) from the end. This prevents your code from producing the
blank lines that were printed out in the previous example.

Seeking to Arbitrary Positions
As we've seen, when a file is being read or written, it has a "current position." You can change this position using the
seek() method. The first argument should be the position you want to move to within the file (an integer—the
beginning o f the file is always position 0).

If you give a second integer argument, it must be 0 , 1, o r 2:

Value Meaning

0 Position is relative to the start o f the file (the first argument cannot be negative). This is the default if you
don't supply an argument.

1 Position is relative to the current position (the first argument can be negative to move backward or positive
to move forward).

2 Position is relative to the end o f the file (the first argument must be negative).

Continue your interactive session:

INTERACTIVE SESSION:

>>> f = open('funnies.txt', 'r')
>>> f.seek(115)
115
>>> f.read()
'Send up a larger room.\n'
>>> f.close()

You can't seek() past the end o f a file. To find the current position in a file, call the t e ll() method.

More File Details
Python file objects give you many handy attributes and methods that you can use to analyze a file, including too ls to
figure out the name of the file associated with the file object, whether a file is opened or closed, readable, writable, how
it handles errors, and if it is seekable. Type the commands as shown below:

INTERACTIVE SESSION:

>>> f = open('funnies.txt','a')
>>> f.name
'funnies.txt'
>>> f.readable()
False
>>> f.writable()
True
>>> f.seekable()
True
>>> f.encoding
'UTF-8'
>>> f.errors
'strict'
>>> f.closed
False
>>> f.close()
>>> f.closed
True

Creating a File-Based To-Do List
The built- in o pen() function provides one method to add persistence to your applications. In this case, persistence
means that when you turn o ff o r quit the application, the data remains available. So when you use an application to
store information, you can end your Python session, turn o ff your computer, and still come back and find that data later.
Persistence can take many forms, from the types o f files we're using in this lesson, to database records, to
audio /video files, to various document fo rmats.

Sophisticated persistence engines are called databases. Most o f the world's data is stored in databases. These are
integrated sets o f logically organized files or records. Databases can store text, integers, dates, images, and much
more. Usually, databases use the relational model, but there are also hierarchical, object, network, and flat-file models.

To demonstrate the power o f persistence, and ways to take advantage o f it, we'll create a to-do list application as our
next example. Create a new file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""File-based to-do list maintainer."""

otasks = open('open_tasks.txt','a')
otasks.close()
dtasks = open('done_tasks.txt','a')
dtasks.close()
options = ('add','done','quit')
string_input = 'Pick an option from the list (%s): ' % ', '.join(options)
while True:
 open_tasks = open('open_tasks.txt','r').readlines()
 if open_tasks:
 print('-' * 10)
 print('Open Tasks')
 print('-' * 10)
 for i, task in enumerate(open_tasks):
 print(i, task.strip())
 done_tasks = open('done_tasks.txt','r').readlines()
 print('-' * 12)
 print('Done Tasks')
 print('-' * 12)
 for i, task in enumerate(done_tasks):
 print(i, task.strip())

 inp = input(string_input)
 if inp not in options:
 print('Please pick a valid option')
 continue
 if inp == 'add':
 new_task = input('Enter new task: ')
 tasks = open('open_tasks.txt','a')
 tasks.write(new_task + '\n')
 tasks.close()
 if inp == 'done':
 while True:
 done_task = input('Please enter the number of your completed task: ').strip
()
 if done_task.isdigit():
 done_task = int(done_task)
 break
 print('Please enter a task number')
 open_tasks = open('open_tasks.txt','r').readlines()
 for i, task in enumerate(open_tasks):
 if i == done_task:
 print('Task removed: {0}'.format(task))
 open_tasks.remove(task)
 f = open('open_tasks.txt','w')
 f.writelines(open_tasks)
 f.close()
 f = open('done_tasks.txt','a')
 f.write(task)
 f.close()
 break
 if inp == 'quit':
 break

 Save it in your /pyt ho n1 fo lder as t o do .py, and run it. Without adding any tasks, type quit and press Ent er. This
program starts out by opening each o f two data files to append, and then closes them immediately. This fo rces the
computer to create the files, in case this is the very first run. Right-click your /pyt ho n1 fo lder in the File Browser at left
and select Relo ad, and you'll see the two new files, o pen_t asks.t xt and do ne_t asks.t xt .

Now, run the program again and create a few tasks. Quit the program and start it again. The tasks you added are still
there! And just like that, you've implemented a persistence engine that uses the flat file model! Open the files and you'll
see your tasks have been added to o pen_t asks.t xt .

Note
You used the string isdigit () method to make sure that your user input fo r task numbers would consist
o f numerical digits. This prevents the program from raising exceptions when it converts the string to a
number with the int () function.

Reading Binary Data
So far you've stored simple text data, which is easy to read with any text edito r. However, simple text data is no
substitute for the audio files that store our favorite music! But if we open audio files with a text edito r, it displays what
appears to be a lo t o f gibberish. Actually, these files are storing the audio data encoded in binary form. This data is
impossible for us to read without a special too l called a hex edit o r. Fortunately, your computer doesn't have the
same limitations. And because the binary file doesn't have to be comprehensible to humans, in many cases it can
represent data more efficiently than a simple text file.

All the audio , image, and video files on your computer are binary files. So are any files compressed into zip or tar
format. In fact, the majority o f programs on your computer—such as your favorite browser—are comprised o f binary
files, the notable exception being the Python programs you are writing as part o f this course. And even those Python
programs are compiled into binary format before the computer actually runs them!

Now that you have a background in binary data and files, let's check out how Python can handle a binary file. We'll use
wget to grab the image below:

Type the fo llowing code in an interactive conso le:

INTERACTIVE TERMINAL SESSION:

cold1:~$ cd python1
cold1:~/python1$ wget "https://courses.oreillyschool.com/Python1/images/lessons/python-
logo.gif"
--2011-11-14 13:14:26-- https://courses.oreillyschool.com/Python1/images/lessons/pytho
n-logo.gif
Resolving courses.oreillyschool.com... 199.27.144.89
Connecting to courses.oreillyschool.com|199.27.144.89|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2549 (2.5K) [image/gif]
Saving to: "python-logo.gif"
100%[===>] 2,549 --.-K/s in
 0s
2011-11-14 13:14:27 (26.8 MB/s) - "python-logo.gif" saved [2549/2549]
cold1:~/python1$ python3
>>> i = open('python-logo.gif', 'rb')
>>> i
<_io.BufferedReader name='python-logo.gif'>
>>> print(i.read(1))
b'G'
>>> print(i.read(1))
b'I'
>>> print(i.read(1))
b'F'
>>> i.read(10)
b'89a\xd3\x00G\x00\xf7\x00\x00'
>>> i.tell()
13
>>> i.seek(0)
0
>>> i.read(3)
b'GIF'
>>> i.close()

When you first look at binary data, it can be pretty daunting. But even so, at a glance we can see a useful method and a
handy bit o f information. The read() method fetches the byte(s) you request. Subsequent read() requests are fired
from your current location in the file. The first three bytes provide the format o f the file you are examining (in this case,
GIF). This way a program can figure out how to handle a file even if the file extension is missing. In fact, all modern
browsers check this information before displaying images for you.

So, what about the b'89a\xd3\x00G\x00\xf 7 \x00\x00'? Well, that's part o f the image content used to generate the
Python logo. Our example above also shows the t e ll() and seek() methods. seek(0) "rewinds" the file to the
beginning.

Adding an integer argument to the read() method instructs your program to read the given number o f bytes. If there
aren't enough bytes in the file, read(n) returns as many as there are. This means that if you get an empty sequence o f
bytes back, you are at the end o f the file.

Finally, the "strings" that you get when you read a file in binary mode are what we call byte strings—each byte is eight
bits, so the ordinal value o f the characters is in the range 0 to 255. If you aren't familiar with the binary system, don't
worry. Just be aware that Python strings in binary differ from regular Python strings in that you can represent pretty
much any character (as long as your character set includes it).

Files for Miles
So now you know a little more about files, the basic way to provide persistent storage o f information. Files are the
basis o f most computer-based information storage, so there is a huge amount o f literature that covers how to store
various types on information in files. For now, the basics will suffice. You can write data out from one program run, and
read it back in to make use o f it in another program (or a different run o f the same program). This is what gives
computers the power to run systems with long-term memory.

I'm thinking you're feeling pretty confident about working with files now. But if you have any questions, go ahead and
ask your mentor. They're here to help! Good job so far and see you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Python's Built-In Functions
Lesson Objectives

When you complete this lesson, you will be able to :

use various built- in functions.

In every previous lesson, you've used some of Python's built- in functions. The first built- in function you used was print () back
in lesson 1. Since then you've used built- in functions like range() , o pen() , and more. Built- in functions are an invaluable part o f
your Python too l kit. In this lesson, we'll learn even more about them.

First we'll go over some examples that use Python built- in functions, and then explore the functions themselves.

Party Fun with Built-In Functions
Suppose you're throwing a party. Each invitation to your party might have 0 , 1, 2, o r more people attached to it. You are
storing the invitations in a pair o f lists. The first list ho lds the names o f the attendees; the corresponding element in the
second list is the size o f the invited group. You need to know the to tal number o f people attending in order to buy the
right amount o f food for the party, and for seating purposes, you need to know who has the largest group. Python's
built- in functions will help you to execute both o f these tasks. Start an interactive session as shown below:

INTERACTIVE SESSION:

cold1:~$ python3
>>> invites = ["Jay", "Conan", "Jimmy", "Craig"]
>>> attendees = [3, 2, 0, 5]
>>> sum(attendees)
10
>>> zipped = zip(attendees, invites)
>>> party = tuple(zipped)
>>> party
((3, 'Jay'), (2, 'Conan'), (0, 'Jimmy'), (5, 'Craig'))
>>> max(party)
(5, 'Craig')
>>> for people, name in party:
... print(people, name)
...
3 Jay
2 Conan
0 Jimmy
5 Craig
>>> for people, name in sorted(party):
... print(people, name)
...
0 Jimmy
2 Conan
3 Jay
5 Craig

Keep the conso le open. This example helps demonstrate a couple o f new functions: sum() returns the to tal o f all the
elements in its argument; zip() interleaves (that is, alternates, like the teeth o f a zipper) the elements o f any number o f
sequences. If you call zip() with two arguments, when you loop over the result you get a sequence o f two-element
tuples; call it with three arguments and you get three-element tuples. zip() doesn't return a list o r a tuple, but
something called a generator; we called the t uple() function on it so we could see the data without needing to loop
over it.

Next, using the same data, let's check to see if any or all invitations have any attendees and the to tal number o f
invitations. Type the commands below as shown:

INTERACTIVE SESSION:

>>> any(attendees)
True
>>> all(attendees)
False
>>> len(attendees)
4

The any() function returns T rue if any element o f its argument is true. all() returns T rue if all o f the elements o f its
argument are true. len() returns the number o f elements in the argument.

The rest o f this lesson provides an alphabetical reference guide to Python's built- in functions, with brief examples. As
you become more familiar with Python, you'll find new and innovative ways to make use o f these built- in functions.

abs(x)
The abs() function returns the abso lute value o f an integer, floating po int, o r complex number. The returned value is
always positive. If the input value is a negative integer or floating-po int number, then the abso lute value is the negated
argument. If the argument is complex, a positive result will still be returned, but it's a complicated calculation (the
square root o f the sum of the squares o f the real and imaginary components). Take a look. Type the commands below
as shown:

INTERACTIVE SESSION:

>>> abs(3.14)
3.14
>>> abs(-3.14)
3.14
>>> abs(3+4j)
5.0

all(iterable)
The all() function returns T rue if all elements o f the supplied iterable are true (or if there are no elements: technically,
you could say it returns False if any element evaluates as false). So if all elements in a list, tuple, or set match
Python's definition o f being true, then all() returns T rue . Type the commands below as shown:

INTERACTIVE SESSION:

>>> lst = [1, 2, 3, 4, 5, 6]
>>> all(lst)
True
>>> lst.append('')
>>> all(lst)
False
>>> all([])
True
>>> t1 = ("Tuple")
>>> all(t1)
True
>>> t2 = ("Tuple", "")
>>> all(t2)
False
>>> s = {}
>>> all(s)
True

any(iterable)
The any() function is the converse o f the all() function. any() returns T rue if any element o f the iterable evaluates true.
If the iterable is empty, the function returns False . type the commands below as shown:

INTERACTIVE SESSION:

>>> lst = ["", 0, False, 0.0, None]
>>> any(lst)
False
>>> lst.append("String")
>>> any(lst)
True
>>> any([])
False
>>> any(("", 0))
False
>>> any(("", 1))
True
>>> any({})
False
>>> any({0: "zero"})
False
>>> any({"zero": 0})
True

bool(x)
The bo o l function converts the value to a Boo lean, using the standard Python truth testing procedure. If x is false or
omitted, it returns False ; o therwise it returns T rue . Type the commands below as shown:

INTERACTIVE SESSION:

>>> bool("Python is fun!")
True
>>> t = []
>>> bool(t)
False
>>> bool(0)
False
>>> bool()
False
>>> bool(1)
True

chr(i)
The chr() function returns a string o f one character, which has the ordinal value equal to the given integer. Type the
commands below as shown:

INTERACTIVE SESSION:

>>> chr(90)
'Z'
>>> alphabet = ''
>>> for letter in range(65, 91):
... alphabet += chr(letter)
...
>>> alphabet
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

dict(arguments)
dict () creates a new data dictionary with items taken from the arguments. If no arguments are passed, an empty
dictionary is created. You can call dict () with a tuple or list as its argument. In those cases, each o f the argument's
elements must be a two-element (key, value) list o r tuple. You can also use a sequence o f keyword arguments. We will
cover those in the lesson on functions, but in short, a keyword argument is a name fo llowed by an equals sign and a
value. Try this example:

INTERACTIVE SESSION:

>>> {'number': 3, 'string': 'abc', 'numbers': [3, 4, 5]}
{'numbers': [3, 4, 5], 'number': 3, 'string': 'abc'}
>>> dict([(1, "one"), [2, "two"], (3, "three")])
{1: 'one', 2: 'two', 3: 'three'}
>>> dict(zip("ABCDEF", range(10, 16)))
{'A': 10, 'C': 12, 'B': 11, 'E': 14, 'D': 13, 'F': 15
>>> dict(
... number=3,
... string="abc",
... numbers=[3, 4, 5]
...)
{'number': 3, 'string': 'abc', 'numbers': [3, 4, 5]}

dir(arguments)
The dir() function can accept any argument: string, integer, dictionary, function, class, or method. Without arguments,
dir() returns the list o f names in the current local scope. If an argument is given, then the result is a list o f the names in
the namespace o f the given object. The list returned is always sorted in alphabetical o rder. Type the commands below
as shown:

INTERACTIVE SESSION:

>>> p = 'Python'
>>> dir(p)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format_
_', '__ge__', '_
_getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '_
_iter__', '__le__
', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__red
uce_ex__', '__rep
r__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__
', '_formatter_fi
eld_name_split', '_formatter_parser', 'capitalize', 'center', 'count', 'encode', 'endsw
ith', 'expandtabs
', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifi
er', 'islower', '
isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', '
lstrip', 'maketra
ns', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstri
p', 'split', 'spl
itlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

globals()
The glo bals() function returns a dictionary representing the current global symbol table. This is always the
namespace dictionary o f the current module. Type the commands below as shown:

INTERACTIVE SESSION:

>>> list(globals().items())
[('__builtins__', <module 'builtins' (built-in)>), ('__name__', '__main__'), ('__doc__'
, None), ('__package__', None)]
>>> first = "Hello"
>>> second = "Goodbye"
>>> list(globals().items())
[('__builtins__', <module 'builtins' (built-in)>), ('__package__', None), ('second', 'G
oodbye'), ('__name__', '__main__'), ('__doc__', None), ('first', 'Hello')]

Note If you see more keys listed than are displayed in this example, it's probably because you've been trying
different snippets o f code.

help(object)
The help() function is your new best friend. Invoke the built- in help system on any object and it will return usage
information on the object. For experienced Python programmers, this is the first too l to use when trying to figure out
something they don't understand. Once you start writing more advanced Python programs, you'll learn how to write
your own help text.

In an interactive Python conso le, use the help(object) function on any variable, string, integer, list, tuple, set, o r built- in
function, including the help() function. Some of the text won't make sense to you right now, but you'll still find this
function very useful. To scro ll through larger help documents, press the space bar. To exit, press q. Type the
commands as shown:

INTERACTIVE SESSION:

>>> help(globals)
Help on built-in function globals in module builtins:

globals(...)
 globals() -> dictionary

 Return the dictionary containing the current scope's global variables.
>>> help(len)
Help on built-in function len in module builtins:

len(...)
 len(object) -> integer

 Return the number of items of a sequence or mapping.
>>>

len(s)
len(s) returns the length o f an object. The argument provided may be a sequence (string, tuple, or list) o r a mapping
(dictionary). Type in these commands:

INTERACTIVE SESSION:

>>> s = "Python"
>>> len(s)
6
>>> lst = [1, 2, 3]
>>> len(lst)
3
>>> d = {"a":"b", "c":"d", "e":"f"}
>>> len(d)
3

locals()
The lo cals() function returns a dictionary representing the current local symbol table. Unless it's called inside a
function, it will return the same list as glo bals() . Type in this command:

INTERACTIVE SESSION:

>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__', '__doc__': Non
e, '__package__': None}

Note Just like the glo bals() function, you will likely see more keys than we show in this example. That's
perfectly fine; it means you've probably been testing different snippets o f code. Good for you!

max(iterable)
The max() function, with a single argument iterable, returns the largest item of a non-empty iterable (such as a string,
tuple, or list). With more than one argument, it returns the largest o f the arguments. Type these commands:

INTERACTIVE SESSION:

>>> lst1 = [16, 32, 8, 64, 2, 4]
>>> max(lst1)
64
>>> lst2 = ['one', 'two', 'three', 'One', 'Two', 'Three']
>>> max(lst2)
'two'
>>> max(42, 76, -104)
76
>>> max(1, 2, "three")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() > int()

Don't close the session—we'll use lst1 and lst2 with the next function! The first result is 64. The second result o f 'two '
might have surprised you, but Python compares strings "lexicographically" (like they would be sorted for a dictionary,
but with all the lower-case letters greater than any upper-case one), not by the meaning o f the words. The last
expression caused an error, because you can't compare strings and integers: they are fundamentally different types.

min(iterable)
The opposite o f the max() function, min(it erable) returns the smallest item of a non-empty iterable (such as a string,
tuple, or list). With more than one argument, it returns the smallest o f the arguments. Type these commands:

INTERACTIVE SESSION:

>>> min(lst1)
2
>>> min(lst2)
'One'
>>> min(42, 76, -104)
-104
>>> min(1, 2, 'three')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() > int()

The first result is 2. The second result o f 'One' seems to make sense, but be aware that Python returned the lowest
value o f an alphanumeric sort, "O" being less than "T": Python neither knows nor cares about the meaning o f the
words. The fourth expression raised an exception here as well, because you can't compare strings and integers.

ord(c)
o rd(c) is the inverse o f the chr() function we discussed earlier. Given a string o f length one, it returns an integer
representing the ordinal value o f the character. For example, ord('A') returns the integer 65. Type these commands:

INTERACTIVE SESSION:

>>> alphabet = 'ABCDEFGH'
>>> for letter in alphabet:
... print(ord(letter), letter)
...
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H

pow(x, y[, z])
po w(x, y[, z]) returns x to the power y. If a third argument z is given, then the result is reduced modulo z (then you get
the remainder after dividing (x raised to the power y) by z).

You might have played with a calculator at one time or another, using repeated multiplication to raise a number to
successive powers. In the next example, Python automates the calculations for you. Type these commands:

INTERACTIVE SESSION:

>>> pow(2, 2)
4
>>> pow(2, 3)
8
>>> pow(2, 4)
16
>>> for i in range(5, 12):
... print(pow(2, i), pow(2, i, 100))
...
32 32
64 64
128 28
256 56
512 12
1024 24
2048 48

reversed(seq)
reversed(seq) is a reverse iterator on an object o f the type that you can loop through and process. The list and
t uple types are supported with this function, but the set type is not (because the elements o f a set aren't o rdered).
Type these commands:

INTERACTIVE SESSION:

>>> lst = [1, 2, 3]
>>> reversed(lst)
<list_reverseiterator object at 0x01E4DC70>
>>> for i in reversed(lst):
>>> print(i)
...
3
2
1

round(x[, n])
The ro und(x[, n]) function rounds the decimal value x to the nearest integer. If you give a second argument n, it
rounds to that number o f decimal places. Type these commands:

INTERACTIVE SESSION:

>>> round(33.5)
34
>>> round(33.3333333333, 2)
33.33

sorted(iterable)
so rt ed(it erable) returns a new sorted list from the items in iterable. This arranges your lists, tuples, and sets in a
known order. Type these commands:

INTERACTIVE SESSION:

>>> numbers = [3, 1, 6, 7, 1100, 10]
>>> sorted(numbers)
[1, 3, 6, 7, 10, 1100]
>>> t = ['Beta','beta','alpha','Alpha']
>>> sorted(t)
['Alpha', 'Beta', 'alpha', 'beta']
>>> lst2 = ['one', 'two', 'three', 'One', 'Two', 'Three']
>>> sorted(lst2)
['One', 'Three', 'Two', 'one', 'three', 'two']

The first sorted list provides an expected result. The second list you may not have anticipated. Python sorts in
alphanumeric order, but all upper-case letters sort lower than all lower-case letters.

You can also use keyword arguments to specify how the sort keys should be created, and whether to sort in
ascending or descending order. Suppose you want to have a case-insensitive search. You can do this by using a
function as the key argument o f the sort. In this case, you use the Python string type's lower-case method. In the
second example, you request a descending sort with the reverse keyword argument. Type these commands:

INTERACTIVE SESSION:

>>> t = ['Beta','beta','alpha','Alpha']
>>> sorted(t, key=str.lower)
['alpha', 'Alpha', 'Beta', 'beta']

Note
When you use the lo wer() function on o therwise identical strings like 'Beta' and 'beta', Python treats
them as identical, keeping them in the same order they were input, so 'beta' might not appear before
'Beta' when you try the above example.

INTERACTIVE SESSION:

>>> t = ['Bete','beta','alphie','Alpha']
>>> sorted(t, key=str.lower)
['Alpha', 'alphie', 'beta', 'Bete']
>>> sorted(t, reverse=True)
['beta', 'alphie', 'Bete', 'Alpha']

sum(iterable)
sum(it erable) sums the numeric values in an iterable such as a list, tuple, or set. sum(it erable) does not work with
strings because you can't do math on strings (when you add two strings you are really using an operation called
concatenation). Type these commands:

INTERACTIVE SESSION:

>>> s = {1, 2, 3}
>>> sum(s)
6
>>> lst = ['Python','is','fun!']
>>> sum(lst)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

So we are able to add up numbers, but things break down on letters and words. To combine strings in a list, rely on the
string jo in() method as shown below:

INTERACTIVE SESSION:

>>> lst = ['Python','is','fun!']
>>> ' '.join(lst)
'Python is fun!'

zip(*iterables)
The zip() function takes iterables and aggregates elements from each o f the iterables into a new iterable object. That
might sound complicated, but the example below will help illustrate the concept. Type these commands:

INTERACTIVE SESSION:

>>> lst_1 = ['Python','is','fun']
>>> lst_2 = [1000, 2000, 3000]
>>> lst_3 = [10, 9, 8, 7, 6, 5]
>>> list(zip(lst_1, lst_2))
[('Python', 1000), ('is', 2000), ('fun', 3000)]
>>> list(zip(lst_1, lst_2, lst_3))
[('Python', 1000, 10), ('is', 2000, 9), ('fun', 3000, 8)]

In the first result, we used the list () function to create a list o f three tuples. The second example is not so clear, as we
are missing the last two elements o f lst _3. That's because the zip function ignored iterations for which it didn't have
elements in all o f the supplied iterables. This enables us to create dicts using the zip() function. Try it out:

INTERACTIVE SESSION:

>>> lst_1 = ['Python','is','fun']
>>> lst_3 = [10, 9, 8, 7, 6, 5]
>>> d = {}
>>> for k, v in zip(lst_1, lst_3):
... d[k] = v
...
>>> d
{'Python': 10, 'fun': 8, 'is': 9}
>>> zip((1, 2), (3, 4))
<zip object at 0x01AD1E18>

zip() returned a generator called a "zip object."

Fun with Built-In Functions
You've worked with lo ts o f different functions in this lesson, and used them to get a real idea o f how they work.

Keep your interpreter window open to test your understanding o f new functions as you come into contact with them.
Experiment and try to find their limits. Use the help() function to learn more about the built- in functions too.

You're looking good so far. Keep up the great work!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Defining and Calling Your Own Functions
Lesson Objectives

When you complete this lesson, you will be able to :

define and call your own functions.
access the arguments using the names o f the parameters.
return a value that your code displays via the built- in print () function.
access arguments using the names o f the parameters.
use functions to handle namespaces.
create parameters that receive multiple arguments.

Exploring Functions
Hi and welcome to a new lesson! We're moving right along, huh? Let's keep it go ing. While working through examples
so far in this course, you typed similar pieces o f code over and over again. Take a look at this snippet o f code from our
earlier complex file handling example:

OBSERVE:

open_tasks = open('open_tasks.txt','r').readlines()
if open_tasks:
 print('-' * 10)
 print('Open Tasks')
 print('-' * 10)
 for i, task in enumerate(open_tasks):
 print(i, task.strip())
done_tasks = open('done_tasks.txt','r').readlines()
print('-' * 10)
print('Done Tasks')
print('-' * 10)
for i, task in enumerate(done_tasks):
 print(i, task.strip())

You typed in almost exactly the same code twice. Wouldn't it be nice if you could just write it once and then call it
whenever you needed it, like you've done with Python's various built- in functions? Fortunately, you can! Look at the
same code, this time rewritten using a function:

OBSERVE:

def task_report(task_file):
 tasks = open(task_file,'r').readlines()
 if tasks:
 print('-' * 10)
 print(task_file.replace('_',' ').replace('.txt','').title())
 print('-' * 10)
 for i, task in enumerate(tasks):
 print(i, task.strip())
task_report('open_tasks.txt')
task_report('done_tasks.txt')

The second example defines a function t ask_repo rt . It executes the same task as the first example, but operates by
calling the function twice. The differences between the two examples are in the file name and the heading that was
printed out. The file name is a formal parameter (t ask_f ile) o f the function, and the heading is created by using
replace() to change the underscore ('_') to a space (' ') and the extension (' .t xt ') to nothing (' ') in the file name, and
then applying title case to the remainder with t it le () . (The net result? 'open_tasks.txt' becomes 'Open Tasks' and
'done_tasks.txt' becomes 'Done Tasks.')

By defining and using this function, we saved three whole lines o f code. Impressed? No?! You should be. But wait,
there's more!

Now, suppose you need to add three more types o f task state to your code: "not yet confirmed," "in testing," and
"under review." Without our task_report function, we would have had to add 18 lines o f code to accomplish this task!
But using the function, we can process each file with a single line, and get the job done with just three lines o f code!
Take a look at the example:

OBSERVE: Sample function code

def task_report(task_file):
 tasks = open(task_file,'r').readlines()
 if tasks:
 print('-' * 10)
 print(task_file.replace('_',' ').replace('.txt','').title())
 print('-' * 10)
 for i, task in enumerate(tasks):
 print(i, task.strip())
task_report('open_tasks.txt')
task_report('done_tasks.txt')
task_report('not_yet_confirmed.txt')
task_report('in_testing.txt')
task_report('under_review.txt')

Good Python developers never repeat a stanza o f code twice. Instead, we put it into a function, and call that function as
often as we need it. If you see lo ts o f repetitive code, it generates that yucky code smell I mentioned earlier. The code
might work, but changing it, maintaining it, and using it in o ther places will be harder than it needs to be and the code
will be more prone to errors.

Write Your First Function
Let's take a shot at writing a function. We'll write some code that averages a list o f values. In the editor window, type the
code as shown below:

CODE TO TYPE:

#!/usr/local/bin/python3
def average(lst):
 """ Averages a list, tuple, or set of numeric values"""
 return sum(lst) / len(lst)

tst_lst = [1, 2, 3, 4]
print('Average this list: {0}'.format(tst_lst))
print(average(tst_lst))
t = (243, 132, 987, 342, 13)
print('Average this tuple: ',t)
print(average(t))
s = {1, 2, 3, 4, 25}
print('Average this set: {0}'.format(s))
print(average(s))

 Save it in your /pyt ho n1 fo lder as average.py, and run it:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$./average.py
Average this list: [1, 2, 3, 4]
2.5
Average this tuple: (243, 132, 987, 342, 13)
343.4
Average this set: {25, 2, 3, 4, 1}
7.0

How does it work?

OBSERVE:

#!/usr/local/bin/python3
def average(lst):
 """ Averages a list, tuple, or set of numeric values"""
 return sum(lst) / len(lst)

tst_lst = [1, 2, 3, 4]
print('Average this list: {0}'.format(tst_lst))
print(average(tst_lst))
t = (243, 132, 987, 342, 13)
print('Average this tuple: ',t)
print(average(t))
s = {1, 2, 3, 4, 25}
print('Average this set: {0}'.format(s))
print(average(s))

The function occupies only the first three lines o f code in this example. The Python keyword def introduces a function
definition. It must be fo llowed by the f unct io n name and the list o f f o rmal paramet ers in parentheses. The code
that makes up the function is called the function body. The function body must be indented. The string """ Averages a
list , t uple , o r set o f numeric values""" is the function's documentation string, o ften abbreviated as docstring. The
interpreter uses docstrings to give programmers information about how the function works and how it should be
called. Finally, the last line tells the function to ret urn the sum() o f the values entered, divided by the number o f values
as determined by the len() function. This returned value becomes the value o f the function call during evaluation o f
expressions.

Our function is fo llowed by test code that lets us verify that the function works correctly. Each time the average()
function is written with a list o f numbers in it, such as average(t st _lst) o r even average([10,20,30,40,50]) , our
function code is run with those numbers as formal parameters.

In the average.py example, we used the name lst fo r our parameter. It could have any name, but fo r the sake o f clarity,
use a name that makes the purpose o f the variable clear. Also , be careful not to use names o f existing Python
functions or o ther objects. You don't want to use list o r t uple as variable or parameter names, fo r example, because
they are the names o f Python built- in functions. If you do, your program may behave in completely incomprehensible
ways.

Parameters and Arguments
Parameters are the names you give to the inputs to the function when the function is defined. Arguments are the values
you provide when you call the function. Inside the function body, your code can access the arguments using the names
of the parameters.

Suppose you want to write a function that prints out the elements in a list, and you want to provide an option to have
the function print the list in reverse order. To do this, you'll use positional and keyword parameters. Type the code as
shown:

CODE TO TYPE:

#!/usr/local/bin/python3
def print_list(lst, rev=False):
 """ prints the contents of a list. """
 if rev:
 lst = reversed(lst)
 for i in lst:
 print(i)

print_list(['Printing', 'a', 'list'])
print()
print_list(['Printing', 'a', 'reversed', 'list'], True)
print()
print_list(lst=['A', 'list', 'with', 'specified', 'arguments'],rev=False)

 Save it in your /pyt ho n1 fo lder as print _list .py, and run it. This function takes two parameters. You're familiar with
the first parameter, lst ; the second parameter, rev=False , introduces a new feature—a keyword parameter, which has
a default value (the value fo llowing the equals sign, which in this case is False). If you call the function without passing
an argument corresponding to the rev parameter, it uses that default value.

The function's code looks at the value o f rev, and if it is true, it re-binds the parameter to a reversed copy o f the list. It
does this rather than reversing the list in place, because such a reversal would affect code outside o f the function
(though there's nothing illegal about changing a mutable object inside o f a function, you want to make sure that the
users o f the function know they should expect such changes. We'll go over parameters and arguments in greater detail
in future lessons).

Returning Values
The first function you wrote in this lesson, average() , returned a value that your code then displayed via the built- in
print () function. When a function call is written in an expression (for example, in print (average(t st _lst))), the value
of the function call in that expression is actually the value that the function returned in its ret urn statement (2.5). But the
second function you created, print _list () , did not include a ret urn statement. This is equivalent to the function ending
with ret urn No ne . So all functions will return some value, but by convention, functions that don't need to return
anything can implicitly return No ne . If the function isn't intended to return a value, it's confusing to add an explicit
ret urn statement.

You can either use the function calls in contro l flow code (that is, code that contro ls the order in which tasks are
executed, such as if o r while statements) or save the values returned by functions, binding them to a variable in an
assignment statement and using that value again and again without needing to rerun the function. To see these
principles in action, create a new file as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
def structure_list(text):
 """Returns a list of punctuation in a text"""
 punctuation_marks = "!?.,:;"
 punctuation = []
 for mark in punctuation_marks:
 if mark in text:
 punctuation.append(mark)
 return punctuation

text_block = """\
Python is used everywhere nowadays.
Major users include Google, Yahoo!, CERN and NASA (a team of 40 scientists and engineer
s
is using Python to test the systems supporting the Mars Space Lander project).
ITA, the company that produces the route search engine used by Orbitz, CheapTickets,
travel agents and many international and national airlines, uses Python extensively.
The YouTube video presentation system uses Python almost exclusively, despite their
application requiring high network bandwidth and responsiveness.
This snippet of text taken from chapter 1"""

for line in text_block.splitlines():
 print(line)
 p = structure_list(line)
 if p:
 print("Contains:", p)
 else:
 print("No punctuation in this line of text")
 if ',' in p:
 print("This line contains a comma")
 print('-'*80)

 Save it in your /pyt ho n1 fo lder as ret urn_value.py, and run it. The st ruct ure_list () function accepts a single
parameter called text. This value is checked to find common punctuation marks. These results are placed into a list and
that list is returned.

The tricky part is the loop itself and what it does with the returned value o f st ruct ure_list () . Instead o f immediately
printing the value, we save it to the variable p. This variable is subsequently used in two different if statements. The first
checks to see if the list p is empty, then prints an appropriate result. Then the variable is used again to determine
whether or not a comma is present.

Multiple Return Values

So, what if you need to return two values? Suppose that, in addition to the punctuation in our last example, you also
want to return the location o f the word "Python." You could write a second function, but it's o ften more efficient when
the two results require related logic in order to have your function return another value. Try out the example below and
get a better look at this concept:

CODE TO TYPE:

#!/usr/local/bin/python3
def structure_list(text):
 """Returns a list of punctuation and the location of the word 'Python' in a text"""
 punctuation_marks = "!?.,:;"
 punctuation = []
 for mark in punctuation_marks:
 if mark in text:
 punctuation.append(mark)
 return punctuation, text.find('Python')

text_block = """\
Python is used everywhere nowadays.
Major users include Google, Yahoo!, CERN and NASA (a team of 40 scientists and engineer
s
is using Python to test the systems supporting the Mars Space Lander project).
ITA, the company that produces the route search engine used by Orbitz, CheapTickets,
travel agents and many international and national airlines, uses Python extensively.
The YouTube video presentation system uses Python almost exclusively, despite their
application requiring high network bandwidth and responsiveness.
This snippet of text taken from chapter 1"""

for line in text_block.splitlines():
 print(line)
 p, l = structure_list(line)
 if p:
 print("Contains:", p)
 else:
 print("No punctuation in this line of text")
 if ',' in p:
 print("This line contains a comma")
 if l >= 0:
 print("Python is first used at {0}".format(l))
 print('-'*80)

 Save and run it. We modified the function to return a two-element tuple. The first element is the punctuation as
computed in the previous version. The second element is the location o f the word "Python." If the word doesn't exist in
the text, -1 is returned, as determined by the f ind() method's specification.

The function result is assigned to two separate variables using an unpacking assignment, and an additional test is
made on the returned index value to determine whether to report the presence o f the word "Python."

Functions and Namespaces
Using functions in Python has the added benefit o f helping us begin to understand namespaces.

When you call a function, Python dynamically creates a new namespace and binds the argument values to the
appropriate parameter names. Assignments made during execution o f the function call result in bindings in the function
call namespace. When the function returns, the namespace is automatically destroyed, and any bindings inside the
namespace are lost.

You can sum up how functions handle namespaces in Python by understanding these two rules:

1. Variables bound within a Python function body only exist in namespaces created by calls o f that function.
2. Variables bound in the global namespace can be accessed by functions, but may not be bound unless
specifically declared to be global.

Let's test out the first rule. As you will see, the variable c defined below is assigned inside o f the t est () function. Start
an interactive session and enter the commands shown:

INTERACTIVE SESSION:

>>> def test(a, b):
... c = a + b
... return c
...
>>> test(1, 2)
3
>>> c
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'c' is not defined

And now let's test the second rule. Type the commands below as shown:

INTERACTIVE SESSION:

>>> def test_a():
... print(a)
...
>>> test_a()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in test_a
NameError: global name 'a' is not defined
>>> a = "Python"
>>> test_a()
Python

You can see that when the function attempts to access a global variable a, the function fails in its first call, because a
has not yet been created in the global environment. The interpreter knows that a is not local to the function because the
function body contains no assignment to it. Once the variable is created by an assignment in the module namespace,
a call to the function succeeds without raising an exception.

So, if any assignment is made to a variable inside a function body, the variable is local to the function. Changing a
global variable inside a function body isn't a best practice, but sometimes it's a necessary evil. To achieve that end,
you use a glo bal statement to declare that the variable, although assigned inside o f the function body, is in the
module (global) scope. To demonstrate this, type the commands below as shown:

INTERACTIVE SESSION:

>>> def test_a():
... global a
... a = "XML"
... print(a)
...
>>> a = "Python"
>>> test_a()
XML
>>> print(a)
XML

Here the value "Pyt ho n" is bound to a in module scope. After the function is called, you can see that a has been re-
bound by the assignment inside o f the function.

Parameters That Receive Multiple Arguments
Sometimes when you create a Python function, you don't know how many arguments you are go ing to get and you
want the caller to be able to provide any number o f arguments. For example, you may want to create a function that
takes all the numbers given as parameters and multiply them together. To do this, we use a special parameter

specification, *name . There can be only one such parameter, and it must fo llow any standard positional and/or
keyword parameters.

When you prefix the parameter with the asterisk (*) character in the function definition, this tells the interpreter to co llect
any unmatched positional arguments into a tuple and then bind the tuple to the name fo llowing the asterisk in the
called function's namespace. Inside o f your function, this tuple can be used like any o ther Python iterable. Let's check it
out. Create a new file in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
def multiplier(*args):
 """ Multiply the arguments together and return the result.
 Return 0 if nothing is provided.
 """
 if not args:
 return 0
 product = args[0]
 for a in args[1:]:
 product *= a
 return product

print(multiplier())
print(multiplier(1,2,3,4))
print(multiplier(6,7,8,9,10,11,12,13))
print(multiplier(10,20,100))

 Save it in your /pyt ho n1 fo lder as argument _list .py, and run it. The mult iplier() function, our single parameter
args (which you can think o f as the "sequence parameter") is prefixed with *, so all positional arguments to a call will
appear inside o f this tuple. The rest o f the function is made up o f familiar code (if anything is unfamiliar, ask your
instructor fo r a little help). We can call the function with any number o f arguments.

The * sequence parameter must fo llow any standard positional or keyword parameters. This can be useful when
regular arguments are also required. For instance, you may want to provide an optional amount to be added to the
product. You'd accomplish that by using a keyword argument with a default value o f zero . Let's see how this is done.
Modify the program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
def multiplier(total=0.0, *args):
 """ Multiply the arguments together, add a prior total, and return the result.
 Return 0 if nothing is provided.
 """
 if not args:
 return total
 product = args[0]
 for a in args[1:]:
 product *= a
 print("product:", product)
 return product + total

print(multiplier())
print(multiplier(1,2,3,4))
print(multiplier(6,7,8,9,10,11,12,13))
print(multiplier(10,20,100))

 Save and run it. The first parameter o f each set is now passed as the t o t al, and the rest as args.

Putting It All Together
When you were in grade schoo l, you learned that six times seven (6 x 7) was equivalent to adding six to itself seven
times (6 + 6 + 6 + 6 + 6 + 6 + 6). Calculating this the long way took time, so you memorized the end result. If you
learned your "times tables" at schoo l, you can probably still respond immediately, even now, when asked "what is six
times seven?" Storing something in memory to save the trouble o f working it out each time you need the answer is
called caching.

Caching is taking calculated values from arguments and storing them so that you can return the values if asked to
compute a result from the same arguments again later. This way, instead o f calculating the same thing a hundred
times, you save each calculation the first time you make it, and recall it when needed. When applied to a function, this
caching technique is o ften referred to as memoization.

To illustrate, we will use the built- in input () method to prompt fo r two numeric values. The code does multiplication
the o ld way (6 + 6 + 6 + 6 + 6 + 6 + 6). Finally, we'll use the ability o f functions to use the global namespace to cache
the results, so when you try it with big numbers (10 million * 10 million), you don't need to repeat lengthy calculations.

In the code example below, we create a kid() function to do the math. Rather than introduce some horrendously
complicated function that would be difficult to understand, we'll use a more manageable function. kid() does
multiplication the hard way! Create a new file in the editor window and type the code shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Demonstrates the need for caching """

def kid(a, b):
 """ Multiplication the hard way """
 c = 0
 for i in range(b):
 c += a
 return c

while True:
 a = input('enter a number: ')
 b = input('enter another number: ')
 a = int(a)
 b = int(b)
 print(kid(a,b))

 Save it in your /pyt ho n1 fo lder as caching.py, and run it. Try it with small numbers first, perhaps 4 and 5. Then try
something large like 5 and 10000000 (one and seven zeros). You'll have to wait awhile as the computer adds 5 ten
million times. That crazy kid takes forever to do basic math!

Now, modify your kid() function so that it maintains a record o f the arguments it has been called with, and saves
previously-computed results in a global dict so that before it even starts to perform a calculation, it can provide a
previously-computed result, thereby saving time. Edit the code below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Demonstrates the need for caching """

global_cache = {}

def kid(a, b):
 """ Multiplication the hard way """
 if (a, b) in global_cache:
 return global_cache[(a, b)]

 c = 0
 for i in range(b):
 c += a
 global_cache[(a, b)] = c
 return c

while True:
 a = input('enter a number: ')
 b = input('enter another number: ')
 a = int(a)
 b = int(b)
 print(kid(a,b))
 print(global_cache)
 print('-'*40)

Now try the program again. Enter 5 * 10000000. Wait a few seconds for the response and try it again. You'll no tice the
second time it returns almost instantly.

Here, when the function is called, it immediately checks the global glo bal_cache dict to see whether this particular set
o f arguments has been used before. If it has, the cached result is immediately returned, bypassing the lengthy
computation. If the argument set isn't found in glo bal_cache , then it is computed in the usual way, but before the
result is returned, it is added to the glo bal_cache so this new result can be produced immediately if we ever need it
again.

A Solid Foundation
In this lesson, you started to learn how to write functions, understand the difference between parameters and
arguments, how return values work, and a little more about namespaces. I'm really impressed with your progress so
far! Now that you have a pretty good grip on Python basics, let's move on and learn about modules and imports, and
even more about namespacing.

See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

The Python Standard Library
Lesson Objectives

When you complete this lesson, you will be able to :

employ the principle of modularity.
construct many independent namespaces and handle them separately.
import Python modules.
locate modules.

Increased Versatility
Let's get to work and discuss a key concept in programming, the principle of modularity. The idea behind it is that
unrelated parts o f a system should be kept separate from each o ther, and related parts should be grouped together.

Python comes with a large set o f library modules and packages (we'll talk more about packages in a later course—
they're like modules, but with a bit more structure). It's well worth learning about the standard library because it
contains modules that can save you time and effort, and also allow you to do some really coo l stuff with Python.

Let's try a few experiments using the standard library. First we'll figure out how to import a Python library module. Type
the commands shown below in an interactive session:

INTERACTIVE SESSION:

cold1:~$ python3
>>> import textwrap
>>> textwrap.wrap("This is a very long piece of text. This should appear as shorter lin
es.", 12)
['This is a', 'very long', 'piece of', 'text. This', 'should', 'appear as', 'shorter',
'lines']
>>> import time
>>> time.time()
1327529513.914024
>>> time.gmtime()
time.struct_time(tm_year=2012, tm_mon=1, tm_mday=25, tm_hour=22, tm_min=12, tm_sec=7, t
m_wday=2, tm_yday=25, tm_isdst=0)
>>> time.asctime(time.gmtime())
'Wed Jan 25 22:13:04 2012'
>>> import base64
>>> base64.encodestring(b"This is a byte string")
__main__:1: DeprecationWarning: encodestring() is a deprecated alias, use encodebytes()
b'VGhpcyBpcyBhIGJ5dGUgc3RyaW5n\n'
>>> s = base64.encodebytes(b"This is a byte string")
>>> base64.decodestring(s)
__main__:1: DeprecationWarning: decodestring() is a deprecated alias, use decodebytes()
b'This is a byte string'
>>> base64.decodebytes(s)
b'This is a byte string'

Here you made use o f functionality from three standard library modules—textwrap, time, and base64. We have linked
the name of each module to the appropriate section o f Python's standard library documentation. You get access to the
resources o f a module by qualifying the module's name with the name of the appropriate resource. So "a.b" means
"look in a's namespace and return what is bound to the name b there."

The DeprecationWarning message is in our code to remind those programmers using earlier versions o f Python that
our strings are now Unicode. In o lder versions, strings were by default made up o f ASCII (8-bit) characters. In Python 3,
the base64.enco dest ring() function has been renamed base64.enco debyt es() . The o ld name is still available,
but not fo r long, so a message is printed to alert programmers to use the newer name.

http://docs.python.org/3.1/library/textwrap.html
http://docs.python.org/3.1/library/time.html
http://docs.python.org/3.1/library/base64.html

Namespaces
Earlier, we discussed Python's object space, the location where data objects like integers and strings are stored. We
also learned that when you run a program, the interpreter creates a namespace. Within namespace, values in object
space are bound to names by assignment statements, function definitions, and such.

A Python program has a "global" namespace, where names are bound by assignments and function definitions within
the main body o f the program. When you call a function, Python dynamically creates a new namespace and binds the
argument values to the parameter names. Assignments made during execution o f the function call (normally) result in
bindings in the function call ("local") namespace. When the function returns, the namespace is automatically
destroyed, and any bindings inside the namespace are lost. On occasion, this means that some of the values will no
longer have references. When that happens, the memory used to store those values becomes reclaimable as
garbage. (Don't worry if you don't have a grip on all o f this stuff just yet. It'll make more sense when we get to the
experimentation!)

When we write large programs "monolithically" (as whole chunks), we may inadvertently use the same name for two
different purposes at different places in the program. We can avo id that problem by incorporating the principle o f
modularity into our work; we'll write programs as co llections o f small chunks that are relatively independent o f one
another. This will also make our programs easier to read and understand.

With Python, we are able to construct many independent namespaces and handle them separately. The same name
can be defined in two different namespaces, because the uses don't co llide. When the interpreter looks for the value
bound to a particular name, it looks in three specific namespaces. First, it looks in the local namespace (assuming a
function call is active). Next, it looks in the global namespace. Finally, it looks in the "built- in" namespace, which ho lds
the names o f objects that are hard-wired into the Python interpreter, like exceptions and built- in functions.

Python Modules
A module is a co llection o f statements that are executed. Every program you have written so far in this course is a
Python module. You wrote them as stand-alone programs. When you run a module as a program, the interpreter
terminates after all o f the code has been executed. Running the program is one way to cause its code to be executed.
Another way is to import it. When you write impo rt mo dx in your program, the interpreter looks for the mo dx.py file. It
also looks for its compiled version: mo dx.pyc. If mo dx.pyc is up to date, it will save the interpreter the work o f
compiling it.

If the file is not found, an ImportError exception is raised. Otherwise, the interpreter executes the code in the module,
and binds the module's namespace to the name of the module in the current namespace. So, if mo dx defines a
function f () , after you have imported the module, you can call that function with mo dx.f ()—the dot operator tells the
interpreter to look up the name f in the namespace bound to the name mo dx.

Suppose module z defines function g() , module y imports module z , and your program imports module y. You could
call the function as y.z.g() . The interpreter would look up y in the local namespace, retrieving the namespace o f
module y. Then it would look up z in that namespace, retrieve the namespace o f module z , and in that namespace
look up the name g and retrieve the function.

Okay, I think we've got enough to think about. Let's get busy with some practical application! We'll create a program
called impo rt er.py that imports a module called mo da, that in turn imports a module called mo db. The program is
go ing to call a function defined in mo db. Create the mo da.py, mo db.py, and impo rt er.py programs, respectively,
as shown, in your /pyt ho n1 fo lder:

CODE TO TYPE:

"""moda.py: Imports modb to gain indirect access to the triple function."""

import modb

CODE TO TYPE:

"""modb.py: Defines a function that can be used by importing the module."""

def triple(x):
 """Simple function returns its argument times 3."""
 return x*3

CODE TO TYPE:

#!/usr/local/bin/python3
"""importer.py: imports moda and calls a function from a module moda imports."""

import moda
print(moda.modb.triple("Yippee! "))

 Save them all, and run the impo rt er.py program. When it runs, it imports module moda. This binds the moda
module's namespace to the name mo da in the program's (global) namespace. When module moda is imported, its
code is executed. This causes module modb to be imported, binding it to the name mo db on module moda's
namespace. When modb is imported by moda, its code is executed, and the def statement binds the name t riple to
the function definition in modb's namespace.

Now when the interpreter sees the statement print (mo da.mo db.t riple("Yippee! ")) , it looks up the name mo da in
the global namespace, then looks up the name mo db in that namespace, and finally looks up the name t riple in that
namespace. This final lookup returns a reference to the triple function, which is then called with the argument "Yippee! "
and your program will print "Yippee! Yippee! Yippee! ".

The namespace labeled "GLOBAL NAMESPACE" is actually the global namespace o f the impo rt er module run as
the main program. This diagram shows the relationship between the namespaces o f the various modules:

Writing Modules to be Testable
In later courses we will talk about testing code. But even before we start using the unittest module, we can start writing
importable modules to do some basic testing.

When a module is imported by a program, the interpreter binds the special name __name__ in the module's
namespace to its name. When a module is run as a program, __name__ receives a special value "__main__". You
can assume that your module will be imported, but if it gets run as a program (that is, if __name__ == "__main__"),
then the user isn't trying to use it, but instead wants to test it.

Some standard library modules have a section at the end that contains the statement:

if __name__ == "__main__"

The code that fo llows that statement is there to test the module's functionality.

We'll write code like that to test our functions as well, and make it easier to verify that they work as intended. The more
you do to make your modules self-testing, the easier it is to detect when a small change has broken the code.

Splitting Up Your Programs
So far almost all o f our programs have been made up o f single program files. As the programs get more complex,
we'll build them as co llections o f components. A component you build fo r one program might be useful in another.
You could just copy the component's code, but then if you needed to modify it, you'd have to modify each copy
separately. This makes extra work for you and increases the chance o f errors.

Fortunately, Python lets you write your code as a co llection o f modules, each o f which is a separate text file. This
makes it easier to use your code in various contexts.

Let's take a program that uses functions and split it into two pieces. Create this program in the editor window:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Contains functions to manipulate number representations."""
def commafy(val):
 if len(val) < 4:
 return val
 out = []
 while val:
 out.append(val[-3:])
 val = val[:-3]
 return ",".join(reversed(out))

def commareal(val):
 if "." in val:
 before, after = val.split(".", 1)
 else:
 before, after = val, "0"
 return "{0}.{1}".format(commafy(before), after)

Testing code only ...
if __name__ == "__main__":
 for i in [0, 1, 12, 123, 1234, 12345, 123456,
 1234567, 12345678, 123456789, 1234567890]:
 print(i, ":", commafy(str(i)), ":", commareal("{0:.2f}".format(i/1000)))

 Save it in your /pyt ho n1 fo lder as f uncs.py and run it.

The first module defines the required functions. The second produces results by calling one o f the functions. It gains
access to the function it needs by importing the module that defines it.

The co mmaf y function takes a whole number (which is assumed to be a string comprising all digits) and, beginning
from the right, splits it into chunks o f three digits. The value string is shortened to remove each chunk after it is added to
the o ut list. Any chunk o f less than three digits that remains at the end will be captured automatically by slicing. When
no digits remain, the o ut list is reversed to put the chunks in the correct order, and the chunks are jo ined together with
commas to provide the function's return value.

The co mmareal() function takes a string representation o f a real number or integer. If the string contains a decimal
po int, it is split around that. If there is no decimal po int, a single "0" is used. The co mmaf y() function is used to insert
commas into the portion before the decimal po int, and the output string is constructed from the "commafied" portion
before the decimal po int and the unchanged portion after the decimal po int.

Although this module is designed to be imported by o ther programs, it will test itself if it's run as a main program. It
iterates over a set o f integers, printing out the number, its "commafied" version, and the co mmareal() value o f the
number divided by 1,000 and represented to two decimal places. When the module is imported, the condition if
__name__ == "__main__" is false, so the testing code does not execute.

Now, create this program:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Take user input, convert to float, and print
out the number to two decimal places, with commas."""
import funcs

while True:
 inval = input("Enter a number: ")
 if not inval:
 break
 number = float(inval)
 print(funcs.commareal("{0:.2f}".format(number)))

 Save it in your /pyt ho n1 fo lder as f uncalls.py and run it. This program performs an infinite loop, terminated from
within when the user presses Ent er without typing a number in response to the "Enter a number" prompt. Otherwise,
the user's input is converted to a floating-po int number, and is fo rmatted back into a string representation with two
decimal places. The result o f the co mmareal() function is printed back to the user (via f uncs.py) before the loop
repeats.

Other Ways to Import a Module
The impo rt statement has some useful variations that can alter the way imported items are made available in the
importing namespace.

import ... as

What if you need to import a module, but you've already used its name in your code? You can avo id rewriting
your code using the impo rt ... as syntax, which allows you to import a module using a name of your cho ice
rather than its natural name. So, if you write impo rt t ime as t , the module is imported in the standard way,
but rather than being bound to its standard name in the importing namespace, the module namespace is
bound to the name t . Now you can write a call on the asct ime() function in the module as t .asct ime() , and
continue to use the name "time" for o ther purposes.

The t ime namespace is now called t in the __main__ namespace:

from ... import ...

Sometimes you'll just want to bring the names from a module into the importing namespace so they can be
used directly rather than qualifying the module name. Do this sparingly though, because once you've done
this, it becomes more difficult to locate various resources in the program.

An alternative way to handle situations where the name "time" is already in use, is to import the "asctime"
name into the current namespace directly with f ro m t ime impo rt asct ime , and write the calls on the
function as asct ime() . Because the __main__ namespace contains no direct reference to the t ime module,

other names in t ime 's namespace are not available to the __main__ module. The name asct ime is copied
from the t ime module's namespace to the __main__ namespace:

Under most circumstances, you do not want to use f ro m ... impo rt ... to import all names defined in a
module using the statement f ro m mo dule impo rt *. While this may seem like a great way to define the
necessary symbols, it puts the imported module in charge o f what gets loaded into your namespace. Unless
you are really familiar with the imported module's code, you'll have no way o f knowing whether it defined
symbols that you're already using. If it did define them, they will overwrite your definitions or your symbols will
overwrite the definition from the modules. Either way, you'll receive no notification that this has happened, and
you will be left with a tricky debugging exercise.

Certain well-written and sophisticated library modules (such as the Tkinter graphical user interface library)
recommend this fo rm of import. Do not try to emulate this in your own designs—it is an invitation to disaster!

The System Path
How does the interpreter know where to find modules? It looks for module mo dname by searching in a specific list o f
directories for a file called mo dname.py.

Let's look at the system path. It is defined, appropriately enough, in a module called sys. You have to import it before
you can examine it. To see what's on the path, type the fo llowing commands in an interactive session:

INTERACTIVE SESSION:

>>> import sys
>>> for p in sys.path:
... print(p)
...

/usr/local/python34/lib/python34.zip
/usr/local/python34/lib/python3.4
/usr/local/python34/lib/python3.4/plat-linux
/usr/local/python34/lib/python3.4/lib-dynload
/usr/local/python34/lib/python3.4/site-packages
>>>

When the interpreter looks for a module, it searches these paths, starting at the top o f the list, and stopping when it
finds the module. This path can be useful to know if you have a program that doesn't seem to be finding the module

http://wiki.python.org/moin/TkInter

you wanted it to find.

Reduce, Reuse, Recycle!
You're picking this stuff up like a pro ! You've learned how your programs can make use o f external functionality, and
how you can split your own programs up to make them more modular. This will make them easier to manage, help
you to write code that can be used in lo ts o f different programs, and make you an efficient programmer! You'll reduce
your work by reusing and recycling your code. In the next lesson, we'll revisit functions and learn about even more
features. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More About Functions
Lesson Objectives

When you complete this lesson, you will be able to :

capture keyword arguments whose names do not correspond to the name of any parameter.
specify keyword parameters in a function that has a dict-parameter.
import functions and help().
execute functions by dispatch.

Now that you've got the basics o f functions down, we'll build on that knowledge with keyword parameters, switches, importing
functions, and more!

Arbitrary Keyword Parameters
We learned earlier that when an unknown number o f positional arguments will be provided, you can capture the extra
ones (that don't correspond to any o f the formal parameters) by specifying a parameter name that is preceded by a
single asterisk (*). In much the same way, you can capture keyword arguments whose names do not correspond to the
name of any parameter. To do that, we'll prefix the last defined parameter with two asterisks, and call a dict-parameter.
Create a new program in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Demonstrates capture of keyword arguments"""

def keywords(**kwargs):
 "Prints the keys and arguments passed through"
 for key in kwargs:
 print("{0}: {1} ".format(key, kwargs[key]))

def keywords_as_dict(**kwargs):
 "Returns the keyword arguments as a dict"
 return kwargs

if __name__ == "__main__":
 keywords(guido="Founder of Python", python="Used by NASA and Google")
 print(keywords_as_dict(guido="Founder of Python", python="Used by NASA and Google")
)

 Save it in your /pyt ho n1 fo lder as keywo rd_args.py, and run it. You output looks like this:

OBSERVE:

python: Used by NASA and Google
guido: Founder of Python
{'python': 'Used by NASA and Google', 'guido': 'Founder of Python'}

The program has two functions that capture general keyword arguments. When you call such a function, the interpreter
matches up the positional and keyword arguments with their corresponding parameters, then takes any unmatched
keyword arguments and puts them into a dict, which it binds to the dict-parameter. The first function, keywo rds() ,
iterates over the keys o f the dict, printing the keys (which are the names o f the unmatched keyword arguments) and the
associated values (which are the values fo llowing the equals signs). The second function, keywo rds_as_dict () , just
returns the keyword arguments, demonstrating that the dict-parameter is in fact a dict.

Parameters, Sequence-Parameters, and Dict-Parameters
Sometimes you need to mix different argument-passing methods. In an earlier lesson, you learned how to include
specific positional parameters in a function that also uses a sequence-parameter. You can also specify keyword
parameters in a function that has a dict-parameter.

Suppose you want a function that prints the description o f a co llege course including a name that is a standard
positional parameter, an instructor, any number o f students, and possibly o ther staff with assigned ro les. To do this in
Python, you combine multiple types o f parameters. You'll use positional parameters, as well as a sequence-
parameter and a dict-parameter. Let's give it a try in a program. Type the code below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
def description(name, instructor, *students, **staff):
 """Print out a course description.
 name: Name of the course
 instructor: Name of the instructor
 *students, ...: List of student names (positional arguments)
 **staff, ...: List of additional staff (keyword arguments)
 """
 print("=" * 40)
 print("Course Name:", name)
 print("Instructor:", instructor)
 print("-" * 40)
 for title, name in staff.items():
 print(title.capitalize(), ": ", name)
 print("{0:-^40}".format(" registered students "))
 for student in students:
 print(student)

if __name__ == "__main__":
 description("Python 101",
 "Steve Holden",
 "Georgie Peorgie",
 "Mary Lamb",
 "Penny Rice",
 publisher="O'Reilly School of Technology",
 author="Python Software Foundation"
)
 description("Django 101",
 "Jacob Kaplan-Moss",
 "Baa-Baa Blacksheep",
 "Mary Contrary",
 "Missy Muffet",
 "Peter Piper",
 publisher="O'Reilly School of Technology",
 author="Django Software Foundation",
 editor="Daniel Greenfeld"
)

 Save it in your /pyt ho n1 fo lder as co urses.py, and run it:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$./courses.py
==
Course Name: Python 101
Instructor: Steve Holden
--
Publisher : O'Reilly School of Technology
Author : Python Software Foundation
--------- registered students ----------
Georgie Peorgie
Mary Lamb
Penny Rice
==
Course Name: Django 101
Instructor: Jacob Kaplan-Moss
--
Publisher : O'Reilly School of Technology
Editor : Daniel Greenfeld
Author : Django Software Foundation
--------- registered students ----------
Baa-Baa Blacksheep
Mary Contrary
Missy Muffet
Peter Piper

Let's take a closer look:

OBSERVE:

#!/usr/local/bin/python3
def description(name, instructor, *students, **staff):
 """Print out a course description.
 name: Name of the course
 instructor: Name of the instructor
 *students, ...: List of student names (positional arguments)
 **staff, ...: List of additional staff (keyword arguments)
 """
 print("=" * 40)
 print("Course Name:", name)
 print("Instructor:", instructor)
 print("-" * 40)
 for title, name in staff.items():
 print(title.capitalize(), ": ", name)
 print("{0:-^40}".format(" registered students "))
 for student in students:
 print(student)

if __name__ == "__main__":
 description("Python 101",
 "Steve Holden",
 "Georgie Peorgie",
 "Mary Lamb",
 "Penny Rice",
 publisher="O'Reilly School of Technology",
 author="Python Software Foundation"
)
 description("Django 101",
 "Jacob Kaplan-Moss",
 "Baa-Baa Blacksheep",
 "Mary Contrary",
 "Missy Muffet",
 "Peter Piper",
 publisher="O'Reilly School of Technology",
 author="Django Software Foundation",
 editor="Daniel Greenfeld"
)

The first and second parameters (name and inst ruct o r) are positional, and so are bound to the first and second
arguments o f any call. Any additional positional arguments are placed into the st udent s tuple. Finally, any keyword
arguments are placed into the st af f dict.

The name and inst ruct o r parameters are printed out. The function then iterates over the items (each item is a (key,
value) pair o f the st af f dict-parameter) to print details about any additional staff. Finally, the function loops through the
st udent s to list the individuals taking the class.

WARNING

Take care when using sequence- and dict-parameters. With regular (positional and keyword)
parameters, you can usually determine the interface o f the function (that is, how it should be called)
from the function and parameter names. When sequence- and dict-parameters are used, this is
more difficult to determine.

If you do use sequence- and dict-parameters, make sure you document the purpose o f each
parameter in the function's docstring. This is good practice in any case, but especially so when the
interface is more complex.

Let's take a closer look at what our docstrings give us. Try these commands in an interactive session:

INTERACTIVE SESSION:

>>> import courses
>>> help(courses.description)
Help on function description in module courses:

description(name, instructor, *students, **staff)
 Print out a course description.
 name: Name of the course
 instructor: Name of the instructor
 *students: List of student names (positional arguments)
 **staff: List of additional staff (keyword arguments)

(END)

By documenting your function correctly, you've provided useful information to anyone who imports your module. (Your
fellow programmers thank you!) Of course, the module itself can also have useful documentation, though in this case,
there just wasn't much to provide. Continue your previous interactive session to verify that your documentation
appears as expected:

INTERACTIVE SESSION:

>>> help(courses)
Help on module courses:

NAME
 courses

FUNCTIONS
 description(name, instructor, *students, **staff)
 Print out a course description.
 name: Name of the course
 instructor: Name of the instructor
 *students, ...: List of student names (positional arguments)
 **staff, ...: List of additional staff (keyword arguments)

FILE
 /users/smiller/python1/courses.py

(END)

Nice! The interpreter created a manual page for your module, just from the documentation strings that you entered.
Now anyone who wants to use your module can import it into an interactive session and learn all about it using
Python's standard help() function. I like it!

Importing Functions and help()
In the previous lesson, you learned about imports, including how to bring functions you've written into o ther programs.
Now let's go over a handy trick that all Python developers love. First, we'll import the keyword_args.py module you
wrote earlier in this lesson and run the built- in help() function over it. To get out o f the help interface, just press q. Then
type the commands below as shown:

INTERACTIVE SESSION:

>>> import keyword_args
>>> help(keyword_args)
Help on module keyword_args:

NAME
 keyword_args - Demonstrates capture of keyword arguments

FUNCTIONS
 keywords(**kwargs)
 Prints the keys and arguments passed through

 keywords_as_dict(**kwargs)
 Returns the keyword arguments as a dict

FILE
 /users/smiller/python1/keyword_args.py

(END)

So, thanks to the help() method, we can use the interactive interpreter to find important information about the functions
we've written. These code statements are really driven by the docstrings you write into your Python code. All o f the
functions o f a module are part o f its documentation.

Sweet. If all o f this isn't enough to make you start sprinkling doc strings around your code, then nothing will persuade
you! You can document modules, functions, and classes just by making their first executable statement a
documentation string. That's the kind o f simple power that makes Python famous!

Function Execution by Dispatch
So far, when you've needed to contro l the flow o f a program in Python, you've used the if statement to choose
between two alternatives. But what if you need to select from multiple options? One way is to use if , elif , and else , but
that can become unwieldy—especially when large numbers o f alternatives are invo lved. If you had a hundred or a
thousand lines o f code between the if statements, the resulting program could likely be difficult to read, and even more
difficult to maintain.

Thankfully, Python gives you a good way to work around this using too ls you've already learned. You can write each
alternative set o f actions as a function, and then use a dictionary to define logic flow. The keys represent possible
actions, and the functions are the actions themselves. This sounds a lo t more complex than it actually is; let's use an
example to clarify things:

INTERACTIVE SESSION:

>>> def add(a, b):
... return a + b
...
>>> def sub(a, b):
... return a - b
...
>>> sw = {'adder':add, 'subber':sub}
>>> sw['adder'](3,2)
5
>>> sw['subber'](3,2)
1
>>> sw
{'adder': <function add at 0x397588>, 'subber': <function sub at 0x397618>}

First we created the two simple functions, add() and sub() , then we placed them inside the sw dict. Then we called
them (like any o ther Python dict) by referencing their keys, and passed in arguments. This provides a nice, clean way o f
organizing and calling functions. In the last two lines o f the example, we printed out the logic flow. When a dict o f
functions is used this way, it is called a dispatch table.

Ready for a more complex example? Good! We'll put five functions into a dict, then use a while loop and an input
statement to act as our user interface. We'll dispatch the appropriate function according to the user's input. A lo t o f this
will look familiar to you. Let's go ahead and get it working. Create a new program as shown below:

CODE TO TYPE:

#!/usr/local/bin/python3
""" A program designed to display switching in Python """

import sys

def print_text(text, *args, **kwargs):
 """Print just the text value"""
 print('text: ' + text)

def print_args(text, *args, **kwargs):
 """Print just the argument list"""
 print('args:')
 for i, arg in enumerate(args):
 print('{0}: {1}'.format(i, arg))

def print_kwargs(text, *args, **kwargs):
 """Print just the keyword arguments"""
 print('keyword args:')
 for k, v in kwargs.items():
 print('{0}: {1}'.format(k, v))

def print_all(text, *args, **kwargs):
 """Prints everything"""
 print_text(text, *args, **kwargs)
 print_args(text, *args, **kwargs)
 print_kwargs(text, *args, **kwargs)

def quit(text, *args, **kwargs):
 """Terminates the program."""
 print("Quitting the program")
 sys.exit()

if __name__ == "__main__":
 switch = {
 'text': print_text,
 'args': print_args,
 'kwargs': print_kwargs,
 'all': print_all,
 'quit': quit
 }

 options = switch.keys()
 prompt = 'Pick an option from the list ({0}): '.format(', '.join(options))
 while True:
 inp = input(prompt)
 option = switch.get(inp, None)
 if option:
 option('Python','is','fun',course="Python 101",publisher="O'Reilly")
 print('-' * 40)
 else:
 print('Please select a valid option!')

 Save it in your /pyt ho n1 fo lder as swit ch.py, and run it. Try all the different options. Also, try typing something that
isn't one o f the options. Before we start reviewing this program, take a minute and check out the difference between this
program and earlier ones in the course. Doesn't this one just look cleaner?

Now, let's look at the functions:

OBSERVE:

""" A program designed to display switching in Python """

import sys

def print_text(text, *args, **kwargs):
 """Print just the text value"""
 print('text: ' + text)

def print_args(text, *args, **kwargs):
 """Print just the argument list"""
 print('args:')
 for i, arg in enumerate(args):
 print('{0}: {1}'.format(i, arg))

def print_kwargs(text, *args, **kwargs):
 """Print just the keyword arguments"""
 print('keyword args:')
 for k, v in kwargs.items():
 print('{0}: {1}'.format(k, v))

def print_all(text, *args, **kwargs):
 """Prints everything"""
 print_text(text, *args, **kwargs)
 print_args(text, *args, **kwargs)
 print_kwargs(text, *args, **kwargs)

def quit(text, *args, **kwargs):
 """Terminates the program."""
 print("Quitting the program")
 sys.exit()

if __name__ == "__main__":
 switch = {
 'text': print_text,
 'args': print_args,
 'kwargs': print_kwargs,
 'all': print_all,
 'quit': quit
 }

 options = switch.keys()
 prompt = 'Pick an option from the list ({0}): '.format(', '.join(options))
 while True:
 inp = input(prompt)
 option = switch.get(inp, None)
 if option:
 option('Python','is','fun',course="Python 101",publisher="O'Reilly")
 print('-' * 40)
 else:
 print('Please select a valid option!')

All o f the functions insist on the same arguments, even if most o f them only use a portion o f those arguments. The
f irst t hree f unct io ns are clear enough; the f o urt h f unct io n just calls all three o f them, and the last f unct io n
uses the Python standard library sys module to quit the program.

Now, let's move on to everything that fo llows if __name__ == "__main__":. First, we create the swit ch dict , which
has five elements—the values are each o f the previously defined functions. Then, we construct an o pt io ns list from
the swit ch.keys()—keys o f the switch dict. Then, we prompt the user fo r an option and start the input loop.

In the input loop, o pt io n = swit ch.get (inp, No ne) takes the user's option and either finds the function in question or
returns a None object. If an option is found (if o pt io n), then the parameters are passed to the user-selected function.
If no option is found, the user is prompted to 'Please select a valid o pt io n!' .

The result is a cleaner application where reuse or integration o f new functions is much easier. For example, let's add in
the descript io n() function from the co urses.py module you wrote earlier in this lesson. Modify the code and the
switch dict as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" A program designed to display switching in Python """

import sys
import courses

def print_text(text, *args, **kwargs):
 """Print just the text value"""
 print('text: ' + text)

def print_args(text, *args, **kwargs):
 """Print just the argument list"""
 print('args:')
 for i, arg in enumerate(args):
 print('{0}: {1}'.format(i, arg))

def print_kwargs(text, *args, **kwargs):
 """Print just the keyword arguments"""
 print('keyword args:')
 for k, v in kwargs.items():
 print('{0}: {1}'.format(k, v))

def print_all(text, *args, **kwargs):
 """Prints everything"""
 print_text(text, *args, **kwargs)
 print_args(text, *args, **kwargs)
 print_kwargs(text, *args, **kwargs)

def quit(text, *args, **kwargs):
 """Terminates the program."""
 print("Quiting the program")
 sys.exit()

if __name__ == "__main__":
 switch = {
 'text': print_text,
 'args': print_args,
 'kwargs': print_kwargs,
 'all': print_all,
 'course': courses.description,
 'quit': quit
 }

 options = switch.keys()
 prompt = 'Pick an option from the list ({0}): '.format(', '.join(options))
 while True:
 inp = input(prompt)
 option = switch.get(inp, None)
 if option:
 option('Python','is','fun',course="Python 101",publisher="O'Reilly")
 print('-' * 40)
 else:
 print('Please select a valid option!')

 Save and run it. Choose the co urse option; your results may seem a little silly, but they are correct based on the
argument being passed to the function—and the instructor does exist, and we think students are fun! See how easily we
can integrate new functionality into our program? The logic doesn't change at all, only the data that drives it.

What's Your Function?
In this lesson, we reinforced what you already knew about functions and imports. You learned how to take code written
inside o f functions and use it in o ther places, and that documentation in docstrings can be really useful. You've reaped
the benefits o f splitting your own programs to make them more modular. And finally, you've seen how your earlier
work could have been written more efficiently to benefit from this modular approach. In the next lesson, you'll learn

about Python's classes and object-oriented programming.

Keep in mind, as we push on, that good practice for Python developers means never repeating any stanza o f code
twice. Instead, put it into a function, and call the function twice!

Alright then, let's keep this train ro lling!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Classes and Object-Oriented Programming
Lesson Objectives

When you complete this lesson, you will be able to :

create the individual instances that behave according to their (built- in) type definition.
define your own object classes.
define object behavior.
bind a name during the execution o f the class body.
define your own data types called classes.
use __init__().

The Nature of Objects
In Python, they say "everything is an object." Let's explore this idea using lists as an example. Every list contains
specific and likely different elements. But all lists have certain capabilities in common as well. You can append items to
a list, retrieve individual elements by indexing, and so on. So objects have two distinct features. First, each object has
its own unique data, private to that object and distinct from the o ther objects in its class. Second, each object is an
instance o f some class o r type, which specifies how it can behave, or, in o ther words, which methods and operations
can be used with that object.

The Python language contains some built- in data types. The interpreter knows how objects o f a given type should
behave, but o f course, it has no idea which instances o f which types your programs will create. So, the interpreter
contains the definitions o f the data types, but your program creates the individual instances, each o f which behaves
according to its (built- in) type definition.

In our first example here, we'll explore the nature o f one o f Python's objects: the complex number. Type the commands
as shown:

INTERACTIVE SESSION:

>>> c = 3+4j
>>> type(c)
<class 'complex'>
>>> dir(c)
['__abs__', '__add__', '__bool__', '__class__', '__delattr__', '__divmod__', '__doc__',
 '__eq__',
'__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs_
_', '__gt__',
'__hash__', '__init__', '__int__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__',
'__neg__',
'__new__', '__pos__', '__pow__', '__radd__', '__rdivmod__', '__reduce__', '__reduce_ex_
_',
'__repr__', '__rfloordiv__', '__rmod__', '__rmul__', '__rpow__', '__rsub__', '__rtruedi
v__',
'__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '
conjugate',
'imag', 'real']
>>> c
(3+4j)
>>> c.__add__
<method-wrapper '__add__' of complex object at 0x01A84110>
>>> c.real
3.0
>>> c.imag
4.0
>>> type(c.imag)
<class 'float'>
>>> c.imag = 2.5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: readonly attribute

The interpreter reports that the type o f c is <class 'co mplex'> . The call on dir(c) shows us that many methods have
names that begin with double underscores— a lo t o f the names represent operators that you may want to use on a
complex number (add, subtract, divide, and so on). Two o f the names do not begin with double underscores: "real"
and "imag." In mathematics, complex numbers have a real and an imaginary part. Each complex number in Python has
two attributes called real and imag; those names are bound to floating-po int numbers. You can access the value o f
each attribute separately, but because all numbers in Python are immutable, the interpreter won't allow you to change
them.

Defining Your Own Object Classes
In keeping with a long-standing tradition in the object-oriented programming world, Python lets you define your own
data types called classes. In Python we tend to reserve the word "type" to mean a class that is built into the interpreter,
and "class" to mean those defined by the programmer. Python uses the compound class statement to introduce a
class definition. The indented suite that fo llows the class statement contains descriptions o f the various methods that
should be available. The simplest suite is a single pass statement. Let's take a look. Type the commands below as
shown:

INTERACTIVE SESSION:

>>> class First:
... pass
...
>>> First
<class '__main__.First'>
>>> first = First()
>>> first
<__main__.First object at 0x02699A90>
>>> dir(first)
['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__', '
__getattribute__',
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__'
, '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__'
, '__weakref__']
>>> first.name = "My first object"
>>> first.location = "Here"
>>> first.__dict__
{'name': 'My first object', 'location': 'Here'}
>>> first.name
'My first object'
>>> type(first.__dict__)
<class 'dict'>

We establish the type with a class statement. Then we create an instance o f our new class named f irst , by calling
First () as though it were a function. The interpreter identifies the instance by its name and address in hexadecimal
(base 16): "<__main__.First object at 0x02699A90>". This instance o f your class is equipped to behave in certain
ways. The behaviors shown in the result o f the dir(f irst) call are common to all Python objects.

Unlike built- in instances o f classes, when using classes you create yourself, you can bind values to named attributes.
These bindings work just like the binding o f values to keys in a dict, because, in fact, they are dicts. Assignment to a
dotted name results in that name being added as a key to a dict named __dict __, with the associated value becoming
the dict value. For most names, inst .name is equivalent to inst .__dict __["name"] .

Class and Instance Namespaces
The class statement takes an indented suite as its body. When you bind a name during the execution o f the class
body, that class, like an instance, will have a namespace. Bindings in that class body are created within the class
namespace. To fully understand that, run the fo llowing commands in an interactive session:

INTERACTIVE SESSION:

>>> class Second:
... one = "Depp"
... two = "Pitt"
...
>>> dir(Second)
['__class__', '__delattr__', '__dict__', '__doc__', ... ,
'__weakref__', 'one', 'two']
>>> Second.__dict__
dict_proxy({'__module__': '__main__', 'two': 'Pitt', 'one': 'Depp', '__dict__': <attrib
ute '__dict__' of '
Second' objects>, '__weakref__': <attribute '__weakref__' of 'Second' objects>, '__doc_
_': None})

>>> Second.__dict__.keys()
['__module__', 'two', 'one', '__dict__', '__weakref__', '__doc__']
>>> Second.__dict__["one"]
'Depp'
>>> Second.one
'Depp'
>>> second = Second()
>>> dir(second)
['__class__', '__delattr__', '__dict__', '__doc__', ...,
'__weakref__', 'one', 'two']
>>> second.__dict__
{}
>>> second.two
'Pitt'
>>> Second.two = "Clooney"
>>> second.two
'Clooney'

Don't close that interactive session; we'll be using it again shortly. Our example shows some subtle differences
between classes and instances. Although each contains a __dict __, the instance was a dict already, and bindings to
the instance are seen only in that dict. In the class, however, the bound names also appear as part o f the class's
namespace, and __dict __ is no longer a dict, but something called a dict_proxy. A dict_proxy provides a selective
view of the class's namespace. These differences are significant to a Python implementer, but fo r now you can file this
information away.

More importantly, notice that the names o ne and t wo have been bound in the class namespace, and now also appear
in the instance namespace (though not in its __dict __). In addition, they have the same value in the instance
namespace as they do in the class namespace. If you rebind the name in the class namespace, it also changes in the
instance. Our example demonstrates that names that appear to be in the instance namespace are actually defined in
the class.

We'll take a closer look at the relationship between a class and its instances later. For the moment, just be aware that
you can access attributes o f the class in any o f its instances. If you bind the same attribute to the instance, it does not
change the class at all—the binding remains local to the instance. Continuing the interactive session, type the
commands below as shown:

INTERACTIVE SESSION:

>>> second2 = Second()
>>> second2.one
'Depp'
>>> second2.one = "Bloom"
>>> Second.one = "DiCaprio"
>>> second.one
'DiCaprio'
>>> second2.one
'Bloom'
>>> dir(second2)
['__class__', '__delattr__', '__dict__', ..., 'two', 'one']
>>> second2.__dict__
{'one': 'Bloom'}

Here we created a second Seco nd instance, named seco nd2, which initially showed the same value as the class for
its o ne attribute. When we assigned "Bloom" to the seco nd2 instance's o ne attribute, it overrides the class attribute,
but only fo r that one instance. The seco nd instance's o ne attribute still reflects the class's value for that attribute.
When the Seco nd class's o ne attribute is rebound, the seco nd instance's o ne attribute also changes, but not that o f
the seco nd2 instance. (Phew! Did you catch all that?)

The attributes o f a class can be accessed by all instances o f that class but, as we've just seen, an assignment to an
instance attribute o f the same name will override the class attribute. Check out the last two expressions in the last
session; not only does the seco nd2 instance have a o ne attribute (the one inherited from the Seco nd class) in its
namespace, it also has a o ne attribute in its __dict __ as a result o f being bound to seco nd2.o ne . The interpreter is
looking in an instance's __dict __ first, and only looks in the namespace if it fails to find the attribute in the dict.

Defining Object Behavior
Hopefully it's starting to feel natural to you to write functions that operate on instances o f classes. Now let's suppose
Python didn't have complex numbers, and you had to implement them yourself. How would you create a new complex
number, and how would you add two complex numbers together? You could define a class called Cplx (Python
already uses co mplex fo r the existing complex data type), then write a cplx() function to create a complex number
from the values o f its real and imaginary parts. Then you could implement a cadd() function that takes two complex
numbers and returns the sum of the two as its result. If you were feeling really ambitious, you could also write a cst r
function to call from inside print () to output complex values.

The resulting code, with a couple o f calls on the functions to test the code, might look like the program we'll create
now. Create a new program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:
 pass

def cplx(real, imag):
 c = Cplx()
 c.real = real
 c.imag = imag
 return c

def cadd(c1, c2):
 c = Cplx()
 c.real = c1.real+c2.real
 c.imag = c1.imag+c2.imag
 return c

def cstr(c):
 return "%s+%sj" % (c.real, c.imag)

if __name__ == "__main__":
 zero = cplx(0.0, 0.0)
 one = cplx(1.0, 0.0)
 i = cplx(0.0, 1.0)
 result = cadd(zero, cadd(one, i))
 print(cstr(result))

 Save it in your /pyt ho n1 fo lder as cplx.py, and run it. The result 1.0+1.0 j prints. You aren't using very much o f
Python's class mechanism though. To do that, you need to separate the creation o f the instances from their
initialization. Then you'll rename the cplx() function to cinit () , and change its code so that it operates on an existing
rather than a new instance, initialize it and return the instance. This initially complicates your calling code, because you
now have to create the instances before initializing them, but don't worry about that now. Let's play with some code!
Modify your program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:
 pass

def cplx(real, imag):
 c = Cplx()
 c.real = real
 c.imag = imag
 return c

def cinit(c, real, imag):
 c.real = real
 c.imag = imag

def cadd(c1, c2):
 c = Cplx()
 c.real = c1.real+c2.real
 c.imag = c1.imag+c2.imag
 return c

def cstr(c):
 return "%s+%sj" % (c.real, c.imag)

if __name__ == "__main__":
 zero = Cplx()
 cinit(zero, 0.0, 0.0)
 one = Cplx()
 cinit(one, 1.0, 0.0)
 i = Cplx()
 cinit(i, 0.0, 1.0)
 result = cadd(zero, cadd(one, i))
 print(cstr(result))

 Save and run it. It prints the same result as before—after all, it's really the same code.

Defining Behavior as Methods
So far, we've focused on the data attributes o f classes and their instances. We know that when a class and one o f its
instances both have the same name, the instance attribute "wins." We can access a class's attributes via the instance,
as long as the instance doesn't have its own attribute with the same name. But assignment is only one way to bind
values to a class. Another way is through the def statement used to define functions.

Go ahead and edit cplx.py so that the functions become methods o f the class:

Note To indent the function declarations, just select the block o f code you want to indent and press T ab.

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:
 pass

 def cinit(c, real, imag):
 c.real = real
 c.imag = imag

 def cadd(c1, c2):
 c = Cplx()
 c.real = c1.real+c2.real
 c.imag = c1.imag+c2.imag
 return c

 def cstr(c):
 return "%s+%sj" % (c.real, c.imag)

if __name__ == "__main__":
 zero = Cplx()
 Cplx.cinit(zero, 0.0, 0.0)
 one = Cplx()
 Cplx.cinit(one, 1.0, 0.0)
 i = Cplx()
 Cplx.cinit(i, 0.0, 1.0)
 result = Cplx.cadd(zero, Cplx.cadd(one, i))
 print(Cplx.cstr(result))

 Save and run it. You might see warnings on the def lines stating that the methods should have self as the first
parameter, but you can ignore them for now. You'll still get this result: 1.0+1.0 j.

By declaring a function as part o f the class body, we bind the function name within the class namespace rather than the
module namespace. This means that, to call the function, it must be preceded by the class name and a dot. Because
the class body is no longer empty, you don't need the pass statement any more.

Now let's break your code! Don't worry; we'll fix it right up once you understand the details o f the breakage. The Cplx
class has three new attributes—cinit , cadd, and cst r. You can access class attributes (attributes bound in the class
namespace) through an instance o f the class. So you'd think that you could access those methods through the
instance, rather than the class. But when you change the code to do that, a strange error occurs. Modify cplx.py to call
the methods on the instances as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:

 def cinit(c, real, imag):
 c.real = real
 c.imag = imag

 def cadd(c1, c2):
 c = Cplx()
 c.real = c1.real+c2.real
 c.imag = c1.imag+c2.imag
 return c

 def cstr(c):
 return "%s+%sj" % (c.real, c.imag)

if __name__ == "__main__":
 zero = Cplx()
 zero.cinit(zero, 0.0, 0.0)
 one = Cplx()
 one.cinit(one, 1.0, 0.0)
 i = Cplx()
 i.cinit(i, 0.0, 1.0)
 result = zero.cadd(zero, one.cadd(one, i))
 print(result.cstr(result))

 Save and run it. You might be surprised to see a traceback and error message:

OBSERVE:

Traceback (most recent call last):
File "./cplx.py", line 21, in <module>
zero.cinit(zero, 0.0, 0.0)
TypeError: cinit() takes exactly 3 positional arguments (4 given)

This message may be a bit difficult to understand. It says that zero .cinit (zero , 0 .0 , 0 .0) has four arguments, but it's
clear that it provides only three. Where is the source o f the fourth argument?

When the interpreter sees a reference to a class's method relative to an instance, it assumes that the method will need
to know which instance it was being called upon. Consequently, it inserts the instance as the first argument
automatically. Methods are being called with too many arguments because the interpreter assumes you will want a
reference to the instance, and inserts it automatically. The fix fo r your code is to remove the explicit instance
arguments. Fix cplx.py as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:

 def cinit(c, real, imag):
 c.real = real
 c.imag = imag

 def cadd(c1, c2):
 c = Cplx()
 c.real = c1.real+c2.real
 c.imag = c1.imag+c2.imag
 return c

 def cstr(c):
 return "%s+%sj" % (c.real, c.imag)

if __name__ == "__main__":
 zero = Cplx()
 zero.cinit(zero, 0.0, 0.0)
 one = Cplx()
 one.cinit(one, 1.0, 0.0)
 i = Cplx()
 i.cinit(i, 0.0, 1.0)
 result = zero.cadd(zero, one.cadd(one.cadd(i))
 print(result.cstr(result))

 Save and run it. You should get 1.0+1.0 j as your result again.

Python Deep Magic: Hooking into Python's Class Mechanism
The code you have developed so far works, but it's a little on the ugly side. Separating the creation o f objects from their
initialization means that two lines o f code are required to create a complex number. To remedy the ugly, we'll unleash
some of Python's "deep magic!" (How coo l is that?) Deep magic refers to programming techniques that are not widely
known, and that may be kept secret deliberately. But you, my friend, are about to learn some Python deep magic to cast
about yourself! Let's start with the special method Python provides to beautify your code: __init __() .

Using __init__()

When you create an instance o f a class by calling it, the interpreter looks to see whether the class has an
__init __() method. If it finds __init __() , it calls that method on the newly-created instance. Because it's an
instance method call, the new instance is inserted as the first argument to the call. Further, if the call to the
class has any arguments, they are passed to __init __() as additional arguments.

Note
The __init __() method must no t return a value. If __init __() returns something, it affects the
instance creation process. This causes the interpreter to raise an exception, and your program
to fail. You'll learn about instance creation in more detail later.

By renaming the Cplx class's cinit () method to __init __() , you can shorten the code that creates and
initializes the new instance to a single line. Very nice. Python users appreciate elegance and simplicity. Ugly
Python code may be a sign that the language isn't being used to its full advantage. Let's try a bit more
experimentation. Edit cplx.py below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:

 def __init__(c, real, imag):
 c.real = real
 c.imag = imag

 def cadd(c1, c2):
 c = Cplx(c1.real+c2.real, c1.imag+c2.imag)
 return c

 def cstr(c):
 return "%s+%sj" % (c.real, c.imag)

if __name__ == "__main__":
 zero = Cplx(0.0, 0.0)
 one = Cplx(1.0, 0.0)
 i = Cplx(0.0, 1.0)
 result = zero.cadd(one.cadd(i))
 print(result.cstr())

 Save and run it. You'll get 1.0+1.0 j fo r a result yet again. Python objects tend to have a lo t o f those special
methods with names that begin and end with double underscores. To make discussing them easier,
"__init__()" is o ften pronounced "dunder-init"; "dunder" being an abbreviation for "double under." We'll
convert the o ther methods o f your complex class to "dunder" methods in a bit.

More on Python's Dunder Methods

When printing in Python, you get lo ts o f help from the print () function. Without go ing into too much detail, the
function converts each argument into a string by calling the object's __st r__() method. So each class in
Python can determine exactly how its instances get printed by defining a __st r__() method. You can rename
your cst r() method to __st r__() and print Cplx instances directly.

Similarly, when you write a + b in Python, the interpreter tries to execute the task in a number o f ways: first it
tries to compute a.__add__(b) (which requires that a has a __add__ method). If that doesn't work, Python
tries to compute b.__radd__(a) . So, to enable your program to add Cplx objects, rename the cadd method
to __add__.

Being Selfish

Let's take another quick peek at the first argument o f your class's methods—the one that the interpreter puts in
automatically when you call a method on an instance. Experienced Python programmers would be able to
interpret the code in the last listing, but they would want to know why the argument was called c o r c1.

There is an almost universal convention that the first argument o f a method should be called self . Reading
other people's programs is difficult enough, so it's important to stick to convention—not only will it make your
code easier fo r o ther programmers to read, it will make it easier fo r you to read as well, and that's an
important time saver.

So how should the code look when you make all the changes discussed in the last two sections? Edit
cplx.py below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Initial implementation of complex numbers."""

class Cplx:

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 def __add__(self, c2):
 c = Cplx(self.real+c2.real, self.imag+c2.imag)
 return c

 def __str__(self):
 return "%s+%sj" % (self.real, self.imag)

if __name__ == "__main__":
 zero = Cplx(0.0, 0.0)
 one = Cplx(1.0, 0.0)
 i = Cplx(0.0, 1.0)
 result = zero + one + i
 print(result)

 Save and run it. You'll still get a result o f 1.0+1.0 j.

A Solid Foundation

How does it feel to be an up-and-coming Python programmer? You've really come a long way! You've
learned the basics o f object-oriented programming in Python. The Python interpreter o ffers a lo t o f hooks in
the form of __xxx__() methods that you can use to make your own classes as convenient and natural to
work with as the built- in Python types.

In future lessons, you'll do lo ts more object-oriented programming; I'm confident you can handle it!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Exception Handling
Lesson Objectives

When you complete this lesson, you will be able to :

handle exceptions.
identify and locate exceptions.
handle multiple exception types.
handle multiple exceptions with one handler.
flag error conditions from your own code.

Working through Exceptions
As you've worked through the lessons and tried out the code, you've seen plenty o f Python error messages. Most o f
them have been syntax errors, which are caused by mistakes made while entering code examples. The rest, caused by
all o ther kinds o f mistakes, are called exceptions.

Syntax errors can and will crash your program, but soon you'll know exactly how to diagnose and fix them! Let's go
right to work. Type the commands below in an interactive session as shown:

INTERACTIVE SESSION:

>>> print('Hello, world)
 File "<stdin>", line 1
 print('Hello, world)
 ^
SyntaxError: EOL while scanning string literal
>>> print('Hello, world')
Hello, world

To handle this sort o f error message, correct the syntax o f your code so it makes sense to the interpreter. This is the
most common kind o f bug, and now you know how to squash it!

But even if your code is syntactically correct, it can still throw exceptions when you run it. The most common
exceptions are TypeError, KeyError, and NameError. The odds are pretty good that you've encountered them already
during this course, fo r instance if you mistyped a variable name or entered a non-numeric value that your program tried
to convert into a number. Let's take a look at something like that. Type the commands below as shown:

INTERACTIVE SESSION:

>>> 'chapter ' + 15
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects
>>> snakes = {'python':'fun','mamba':'dance'}
>>> snakes['cobra']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'cobra'
>>> print(my_var)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'my_var' is not defined

Keep this interactive session open because we'll be do ing another code example with the snakes dict.

The first lesson o f exception handling is learning to catch exceptions, and then handle them so that they don't bring

your program crashing down. The next level o f exception handling teaches you how to handle different types o f
exceptions at the same time.

How to Catch an Exception

As you saw in the interactive session above, the interpreter raises a KeyError exception when a dict does not
contain a key specified as an index for retrieval. You catch errors using t ry/except statements like the one in
our next example. Type the commands below as shown:

INTERACTIVE SESSION:

>>> try:
... snakes['cobra']
... except KeyError:
... print('Exception detected')
...
Exception detected

The t ry statement attempts to execute the code contained in its indented suite. That suite may be made up o f
several lines o f code, but this example attempts to evaluate only the expression snakes['co bra'] . (This key
was chosen intentionally because it will raise an exception. We know you can handle it!). This causes the
interpreter to trigger the exception handler fo r the KeyError exception, the except statement. The except suite
contains the expression print ('Except io n det ect ed') .

Congratulations—you caught an exception! Of course, the exception handler does nothing for you if you don't
handle the correct exception. The next example illustrates this po int. Type the code below as shown:

INTERACTIVE SESSION:

>>> try:
... 3/0
... except KeyError:
... print("Exception detected")
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ZeroDivisionError: int division or modulo by zero
>>>

Although the t ry statement has an exception handler, it doesn't handle the actual exception
(ZeroDivisionError) that is raised. In this case, the interpreter behaves as if there is no handler. In the
interactive interpreter, this means you see a "stack traceback." If an unhandled exception happens when you
are running a program, you still get the stack traceback, and then the program terminates.

Verifying Numeric Input

In earlier lessons, you used mathematical algorithms to learn about integers, loops, and functions. In some
cases though, you ran into problems verifying numeric input. A good example is the sort o f input () problem
shown here. Type the commands below as shown:

INTERACTIVE SESSION:

>>> inp = input('Integer: ')
Integer: four
>>> 10 + int(inp)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'four'

Exception handling combined with a loop is really handy. You write an infinite loop, and break out o f it when
the user's input does not raise an exception. Let's try that problem again. Type the commands as shown:

INTERACTIVE SESSION:

>>> while True:
... inp = input("Integer: ")
... try:
... print(int(inp)+10)
... break
... except ValueError:
... print("Please enter an integer")
...
Integer: thing
Please enter an integer
Integer: python
Please enter an integer
Integer: 12.3
Please enter an integer
Integer: 12
22
>>>

This loop won't blow up if a user enters non-numeric data for a numeric field, which is a reasonably common
pattern in Python coding.

Handling Multiple Exception Types

If you don't catch an exception, it will ultimately be raised to the interpreter. But if a t ry statement is contained
inside another one, the outer t ry's exception handler gets the chance to handle the exception. Create a new
program in the editor window as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Nested exception handling"""

def divide(a, b):
 """ Return result of dividing a by b """
 print("=" * 20)
 print("a: ", a, "/ b: ", b)
 try:
 try:
 return a/b
 except TypeError:
 print("Invalid types for division")
 except ZeroDivisionError:
 print("Divide by zero")

if __name__ == "__main__":
 print(divide(1, "string"))
 print(divide(2, 0))
 print(divide(123, 4))

 Save it in your /pyt ho n1 fo lder as nest ed.py, and run it:

INTERACTIVE SESSION:

cold1:~$ cd python1
cold1:~/python1$./nested.py
====================
a: 1 / b: string
Invalid types for division
None
====================
a: 2 / b: 0
Divide by zero
None
====================
a: 123 / b: 4
30.75

The statement print (divide(1, "st ring")) raises a TypeError exception because it isn't possible to divide a
number by a string. This exception is caught by the inner handler and handled. The function then ends without
returning a value, so its result is No ne . The statement print (divide(2, 0)) also raises an exception, but in
this case it isn't caught by the except o f the inner t ry because it isn't a TypeError. Consequently, the
exception "bubbles up" to the next level, where there is a handler fo r the ZeroDivisionError that occurs. Finally,
the statement print (divide(123, 4)) represents a legal arithmetic operation and gets past both error
handlers and returns the appropriate result.

By nesting exception handlers, you can catch errors that are thrown at different levels and handle them
appropriately. Every additional level o f nesting removes some readability from your program, though, so
avo id do ing it when you can. Fortunately, you can avo id some of that because Python allows you to attach
several except clauses to a single t ry statement. Edit nest ed.py below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Nested exception handling"""

def divide(a, b):
 """ Return result of dividing a by b """
 print("=" * 20)
 print("a: ", a, "/ b: ", b)
 try:
 result = a/b
 print("Sometimes executed")
 return result
 except TypeError:
 print("Invalid types for division")
 except ZeroDivisionError:
 print("Divide by zero")

if __name__ == "__main__":
 print(divide(1, "string"))
 print(divide(2, 0))
 print(divide(123, 4))

 Save and run it. When the exception is raised inside o f the t ry suite, the interpreter tries to match it against
each o f the except clauses, in turn. If it finds a matching clause, it executes the associated handler suite. If
none o f the except clauses match the exception, then none o f the handlers are run, and the interpreter starts
to examine the handlers o f any outer t ry statements. The output from running this program should look like
this:

INTERACTIVE SESSION:

cold1:~/python1$./nested.py
====================
a: 1 / b: string
Invalid types for division
None
====================
a: 2 / b: 0
Divide by zero
None
====================
a: 123 / b: 4
Sometimes executed
30.75

The print ("So met imes execut ed") statement and the fo llowing ret urn aren't executed when an
exception is raised. One particularly useful feature o f exceptions is that you can use them to change the flow
of your program's logic when conditions are, well, exceptional.

Handling Multiple Exceptions with One Handler

Sometimes you want to take the same action for several different exceptions. You can do this by specifying
the exceptions as a tuple after the except keyword. Then the handler will be executed if any o f the exceptions
in the tuple occur during execution o f the t ry clause.

Raising Exceptions

You may want to be able to flag error conditions from your own code. This is especially useful when you are
writing code to be used by o ther people. You flag error conditions with the raise statement; this is useful in
two contexts:

If you want to handle some of the consequences o f an exception, but then re-raise it to be handled
by some outer handler, you can do so by executing a statement consisting o f only the keyword
raise . This will cause the same exception to be presented to the outer handlers.
If you detect some condition in your code that requires you to stop running the program, you can
raise a specific exception o f your cho ice by fo llowing the raise keyword with an exception. You can
create that exception by calling any o f the system exceptions with a string argument. Let's try out
some of these features in nest ed.py. Type the code below as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Nested exception handling"""

def divide(a, b):
 """ Return result of dividing a by b """
 print("=" * 20)
 print("a: ", a, "/ b: ", b)
 try:
 return a/b
 except (ZeroDivisionError, TypeError):
 print("Something went wrong!")
 raise

if __name__ == "__main__":
 for arg1, arg2 in ((1, "string"), (2, 0), (123, 4)):
 try:
 print(divide(arg1, arg2))
 except Exception as msg:
 print("Problem: {0}".format(msg))

 Save and run it. You should see this:

OBSERVE:

====================
a: 1 / b: string
Something went wrong!
Problem: unsupported operand type(s) for /: 'int' and 'str'
====================
a: 2 / b: 0
Something went wrong!
Problem: int division or modulo by zero
====================
a: 123 / b: 4
30.75

The except statement in the divide() function now specifies the same handler fo r both ZeroDivisionError and
TypeError exceptions. The handler prints an informative message ("Something went wrong!") and then re-
raises the same exception. Since there are no further handlers in the function, the re-raised exception is now
caught by the except statement in the main program.

In this case, the except statement catches pretty much any exception, because all exceptions are direct or
indirect subclasses o f Except io n. Also , the exception specification can be fo llowed by an as clause, which
specifies a name to bind to the exception that is being handled. You can see from the print () function call that
when an exception is converted to a string, you get the message associated with the exception.

Specific and Generic Exceptions

Using specific exceptions is handy because do ing that allows you to hone in on the exact exception you want
to handle. But what happens when you have code where exceptions might be raised in places you can't
anticipate? Python will allow you to omit the exception specification altogether. This clause must fo llow all
except clauses with exception specifications, and will catch any exception whatsoever. The next example
uses both specific and generic specifications to catch exceptions from a Test class that possesses an add()
method specifically included to produce an AttributeError or TypeError. Create a new program as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
""" Named and generic exception handling"""

def add(a, b):
 """ Print the results of adding a set and a value"""
 try:
 a.add(b)
 print(a)
 except AttributeError:
 print("({0}) is not a set object".format(a))
 except TypeError:
 print("({0}) is not a hashable object".format(b))
 except:
 print("This is a generic exception")

class Test(object):
 """ Just a simple test class """

 def add(self, a):
 """ Demonstrates how you need to be able to handle unpredictable results
. """
 d = {'python':'fun'}
 return d[a]

if __name__ == "__main__":
 s = set((1,2,3))
 add(s, 4)
 add(1, 4)
 add(s, [4, 5, 6])
 t = Test()
 add(t, 1)

 Save it in your /pyt ho n1 fo lder as except io ns.py, and run it. In our add() function, we plan for 'a' to throw
either an AttributeError, TypeError, o r something we can't predict. Remember, the plain except clause must
fo llow the named exceptions. In the last two lines, we attempt to use the add() method o f the T est instance
to use the supplied parameter as an index to a dict with only one key. Consequently, the final call to add()
raises a KeyError exception, which in turn causes the final except clause to be activated, because the
exception raised is neither an AttributeError nor a TypeError.

After you run the program, fo llow the logic through to make sure you understand exactly why it behaves the
way it does. If there's anything you don't understand about all o f this, talk it over with your instructor.

When to Use Exceptions

Some Python objects are equipped with methods that remove the need for exceptions. The dict is a good
example o f this, as you'll see in the next code sample—the dict .get () method tries to use the first argument
as a key into the dict, but if no such key exists, it returns the second argument. Type the commands below as
shown:

INTERACTIVE SESSION:

>>> d = {1:'python'}
>>> d[1]
'python'
>>> try:
... d[10]
... except KeyError:
... print('no snake here')
...
no snake here
>>> d.get(10,'no snake here')
'no snake here'

Of course, dict .get () only works if you know that d is o f type dict. If you don't know that, you might want to
handle specific exceptions raised under those circumstances. For example, you might try this:

INTERACTIVE SESSION:

>>> d = [1,2,3,4]
>>> try:
... d[10]
... except KeyError:
... print('no snake here')
... except IndexError:
... print('no snake here either')
...
no snake here either

Exceptional Work So Far!

You need to be able to anticipate when things might go wrong with your programs, so you can catch and
handle the exceptions that are raised. This will make your programs more robust, and capable o f handling
anything that users can throw at them.

Ideally, you build programs that never terminate with an uncaught exception. With your new knowledge o f
exception handling, you are much closer to reaching that goal.

You're almost there, just one lesson to go before your final pro ject! Great work so far, keep it up!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Building and Debugging Whole Programs
Lesson Objectives

When you complete this lesson, you will be able to :

build and debug an entire program.
document and test Python code.
code in Python.

Putting it All Together
Now that you've explored the core elements o f Python, you know enough to write some pretty complex programs. But
there's still lo ts left to learn. In this lesson, we'll go over a few more concepts that you can use to complete your final
pro ject. We'll decipher the more advanced mysteries o f Python in future courses.

For our last lesson together in this course, we'll gather a bit more information about how to put programs together.

You'll want to know about testing and debugging (locating and fixing problems in your code). These topics are kind o f
like icebergs: much o f their substance lies under the surface and will no t reveal itself immediately; you'll continue
learning for as long as you work with Python. In fact, I have been a practicing programmer myself fo r over fo rty years,
and I continue to learn more and more about testing and debugging.

The Art of Computer Programming

The title o f this subsection is also the title o f a book series being written by Donald Knuth, a computer science
professor at Stanford University. Though not yet finished, it already fills four massive vo lumes. Don't be
discouraged if you feel like you don't have a handle on all there is to know about Python yet! If you're go ing to
become really good at this, your programming education will be ongo ing.

As your grasp o f the language increases, you'll inevitably find that when you review code you wrote some
time ago, you'll have found better ways to express the same algorithms. It's good practice to reevaluate your
code occasionally—even if it works, it can probably be improved. On the flipside, as they say, "if it ain't broke,
don't fix it." Unless there's a benefit to changing the code (like increased speed or reduced complexity), then
leave it alone.

It's all too easy to introduce subtle errors into your programs by changing code to o ther code you think is
equivalent. Until you're a bit more experienced and confident in your decisions, just be satisfied with
programs that work.

Design Techniques

Two common terms flung about by programmers are top-down and bottom-up design. In top-down design,
you defer thinking about the detail o f a problem until you have mapped out the overall structure it will have.
Working bottom-up, you begin by building a set o f primitive operations that you can then fo ld together with
glue logic to so lve your problem.

The top-down approach lets you avo id having too much confusing detail to deal with early in the design cycle.
Good top-down design focuses first on the program's large-scale architectural features.

The bottom-up approach is useful when you already understand your data and the ways you need to
manipulate it. Using a t est -driven develo pment approach to programming, you write tests first, and then
write your program to pass the tests. Each function and method is written to pass its tests, so you know that
your lower-level components do indeed behave as expected.

The top-down and the bottom-up approaches can also be used together on the same pro ject. It's a little like
two teams boring a tunnel from opposite sides o f a mountain: if the two do not meet, they have not been
working harmoniously together.

By taking a top-down approach initially, you can operate a divide-and-conquer scheme, and avo id being
overwhelmed by detail early in the design. If your coding problem isn't too complex, you might find that you
have already so lved it before you ever start working bottom-up.

Agile Programming

Agile programming techniques focus on delivering the simplest code that meets the requirements, or as agile
practitioners o ften say, "the simplest thing that could possibly work." Agile methods place great emphasis on
refactoring your code when it becomes too complex. Refactoring means changing the way your program is
organized without changing its behavior. Refactoring is generally used when handling large programs, but it
can be helpful whenever complexity starts to overwhelm you. Refactoring can help you to :

Remo ve duplicat e co de: When two different functions provide the same result, o r one function
is a special case o f another, we refactor the two functions into one, and we'll have less code to
maintain.
Iso lat e exist ing lo gic f ro m a needed change: If you have to change certain cases currently
handled by a single class, you might find it advantageous to refactor the class by turning it into two
subclasses o f a common base class. The changed behavior can then be implemented in just one
of the subclasses.
Make t he pro gram run f ast er: When performance becomes sluggish, it may be that your
original cho ice o f algorithm or data structure was inappropriate, so you refactor to streamline your
process.

Some aspects o f agile development are meant to be used by teams of so ftware developers rather than
individuals. Let's go over a few key principles that apply to most agile techno logies:

Design and co de are t est -driven: Whenever you add functionality to your program, you first
write a test, fo r automatic execution, that checks to make sure that the functionality is present and
performs properly. Your work should proceed in small increments—never add two features at the
same time.
Int egrat e co nt inuo usly: Each time you change or fix a module, after running its tests, integrate
the module back into the system and run the system tests to make sure that your change has not
had any unintended consequences.
Ref act o r mercilessly: To ref act o r mercilessly means that if tasks are performed similarly in
two places, move them around so they're done in one place instead, and then called or inherited by
the two original places. If you have coding standards and they are vio lated, fix them. If you notice
structural defects, fix them. After each change, rerun all o f your tests to verify that your code has not
been broken during the refactoring process.
Release early and o f t en: Release your program to the users before adding too many features.
You can use their feedback to guide further development, and deliver the most important functions
of your program faster.
Keep it simple: Don't include complexity that you think might be handy later. Simplicity has many
benefits, and o ften "later" never arrives.
Co de is no t owned: Agile programming is a team effort, so it is never "Joe's code" or "Jim's
code;" it's "our code." Never fear changing code created by someone else—it's yours to use and
testing will help you make sure you don't break it.

Documenting and Testing Python Code

Python comes with two testing frameworks built- in. If you have been using the JUnit testing framework,
consider using the unit t est module, which is based on JUnit. You'll probably find the do ct est module
easier to use, because it works by embedding executable Python statements and their expected outcomes
into the docstrings that are embedded into all Python code.

Because the docstrings are available to the program, testing framework can use information embedded in
them to verify that code is functioning correctly.

To see how do ct est works, create a new program as shown:

http://en.wikipedia.org/wiki/Agile_software_development

CODE TO TYPE:

#!/usr/local/bin/python3
"""Demonstrates the doctest module in action."""

def square(x):
 '''Returns the square of a numeric argument.

 >>> square(3)
 9
 >>> square(1000)
 1000000
 >>> square("x")
 Traceback (most recent call last):
 ...
 TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
 '''
 return x*2

def _test():
 import doctest, testable
 return doctest.testmod(testable)

if __name__ == "__main__":
 _test()

 Save it in your /pyt ho n1 fo lder as t est able .py, and run it. This program contains a bug: instead o f
returning its argument raised to the second power (squared), the squared() function returns its argument
multiplied by two. This is an easy mistake to make—we only left out a single asterisk—but it renders the
function incorrect. Our output looks like this:

OBSERVE:

**
File "/users/smiller/python1/testable.py", line 7, in testable.square
Failed example:
square(3)
Expected:
9
Got:
6
**
File "/users/smiller/python1/testable.py", line 9, in testable.square
Failed example:
square(1000)
Expected:
1000000
Got:
2000
**
File "/users/smiller/python1/testable.py", line 11, in testable.square
Failed example:
square("x")
Expected:
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
Got:
'xx'
**
1 items had failures:
3 of 3 in testable.square
Test Failed 3 failures.

When you run the program, it calls the _t est () function, which in turn imports the do ct est module. It also
imports the program itself, and then finally calls the do ct est .t est mo d() function with the module as an
argument. This causes the examples in the square() function's docstring to be run, and compared with the

output listed under each expression.

Because the results don't agree with the predictions in the docstring, the differences are reported as errors,
and the output makes it clear that something is wrong with the program.

Let's fix the error by changing the operation in the square() function to an exponentiation (feel free to toss the
word exponentiation into conversation as well, to impress your friends), as shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Demonstrates the doctest module in action."""

def square(x):
 '''Returns the effective length of a string
 allowing for tabs of a given length tlen.

 >>> square(3)
 9
 >>> square(1000)
 1000000
 >>> square("x")
 Traceback (most recent call last):
 ...
 TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
 '''
 return x**2

def _test():
 import doctest, testable
 return doctest.testmod(testable)

if __name__ == "__main__":
 _test()

 Save and run it. You get no output. That's good. The doctest system is designed to help you to detect when
your code is working incorrectly and to hone in on the tests that are failing. You'll learn more about testing in
other courses, but fo r now, doctest is a great place to start. Your doctests can be integrated into o ther
schemes as you move forward.

'Keep It Simple, Stupid' (KISS)

The KISS principle (albeit a tad harsh) is one that programmers find helpful. Of course, when you're first
learning a language, sometimes nothing seems simple. Breaking up our operations into smaller pieces
helps us understand the big picture. We can see, then, that every program is made up o f a sequence o f
operations. Each operation is either a basic statement, o r a cho ice between several alternatives, or a loop.
When the user makes a cho ice, the action to be taken is a sequence o f operations—and each operation can
be a basic statement, o r a cho ice between several alternatives, or a loop.

Refactoring

The concept o f refactoring code can be compared to the editions o f a textbook over time. The first edition
provides the main body o f text, while in fo llowing editions, editors clean up mistakes, make style changes, or
add more information. The core content o f the book doesn't really change, but the details get better.

When you refactor, you aren't adding new functionality, you are making the code better. You exchange
duplicate code for calls and inheritance where possible, fix structural defects, change code to match coding
standards (if you have them), and most importantly, make sure that it passes all of your tests.

If you are go ing to refactor your code mercilessly, you must have tests. Without sufficient testing, you cannot
be certain that your changes have not broken your program.

Let's take some code and refactor it mercilessly. It isn't o ften we strive to be merciless, so let's enjoy this rare
opportunity! In our sample program, we have some code that is truly miserable to look at, but it works. Create
the file shown below:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Demonstrates an opportunity for refactoring."""

def list_multiply(LIST_A, LIST_B):
 """ Sums two lists of integers and multiplies them together

 >>> list_multiply([3,4],[3,4])
 49
 >>> list_multiply([1,2,3,4],[10,20])
 300
 """

 TOTAL_A = 0
 for i in LIST_A:
 TOTAL_A += i
 TOTAL_B = 0
 counter = 0
 while True:
 if counter > len(LIST_B) - 1:
 break
 TOTAL_B = TOTAL_B + LIST_B[counter]
 counter += 1
 return TOTAL_A * TOTAL_B

def _test():
 import doctest, refactor
 return doctest.testmod(refactor)

if __name__ == "__main__":
 _test()

 Save it in your /pyt ho n1 fo lder as ref act o r.py and run it. You should get no errors, but if this code makes
you wince, then you are on track to become a good Python programmer! While the code is technically correct,
it just plain smells. Some variables are upper-case and some are lower-case. Two different loops are used
to do the same action o f summing up the integers in two lists, when a simple built- in sum() function would
suffice. Can you imagine making the necessary alterations if you had to add the capability to handle a third or
fourth list to your code? Ouch.

Fortunately the code comes with doctests, so you can do some merciless refactoring. Edit the program as
shown:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Refactored version of previous example."""

def list_multiply(a, b):
 """ Sums two lists of integers and multiplies them together

 >>> list_multiply([3,4],[3,4])
 49
 >>> list_multiply([1,2,3,4],[10,20])
 300
 """

 return sum(a) * sum(b)

def _test():
 import doctest, refactor
 return doctest.testmod(refactor)

if __name__ == "__main__":
 _test()

Huge difference! Save and run it again; the doctest should still work. Refactoring like this allows you to make

changes to improve your code without the fear o f breaking it.

And if you need to add functionality, refactored code makes it that much easier. Because the code is generally
simpler (always remember KISS), it will be less difficult to extend it to work with any number o f lists o f integers.
Try this version o f the code, and make sure it passes the tests:

CODE TO TYPE:

#!/usr/local/bin/python3
"""Adding functionality, much easier with refactored code!"""

def list_multiply(*lists):
 """ Sums any number of lists of integers and multiplies them together

 >>> list_multiply([3,4],[3,4])
 49
 >>> list_multiply([1,2,3,4],[10,20])
 300
 >>> list_multiply([4,3,2,1],[50,50],[5,5,5])
 15000
 """

 total = 1
 for l in lists:
 total *= sum(l)

 return total

def _test():
 import doctest, refactor
 return doctest.testmod(refactor)

if __name__ == "__main__":
 _test()

Go Forth and Code in Python!

 Save and run it again; the doctest should still work. Wow. Remember when you were a to tal Python newbie?
You've come a long way since Lesson 1! Now you know almost all o f Python's syntax, and you're familiar
with the statements that make up the language. You know how to structure programs as sets o f functions, and
how to deliver functions in modules that can be re-used by several different programs.

You still don't know all there is to know about Python (who does?), but now you're in position to understand
much o f the Python code you encounter. Read lo ts o f Python code; it's a great way to learn more about the
language and to increase your understanding o f the library and third-party modules it uses. You can practice
do ing just that and applying the Python too ls you've acquired here, in your final pro ject. Thanks so much for
taking this Python journey with us, it's been a real pleasure working on it with you. Good luck!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

