
Python 2: Getting More out of Python
Lesson 1: Int ro duct io n t o Eclipse

About Eclipse
Perspectives and the Red Leaf Icon
Working Sets

Programming in Python with Eclipse
A First Program
The Interactive Interpreter

First Hurdle Cleared

Quiz 1 Pro ject 1
Lesson 2: Unit T est ing

unittest
Assertions
A Basic unittest Example
Breaking Down Tests
Test-Driven Development: Tests As Specifications
Background o f unittest
Comparing doctest and unittest
One Down

Quiz 1 Quiz 2 Pro ject 1
Lesson 3: T est -Driven Develo pment

Agile Programming and Test-Driven Development
An Example o f Test-Driven Development
More About the unittest.TestCase Class
Test Fixture Set-up and Tear-down
Test Case Enumeration
TestCase Methods
Laying the Foundation

Quiz 1 Quiz 2 Pro ject 1
Lesson 4: File Handling

High-Level File Operations

The File Object and the Built- in open() Function

Retrieving File and Path Name Information with os.path

Finding Path Names Using glob

An Application to Sort and Retrieve File Information
The Value o f Tests under Refactoring

Getting a Handle on Files

Quiz 1 Quiz 2 Pro ject 1
Lesson 5: Persist ent St o rage

Persistent Storage

Object Serialization and Persistence Using the pickle Module

The shelve Module

Library Pro ject

The JSON Serialization Format and the json Module

homework/IntroductionToEclipse_quiz1.quiz.html
homework/IntroductionToEclipse_proj1.project.html
homework/UnitTesting_quiz1.quiz.html
homework/UnitTesting_quiz2.quiz.html
homework/UnitTesting_proj1.project.html
homework/TestDrivenDevelopment_quiz1.quiz.html
homework/TestDrivenDevelopment_quiz2.quiz.html
homework/TestDrivenDevelopment_proj1.project.html
homework/FileHandling_quiz1.quiz.html
homework/FileHandling_quiz2.quiz.html
homework/FileHandling_proj1.project.html

A Brief Rundown

Quiz 1 Quiz 2 Pro ject 1
Lesson 6 : Archives

Reading and Writing Archives Using tarfile and zipfile

Creating a Recent File Archiver

Save It in the Archives

Quiz 1 Quiz 2 Pro ject 1
Lesson 7: Int ro duct io n t o Graphical User Int erf aces

The Window Manager
How Programs Interact with the Window Manager

Your First Program with a GUI
Creating Widgets in a Window
Top-Level Application Code
The Program Window

Introducing the Tkinter Widget Set

Configuring Widgets
The config() Method, and Configuration Options

Using More Widgets
Reading Widget Values
A More Complex Program

Further Reading on Tkinter

Quiz 1 Quiz 2 Pro ject 1
Lesson 8 : Graphical User Int erf ace Layo ut

Handling Window Layout
The Pack Geometry Manager
The Grid Geometry Manager
The Place Geometry Manager—Don't Use It

Quiz 1 Quiz 2 Pro ject 1
Lesson 9 : Mo re Abo ut Graphical User Int erf aces

GUI Events

Binding Events in tkinter
Event Objects
Mouse Event Names
Keyboard Event Names
Keyboard Focus
Keyboard Event Handling
Event Propagation

Adding Menus to Your Programs
Building a Menu Bar
Creating Popup Menus
Tkinter Tearoff Menus

Dialog Boxes
Creating Simple Dialogs
Some Ready-Made Dialogs

Quiz 1 Quiz 2 Pro ject 1

homework/PersistentStorage_quiz1.quiz.html
homework/PersistentStorage_quiz2.quiz.html
homework/PersistentStorage_proj1.project.html
homework/Archives_quiz1.quiz.html
homework/Archives_quiz2.quiz.html
homework/Archives_proj1.project.html
homework/IntroductionToGraphicalUserInterfaces_quiz1.quiz.html
homework/IntroductionToGraphicalUserInterfaces_quiz2.quiz.html
homework/IntroductionToGraphicalUserInterfaces_proj1.project.html
homework/GraphicalUserInterfaceLayout_quiz1.quiz.html
homework/GraphicalUserInterfaceLayout_quiz2.quiz.html
homework/GraphicalUserInterfaceLayout_proj1.project.html
homework/MoreAboutGraphicalUserInterfaces_quiz1.quiz.html
homework/MoreAboutGraphicalUserInterfaces_quiz2.quiz.html
homework/MoreAboutGraphicalUserInterfaces_proj1.project.html

Lesson 10: Handling Dat abases
Relational Databases: Representing the World in Tables

Your First Database Interactions
Access to a Database
Running MySQL

Structured Query Language
Data Definition Language (DDL)
Data Manipulation Language (DML)
Having No Data: The Null Value

Creating a Table and Inserting Data
Attributes are Columns, Occurrences are Rows
The Python Database API

Relationships and Foreign Keys: Referring to Occurrences

Integrity Constraints
Primary Keys Identify Occurrences
No NULLs in Primary Key Values
No Multi-Valued Attributes
Referential Integrity

Implementing Multi-Valued Attributes

Using Relational Data in Python
Metadata: Data about Data

Quiz 1 Quiz 2 Pro ject 1
Lesson 11: Dat abase Hint s and T ricks

Representing Data Rows
Working With Tuples
Representing Tables as Classes
Manipulating SQL in Python
A Data Row Class
A More General-Purpose Approach

Quiz 1 Quiz 2 Pro ject 1
Lesson 12: Handling Elect ro nic Mail Messages

Handling Email

An Example o f Email Written to a File

Representing an Email with Message Objects

Sending Emails with smtplib

RFC 2822

MIME Messages

In the Home Stretch

Quiz 1 Quiz 2 Pro ject 1
Lesson 13: Email Search and Display

A Really Useful Program

A Basic Email Database
Message Identities
The Message Table
Beginnings o f a Mail Database Module

homework/HandlingDatabases_quiz1.quiz.html
homework/HandlingDatabases_quiz2.quiz.html
homework/HandlingDatabases_proj1.project.html
homework/DatabaseHintsAndTricks_quiz1.quiz.html
homework/DatabaseHintsAndTricks_quiz2.quiz.html
homework/DatabaseHintsAndTricks_proj1.project.html
homework/HandlingElectronicMailMessages_quiz1.quiz.html
homework/HandlingElectronicMailMessages_quiz2.quiz.html
homework/HandlingElectronicMailMessages_proj1.project.html

Extending the Database's Retrieval Capabilities
Practical Application
Adding A GUI
Documentation

Quiz 1 Quiz 2 Pro ject 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/EmailSearchAndDisplay_quiz1.quiz.html
homework/EmailSearchAndDisplay_quiz2.quiz.html
homework/EmailSearchAndDisplay_proj1.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Eclipse

Welcome to the O'Reilly School o f Technology's (OST) Get t ing Mo re Out o f Pyt ho n course! We're happy you've chosen to
learn Python programming with us. By the time you finish the course, you will have expanded your knowledge o f Python and
applied it to some really interesting techno logies.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

Before you start programming in Python, let's review a couple o f the too ls you'll be using. If you took Int ro duct io n t o
Pyt ho n, you can skip to the next section if you like, or you might want to go through this section to refresh your memory.

About Eclipse
We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right
now. IDEs assist programmers by performing tasks that need to be done repetitively. IDEs can also help to edit and
debug code, and organize pro jects.

Perspectives and the Red Leaf Icon

The Ellipse Plug-in fo r Eclipse, developed by the O'Reilly School o f Technology, adds a Red Leaf icon to the
too lbar in Eclipse. This icon is your "panic button." Because Eclipse is versatile and allows you to move
things around, like views, too lbars, and such, it's possible to lose your way. If you do get confused and want
to return to the default perspective (window layout), the Red Leaf icon is the fastest and easiest way to do that.

The Red Leaf icon has these functions:

T o reset t he current perspect ive: click the icon.
T o change perspect ives: click the drop-down arrow beside the icon to select different
perspectives designed for each course that uses Ellipse.

T o select a perspect ive: click the drop-down arrow beside the Red Leaf icon and select the
course (Java, Pyt ho n, C++ , etc.). Selecting a specific course opens the perspective designed for
that particular course.

For this course, you would select Pyt ho n (it should already be selected for you now):

Note If you select a Red Leaf icon option, it will reset your session, so you'll need to reselect this
course and reopen this lesson.

Working Sets

You'll use working sets fo r the course. All pro jects created in Eclipse exist in the workspace directory o f your
account on our server. As you create multiple pro jects fo r each lesson in each course, your directory could
become pretty cluttered. A working set is a view of the workspace that behaves like a fo lder, but it's actually an
association o f files. Working sets allow you to limit the detail that you see at any given time. The difference
between a working set and a fo lder is that a working set doesn't actually exist in the file system.

A working set is a convenient way to group related items together. You can assign a pro ject to one or more
working sets. In some cases, like the Python extension to Eclipse, new pro jects are created in a catch-all
"Other Pro jects" working set. To better organize your work, we'll have you assign your pro jects to an
appropriate working set when you create them. To do that, right-click on the pro ject name and select the
Assign Wo rking Set s menu item.

We've already created some working sets for you in the Eclipse IDE. You can turn the working set display o n
or o f f in Eclipse.

For now, make sure your working sets are displayed by clicking the down-po inting arrow on the top right o f
the Package Explorer window, and select T o p Level Element s | Wo rking Set s:

Then, click the down-po inting arrow next to Sho w Wo rking Set s and select Pyt ho n | Pyt ho n 2:

Programming in Python with Eclipse

A First Program

When learning a new language in computer programming, it is traditional to use the words "hello world" as
your first example. Unfortunately, since "hello world" can be written in a single line, that doesn't make for a
great example in Python. Instead, we'll look at a slightly more complicated example that not only prints "hello"
and "goodbye," but also does a little calculation on the way.

Let's set up an environment fo r our first file. In Eclipse, all files must be within projects. A pro ject is a container
that ho lds resources (such as source code, images, and o ther things) needed to build a piece o f so ftware.
We're go ing to make a pro ject named Int ro Eclipse . Please use that exact name, with the same
capitalization.

In creating a new pro ject, you'll need to read ahead a few steps because once the dialog box appears, you
will no t be able to return to the Lesson until finishing it. You can also view the PDF version o f the course
(right-click the link and open it in another window) while creating the pro ject. This is the only time you should
need to work in a separate window in this course.

Now, let's create a PyDev pro ject in Eclipse. (PyDev is the name of the Eclipse add-in that adapts it to
handle Python). To start a new pro ject, select the menu item File | New | PyDev Pro ject . Enter the name
Int ro Eclipse , select 3.0 fo r the Grammar Version, and click the link to configure an interpreter:

http://courses.oreillyschool.com/Python2/Eclipse %28updated%29.pdf

On the Preferences screen, click Aut o Co nf ig to configure the Python interpreter:

A Selection Needed screen appears. Click OK to select the default settings:

Click OK again to return to the Pydev Pro ject screen. Select the pyt ho n interpreter we just created, and make
sure Creat e 'src' f o lder and add it t o t he PYT HONPAT H' is select ed:

Click Finish. You see a prompt to change perspectives. Check the Remember my decisio n box and click
No :

When you first create a PyDev pro ject, it is placed in the Ot her Pro ject s working set. You'll want to keep
your Python pro jects together, so go ahead and put your newly created pro ject into the Pyt ho n2_Lesso ns
working set. Select the Int ro Eclipse pro ject. Right-click it and select Assign Wo rking Set s...:

The Working Set Assignments screen appears. Click Deselect All to clear any selected working sets, and
then check the box for the Pyt ho n2_Lesso ns working set (the one for this course), UNcheck the Sho w o nly
Package Explo rer wo rking set s box, and click OK:

Click OK when you finish. You will need to do this fo r each new pro ject you create.

Note You might not see as many working sets; you'll only see ones for courses you're enro lled in.

To see the pro jects in your Pyt ho n2_Lesso ns working set in the Package Explorer panel, click the
downward-po inting arrow next to the Sho w Wo rking Set s button, and select Pyt ho n | Pyt ho n2:

Now you should see your Int ro Eclipse pro ject listed in the Pyt ho n2_Lesso ns working set in the Package
Explo rer panel on the lower left corner o f your Eclipse screen:

This hierarchical view of the resources (directories and files) in Eclipse is commonly called the workspace.
You now have a project called IntroEclipse in your workspace.

Before you go on, make sure that the IntroEclipse pro ject is displayed in the Package Explorer window.

Right-click your Int ro Eclipse pro ject in the Package Explorer, and select New | File . A New File dialog box
appears. Select the src subdirectory o f Int ro Eclipse , enter the filename hello _wo rld.py, and then click
Finish:

A new editor window appears next to the workspace. You'll edit your code in this window because it
understands Python syntax.

Enter the blue code below into the editor window:

Note When you enter an opening parenthesis, Eclipse automatically adds the closing parenthesis.

CODE TO TYPE:

print("Hello World")
print("I have", 3 + 4, "bananas")
print("Goodbye, World")

Your code should look like this:

Save it. In the top Eclipse menu bar (not the O'Reilly tab bar) choose File | Save o r click the Save icon at the
top o f the screen: (we'll show that icon from now on when we want you to save a file).

Now choose Run | Run from the top menu bar (if you don't see this menu cho ice, click in hello_world.py in

the Editor Window again). You can also click the run icon: . From now on, when we want you to save AND run
a program, we'll show that icon. The first time you run a program, you'll see this prompt:

Select Pyt ho n Run. If you entered the code correctly, you'll see that the workspace switches to the Conso le
view and displays the output from your very first Python program:

Congratulations! You're o fficially a Python programmer! Of course this program isn't very complex, but the
interpreter has done the calculation you asked it to do. Pat yourself on the back! You're o ff to a strong start.
Experiment with o ther calculations. You can probably work out how to save modified programs under
different names (Hint: File | Save As).

The Interactive Interpreter

In Python you can run the interpreter in interactive mode when you want to try things out, and see results
printed right away. That instant feedback is really handy when you're learning a new language.

Eclipse gives you access to interactive Python conso les.

Select the Co nso le tab in the workspace window, and click the down arrow to the right o f the Open Co nso le
icon:

Select Pydev Co nso le from the pull-down menu:

Select a Python conso le:

A new conso le appears, with the interactive prompt >>> . The conso le is ready for your input:

If you enter one o f the lines from the program you just ran, the output will appear in the conso le window. This
interactive interpreter window allows you to enter both statements and expressions (we'll cover those in detail
later). Statements are executed pretty much as if they were part o f a program; the expressions are evaluated
and the resulting value is printed (as long as you're in interactive mode).

Type the code in blue below in the PyDev Conso le window. (When we say T YPE t he co de, do it . It 's
go o d f o r yo u!) The interpreter prints a result fo r each expression. (You'll see a different prompt after the
fourth line. We'll talk about that in a minute):

CODE TO TYPE:

>>> "hello" + " world"
'hello world'
>>> 'hello' + ' world'
'hello world'
>>> """hello""" + ''' world'''
'hello world'
>>> """hello
... world"""
'hello\nworld'

So, what happened here? The first three lines are all examples o f string concatenation— a second string is
appended to the first, giving a longer string as a result. Strings can have either single (') o r double (")
quotation marks around them, and either one quotation mark or three at the beginning and end o f the string.
Use exactly the same combination at both ends.

The last expression, running over lines 4 and 5 o f the input, shows an important difference between the one-
quotation mark and the three-quotation mark forms. A string given in one-quotation mark form must begin
and end on the same line. Three-quotation mark strings can spread across more than one line.

The fourth example actually does extend across two lines, so the interpreter changed its prompt from >>> to
... (ellipses) after you entered the first line. Those ellipses let you know that you've got an incomplete
statement or expression in your code. When you completed the string with the second line o f input, the

interpreter then printed the value o f the two-line expression. You can see that the line feed between hello and
wo rld is represented by \n, which is known in Python as a string escape sequence.

First Hurdle Cleared
Phew! That was a whole lo t o f introduction there. Thanks for sticking with me. Keep it up, you're do ing great so far. See
you at the next lesson!

Note
As we mentioned at the beginning, you made some changes to your working environment during this
lesson; now, you should exit Eclipse to save those changes and restart it to continue with the homework
and additional lessons.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Unit Testing

Welcome to the second course in the O'Reilly School o f Technology's Python series!

Course Objectives
When you complete this course, you will be able to :

demonstrate understanding o f Agile processes and test-driven development.
manage files, persistent storage, archives, and serialization.
create a Graphical User Interface in Python.
design and implement relational databases using Python and SQL.
create and send emails from Python programs.
build a full-fledged Python database application.

In this course, you'll learn more in-depth techniques and strategies for programming with Python. Using the Ellipse integrated
learning environment, you'll get hands-on experience with Python's modular unit testing features; file handling, storage, and
archival; graphical user interfaces; and techno logies for working with databases and email.

unittest
Your first lesson in Python 2 picks up where we left o ff in the Python 1 course, focused on debugging programs. Here
you'll learn about the second, and more widely used, built- in Python testing framework, unittest. Unittest is a more
formal testing framework, which can be integrated with existing uses o f doctest, if necessary.

Assertions

An important statement contained within Python that you haven't come across before is the assert statement.
The syntax for this statement is:

OBSERVE: assert statement syntax

assert condition[, message]

In the assert statement, the co ndit io n is tested, and if it evaluates false, an AssertionError exception is
raised. If there's a message , it is printed with the AssertionError. Let's try using the assert statement right now
in an interactive conso le window.

In case you've forgotten how to get to the interactive conso le, here's how to do it:

Select the Co nso le tab in the workspace window, and click the down arrow to the right o f the Open Co nso le
icon:

Select Pydev Co nso le from the pull-down menu:

Select Pyt ho n co nso le :

A new conso le appears, with the interactive prompt >>> . The conso le is ready for your input:

Type this code into the interactive interpreter conso le:

INTERACTIVE SESSION:

>>> assert 1 == 1
>>> assert 1 == 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError
>>> assert 1 == 2, "One isn't two and the universe is still rational"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError: One isn't two and the universe is still rational
>>>

We use assert statements in our programs to assert conditions that we believe must always be true. If we are
correct, the program runs as expected, but if a programming error or mistaken assumption invalidates the
condition, Python will let us know, usually early in the life o f the program.

AssertionError exceptions are handled using the unittest module. To write tests, we create test cases that are
subclasses o f the unit t est .T est Case class. Our subclasses can use the methods defined by the
superclass. Many o f those methods' names begin with the prefix "assert." By calling these methods, you
have the test case make assertions about your program in a contro lled environment. Any AssertionErrors
that arise are handled by the framework and reported as a failure o f the associated test. Other exceptions are
regarded as errors.

A Basic unittest Example

For our first example, we'll use the square() method from our t est able .py code that we created in the
"Introduction to Python" course. Our goal now is to write code that will cube the values passed. This will allow
us to compare the two testing modules.

Just to make sure we're all up to speed, let's review setting up a new PyDev pro ject and a Python program:

To start a new pro ject, select the menu item File | New | PyDev Pro ject . Enter the name Unit T est ing,
select 3.0 fo r the Grammar Version, and select the pyt ho n interpreter (if it's not available, click on the link to
configure an interpreter):

If you clicked the link to configure the interpreter, go to the Preferences screen now and click Aut o Co nf ig:

A Select io n Needed screen appears. Click OK to select the default settings:

Click OK to return to the Pydev Pro ject screen, then click Finish. You'll see a prompt to change perspectives.
Check the Remember my decisio n box and then click No :

When you first create a PyDev pro ject, it is placed in the Other Pro jects working set. It's a good idea to keep
your Python pro jects together, so go ahead and put your newly created pro ject into the Python2_Lessons
working set. In the Ot her Pro ject s working set, find the Unit T est ing pro ject. Right-click it and select
Assign Wo rking Set s...:

The Wo rking Set Assignment s screen appears. Click Deselect All to clear any selected working sets,
and then check the box for the Pyt ho n2_Lesso ns working set (the one for this course). Uncheck the Sho w
o nly Package Explo rer wo rking set s box, and click OK:

You will need to do this fo r each new pro ject you create. (Your working sets may differ from those shown
here; you'll only see working sets for the courses in which you are enro lled.)

To see only the working sets for this course, click the drop-down arrow next to Sho w Wo rking Set s, and
select Pyt ho n | Pyt ho n 2:

Your Unit T est ing pro ject is now listed in the Package Explo rer panel on the lower left corner o f your
Eclipse screen, in your Pyt ho n2_Lesso ns working set.

This hierarchical view of available resources (directories and files) in Eclipse is commonly called the
workspace. You now have a project named Unit T est ing in your workspace.

Before you go on, make sure that the Unit T est ing pro ject is displayed in the Package Explorer window.
Click on this new pro ject to select it.

From the File menu, select New | File . A New File dialog box appears. Select the src subdirectory o f
Unit T est ing, enter the filename t est able .py, and then click Finish:

A new editor window appears next to the workspace. We'll use this editor because it understands Python
syntax. In t est able .py, type the blue code as shown:

CODE TO TYPE:

"""Demonstrates the unittest module in action."""
import unittest

def cube(x):
 '''Returns the cube of a passed value'''
 return x*3

class TestCube(unittest.TestCase):

 def test_small_number(self):
 self.assertEqual(cube(3), 27, "Cube of 3 is not 27")

 def test_large_number(self):
 self.assertEqual(cube(1000), 1000000000, "Cube of 1000 should be 1000000
000")

 def test_bad_input(self):
 self.assertRaises(TypeError, cube, 'x')

if __name__ == "__main__":
 unittest.main()

To run the program, right-click in the editor window and select Run As..., and select Pyt ho n Run. This
program contains a bug: instead o f returning its argument raised to the third power (cubed), the cube()
function returns its argument multiplied by three. This is an easy mistake to make—we just omitted a single
asterisk (*)—but it renders the function incorrect. When you run the program, you see output that looks
something like this:

OBSERVE: Output from testable.py with an error in the cube() function

FFF
==
FAIL: test_bad_input (__main__.TestCube)
--
Traceback (most recent call last):
 File "V:\workspace\UnitTesting\src\testable.py", line 17, in test_bad_input
 self.assertRaises(TypeError, cube, 'x')
AssertionError: TypeError not raised by cube

==
FAIL: test_large_number (__main__.TestCube)
--
Traceback (most recent call last):
 File "V:\workspace\UnitTesting\src\testable.py", line 14, in test_large_number
 self.assertEqual(cube(1000), 1000000000, "Cube of 1000 should be 1000000000"
)
AssertionError: 3000 != 1000000000 : Cube of 1000 should be 1000000000

==
FAIL: test_small_number (__main__.TestCube)
--
Traceback (most recent call last):
 File "V:\workspace\UnitTesting\src\testable.py", line 11, in test_small_number
 self.assertEqual(cube(3), 27, "Cube of 3 is not 27")
AssertionError: 9 != 27 : Cube of 3 is not 27

--
Ran 3 tests in 0.032s

FAILED (failures=3)

Failures. Bummer. And not only do we have failures, our program gives us even more data than doctest did.
For example, our program gives the number o f tests, fo llowed by the length o f time it took to run the tests, and
the tests themselves can be set up to pass messages to the person running the tests.

When you run the program, it calls the unit t est .main() method, which runs the unittest Test Runner. The
Test Runner looks in your code for test suites, which are identified as Classes that inherit from the
unit t est .T est Case class. These test suites contain a number o f tests, which are class methods that begin
with the word "test."

Because the assertions within your unittest methods raise AssertionErrors, the package reports them as test
failures, and the output makes it clear that something is wrong with the program. In fact, because o f the
message arguments passed to the methods, you get a pretty good idea o f what is go ing wrong. Now, fix the
error by changing the operation in the cube() function to an exponentiation. Modify t est able .py as shown:

CODE TO TYPE:

"""Demonstrates the unittest module in action."""
import unittest

def cube(x):
 '''Returns the cube of a passed value'''
 return x**3

class TestCube(unittest.TestCase):

 def test_small_number(self):

 self.assertEqual(cube(3), 27, "Cube of 3 should be 27")

 def test_large_number(self):
 self.assertEqual(cube(1000), 1000000000, "Cube of 1000 should be 1000000
000")

 def test_bad_input(self):
 self.assertRaises(TypeError, cube, 'x')

if __name__ == "__main__":
 unittest.main()

Right-click in the editor window and select Run As | Pyt ho n unit -t est . With the error now corrected, your
output from t est able .py looks like this:

OBSERVE: Output from testing testable.py

Finding files... done.
Importing test modules ... done.

--
Ran 3 tests in 0.000s

OK

 Now, run it by right-clicking in the editor window and selecting Run As | Pyt ho n Run:

OBSERVE: Output from running testable.py

...
--
Ran 3 tests in 0.000s

OK

The three dots at the top represent the three tests. If they had failed, you would have seen an "F" replacing
each failure. If there were significant errors, you would have seen an "E." Such error indications usually mean
that something is wrong with your logic. You see the test count and the time for the duration o f the tests' run.
Chances are that fo r this basic test, you'll get a value o f 0 .000, but keep in mind that unittests are not
performance tests. You'll cover performance tests in a later course.

Note
We also corrected the failure on test_bad_input. Why? Because the string x can be "multiplied"
to give xxx, so no TypeError is raised. Because exponentiation does not work with strings, the
cube function must be fixed before the test passes.

Breaking Down Tests

Now that you have the tests working, consider how they work. Look over this co lor-coded test code:

OBSERVE:

"""Demonstrates the unittest module in action."""
import unittest

def cube(x):
'''Returns the cube of a passed value'''
 return x**3

class TestCube(unittest.TestCase):
 def test_small_number(self):
 self.assertEqual(cube(3), 27, "Cube of 3 should be 27")

 def test_large_number(self):
 self.assertEqual(cube(1000), 1000000000, "Cube of 1000 should be 1000000
000")

 def test_bad_input(self):
 self.assertRaises(TypeError, cube, 'x')
if __name__ == "__main__":
 unittest.main()

The t est _small_number() method in the T est Cube class has a single statement: a call to the
assert Equal() method inherited from unit t est .t est Case . That statement contains an assertion that its first
two arguments are equal—that cube(3) is equal to 27 . If the values do not match, then the assertion fails and
the message "Cube o f 3 sho uld be 27" is returned during the test and reported by the framework.

If you include useful assertion error messages, they will help you remember what your tests are supposed to
be do ing. They will also help o ther programmers understand your tests. It's easier to figure out what to fix
when error messages are meaningful (fo rtunately, the default messages produced by unittest have improved
recently, as well).

In the third test, t est _bad_input () checks to see if the cube() function throws a T ypeErro r exception. The
first argument provided is the expected exception; the second argument is the function to test; the remaining
arguments will be passed to the function in question— the cube() function (a one-argument function, so you
see a single additional argument 'x'); it is possible to use both positional and keyword arguments (but the
function you are testing doesn't take any keyword arguments). Using this method lets you verify that certain
inputs raise specific exceptions.

Test-Driven Development: Tests As Specifications

Now that you've begun to appreciate the value o f testing, fo llow the basic rule o f test-driven development
(TDD): only write code to make a failing test pass. This means that you begin your development pro jects by
creating tests, which then act as a specification for the behavior o f the program. By developing software this
way, the programmer is fo rced to develop only the necessary functionality, and resists including extraneous
elements. As the agile programming community says, "YAGNI"—You Ain't Gonna Need It. If it doesn't help
you pass a test, it really isn't necessary.

Background of unittest

Kent Beck, the creator o f Extreme Programming and Test Driven Development, wro te a testing framework for
agile programming in the Smalltalk programming language. Later, along with Erich Gamma, he wrote a Java-
based implementation o f this test framework called JUnit. This test framework has since been ported to many
other languages, including Python, where it is sometimes called "PyUnit."

The advantage o f unittest is that the core concepts are tried and tested. This is important in a test framework
because that means you can rely on it. As we learned in the previous course, if we refactor our code and it still
passes the tests, we can be reasonably sure that we haven't introduced an error.

unittest uses these important concepts:

T est Fixt ures: The setup for your tests. Fixtures include creation o f temporary databases,
servers, and anything else needed to run the test. The fixtures frequently need to be cleaned up after
a test. To use a spelling test analogy, think o f a Test Fixture as a combination pencil, eraser, test
sheet, and word list.
T est Cases: Each test case is an individual test. It checks for a specific response to an assertion,
and then is distilled to a boo lean statement. Using the spelling test analogy again, think o f a Test
Case as a single question on the test.
T est Suit e: A test suite is a co llection o f Test Cases (or even o ther T est Suit es). Returning to
our spelling test again, think o f a Test Suite as the set o f all questions on the test sheet.
T est Runner: The software that actually runs the tests. The runner can be launched from the
command line, graphical interface, web interface, or any o ther input method. It returns special
values to indicate the success o f the tests, and these values can be evaluated by you or by various
automated too ls. In the spelling test analogy, the test runner would be you, the reader, go ing
through the list o f questions.

Comparing doctest and unittest

So, which should you use, doctest or unittest? To a certain extent, this is a matter o f individual preference.
Let's compare the two:

do ct est unit t est

More readily accessible More challenging to learn

Documents your code to some degree Maintains a clean separation between tests and
documentation

Harder to maintain as features change Easier to maintain as features change

Assertions are more difficult to
incorporate

Assertions are the primary too ls fo r verifying correct
performance

Verbose Concise

The Python community generally agrees that while doctests have their place, unittests are usually more
useful. doctests are easier to learn, but in the long run, unittests are the more streamlined cho ice. It is
possible to integrate doctests in a unittest environment, though not quite as straightforward as you might like.

One Down

Congratulations! Just like that, you are now equipped with a second Python test framework. In the lessons to
come, we'll use both test frameworks to check our work and build good programming habits. According to the
tenets o f agile programming, test-driven development is the way to go. TDD lets you continue to refactor your
code without introducing errors, and it encourages o ther programmers to love you for your devotion to best
practices. In the next lesson, we'll explore test-driven development even further. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Test-Driven Development
Lesson Objectives

When you complete this lesson, you will be able to :

utilize in test-driven development.
create your own test cases as subclasses o f T est Case .
create a single subclass with several test methods.
call a function to create the directory which was called by each test method.
call the TestCase's run() method.

Agile Programming and Test-Driven Development
So far, we've learned that tests enable us to refactor code, and that refactoring lets us improve our code's clarity and
performance. To support testing, we've learned two test frameworks in Python, doctest and unittest. With those too ls in
hand, we're ready to dive into Test-Driven Development (we'll call it TDD from now on) .

The concept o f TDD is pretty straightforward. Once you've identified the requirements o f a program, you begin creating
it, no t by coding, but by writing tests. After you're satisfied with the tests you've written (which may require lo ts o f trial
and error, but hey, you're human), you write the code that will pass the tests. The general outline for TDD workflow
incorporates the mantra o f agile programmers everywhere: "Do the simplest thing that could possibly work."

1. Write tests
2. Run tests
3. Write some code to pass the tests
4. Run tests
5. Refactor code
6. Repeat

And that's all there is to it.

You know, if you think about it, you've already done some TDD—well almost. In the pro jects fo r Python 1, as well as
your first pro ject fo r Python 2, you were given a set o f requirements and then some expected results. In those cases,
formal tests o f your code which were performed by running the program, stimulating it with specific inputs, and
observing and validating the results.

If you automate testing, you can repeat the tests reliably whenever you want. And thanks to doctest and unittest, you
can include formal tests o f your code in the lessons and pro jects to come.

An Example of Test-Driven Development

Below is an example o f the first step o f TDD, writ ing t est s. Suppose that you have been asked to develop
an adder(x, y) function that takes two arguments and adds them together using a somewhat unusual
definition o f "add": integer + integer, string + string and list + list, use regular addition; integer + string converts
the integer to a string before concatenation; and adding a string or an integer to a list, appends to the list
(regardless o f whether it's the first o r second argument).

Create a T est DrivenDevelo pment pro ject and assign it to the Pyt ho n2_Lesso ns working set. Then,
create a source file named t est adder.py. (If you remember how to do this, create it and go on to the section
called editing and running. If you've forgotten the procedure for creating pro jects, assigning working sets, or
creating source files, we'll give you detailed instructions one more time now.

Creating the Program

Select File | New | PyDev Pro ject and create a T est DrivenDevelo pment pro ject as shown:

Click Finish.

If you're prompted to Open Associated Perspective, check the Remember my decisio n box and click No .

Your new pro ject is located in the Other Pro jects working set in the Package Explorer. Find it, right-click it, and
select Assign Wo rking Set s...:

In the Working Set Assignments dialog, select Sho w o nly Package Explo rer wo rking set s and
Pyt ho n2_Lesso ns:

Click OK.

Right-click the T est DrivenDevelo pment /src fo lder in the Package Explorer, and select New | File :

In the New File dialog, enter the name t est adder.py and click Finish:

The file now appears in the Eclipse editor window.

Edit ing and Running the Program

In t est adder.py, type in the code below as shown:

CODE TO TYPE:

"""
Demonstrates the fundamentals of unittest.
adder() is a function that lets you 'add' integers, strings, and lists.
"""

from adder import adder # keep the tested code separate from the tests

import unittest
class TestAdder(unittest.TestCase):

 def test_numbers(self):
 self.assertEqual(adder(3,4), 7, "3 + 4 should be 7")

 def test_strings(self):
 self.assertEqual(adder('x','y'), 'xy', "x + y should be xy")

 def test_lists(self):
 self.assertEqual(adder([1,2],[3,4]), [1,2,3,4], "[1,2] + [3,4] should be
 [1,2,3,4]")

 def test_number_and_string(self):
 self.assertEqual(adder(1,'two'), '1two', "1 + two should be 1two")

 def test_numbers_and_list(self):
 self.assertEqual(adder(4,[1,2,3]), [1,2,3,4], "4 + [1,2,3] should be [1,
2,3,4]")

if __name__ == "__main__":
 unittest.main()

Don't run the program just yet. Although it imports an adder function (the function it's eventually go ing to test),
that import will fail unless that function is defined. The simplest code we have to allow the test harness
(automated test framework) to run, is an adder module that contains an empty adder() function. In your
T est DrivenDevelo pment /src fo lder, create adder.py as shown:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.
"

def adder(x, y):
 pass

Now let's go on to step two o f the cycle, run t est s.

 Save the adder.py file.

 Go back to t est adder.py and run it.

OBSERVE: Output from testadder.py with an incomplete adder function

FFFFF
==
FAIL: test_lists (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 17, in test_l
ists
 self.assertEqual(adder([1,2],[3,4]), [1,2,3,4], "[1,2] + [3,4] should be [1,
2,3,4]")
AssertionError: None != [1, 2, 3, 4] : [1,2] + [3,4] should be [1,2,3,4]

==
FAIL: test_number_and_string (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 20, in test_n
umber_and_string
 self.assertEqual(adder(1,'two'), '1two', "1 + two should be 1two")
AssertionError: None != '1two' : 1 + two should be 1two

==
FAIL: test_numbers (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 11, in test_n
umbers
 self.assertEqual(adder(3,4), 7, "3 + 4 should be 7")
AssertionError: None != 7 : 3 + 4 should be 7

==
FAIL: test_numbers_and_list (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 23, in test_n
umbers_and_list
 self.assertEqual(adder(4,[1,2,3]), [1,2,3,4], "4 + [1,2,3] should be [1,2,3,
4]")
AssertionError: None != [1, 2, 3, 4] : 4 + [1,2,3] should be [1,2,3,4]

==
FAIL: test_strings (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 14, in test_s
trings
 self.assertEqual(adder('x','y'), 'xy', "x + y should be xy")
AssertionError: None != 'xy' : x + y should be xy

--
Ran 5 tests in 0.016s

FAILED (failures=5)

All five tests have failed. But we expected them to fail (yes, we did), because our adder() method doesn't
actually do anything yet. While failed tests are not the ideal result, at least the tests didn't result in error
messages. When you see error messages, they usually indicate the presence o f a programming mistake, fo r
instance, a function may have the wrong number o f arguments, or a call to a method that an object doesn't
have. But since our code didn't return any error messages, we can move on to step three o f the TDD cycle:
writ e co de t o pass t he t est s. In this first instance, we won't try and pass all o f the tests, but instead
provide a basic initial implementation that will pass some o f them, then build from there. Edit adder.py,
adding and removing code as shown:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.
"

def adder(x, y):
 pass
 return x + y

 Run t est adder again.

OBSERVE: Ouput from the second run o f testadder.py

.E.E.
==
ERROR: test_number_and_string (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 20, in test_n
umber_and_string
 self.assertEqual(adder(1,'two'), '1two', "1 + two should be 1two")
 File "V:\workspace\TestDrivenDevelopment\src\adder.py", line 4, in adder
 return x + y
TypeError: unsupported operand type(s) for +: 'int' and 'str'

==
ERROR: test_numbers_and_list (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 23, in test_n
umbers_and_list
 self.assertEqual(adder(4,[1,2,3]), [1,2,3,4], "4 + [1,2,3] should be [1,2,3,
4]")
 File "V:\workspace\TestDrivenDevelopment\src\adder.py", line 4, in adder
 return x + y
TypeError: unsupported operand type(s) for +: 'int' and 'list'

--
Ran 5 tests in 0.016s

FAILED (errors=2)

The first line now contains three dots, each representing a successful test (give yourself a pat on the back for
those!), and two "E" characters. Those E's represent errors that we get because our implementation works for
only 60% of the test cases. That's not bad for a one-line function though, and the output from the test-run
provides lo ts o f information that helps us figure out how to stop the function from throwing exceptions and
causing those errors.

The problems in our code seem to pop up when the arguments aren't o f the same type. Since the function
appears to do what we need it to do most o f the time, we'll modify our program explicitly to change its
performance just in the failing cases. We'll do that by adding an integer and a string, and adding an integer and
a list (this last case should apply when adding anything to a list, no t just an integer).

Edit your code as shown below:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.
"
import numbers

def adder(x, y):
 if isinstance(x, list):
 return x + [y]
 elif isinstance(y, list):
 return y + [x]
 elif isinstance(x, numbers.Number) and isinstance(y, str):
 return str(x) + y
 return x+y

We enhanced our code using the built- in isinst ance() function. This function lets us check to see if a variable
is o f a particular type, or a subclass o f that type. We have to import the numbers module in order to use
numbers.Number, which is a superclass o f all numeric types in Python.

 Run t est adder again. Both o f the original errors are fixed, but unfortunately, one o f the test cases that
succeeded previously is now broken. Don't worry too much—this a common occurrence. The good news is
that the tests work and let us know about the problems!

OBSERVE: Results o f the third testadder.py run

F....
==
FAIL: test_lists (__main__.TestAdder)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 17, in test_l
ists
 self.assertEqual(adder([1,2],[3,4]), [1,2,3,4], "[1,2] + [3,4] should be [1,
2,3,4]")
AssertionError: Lists differ: [1, 2, [3, 4]] != [1, 2, 3, 4]

First differing element 2:
[3, 4]
3

Second list contains 1 additional elements.
First extra element 3:
4

- [1, 2, [3, 4]]
? - -

+ [1, 2, 3, 4] : [1,2] + [3,4] should be [1,2,3,4]

--
Ran 5 tests in 0.016s

FAILED (failures=1)

In the final version o f our code, we want to make sure that the new special cases for lists are not applied when
both arguments are lists. In those cases we want them to be left to the default elif case at the end o f the
function. Modify your code as shown:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.
"
import numbers

def adder(x, y):
 if isinstance(x, list) and not isinstance(y, list):
 return x + [y]
 elif isinstance(y, list) and not isinstance(x, list):
 return y + [x]
 elif isinstance(x, numbers.Number) and isinstance(y, str):
 return str(x)+y
 return x+y

 Run t est adder again. Nice. At last we have the pleasure o f seeing all o f our tests pass, with five dots on the
first line o f the output. Programmers who use unittest regularly o ften refer to themselves as "dot-addicted." It's
amazing how gratifying it can be to see a row of dots printed out from a test!

OBSERVE: Output from testadder.py when all tests pass

.....
--
Ran 5 tests in 0.000s

OK

More About the unittest.TestCase Class

The T est Case class is the cornerstone o f the unittest module. We've learned to create our own test cases as
subclasses o f T est Case . Individual tests are written as methods o f the subclass and have names that begin
with the string "test." If you have only one test to run, you may implement that test as the class's runT est ()
method. You probably won't do that very much, but you may see it in o ther people's code, so it's worth
knowing.

Test Fixture Set-up and Tear-down

If you want to define several tests, you could create a separate T est Case subclass for each one, but it's
much simpler to create a single subclass with several test methods instead. So, why might you need more
than one T est Case subclass? Well, one possibility is so that you can include set Up() and t earDo wn()
methods, which would be run before and after each test method. In this case (as well as in o thers), grouping
tests that require the same set-up and tear-down processing, is a good way to go.

Suppose you want to run some tests o f code you have written that creates files. Each test needs to create
files. And since the tests create random files (or at least since each test creates different files), if you run the
tests in any o ld directory, clean-up could be difficult. To avo id creating such problems for ourselves, we'll
write our code so that each test method creates the directory itself and cleans up the files it creates. To make
our code even more efficient, we'll have it call a function to create the directory which was called by each test
method. We could take it even further and create the directory within the set Up() method. This is called
automatically before the framework calls each test method, just as the t earDo wn()method is called after
each one. So we could use t earDo wn() to empty and delete the directory.

If the set Up() method raises an exception, the test framework will declare this test to have errors, and the test
method will no t be run. If it succeeds, the test is run, fo llowed by the t earDo wn() method.

Let's check this out. In the T est DrivenDevelo pment /src fo lder, create a new program named
set upDemo .py. Type in the fo llowing code:

CODE TO TYPE:

"""
Demonstration of setUp and tearDown.
The tests do not actually test anything - this is a demo.
"""
import unittest
import tempfile
import shutil
import glob
import os

class FileTest(unittest.TestCase):

 def setUp(self):
 self.origdir = os.getcwd()
 self.dirname = tempfile.mkdtemp("testdir")
 print("Created", self.dirname)
 os.chdir(self.dirname)

 def test_1(self):
 "Verify creation of files is possible"
 for filename in ("this.txt", "that.txt", "the_other.txt"):
 f = open(filename, "w")
 f.write("Some text\n")
 f.close()
 self.assertTrue(f.closed)

 def test_2(self):
 "Verify that the current directory is empty"
 self.assertEqual(glob.glob("*"), [], "Directory not empty")

 def tearDown(self):
 os.chdir(self.origdir)
 shutil.rmtree(self.dirname)
 print("Deleted", self.dirname)

if __name__ == "__main__":
 unittest.main()

Here, you have defined a test case with two test methods. In order to make the test runnable anywhere, first
the set Up() method saves the process's current directory (obtained with o s.get cwd() in an instance
variable). Then it uses t empf ile .mkdt emp() to create a new temporary directory—the location it chooses
will depend on your platform, so the method prints the directory path out fo r your inspection. Having created
the new directory, set Up() then makes it the current directory.

The t earDo wn() method is called after each test. It makes the saved directory the current directory again
(thereby ensuring that the temporary directory is no longer in use), and removes it (along with any content it
may have) using shut il.rmt ree() .

When you run the program, you might see something like this:

OBSERVE: Output from setupDemo.py

Finding files... done.
Importing test modules ... done.

Created C:\Users\smiller\AppData\Local\Temp\2\tmp5gkymz03testdir
Deleted C:\Users\smiller\AppData\Local\Temp\2\tmp5gkymz03testdir
Created C:\Users\smiller\AppData\Local\Temp\2\tmp9_ukw04wtestdir
Deleted C:\Users\smiller\AppData\Local\Temp\2\tmp9_ukw04wtestdir
--
Ran 2 tests in 0.008s

OK

Here, the output from the test code itself is mixed with the .. output from the testing framework, making it

difficult to see exactly what's happening (though the absence o f error messages is reassuring). It isn't usually
a good idea to produce output from test cases for a couple o f reasons. First, when the test succeeds there
should be no output—this makes it much easier to determine whether tests have passed or failed. Second,
it's quite possible that nobody will read that output anyway.

You may find that you prefer to run your tests using the features built- in to Ellipse to handle unit tests. To do
so, select the set upDemo .py file and then choose Run | Run As | Pyt ho n unit -t est . Then, your output
will look like this:

OBSERVE: Output from setupDemo.py

Finding files...
['V:\\workspace\\TestDrivenDevelopment\\src\\setupDemo.py'] ... done
Importing test modules ... done.

test_1 (setupDemo.FileTest)
Verify creation of files is possible ... Created c:\docume~1\smiller\locals~1\te
mp\3\tmpzo6uwatestdir
Deleted c:\docume~1\smiller\locals~1\temp\3\tmpzo6uwatestdir
ok
test_2 (setupDemo.FileTest)
Verify that the current directory is empty ... Created c:\docume~1\smiller\local
s~1\temp\3\tmpquthgmtestdir
Deleted c:\docume~1\smiller\locals~1\temp\3\tmpquthgmtestdir
ok

--
Ran 2 tests in 0.031s

OK

The docstring for each test is now printed before the test starts, but the print statements are definitely
interfering with the output. One way to correct this would be to remove the top-level instructions that call the
unit t est .main() function. When you ask Ellipse to run the program as a unit test, it automatically performs
the work in the top-level instructions anyway. But in most cases, you'll want to retain that code; without it the
program will no t run correctly as a stand-alone module (run from outside Ellipse).

So instead, we'll remove the print statements when we modify our code. Let's do that now. Edit
set upDemo .py as shown:

CODE TO TYPE:

"""
Demonstration of setUp/tearDown.
The tests do not actually test anything much - this is a demo.
"""
import unittest
import tempfile
import shutil
import glob
import os

class FileTest(unittest.TestCase):

 def setUp(self):
 self.origdir = os.getcwd()
 self.dirname = tempfile.mkdtemp("testdir")
 print("Created", self.dirname)
 os.chdir(self.dirname)

 def test_1(self):
 "Verify creation of files is possible"
 for filename in ("this.txt", "that.txt", "the_other.txt"):
 f = open(filename, "w")
 f.write("Some text\n")
 f.close()
 self.assertTrue(f.closed)

 def test_2(self):
 "Verify that the current directory is empty"
 self.assertEqual(glob.glob("*"), [], "Directory not empty")

 def tearDown(self):
 os.chdir(self.origdir)
 shutil.rmtree(self.dirname)
 print("Deleted", self.dirname)

if __name__ == "__main__":
 unittest.main()

Run this module using Run | Run As | Pyt ho n Run; your output looks like this:

OBSERVE: Output from setupDemo.py

..
--
Ran 2 tests in 0.031s

OK

Test Case Enumeration

When you run unit t est .main() , o r when Eclipse runs a program as a Python unit test, all subclasses o f
unit t est .T est Case are taken from the module. An instance o f each subclass is created, and each method
of the class with a name that begins with "test" is called. (These calls are preceded by a call to the set Up()
method if it exists, and fo llowed by a call to the t earDo wn() method if it exists).

All o f the above actions are taken when we call the TestCase's run() method. The T est Case class records
the results o f the call in a special object, and they are summarized in the output o f the test framework, after all
tests have been run.

TestCase Methods

There are a number o f methods you can call to make assertions about your program's state. The most
commonly used TestCase Methods are:

http://docs.python.org/tutorial/modules.html

T est Case Met ho d Descript io n

assertTrue(expr[, msg]) Unless expr evaluates as true, the test fails.

assertFalse(expr[, msg]) If expr evaluates as true, the test fails.

assertEqual(first, second[,
msg]) Unless f irst and seco nd are equal, the test fails.

assertNotEqual(first,
second[, msg]) If f irst and seco nd are equal, the test fails.

assertAlmostEqual(first,
second[, places[, msg]])

Computes the difference between f irst and seco nd and rounds it to
places decimal places. If the rounded result is non-zero , the test fails.

assertNotAlmostEqual(first,
second[, places[, msg]])

Computes the difference between f irst and seco nd and rounds it to
places decimal places. If the rounded result is zero , the test fails.

assertRaises(exception,
callable, ...)

Calls callable , passing it any positional and keyword arguments that fo llow.
If the call does not raise the given exception, the test fails.

The methods above do have alternative names (assert T rue() , fo r example, is also known as assert _()),
but the names above are preferred. Most o f these methods take an optional message argument. If you don't
provide a message, unittest will try to fo rmulate one that gives you as much information as possible. To test
this, create a new program named messaget est .py in your T est DrivenDevelo pment /src pro ject fo lder
as shown:

CODE TO TYPE:

"""
Demonstrate a message formulated by the unittest system.
"""

import unittest

class DemoCase(unittest.TestCase):
 def testMessage1(self):
 self.assertEqual([1,2,3,4], [1, 2, [3, 4]])

if __name__ == "__main__":
 unittest.main()

Run it using Run | Run As | Pyt ho n Run; the output looks something like this:

OBSERVE: Output from messagetest.py

F
==
FAIL: testMessage1 (__main__.DemoCase)
--
Traceback (most recent call last):
 File "V:\workspace\TestDrivenDevelopment\src\messagetest.py", line 9, in testM
essage1
 self.assertEqual([1,2,3,4], [1, 2, [3, 4]])
AssertionError: Lists differ: [1, 2, 3, 4] != [1, 2, [3, 4]]

First differing element 2:
3
[3, 4]

First list contains 1 additional elements.
First extra element 3:
4

- [1, 2, 3, 4]
+ [1, 2, [3, 4]]
? + +

--
Ran 1 test in 0.016s

FAILED (failures=1)

The system has performed a fairly detailed analysis o f the differences between the two lists, and po ints out, in
the lengthy message, that the lists differ at element 2, and that the first list has an extra element. This
informative message is the result o f some recent clean-up work that was done to Python's unittest module.
With this too l available, now if you can't come up with a particularly good error message yourself, you can try
letting the system generate one for you.

Laying the Foundation

In this lesson, you've learned about some basic functions o f the unittest module. This will serve you well
during the course, but we've only scratched the surface o f unittest!

You have also learned to engage test-driven development practices. For the rest o f this course, and all
fo llowing courses in the OST Python series, you'll be required to use this methodo logy, in fact, your instructor
will verify that you've so lved problems successfully by running tests against it. By the end o f this course, you'll
be really comfortable with TDD and unittest, and writing tests will become second nature to you!

In the next lesson, we'll learn about some of Python's file-handling abilities. Keep up the excellent work and see you in a bit!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

File Handling
Lesson Objectives

When you complete this lesson, you will be able to :

use some of Python's high-level file handling capabilities.
get information from and navigate in our file system.
search for files.
archive and compress files.
use the file object and the built- in open() function.
retrieve file and path name information with os.path.
find path names using glob.

High-Level File Operations
Now that we have a framework for testing and developing our code, it's time to start looking at some of Python's o ther
built- in modules. In the next few lessons, we'll learn about various Python features, and we'll use TDD to develop
small programs with the new features that we learn.

In this lesson, we will explore some of Python's high-level file handling capabilities. Python has lo ts o f built- in
functions and modules geared to help streamline the file handling process. They smooth over many differences
between operating system platforms, so you'll have a single interface for dealing with files, whether you're on
Windows, OS X, or Linux. First we'll review how to read and write files, then, we'll learn how to get information from and
navigate in our file system, search for files, and archive and compress our files. We'll be playing with these features:

the file object and the built- in open() function
os.path
glob

The File Object and the Built-in open() Function
Our first example invo lves the file object. You will create a module that can read inthe contents o f a file as a list o f lines
(without using file.readline or file.readlines), and write out a list o f lines as a file. When the read() function is applied to
the file that writ e() creates, it produces the same list as that which is passed in to the writ e() function. Unlike standard
file methods, these functions deal with lines that do not contain the terminating newline.

You'll use newline as the delimiter. The file that you get after you write out a list containing the delimiter, does not need
to produce the same list when it's read back in, so you don't have to figure out whether the lines contain the delimiter.

The set Up() method establishes a common file name and creates a set o f test fixtures (particular lists that we have
arbitrarily chosen to test the code). Each o f the individual test methods calls a common verif y_f ile () function with one
of the test fixtures as its second argument.

Let's start by writing some tests, t est _f ileo ps.py, and stubbing out (that is, creating a "stub" program that doesn't do
anything, so the o ther program(s) calling it don't show errors) your module, f ileo ps.py. Don't fo rget to add a new test
case if you add a new fixture!

Create your FileHandling pro ject and assign it to the Pyt ho n2_Lesso ns working set. Then create t est _f ileo ps.py
as shown:

CODE TO TYPE:

import unittest
import os
import fileops

class TestReadWriteFile(unittest.TestCase):
 """Test case to verify list read/write functionality."""

 def setUp(self):
 """This function is run before each test."""
 self.fixture_file = r"v:\workspace\FileHandling\src\test-read-write.txt"
 self.fixture_list = ["my", "written", "text"]
 self.fixture_list_empty_strings = ["my", "", "", "written", "text"]
 self.fixture_list_trailing_empty_strings = ["my", "written", "text", "", ""]

 def verify_file(self, fixture_list):
 """Verifies that a given list, when written to a file,
 is returned by reading the same file."""
 fileops.write_list(self.fixture_file, fixture_list)
 observed = fileops.read_list(self.fixture_file)
 self.assertEqual(observed, fixture_list,
 "%s does not equal %s" % (observed, fixture_list))

 def test_read_write_list(self):
 self.verify_file(self.fixture_list)

 def test_read_write_list_empty_strings(self):
 self.verify_file(self.fixture_list_empty_strings)

 def test_read_write_list_trailing_empty_strings(self):
 self.verify_file(self.fixture_list_trailing_empty_strings)

 def tearDown(self):
 """This function is run after each test."""
 try:
 os.remove(self.fixture_file)
 except OSError:
 pass

if __name__ == "__main__":
 unittest.main()

Note
In this course, we use the absolute path "v:\workspace" in some cases to gain access to files on the
system. In a real- life situation, we strongly advise using relative paths, which are easier to maintain and
more portable. For more information about abso lute and relative paths, see this Wikipedia article.

Generally, each unit test should test just one function or method at a time. Otherwise our code will produce fragile
tests, that may break as code is refactored. Our example is a special case, though. We're trying to match the input o f
writ e_list () with the output o f read_list () , and rewriting the implementation o f one function in our tests just to test the
other seems redundant.

You'll see an error marker on the impo rt f ileo ps line because we haven't created f ileo ps.py yet, so we can't run
this program.

Now, let's stub the functions in f ileo ps.py. The stubbed module provides functions with the correct interface, but no
functionality. We don't expect the tests to succeed when we run them, but if the stubbed module is correctly structured
we'll see failures rather than errors.

http://en.wikipedia.org/wiki/Path_%28computing%29

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write_list(fn, lst):
 """Writes a list to a named file. Each list item will be on
 a separate line. Overwrites the file if it already exists.
 """
 pass

def read_list(fn, lst):
 """Reads a list from a file without using readline.
 Uses standard line endings ("\n") to delimit list items.
 """
 pass

 Save f ileo ps.py, then run t est _f ileo ps.py. Your output will look like this:

OBSERVE: Output from running test_fileops.py with the stubbed module

EEE
==
ERROR: test_read_write_list (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 24, in test_read_write_lis
t
 self.verify_file(self.fixture_list)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 19, in verify_file
 observed = fileops.read_list(self.fixture_file)
TypeError: read_list() missing 1 required positional argument: 'lst'

==
ERROR: test_read_write_list_empty_strings (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 27, in test_read_write_lis
t_empty_strings
 self.verify_file(self.fixture_list_empty_strings)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 19, in verify_file
 observed = fileops.read_list(self.fixture_file)
TypeError: read_list() missing 1 required positional argument: 'lst'

==
ERROR: test_read_write_list_trailing_empty_strings (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 30, in test_read_write_lis
t_trailing_empty_strings
 self.verify_file(self.fixture_list_trailing_empty_strings)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 19, in verify_file
 observed = fileops.read_list(self.fixture_file)
TypeError: read_list() missing 1 required positional argument: 'lst'

--
Ran 3 tests in 0.016s

FAILED (errors=3)

The "E" reports indicate that there is some mismatch between the tests and the stub. You need to get rid o f any such
problems before you replace the stubs with real functionality. The error messages let us know that we're expecting too
many arguments in our read_list () function. Modify f ileo ps.py as shown:

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write_list(fn, lst):
 """Writes a list to a named file. Each list item will be on
 a separate line. Overwrites the file if it already exists.
 """
 pass

def read_list(fn, lst):
 """Reads a list from a file without using readline.
 Uses standard line endings ("\n") to delimit list items.
 """
 pass

 Save it, and then run t est _f ileo ps.py. All the tests fail with "F" now, but that's a good thing—it means that the
interfaces in the tests match those in the stubbed code. Your output will look something like this:

OBSERVE: Output from running test_fileops.py with the stubbed module

FFF
==
FAIL: test_read_write_list (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 24, in test_read_write_lis
t
 self.verify_file(self.fixture_list)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 21, in verify_file
 "%s does not equal %s" % (observed, fixture_list))
AssertionError: None != ['my', 'written', 'text'] : None does not equal ['my', 'written
', 'text']

==
FAIL: test_read_write_list_empty_strings (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 27, in test_read_write_lis
t_empty_strings
 self.verify_file(self.fixture_list_empty_strings)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 21, in verify_file
 "%s does not equal %s" % (observed, fixture_list))
AssertionError: None != ['my', '', '', 'written', 'text'] : None does not equal ['my',
'', '', 'written', 'text']

==
FAIL: test_read_write_list_trailing_empty_strings (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 30, in test_read_write_lis
t_trailing_empty_strings
 self.verify_file(self.fixture_list_trailing_empty_strings)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 21, in verify_file
 "%s does not equal %s" % (observed, fixture_list))
AssertionError: None != ['my', 'written', 'text', '', ''] : None does not equal ['my',
'written', 'text', '', '']

--
Ran 3 tests in 0.016s

FAILED (failures=3)

The FAIL messages include enough traceback to identify the specific lines that are causing problems in the tests, and
the error messages give you a pretty clear idea o f what needs to be fixed (hint: don't return "No ne" !)

So now, let's fill out the stubs with real code. Modify f ileo ps.py as shown:

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write_list(fn, lst):
 """Writes a list to a file. Each list item will be on a separate line.
 Overwrites the file if it already exists."""
 f = open(fn, "w")
 for item in lst:
 f.write("%s\n" % item)
 f.close()
 pass

def read_list(fn):
 """Reads a list from a file without using readline. Uses unix style line
 endings ("\n") to delimit list items."""
 f = open(fn, "r")
 s = f.read()
 f.close()
 l = s.split("\n")
 return l
 pass

This looks like it might work, so let's run our tests again. Bummer—more failures. Can you work out what the problem
is, using the information in the messages?

OBSERVE: Output from test_fileops.py after filling out the stub code in fileops.py

FFF
==
FAIL: test_read_write_list (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 24, in test_read_write_lis
t
 self.verify_file(self.fixture_list)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 21, in verify_file
 "%s does not equal %s" % (observed, fixture_list))
AssertionError: Lists differ: ['my', 'written', 'text', ''] != ['my', 'written', 'text'
]

First list contains 1 additional elements.
First extra element 3:

- ['my', 'written', 'text', '']
? ----

+ ['my', 'written', 'text'] : ['my', 'written', 'text', ''] does not equal ['my', 'writ
ten', 'text']

==
FAIL: test_read_write_list_empty_strings (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 27, in test_read_write_lis
t_empty_strings
 self.verify_file(self.fixture_list_empty_strings)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 21, in verify_file
 "%s does not equal %s" % (observed, fixture_list))
AssertionError: Lists differ: ['my', '', '', 'written', 'text', ''] != ['my', '', '', '
written', 'text']

First list contains 1 additional elements.
First extra element 5:

- ['my', '', '', 'written', 'text', '']
? ----

+ ['my', '', '', 'written', 'text'] : ['my', '', '', 'written', 'text', ''] does not eq
ual ['my', '', '', 'written', 'text']

==
FAIL: test_read_write_list_trailing_empty_strings (__main__.TestReadWriteFile)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_fileops.py", line 30, in test_read_write_lis
t_trailing_empty_strings
 self.verify_file(self.fixture_list_trailing_empty_strings)
 File "V:\workspace\FileHandling\src\test_fileops.py", line 21, in verify_file
 "%s does not equal %s" % (observed, fixture_list))
AssertionError: Lists differ: ['my', 'written', 'text', '', '', ''] != ['my', 'written'
, 'text', '', '']

First list contains 1 additional elements.
First extra element 5:

- ['my', 'written', 'text', '', '', '']
? ----

+ ['my', 'written', 'text', '', ''] : ['my', 'written', 'text', '', '', ''] does not eq
ual ['my', 'written', 'text', '', '']

--
Ran 3 tests in 0.047s

FAILED (failures=3)

If you examine the results carefully, you'll see that each observed result from the read_line() function contains an
extra empty string. The problem is that your writ e_list () function is inserting a newline after each line it writes. When
you read the file back in with the read_list () function, the split (" \n") method expects strings on either side o f each
delimiter, so an extra blank line appears.

We can write our code to anticipate those newlines, but we have to make sure that we our files are still handled
correctly in o ther ways. It's possible for a file, under certain circumstances, to be written without a final newline. The fix
should take that possibility into account and take action only when the final character in the file is a newline terminator.
Apply the fix as shown:

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write_list(fn, lst):
 """Writes a list to a file. Each list item will be on a separate line.
 Overwrites the file if it already exists."""
 f = open(fn, "w")
 for item in lst:
 f.write("%s\n" % item)
 f.close()

def read_list(fn):
 """Reads a list from a file without using readline. Uses unix style line
 endings ("\n") to delimit list items."""
 f = open(fn, "r")
 s = f.read()
 f.close()
 # If the last character in the file is a newline, delete it
 if s[-1] == "\n":
 s = s[:-1]
 l = s.split("\n")
 return l

 Run it again. Ah. Success! We finally see the correct result:

OBSERVE:

...
--
Ran 3 tests in 0.109s

OK

Good job.

Retrieving File and Path Name Information with os.path
The file system identifies files by name and location. The technical term for the name-and-location data is a path o r
path name. It details how to navigate through a sequence o f fo lders to the required file. You can extract information
from these path names by using the o s.pat h module. Different platforms have different path name conventions (fo r
example, Windows uses "\" as its path name separator while Unix-like operating systems use "/").

o s.pat h is actually just a reference to another module that is platform specific. When your system loads the o s
module, code in that module selects and loads the appropriate submodule as o s.pat h. On Windows, the submodule
being used behind the scenes is o s.nt pat h. It has the same interface as os.path, so you can use most functions
interchangeably. But using os.ntpath on its own means that you can only use Windows-style path names.
o s.po sixpat h is the path module for all operating systems that use Unix-style path names, such as Linux and OS X.

os.path contains utility functions for retrieving path name and file attribute information. Open an interactive session to

see what o s.pat h can do. We'll start out by creating a t emp direct o ry using its mkdir() function, and then go ahead
and use o ther features. In an interactive shell, type the code as shown:

INTERACTIVE SESSION:

>>> import os
>>> os.mkdir(r"v:\tmp")
>>> f1 = open(r"v:\tmp\file1.txt", "w")
>>> f2 = open(r"v:\tmp\file2.txt", "w")
>>> f1.close()
>>> f2.close()
>>> f1.name
'v:\\tmp\\file1.txt'
>>> f2.name
'v:\\tmp\\file2.txt'
>>> os.path.exists(f1.name)
True
>>> os.path.exists(f2.name)
True
>>> os.path.exists(r"v:\tmp\file3.txt")
False
>>> os.path.getmtime(f1.name)
1270492734.5412514
>>> os.path.getmtime(f2.name)
1270492746.6686897
>>> os.path.basename(f1.name)
'file1.txt'
>>> os.path.basename("v:\\tmp\\")
''
>>> name, extension = os.path.splitext(f1.name)
>>> name
'v:\\tmp\\file1'
>>> extension
'.txt'
>>> os.path.dirname(f1.name)
'v:\\tmp'
>>> os.path.split(f1.name)
('v:\\tmp', 'file1.txt')
>>> joined = os.path.join(r"v:\tmp", "file1.txt")
>>> joined
'v:\\tmp\\file1.txt'
>>> os.path.exists(joined)
True
>>> joined = os.path.join(os.path.dirname(f1.name), os.path.basename(f1.name))
>>> joined
'v:\\tmp\\file1.txt'
>>> os.path.abspath(r"v:\tmp\..\tmp\file1.txt")
'v:\\tmp\\file1.txt'

o s.pat h.exist s() returns T rue if the path passed as an argument actually exists. On some platforms, the return value
may differ based on file permissions and symbolic links.

o s.pat h.get mt ime() returns the amount o f time (in seconds) between your platform's epoch date (the origin o f time
for your particular platform—for example, fo r Windows, getmtime would return the number o f seconds since January
1st, 1601)—and the last time that a file was modified. get mt ime() is part o f a group o f functions that retrieves time
information from a file. get at ime() returns the last time the file was accessed and get ct ime() returns the time the file
was created (on Unix-like systems, this is actually the last time a file was changed). You can convert these times to
human-readable strings using functions from the t ime module, which we will look at later in this course.

As the module's name implies, o s.pat h contains functions for manipulating path names. o s.pat h.basename()
returns the last path name component without any slashes. You can consider the basename as you would an actual
filename component o f a full path. If the path supplied to basename() ends in a slash, an empty string will be returned
(because there is no filename component). To retrieve the path to the file, but not the file name itself, you can use
o s.pat h.dirname() .

Note

In the os.path.basename example, we can't create a raw string literal ending with a single backslash
(r"v:\tmp\"), so we instead used the non-raw string with double backslashes ("v:\\tmp\\"). Although
backslashes are mostly treated as normal characters in raw string literals rather than altering the
significance o f the fo llowing character, any fo llowing quote character is always treated as part o f the string
literal. This is so that quote characters can still appear in string literals. For more information, see this
stackoverflow article.

The o s.pat h.split () function returns a tuple. The tuple's first element is what dirname() would return; its second
element is what basename() would return.

o s.pat h.jo in() does the opposite o f split () ; it jo ins path components together into full path names. It will add a slash
between components where necessary, and you can give it as many arguments as you like. Jo ining the dirname()
and basename() o f a path gives back the original path.

Finding Path Names Using glob
So now you know how to read and write files, but what if you want to find a file? For that, you'll need the glo b()
function, which lives in the module o f the same name. glo b() finds paths that match a particular pattern. The symbols
and patterns in the table below are the same wildcards you might use in your command shell and many o ther places:

Symbo l Descript io n Example

? Match any single character exactly once. ?ar matches bar or tar, but not star.

* Match any number o f characters. *ar matches bar, tar, star and exemplar.

[characters or character
range]

Match exactly one character in a range or
set. [a-z]ar matches tar, but not star or 4ar

Now, using the interactive shell, we're go ing to create a directory containing the fo llowing files: t est 1.t xt , t est 2.t xt ,
t est 3.t xt , and ano t her.o ne . Let's see what glo b() can do with these files. Type this code into an interactive Python
conso le:

INTERACTIVE SESSION:

>>> for i in range(1,4):
... f = open(r"v:\tmp\test"+str(i)+".txt", "w")
... f.close()
...
>>> f = open(r"v:\tmp\another.one", "w")
>>> f.close()
>>> import glob
>>> os.chdir(r"v:\tmp")
>>> glob.glob("*.*")
['another.one', 'file1.txt', 'file2.txt', 'test1.txt', 'test2.txt', 'test3.txt']
>>> glob.glob("*.txt")
['file1.txt', 'file2.txt', 'test1.txt', 'test2.txt', 'test3.txt']
>>> glob.glob("*.one")
['another.one']
>>> glob.glob("test?.txt")
['test1.txt', 'test2.txt', 'test3.txt']
>>> glob.glob("test[1-2].txt")
['test1.txt', 'test2.txt']

As long as their names share a common pattern, you can access your chosen files. There are also ways to read all o f
the entries within a directory, or even to walk through an entire directory tree, but we'll address that in a later course.

An Application to Sort and Retrieve File Information
Let's try using the glo b and o s.pat h modules to create a function that returns a list o f the most recently modified files
from a particular path. It will take as arguments, the number o f files that we want returned, and the path where we'll look
for the files. You'll reuse and modify the module from our last example, so don't worry about error handling just yet. To
develop the good programming habits you're go ing to have, start out with some tests!

http://stackoverflow.com/questions/647769/why-cant-pythons-raw-string-literals-end-with-a-single-backslash

In the directory listing below, file.o ld is the o ldest o f the three listed files, and file.new the newest:

In your FileHandling pro ject, create a new file named t est _lat est .py as shown:

CODE TO TYPE:

import unittest
import latest
import time
import os

PATHSTEM = "v:\\workspace\\FileHandling\\src\\"

class TestLatest(unittest.TestCase):

 def setUp(self):
 self.path = PATHSTEM
 self.file_names = ["file.old", "file.bak", "file.new"]
 for fn in self.file_names:
 f = open(self.path+fn, "w")
 f.close()
 time.sleep(1)

 def test_latest_no_number(self):
 """
 Ensure that calling the function with no arguments returns
 the single most recently-created file.
 """
 expected = [self.path + "file.new"]
 latest_file = latest.latest(path=self.path)
 self.assertEqual(latest_file, expected,)

 def test_latest_with_args(self):
 """
 Ensure that calling the function with arguments of 2 and some
 directory returns the two most recently-created files in the directory.
 """
 expected = set([self.path + "file.new",
 self.path + "file.bak"])
 latest_files = set(latest.latest(2, self.path))
 self.assertEqual(latest_files, expected)

 def tearDown(self):
 for fn in self.file_names:
 os.remove(self.path + fn)

if __name__ == "__main__":
 unittest.main()

 Save it. You can't run the tests just yet—you need to have something to test first. The T est Lat est class, above,
defines two tests with common set Up and t earDo wn. The set Up will take a little longer than our previous tests,
because it needs to create three files with different creation times, and it sleeps fo r a second after setting up each file.

Note If you want to use these tests in a different location, change the code to suit the local environment by
modifying the PATHSTEM assignment.

Your unit tests show that your function should be able to take in arguments for the number o f recent files that you want
returned, and the path where it will look for your files. It should also work if you let your function use its default
arguments.

Now, let's create the lat est .py module for the test module to import:

CODE TO TYPE:

import glob
import os

def latest(num=1, path="."):
 pass

 Save it, and then run t est _lat est .py:

OBSERVE: Output from test_latest.py

FE
==
ERROR: test_latest_with_args (__main__.TestLatest)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_latest.py", line 34, in test_latest_with_arg
s
 latest_files = set(latest.latest(2, self.path))
TypeError: 'NoneType' object is not iterable

==
FAIL: test_latest_no_number (__main__.TestLatest)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_latest.py", line 25, in test_latest_no_numbe
r
 self.assertEqual(latest_file, expected,)
AssertionError: None != ['v:\\workspace\\file.new']

--
Ran 2 tests in 6.031s

FAILED (failures=1, errors=1)

What's wrong here? In this case, the issue is with the behavior o f the stub function. The stub function is returning
No ne , but the t est _lat est _wit h_args() test expects a list back from lat est .lat est () . We can fix that, but how?
Pause, ponder, and reflect on that fo r a minute before go ing on to the next part...

Okay, now let's see if you can get your tests to pass! Modify lat est .py as shown:

CODE TO TYPE:

import glob
import os

def latest(num=1, path="."):
 pass
 return []

 Save it and run t est _lat est .py.

OBSERVE:

FF
==
FAIL: test_latest_no_number (__main__.TestLatest)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_latest.py", line 25, in test_latest_no_numbe
r
 self.assertEqual(latest_file, expected,)
AssertionError: Lists differ: [] != ['v:\\workspace\\python2_Lesso...

Second list contains 1 additional elements.
First extra element 0:
v:\workspace\FileHandling\src\file.new

- []
+ ['v:\\workspace\\FileHandling\\src\\file.new']

==
FAIL: test_latest_with_args (__main__.TestLatest)
--
Traceback (most recent call last):
 File "V:\workspace\FileHandling\src\test_latest.py", line 35, in test_latest_with_arg
s
 self.assertEqual(latest_files, expected)
AssertionError: Items in the second set but not the first:
'v:\\workspace\\FileHandling\\src\\file.new'
'v:\\workspace\\FileHandling\\src\\file.bak'

--
Ran 2 tests in 6.047s

FAILED (failures=2)

Excellent! A little modification to the stub makes sure that your tests fail properly—without errors! The default
messages from the failed assertions contain lo ts o f detail to help you figure out why your tests are failing.

Now we need to make our tests pass. Edit lat est .py as shown:

CODE TO TYPE:

import glob
import os

def latest(num=1, path="."):
 files_with_dates = []
 files = glob.glob(os.path.join(path, "*"))
 latest_files = []
 for fn in files:
 files_with_dates.append((os.path.getmtime(fn), os.path.abspath(fn)))
 files_with_dates.sort()
 for file_info in files_with_dates[-num:]:
 latest_files.append(file_info[1])
 latest_files.reverse()
 return latest_files
 return []

The set Up() method (which is run before each test) needs to create three files with the right sequence o f creation
times. The test's set Up() method contains a sleep to make sure that the files' creation times differ by at least one
second.

Save it and run the test. Both tests should pass:

OBSERVE:

..
--
Ran 2 tests in 6.115s

OK

Nice.

The Value of Tests under Refactoring

Another technique used to produce the most recent files is list comprehension. List comprehensions reduce
the amount o f code in your program.

Note
Shorter code is not always better. Less code could lead to decreased readability. Readability is
one o f the most important attributes o f your code, and should only be sacrificed when
performance demands it. It's up to you to decide which way to go.

Let's try using list comprehensions. Modify lat est .py as shown:

CODE TO TYPE:

import glob
import os

def latest(num=1, path="."):
 files_with_dates = []
 files = glob.glob(os.path.join(path, "*"))
 dated_files = [(os.path.getmtime(fn), os.path.abspath(fn)) for fn in files]
 dated_files.sort()
 latest_files = [f for (d, f) in dated_files[-num:]]
 latest_files.reverse()
 return latest_files

The lat est () function uses a technique called "decorate-sort-undecorate" to achieve its goal. The file paths
need to be sorted by date, so it builds a list o f (dat e , f ilename) tuples, which Python can sort more easily
(the date is the "decoration" here, because it isn't required in the result, even though it's necessary for
sorting.) By default, the tuples are sorted into ascending order, so the paths o f the most recent files will be
located at the end.

http://www.python.org/dev/peps/pep-0202/

So, the algorithm (the set o f instructions for completing the task) extracts just the filenames o f the most recent
files, by using the negative index located in this chunk o f code:

[for file_info in files_with_dates[-num:]]

-num makes it go backwards through values o f num, then reverses the result, placing the most recent files at
the beginning. In o ther words, -num takes us backwards from end o f the list, by num elements (fo r example,
zoo[-5:] would start at the end o f zoo and move back five elements, then chop from there to the end o f the
list). So since the list o f files was sorted to get the most recently modified ones last, this clips o ff the num
most recent files and then shares them in o ldest-to-newest order.

When you run your tests, the one-second delay between file creations causes the run to take over six
seconds, but the output should be two successful tests.

 Save and run it. With the new lat est module, your tests still pass. All is well, and you can move ahead
feeling confident that nothing is broken (or at least nothing that you're testing for is broken).

Getting a Handle on Files
I'm glad to see you're becoming familiar with some of Python's high-level file handling features: the glo b module and
o s.pat h. To reiterate, the glo b module helps you to search for files using patterns, while o s.pat h helps to retrieve file
information, used to do various path name acrobatics—like getting the file name out o f a full path or splitting and
jo ining path names.

Now, what do pickles and shelves have in common? We'll find out in the next lesson—see you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Persistent Storage
Lesson Objectives

When you complete this lesson, you will be able to :

explain serialization and persistence modules.
pickle and unpickle various data types.
update values in a shelf.
implement the library class.

Persistent Storage
Python has modules that let you save Python objects. Saving an object actually takes two steps: serialization and
persistence. Serialization (sometimes called marshaling) is the process o f converting an object into a stream of bytes.
The stream of bytes can be a textual or binary representation o f the original object. Persistence means saving that
representation to some sort o f data store that lives beyond your program's execution time or interactive shell session.
Keep in mind that before you persist an object, it must be serialized. In this lesson, we'll explore these object
serialization and persistence modules:

pickle
shelve
json

Object Serialization and Persistence Using the pickle Module
Python's pickle module allows you to serialize objects and save them to a file. When using this module, pickling
refers to serialization and unpickling refers to deserialization. You can pickle the fo llowing data types:

None, True, False
integers, floating po int numbers, complex numbers
strings, bytes, bytearrays
tuples, lists, sets, and dictionaries containing only pickleable objects
built- in functions
functions defined at the top level o f a module (not nested within another class or function)
classes that are defined at the top level o f a module (not nested within another class or function)
instances o f such classes whose __dict__ or __setstate__() is pickleable

Let's try using pickle . We'll use pickle's dump() function to serialize a number o f objects and store them to the disk in
the first session. Create a Persist ent St o rage pro ject and assign it to your Pyt ho n2_Lesso ns working set.

In an interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> line1 = ["one", 2, 3.0]
>>> line2 = {"dict1": {"random": "stuff"}, "dict2": 2.0}
>>> f = open(r"v:\workspace\PersistentStorage\src\pickle1.pkl", 'wb')
>>> pickle.dump(line1, f)
>>> pickle.dump(line2, f)
>>> pickle.dump(None, f)
>>> f.close()
>>>

In the session above, you created a file (written in binary mode, so that the interpreter wouldn't modify the content) and
wrote three objects to it with pickle .dump() . In each dump() statement, the first argument is the object to dump, and
the second argument is the file to which the serialized version should be written. Now we'll use the pickle .lo ad()
function to read the serialized object back from the file. To demonstrate that the file we just created really is permanent,
close your current interactive interpreter conso le (click the red "Terminate" square) and open a new one for the next
part o f the exercise. Now, you can be sure that you're seeing exactly what another user would see.

Note You can also see the pickle1.pkl file we just created in the Package Explorer window. Select the
Persist ent St o rage/src fo lder and (if necessary) press the F5 key to refresh the view.

In an interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open(r"v:\workspace\PersistentStorage\src\pickle1.pkl", 'rb')
>>> for i in range(3):
... o = pickle.load(f)
... print(o)
...
['one', 2, 3.0]
{'dict1': {'random': 'stuff'}, 'dict2': 2.0}
None
>>> f.close()
>>>

When you open the files, the 'b' option is appended to the mode to deal with the files in binary mode. This is necessary
to ensure that a pickle can be moved from one computer to another with a different architecture (say, from an Intel-
based machine to a Power PC). In the fileops example from the previous lesson, you serialized data into a text fo rmat,
but the pickle module in Python 3 uses a binary format by default. You can take a peek at this fo rmat by calling read()
on an open pickle file.

You can also see from our example that it's possible to pickle several items, one after the o ther, to a file, and then read
them by repeated calls o f the pickle .lo ad() function. If you try to read past the end o f the file, pickle .lo ad() raises an
EOFErro r exception. In an interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> open(r"v:\workspace\PersistentStorage\src\pickle1.pkl", 'rb').read()
b'\x80\x03]q\x00(X\x03\x00\x00\x00oneq\x01K\x02G@\x08\x00\x00\x00\x00\x00\x00e.\x80\x03
}q\x00(X\x05\x00\x00\x00dict1q\x01}q\x02X\x03\x00\x00\x00barq\x03X\x03\x00\x00\x00bazq\
x04sX\x05\x00\x00\x00dict2q\x05G@\x00\x00\x00\x00\x00\x00\x00u.\x80\x03N.'
>>>

This binary format is actually pretty compact, especially fo r more complex data structures. The trade-off is that it's not
very human readable. We have omitted some of the text to avo id putting a single, very long line in the listing, which
would have made it even more difficult to read. Unlike your fileops module data, which was easy to understand as text,
editing our latest file by hand would be highly impractical. Programs in o ther languages probably won't be able to read
this fo rmat, because it's been designed exclusively fo r Python use.

In fact, some o lder versions o f Python might not be able to read this fo rmat. There are actually four different pickle
pro toco ls—versions 0 through 3. Version 3 is the default pro toco l used when pickling an object in Python 3, and it's
the one that's currently recommended. You can, however, specify which pro toco l to use as a third argument to the
dump() function. If you're curious about which formats your version o f Python can read, or determining your current
default fo rmat, that information can be found in the pickle module. More readable information about a pickle file is
located in the picklet o o ls module. In an interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> import pickletools
>>> pickle.format_version
'4.0'
>>> pickle.compatible_formats
['1.0', '1.1', '1.2', '1.3', '2.0', '3.0', '4.0']
>>> f = open(r"v:\workspace\PersistentStorage\src\pickle1.pkl", 'rb')
>>> pickletools.dis(f)
 0: \x80 PROTO 3
 2:] EMPTY_LIST
 3: q BINPUT 0
 5: (MARK

 6: X BINUNICODE 'one'
 14: q BINPUT 1
 16: K BININT1 2
 18: G BINFLOAT 3.0
 27: e APPENDS (MARK at 5)
 28: . STOP
highest protocol among opcodes = 2
>>> pickletools.dis(f)
 29: \x80 PROTO 3
 31: } EMPTY_DICT
 32: q BINPUT 0
 34: (MARK
 35: X BINUNICODE 'dict1'
 45: q BINPUT 1
 47: } EMPTY_DICT
 48: q BINPUT 2
 50: X BINUNICODE 'random'
 58: q BINPUT 3
 60: X BINUNICODE 'stuff'
 68: q BINPUT 4
 70: s SETITEM
 71: X BINUNICODE 'dict2'
 81: q BINPUT 5
 83: G BINFLOAT 2.0
 92: u SETITEMS (MARK at 34)
 93: . STOP
highest protocol among opcodes = 2
>>> pickletools.dis(f)
 94: \x80 PROTO 3
 96: N NONE
 97: . STOP
highest protocol among opcodes = 2
>>>>>> f.close()

In our example, pickle has no problem with native data types. The output from picklet o o ls.dis() gives us some
insight into the way the module stores the data structures, but you don't need to understand serialization format to be
able to pickle things. So, what if you wanted to pickle an instance o f a class that you wrote? Let's give it a try. In an
interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> class Example:
... def __init__(self):
... self.item1 = None
... def item2(self):
... return "instance variable item1 is %s" % (self.item1)
...
>>> sample1 = Example()
>>> sample1.item1 = "a string"
>>> sample1.item2()
'instance variable item1 is a string'
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'wb')
>>> pickle.dump(sample1, f)
>>> f.close()

So far, your sample1.pkl file contains the serialized instance o f the Example class.

 Now, terminate the conso le session and open a new interactive one (this is important—you don't want the class
definition to continue to be available from your previous session) and try unpickling the Example instance. In the
conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'rb')
>>> sample1 = pickle.load(f)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "C:\Python31\lib\pickle.py", line 1356, in load
 encoding=encoding, errors=errors).load()
AttributeError: 'module' object has no attribute 'Example'
>>>

What happened here? You can definitely pickle an object instantiated from your own class, but trying to load your
pickled object caused an exception. So, classes that are defined at the top level o f a module—that is, classes that are
not defined in another class or function—can be pickled.

pickle does not include the actual code o f the class used to create the instance when serializing an object, it only
includes a reference to the class and the module from where it o riginated. The original module where the class was
defined must be exportable into the unpickling environment.

In the listing above, the class Example couldn't be found because it was defined in a previous interactive shell
session, so sample1 was identified as an instance o f class __main__.Example . The unpickling module was
correctly named "__main__" (as all interactive sessions are), but there was no class Example there.

We'll fix the error by writing the class in a module that can be imported from your interactive shell sessions. To avo id
having to tinker with your Python path, create your module and start your interactive shell session in the same path.
Everything should work if you create example.py in the Persist ent St o rage/src directory. Type the code below as
shown:

CODE TO TYPE:

class Example:
 def __init__(self):
 self.item1 = None
 def item2(self):
 return "instance variable item1 is %s" % (self.item1)

Now you have the Example class available in a module. You can use it to create a pickle file in an interactive session.
After you've written the pickle file out, you can use picklet o o ls as before to see the class encoded in the file. The
module and class names appear together. In an interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> from example import Example
>>> obj = Example()
>>> obj.item1 = "some text"
>>> obj.item2()
'instance variable item1 is some text'
>>> obj
<example.Example object at 0x00E51ED0>
>>> import pickle
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'wb')
>>> pickle.dump(obj, f)
>>> f.close()
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'rb')
>>> import pickletools
>>> pickletools.dis(f)
 0: \x80 PROTO 3
 2: c GLOBAL 'example Example'
 19: q BINPUT 0
 21:) EMPTY_TUPLE
 22: \x81 NEWOBJ
 23: q BINPUT 1
 25: } EMPTY_DICT
 26: q BINPUT 2
 28: X BINUNICODE 'item1'
 38: q BINPUT 3
 40: X BINUNICODE 'some text'
 54: q BINPUT 4
 56: s SETITEM
 57: b BUILD
 58: . STOP
highest protocol among opcodes = 2
>>>

 Again, you'll want to terminate the interactive session and start a new one to make sure that the next session is
completely iso lated from earlier sessions. In the Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'rb')
>>> obj = pickle.load(f)
>>> f.close()
>>> obj
<example.Example object at 0x00E51CD0>
>>> obj.item1
'some text'
>>> obj.item2()
'instance variable item1 is some text'
>>> import sys
>>> sys.modules['example']
<module 'example' from 'V:\workspace\PersistentStorage\src\example.py'>
>>>

You can see from the value o f sys.mo dules['example '] that the example module was imported when the class
description was unpickled. The pickle contains the name of the module from which the class was imported, and the
interpreter repeats the import to make sure that the required class is available.

Now change the example.py file name to example1.py, so it will no t be importable under the same name. Do this
using the context menu—move the cursor over your example.py file in the Pydev Package Explorer window, right-
click the filename and select Ref act o r | Rename . Enter the new name example1.py and click OK.

If you repeat the unpickling from the previous session, you will see that it still works, despite renaming the file. Type
these commands in an interactive Python conso le:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'rb')
>>> obj = pickle.load(f)
>>>

Why does this still succeed? When a module is imported, the interpreter creates a compiled Python file, and even
though you have renamed example.py, the example.pyc file still exists. This is enough for the interpreter to import
the example module. You have to make sure that the compiled version o f the file under the original name is removed.
Right-click the Persist ent St o rage\src directory, and select PyDev | Remo ve *.pyc, *.pyo and *$py.class f iles.
You'll have to confirm the actions, after which Ellipse will tell you how many files it has deleted (don't worry if there is
more than one—the interpreter can recreate these files as necessary).

Finally, start another new Python conso le and repeat the unpickling from the last session. In the new interactive Python
window, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'rb')
>>> obj = pickle.load(f)
Traceback (most recent call last):
 File "<console>", line 1, in <module>

ImportError: No module named 'example'
>>>

The interpreter can no longer unpickle the object, because it cannot locate the module that defines the required class.

So far, we have used functions from the pickle module to handle the pickling and unpickling o f objects. The module
also defines a Pickler class, which lets us create objects. The next example session shows what happens when we
try to unpickle too many objects from an Unpickler instance. In an interactive Python conso le, type the commands
below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> b = ['teeter', 'totter']
>>> a = {'mytoy': b}
>>> f = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'wb')
>>> pickler = pickle.Pickler(f)
>>> pickler.dump(a)
>>> pickler.dump(b)
>>> f.close()
>>> ff = open(r'v:\workspace\PersistentStorage\src\sample1.pkl', 'rb')
>>> unpickler = pickle.Unpickler(ff)
>>> aa = unpickler.load()
>>> bb = unpickler.load()
>>> aa
{'mytoy': ['teeter', 'totter']}
>>> bb
['teeter', 'totter']
>>> aa['mytoy'] is b
False
>>> extra = unpickler.load()
Traceback (most recent call last):
 File "<console>", line 1, in <module>
EOFError: Ran out of input
>>>

The Pickler and Unpickler classes are alternatives to calling the dump() and lo ad() functions directly from the
pickle module. You can instantiate a Pickler object by passing a file object into the Pickler constructor. From there, you
can call the instance's own dump() method to store objects into the same file over and over. The Unpickler class
has a corresponding lo ad() method that unpickles objects from the given file sequentially. When we tried to unpickle
more objects than were present in the file, the EOFErro r was raised.

The shelve Module
Using Pickler and Unpickler classes allows us to store multiple objects in a single file. Although pickling individual
objects with these classes is fairly straightforward, storing and retrieving multiple objects in one file is not completely
documented, and the interface is limited (retrieving objects has to be done sequentially, and there's no obvious way to
determine how many objects are pickled). An alternative is to use the shelve module to create a "shelf," which is a
persistent dictionary o f objects.

You can store objects in a shelf using a key, and then retrieve them with the same key, just like you would with a
dictionary. The keys must be encodable as strings—anything else will raise an exception—but the values can be
anything that can be pickled (shelve uses pickle as its underlying mechanism for serializing objects). Although it has a
good interface for storing and retrieving objects, keep in mind that the shelf contents are stored on disk, not in memory,

as are copies o f the objects.

To create a shelf object, pass a file name to the shelve.o pen() function. If the file doesn't exist, it will be created for
you as an empty shelf. The shelf object resulting from the call to shelve.o pen() can be used like a dictionary. Use
keys to store and retrieve objects. Keys that don't exist will raise an exception. The example below uses the Example
class from the example module that you created earlier in this lesson. Make sure you start the interactive shell in the
path where that module lives. Before your proceed, rename example1.py back to example.py. In an interactive
Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import shelve
>>> from example import Example
>>> a = [1, 2, 3]
>>> b = Example()
>>> b.item1 = 'some text'
>>> a
[1, 2, 3]
>>> b
<example.Example object at 0x00E677D0>
>>> b.item2()
'instance variable item1 is some text'
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf.shlf')
>>> shelf['a'] = a
>>> shelf['b'] = b
>>> shelf.close()

 Terminate the conso le and start a new one. In the new interactive Python conso le, type the commands below as
shown:

INTERACTIVE SESSION:

>>> import shelve
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf.shlf')
>>> shelf['a']
[1, 2, 3]
>>> shelf['b']
<example.Example object at 0x00EF14B0>
>>> shelf['b'].item2()
'instance variable item1 is some text'
>>> shelf['z']
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "C:\python\lib\shelve.py", line 112, in __getitem__
 f = BytesIO(self.dict[key.encode(self.keyencoding)])
 File "C:\python\lib\dbm\dumb.py", line 124, in __getitem__
 pos, siz = self._index[key] # may raise KeyError
KeyError: b'z'
>>> shelf.close()

If the filename supplied to o pen() does not exist, the file is created. Be careful, though—if a file does exist, you could
be writing to a shelf that contains existing objects without knowing it. Also , the filename that you specify is the base
filename for the actual file or files that store the shelves' data. Multiple files with various extensions (the ones you
usually see are .dat , .dir and .bak) may be created when you use shelve , so don't be surprised if you find more files
than you initially expected.

Shelve objects do not automatically close themselves; you must explicitly call the clo se() method. However,
fo rgetting to call clo se() does not necessarily mean that your shelve assignments don't get written. Also, indexing into
a shelve object yields a copy of the stored object, no t a reference to the original object. In an interactive Python conso le,
type the commands below as shown:

INTERACTIVE SESSION:

>>> import shelve
>>> a = [1, 2, 3]
>>> b = ['my', 'random', 'text']
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf2.shlf')
>>> shelf['a'] = a
>>> shelf['b'] = b
>>> shelf.close()
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf2.shlf')
>>> shelf['a']
[1, 2, 3]
>>> shelf['b']
['my', 'random', 'text']
>>> shelf['a'].append(4)
>>> shelf['a']
[1, 2, 3]
>>> a = shelf['a']
>>> a
[1, 2, 3]
>>> a.append(4)
>>> a
[1, 2, 3, 4]
>>> shelf['a'] = a
>>> shelf['a']
[1, 2, 3, 4]
>>> shelf.close()
>>>

One way to update values in a shelf is to take a copy o f the object, change the copy, and reassign that new object to the
key to persist it. That seems like a lo t o f code to write fo r an update!

You can change shelf values more easily by passing an extra keyword argument, writ eback=T rue , to shelve's
o pen() function. writ eback=T rue causes shelve to cache access in memory. When the shelf's sync() o r clo se()
methods are called, the cache is synced back to the actual file. In an interactive Python conso le, type the commands
below as shown:

INTERACTIVE SESSION:

>>> import shelve
>>> a = [1, 2, 3]
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf3.shlf')
>>> shelf['a'] = a
>>> shelf.close()
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf3.shlf', writeback=
True)
>>> shelf['a']
[1, 2, 3]
>>> shelf['a'].append(4)
>>> shelf['a']
[1, 2, 3, 4]
>>> shelf.sync()
>>> shelf.close()
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf3.shlf')
>>> shelf['a']
[1, 2, 3, 4]
>>>

The downside to using writ eback is that memory usage is high because o f the cache used. Also, because all o f the
writes are performed on either sync() o r clo se() , those operations will take longer, depending on how many changes
need to be written. Finally, as mentioned in the introduction to this section, shelve does not maintain references when it

persists objects. In an interactive Python conso le, type the commands below as shown:

INTERACTIVE SESSION:

>>> import shelve
>>> b = ['my', 'random']
>>> a = {'myref':b}
>>> a
{'myref': ['my', 'random']}
>>> b.append('text')
>>> b
['my', 'random', 'text']
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf4.shlf')
>>> shelf['a'] = a
>>> shelf['b'] = b
>>> shelf.close()
>>> shelf = shelve.open(r'v:\workspace\PersistentStorage\src\myshelf4.shlf', writeback=
True)
>>> shelf['a']
{'myref': ['my', 'random', 'text']}
>>> shelf['b']
['my', 'random', 'text']
>>> shelf['b'].append('rules')
>>> shelf['b']
['my', 'random', 'text', 'rules']
>>> shelf['a']
{'myref': ['my', 'random', 'text']}
>>>

This makes the shelf a little more like a standard dictionary. That's why many programmers prefer to use shelf in this
mode. If your programs terminate in an uncontro lled way, there's a chance that your changes will be lost before they
are saved on disk.

Library Project
Now that you've seen some of shelve's capabilities, you can use it to store persistent data in your applications. We'll
build a Library class that lets us keep track o f books in a persistent data store. We'll also implement methods that let
us retrieve a book from our Library class, using its ISBN, title, o r author. Let's start with some t est s to help us look up
the books. There is one test method for each o f those three ways o f retrieving a book.

For the tests to have meaning, there must be a library to ho ld the test data. Such a library is established in the set Up()
method, before each test is performed, and then deleted—perhaps a little too enthusiastically—in the t earDo wn()
method. Eventually, the library would likely become an external store, but fo r our test purposes, the "fixture" that the
code provides is fine. Create t est _library.py below as shown:

CODE TO TYPE:

import unittest
import library
import os
import glob

class TestLibrary(unittest.TestCase):
 def setUp(self):
 self.lib_fn = r'v:\workspace\PersistentStorage\src\lib.shelve'
 self.lib = library.Library(self.lib_fn)
 self.fixture_author1 = library.Author('Octavia', 'Estelle', 'Butler')
 self.fixture_book1 = library.Book('0807083100', 'Kindred',
 [self.fixture_author1])
 self.fixture_author2 = library.Author('Robert', 'Anson', 'Heinlein')
 self.fixture_book2 = library.Book('0441790348',
 'Stranger in a Strange Land', [self.fixture_author2])
 self.lib.add(self.fixture_book1)
 self.lib.add(self.fixture_book2)

 def testGetByIsbn(self):
 observed = self.lib.get_by_isbn(self.fixture_book1.isbn)
 self.assertEqual(observed, self.fixture_book1)

 def testGetByTitle(self):
 observed = self.lib.get_by_title(self.fixture_book2.title)
 self.assertEqual(observed, self.fixture_book2)

 def testGetByAuthor(self):
 observed = self.lib.get_by_author(self.fixture_book1.authors[0])
 self.assertEqual(observed, self.fixture_book1)

 def tearDown(self):
 self.lib.close()
 shelve_files = glob.glob(self.lib_fn + '*')
 for fn in shelve_files:
 os.remove(fn)

if __name__ == "__main__":
 unittest.main()

In addition to the Library class, there are two o ther classes in the tests—Book and Author. The Book and Author
classes are already implemented. These classes contain some special methods (methods that are surrounded by
underscores) that will facilitate the development o f your Library class. Implementing the special __eq__() method
allows objects to be compared using the == operator. The __dict __() attribute contains all o f the attributes o f an
object. The combination o f the __eq__ method and __dict__ can be used to compare two instances o f the same class.
Implementing __eq__() allows you to use the == operator to determine whether two instances o f an Author or Book
object are the same. As you might have guessed, the != operator is handled by the __ne__() method.

a == b can be considered equivalent to a.__eq__(b) :

With Book and Author already written, your job is to implement the library class. Here's a version with stubbed
methods. In library.py, type the code below as shown:

CODE TO TYPE:

import shelve

class Library:
 def __init__(self, fn):
 pass

 def add(self, book):
 pass

 def get_by_isbn(self, isbn):
 pass

 def get_by_title(self, title):
 pass

 def get_by_author(self, author):
 pass

 def close(self):
 pass

class Book:
 def __init__(self, isbn, title, authors):
 self.isbn, self.title, self.authors = isbn, title, authors

 def __eq__(self, other):
 if type(other) is type(self):
 return self.__dict__ == other.__dict__
 return False

 def __ne__(self, other):
 return not self.__eq__(other)

class Author:
 def __init__(self, first_name, middle_name, last_name):
 self.first_name, self.middle_name, self.last_name = first_name, middle_name, la
st_name

 def __eq__(self, other):
 if type(other) is type(self):
 return self.__dict__ == other.__dict__
 return False

 def __ne__(self, other):
 return not self.__eq__(other)

 Run your tests; all three should fail:

OBSERVE: Output from test_library.py

FFF
==
FAIL: testGetByAuthor (__main__.TestLibrary)
--
Traceback (most recent call last):
 File "V:\workspace\PersistentStorage\src\test_library.py", line 29, in testGetByAutho
r
 self.assertEqual(observed, self.fixture_book1)
AssertionError: None != <library.Book object at 0x00B833F0>

==
FAIL: testGetByIsbn (__main__.TestLibrary)
--
Traceback (most recent call last):
 File "V:\workspace\PersistentStorage\src\test_library.py", line 21, in testGetByIsbn
 self.assertEqual(observed, self.fixture_book1)
AssertionError: None != <library.Book object at 0x00B83CF0>

==
FAIL: testGetByTitle (__main__.TestLibrary)
--
Traceback (most recent call last):
 File "V:\workspace\PersistentStorage\src\test_library.py", line 25, in testGetByTitle
 self.assertEqual(observed, self.fixture_book2)
AssertionError: None != <library.Book object at 0x00BC1550>

--
Ran 3 tests in 0.031s

FAILED (failures=3)

Use the shelve module to implement the missing features. It's not as much code as you might think. Modify your
Library class as shown:

CODE TO TYPE:

class Library:
 def __init__(self, fn):
 pass
 self.fn = fn
 self.shelf = shelve.open(fn)

 def add(self, book):
 pass
 self.shelf[book.isbn] = book

 def get_by_isbn(self, isbn):
 pass
 return self.shelf[isbn]

 def get_by_title(self, title):
 pass
 for book in self.shelf.values():
 if book.title == title:
 return book
 return None

 def get_by_author(self, author):
 pass
 for book in self.shelf.values():
 for a in book.authors:
 if a == author:
 return book
 return None

 def close(self):
 pass
 self.shelf.close()

class Book:
 def __init__(self, isbn, title, authors):
 self.isbn, self.title, self.authors = isbn, title, authors

 def __eq__(self, other):
 if type(other) is type(self):
 return self.__dict__ == other.__dict__
 return False

 def __ne__(self, other):
 return not self.__eq__(other)

class Author:
 def __init__(self, first_name, middle_name, last_name):
 self.first_name, self.middle_name, self.last_name = first_name, middle_name, la
st_name

 def __eq__(self, other):
 if type(other) is type(self):
 return self.__dict__ == other.__dict__
 return False

 def __ne__(self, other):
 return not self.__eq__(other)

All your tests pass. Those passing tests indicate that Book implementation is working. Check it out:

OBSERVE:

...
--
Ran 3 tests in 2.204s

OK

The tests take a significant amount o f time to run, whereas before, when all our tests failed, it took almost no time at all.
Taking notice o f these things during early testing can help you avo id an unpromising line o f development (though
sometimes you want to proceed anyway, to prove a line o f reasoning correct).

The JSON Serialization Format and the json Module
pickle and shelve are great fo r saving objects into persistent storage for o ther Python programs (that can read and
write the same pickle pro toco l), but there are times when we need to save or transmit objects to programs written in a
different language. If we want a human readable, cross-platform and cross-language serialization format, we can use
JSON. JSON is actually a subset o f JavaScript's object literal syntax. Although it was derived from JavaScript, json
parsers exist fo r many languages. In fact, Python 3 comes with a built- in JSON parser.

The full details o f the JSON syntax are beyond the scope o f this course, but if you take a look at an example, you'll see
that it is similar to nested Python lists and dicts. If you want to know more about JSON, visit the JSON website.

OBSERVE: JSON example

{
 "foo":"bar",
 "baz":[
 1,
 2,
]
}

If you wanted to serialize a file object or an instance o f your custom class, you would have to define a serialization
method or function o f your own. Even so, JSON is incredibly useful fo r exchanging data between programs. You can
play around with JSON using Python's jso n module. In an interactive Python conso le, type the commands below as
shown:

INTERACTIVE SESSION:

>>> import json
>>> a = [1, 2, 3]
>>> b = ['my', 'text']
>>> c = {'a':a, 'b':b, 'none':None, 'true':True}
>>> json.dumps(c)
'{"a": [1, 2, 3], "none": null, "b": ["my", "text"], "true": true}'
>>> d = json.loads(json.dumps(c))
>>> d['a']
[1, 2, 3]
>>> d['b']
['my', 'text']
>>> d['none']
>>> d['true']
True
>>>

Just like pickle, the json module has dump() and lo ad() functions. But you'll no tice that in the example, you used
dumps() and lo ads()—both with an "s" at the end. These methods serialize and unserialize an object to and from the
json text fo rmat, but rather than persisting an object by writing to a file, o r reading from persistent object stores (files),
these functions produce and consume strings. Typically, json is used when transmitting or exchanging data over the
web. The producers and consumers do not share the same file store; instead they send messages over the network.
Consequently, it's more common to serialize objects fo r transmission, rather than persist them in a file when using the

http://www.json.org/

json module.

Note
Both dumps() and lo ads() functions can be found in the pickle module. They can be used for
serialization there, without persistence for content. (The pickle is usually a convenient fo rmat when two
Python programs communicate).

JSON defines a few primitive data types—strings, numbers, and boo leans, as well as objects and arrays. Curly
brackets signify an object. Like Python dicts, JSON objects contain a comma-separated list o f co lon-separated
key/value pairs. The values o f objects can be any o f the types supported by JSON. Arrays, like Python lists, are
delimited by square brackets and elements are comma-separated. Like objects, the elements can be o f any type
supported by JSON. Well-fo rmatted jso n is not difficult to read. But you may already notice a major drawback with this
format—it cannot map every Python type. The supported Python-to-JSON data type mappings are:

Pyt ho n JSON

dict object

list, tuple array

str string

int, float number

True true

False false

None null

A Brief Rundown
Serialization means taking a Python object and turning it into a string o f bits—either a text or binary format.
Deserialization is recreating an object from a text or binary representation o f an object. Serialization and
deserialization are necessary steps for persistent storage and retrieval o f Python objects. Python has a few built- in
modules that help deal with serialization and persistence. The pickle module lets you serialize, deserialize, and
persist Python objects in a binary format that—for the most part—only Python programs can understand. The shelve
module uses the pickle format to store several Python objects using a dictionary-like interface. The json module lets
you serialize many o f Python's native data types into JSON—a text fo rmat that's a subset o f JavaScript's object literal
syntax. Each serialization and persistence module has its own place. If you're writing a Python application that needs
to save a complex data structure's state efficiently (like a game or a text edito r), pickle or shelve may be your so lution. If
you're looking to o ffer a feed o f data to the web, where your clients can be written in any number o f various languages,
you would use the json module.

Nice job on this lesson! Keep it up. (And you can thank me later fo r avo iding any o f a number o f bad pickle joke
opportunities.) See you in the next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Archives
Lesson Objectives

When you complete this lesson, you will be able to :

read and write archive files.
use the tarfile module.
use the zipfile module.
read zip files.
read tar files.

Reading and Writing Archives Using tarfile and zipfile
Python has two modules for handling archive files. An archive file is a file that contains an entire directory tree, as well
as information about the directory tree itself. An archive file is not a directory; it is a single file which may encapsulate
an entire directory tree though, which makes it useful fo r shipping filestore content from one place to another.

Python supports two archive file fo rmats: zip and tar. Zip files can store compressed versions o f files in a directory
tree. Tar files are an archival fo rmat; they can be compressed using gzip or bzip2. Python can read both regular and
compressed tar files (.tar.gz, .tgz, .tar.bz2, or .tbz).

The zipf ile and t arf ile modules are used for reading and writing zip and tar files, respectively. Let's take a quick look
at these modules; fire up an interactive conso le. You'll use some of what you learned earlier to prepare a directory to
archive. Let's start with t arf ile . Create the Archives pro ject, assign it to the Pyt ho n2_Lesso ns working set, start an
interactive conso le session, and enter the commands as shown:

INTERACTIVE SESSION:

>>> import os
>>> import tarfile
>>> import glob
>>> import shutil
>>> filenames = ["larry", "curly", "moe"]
>>> path = r"v:\workspace\Archives\src\archive_me"
>>> os.mkdir(path)
>>> for fn in filenames:
... f = open(os.path.join(path, fn), "w")
... f.close()
...
>>> glob.glob(os.path.join(path, "*"))
['v:\\workspace\\Archives\\src\\archive_me\\larry', 'v:\\workspace\\Archives\\src\\arch
ive_me\\curly', 'v:\\workspace\\Archives\\src\\archive_me\\moe']
>>> archive_fn = r"v:\workspace\Archives\src\archive_me\my_archive.tar"
>>> tf = tarfile.open(archive_fn, "w")
>>> tf.add(path)
>>> tf.close()
>>> tf = tarfile.open(archive_fn)
>>> tf.list()
-rwxrwxrwx root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/
-rw-rw-rw- root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/l
arry
-rw-rw-rw- root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/c
urly
-rw-rw-rw- root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/m
oe
>>> tf.close()
>>> archive_fn_compressed = archive_fn + ".gz"
>>> tf = tarfile.open(archive_fn_compressed, "w:gz")
>>> tf.add(path)
>>> tf.close()
>>> tf = tarfile.open(archive_fn_compressed)
>>> tf.list()
-rwxrwxrwx root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/
-rw-rw-rw- root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/l
arry
-rw-rw-rw- root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/c
urly
-rw-rw-rw- root/root 0 2010-05-28 19:03:27 workspace/Archives/src/archive_me/m
oe
-rw-rw-rw- root/root 10240 2011-05-17 13:50:12 workspace/Archives/src/archive_me/m
y_archive.tar
>>> tf.close()
>>> os.path.getsize(archive_fn)
10240
>>> os.path.getsize(archive_fn_compressed)
209
>>>

WARNING

In these examples, we use "*" to add all files in a fo lder to an archive. If the archive is in the same
fo lder, this can cause a serious problem when you do it again, and repeatedly, because the
archive itself will be added to the archive, and you can therefore find youself in an infinite loop
creating an infinitely large archive! While it works in our limited examples, you should avo id this
practice when you do real work with archives.

Before cleanup, look for these files in the Package Explorer. You may need to refresh the fo lder view in Package
Explorer (right-click the fo lder name and select Ref resh).

Then, enter this command in the interactive Python conso le, as shown:

INTERACTIVE SESSION:

>>>shutil.rmtree(path)
>>>

Just like the built- in o pen() function, tarfile's o pen() function accepts a file name and a mode. But tarfile's modes are
a bit more complicated. In addition to r, w, and a fo r mode (read, write, and append), you must also consider access
type and compression:

Access T ype Symbo l Descript io n

Block Mode : (co lon) Opens an actual file on disk

Stream Mode | (pipe) Opens a stream, socket, o r pipe

Co mpressio n Symbo l

GZip gz

BZip2 bz2

Blo ck mo de and no co mpressio n are the defaults. In our example, you used both w and w:gz to write out your tar
files. The second version specifies that your tar file is compressed. At the end o f your listing, where you compared the
file sizes o f the compressed and uncompressed archive file, the compressed version is significantly smaller.

Once you've opened your tar file fo r writing, you can use its add() method to add files to the archive. add() can take
both filenames and directories, and by default, it adds directories recursively—if you have subdirectories in the path that
you pass into add() , those subdirectories are also added to the archive. You can read tar files by using o pen() in read
(r) mode. This is the default mode, so in the interactive shell session, we omitted the mode argument. Once you've
opened a tar file, you can list its contents with the file's list () method. You can also extract its contents using its
ext ract () o r ext ract all() method.

Also, we used a function called rmt ree() from the shut il module, to remove the directory.

Now we'll take a look at the zipf ile module. Again, we'll use the file's name and the mode in which we open it to create
an interface with zip files. But, instead o f a function, the zipfile module o ffers a Z ipFile class constructor. In an
interactive shell session for zipfile, type the commands below as shown:

INTERACTIVE SESSION:

>>> import os, tarfile, glob, shutil, zipfile
>>> filenames = ["groucho", "harpo", "chico"]
>>> path = r"v:\workspace\Archives\src\archive_me"
>>> os.mkdir(path)
>>> for fn in filenames:
... f = open(os.path.join(path, fn), "w")
... f.close()
...
>>> glob.glob(os.path.join(path, "*"))
['v:\\workspace\\Archives\\src\\archive_me\\groucho', 'v:\\workspace\\Archives\\src\\ar
chive_me\\harpo', 'v:\\workspace\\Archives\\src\\archive_me\\chico']
>>> archive_fn = r"v:\workspace\Archives\src\archive_me\my_archive.zip"
>>> zf = zipfile.ZipFile(archive_fn, "w")
>>> filenames = glob.glob(os.path.join(path, "*"))
>>> for fn in filenames:
... zf.write(fn)
...
>>> zf.close()
>>> zf = zipfile.ZipFile(archive_fn)
>>> zf.namelist()
['workspace/Archives/src/archive_me/groucho', 'workspace/Archives/src/archive_me/harpo'
, 'workspace/Archives/src/archive_me/chico', 'workspace/Archives/src/archive_me/my_arch
ive.zip']
>>> #clean up. (Again, you can check the Package Explorer first to see that the files w
ere created.)
...
>>> zf.close()
>>> shutil.rmtree(path)

Note This time, fo r the sake o f convenience, we added all o f our imports in one line!

One major difference between t arf ile and zipf ile is the method used to open the files—with zipfile, we use the class
constructor instead o f an o pen() method on an instance. As mentioned above, zip archives may contain compressed
files. By default, files are stored uncompressed. To compress files, we'd pass a third argument to the class constructor
—zipf ile .Z IP_DEFLAT ED.

Unlike tarfile's add() method, ZipFile's writ e() method does not add files to the archive recursively. That's why we had
to use glo b() to get all o f the files before writing them to our archive. (We'd have had to use o s.pat h.walk o r some
similar functionality if there had been subdirectories to process).

You can read in a zip file by passing only the filename to the ZipFile constructor. The namelist () method lists all o f the
files in the archive and, just as in tarfile, the ext ract () method will uncompress and extract the files from the archive.
Here's a quick comparison o f zipfile and tarfile:

Funct io n t arf ile zipf ile

Open for Writing tarfile.open(fn, "w") zipfile.ZipFile(fn, "w")

Open for Writing Compressed tarfile.open(fn, "w:gz") zipfile.ZipFile(fn, "w", zipfile.ZIP_DEFLATED)

Open for Reading tarfile.open(fn) zipfile.ZipFile(fn)

Add a File to the Archive tarfile.add(path) zipfile.ZipFile.write(path)

List Files in an Archive tarfile.list() zipfile.ZipFile.namelist()

Extract Files
tarfile.extract()
or
tarfile.extractall()

zipfile.ZipFile.extract()
or
zipfile.ZipFile.extractall()

Creating a Recent File Archiver
You can build on lat est .py to create a function that archives the last modified files in a path. Rather than try to extend

the existing t est _lat est module, we'll create another module to test the added functionality. For this test, create a new
file named t est _ziplat est .py in your Archives pro ject. The two test modules do have some common features, but
for now, we'll write a separate test suite. Enter the code for t est _ziplat est .py below as shown:

CODE TO TYPE:

import unittest
import latest
import time
import os
import shutil
import zipfile

class TestZip(unittest.TestCase):

 def setUp(self):
 self.path = r"v:\workspace\Archives\src\zip_test"
 self.zip_filename = os.path.join(self.path, "test_zip_latest.zip")
 os.mkdir(self.path)
 self.file_names = ["old", "newer", "newest"]
 for fn in self.file_names:
 f = open(os.path.join(self.path, fn), "w")
 f.close()
 time.sleep(1)

 def test_zip_latest(self):
 latest.zip_latest(self.zip_filename, 2, self.path)
 zf = zipfile.ZipFile(self.zip_filename, "w")
 files_in_archive = zf.namelist()
 zf.close()
 observed = set([os.path.basename(f) for f in files_in_archive])
 expected = set(self.file_names[1:3])
 self.assertEqual(observed, expected)

 def tearDown(self):
 os.remove(self.zip_filename)
 try:
 shutil.rmtree(self.path, ignore_errors=True)
 except IOError:
 pass

if __name__ == "__main__":
 unittest.main()

Now, let's make a copy o f lat est .py and stub out a function. To copy the file, go to your FileHandling/src pro ject
fo lder, right-click on lat est .py, and select Co py. Then, right-click the Archives/src fo lder and select Past e . We'll call
the new function zip_lat est () . Modify the file as shown:

CODE TO TYPE:

import glob
import os

def latest(num=1, path="."):
 files = glob.glob(os.path.join(path, "*"))
 dated_files = [(os.path.getmtime(fn), os.path.abspath(fn)) for fn in files]
 dated_files.sort()
 latest_files = [f for (d, f) in dated_files[-num:]]
 latest_files.reverse()
 return latest_files

def zip_latest(fn, num, path):
 pass

 A quick run will reveal a single failing test:

OBSERVE: Output from test_ziplatest.py

F
==
FAIL: test_zip_latest (__main__.TestZip)
--
Traceback (most recent call last):
 File "V:\workspace\Archives\src\test_ziplatest.py", line 27, in test_zip_latest
 self.assertEqual(observed, expected)
AssertionError: Items in the second set but not the first:
'newest'
'newer'

--
Ran 1 test in 3.032s

FAILED (failures=1)

Now that the test program has created the zip file, we can change it from write mode to read mode. Edit
t est _ziplat est .py as shown:

CODE TO TYPE:

import unittest
import latest
import time
import os
import shutil
import zipfile

class TestZip(unittest.TestCase):

 def setUp(self):
 self.path = r"v:\workspace\Archives\src\zip_test"
 self.zip_filename = os.path.join(self.path, "test_zip_latest.zip")
 os.mkdir(self.path)
 self.file_names = ["old", "newer", "newest"]
 for fn in self.file_names:
 f = open(os.path.join(self.path, fn), "w")
 f.close()
 time.sleep(1)

 def test_zip_latest(self):
 latest.zip_latest(self.zip_filename, 2, self.path)
 zf = zipfile.ZipFile(self.zip_filename, "r")
 files_in_archive = zf.namelist()
 zf.close()
 observed = set([os.path.basename(f) for f in files_in_archive])
 expected = set(self.file_names[1:3])
 self.assertEqual(observed, expected)

 def tearDown(self):
 os.remove(self.zip_filename)
 try:
 shutil.rmtree(self.path, ignore_errors=True)
 except IOError:
 pass

if __name__ == "__main__":
 unittest.main()

Most o f the functionality you need is already within your module. Combine what you've learned about archive files with
your lat est () , and add a few lines to lat est .py, as shown:

CODE TO TYPE:

import glob
import os
import zipfile

def latest(num=1, path="."):
 files = glob.glob(os.path.join(path, "*"))
 dated_files = [(os.path.getmtime(fn), os.path.abspath(fn)) for fn in files]
 dated_files.sort()
 latest_files = [f for (d, f) in dated_files[-num:]]
 latest_files.reverse()
 return latest_files

def zip_latest(fn, num, path):
 pass
 files_to_archive = latest(num, path)
 zf = zipfile.ZipFile(fn, "w", zipfile.ZIP_DEFLATED)
 for fn_to_archive in files_to_archive:
 zf.write(fn_to_archive)
 zf.close()

If the tests pass, your changes to the lat est module have worked. Congratulations!

Save It in the Archives
Now you've got a good foundation for two archive file fo rmats: zip and tar. We used Python's zipf ile and t arf ile
modules to read and write each format. Finally, we integrated this knowledge to write a quick function that archived the
latest n files in a path.

Great work so far! Keep it up!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Graphical User Interfaces
Lesson Objectives

When you complete this lesson, you will be able to :

explain a GUI.
write your first program using a GUI.
defeine the general behaviors o f your GUI.
define the specific behaviors o f your windows the creat eWidget s() method.
configure your widgets with keyword arguments to the widget creation call.
read widget values.

In this lesson, we'll learn the basics o f programming graphical user interfaces (GUIs). GUI-based programs are somewhat
different from those you have written so far. Your earlier programs have driven the process o f user interaction. When the
programs wanted data, they prompted the user and waited for the user to complete their entry by pressing Ent er.

Consider a program with an interface that has buttons, checkboxes, text entry items, and so on. The user can interact with these
elements however they like. But how do we write programs that are ready to respond to whatever the user presents?

The Window Manager
Take a look at the diagram below. The user sees some sort o f desktop wallpaper (in this case, an image o f the moon)
covered with icons, application windows, and (since the desktop is that o f a Windows XP machine) the taskbar that
ho lds icons representing each running application, a whole load o f quick-launch icons, and a Start icon that can be
used to bring up a menu allowing access to most o f the facilities o f the computer.

The desktop is called a "two-and-a-half dimensional surface" because, although it does not actually have a third

dimension (depth), one window can cover another, just as though it were a piece o f paper covering another piece, on a
real, physical desktop. (Sadly, my own physical and virtual desktops are rarely tidy!) When you click on something, the
window manager must know which window is on top where you have clicked, so it can channel the event to that
window.

In a GUI environment, you write programs that present a description o f the desired window structures to the window
manager, which is the system component that handles (among o ther things) tracking mouse movements and
distributing keystrokes and mouse clicks to the right programs. Which programs receive these events depends on a
number o f factors, including the current cursor position and which window has the focus.

Each window is composed o f widgets, some of which contain o ther widgets, and so on. One widget can be positioned
on top o f another. The window manager has to make the determination about which widget is uppermost at the
particular position o f the cursor when the click occurs. (We'll go over widgets a bit more later in the lesson.)

How Programs Interact with the Window Manager

You are reading this text in the Ellipse teaching environment. There's a title bar across the top o f the screen.
Under the title bar is the Eclipse window's content area, headed by a menu bar, under which is the toolbar. The
too lbar contains a load o f buttons, which you can click to make specific things happen.

Eclipse needs to know that when you move the cursor over a particular button and click, it has to run the piece
of code that corresponds to the function associated with the button. The structure o f the window is created by
Ellipse when it starts-up and is passed to the window manager, which then triggers specific responses to
specific events, calling specific routines. The same is true o f any GUI-based program.

All this information is created in a form that the window manager can understand by making calls to a window
library. The main libraries in Python are PyQT, wxPython, and tkinter. We'll use tkinter to explain the principles
of working with GUIs. The descriptions o f the window structures include references to the specific pieces o f
code (event handlers) that must be run in response to specific events.

The structures can be modified while the program runs. For example, you can arrange for a dialog box to
appear when a particular button is clicked. While a program's main window is usually created at the start o f the
program and continues to exist fo r the duration o f the program, it is not at all uncommon for programs to
create and delete o ther windows as they are required.

Your First Program with a GUI
This example is taken straight from the documentation for the t kint er module. The program creates a window that
looks like this:

When you click the button on the right, the program prints some text on its standard output. When you click the button
on the left, the program terminates. Create a Int ro GUI pro ject and assign it to your Pyt ho n2_Lesso ns working set.
Then, in the Int ro GUI/src fo lder, create a t kdemo .py file as shown:

CODE TO TYPE:

from tkinter import *

class Application(Frame):
 def say_hi(self):
 print("Hi there, everyone!")

 def createWidgets(self):
 self.QUIT = Button(self)
 self.QUIT["text"] = "Quit"
 self.QUIT["fg"] = "red"
 self.QUIT["command"] = self.quit
 self.QUIT.pack({"side": "left"})

 self.hi_there = Button(self)
 self.hi_there["text"] = "Hello",
 self.hi_there["command"] = self.say_hi
 self.hi_there.pack({"side": "left"})

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. Click the Hello button and then the Quit button, to see what they do.

Let's look at the code more closely:

OBSERVE:

from tkinter import *

class Application(Frame):
 def say_hi(self):
 print("Hi there, everyone!")

 def createWidgets(self):
 self.QUIT = Button(self)
 self.QUIT["text"] = "Quit"
 self.QUIT["fg"] = "red"
 self.QUIT["command"] = self.quit
 self.QUIT.pack({"side": "left"})

 self.hi_there = Button(self)
 self.hi_there["text"] = "Hello",
 self.hi_there["command"] = self.say_hi
 self.hi_there.pack({"side": "left"})

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()

The majority o f the code in the program defines a class named Applicat io n, which subclasses the t kint er.Frame
class. The t kint er.Frame class defines all o f the general behaviors required o f a program's GUI, but these general
behaviors do not encompass the specifics o f the contents o f this window. For those specifics, we have the
creat eWidget s() method.

Let's begin by looking at the t kint er.Frame class's __init __() method. First, it performs all o f the standard
t kint er.Frame initialization actions by calling its superclass's (t kint er.Frame's __init __()) method. Next, it calls
the newly created frame's pack() method, which prepares it to be part o f the window display. Then, it calls the
creat eWidget s() method, which as its name suggests, creates the widgets (or components) that go inside o f it.

creat eWidget s() initializes only two widgets: the first is t he Quit but t o n, which reads "Quit " with the foreground
("f g") text in "red" and calls the Frame's self.quit() method (inherited from tkinter.Frame) when clicked; the second is
the hi_t here button, which reads "Hello" and calls the Frame's say_hi() method when clicked.

Note

Hey, wait a minute. In the Python 1 course, didn't we say that we should never use the f ro m module
impo rt * fo rm of the import statement? In fact we did. But certain modules have been designed
specifically to be used in this way. If t kint er were used in the standard form, then our code would be
more difficult to read. When writing a typical program, we use many names from t kint er. Our code
readability is enhanced by limiting the use o f qualified names such as t kint er.T k. The t kint er module
has been designed with that in mind, and although there is always some danger that you might
unknowingly overwrite one o f the 150+ names it defines, in practice this doesn't happen much.

Now, suppose the customer changed the specification for this pro ject. They want to change the co lors and text a bit to
make the application to look like this:

The changes include:

Change the "QUIT" button label to "Goodbye."
Make the "Hello" label blue.
Move the "Goodbye" button to the right o f the "Hello" button.

Try to make the changes without looking at the answers below.

. . .

Try to figure it out on your own first!

. . .

I mean it!

. . .

Don't peek!

. . .

Your changes look something like those in the box below (additions and changes in this co lor and deletions in this
style):

CODE TO TYPE:

from tkinter import *

class Application(Frame):
 def say_hi(self):
 print("Hi there, everyone!")

 def createWidgets(self):
 self.hi_there = Button(self)
 self.hi_there["text"] = "Hello",
 self.hi_there["fg"] = "blue"
 self.hi_there["command"] = self.say_hi
 self.hi_there.pack({"side": "left"})

 self.QUIT = Button(self)
 self.QUIT["text"] = "Goodbye"
 self.QUIT["fg"] = "red"
 self.QUIT["command"] = self.quit
 self.QUIT.pack({"side": "left"})

 self.hi_there = Button(self)
 self.hi_there["text"] = "Hello",
 self.hi_there["command"] = self.say_hi
 self.hi_there.pack({"side": "left"})

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()

Creating Widgets in a Window

The creat eWidget s() method creates precisely two widgets, which it stores as the instance attributes QUIT
and hi_t here . But t o n is a function defined by the t kint er module. When called, it requires the parent widget
to be provided as the first argument. Since the newly created frame instance (the one whose __init __()
method is being called) is the parent, self is provided as the first argument. This makes the Applicat io n
instance the parent o f the button.

Once the QUIT widget has been created, the method then sets a number o f configuration items. Each o f
these items has a name and a value:

It em
name Meaning

text The label to be shown inside the button

fg The foreground co lor used to write inside the button (that is, the co lor in which the text label will
be written)

command The function to call when the button is clicked

The t ext and f g configuration items are pretty straightforward. The co mmand item takes a little more effort.
This particular code is written to allow the creation o f multiple windows, each being an instance o f the
Applicat io n class. Because the co mmand item is an instance method, when the QUIT button is clicked on
an instance o f the Application class, that instance's quit () method is called. This method is inherited from the
t kint er.Frame class, and causes the application to terminate.

Once the widget is fully configured, its pack() method is called to place it at the left-hand side o f the
(containing) application window (o ther options are "right", "top," and "bottom). That concludes the
configuration o f the QUIT button. Next, a second widget (the hi_t here button) is created and configured to
call the hi_t here method when it's clicked. This button is then packed to the left o f the remaining space in the
containing window.

The only o ther method in the class is say_hi() , which is the event handler fo r clicks on the hi_t here button. It
prints a message on the conso le whenever it's called by the user.

Top-Level Application Code

Once the Applicat io n class is defined, the program needs to create an instance o f the application class and
pass contro l to the window manager. The code for that immediately fo llows the class definition.

The first line, ro o t = T k() , creates the application's main window. If the application created any o ther
windows, they would be children (or grandchildren) o f ro o t . The next line, app =
Applicat io n(mast er=ro o t) , creates an instance o f the application class (as a subclass o f t kint er.Frame)
and attaches it to the root window.

The call to the application's mainlo o p() method (which is inherited from t kint er.Frame) hands contro l over
to the window manager. This method only returns when the application is terminating—the window manager
makes direct calls to the event handlers when specific events that have been programmed into the window
description occur. Once the application terminates, the program calls its root window's dest ro y() method to
release any window manager resources before the program ends.

The Program Window

So, when you run the program, you see a window like this:

The layout o f the components was created by calls to the various components' pack() methods. Every time
you click the "Hello" button, the program will print "Hi t here, everyo ne!" in the conso le window. When you
click the "Goodbye" button (or terminate the program by clicking the "X" button at the top right o f the window)
the program terminates.

So, there you have it. You have written and run your first GUI program using Python's t kint er package! Good
for you!

Note By the way, you may be wondering what tkinter means: tk stands for too l kit, and inter stands for
interface.

Introducing the Tkinter Widget Set
The word "widget" is o ften used as an abstract name for an object, most o ften for something manufactured. Modern
GUI too lkits, t kint er included, are comprised o f components that are referred to as "widgets." All T kint er widgets
have a lo t in common, even though they may not look alike.

There aren't a lo t o f widgets in the T kint er too lkit, but using them wisely will allow you to create a variety o f useful
graphical interfaces. Below are some important ones that you should know about now:

Widget
T ype Purpo se

Frame A container fo r o ther widgets. You can set the border and background co lor, and place o ther widgets
inside o f it.

Toplevel

A special kind o f Frame that interacts directly with the windows manager. Toplevels will usually have
a title bar, and features to interact with the window manager. The windows you see on your screen
are mostly top-level windows, and your application can create additional Toplevel windows if it is set
to do that.

Button

Users click on buttons to trigger some action. As you already know from the sample program you
just entered and ran, clicks on the button can be translated into actions taken by your program (this is
actually true o f many widgets). Buttons usually have text inside o f them, but they can also show
graphics.

Checkbutton A special type o f button that has two states; clicking change the state o f the button from one to the
other.

Label Labels are used to display pieces o f text or images, usually ones that won't change during the
execution o f the application.

Entry Used to enter single lines o f text and all kinds o f input.

Listbox Used to display a set o f cho ices. The user can select a single item or multiple items from the list. The
Listbox can also be rendered as a set o f radio buttons or checkboxes.

Scale Lets the user set numerical values by dragging a slider.

Text A multi- line formatted text widget, it allows the textual content to be "rich." It may also contain
embedded images and Frames.

Message Similar to a Text, but can automatically wrap text to a particular width, or width and height.

Menu
This is the base widget that you use to put a menu in your window (not all programs need one). It
corresponds to the menu bar along the top o f your program window, and can also be used to
implement "popup" or "context" menus.

Menubutton Adds cho ices to your Menus.

Radiobutton Represents one o f a set o f mutually exclusive cho ices. Selecting one Radiobutton from a set,
deselects any o thers.

Scro llbar Implements scro lling on a larger widget such as a Canvas, Listbox, or Text.

Canvas A surface on which you can draw graphs and/or plo ts, and also use as the basis o f your own
widgets.

Each o f the above widgets has its own place in user interfaces. Your first program used a Toplevel (created
automatically to contain the application) and a Frame that contained two Buttons. In case you are curious about the
appearance, here is a picture o f a "kitchen sink" interface showing various widgets. By the look o f the window, you can
probably tell that the elements have been thrown together (in this case, it's the result o f a request i received to "show
the students what all o f these things are"). Try and avo id this look at all cost.

Configuring Widgets
So, the program you wrote above runs perfectly well, but the code is a bit to wordy. Each attribute o f each widget is
configured in a separate statement. If individual aspects o f the widgets need to be configured at run-time, this might a
convenient way to do it, but when you are creating a widget and many aspects need to be configured, there are better
ways.

The basic way to configure your widgets is with keyword arguments to the widget creation call. Rather than having to
write self .QUIT ["f g"] = "red" after you have created the button, you can add an argument reading f g="red" when
you create the button. The same principle applies to most o ther widget configuration items. Try this out by modifying
the t kdemo .py file as shown:

CODE TO TYPE:

from tkinter import *

class Application(Frame):
 def say_hi(self):
 print("Hi there, everyone!")

 def createWidgets(self):
 self.hi_there = Button(self, text="Hello", fg="blue", command=self.say_hi)
 self.hi_there.pack(side="left")

 self.QUIT = Button(self, text="Goodbye", fg="red", command=self.quit)
 self.QUIT.pack(side="left")

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. The window will have the same appearance and behavior as before, but you've compressed the code
considerably without sacrificing readability.

Read over the code; you'll see that once the buttons have been created there's no reference to them anywhere else in
the code. So it isn't necessary to save a reference to the buttons in instance attributes, and you could abbreviate the
creation o f the QUIT button even further to this:

But t o n(self , t ext ="Go o dbye", f g="red", co mmand=self .quit).pack(side="lef t ")

But that might be taking things just a little too far. It's a judgment call. Remember, the programmer who has to
understand your code in six months might be you! Ask yourself whether brevity is important enough to make your
code that little bit harder to understand.

The config() Method, and Configuration Options

A third way to configure widget options is to call the widget's co nf ig() method with keyword arguments,
naming the options you want to set and giving new values. This is sort o f half-way between the two methods
you have previously seen, which allows several post-creation changes to be combined into a single
statement.

So far, we have used strings as the values o f the pack() method's side parameter. T kint er also provides
named constants LEFT , RIGHT , BOT T OM, and T OP , which are easier to type and stand out more when
you're reading the code. The module provides many similar values that make typing your code easier.

t kint er has many configuration options that you may find confusing at first. Most widgets have a keys()
method that you can use to learn about the options you can configure. We'll try it out and see how it works. I
bet you'll be surprised at how many options are available for configuration. Type the commands below in an
interactive session as shown:

INTERACTIVE SESSION:

>>> from tkinter import *
>>> b = Button()
>>> for k in b.keys():
... print(k)
...
activebackground
activeforeground
anchor
background
bd
bg
bitmap
borderwidth
command
compound
cursor
default
disabledforeground
fg
font
foreground
height
highlightbackground
highlightcolor
highlightthickness
image
justify
overrelief
padx
pady
relief
repeatdelay
repeatinterval
state
takefocus
text
textvariable
underline
width
wraplength
>>>

There are too many options to consider all o f them in detail here (and many that you might never use, even
after years o f programming with tkinter), but we'll go over the ones you'll use most frequently:

It em name Def init io n

background, bg

The co lor o f the body o f the widget (on some operating systems, it's impossible to
change the background co lor o f some widgets). The co lors can be specified as
strings (tkinter knows about a lo t o f co lors, and also accepts web-style RGB values
like "#006677"—you can read about them here). You can generate these from
separate RGB values, where each element is an integer between 0 and 255, using
code like:

t k_rgb = "#{0:02X}{1:02X}{2:02X}" .f o rmat (128, 192, 200) .

If the RGB values are already in a list o r tuple, you can use:

t k_rgb = "#{0:02X}{1:02X}{2:02X}" .f o rmat (*rgb)

fo reground, fg The co lor used to write inside the widget, encoded as described above.

padx, pady The amount o f padding to put around the widget, horizontally and vertically. Without
this padding, the widget will be just large enough for its contents.

http://en.wikipedia.org/wiki/Web_colors

borderwidth This creates a visible border around a widget.

height, width
Specify the height and the width o f a widget (some widgets only let you set the width).
Widgets with text in them use a height and width in text units; those containing
graphics use a height and width in pixels.

disabledforeground
This specifies the foreground co lor to use when the widget is disabled (that is, when
it has been configured not to interact with the user). Most interfaces use gray for
disabled foregrounds.

state

The available states depend on the particular widget. The state can be "normal" (as
the widget usually looks), "disabled" (how it looks when it won't interact with the
user), "active" (how a button looks while the user is interacting with it) o r "readonly"
(for a Text or Entry widget with text that can be selected, but not changed, by the user).
You can use the Tkinter constants NORMAL, DISABLED, and ACTIVE to represent
state values as well.

Using More Widgets
Now that you understand a bit more about the way GUIs are put together and the use o f widgets, we'll try to use a
couple o f widgets in an example. We'll create a window that takes a text input and produces different results, depending
on which o f three radio buttons is selected.

We'll be looking at an interface with inputs—we'll have an Entry widget into which users can type text, and a set o f
Radiobutton widgets that determine which operation the program performs on the text entered, when the user clicks the
Co nvert button.

Reading Widget Values

For basic widgets like Entry items, you can usually read the item's value by calling its get () method, which
returns the entered value.

More complex widgets like the Radiobutton can't be handled that way. Radiobuttons come in sets, and only
one o f them can be selected at a time, so you need to get a value from the set, not from an individual widget.
In these cases, we use tkinter Variables; tkinter Variables are associated with widget values. Once the
association is made, you can call the Variable's get () method instead o f the widget's.

Variable types differ according to the type o f values you will be extracting. Use a BooleanVar fo r simple yes/no
cho ices, an IntVar fo r integers, a DoubleVar fo r floating-po int numbers and a StringVar to retrieve text. Those
last three are usually associated with an Entry widget, using the special textvariable configuration item.

A More Complex Program

At last, here's a program that actually does something!

The next program is longer than previous examples, because it describes a more complicated interface. Two
frames are used inside o f the main frame. The first contains an Entry item where the user can enter text, a
Label under it, and three Radiobuttons. The second frame ho lds the regular buttons.

The value o f the Entry widget is read from the text configuration item, but the Radiobuttons are read using an
associated IntVar, as integer values are associated with the cho ices.

Create t ext handler.py in the Int ro GUI/src fo lder and enter the code as shown:

CODE TO TYPE:

from tkinter import *

class Application(Frame):
 """Application main window class."""
 def __init__(self, master=None):
 """Main frame initialization (mostly delegated)"""
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

 def createWidgets(self):
 """Add all the widgets to the main frame."""
 top_frame = Frame(self)
 self.text_in = Entry(top_frame)
 self.label = Label(top_frame, text="Output label")
 self.text_in.pack()
 self.label.pack()
 self.r = IntVar()
 Radiobutton(top_frame, text="Upper case", variable=self.r, value=1).pack
(side=LEFT)
 Radiobutton(top_frame, text="Lower case", variable=self.r, value=2).pack
(side=LEFT)
 Radiobutton(top_frame, text="Title case", variable=self.r, value=3).pack
(side=LEFT)
 top_frame.pack(side=TOP)

 bottom_frame = Frame(self)
 bottom_frame.pack(side=TOP)
 self.QUIT = Button(bottom_frame, text="Quit", command=self.quit)
 self.QUIT.pack(side=LEFT)
 self.handleb = Button(bottom_frame, text="Convert", command=self.handle)
 self.handleb.pack(side=LEFT)

 def handle(self):
 """Handle a click of the button by processing any text the
 user has placed in the Entry widget according to the selected
 radio button."""
 text = self.text_in.get()
 operation = self.r.get()
 if operation == 1:
 output = text.upper()
 elif operation == 2:
 output = text.lower()
 elif operation == 3:
 output = text.title()
 else:
 output = "*******"
 self.label.config(text=output)

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. You see a window like the one shown below. If you click the Co nvert button before you
select one o f the RadioButtons, the label text is filled with asterisks. Enter some text using a combination o f
upper and lower case letters. If you make a cho ice, the appropriate method is applied to the contents o f the
Entry widget (the text you entered), and displayed as the text o f the label.

So, now you know something about creating GUIs. The code can get pretty lengthy, but it's relatively straightforward. In
the next lesson we'll find out more about window layout, which will give us better contro l over the appearance o f our
windows.

Further Reading on Tkinter
A lo t o f the t kint er documentation o ffers code samples written in Python 2. Don't be afraid to get creative in adapting
them to Python 3. Python 3 isn't really much different from Python 2 (although the package's name is capitalized in
Python 2). I'm confident you'll be able to work out any necessary changes!

Your next port o f call should be the Python documentation. The Tkinter Wiki is a community-maintained set o f
documentation that is informal and friendly to read. It's also user-editable and eternally incomplete; you may want to
add your own insights later, as your expertise grows! Onward and forward to the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://docs.python.org/3.1/library/tkinter.html
http://tkinter.unpythonic.net/wiki/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Graphical User Interface Layout
Lesson Objectives

When you complete this lesson, you will be able to :

manage the way widgets are laid out within their containers which is known as "geometry management."
use a widget's grid() method.
use ro wspan and co lumnspan keyword arguments to build flexible layouts.

Handling Window Layout
All managers are called as a method call on a widget, with keyword arguments to specify how the widget (which may
itself be a container) will be positioned inside o f its container.

Managing the way widgets are laid out within their containers (typically frames, although there are o ther containers) is
referred to as "geometry management." The T kint er module has three different ways o f packing widgets into their
containers. You've already seen the pack() method in action. Packing is useful fo r less complex window layouts, and
pack() has many options you can use to contro l how the components are laid out inside their parent frames.

If components are laid out in a regular grid, you can use a widget's grid() method instead. If you want to place widgets
at specific locations, use the widget's place() method. Just make sure you never mix calls on pack() , place() , and
grid() methods on the same window. This could throw your program into an infinite loop as it tries to satisfy the needs
of the more than one different layout scheme.

The Pack Geometry Manager

The table below shows pack() method's principal keyword arguments. Most o f the values are symbols
defined by the tkinter module itself:

Keywo rd Values

fill
X: fill the container in the horizontal dimension.
Y: fill the container in the vertical dimension.
BOTH: fill the container in both dimensions.

expand False: the widget is never resized.
True: the widget is resized when the container is resized.

side Specifies which side o f the container the widget will be packed against (TOP (the default), LEFT,
RIGHT, or BOTTOM).

Let's create a program that demonstrates some of these features. Create a Pydev pro ject named GUILayo ut
and assign it to your Pyt ho n2_Lesso ns working set. In the GUILayo ut /src fo lder, create a file named
sidebyside.py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

w = Label(root, text="Red Label", bg="red", fg="white")
w.pack(side=LEFT)
w = Label(root, text="Green Label", bg="green", fg="black")
w.pack(side=LEFT)
w = Label(root, text="Blue Label", bg="blue", fg="white")
w.pack(side=LEFT)

mainloop()

 When you run the program, you should see a window like this:

Enlarge the window by dragging a corner o f it. The labels remain at the left o f the window, and are vertically
centered in it, like this:

Now, close the window, and change the packing side to TOP as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

w = Label(root, text="Red Label", bg="red", fg="white")
w.pack(side=TOP)
w = Label(root, text="Green Label", bg="green", fg="black")
w.pack(side=TOP)
w = Label(root, text="Blue Label", bg="blue", fg="white")
w.pack(side=TOP)

mainloop()

 Now the program's window shows the labels on top o f each o ther, like this:

Expand the window; the buttons stick to the top and are centered horizontally, like this:

Close the window, and add a f ill=BOT H argument to each pack call:

CODE TO TYPE:

from tkinter import *

root = Tk()

w = Label(root, text="Red Label", bg="red", fg="white")
w.pack(side=TOP, fill=BOTH)
w = Label(root, text="Green Label", bg="green", fg="black")
w.pack(side=TOP, fill=BOTH)
w = Label(root, text="Blue Label", bg="blue", fg="white")
w.pack(side=TOP, fill=BOTH)

mainloop()

 Now the labels fill the frame. But when you expand the window, the labels only expand horizontally. What's
up?

Well, the widgets are not being to ld to expand, so they only get larger in the dimension where they aren't
stacked. So the final change we'll make will be to add an expand option to the pack() calls (just fo r fun, we'll
omit one to see what happens). Close the window and modify sidebyside.py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

w = Label(root, text="Red Label", bg="red", fg="white")
w.pack(side=TOP, fill=BOTH)
w = Label(root, text="Green Label", bg="green", fg="black")
w.pack(side=TOP, fill=BOTH, expand=True)
w = Label(root, text="Blue Label", bg="blue", fg="white")
w.pack(side=TOP, fill=BOTH, expand=True)

mainloop()

 When you resize the window, the green and blue labels expand to continue to fill the frame while the red
label (which does not have expand=T rue) remains at its original height.

The Grid Geometry Manager

The grid manager is, as its name suggests, most useful when you want components to be laid out on a
regular grid. It's probably the most flexible o f the managers, and unlike the pack manager, the grid manager
does not require you to create a large number o f frames to make sure that all o f your widgets line up properly
as the window is resized.

Once you have created a widget, you can place it in its container in a notional grid, where rows and co lumns
are sized automatically to accommodate the widgets each cell contains, by calling the widget's grid()
method. An empty row or co lumn will never be displayed or take up any space within the window, which gives
you some flexibility about row and co lumn numbering. The table below explains the possible arguments:

Keywo rd Values

row Specifies the row in which this widget should appear.

co lumn Specifies the co lumn in which this widget should appear.

sticky

Normally a widget appears centered within its cell. The st icky attribute can be set to one o f
four special values, N, S, E, or W, to specify with which side o f the cell the widget should be
aligned. You can add these values together to cause the widget to expand into its cell. For
example, E+W would make expand to occupy the full width o f its cell, while N+S+E+W would
cause the widget to spread out to fill the whole cell.

rowspan,
co lumnspan

If you want a widget to occupy more than one row and/or co lumn, set ro wspan and/or
co lumnspan to the number o f rows and/or co lumns you want it to occupy. The row and
co lumn number associated with the widget identify the top-left corner o f the spanned block.

Let's play with the grid manager. In your GUILayo ut /src fo lder, create a program named t kgrid.py as
shown:

CODE TO TYPE:

from tkinter import *

def colorgen():
 while True:
 yield "red"
 yield "blue"

class Application(Frame):

 def __init__(self, master=None):
 colors = colorgen()
 Frame.__init__(self, master)
 self.grid()
 for r in (1, 22, 333):
 for c in (1, 22, 333):
 txt = "Item {0}, {1}".format(r, c)
 l = Label(self, text=txt, bg=next(colors))
 l.grid(row=r, column=c)

root = Tk()
app = Application(master=root)
app.mainloop()

 Run the program. It makes the frame rows and co lumns just big enough for the tallest and widest widgets
they contain. Because we chose row and co lumn numbers with different widths, some of the cells have space
around them, and you can see the grey background o f the frame.

Resizing the window demonstrates that only the frame resizes. The cells stay at the top-left corner within the
frame.

OBSERVE: tkgrid.py

from tkinter import *

def colorgen():
 while True:
 yield "red"
 yield "blue"

class Application(Frame):

 def __init__(self, master=None):
 colors = colorgen()
 Frame.__init__(self, master)
 self.grid()
 for r in (1, 22, 333):
 for c in (1, 22, 333):
 txt = "Item {0}, {1}".format(r, c)
 l = Label(self, text=txt, bg=next(colors))
 l.grid(row=r, column=c)

root = Tk()
app = Application(master=root)
app.mainloop()

We used an inf init e generat o r to create as many alternating co lors as the application requires. Calling the
next () function on a generator is the most convenient way to retrieve the next value in the sequence when
you can't iterate over it.

The nested f o r loops create a two-dimensional array where r is the row and c is the co lumn; the array
provides the numbers to display in each grid position AND the display positions themselves (we used
multiple-digit numbers to make the text wider fo r some cells than o thers; we'd get the same positioning with
(1,2,3)).

Close the window. The white space issue can be addressed by making the cells sticky on the East and West
sides:

CODE TO TYPE:

from tkinter import *

def colorgen():
 while True:
 yield "red"
 yield "blue"

class Application(Frame):

 def __init__(self, master=None):
 colors = colorgen()
 Frame.__init__(self, master)
 self.grid()
 for r in (1, 22, 333):
 for c in (1, 22, 333):
 txt = "Item {0}, {1}".format(r, c)
 l = Label(self, text=txt, bg=next(colors))
 l.grid(row=r, column=c, sticky=E+W)

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. This fixes the white space problem by making all cells in each co lumn the same width. When
the window is expanded, however, the rows and co lumns remain at the top-left o f the frame and unchanged in
size.

In order to have the co lumns and rows expand to fill the frame, we actually need to reconfigure the frame itself.
A frame with widgets that are configured using the grid manager has ro wco nf igure() and
co lumnco nf igure() methods, which you can call to apply specific configurations. The first argument is
always the row or co lumn index; this can be fo llowed by a number o f keyword arguments:

Keywo rd Meaning

minsize Defines the row's or co lumn's minimum size. (Note that the row or co lumn still will no t be
displayed if there are no widgets present within it.)

pad Sets the size o f the row or co lumn by adding the specified amount o f padding to the height o f
the row or the width o f the co lumn.

weight

Determines how additional space is distributed between the rows and co lumns as the frame
expands. The higher the weight, the more o f the additional space is distributed between the
rows or co lumns. A row with weight 2 will expand twice as fast as a row with weight 1; it works
the same way for co lumns.

So by calling ro wco nf igure() and co lumnco nf igure() methods on the frame, we can fix the second
problem. Close the window and modify t kgrid.py as shown:

CODE TO TYPE:

from tkinter import *

def colorgen():
 while True:
 yield "red"
 yield "blue"

class Application(Frame):

 def __init__(self, master=None):
 colors = colorgen()
 Frame.__init__(self, master)
 self.master.rowconfigure(0, weight=1)
 self.master.columnconfigure(0, weight=1)
 self.grid(sticky=W+E+N+S)
 rcount = 0
 for r in (1, 22, 333):
 self.rowconfigure(r, weight=rcount)
 rcount += 1
 ccount = 0
 for c in (1, 22, 333):
 self.columnconfigure(c, weight=ccount)
 ccount += 1
 txt = "Item {0}, {1}".format(r, c)
 l = Label(self, text=txt, bg=next(colors))
 l.grid(row=r, column=c, sticky=E+W+N+S)

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. The master frame is configured to expand as the program window (a grid o f one row and
one co lumn) expands. Each row and co lumn is given a weight one higher than the preceding one, starting
with zero . This means that as the window expands, the top left cell always stays the same size, and the third
row and co lumn expand more than the second.

Close the window.

Finally, we're go ing to see how the ro wspan and co lumnspan keyword arguments allow us to build flexible
layouts. In this case, we'll have a co lumn of buttons on the left, a row of buttons along the bottom, and a
frame occupying the remainder o f the window. Create grdspan.py as shown:

CODE TO TYPE:

from tkinter import *

ALL = N+S+W+E

class Application(Frame):

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.master.rowconfigure(0, weight=1)
 self.master.columnconfigure(0, weight=1)
 self.grid(sticky=ALL)
 for r in range(5):
 self.rowconfigure(r, weight=1)
 Button(self, text="Row {0}".format(r)).grid(row=r, column=0, sticky=
ALL)
 self.rowconfigure(5, weight=1)
 for c in range(5):
 self.columnconfigure(c, weight=1)
 Button(self, text="Col {0}".format(c)).grid(row=5, column=c, sticky=
ALL)
 f = Frame(self, bg="red")
 f.grid(row=0, column=1, rowspan=5, columnspan=4, sticky=ALL)
root = Tk()
app = Application(master=root)
app.mainloop()

This application again starts out by configuring the frame as a single-row, single-co lumn, expanding grid.
Then it configures five buttons in co lumn zero , and adds a sixth row (numbered 5—remember the numbering
starts from zero here) containing five buttons. The window has six rows and five co lumns.

The remainder o f the window is occupied by a red Frame; its top-left corner is next to the top button. So it has
to span five rows and four co lumns. When you run your program, the frame should occupy the whole window,
even after the program window is resized. Because the buttons are sticky on all four edges, they expand to fill
the space the grid manager allocates to them.

The Place Geometry Manager—Don't Use It

We mention this manager only because you might encounter code that uses it. Frankly, the available
documentation is insufficient to explain how it works, but you can place a widget either "relatively" (by
specifying a re lx and re ly argument between 0 and 1 that says how far along the container's width and height
the widget should be placed) or "abso lutely", specifying an x and a y position in abso lute screen coordinates.

While the place manager allows most flexibility, it is also the most difficult to use, and is outside the scope o f
this course.

So now you can achieve a required window layout, using either the pack or the grid geometry managers. Excellent! In
the next lesson, we'll focus on event handling, and introduce you to a number o f tkinter's built- in dialogs. See you
there...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More About Graphical User Interfaces
Lesson Objectives

When you complete this lesson, you will be able to :

write programs that respond to events in various ways.
create windows on the fly fo r common tasks like opening and saving files.
bind Events in tkinter.
use event objects.
assign focus to a widget.
create popup menus.
create simple dialogues.
use ready-made dialogues.

GUI Events
Your program can process several different types o f events. The most significant events for most programs are
mouse clicks (particularly on buttons) and keystrokes. Some events are processed automatically by the widgets
themselves—for example, when you click a radio button or a checkbox, its state is changed automatically without the
programmer having to program any specific action. Other events include such things as mouse wheel movements,
timers expiring, windows being covered up and exposed, and so on. When you're starting to program GUIs, you can
ignore all but the most common events, and let the window manager handle the rest fo r you.

In this lesson, we'll learn how to write programs that respond to events in various ways. You already know how to read
and set the values o f some widgets. Now you're go ing to expand your knowledge and learn to create windows on the
fly fo r common tasks like opening and saving files.

Binding Events in tkinter
So far, we've bound event handlers to events using the co mmand configuration option with buttons. Many widgets
have a bind() method that dynamically connects a specific event type to a piece o f code in a program. Sometimes
you'll need to do this, because not every widget has a natural event to associate with a co mmand configuration
option.

A widget's bind() method has two arguments. The first is the name of the event to be bound, and the second is the
handler function to run when the event is detected within the widget. Most events are named using strings starting with
"<" and ending with ">." For example, a click o f the left mouse button is named "<Button-1>."

For left-handed mice the buttons are reversed, so the same button numbers apply fo r left-handed users:

Let's see that in action. Create a new Pydev pro ject named Mo reGUI and assign it to the Pyt ho n2_Lesso ns working
set. In the Mo reGUI/src fo lder, create a program named clickrepo rt .py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

def handler(event):
 print("clicked at", event.x, event.y)

frame = Frame(root, width=100, height=100)
frame.bind("<Button-1>", handler)
frame.pack()

root.mainloop()

 Save and run it, and click in a few places inside the frame. You see something like this:

Sorry, you won't see those fun little yellow explosions, but each time you left-click the mouse button inside the frame,
you'll see a report o f the cursor position in the conso le window.

OBSERVE:

from tkinter import *

root = Tk()

def handler(event):
 print("clicked at", event.x, event.y)

frame = Frame(root, width=100, height=100)
frame.bind("<Button-1>", handler)
frame.pack()

root.mainloop()

Our handler is called whenever <But t o n-1> (the left button on a right-handed mouse, or the right button on a left-
handed mouse) is clicked.

Notice that, unlike the widget co mmand functions, a function bound using a widget's bind() method is called with an
argument. This argument is an event object, and contains information about the specific event that triggered the call to
the event handler. In this case, the program extracts the (frame-relative) coordinates o f the <But t o n-1> mouse click
event and prints those.

Event Objects

The Event object contains data about an event that has just occurred, and it is passed as a single argument to
the event handler function. It has several useful attributes (some others are not listed below because they are
difficult to use portably):

At t ribut e
Name Purpo se

widget The widget in which the triggering event occurred. This allows the same function to handle
events from multiple widgets.

x, y The cursor position where mouse events occurred, relative to the top-left corner o f the
widget in which the event occurred.

x_root,
y_root

The cursor position where mouse events occurred, relative to the top-left corner o f the
screen.

height, width The new size o f the widget (only set fo r "<Configure>" events).

char The character code associated with a "<Key>" event.

Mouse Event Names

You'll need to be able to describe events when you ask t kint er to establish event bindings. As you saw in
the code example above, you can capture a left-click o f the mouse with the event name "<But t o n-1>".

You may also run in to code that uses " <But t o nPress-1>" o r "<1>" as a name for the same event. These
are equivalent, but we prefer the first fo rm because it's less ambiguous. As you might expect, you can use
"<But t o n-2>" and "<But t o n-3>" (and their equivalents) to refer to clicks o f the middle and right buttons
respectively. You can also detect double- and triple-clicks with "<Do uble-But t o n-n>" and
"<T ripleBut t o n-n>" (where n is 1, 2, o r 3).

You can capture "drag" events—movements o f the po inter while a mouse button is held down—with <B1-
Mo t io n> , and "drop" events with "<But t o nRelease-1>" (this applies to buttons 2 and 3 as well).

The "<Ent er>" event is raised when the po inter enters the screen area occupied by a particular widget, and
the "<Leave>" event occurs when the po inter leaves the area.

Keyboard Event Names

You can capture the events that occur when the user presses particular keys, using the event name "<Key>" .
When such an event occurs, the event's char attribute tells you which key was pressed (unless it was a
special key, like one o f the arrow keys or a Shift key. Each o f these keys has a special name, which can be
used to bind event handlers.

The special key event names are "<Cancel>" (the Break key), "<BackSpace>," "<T ab>,"
"<Ret urn>," (the Enter key) "<Shif t _L>" (any Shift key), "<Co nt ro l_L>" (any Contro l key), "<Alt _L>"
(any Alt key), "<Pause>," "<Caps_Lo ck>," "<Escape>," "<Prio r>" (Page Up), "<Next >" (Page Down),
"<End>," "<Ho me>," "<Lef t >," "<Up>," "<Right >," "<Do wn>," "<Print >," "<Insert >,"
"<Delet e>," "<F1>" through "<F12>," "<Num_Lo ck>"s, and "<Scro ll_Lo ck>."

Each individual regular key can also be identified by the string containing the character it produces, without the
surrounding angle brackets. So, to capture a press o f the "A" key, use the event name "A" . Remember that

"1" is the name of the event that occurs when the number one (1) key is pressed. But "<1>" is a mouse
button binding event. If your program concerns just a couple o f keystrokes, it's usually easier to bind the
individual keystrokes than to bind "<Key>" and then analyze each keystroke.

Keyboard Focus

In a windowed user interface, you can change which widget receives keyboard input. The most straightforward
way to assign focus to a widget is to click on it, although that also triggers a mouse event. These events are
usually ignored by default, although buttons "expect" to be clicked on, and if a button has an associated
command function, clicking on the button will cause that function to be called. Different types o f widget handle
keyboard input in different ways.

Entry widgets accept most characters and insert them into the value returned by the widget's get () method. A
Radiobutton will only action a space, which is equivalent to selecting that widget from its associated set
(automatically clearing any o thers in the same set). You can also change the focus by pressing the T ab key
(or Shif t ed+T ab to move in the opposite direction).

Dialog boxes are special cases, with specific behaviors. The Ent er key is equivalent to clicking the default
button in the dialog (which is configured with def ault =ACT IVE) and the Esc key is equivalent to clicking the
Cancel button.

Keyboard Event Handling

When an event is fired by the window manager (fo r example, when you press a key or click a mouse button)
then the event fires first in the component that is "topmost" in the window layout. So when you click a button,
since the button is (usually) inside a frame, the click is sent first to the button.

Now, buttons and the o ther "canned" widgets are special cases, because they make sure that events upon
which they take action are never seen by anything "below" them. In general though, this is not so the case.
Events are normally distributed to every widget that is part o f the hierarchy. So, when you click the mouse on a
frame with a parent that is the root window, the click event is delivered first to the frame and then to the root
window. It works the same way with keyboard events.

In our next program we'll investigate this feature. Create a new Python file in the Mo reGUI/src fo lder named
evt repo rt .py, as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

def handler(event):
 print("Keystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), event
.keycode))

frame = Frame(root, width=100, height=100)
frame.bind("<Key>", handler)
frame.pack()
frame.focus()

root.mainloop()

 Save and run it. Click inside the window, and then try pressing a variety o f keys. Most keystrokes are
reported. If you look carefully, you'll see that not all keystrokes have a character associated with them. (Which
ones don't? It's a challenge to handle these keys in a platform-independent way, because they vary according
to hardware and operating systems). If you ho ld a key down, the automatic repetition associated with do ing
this are reported as separate keystrokes (even though no physical key movement on the keyboard). If your
"Caps Lock" key is like mine, it also repeats despite the lack o f physical keystrokes.

OBSERVE: evtreport.py

from tkinter import *

root = Tk()

def handler(event):
 print("Keystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), event
.keycode))

frame = Frame(root, width=100, height=100)
frame.bind("<Key>", handler)
frame.pack()
frame.focus()

root.mainloop()

f rame = Frame(ro o t , widt h=100, height =100) creates a 100 x 100-pixel frame inside the root window.
The bind() function captures all keystroke events in the frame (f rame.f o cus() ensures that whatever the
user types is captured in the frame), and passes them to the handler, which prints the keystroke received.

You can associate events with the root window of your application if you like. This is a good way to make
sure that an event is trapped no matter which widget it is first presented to (so long as that widget doesn't stop
the event from propagating through the widget hierarchy).

If you want to trap only certain keys, you can adjust the program so that o ther key presses aren't handled. This
next modification will do that, handling only lower-case "o" and "k." Modify evt repo rt .py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

def handler(event):
 print("Keystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), event
.keycode))

frame = Frame(root, width=100, height=100)
frame.bind("<Key>", handler)
frame.bind("o", handler)
frame.bind("k", handler)
frame.pack()
frame.focus()

root.mainloop()

 Now, most keystrokes don't result in any reporting whatsoever from your program. Since you bound only
specific keyboard events to your frame, the handler is triggered only when those events occur.

Event Propagation

So, what happened to the keystrokes that weren't passed to the handler? Were they not passed to the
program, or were they passed to the program and then ignored? Events actually propagate back through a
widget to its container, and then to that container's container, and so on, until they reach the root window,
unless something specifically stops them from propagating. Many o f the standard widgets driven by mouse
clicks do stop the clicks from propagating; it would be pretty confusing if a button click had multiple effects!
You can allow mouse events to propagate from the widgets you create in much the same way keyboard
events are currently propagating to the root window of the frame.

You can see what the root window is receiving by binding events to your application's root window (which is
located between the Frame and the window manager) by adding an event binding with a separate handler.
Modify evt repo rt .py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

def handler(event):
 print("Keystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), event
.keycode))

def handler2(event):
 print("RootKeystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), e
vent.keycode))

frame = Frame(root, width=100, height=100)
frame.bind("o", handler)
frame.bind("k", handler)
root.bind("<Key>", handler2)
frame.pack()
frame.focus()

root.mainloop()

 Now when you type an "o" or a "k," you see two events being reported (actually, it's the same event being
reported twice). The first report comes from the Frame, and the second from the root window. Other keys are
reported only by the root window because they aren't bound in the frame, so the window manager doesn't
notify it about those events.

Is there some way to inhibit this propagation o f events up through the container hierarchy? In fact, there is. If
your handler returns a specific value, the string "break," this tells the event-processing portion o f the window
manager to stop propagating the event. This doesn't just apply to keystrokes, as our final modification to the
event reporter program will demonstrate. Modify evt repo rt .py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

def handler(event):
 print("Keystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), event
.keycode))
 return "break"

def handler2(event):
 print("RootKeystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), e
vent.keycode))

def handler3(event):
 print("Frame clicked at", event.x, event.y)
 if event.x > 50 and event.y > 50:
 return "break"

def handler4(event):
 print("Root clicked at", event.x, event.y)

frame = Frame(root, width=100, height=100)
frame.bind("o", handler)
frame.bind("k", handler)
frame.bind("<Button-1>", handler3)
root.bind("<Key>", handler2)
root.bind("<Button-1>", handler4)
frame.pack()
frame.focus()

root.mainloop()

 Now that the first handler has been modified to return "break," you can see that the "o" and "k" keystroke
events no longer propagate to the root window, so each keystroke is reported either by the Frame or by the
root window.

Mouse clicks work similarly, though in those cases some clicks are reported by both widgets. Clicks in the
lower-right quadrant o f the frame don't propagate to the root window, because their x and y attributes are both
greater than 50.

Adding Menus to Your Programs
Computer users are used to seeing a menu bar at the top o f a program's window. Each word on the bar will drop down
a list o f menu cho ices o f varying lengths when clicked. (Ellipse's Search menu, fo r example, contains three items).

Building a Menu Bar

To add a menu bar to a window, instantiate a Menu widget with the window as its parent, and configure it as the
window's menu item. Then you can add a pulldown Menu widget to the window's menu bar using the menu bar as its
master and calling its add_cascade() method. Finally, you add cho ices to the pulldown using the pulldown's
add_co mmand() method.

Let's try it. In your Mo reGUI/src fo lder, create a program named menudemo .py as shown:

CODE TO TYPE:

from tkinter import *

class Application(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.configure(height=75, width=75)
 # create a menu bar
 menu = Menu(root)
 root.config(menu=menu)

 filemenu = Menu(menu)
 menu.add_cascade(label="File", menu=filemenu)
 filemenu.add_command(label="New", command=self.callback1)
 filemenu.add_command(label="Open...", command=self.callback2)
 filemenu.add_separator()
 filemenu.add_command(label="Exit", command=self.callback3)

 helpmenu = Menu(menu)
 menu.add_cascade(label="Help", menu=helpmenu)
 helpmenu.add_command(label="About...", command=self.callback4)

 self.pack()

 def callback1(self):
 print("You selected 'File | New'")

 def callback2(self):
 print("You selected 'File | Open...'")

 def callback3(self):
 print("You selected 'File | Exit'")
 self.quit()

 def callback4(self):
 print("You selected 'Help | About...'")

root = Tk()
app = Application(master=root)
app.mainloop()

 Run the program; you'll see a window with two items on its menu bar, like the one shown below. Each menu item
prints out its identifying information, and the File | Exit item actually terminates the program by calling the frame's
quit () method.

Creating Popup Menus

You can also create menu structures that display on demand. The usual stimulus for display o f a so-called
"context menu" is a right-click. So you can bind a <But t o n-3> event to the widget you want to provide the
menu, and then call the menu's po st () method to display it from the right-button event handler. You can
extract the screen coordinates o f the cursor from the event passed to the handler to make the menu display at
the current cursor position. Let's give that a try. Modify menudemo .py as shown:

CODE TO TYPE:

from tkinter import *

class Application(Frame):
 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.configure(height=75, width=75)
 # create a menu bar
 menu = Menu(root)
 root.config(menu=menu)

 filemenu = Menu(menu)
 menu.add_cascade(label="File", menu=filemenu)
 filemenu.add_command(label="New", command=self.callback1)
 filemenu.add_command(label="Open...", command=self.callback2)
 filemenu.add_separator()
 filemenu.add_command(label="Exit", command=self.callback3)

 helpmenu = Menu(menu)
 menu.add_cascade(label="Help", menu=helpmenu)
 helpmenu.add_command(label="About...", command=self.callback4)

 self.cmenu = Menu(self)
 self.cmenu.add_command(label="Copy", command=self.copy)
 self.cmenu.add_command(label="Paste", command=self.paste)
 self.bind("<Button-3>", self.popup)

 self.pack()

 def callback1(self):
 print("You selected 'File|New'")

 def callback2(self):
 print("You selected 'File|Open...'")

 def callback3(self):
 print("You selected 'File|Exit'")
 self.quit()

 def callback4(self):
 print("You selected 'Help|About...'")

 def copy(self):
 print("Context command 'Copy' selected")

 def paste(self):
 print("Context command 'Paste' selected")

 def popup(self, event):
 self.cmenu.post(event.x_root, event.y_root)

root = Tk()
app = Application(master=root)
app.mainloop()

 Click the right mouse button (or if you're using a left-handed mouse, click the left button) inside the
program's frame; the context menu appears at the position where you clicked:

Tkinter Tearoff Menus

You may be wondering why menus include a dotted line across the top o f them. This is a non-standard
convenience feature o f t kint er menus: if you click the dotted line, the menu becomes a separate window
(which usually appears at the top left o f your screen) and you can make selections from the window. Below,
you see the context menu from the example above, rendered as a separate window. Clicking on the
selections works just as if you had brought up the menu using the right button:

If you don't want this feature to be active in your windows, add the t earo f f =False argument to the menu
creation call. That way your users won't see a feature they may not understand.

Dialog Boxes

Creating Simple Dialogs

The class o f windows called dialog boxes share many characteristics. They are usually modal, which is to say
the program behind them becomes non-responsive until the dialog box is either completed or canceled, and
they are typically only displayed when a specific task needs to be performed.

Dialogs aren't usually designed to be resized, and are o ften laid out with the grid manager to accommodate
regular rows o f labeled entry fields. Tkinter provides a simpledialo g module that defines a dialo g class that
you can subclass to define your own dialogs.

The dialo g class provides a basis fo r extension, including two buttons to complete or cancel the dialog. As
an example o f dialo g, we'll use a program that subclasses the dialo g class to provide an indication o f
whether the dialog was completed or canceled by adding a result attribute.

When painted, a subclass o f simpledialo g.Dialo g will contain two buttons: OK and Cancel. The subclass
provides a bo dy(self , mast er) method. This method creates widgets that are children o f the mast er
argument. It also provides an apply(self) method, which will be called only if the OK button is clicked.

The bo dy() method sets a result attribute to a default value that indicates the dialog was canceled. Then the
apply() method sets an indication that the OK button was clicked. The dialog is modal, which means that the
main program will no t be given contro l until the user dismisses the dialog. This only happens when the user
clicks OK o r Cancel. The code that creates the dialog can look at the result immediately afterwards, and
determine whether the dialog should be considered valid.

Enter the code below as dialo g.py in the Mo reGUI/src fo lder:

CODE TO TYPE:

from tkinter import *
from tkinter.simpledialog import Dialog

class MyDialog(Dialog):
 def body(self, master):
 self.result = None
 for r in range(5):
 for c in range(5):
 b = Button(master, text="Row {0} Col {1}".format(r, c))
 b.grid(row=r, column=c)
 print("Dialog created")

 def apply(self):
 self.result = "OK"

class Application(Frame):
 def create_dialog(self):
 d = MyDialog(self)
 print(d.result)

 def create_widgets(self):
 self.d_button = Button(self, text="Dialog...", command=self.create_dialo
g)
 self.d_button.pack({"side": "left"})

 self.QUIT = Button(self, text="Quit", fg="red", command=self.quit)
 self.QUIT.pack({"side": "left"})

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.grid()
 self.create_widgets()

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. Click Dialo g.... You'll see a window like this:

You can resize the dialog, but its contents don't respond to this activity. If you click OK, the apply() method is
called and "OK" prints in the conso le. If you click Cancel, "None" is printed.

Some Ready-Made Dialogs

tkinter provides a number o f dialog boxes already programmed for specific purposes. The first set is imported
from the t kint er.messagebo x module. They all take a t it le and a message argument, and you can fo llow
those with further keyword arguments to tailo r their appearance and behavior:

Dialo g Name Appearance

showinfo

showwarning

showerror

askquestion

askokcancel

askyesno

askyesnocancel

askretrycancel

The keyword arguments available to use include def ault , which specifies the button selected if the user
presses Ent er. The button options are: ABORT, RETRY, IGNORE, OK, CANCEL, YES, or NO. These
constants are defined in the t kint er.messagebo x module along with the dialogs.

You can also set the ico n keyword argument to ERROR, INFO, QUESTION, or WARNING, depending on
which graphic you want to include with the message. You can set the t ype argument to be:
ABORTRETRYIGNORE, OK, OKCANCEL, RETRYCANCEL, YESNO, or YESNOCANCEL.

The askco lo r dialog, from the t kint er.co lo rcho o ser module, allows you to tell your programs the co lor
you want something to be. It normally returns a two-element tuple; the first element is a tuple o f RGB values,
the second is a string representing the co lor fo rmat used for web content (#RRGGBB). If you cancel the
selection, both elements o f the tuple are No ne .

The f iledialo g module provides support fo r selecting directories and files. With files, f iledialo g supports
either loading (providing the selected file exist) o r saving. With modules, dialogs will display tkinter's

limitations. We'll see f iledialo g in action in our last example o f this lesson. In your Mo reGUI/src fo lder,
create dialo gdemo .py as shown:

CODE TO TYPE:

from tkinter import *
from tkinter.filedialog import LoadFileDialog, SaveFileDialog, Directory
from tkinter.colorchooser import askcolor
from tkinter.messagebox import (showinfo, showwarning, showerror, askquestion,
 askokcancel, askyesno, askyesnocancel, askretryc
ancel)

class Application(Frame):
 def askdir(self):
 d = Directory(self)
 print(d.show())

 def messages(self):
 print("info", showinfo("Spam", "Egg Information"))
 print("warning", showwarning("Spam", "Egg Warning"))
 print("error", showerror("Spam", "Egg Alert"))
 print("question", askquestion("Spam", "Question?"))
 print("proceed", askokcancel("Spam", "Proceed?"))
 print("yes/no", askyesno("Spam", "Got it?"))
 print("yes/no/cancel", askyesnocancel("Spam", "Want it?"))
 print("try again", askretrycancel("Spam", "Try again?"))

 def file_open(self):
 d = LoadFileDialog(self)
 fname = d.go("nosuch.txt", "*.py")
 if fname is None:
 print("Canceled...")
 else:
 print("Open file", fname)

 def file_save(self):
 d = SaveFileDialog(self)
 fname = d.go("example", "*.py")
 if fname is None:
 print("Canceled...")
 else:
 print("Saving file", fname)
 def color(self):
 d = askcolor()
 print(d)

 def createWidgets(self):
 d_button = Button(self)
 d_button.config(width=12, text="Directory Test", command=self.askdir)
 d_button.pack(side=TOP)
 m_button = Button(self)
 m_button.config(width=12, text="Messages Test", command=self.messages)
 m_button.pack()
 c_button = Button(self)
 c_button.config(width=12, text="Color Choice", command=self.color)
 c_button.pack()
 l_button = Button(self)
 l_button.config(width=12, text="Open File", command=self.file_open)
 l_button.pack()
 s_button = Button(self)
 s_button.config(width=12, text="Save File", command=self.file_save)
 s_button.pack()
 self.QUIT = Button(self)
 self.QUIT.config(width=12, text="Quit", fg="red", command=self.quit)
 self.QUIT.pack(side=TOP)

 def __init__(self, master=None):
 Frame.__init__(self, master)
 self.pack()
 self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()

 Save and run it. You'll see a window with various buttons:

Click the buttons for examples o f the f iledialo g uses we talked about.

And there you have it! This concludes our discussion o f the t kint er library. Next up—Databases! See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Handling Databases
Lesson Objectives

When you complete this lesson, you will be able to :

use the MySQL database.
use the Structured Query Language (SQL), a command-based free-form language.
use the Data Definition Language (DDL), the subset o f SQL that allows you to define and modify database objects
such as tables and indexes.
use the Data Manipulation Language (DML).
use a special value called null to represent the fact that either no data is available.
create a new database with a table for storing basic information.
incorporate foreign keys to express the fact that relationships exist between two entities.

Relational Databases: Representing the World in Tables
You haven't had enough yet? Good! Let's keep our momentum go ing then, and start talking about relational
databases. Relational databases are based on complex discrete mathematics. Fortunately though, we don't need to
master all o f those complex mathematics in order to get the most from a database: the concepts are actually pretty
intuitive.

Relational databases use a language called the Structured Query Language (abbreviated as SQL) to define data
structures, and store and retrieve information. SQL is different from most computer languages in that it is declarative—
you don't tell the database how to produce what you want, you simply describe what you want it to do and the
database works out how best to do it.

Database systems are o ften built as "client/server" systems—your program is a client (maybe one o f many) o f a
server program that runs as a separate process, or maybe even on an entirely separate "database server" computer.
The diagram below of a MySQL database environment, depicts how some programs use the MySQL protocol—that's a
way o f speaking SQL that's particular to MySQL clients and servers—to the database server:

Okay, let's get this party started. First we'll run SQL on a MySQL database server elsewhere in the O'Reilly School
network. Your Ellipse setup will be the client in the top left-hand corner, connecting via the SSH pro toco l to another
computer, on which you will enter SQL commands to a Linux MySQL client program. The database client program will
then present your SQL to the database server, where the engine will process it.

Then we'll move on to Python database programming. Your programs will resemble the lower o f the two remote
processes in the diagram, where you use Python to interact with the database, by means o f a special piece o f driver
software. Think o f your program like this:

(Do you love our sweet diagrams or what?) In this course, you will use a MySQL database provided by OST. Your
database uses the same credentials (login name and password) as the o ther O'Reilly School systems you use, and
its name is the same as your user name. We've saved you the trouble o f installing your own database server; the care
and feeding o f these beasts requires some expertise! Your database programs will maintain their data on O'Reilly's
servers.

MySQL conforms closely to the Python DBAPI specifications for the way your programs should interact with the
database. Support fo r many relational databases, both open source and proprietary, is readily available using well-
tried third-party modules.

SQL is the common interface between databases and their applications. This means that you don't need to
incorporate information about the physical representation o f data on the storage media. Also, SQL processors do all
the "grunt work" o f optimization, and do not require programmers to specify the complex operations that complex
queries require.

Your First Database Interactions

http://www.python.org/dev/peps/pep-0249/

Access to a Database

The MySQL database server is a popular open-source database software, and is available for use on a wide
variety o f platforms. We'll use the MySQL database for our examples.

As we mentioned earlier, in this course, you have access to the MySQL database on the OST server. You can
access that database using the same username and password that you use to log onto your courses. Your
username is also the name of your database.

If you write in an SQL dialect that most database systems support, your SQL (and therefore your programs)
should run successfully against most database systems without change. Even though SQL is standardized,
each database vendor has a different interface, as well as different extensions o f SQL. We create our notes
and examples here to be general-purpose, so you can use them on this or o ther databases, but remember
that changes may be required.

First, we'll connect to your Unix account using SSH. To do that, use the T erminal tab in Ellipse.

Click the T erminal tab and then the Co nnect icon:

If a Terminal Settings dialog appears, select SSH for the Connection Type, enter co ld.o reillyscho o l.co m
fo r the Host, and enter the username and password you used to get into this course, and click OK.

An authenticity warning appears:

Click Yes to continue and make the connection.

Running MySQL

At the co ld:~$ prompt, type:

INTERACTIVE SESSION:

cold:~$ mysql -h sql -u <username> -p <username>

OBSERVE: Starting mysql at the co ld Prompt

mysql -h sql -u <username> -p <username>

(At the first instance o f username , enter the name you use to login to this course; fo r the second instance,
username should be replaced with your login name as well—this will become the name of the database.)
When prompted for a password (as required by the -p option), enter the password you use to login to this
course. You'll see a mysql> prompt:

Excellent! You're in!

Structured Query Language
Structured Query Language (SQL) is a command-based free-form language. All whitespace is considered equivalent,
and the keywords, table names, and co lumn names are not case-sensitive. It is common convention to write SQL
keywords in upper-case letters so they can be readily identified.

In fact, MySQL is picky about table names, and it's best practice to remain consistent, using the exact table names that
you create originally. No database will ever complain because you got the case right!

Each statement in SQL begins with a characteristic verb or phrase, which indicates the broad purpose o f the statement.
SQL actually includes three sub-languages, two o f which we'll consider in this course: Data Definition Language and
Data Manipulation Language. (The third, Data Contro l Language or DCL, is used to determine which users get
permission to perform which operations on which pieces o f data, and is outside the scope o f this course.)

Data Definition Language (DDL)

DDL is the subset o f SQL that allows you to define and modify database objects such as tables and indexes.
There are three basic verbs used in DDL:

CREAT E inserts new definitions into the data dictionary.
DROP removes definitions from the data dictionary.
ALT ER modifies definitions already present in the data dictionary.

Here is a description o f two relational tables that might be part o f a library information system. At the mysql
prompt, enter the SQL shown below to create two tables:

INTERACTIVE SESSION:

mysql> CREATE TABLE Book(
 -> BkISBN CHAR(12) NOT NULL,
 -> BkTitle VARCHAR(30) NOT NULL,
 -> BkPubNo INT,
 -> BkYear INT) ENGINE = MYISAM;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE Publisher(
 -> PubNo INT PRIMARY KEY,
 -> PubName VARCHAR(25),
 -> PubURL VARCHAR(50)) ENGINE = MYISAM;
Query OK, 0 rows affected (0.01 sec)

Here you create a table in SQL using the phrase "CREATE TABLE" fo llowed by the name of the table you want
to create, fo llowed by a parenthesized list o f co lumn specifications separated by commas. Each co lumn
specification determines the data type o f the values that are stored in the co lumn and can specify o ther
constraints (PRIMARY KEY specifies a constraint on the Publisher table—we'll learn about o thers later).

In many database systems, constraints do not need to be specified when the table is created. They can be
added later using the ALTER TABLE statement. Now enter these statements in mysql fo r the tables you
defined:

INTERACTIVE SESSION:

mysql> ALTER TABLE Book
 -> ADD CONSTRAINT Bk_PK
 -> PRIMARY KEY(BkISBN);

mysql> ALTER TABLE Book
 -> ADD CONSTRAINT Bk_Pub_FK
 -> FOREIGN KEY (BkPubNo) REFERENCES Publisher(PubNo);

The second statement expresses the fact that a relationship exists between Book and Publisher: each book is
related to (published by) one o f the publishers in the Publisher table. A publisher is identified by its primary
key (the value o f the PubNo co lumn). Consequently, the publisher o f a given book is recorded by storing the
appropriate PubNo value from Publisher, as the value o f the BkPubNo co lumn for the row representing the
book. We'll talk more about relationships later.

Data Manipulation Language (DML)

This is the most commonly used subset o f SQL; it is used to manipulate and query the data in the relational
structures maintained by the DDL, and is what updates the model and answers questions based on its
content. There are four statements in the Data Manipulation Language:

INSERT adds new rows to user tables.
SELECT retrieves information from one or more tables in the database (including data dictionary
tables if requested).
UPDAT E allows changes to be made to existing rows in user tables.
DELET E removes rows from user tables.

INSERT: Adding A Row to a Table

Now, we'll use the INSERT statement to insert some book and publisher data. In mysql, enter the code as
shown:

INTERACTIVE SESSION:

mysql> INSERT INTO Publisher (PubNo, PubName, PubURL)
 -> VALUES (1, 'O''Reilly', 'www.ora.com');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Publisher (PubNo, PubName, PubURL)
 -> VALUES (2, 'New Riders', 'www.newriders.com');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Book (BkISBN, BkTitle, BkPubNo, BkYear)
 -> VALUES('7807', 'Python Web Programming', 2, 2002);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Book (BkISBN, BkTitle, BkPubNo, BkYear)
 -> VALUES('0596', 'Learning Python', 1, 2009);
Query OK, 1 row affected (0.00 sec)

Each INSERT statement adds one row to the database table, named after the "INSERT INTO" clause. The
values in the VALUES list match up with the co lumns given in the list immediately fo llowing the table name.

Note
You may see code containing SQL INSERT statements that don't include the list o f co lumn
names, instead relying on the order o f the co lumn names when the table was created. This is
not a best practice.

SELECT: Retrieve Data from One or More Tables

Once you have data in your database, you can retrieve information using the SELECT statement. Enter the
code below as shown:

INTERACTIVE SESSION:

mysql> SELECT BkTitle, BkISBN, PubName
 -> FROM Book JOIN Publisher ON BkPubNo = PubNo;
+------------------------+--------+------------+
| BkTitle | BkISBN | PubName |
+------------------------+--------+------------+
| Python Web Programming | 7807 | New Riders |
| Learning Python | 0596 | O'Reilly |
+------------------------+--------+------------+
2 rows in set (0.05 sec)

mysql>

The statement above retrieves the ISBN and title o f the book from the Book table and the relevant publisher's
name from the Publisher table, and puts them together—this is called joining the tables. This results in the two
rows o f data shown.

UPDATE: Modify Exist ing Data in a Table

The UPDATE statement is used to modify existing data, and can change zero , one, or more rows in a single
table. Suppose a second edition o f Python Web Programming were published, then the database could be
modified to reflect the new book Add the code below as shown:

INTERACTIVE SESSION:

mysql> UPDATE Book SET BkTitle='Python Web Programming, 2nd Ed',
 -> BkYear=2010
 -> WHERE BkISBN='7807';
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql>

mysql> SELECT * FROM Book;
+--------+--------------------------------+---------+--------+
| BkISBN | BkTitle | BkPubNo | BkYear |
+--------+--------------------------------+---------+--------+
| 7807 | Python Web Programming, 2nd Ed | 2 | 2010 |
| 0596 | Learning Python | 1 | 2009 |
+--------+--------------------------------+---------+--------+
2 rows in set (0.04 sec)

mysql>

The output from the SELECT statement (the "*" simply means "all co lumns") shows that, in this case,
precisely one row was updated by the UPDATE statement. That happened because the WHERE clause
specified a condition that was only met by one row in the given table.

DELETE: Remove Rows From a Table

The DELETE statement removes all rows meeting a specific condition, again expressed in a WHERE clause.
You need to be really careful here—if you do not specify a WHERE clause, all rows in the table will disappear!
At the MySQL prompt type the code below as shown:

INTERACTIVE SESSION:

mysql> DELETE FROM Book WHERE BkISBN='0596';
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM Book;
+--------+--------------------------------+---------+--------+
| BkISBN | BkTitle | BkPubNo | BkYear |
+--------+--------------------------------+---------+--------+
| 7807 | Python Web Programming, 2nd Ed | 2 | 2010 |
+--------+--------------------------------+---------+--------+
1 row in set (0.04 sec)

mysql>

Having No Data: The Null Value

Relational systems use a special value called null to represent the fact that either no data is available for a
specific co lumn in a given row, or that that co lumn is irrelevant in the case o f the particular row in question.

While the null value (indicated as NULL in SQL statements) has its uses, you need to be careful o f its counter-
intuitive properties. Because the null value in effect represents the absence o f data, it introduces a third
possibility beyond true or false—unknown—as the result o f a comparison.

Consequently, if you are testing a co lumn for a given value, NULLs will no t be included whether you test fo r
equality or inequality (which you do IN SQL using "=" and "<>", respectively). Since we are used to the value
of a comparison being true or false, it's easy to forget to take this oddity into account. Use mysql to check this
out. Enter this SQL to see how NULL values affect comparisons:

INTERACTIVE SESSION:

mysql> INSERT INTO Book (BkISBN, BkTitle, BkPubNo)
 -> VALUES ('1234', 'Pythonic Attitudes', 2);
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO Book (BkISBN, BkTitle, BkPubNo, BkYear)
 -> VALUES ('0987', 'My Little Python', 1, 2005);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM Book;
+--------+--------------------------------+---------+--------+
| BkISBN | BkTitle | BkPubNo | BkYear |
+--------+--------------------------------+---------+--------+
7807	Python Web Programming, 2nd Ed	2	2010
1234	Pythonic Attitudes	2	NULL
0987	My Little Python	1	2005
+--------+--------------------------------+---------+--------+
3 rows in set (0.05 sec)

mysql>

See the NULL value in the BkYear co lumn for "Pythonic Attitudes?" (That's right, I said it. Pythonic Attitudes.)
Now we'll run a number o f queries on this updated data. Enter this SQL in the MySql Terminal Window:

INTERACTIVE SESSION:

mysql> SELECT COUNT(*) FROM Book;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
1 row in set (0.04 sec)

mysql> SELECT COUNT(*) FROM Book WHERE BkYear <= 2005;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.04 sec)

mysql> SELECT COUNT(*) FROM Book WHERE BkYear > 2005;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.04 sec)

mysql>

So, we have three books; one published 2005 or earlier, and one published after 2005, and...wait a minute! If
you don't see the problem here, think about how many books there are in the Books table. The first query
answers that: there are three. Okay, so how many o f them were published in or before 2005? The second
query tells us there is one. The third query tells us that there is only one book published after 2005—the
answer is again, one. But one plus one isn't three, and it's easy to overlook that the book with no year data
couldn't be included in either result set.

You need to be careful o f little things like this when your data allows NULL values, and we recommend that
another best practice is to allow NULL values only where you actively want to permit them. So, you find out
how many books there are in to tal by giving the SQL COUNT () function a "*" (all rows) argument. Counting

the BkYear co lumn is no good—because NULL values in that co lumn are omitted from the COUNT () . Let's
verify in the MySQL Terminal Window that NULLs are not COUNTed. Type in the code below as shown:

INTERACTIVE SESSION:

mysql> SELECT COUNT(BkYear) FROM Book;
+---------------+
| COUNT(BkYear) |
+---------------+
| 2 |
+---------------+
1 row in set (0.04 sec)

mysql>

Only two o f our books have a BkYear. When we entered the "Pythonic Attitudes" book data, we didn't include
a value for the year (sorry, we did that deliberately). In the result from the SELECT * FROM Bo o k query, we
mentioned that the value for BkYear fo r that row was NULL.

Note Data that can take the NULL value is sometimes referred to as optional.

So, we used COUNT () , a SQL function that aggregates the number o f rows that meet the given condition. A
count o f all rows clearly shows three rows, but we only saw one row with a year less than or equal to 2005
and one with a year that was greater than 2005. The third row didn't get counted by either o f those conditions.
The final query, where we explicitly counted the number o f BkYear entries, makes it apparent that only two
rows have an entry in that co lumn.

Creating a Table and Inserting Data
Tables are at the heart o f a database. Each table in a properly designed database, ho lds data concerning precisely one
type o f thing (an entity type, as it is more formally called in the database world). Suppose you want to keep information
about a zoo; you would certainly want to record information about the animals, and you could do so in a single table.

Let's create a new table in our database for storing basic information about zoo animals. Again, if it's not still running,
open a terminal window and start mysql. Enter the code below in an interactive window to create a new table:

INTERACTIVE SESSION:

mysql> CREATE TABLE animal(
 -> id INTEGER PRIMARY KEY AUTO_INCREMENT,
 -> name VARCHAR(50),
 -> family VARCHAR(50),
 -> weight INTEGER) ENGINE = MYISAM;
Query OK, 0 rows affected (0.03 sec)

Attributes are Columns, Occurrences are Rows

In the example above, you used a "CREATE TABLE" statement to create a table interactively with four
co lumns: id, name , f amily, and weight . id and weight ho ld integer values; name and f amily ho ld
character strings o f varying length. Each co lumn represents a different piece o f data about each animal that
can be stored—they are sometimes referred to as "attributes" o f the animal entity.

The PRIMARY KEY co lumn designation plays a special ro le in the table, which we'll discuss at length later.
For now, be aware that using its primary key is the only way to guarantee that you are referring to a single row
in the table; primary key values are always unique.

Now that we've created our table, let's put some data into it. The code below shows how to use the SQL
"INSERT" statement. If you were writing SQL for direct execution by the database, you would write something
like this:

INSERT INTO animal (id, name, family, weight) VALUES (1, 'Ellie', 'Elephant', 2350)

Note that SQL always uses single quotation marks to delimit string values. In a program though, you usually
have the data in variables. While you could build the exact SQL statement you want to run using string
manipulation, this is a really bad idea. If the data strings are from user input, it is too easy to allow the user to
mess up your SQL, sometimes with disastrous results (try searching the web for "SQL injection vulnerability"
to see how bad this can be). Fortunately, Python provides a mechanism to avo id these unpleasant security
vulnerabilities. Which brings us to consider how your programs will interact with the database.

The Python Database API

We've used SQL at the command line after securely logging in to a remote Linux system. Now we need to
learn how to use it from inside o f our Python programs, so that instead o f just displaying the data we retrieve,
we can execute Python statements using the data. That should make things a bit more interesting!

In order fo r a Python program to be able to talk to a database, it uses a special driver module. We are using
the mysql.co nnect o r module, calling its Co nnect () function to identify ourselves and obtain a database
connection. Once the connection is created, a cursor is used to execute SQL commands over that
connection. This program only inserts data into the database; it does not attempt to retrieve any data.

The DBAPI provides a so lution to the SQL injection problem by allowing you to make what are called
"parameterized queries." They're a little like passing arguments to Python functions. You include a special
"parameter mark" ("%s" for the mysql.co nnect o r module we use in this course) in the SQL statement to
represent each piece o f data, and then provide the data itself as an additional tuple to your database cursor's
execut e() method. Let's write a program to insert data into our animal table. Create a new PyDev pro ject
named HandlingDat abases and assign it to the Pyt ho n2_Lesso ns working set. Then, in the
HandlingDat abases/src fo lder, create t ablepo p.py as shown:

CODE TO TYPE:

"""
Populates a table with data from a Python tuple.
"""
import mysql.connector
from database import login_info

if __name__ =="__main__":

 db = mysql.connector.Connect(**login_info)
 cursor = db.cursor()

 data = (
 ("Ellie", "Elephant", 2350),
 ("Gerald", "Gnu", 1400),
 ("Gerald", "Giraffe", 940),
 ("Leonard", "Leopard", 280),
 ("Sam", "Snake", 24),
 ("Steve", "Snake", 35),
 ("Zorro", "Zebra", 340)
)

 cursor.execute("DELETE FROM animal")
 for t in data:
 cursor.execute("""
 INSERT INTO animal (name, family, weight)
 VALUES (%s, %s, %s)""", t)

 db.commit()
 print("Finished")

When you save and run this program, naturally, it raises an exception; rather than insert our login credentials
into this program, we're importing them as something called lo gin_inf o from a module named dat abase ,
which doesn't yet exist.

Note You may see a warning on the impo rt mysql.co nnect o r line in this program. Ignore it fo r
now.

Create dat abase.py in your HandlingDat abases/src fo lder, entering your login username in place o f

"username" and your password in place o f "password":

CODE TO TYPE:

USERNAME = "username"
PASSWORD = "password"

login_info = {
 'host': "sql.oreillyschool.com",
 'user': USERNAME,
 'password': PASSWORD,
 'database': USERNAME,
 'port': 3306
 }

This code creates a dict. The dict's items will become keyword arguments to the
mysql.co nnect o r.Co nnect () function (remember, the "**" tells the interpreter to convert the dict into a set
o f keyword arguments). Normally, to connect to a database server, you need to know a few pieces o f
information, which you have to pass to the driver when connecting to the database. The names o f the first four
arguments (host, user, password, and database) will probably make their purpose obvious. The fifth
argument, port, is required so the driver knows exactly where to connect on the database server. Save this
dat abase module, then re-run tablepop.py. The program inserts seven rows into your database's animal
table, and prints FINISHED. But don't take our word for it—check for yourself after you learn what your
program did! Let's look at the code more closely:

OBSERVE: tablepop.py

"""
Populates a table with data from a Python tuple.
"""
import mysql.connector
from database import login_info

if __name__ =="__main__":

 db = mysql.connector.Connect(**login_info)
 cursor = db.cursor()

 data = (
 ("Ellie", "Elephant", 2350),
 ("Gerald", "Gnu", 1400),
 ("Gerald", "Giraffe", 940),
 ("Leonard", "Leopard", 280),
 ("Sam", "Snake", 24),
 ("Steve", "Snake", 35),
 ("Zorro", "Zebra", 340)
)

 cursor.execute("DELETE FROM animal")
 for t in data:
 cursor.execute("""
 INSERT INTO animal (name, family, weight)
 VALUES (%s, %s, %s)""", t)

 db.commit()
 print("Finished")

First let's consider the database connection. The statement db =
mysql.co nnect o r.Co nnect (**lo gin_inf o) is equivalent to db = mysql.co nnect o r.Co nnect (ho st = ...,
user= ..., ...) , with the dict imported from the dat abase module providing both the names and the values o f
the parameters to the Co nnect () function.

Next, the statement curso r = db.curso r() creates a database cursor, which is how we present SQL
statements to the database for execution (you can create several cursors on the same connection if you want
to , but usually you won't do that). Next, the program loops over each o f the tuples in dat a, presenting each
tuple as the second argument to a call to the cursor's execut e() method.

Each time we called the curso r.execut e() method, we provided the same parameterized SQL INSERT
statement (containing three "%s" parameter marks to indicate where the data should go) as the first argument.
The second argument was the tuple o f data items. This inserted a new row into the animal table.

Note

The INSERT statement didn't provide a value for the id co lumn. Where did the IDs come from?
When we created the table, we declared id as INT EGER PRIMARY KEY AUT O_INCREMENT .
AUTO_INCREMENT specifies that the id co lumn of any row that is inserted into the table with no
id value specified, will be set to one greater than the highest value that was ever stored in that
co lumn. In practice, this normally means that values start at one and go up, which is what we
see here. If you have inserted and deleted o ther rows (good for you for experimenting!), you
might see different numbering.

So, now that we know what was supposed to happen inside t ablepo p.py, we should check to make sure
that it ran correctly!

In the Terminal tab, open a connection to the database, and verify the contents o f the animal table. Type this
code at the mysql prompt:

INTERACTIVE SESSION:

mysql> SELECT * FROM animal;
+----+---------+----------+--------+
| id | name | family | weight |
+----+---------+----------+--------+
1	Ellie	Elephant	2350
2	Gerald	Gnu	1400
3	Gerald	Giraffe	940
4	Leonard	Leopard	280
5	Sam	Snake	24
6	Steve	Snake	35
7	Zorro	Zebra	340
+----+---------+----------+--------+
7 rows in set (0.04 sec)

Relationships and Foreign Keys: Referring to Occurrences
You already saw in the book/publisher example that it is possible for a row in one table to refer to a row in another
table. Each book indicates its publisher in a co lumn called BkPubNo that ho lds the value o f the PubNo field o f one o f
the rows in the Publisher table.

The BkPubNo co lumn in the Book table is called a foreign key—it stores a primary key value from some row in
another table. Since primary key values are guaranteed to be unique, a foreign key value refers just once to a single
instance o f the related entity.

Foreign keys are used to express the fact that relationships exist between two entities. In this case, we might say that
"book is-published-by publisher," o r equivalently that "publisher publishes book." Since each book can have only one
publisher, but any given publisher can publish many books, we say that the relationship is "many-to-one" between
book and publisher, o r equivalently that it is "one-to-many" between publisher and book.

Relationships can turn mere data into information. Without the relationships, we could not show the publisher o f each
book in the query we ran earlier.

Integrity Constraints
For data to be stored in the database, it must meet certain rules, which are we'll summarize in a minute. Most relational
databases will enforce these rules automatically to maintain the integrity o f the relational structures. For this reason,
the rules are o ften referred to as integrity constraints. Your application may also have its own integrity requirements
imposed on the database content.

For example, it's fairly common in order processing systems to assign each customer a credit limit, to allow them to
purchase a certain amount without advance payment. Generally a customer's credit limit will be increased as they
demonstrate their trustworthiness. When a new order is received, the system checks how much the customer already

owes, and if the new order would take them over their credit limit, it refuses to release the new order (at least without
some manual override action). So the constraint there is that each customer's unpaid order to tal must be less than
their credit limit. Constraints imposed because o f the organization's requirements are o ften referred to as business
rules, o r semantic integrity constraints, but they are still constraints. They are frequently so complex that it isn't
reasonable to expect the database to maintain them without help from code in the application.

In this section, we discuss the integrity constraints that we usually expect the database to maintain without any help.

Primary Keys Identify Occurrences

Each ro w o f a t able must be uniquely ident if iable . The easiest way to ensure this is to have a co lumn
or co llection o f co lumns that is guaranteed unique for every row in the table. This co lumn (or co llection) is
designated as the primary key. A primary key that is made up o f more than one co lumn is referred to as a
composite primary key. The database will no t allow two rows with the same primary key value to exist. You
can see for yourself by trying to create a duplicate id value in the animal table. In the interactive conso le, type
the code below as shown:

INTERACTIVE SESSION:

mysql> INSERT INTO animal (id, name, family, weight)
 -> VALUES (1, "Harold", "Hyena", 80);
ERROR 1062 (23000): Duplicate entry '1' for key 1
mysql>

The error message tells you that the row could not be created because that would have resulted in a duplicate
primary key, which in turn would vio late the built- in integrity constraint.

No NULLs in Primary Key Values

No part o f t he primary key may be null. The primary key is used as the unique identifier fo r the rows o f a
table. Since the result o f a comparison between anything and null is unknown, it would be impossible to
answer yes or no to the question "does the primary key o f this row have that value?"

No Multi-Valued Attributes

At t ribut e values must be "at o mic" . There is no way to store more than one value for a given attribute in
any row. If you need to do that, you need to create a relationship instead. You can learn more about this under
"Implementing Multi-Valued Attributes" below.

Referential Integrity

Fo reign key values must exist as primary key values in t he re lat ed t able . This is a fairly
straightforward interpretation o f the meaning o f relationships. Because a book's publisher is indicated by its
BkPubNo attribute, the value o f that attribute must be a reference to a real publisher.

Implementing Multi-Valued Attributes
What if we wanted to store details about what each animal in our zoo eats? One way to do this would be to add a
f o o d co lumn to the table. But what if an animal can eat more than one type o f food? A common mistake o f new
database programmers make is to try and store several values in a single co lumn, as in this table:

Don't do this. The red X is there to remind you that this is a terrible idea. Using a table like this would make it next to
impossible to answer relatively simple queries like "which animals eat grass?" The so lution to this problem is to
introduce an entirely new entity to store this information, and put the new entity in a relationship with the animal entity by
storing the primary key o f the animal as an attribute o f the new f o o d entity. Let's do that now. We'll use some DDL to
create the new table and some DML to add the rows. In the HandlingDat abases/src fo lder, create addf o o d.py as
shown:

CODE TO TYPE:

"""
Create the food table and add all necessary data.
Note that the foods are identified by the animal's
name and family, so we have to look up the primary key.
"""

import mysql.connector
from database import login_info

db = mysql.connector.Connect(**login_info)
cursor = db.cursor()

cursor.execute("""DROP TABLE IF EXISTS food""")
cursor.execute("""
 CREATE TABLE food (
 id INTEGER PRIMARY KEY AUTO_INCREMENT,
 anid INTEGER,
 feed VARCHAR(20),
 FOREIGN KEY (anid) REFERENCES animal(id)) ENGINE = MYISAM
 """)

data = [('Ellie', 'Elephant', ['hay', 'peanuts']),
 ('Gerald', 'Gnu', ['leaves', 'shoots']),
 ('Gerald', 'Giraffe', ['hay', 'grass']),
 ('Leonard', 'Leopard', ['meat']),
 ('Sam', 'Snake', ['mice', 'meat']),
 ('Steve', 'Snake', ['mice', 'meat']),
 ('Zorro', 'Zebra', ['grass', 'leaves'])]

for name, family, foods in data:
 cursor.execute("SELECT id FROM animal WHERE name=%s and family=%s",
 (name, family))
 id = cursor.fetchone()[0]
 for food in foods:
 cursor.execute("""INSERT INTO food (anid, feed)
 VALUES (%s, %s)""", (id, food))
 db.commit()
 print("Processed", name, family, id)

Note
Unlike t ablepo p.py, this program does not require that the table be created before it is run. To remove
any uncertainty about the state o f the table, the DROP T ABLE IF EXIST S statement is present to make
sure that no food table exists when the CREAT E T ABLE statement is executed. If no such table exists
then the DROP T ABLE IF EXIST S statement has no effect.

 When you run the program, it prints out each animal's details:

OBSERVE: Output from addfood.py

Processed Ellie Elephant 1
Processed Gerald Gnu 2
Processed Gerald Giraffe 3
Processed Leonard Leopard 4
Processed Sam Snake 5
Processed Steve Snake 6
Processed Zorro Zebra 7

So now you have a record o f which animals eat which foods. Again, this is expressed as a relationship: animals eat
food (one-to-many), food is-eaten-by animal (many-to-one). Now try a few queries through the interactive window.
Use mysql to query the database:

INTERACTIVE SESSION:

mysql> SELECT * FROM food;
+----+------+---------+
| id | anid | feed |
+----+------+---------+
1	1	hay
2	1	peanuts
3	2	leaves
4	2	shoots
5	3	hay
6	3	grass
7	4	meat
8	5	mice
9	5	meat
10	6	mice
11	6	meat
12	7	grass
13	7	leaves
+----+------+---------+
13 rows in set (0.04 sec)

mysql> SELECT name, family, feed
 -> FROM animal JOIN food ON animal.id=food.anid
 -> WHERE feed IN ('meat', 'leaves');
+---------+---------+--------+
| name | family | feed |
+---------+---------+--------+
Gerald	Gnu	leaves
Leonard	Leopard	meat
Sam	Snake	meat
Steve	Snake	meat
Zorro	Zebra	leaves
+---------+---------+--------+
5 rows in set (0.05 sec)

mysql> SELECT feed
 -> FROM animal JOIN food ON animal.id=food.anid
 -> WHERE name='Sam' AND Family='Snake';
+------+
| feed |
+------+
| mice |
| meat |
+------+
2 rows in set (0.04 sec)

mysql> SELECT COUNT(*) FROM food WHERE feed='meat';
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
1 row in set (0.04 sec)

mysql>

The output shows that each row in the food table contains the relevant animal id. By jo ining the animal table to the food
table on equality o f animal id, we produce output containing one row for each combination o f animal and food. A given
animal can be associated with multiple foods, and the animal data is duplicated as many times as necessary, once for
each related food row. That's how the SQL JOIN feature works.

Using Relational Data in Python
For almost thirty years now, the relational database has been the dominant model fo r storing persistent data. As you

saw in an earlier lesson, Python has its own mechanisms, which are great when only Python programs are concerned,
but not so useful when multiple languages must be used. In addition, there is a huge amount o f "legacy data" already
stored in databases, and Python would not be a very good programming language if it couldn't make use o f that data.
Of course now you understand that it can, although you've only used MySQL, there are Python drivers for almost every
imaginable database.

When you use a database (or any o ther persistent data store) you are effectively creating a model o f selected portions
of the world. Though the model describes only those aspects o f the world that are o f interest to your application. For
instance, when writing a hospital information system, you would probably want to know the names and birth dates o f
the patients, but most likely not their favorite football team or the kind o f car they drive. Similarly, you would probably
want to know how many beds are in each ward, but the co lor the walls are painted would not be particularly relevant.

The value o f these models is that if you can keep them up to date (by changing them as the world changes—reducing
the stock quantity o f a product when some is so ld, fo r example—you can answer questions about the real world by
querying the model. If someone sends an order in fo r six widgets and you only have three in stock, you can respond by
telling the customer there will be a slight delay, and then order more widgets from your supplier without having to walk
to the warehouse and check the physical stock.

Metadata: Data about Data

One of the remarkable things about relational structures is that they're powerful enough to describe o ther
relational structures. Since a database is packed full o f routines to handle relational structures, it makes
sense that most relational database management systems (RDBMSs) actually store a relational description
of the application data structures they are used to create.

Note

This description is o ften called the data dictionary, o r the system catalog, o r various o ther
names. Many databases even allow you to retrieve data from the data dictionary, thereby
allowing you to query the structure o f the database (the data dictionary is comprised o f tables,
after all). If you are given access to the data dictionary, please remember never to try to update
those tables directly yourself (unless you happen to be an experienced database administrator)
—that's the RDBMS's job!

If you want to experiment with databases on your own computer, take a look at a standard library module,
sqlit e3, that lets you create and use relational structures without the complexity o f an external database
server and client/server communications. All data are stored in files held on the same computer that the
programs run on. sqlit e3 has some limitations and a few quirks but it's a good place to start, and has been
used to support many production programs.

Phew! Let's take a little break before moving on to the next lesson... okay, break's over. Let's go!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Database Hints and Tricks
Lesson Objectives

When you complete this lesson, you will be able to :

allow access to data elements by name.
use an unpacking assignment in the f o r loop that iterates over the result set.
represent tables as classes.
manipulate SQL in Python.
construct the class inside a function, which takes the co lumn and the table names as arguments.

Representing Data Rows
The last lesson focused on getting data into and out o f a database. Now we'll go over some different techniques that
make it more convenient to use our data, by treating relational data just like o ther data in our programs. We already
learned that after creating a cursor from a database connection, we pass SQL to the cursor's execut e() method. If the
SQL statements produce data, we call an additional cursor method to retrieve the data. Most database cursors have
three methods to retrieve data from the query results. Each data row is a tuple containing an element fo r each co lumn
in the query's result.

Met ho d Name Funct io nalit y

fetchone() Returns the next database row from the result set. If no rows are left, it returns No ne .

fetchmany(n) Returns a list o f up to n rows. If the result set is exhausted, it returns an empty list.

fetchall() Returns a list o f all rows remaining in the result set.

Working With Tuples

While you can deal with the data as tuples, it's not always the most convenient technique. The issue with
tuples is that you need to use a numeric index to retrieve elements. This can make your code unreadable, as
this first coding exercise will show. Create a Dat abaseHint s pro ject and assign it to your
Pyt ho n2_Lesso ns working set. Then, copy your dat abase.py from HandlingDat abases/src to
Dat abaseHint s/src to make your login information available to programs in this lesson's fo lder. Create
dat at est .py in the Dat abaseHint s/src fo lder as shown:

CODE TO TYPE:

"""
Demonstration of indexed access to data elements.
"""
import mysql.connector
from database import login_info

db = mysql.connector.Connect(**login_info)
cursor = db.cursor()

fmt = "{0:10} {1:10} {2:6}"
print(fmt.format("Animal", "Weight", "Family"))
print("-"*28)
cursor.execute("SELECT * FROM animal")
for animal in cursor.fetchall():
 print(fmt.format(animal[1], animal[3], animal[2]))

 This code produces a listing o f the animals' names, weights, and families as you might expect:

OBSERVE: Output from datatest.py

Animal Weight Family

Ellie 2350 Elephant
Gerald 1400 Gnu
Gerald 940 Giraffe
Leonard 280 Leopard
Sam 24 Snake
Steve 35 Snake
Zorro 340 Zebra

The code uses a cursor's execut e() method to request all animal data, and then iterates over the list o f
tuples returned by the cursor's f et chall() method. But looking at the last line o f the code, it isn't at all obvious
that animal[1] is the animal's name, animal[3] is its weight, and animal[2] represents the animal family.
Since you know that readability is one o f the most important aspects o f code, it would be good to allow
access to data elements by name. We can do that using various Python features.

One way to do it that will immediately improve the readability o f our code, is to use an unpacking assignment
in the f o r loop that iterates over the result set. At the same time, we'll change the SQL to explicitly retrieve
only the fields we want. Each element o f the (three-element) tuple is stored in its own variable, thanks to the
unpacking assignment. This makes the code a bit easier to read, but it does not effect its result at all. This
updated version o f the code should produce exactly the same output. In dat at est .py, type the code below as
shown:

CODE TO TYPE:

"""
Demonstration of indexed access to data elements.
"""
import mysql.connector
from database import login_info

db = mysql.connector.Connect(**login_info)
cursor = db.cursor()

fmt = "{0:10} {1:6} {2:10}"
print(fmt.format("Animal", "Weight", "Family"))
print("-"*28)
cursor.execute("SELECT * FROM animal")
for animal in cursor.fetchall():
 print(fmt.format(animal[1], animal[3], animal[2]))
cursor.execute("SELECT name, weight, family FROM animal")
for name, weight, family in cursor.fetchall():
 print(fmt.format(name, weight, family))

 Save and run it. You'll see the same results.

Representing Tables as Classes

Another way to make the code more comprehensible is to create an object fo r each row that has attributes
with the same names as the co lumns, to ho ld the data elements retrieved from the database. Then we'll begin
to see that the rows returned from a query are actually data objects. In the Dat abaseHint s/src fo lder, create
animal.py as shown:

CODE TO TYPE:

"""
animal.py: a class to represent an animal in the database
"""
class Animal:

 def __init__(self, id, name, family, weight):
 self.id = id
 self.name = name
 self.family = family
 self.weight = weight

This class has no tests. We need to write some, quickly! Instead o f getting into all the formality o f unit tests,
we can include a basic self-test. This will allow us to tailo r the way an Animal appears when printed, by
providing a __repr__() method to meet our own specifications. Modify animal.py as shown:

CODE TO TYPE:

"""
animal.py: a class to represent an animal in the database
"""
class Animal:

 def __init__(self, id, name, family, weight):
 self.id = id
 self.name = name
 self.family = family
 self.weight = weight

 def __repr__(self):
 return "Animal({0}, '{1}', '{2}', {3})".format(
 self.id, self.name, self.family, self.weight)

if __name__ == "__main__":
 import mysql.connector
 from database import login_info
 db = mysql.connector.Connect(**login_info)
 cursor = db.cursor()
 cursor.execute("SELECT id, name, family, weight FROM animal")
 animals = [Animal(*row) for row in cursor.fetchall()]
 from pprint import pprint
 pprint(animals)

 Save and run it. You'll see this:

OBSERVE: Output from the animal.py tests

[Animal(1, 'Ellie', 'Elephant', 2350),
 Animal(2, 'Gerald', 'Gnu', 1400),
 Animal(3, 'Gerald', 'Giraffe', 940),
 Animal(4, 'Leonard', 'Leopard', 280),
 Animal(5, 'Sam', 'Snake', 24),
 Animal(6, 'Steve', 'Snake', 35),
 Animal(7, 'Zorro', 'Zebra', 340)]

Take a closer look:

OBSERVE: animal.py

"""
animal.py: a class to represent an animal in the database
"""
class Animal:

 def __init__(self, id, name, family, weight):
 self.id = id
 self.name = name
 self.family = family
 self.weight = weight

 def __repr__(self):
 return "Animal({0}, '{1}', '{2}', {3})".format(
 self.id, self.name, self.family, self.weight)

if __name__ == "__main__":
 import mysql.connector
 from database import login_info
 db = mysql.connector.Connect(**login_info)
 cursor = db.cursor()
 cursor.execute("SELECT id, name, family, weight FROM animal")
 animals = [Animal(*row) for row in cursor.fetchall()]
 from pprint import pprint
 pprint(animals)

The program now defines the representation o f an Animal by implementing a __repr__() method for Animal.
The animals list is created in a list comprehension that provides individual arguments to the Animal creation
using Python's "*" feature. As we learned earlier, Python's "*" feature takes a tuple or list and turns it into a
series o f individual arguments, as required by the Animal class's __init __() method. The pprint () function,
imported from the pprint module, displays the representation o f each list element by calling the __repr__()
method.

This test isn't perfect, but it does cover most basic functionality. A silently-passing test is usually better. (Can
you think o f a way to silence the testing? Consider the exec() function). The test code also shows you one
way to create an instance o f this class from a row in a database table. Keep in mind that this method depends
on the precise order o f the fields in the database table, which isn't always a given. Someone might change the
structure o f the database without your knowledge, which could cause problems.

You can go further by defining a function that returns a tailo red class, o f which you can create instances to
represent each row. To create the class, you would call:

RC = Reco rdClass("animal" , " id name f amily weight ")

Once you create the class, you would create instances o f that class by calling the class with values for each o f
the named co lumns as fo llows:

f o r ro w in curso r.f et chall(): ro w_reco rd = RC(*ro w)

You have the power to go in many different directions with Python objects. As a relative newcomer to the
programming scene, you might sometimes find yourself almost paralyzed by the limitless number o f options
you have. Don't panic. In almost every case, the best way to deal with the quandary is to go ahead and write
something. If it needs to be changed later, that's fine—your tests should save you from big mistakes.

Going further, you'll consider the best way to create the Animal objects, and which methods they should have.
And what kind o f objects should those methods to return? It seems like it would be a good idea to have
read() return an Animal instance, but is it appropriate for a method o f Animal to return an animal? And what
arguments should read() be capable o f accepting?

Should readAnimal() be a function instead o f an Animal method? How about writ e()? Or should that be
save()? Is there any really important value for that method to return? Maybe the names o f the written fields?

Of course, you don't always want every co lumn of every row. Suppose you only wanted to retrieve certain
co lumns; would it help to keep the names o f those co lumns somewhere, and build the co lumn names into
the query somehow? That way you could have queries that didn't bring unnecessary data into memory, fo r
example. This is not only possible, it's what we're go ing to do next!

Manipulating SQL in Python

Python objects have a defined life-cycle which generally begins by calling the type's __new__() method, then
calling the __init __() method o f the "instance" returned by that. But most objects' behavior is determined by
the methods you write. You can write their __new__() and __init __() methods if you like. Once you know
what you're do ing, you can pretty much install your own logic and have objects behave according to your
plan.

So, how would you like a query to behave? Do you want your query to be on just a single table? If no t, you will
need to generate JOINs—if there are n tables, there must be n-1 JOIN conditions. Do you want to be able to
determine which co lumns from which o f the jo ined tables should be read in, and updated when written? Do
you want to be able to read and write those objects, at least by primary key?

There are some generic so lutions to these problems, but those frameworks can be intimidating at first. With
your knowledge o f Python, you already understand some techniques that make the database data easier to
handle. It's good to have a range o f techniques at your command for different situations. In order to
implement those techniques, you'll need to understand how Python can be used to create SQL statements.
Check it out:

OBSERVE: Generic SQL SELECT Query

SELECT column, ... FROM relation WHERE conditions

The re lat io n being queried is o ften a t able , though you can query a jo in as well. The co lumn list in the
statement may consist o f simple co lumn names or qualified names. If two or more o f the tables in a query
possess co lumns with the same name, these co lumns can only be referred to using tablename.columname
syntax. You don't necessarily need all co lumns o f a table each time you reference a row, so you can make a
case for having several different object types for a given table, each using a different set o f co lumns.

Note
Using only a subset o f the co lumns o f a table can be taken to its logical extreme by actually
splitting the co lumns across multiple tables, o f "commonly used" and "less commonly used"
co lumns. The technical name for this is vertical partitioning. What do you imagine a horizontal
partitioning might do? (Answer at bottom)

Suppose co ls is the list o f co lumn names you want, t able is the name of the table, and there are no o ther
conditions on the data. The SQL statement you'd need to start with is:

"SELECT {0} FROM {1}".fo rmat(", ".jo in(co ls), t able)

The rows returned by this query have len(co ls) elements, and the name of co lumn n is co ls[n].

In this next example, you'll generate the SQL from its component parts, and have a chance to observe how
queries can be built. Type the code below into an interactive interpreter session, as shown:

INTERACTIVE SESSION:

>>> cols = "id name family".split()
>>> ", ".join(cols)
'id, name, family'
>>> table = "animal"
>>> "SELECT {0} FROM {1}".format(", ".join(cols), table)
'SELECT id, name, family FROM animal'
>>> condition1 = "id=7"
>>> conditions = [condition1]
>>> " AND ".join(conditions)
'id=7'
>>> conditions.append("family IS NOT NULL")
>>> " AND ".join(conditions)
'id=7 AND family IS NOT NULL'
>>> "SELECT {0} FROM {1} WHERE {2}".format(
... ", ".join(cols), table, " AND ".join(conditions))
'SELECT id, name, family FROM animal WHERE id=7 AND family IS NOT NULL'
>>>

Let's take a closer look at that last statement:

OBSERVE: SELECT Statement Building

"SELECT {0} FROM {1} WHERE {2}".format(", ".join(cols), table, " AND ".join(cond
itions))

The result o f this expression is:

'SELECT id, name, f amily FROM animal WHERE id=7 AND f amily IS NOT NULL '

When a query jo ins multiple tables, there is always a chance that a name conflict will occur—the same co lumn
name might be defined in multiple tables. If you have enough information about the database, you can predict
and avo id such conflicts by using the fully-qualified name table.column. The SQL interpreter will tell you when
you make mistakes like this.

Let's say you have the co lumn names and corresponding data items in lists. You can create a Python object
for each o f the rows retrieved with attributes o f the same names as the co lumns (the co lumn names must be
named in acceptable Python style fo r the scheme to work properly). Earlier, we looked at how attribute
assignment works on Python objects. Don't worry if your memory is a bit fuzzy on this. Just focus on this
part: if x is some Python object, then the assignment x.name = value is pretty much equivalent to
x.__dict __['name'] = value , which can also be expressed as set at t r(x, 'name', value) .

Now, suppose the co lumn names are "id," "name," and "email," and that you have a (three-element) data row
holding a value for each attribute. There are various ways to modify a Python object. The object must be an
instance o f some user-defined class though, because built- in classes like int and list use a different
mechanism to look up attributes. Type the code below as shown into an interactive interpreter conso le:

INTERACTIVE SESSION:

>>> COLS = "id name email".split()
>>> data = (1, "Steve Holden", "steve@holdenweb.com")
>>> class row:
... pass
...
>>> r1 = row()
>>> for col, d in zip(COLS, data):
... setattr(r1, col, d)
...
>>> dir(r1)
['__doc__', '__module__', ... 'email', 'id', 'name']
>>> r1.id, r1.name, r1.email
(1, 'Steve Holden', 'steve@holdenweb.com')
>>>

So now you know how to inject arbitrary attributes into a Python object. Writing three lines o f code to create
the object you want is pretty economical. But when the __dict __ attribute is actually a standard Python dict, it
has an updat e() method, which you can call with either a dict o r a sequence o f (key, value) pairs as its so le
argument. The arguments are added to the original dict, overwriting the values o f existing keys and adding
new ones as necessary. This means you can achieve the same result even more efficiently. Continue your
previous interactive session, typing the code below as shown:

INTERACTIVE SESSION:

>>> zip(COLS, data)
<zip object at 0x0116F738>
>>> dict(zip(COLS, data))
{'email': 'steve@holdenweb.com', 'id': 1, 'name': 'Steve Holden'}
>>> r2 = row()
>>> r2.__dict__.update(dict(zip(COLS, data)))
>>> r2.email
'steve@holdenweb.com'
>>> dir(r2)
['__doc__', '__module__', ... 'email', 'id', 'name']
>>> r3 = row()
>>> r3.__dict__.update(zip(COLS, data))
>>> dir(r3)
['__doc__', '__module__', ... 'email', 'id', 'name']>>>

As the r3 example above demonstrates, the dict .updat e() method also accepts a sequence o f (name,
value) tuples as an argument, avo iding the unnecessary creation o f a dict. This type o f manipulation is
common in some applications.

Armed with this knowledge, you can now write a class with a constructor call that takes the co lumn names
and data items as arguments, and returns an object with the attributes set. Keep in mind that database co lumn
names do not always fo llow exactly the same rules as Python names, so you might find tables that don't
adapt well to this technique. There are o ften remedies you can apply at the database level to compensate for
poor naming cho ices, but that topic is beyond the scope o f this course.

A Data Row Class

Create dat aro w.py in your Dat abaseHint s/src fo lder as shown below:

CODE TO TYPE:

"""
datarow.py : implements a simple database record class
"""

class row:
 def __init__(self, cols, data):
 self.__dict__.update(zip(cols, data))
 def __repr__(self):
 return "user_record(id={0.id} name={0.name} email={0.email})".format(sel
f)

if __name__ == "__main__": # Simple self-test
 r1 = row(['id', 'name', 'email'],
 (1, "Steve Holden", "steve@holdenweb.com"))
 if r1.id != 1 or r1.name != "Steve Holden" or r1.email != "steve@holdenweb.c
om":
 print("TEST FAILED: id={0.id} name={0.name} email={0.email}".format(r1))

The test code demonstrates a feature o f the string .f o rmat () method. You can see that it is not difficult to
access the named attributes o f the format arguments (which are themselves addressed by number). So,
rather than passing three arguments to f o rmat () , you just pass one, and select the fields inside the format. If
we had used this ability in the animal.py example earlier, we could have replaced this:

OBSERVE: Original __repr__() method for Animal class

def __repr__(self):
 return "Animal({0}, '{1}', '{2}', {3})".format(
 self.id, self.name, self.family, self.weight)

with the slightly more readable:

OBSERVE: Revised __repr__()method for Animal class

def __repr__(self):
 return "Animal({0.id!r}, {0.name!r}, {0.family!r}, {0.weight!r})".format(sel
f)

The !r at the end o f each format specification tells the interpreter to substitute the object's repr()
representation. (That's why strings will still be displayed with quotation marks around them, even though
none appear in the format).

A More General-Purpose Approach

The row class developed in the preceding section works well enough, but the co lumn names have to be
passed in every time you create a new object. It would be more convenient to create a class with the co lumn
names already incorporated. You can do this by constructing the class inside a function, which takes the
co lumn and the table names as arguments. The function then returns the class after inserting the table name
and the co lumn names as class attributes. The function effectively becomes a "class factory," returning a
slightly different class each time it is called.

We'll write some basic tests fo r the function we're go ing to create—this will allow us to to verify its operation.
In the Dat abaseHint s/src fo lder, create t est ClassFact o ry.py as shown:

CODE TO TYPE:

import unittest
from classFactory import build_row

class DBTest(unittest.TestCase):

 def setUp(self):
 C = build_row("user", "id name email")
 self.c = C([1, "Steve Holden", "steve@holdenweb.com"])

 def test_attributes(self):
 self.assertEqual(self.c.id, 1)
 self.assertEqual(self.c.name, "Steve Holden")
 self.assertEqual(self.c.email, "steve@holdenweb.com")

 def test_repr(self):
 self.assertEqual(repr(self.c),
 "user_record(1, 'Steve Holden', 'steve@holdenweb.com')"
)

if __name__ == "__main__":
 unittest.main()

Now, in the Dat abaseHint s/src fo lder, create classFact o ry.py as shown:

CODE TO TYPE:

"""
classFactory: function to return tailored classes
"""

def build_row(table, cols):
 """Build a class that creates instances of specific rows"""
 class DataRow:
 """Generic data row class, specialized by surrounding function"""
 def __init__(self, data):
 """Uses data and column names to inject attributes"""
 assert len(data)==len(self.cols)
 for colname, dat in zip(self.cols, data):
 setattr(self, colname, dat)
 def __repr__(self):
 return "{0}_record({1})".format(self.table, ", ".join(["{0!r}".forma
t(getattr(self, c)) for c in self.cols]))
 DataRow.table = table
 DataRow.cols = cols.split()
 return DataRow

 Running the test program, you'll see two passing tests:

OBSERVE:

..
--
Ran 2 tests in 0.000s

OK

You're really soaking up this information! You now you have enough knowledge to be able to query a database. Good
job! But we still haven't talked about updating databases yet. There are three particularly important SQL statements that
we'll want to consider: INSERT, UPDATE and DELETE. In upcoming lessons, we investigate how those statements
can be automated on a case-by-case basis. For now, you're ready to leave the world o f databases behind and
immerse yourself in an entirely different techno logy: e-mail. See you in the next lesson...

Note Answer to earlier question "What does a horizontal partitioning do?" It splits the table up into commonly-used and
less-commonly-used sets o f rows. Back to question

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Handling Electronic Mail Messages
Lesson Objectives

When you complete this lesson, you will be able to :

create and send email messages.
create and send MIME messages.
create a Message object from a flat file by using the email module's built- in message_f ro m_f ile() function.
send emails with smtplib.
specify the type o f content that is in the message.

Handling Email
In this lesson we'll learn how to create and send email messages. We'll start by creating a plain text email, and send
out that email with Python's email and smt plib modules. We'll look at the source o f an email, and get a quick
overview of RFC 2822, the request fo r comments that specifies an email's fo rmat.

Once you have an understanding o f plain text emails, we'll move on to messages that have attachments and multiple
parts—MIME messages. Again, we'll be dealing with Python's email module, which contains classes for handling
messages that are composed o f multiple parts and types. Just like with plain text emails, we'll experiment with creating
and sending MIME messages. We'll see how MIME messages are composed, and how you can manipulate them
when you have a MIME message to pick apart.

An Example of Email Written to a File
First, let's write a plain text email file. Create a new HandlingEmail pro ject and assign it to the Pyt ho n2_Lesso ns
working set. In the HandlingEmail/src fo lder, create a file named example-email.t xt as shown:

CODE TO TYPE:

From: anybody@work.com
To: anybody@home.com
Subject: Handling Emails With Python

This email was sent using Python's smtplib!

Replace the "From:" address, anybody@work.com, with the email address you have registered with O'Reilly (where
you receive email from OST). Replace the "To:" address, anybody@home.com, with the same O'Reilly-registered
address, or any o ther address you can access. Also, take note o f the format o f the headers and the empty line
separating the headers from the body.

Representing an Email with Message Objects
Python's email module contains Message—a class with instances that represent email messages. (You'll learn
more about the structure o f an email later in this lesson when you get an overview of RFC 2822.) A Message object
has headers and payloads. Headers and the body are the two main parts o f an email. You can access the headers
using dictionary-like syntax, or you can use the Message class's instance methods. The Message class handles the
object representation o f an email; it does not actually have the functionality to send emails (that functionality is in the
smtplib module).

The email module also has FeedParser and Parser classes. These objects allow you to parse a stream of
characters or a file as an email. However, since instantiating a parser and then calling a parse method is such a
common sequence o f operations for creating Message objects, there are convenience functions in the email module
that bypass the use o f these two classes. Instead, you can create a Message object from a flat file by using the email
module's built- in message_f ro m_f ile() function. There is also a similar message_f ro m_st ring() function. The
next example shows the creation and usage o f a Message object. It incorporates the plain text email that you created
earlier. Type the code below into an interactive Python conso le as shown:

INTERACTIVE SESSION:

>>> import email, datetime
>>> msg = email.message_from_file(open(r'v:/workspace/HandlingEmail/src/example-email.t
xt'))
>>> msg['From']
'anybody@work.com'
>>> msg['from']
'anybody@work.com'
>>> msg['To']
'anybody@home.com'
>>> msg['Date'] = datetime.datetime.now().strftime("%d %b %Y %H:%M:%S -0600")
>>> msg['Date']
'5 Aug 2010 10:00:00 -0700'
>>> msg['Subject']
'Handling Emails With Python'
>>> msg.get('From')
'anybody@work.com'
>>> msg.get('from')
'anybody@work.com'
>>> msg
<email.message.Message object at 0x00BF8970>
>>> print(msg.as_string())
From: anybody@work.com
To: anybody@home.com
Subject: Handling Emails With Python
Date: 5 Aug 2010 10:00:00 -0700

This email was sent using Python's smtplib!

>>> msg['X-Holden-Web'] = "Root beer for everyone!"
>>> print(msg.as_string())
From: anybody@work.com
To: anybody@home.com
Subject: Handling Emails With Python
Date: 5 Aug 2010 10:00:00 -0700
X-Holden-Web: Root beer for everyone!
>>> msg.get_payload()
"This email was sent using Python's smtplib!\n"

>>>

The message_f ro m_f ile() function takes an opened file, and reads the file's contents to create a new Message
object. You access its headers using the same kind o f indexing that you use with dicts (you can also add headers by
indexing the same way—you are even allowed to add proprietary headers, as long as their names begin with "X-").

Header access is case- insensitive. You can refer to the From header as either "From" or "from," using mapping style
accessors or the get () method. There are multiple methods for poking and prodding the header and body information
in a Message object—get _paylo ad() , as_st ring() , and so on.

Sending Emails with smtplib
So, now that you have a representation o f an email as a Python object, how do you actually send an email? In order to
send an email, you'll need access to a mail server. Public email services like Yahoo, hotmail, o r gmail, o ffer you
access to their mail servers. If you've ever set up an email client, like Outlook, Thunderbird, or mail.app, to work with
your web mail account, you should be familiar with configuring an outgo ing mail server. You'll need to know the host
name and port o f the mail server you're go ing to use when you send emails with Python. The smt plib module's
SMTP class represents a connection to a mail server. It allows you to connect to and send mail from that server.

Note
If you know where to find your regular email settings, you can use those same SMTP server settings in
the next few exercises. Otherwise, use the settings in the example below. If you do that, all outgoing mail
from your account will be redirected automatically to the email address you registered with O'Reilly.

Type the code below into an interactive Python conso le as shown:

INTERACTIVE SESSION:

>>> import smtplib
>>> srv = smtplib.SMTP('mail.oreillyschool.com', 25)
>>> srv.sendmail(msg['From'], msg['To'], msg.as_string())
{}
>>> srv.quit()
(221, b'2.0.0 Bye')
>>>

Note You may see a warning that you are attempting to send spam. This is a security feature o f our SMTP
server; we are currently working on a so lution.

When you instantiated the SMTP object srv, you passed a host name and a port to its constructor. An alternative would
be to instantiate the object and then immediately call its co nnect () method. If you are using a mail server that requires
authentication, you'll need to call lo gin() (with a username and a password as its arguments) before using the
sendmail() method. Finally, as its name implies, sendmail() actually transmits your message. The From and To
addresses must be supplied as the first two arguments, and the entire message as a string must be passed in as the
third argument. We used the as_st ring() method to convert the entire message—the headers and the body—into a
string. The entire message is required, including the headers; get _paylo ad() would not be sufficient. Finally, you must
call quit () to close your connection to your mail server.

You should receive the message that you just sent in the destination "To:" email account. Most email clients allow you
to view an email's source. If you examine the source o f the email that was sent, you'll get something like this:

OBSERVE:

Delivered-To: smtplib.example@gmail.com
Received: by 10.229.248.19 with SMTP id me19cs11861qcb;
 Thu, 4 Aug 2010 06:16:42 -0700 (PDT)
Received: by 10.227.69.17 with SMTP id x17mr4348340wbi.171.1273151801377;
 Thu, 5 Aug 2010 06:16:41 -0700 (PDT)
Return-Path: <smtplib.example@yahoo.com>
Received: from smtp112.plus.mail.re1.yahoo.com (smtp112.plus.mail.re1.yahoo.com [69.147
.102.75])
 by mx.google.com with SMTP id p18si2812439wbc.13.2010.05.06.06.16.39;
 Thu, 5 Aug 2010 06:16:40 -0700 (PDT)
Received-SPF: pass (google.com: best guess record for domain of smtplib.example@yahoo.c
om designates 69.147.102.75 as permitted sender) client-ip=69.147.102.75;
Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for doma
in of smtplib.example@yahoo.com designates 69.147.102.75 as permitted sender) smtp.mail
=smtplib.example@yahoo.com; dkim=pass (test mode) header.i=@yahoo.com
Received: (qmail 71453 invoked from network); 6 May 2010 13:16:39 -0000
DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws;
s=s1024; d=yahoo.com;
h=DKIM-Signature:Message-ID:Received:X-Yahoo-SMTP:X-YMail-OSG:X-Yahoo-Newman-Property:F
rom:To:Subject:Date;
b=2tutdYAS4lFp/y5bosZZbKefffTkEYgEzwkuBVBotA/MwnbX70g0+xWuNN2Fv9PqQNYkmL817pOEJJdWOqXmE
QUnp1FOkACuXG7B8UWbjzJmJLhbncuWd9tvXKPqtYc0PTXeGT+8Uy1t0fJGi38p3UYHxgH1vM5+VuDEQwT3W8Y=
 ;
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=yahoo.com; s=s1024; t=127315179
9; bh=mBI+mFk/NBVawMtbV/D/wFxf8YugJRFLgkauQ63aW3I=; h=Message-ID:Received:X-Yahoo-SMTP:
X-YMail-OSG:X-Yahoo-Newman-Property:From:To:Subject:Date; b=p5sdatt7A9NABwx85pQE0yfN9vK
3BXUgAcFm7rN/v4zjCn2TxXKYvekLaGuNj3La8kl71pbf5Xv6vPjRKbcIizuNoXRnuB3lr6aR75rqzVZexRFHDM
jIKYnI9YyM5XemXbmG71WVAhEThkGm+K0TH4EhVvpNErLHo/y6cNtjQt0=
Message-ID: <317179.69250.qm@smtp112.plus.mail.re1.yahoo.com>
Received: from [192.168.1.146] (smtplib.example@XXX.XXX.XXX.XXX with plain)
 by smtp112.plus.mail.re1.yahoo.com with SMTP; 05 Aug 2010 06:16:39 -0700 PDT
X-Yahoo-SMTP: TvYTIr2swBBLfJ4hwbbruqy1ImdZ_uFJ9iC3Ww--
X-YMail-OSG: 1xdPB3cVM1mWl_7QIy3YY_1iLhS0cF29P0hOsaItTnh2cV5
AVGlSBuGUl30V8SuFKhKicU3FPPX5wCnZrzWz_I2anv4G3n.Mnak.bqWkyOj
Wa_T36GBd8PlXAIEMVRLnjBd3DaqEQCu3DgDP_5_w3u4CmwIrHI6pkDbGd3o
PT9xapGWr6M79XG2JE_SKC5VdCE8SvksSGfmtxX0mIZtwB61ZbhnlY5WOuLL
aHPML.XnABew_SwVbIGCARyGniU7.p_gz9DxmLnk3j64BCDa1ZGigG0w1bJ1
iyF.3uSWgsVG5OK03UGra6w_BjeSbDNaSGzM0jYG8KVFRR81DsotekR5O.3E
W99v26BEU
X-Yahoo-Newman-Property: ymail-3
From: anybody@work.com
To: anybody@home.com
Subject: Handling Emails With Python
Date: 5 Aug 2010 10:00:00 -0700

This email was sent using Python's smtplib!

Do you see the "X-Holden-Web" header in your message?

RFC 2822
The email's source looks a bit complicated at first glance. You normally don't see all o f that stuff when you send and
receive emails; mail clients like Outlook, Thunderbird, and gmail, remove all o f the nitty gritty details. But in order to
enable your program to send email, you'll need to be familiar with the specifications o f an email's syntax. These
specifications can be found in documents called RFCs—Requests for Comments. RFC 2822 contains the information
you need to use Python's email-handling modules.

There's a lengthy, detailed standard for RFCs. For more information, refer to the Python library.

Essentially, RFC 2822 is the standard that specifies the message content fo rmat to be passed between email
systems. A message is actually a series o f characters. According to RFC 2822, a message has two parts: the headers
and the body (which is optional). Think o f the headers as an envelope and the body as the letter. The envelope, or
headers, contain all o f the information necessary for sending the message—the sender, the recipient, the date the
message was created, and so on. The contents, or body (also referred to as the payload), is the actual message to be
transmitted.

http://docs.python.org/library/email.header.html

The header is separated from the payload by exactly one blank line (two consecutive line breaks). Line breaks can be
represented by different characters, or in some cases, by combinations o f characters. The RFC 2822 specification for
emails uses the carriage return and line feed pair (CRLF) to represent a line break. Two consecutive CRLFs separate
an email's headers from its body.

RFC 2822 is not the final word on email. Subsequent RFCs refine and clarify standards further. For example, RFCs
2045 through 2049 describe sending structured data, such as images and audio , via email. These RFCs, known
together as Multipurpose Internet Mail Extensions (MIME), extend the definition o f an email body. For now, RFC 2822
is enough to get us started with Python's email module. The four headers that we'll use are Orig-date, From, To, and
Subject:

Field Name Example

orig-date Date: 24 Apr 2010 10:00:00 -0700

from From: someone@domain.bar

to To: foo@example.bar

subject Subject: Hello

Take another look now, at the source o f the email that you sent and received earlier. Pick out the fields that were
required. Look at all o f the headers that were inserted by the mail client and the mail server! Find the blank line that
separates the headers from the body.

MIME Messages
So far, you've used string representations o f Message objects to send emails with smtplib. But you could as easily
have skipped parsing your email text into a Message object, and just passed a string directly from your file to the
sendmail() method. The basic RFC 2822 format can make using a Message object to represent a plain text email
seem like overkill.

The real value o f the Message object abstraction will become more apparent when you use it to create emails that
have multiple parts, contain non-English text (that is, character sets o ther than ASCII), o r have non-text attachments.
MIME is a set o f standards that allows emails to contain those elements. Incorporating MIME requires some
modification to the way you send plain text emails. You'll need boundaries for multipart messages, and extra headers
that specify which content you're sending. The MIME RFCs specify several headers that are not present in RFC 2822,
such as Content-Type and MIME-Version. Rather than go ing through each MIME-related RFC, we'll start with an
example o f how to send a basic MIME message with Python's email module.

MIME Messages in Python use the Message class. MIMEBase , a subclass o f Message, encapsulates common MIME
Message functionality. MIMEBase, in turn, serves as the parent o f a family o f classes that provide functionality fo r
specific MIME types. Our next example shows how to create a MIME Message that's composed o f two o ther
messages—a plain text message and an html message. Let's get go ing already! Create a container message that
ho lds the two text messages. Type this code into an interactive Python conso le:

INTERACTIVE SESSION:

>>> from email.mime.multipart import MIMEMultipart
>>> msg = MIMEMultipart()
>>> msg
<email.mime.multipart.MIMEMultipart object at 0x00BEB7D0>
>>> msg['To'] = 'anybody@home.com'
>>> msg['From'] = 'anybody@work.com'
>>> msg['Subject'] = 'Sending Multipart HTML Mail'
>>> print(msg.as_string())
Content-Type: multipart/mixed; boundary="===============1941993348=="
MIME-Version: 1.0
To: anybody@home.com
From: anybody@work.com
Subject: Sending Multipart HTML Mail

--===============1941993348==

--===============1941993348==--
>>> msg.get_content_type()
'multipart/mixed'
>>> msg.is_multipart()
True
>>> msg.get_boundary()
'===============2020970424=='

We used a specific MIME class rather than the Message class or the MIMEBase class to create our container.
MIMEBase is an abstract class—it is not intended to be instantiated directly. Instead, we used a subclass o f MIMEBase
—in this case, MIMEMultipart. A MIMEMultipart object automatically sets a couple o f headers for you: Content-Type and
MIME-Version. You can see the values o f these headers, along with the rest o f the message, by calling the
MIMEMultipart instance's as_st ring() method. Its headers indicate that its Content-Type is multipart/mixed.
Alternatively, we can call get _co nt ent _t ype() to view the Content-Type value directly. We can also call the
is_mult ipart () method to determine whether a message may be composed o f subparts. Finally, the
get _bo undary() method shows the string that separates the different parts o f a message.

Now that we have a container message, we can create the o ther two messages that we'll attach to it. Continue the
interactive Python conso le session. Type the code below as shown:

INTERACTIVE SESSION:

>>> from email.mime.text import MIMEText
>>> text_msg = MIMEText('hello!', 'plain')
>>> html_msg = MIMEText('hello!', 'html')
>>> print(text_msg.as_string())
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
>>> print(html_msg.as_string())
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
>>> text_msg.is_multipart()
False
>>> html_msg.is_multipart()
False
>>> text_msg.get_content_type()
'text/plain'
>>> html_msg.get_content_type()
'text/html'

You created another two objects that are instances o f a type-specific MIME class—MIMEText. The MIMEText
constructor takes the payload as the first argument, and the subtype o f the message as the second. Both messages
are o f type text, but one is text/plain, while the o ther is text/html. These objects do not have subparts; when you call
is_mult ipart () on them, the result is False. By using get _co nt ent _t ype() , we see that the appropriate Content-
Type headers are set. Again, the actual headers can be viewed by calling as_st ring() on either o f these objects, o r on
the container message.

With these two messages created, we can insert them into the original multipart message that serves as the container.
Continue the interactive Python conso le session. Type the code below as shown:

INTERACTIVE SESSION:

>>> msg.attach(html_msg)
>>> msg.attach(text_msg)
>>> msg.as_string()
'Content-Type: multipart/mixed; boundary="===============1941993348=="
MIME-Version: 1.0
To: anybody@home.com
From: anybody@work.com
Subject: Sending Multipart HTML Mail

--===============1941993348==
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
--===============1941993348==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
--===============1941993348==--'
>>> msg.get_payload()
[<email.mime.text.MIMEText object at 0x00C035B0>, <email.mime.text.MIMEText object at 0
x00C035D0>]
>>> messages = msg.get_payload()
>>> for m in messages:
... print(m.get_content_type())
...
text/html
text/plain
>>> msg.walk()
<generator object walk at 0x00C048C8>
>>> for m in msg.walk():
... print(m.is_multipart())
... print(m.get_content_type())
...
True
multipart/mixed
False
text/html
False
text/plain

Using the at t ach() method, you can nest messages into your original container email. The submessages that you
attached to your container email still retained their headers. Again, by using as_st ring() , you can see the headers o f
your message. This time though, you can see the headers o f all o f the messages because two them are subparts o f
the original. The boundary separates the messages.

When the get _paylo ad() method is called on the top-level multipart message, the result is the list o f the
submessages it contains. The items in this list are also message objects. They are the text and html messages that
you created. As is the case with regular Message objects, you can get the content type and the payload from them. In
fact, everything you can do with Message objects, you can do with the submessages on this list. Go ing through nested
messages by constantly calling get _paylo ad() would be tedious. So for messages with complex nesting, the
Message object supplies a walk() method which allows you to move through all o f the messages parts and subparts.

Now that you have your multipart message constructed, you can send it using the smtplib module. Continue the
interactive Python conso le session. Type the code below as shown:

INTERACTIVE SESSION:

>>> import smtplib
>>> srv = smtplib.SMTP('mail.oreillyschool.com', 25)
>>> srv.sendmail(msg['From'], msg['To'], msg.as_string())
{}
>>> srv.quit()
(221, b'2.0.0 Bye')
>>>

When you check your email, the source will look something like this:

OBSERVE:

Delivered-To: smtplib.example@gmail.com
Received: by 10.229.184.72 with SMTP id cj8cs27998qcb;
 Wed, 5 Aug 2010 04:47:15 -0700 (PDT)
Received: by 10.229.230.76 with SMTP id jl12mr584775qcb.134.1273664835572;
 Wed, 5 Aug 2010 04:47:15 -0700 (PDT)
Return-Path: <smtplib.example@yahoo.com>
Received: from smtp107.plus.mail.re1.yahoo.com (smtp107.plus.mail.re1.yahoo.com [69.147
.102.70])
 by mx.google.com with SMTP id h8si95375qce.35.2010.05.12.04.47.12;
 Wed, 5 Aug 2010 04:47:14 -0700 (PDT)
Received-SPF: pass (google.com: best guess record for domain of smtplib.example@yahoo.c
om designates 69.147.102.70 as permitted sender) client-ip=69.147.102.70;
Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for doma
in of smtplib.example@yahoo.com designates 69.147.102.70 as permitted sender) smtp.mail
=smtplib.example@yahoo.com; dkim=pass (test mode) header.i=@yahoo.com
Received: (qmail 14018 invoked from network); 5 Aug 2010 11:47:12 -0000
DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws;
s=s1024; d=yahoo.com;
h=DKIM-Signature:Message-ID:Date:Received:X-Yahoo-SMTP:X-YMail-OSG:X-Yahoo-Newman-Prope
rty:Content-Type:MIME-Version:To:From:Subject;
b=lg6OxX1OKZAXksTKkzq8e1oO8ieAxFAappES61HNBM+0dbg+8W4EumPAipkzXc+FrfTxp9baEcuEOZHs6Nymh
CsSrGitG8YdH65q2DSyZ1nZfx+J8vTwnmBPWUERbDnb0jc0BjL8Yxp67CoPl5sQK70RQwRFA8zfuHVRKOF3CGY=
 ;
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=yahoo.com; s=s1024; t=127366483
2; bh=9jXFcWGXd3kqMgAgceETpi+pfKBH4iw1lLP8TtNzJIo=; h=Message-ID:Date:Received:X-Yahoo-
SMTP:X-YMail-OSG:X-Yahoo-Newman-Property:Content-Type:MIME-Version:To:From:Subject; b=X
4f15CkB4Nncb53WVyv7W8DTvRH26barOUPgtgqRXSWaDoVp16Sh0auxPqto0wjHFYSb+k3RHQ7cDV2mmLLdacPc
bhm7nCnE1kcyjN+9YHyc1vDjcvSv4mC8cfCBh0BlBwPAQUpDzvEe5O8WHiAG+HHpeoRcrhdMk2vJ8zz75fc=
Message-ID: <666948.12858.qm@smtp107.plus.mail.re1.yahoo.com>
Date: Wed, 5 Aug 2010 04:47:12 -0700 (PDT)
Received: from [192.168.1.146] (smtplib.example@XXX.XXX.XXX.XXX with plain)
 by smtp107.plus.mail.re1.yahoo.com with SMTP; 5 Aug 2010 04:47:12 -0700 PDT
X-Yahoo-SMTP: TvYTIr2swBBLfJ4hwbbruqy1ImdZ_uFJ9iC3Ww--
X-YMail-OSG: .WEVb9sVM1lBMCoj.KTsuu4ud9OTVz2xFhg_0fgAIj82I6t
wG.lW3STKxIRYDBpPxsHAlHKn6nVLd_SHkOFi5Q3QqNDxvN1rURL3r4rLV5g
wal.7VIWZYVtB9dzHB3BTCUczn7WN_fojpSzk2muQn0DlpOLd_6_Pj2A1wgm
xGpHCqGgBSrvBzdtTAfWvSGqrkEzXpopsRBwrJcnODFF3W65LVua0x9b6Z41
zCr_HHODZIPOBdgOKOPDANhvpWoCY1hAHbsQoT4eLexZX63jSZ06VylQ1u_j
qlbqDaAFRgPltsNs4sxMASuTOjJr9dVK_vP5OtqQL11dxDqR6OJJrEQnNR96
cjM1EiGVD
X-Yahoo-Newman-Property: ymail-3
Content-Type: multipart/mixed; boundary="===============0044803118=="
MIME-Version: 1.0
To: smtplib.example@gmail.com
From: smtplib.example@yahoo.com
Subject: Sending Multipart HTML Mail

--===============0044803118==
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
--===============0044803118==
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
--===============0044803118==--

There are a few headers in the source that you haven't encountered yet. Again, MIME adds several new headers to the
email specification to describe the contents o f an email. These new headers include:

MIME-Version
Content-Type
Content-Transfer-Encoding
Content-ID
Content-Disposition

Only the first three—MIME-Version, Content-Type, and Content-Transfer-Encoding—are required for a MIME message.

MIME-Versio n indicates that the message conforms to the MIME standard. This is a signal to email clients and o ther
email programs to perform the additional processing necessary to handle MIME messages. In practice, the value o f
this header is usually "1.0 ." It should appear at the top level o f a message, though it can appear again if more MIME
messages are attached to the original message (more on nesting messages later in this lesson).

OBSERVE: MIME-Version header

MIME-Version: 1.0

Once you have signaled that a message conforms to the MIME standards by using the MIME-Version header, you
have to specify the type o f content that is in the message. MIME messages are not limited to just text! The Co nt ent -
T ype header describes the kind o f data that comprises the body. This description is made up o f two parts, separated
by a forward slash: type/subtype. The type is the general kind o f data. The subtype is the format o f that data. Some
common Content-Type values are:

T ype/Subt ype; Paramet er Descript io n

text/plain A plain text message. In the absence o f a Content-Type header, text/plain is
usually assumed.

text/html An HTML email—this tells your mail client that the email should be rendered as
HTML, like a web page.

Message/RFC822 The Content-Type o f another message; fo r example, in a reply, the original
message may be attached.

Image/Jpeg An image in jpeg format.

multipart/mixed;
boundary=gc0y0pkb9ex

A message with multiple parts. The parts are separated by the boundary—
gc0y0pkb9ex.

OBSERVE: Content-Type header

Content-Type: text/plain; charset="us-ascii"

Co nt ent -ID is a "world-unique" identifier fo r a part o f MIME message. Just like the Message-ID header, this is usually
automatically generated so that it is unique, regardless o f when and where it was created. A message's Content-ID can
be used in several different contexts. For example, it can aid in caching message parts, o r it can serve as mechanism
for maintaining references between different message parts.

OBSERVE: Content-ID header

Content-ID: <d41d8cd98f00b204e9800998ecf8427e@foo.bar>

The Co nt ent -Dispo sit io n header is an optional field that specifies how a MIME message part is displayed in your
mail client. An inline part is automatically displayed in the regular flow o f the message. An attachment part is not
automatically displayed; instead, it requires some user action in order fo r it to be viewed (such as opening a pdf
reader). The Content-Disposition header also allows you to specify a file name for an attachment. This is done by
adding a filename parameter to the end o f the header.

OBSERVE: Content-Disposition header

Content-Disposition: attachment; filename="files.zip"

Because binary data can't be transferred over some pro toco ls, it has to be represented as ASCII text. For example,
images and audio need a binary-to-text encoding in order to be sent. The Co nt ent -T ransf er-Enco ding header
specifies which encoding—if any—was used. Base64 is a common binary-to-text encoding scheme. Right-click on the

image below, select Save Pict ure As..." and save it as v:/wo rkspace/pyt ho n-lo go .png.

OBSERVE: Content-Transfer-Encoding header

Content-Transfer-Encoding: base64

Go ahead and type the code below into an interactive Python conso le:

INTERACTIVE SESSION:

>>> import os
>>> from email.mime.image import MIMEImage
>>> fn = 'v:/workspace/python-logo.png'
>>> import mimetypes
>>> mimetypes.guess_type(fn)
('image/png', None)
>>> with open(fn, 'rb') as fp:
... img = MIMEImage(fp.read())
...
>>> img['MIME-Version']
'1.0'
>>> img['Content-Type']
'image/png'
>>> img['Content-Transfer-Encoding']
'base64'
>>> img['Content-Disposition']
>>> img.get_filename()
>>> img.add_header('Content-Disposition', 'attachment', filename=os.path.basename(fn))
>>> img['Content-Disposition']
'attachment; filename="python-logo.png"'
>>> img.get_filename()
'python-logo.png'

There is a mimetypes module that contains a guess_t ype() method that guesses the content type o f a file by looking
at its extension. This can be handy for determining which MIME type class you should use to represent a message or
file in your program, without do ing content analysis. A few headers, such as MIME-Version, Content-Type, and
Content-Transfer-Encoding, are automatically set by using the MIMEImage constructor. If you want to attach a file so
that it's displayed as an attachment rather than inline, you can use the add_header() method and put in the
appropriate header names and header values manually. The add_header() method takes as keyword arguments, the
header name, the header value, and any optional parameters that you want to set fo r the header. Once you set the
attachment's filename, you can retrieve the attachment's filename programmatically, using the get _f ilename()
method.

In the Home Stretch
Using Python's email and smtplib modules, along with your knowledge about how emails are formatted, you can send
emails as well as parse them. An email can be a single plain text email, o r it can be a message that contains several
sub-parts. Depending on what type o f email you're sending, you'll set various headers that specify the details o f your
email—who it's from, who it goes to , what kind o f content it contains, and so on. Python's email module o ffers a

variety o f classes, from the base Message class to the MIME* classes, to represent email messages. These classes
offer conveniences like setting certain headers automatically, as well as methods that allow access to various parts o f
an email message (such as get _paylo ad() , o r get ()), and methods that aid in the creation o f messages
(add_header() , at t ach() , etc.). Once you've created a Python representation o f your message, you can use the
smtplib module to connect to your mail server and send your message.

Wow, can you believe it? You've only got one more lesson to go. It seems like only yesterday you were learning about
unittest...just look at you now! We've covered a lo t o f ground here, and you've done a great job. Still, if any part o f it is
confusing or you need some guidance, please call on your faithful instructor. See you in the next and final lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Email Search and Display
Lesson Objectives

When you complete this lesson, you will be able to :

write a program to create the necessary table in the MySQL database.
create a library to handle storage and retrieval o f information in the database.
write tests that exercise the storage and retrieval functionality.
write a GUI-based program to query the database and display the resulting messages.

A Really Useful Program
You have picked up lo ts o f empowering skills in this course. You know how to build GUIs, you understand about
various types o f persistent storage, and you can handle email. In this last lesson, we'll build an email storage and
retrieval mechanism, then attach that to a graphical user interface so that the user can enter various search criteria and
click on a button to see a list o f matching messages. Clicking on a message from the list will display the message
body. Not only that, but the messages will be stored in a relational database on an entirely different computer from the
one running the program. How coo l is that?

So, how will we be able to search the email? Potentially by date and by partial match on the names and email
addresses o f senders. We'll also be able to extend this so ftware to handle additional headers as retrieval keys.

We'll start by writing a program to create the necessary table in the MySQL database. We'll fo llow that with a library to
handle storage and retrieval o f information in the database, along with tests that exercise the storage and retrieval
functionality. Finally, we'll write a GUI-based program to query the database and display the resulting messages.

A Basic Email Database
To store messages, we need a defined structure. A single table is the simplest store, so for now, we'll develop a
single-table store. Once the basic message storage function is working (and tested!), we'll add co lumns to the table to
enable new types o f retrieval.

Message Identities

The modern email system is pretty good about allocating each individual message a globally-unique
identification, which is carried in the Message-Id header. Here's a sample header from the author's current
inbox:

OBSERVE: Sample Email Header

Message-ID: <20100529085040.32283.76682@betelnutz>

To keep relationships efficient and representations clear, each message in the database will have two unique
co lumns. There will be msgID (an integer co lumn automatically inserted as necessary by the RDBMS and
used as the primary key) and msgMessageID (the globally-unique mail system identifier). msgID will be
used to refer to a message wherever possible in the system. Messages themselves do sometimes refer to
each o ther by the Message-ID value though, so that access path is worth putting into even a basic
implementation.

This initial implementation records the Message-ID header value as a database co lumn so you can use SQL
to query it. Later, certain o ther information will also be extracted from the messages and recorded directly in
the database for the same reason. This will allow full relational operations on that data, letting the database
do the retrieval tasks for which it is optimized.

The store needs an Application Programmer Interface o r API. This intimidating-sounding thing is actually a set
o f "how-to instructions for users o f the message store." The fundamental operations o f storage and retrieval
are described in the API. Storing a message requires that the message be passed in to the storage function.
Retrieving messages requires some kind o f identity to be passed in, and for the function to return a message
(or raise some sort o f MessageNotFound exception). Since you have decided (well, okay, we've decided) to
retrieve with both "msgID" and "MessageID," it makes sense to provide two functions. Here is the API that will
help you accomplish your tasks:

Funct io n Purpo se and int erf ace

store(msg)

Adds the message to the store and returns its msgID value. If a
message with the same value for the Message-ID header is
already present in the store, the msgID o f the existing message is
returned.

message_by_id(id) Returns the message whose primary key value is id o r raises an
exception if no such message is present.

message_by_messageid(message_id) Returns the message whose MessageId value is message_id o r
raises an exception if no such message is present.

This is only an initial attempt to define the interface. Don't think o f it as something set in stone. Often, after
working with a newly-designed API fo r a little while, it turns out to be less than ideal. In that case, feel free to
change it—programmer convenience is more important than strict adherence to existing APIs. Never be afraid
to rework a portion o f your design; well-designed systems are the result o f experimentation and revision.

The Message Table

The message store is deliberately uncomplicated. You may be surprised at how sophisticated your queries
have become by the end o f the lesson. Initially there are just three co lumns: the id (automatically generated
by the database), the Message-ID header value, and the message itself, represented in the most
fundamental way: as the sequence o f characters that was received over the network. This sequence can be
parsed by the email module to produce email.Message objects. More co lumns will be added to the
database table as its scope and capabilities grow.

Start MySQL at the terminal window, and create this table as shown:

INTERACTIVE SESSION:

mysql> CREATE TABLE message(
 -> msgID INTEGER AUTO_INCREMENT PRIMARY KEY,
 -> msgMessageID VARCHAR(128),
 -> msgText LONGTEXT) ENGINE = MYISAM;
Query OK, 0 rows affected (0.18 sec)

That's it. You now have a table in which to store your messages. The message itself is stored as a character
sequence in a LONGTEXT co lumn. This particular type o f co lumn is designed to allow storage o f arbitrary
character strings. Email can be tricky stuff to store; not all messages will necessarily be in the same character
set and no global default can be applied. (For example, sometimes the header data explains that certain
portions o f the message are in specific encodings).

Processing the message to create an email.Message object is the most efficient way to extract the
Message-Id header. For now, if you want to find out anything else about the message once it's been stored,
you'll need to read its text in from the database and parse it again. By ensuring all messages are parsed
before entering the database, you guarantee they can be parsed upon retrieval.

At some po int you may consider using some more efficient storage representation, such as a pickle. But an
email is not necessarily best represented as a single object, so your initial approach will be the more
conservative one outlined above. Remember—first, make it work! You can update the storage mechanism
later if necessary.

You only need two pieces o f data in order to insert a new row (representing a new message) into the
message table: the Message ID and the bytestring representation o f the message. The third co lumn (primary
key) will be populated automatically. So if you have the Message ID and the string representation in variables
message_id, and t ext respectively, along with a database cursor in curs, the required statement would look
like this:

OBSERVE: Inserting Data in the message Table

curs.execute("INSERT INTO message(msgMessageID, msgText) VALUES (%s, %s)",
 (message_id, text))

Beginnings of a Mail Database Module

Now that the table has been created, you need Python functionality that allows you to store, and retrieve,
email messages.

Note

Users o f this API don't need to know how the data is stored in the database. If the API does not
provide them with the features they need, knowledge o f the structures allows the use o f raw
SQL, but it's better to try and avo id this. If only your code updates the database, then only you
are responsible for its consistency. This is a good practice to adhere to in database
management.

Before you insert the message into the database, you need to make sure that it isn't in there already. You
could either retrieve the set o f all rows having the given message ID and make sure that it is empty, or you
could count all o f the rows with a specific message-id. Since you need the primary key o f the message when
it is present in the database anyway (to return as the value o f the function), you may as well try and retrieve it
now.

Note When there is a possibility o f retrieving lo ts o f rows, but you only want to know how many there
are, it's usually much more efficient to use the SQL COUNT (*) function we discussed earlier.

Create a EmailSearch pro ject and assign it to the Pyt ho n2_Lesso ns working set. Copy the dat abase.py
file from Dat abaseHint s/src to your EmailSearch/src fo lder. Then, in the EmailSearch/src fo lder, create a
new Python file named maildb.py as shown:

CODE TO TYPE:

"""
Email message handling module: contains logic to store
email messages using a MySQL relational database.
"""
from email import message_from_string

def store(msg, conn, curs):
 """
 Stores an email message, if necessary, returning its primary key.
 """
 message_id = msg['message-id']
 text = msg.as_string()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 result = curs.fetchone()
 if result:
 return result[0]
 curs.execute("INSERT INTO message (msgMessageID, msgText) VALUES (%s, %s)",
 (message_id, text))
 conn.commit()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 return curs.fetchone()[0]

This maildb module defines a single function, which takes a parsed email.Message and its textual
equivalent as arguments. First, the function extracts the message's Message-ID header value, and attempts
to retrieve the msgid o f the message with that message_id (in case it already exists).

Sadly, we broke the first rule o f test-driven development here! Remember it? "Only write code to make a
failing test pass." But we wrote the code before writing the tests. Yes, we have led you down a dark and evil
path. Don't let us do it again! Let's write the tests now. To get go ing in the right direction, we'll even add some
tests that we know the existing code cannot pass, and then augment our code to make them pass in true test-
driven development fashion.

In our consideration o f email, we saw that the Message-ID header was a possible (candidate) primary key.
While we do need to store this value as a co lumn in the database (messaging systems o ften use Message-
ID values to refer to o ther messages), it should not be the primary key—it's too long, and strings take longer
to compare than numbers. So we made the primary key the msgid co lumn, with values that are automatically
allocated as rows are added to the database.

Now we can store messages in the database, right? Well, the only way to test storage is to retrieve data and
verify that it agrees with what was stored. So we need a way o f getting the information out—in fact we need
two ways. We need to be able to retrieve a message with a given primary key, and with a given Message-ID
header value. The code for each is somewhat similar.

Here's our testing strategy: each message is reconstituted from a text file, then stored using the
maildb.st o re() function. As the program iterates over the message files and stores the messages, it builds
two dicts. The first one, msgids, maps Message-ID values to primary keys. The second, message_ids,
maps primary key values to Message-ID values. The content o f the dicts is used by the t est _msg_ids() and
t est _message_ids() methods to verify that the expected message does indeed come back after retrieval by
one or the o ther o f the keys.

In the EmailSearch/src fo lder, create a t est Maildb.py file as shown:

CODE TO TYPE:

"""
Read in and parse email messages to verify readability.

NOTE: This test creates the message table, dropping any
previous version and should leave it empty. DANGER: this
test will delete any existing message table.
"""

from glob import glob
from email import message_from_string
import mysql.connector as msc
from database import login_info
import maildb
import unittest

conn = msc.Connect(**login_info)
curs = conn.cursor()

TBLDEF = """\
CREATE TABLE message (
 msgID INTEGER AUTO_INCREMENT PRIMARY KEY,
 msgMessageID VARCHAR(128),
 msgText LONGTEXT
) ENGINE = MYISAM"""
FILESPEC = "C:/PythonData/*.eml"

class testRealEmail_traffic(unittest.TestCase):
 def setUp(self):
 """
 Reads an arbitrary number of mail messages and
 stores them in a brand new messages table.

 DANGER: Any existing message table WILL be lost.
 """

 self.conn = msc.Connect(**login_info)
 self.curs = self.conn.cursor()
 self.curs.execute("DROP TABLE IF EXISTS message")
 self.conn.commit()
 curs.execute(TBLDEF)
 conn.commit()
 files = glob(FILESPEC)
 self.msgids = {} # Keyed by message_id
 self.message_ids = {} # keyed by id
 for f in files:
 ff = open(f)
 text = ff.read()
 msg = message_from_string(text)
 id = self.msgids[msg['message-id']] = maildb.store(msg, self.conn, s
elf.curs))
 self.message_ids[id] = msg['message-id']

 def test_not_empty(self):
 """
 Verify that the setUp method actually created some messages.
 If it finds no files there will be no messages in the table,
 the loop bodies in the other tests will never run, and potential
 errors will never be discovered.
 """
 curs.execute("SELECT COUNT(*) FROM message")
 messagect = curs.fetchone()[0]
 self.assertGreater(messagect, 0, "Database message table is empty")

 def test_message_ids(self):
 """
 Verify that items retrieved by id have the correct Message-ID.

 """
 for message_id in self.msgids.keys():
 pk, msg = maildb.msg_by_id(self.msgids[message_id])
 self.assertEqual(msg['message-id'], message_id)

 def test_ids(self):
 """
 Verify that items retrieved by message_id have the correct Message-ID.
 """
 for id in self.message_ids.keys():
 pk, msg = maildb.msg_by_message_id(self.message_ids[id])
 self.assertEqual(msg['message-id'], self.message_ids[id])

 def tearDown(self):
 self.conn.close()

if __name__ == "__main__":
 unittest.main()

 Save and run it. The tests fail, because the code calls two retrieval functions that we may not have written yet.
In the code editor window, you'll see two error flags in the left margin:

Move your cursor over the red "X," and you'll see a too ltip that says something like "Undefined variable from
import: msg_by_id". Even so, Eclipse will let you try and run the program. The resulting AttributeError
exceptions cause the test to fail:

OBSERVE: Result o f Initial Run o f testMaildb.py

EE.
==
ERROR: test_ids (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 62, in test_ids
 pk, msg = maildb.msg_by_message_id(self.message_ids[id])
AttributeError: 'module' object has no attribute 'msg_by_message_id'

==
ERROR: test_message_ids (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 54, in test_message_id
s
 pk, msg = maildb.msg_by_id(self.msgids[message_id])
AttributeError: 'module' object has no attribute 'msg_by_id'

--
Ran 3 tests in 0.688s

FAILED (errors=2)

The tests fail because there is no code present to implement the retrieval functions msg_by_id() and
msg_by_message_id() . In this case, failure is great news—it means we're in proper test-driven
development mode, now all we have to do is write those functions to pass the tests. Both o f the retrieval
functions return the message and its primary key. No matter how data is retrieved, store it using the primary
key value to select the row to be updated.

The msg_by_id() function takes a primary key (id) value as its argument and executes a query to retrieve the
message (along with the primary key). If this query returns an empty result set, the function raises a KeyError
exception. Otherwise, msg_by_id() extracts the message text and its primary key from the database, and
returns the primary key and a newly-parsed mail message.

This test mechanism is somewhat inefficient because it creates the table and then drops it fo r each individual

test; it would be better to run the data creation once and then run each individual test. But we want to have two
separate tests to make sure that a failure in one retrieval routine won't stop us from testing the o ther, so for
now we'll put up with this bit o f inefficiency.

Edit your maildb.py library to add this retrieval function as shown:

CODE TO TYPE:

"""
Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.
"""
from email import message_from_string

def store(msg, conn, curs):
 """
 Stores an email message, if necessary, returning its primary key.
 """
 message_id = msg['message-id']
 text = msg.as_string()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 result = curs.fetchone()
 if result:
 return result[0]
 curs.execute("INSERT INTO message (msgMessageID, msgText) VALUES (%s, %s)",
 (message_id, text))
 conn.commit()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 return curs.fetchone()[0]

def msg_by_id(id, conn, curs):
 """
 Return the (presumably singleton) message whose primary key is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Id {0} not found in store".format(id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

With this new logic in place, one o f the tests will succeed when you re-run t est Maildb.py:

OBSERVE:

E..
==
ERROR: test_ids (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 62, in test_ids
 pk, msg = maildb.msg_by_message_id(self.message_ids[id])
AttributeError: 'module' object has no attribute 'msg_by_message_id'

--
Ran 3 tests in 0.578s

FAILED (errors=1)

There is little difference between msg_by_id() and msg_by_message_id() . It is just a matter o f using a
slightly different condition on the query. Modify maildb.py by adding the code below as shown:

CODE TO TYPE:

"""
Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.
"""
from email import message_from_string

def store(msg, conn, curs):
 """
 Stores an email message, if necessary, returning its primary key.
 """
 message_id = msg['message-id']
 text = msg.as_string()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 result = curs.fetchone()
 if result:
 return result[0]
 curs.execute("INSERT INTO message (msgMessageID, msgText) VALUES (%s, %s)",
 (message_id, text))
 conn.commit()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 return curs.fetchone()[0]

def msg_by_id(id, conn, curs):
 """
 Return the (presumably singleton) message whose primary key is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Id {0} not found in store".format(id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

def msg_by_message_id(message_id, conn, curs):
 """
 Return the (presumably singleton) message whose "Message-ID" is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgMessageID=%s", (me
ssage_id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Message-Id {0} not found in store".format(message_id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

Finally, all o f our tests pass, and we can proceed to develop this basic library into something we can really
use:

OBSERVE: Life is good when tests pass

...
--
Ran 3 tests in 0.580s

OK

Extending the Database's Retrieval Capabilities

According to our tests, we can now store email messages in a relational database and retrieve them either by
primary key or Message-ID value. The Message-ID is extracted from the message when it is stored. It doesn't
hurt to leave records lying around after a test, to allow testers to query the database manually and see what
else can be done with the records, though the production installers prefer to have the tables left in a known
empty state. It certainly doesn't hurt to know that the table passed its basic tests after installation. There are
other pieces o f information about the messages that you might like to store in the relational database to
expand your retrieval capabilities even further. Specifically, you want to be able to retrieve messages sent
between specific dates and/or times, and from specific senders, by name or address.

To accomplish that, we'll add a new co lumn containing the message date. But it wouldn't be particularly useful
to store it as a text co lumn in the database, because the database cannot execute time-based calculations on
strings. So instead, after you have extracted the Dat e header value from the parsed message, convert it into a
Python dat et ime.dat et ime object, which the database driver will then convert into a MySQL DATETIME
value, fo r storage in the database.

We'll modify the test program, adding a msgDat e co lumn to the table definition and add tests o f the date
retrieval function. We'll write that function later; it will look like this:

def msgs_by_dat e(mindat e, maxdat e)

Retrieval by date is different from retrieval by primary key or Message-ID—there is a real possibility that
multiple messages will have the same date, causing the new function to return multiple records.

Our tests should work independently o f the test data. To test the date routine, we'll change the date creation
code in the set Up() method so that it also records the minimum and maximum datetime and a message
count. Then we'll add a third test, t est _dat es() , that requests retrieval o f all messages between the minimum
and maximum datetimes, and verifies that the count is correct, and that all messages have the correct msgid
values. Modify t est Maildb.py as shown:

CODE TO TYPE:

"""
Read in and parse email messages to verify readability.

NOTE: This test creates the message table, dropping any
previous version and should leave it empty. DANGER: this
test will delete any existing message table.
"""
from glob import glob
from email import message_from_string
import mysql.connector as msc
from database import login_info
import maildb
import unittest
import datetime
from email.utils import parsedate_tz, mktime_tz

conn = msc.Connect(**login_info)
curs = conn.cursor()

TBLDEF = """\
CREATE TABLE message (
 msgID INTEGER AUTO_INCREMENT PRIMARY KEY,
 msgMessageID VARCHAR(128),
 msgDate DATETIME,
 msgText LONGTEXT
) ENGINE = MYISAM"""
FILESPEC = "C:/PythonData/*.eml"

class testRealEmail_traffic(unittest.TestCase):
 def setUp(self):
 """
 Reads an arbitrary number of mail messages and
 stores them in a brand new messages table.

 DANGER: Any existing message table WILL be lost.
 """
 self.conn = msc.Connect(**login_info)
 self.curs = self.conn.cursor()
 self.curs.execute("DROP TABLE IF EXISTS message")
 self.conn.commit()
 curs.execute(TBLDEF)
 conn.commit()
 files = glob(FILESPEC)
 self.msgids = {} # Keyed by message_id
 self.message_ids = {} # keyed by id
 self.msgdates = []
 self.rowcount = 0
 for f in files:
 ff = open(f)
 text = ff.read()
 msg = message_from_string(text)
 id = self.msgids[msg['message-id']] = maildb.store(msg, self.conn, s
elf.curs)
 self.message_ids[id] = msg['message-id']
 date = msg['date']
 self.msgdates.append(datetime.datetime.fromtimestamp(mktime_tz(parse
date_tz(date))))
 self.rowcount += 1 # Assuming no duplicated Message-IDs

 def test_not_empty(self):
 """
 Verify that the setUp method actually created some messages.
 If it finds no files there will be no messages in the table,
 the loop bodies in the other tests will never run, and potential
 errors will never be discovered.
 """

 curs.execute("SELECT COUNT(*) FROM message")
 messagect = curs.fetchone()[0]
 self.assertGreater(messagect, 0, "Database message table is empty")

 def test_message_ids(self):
 """
 Verify that items retrieved by id have the correct Message-ID.
 """
 for message_id in self.msgids.keys():
 id, msg = maildb.msg_by_id(self.msgids[message_id], self.conn, self.
curs)
 self.assertEqual(msg['message-id'], message_id)
 self.assertEqual(id, self.msgids[message_id])

 def test_ids(self):
 """
 Verify that items retrieved by message_id have the correct Message-ID.
 """
 for id in self.message_ids.keys():
 id1, msg = maildb.msg_by_message_id(self.message_ids[id], self.conn,
 self.curs)
 self.assertEqual(msg['message-id'], self.message_ids[id])
 self.assertEqual(id, id1)

 def test_dates(self):
 """
 Verify that retrieving records between the minimum and maximum dates
 returns an appropriate number of records.
 """
 mind = min(self.msgdates)
 mindate = datetime.date(mind.year, mind.month, mind.day)
 maxd = max(self.msgdates)
 maxdate = datetime.date(maxd.year, maxd.month, maxd.day)
 self.assertEqual(self.rowcount,
 len(maildb.msgs_by_date(mindate=mindate,
 maxdate=maxdate)))

 def tearDown():
 self.conn.close()

if __name__ == "__main__":
 unittest.main()

By assigning this test the task o f creating the table, we ensure that the table definition stays up to date. This is
actually the only way the tests can succeed—if SQL refers to a nonexistent co lumn, the Python code that uses
it will raise an exception.

 Save and run it. The updated test fails, because we haven't updated the library yet. But hey, at least the
original tests are still passing! The new test fails because it calls a function that we haven't written yet:

OBSERVE:

E...
==
ERROR: test_dates (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 83, in test_dates
 len(maildb.msgs_by_date(mindate=mindate,
AttributeError: 'module' object has no attribute 'msgs_by_date'

--
Ran 4 tests in 0.672s

FAILED (errors=1)

We don't need to add much code to store the messages—the change looks bigger than it o therwise might

because some operations have been re-ordered to avo id unnecessary work. We do need to import a couple
of bits o f code from email.ut ils and dat et ime . And, if the record isn't already present, the st o re() function
extracts and converts the date, before storing it as an additional co lumn in the table.

Now we need some way o f retrieving the messages by date. We'll add a msgs_by_dat e() function that takes
a minimum and/or a maximum date. The SQL that is generated makes sure that only one date will be
provided. The parameters are dates rather than date-times, because we assume that humans are more
interested in dates than times for most purposes. For the upper limit, we add a day to the given date and use a
"less than" comparison. The code requires that at least one criterion be provided, and there is some logic to
allow the code to work with either one or two conditions. Modify maildb.py as shown below:

CODE TO TYPE:

"""
Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.
"""
from email import message_from_string
from email.utils import parsedate_tz, mktime_tz
from datetime import datetime, timedelta

def store(msg, conn, curs):
 """
 Stores an email message, if necessary, returning its primary key.
 """
 message_id = msg['message-id']
 text = msg.as_string()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 result = curs.fetchone()
 if result:
 return result[0]
 date = msg['date']
 dt = datetime.fromtimestamp(mktime_tz(parsedate_tz(date)))
 text = msg.as_string()
 curs.execute("INSERT INTO message (msgMessageID, msgDate, msgText) VALUES (%
s, %s, %s)",
 (message_id, dt, text))
 conn.commit()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 return curs.fetchone()[0]

def msg_by_id(id, conn, curs):
 """
 Return the (presumably singleton) message whose primary key is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Id {0} not found in store".format(id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

def msg_by_message_id(message_id, conn, curs):
 """
 Return the (presumably singleton) message whose "Message-ID" is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgMessageID=%s", (me
ssage_id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Message-Id {0} not found in store".format(message_id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

def msgs_by_date(mindate=None, maxdate=None, conn, curs):
 if not (mindate or maxdate):
 raise TypeError("Must provide at least one of mindate, maxdate")
 conds = []
 data = []
 if mindate:
 conds.append("msgDate >= %s")
 data.append(mindate)
 if maxdate:

 conds.append("msgdate < %s")
 data.append(maxdate+timedelta(days=1))
 sql = "SELECT msgid, msgText FROM message WHERE "
 sql += " AND ".join(conds)
 curs.execute(sql, tuple(data))
 result = []
 for id, text in curs.fetchall():
 result.append((id, message_from_string(text)))
 return result

 Save and run it (from t est Maildb.py) to verify that all o f the tests now pass and also to confirm that we have
implemented date-based storage correctly:

OBSERVE:

....
--
Ran 4 tests in 0.890s

OK

Tests all passed. Excellent. Proceed!

Practical Application

You might have thought you had the beginnings o f a useful library with maildb.py, but the design is missing
something—descriptions o f the practical uses your program could fulfill using the library or use cases.

We know we can retrieve mail by date now, but typically we want to apply the date restrictions along with o ther
constraints, like "sent by user@domain" or "recipients include user@domain." Before we go any further, we'll
want to know more about the application that will be using the library.

You can always work directly with the database tables to provide a date-ordered listing o f subjects. In the
EmailSearch/src fo lder, create mlist 1.py as shown:

CODE TO TYPE:

"""
Sample program to list subjects by date.
"""
from database import login_info
import mysql.connector
from email import message_from_string
conn = mysql.connector.Connect(**login_info)
curs = conn.cursor()
curs.execute("SELECT msgText FROM message ORDER BY msgDate")
for text, in curs.fetchall():
 msg = message_from_string(text)
 print(msg['date'], msg['subject'])

So, what are the retrieval requirements o f this application? The intention is to allow the user to enter any or all
o f a start date, an end date, sender's name, and sender's email address, and then to list the dates and subject
lines o f each message. They should be able to click a message to display it.

As we saw earlier, the existing date field in the table allows us to select dates, but at present, we are not
extracting the o ther necessary values—sender's name and email address—as database co lumns. We need
to fix that. The sender's data are held in the Fro m header. The format o f the header data allows the inclusion
of both a textual name and email address; the email.ut ils library has a parseaddr() function that we can use
to move both pieces o f information from the Fro m header into a (name, address) tuple. That data can then be
stored in two additional co lumns in the messages table. The code changes are subtle, particularly since we
aren't adding any new retrieval routines this time around. Modify maildb.py as shown:

CODE TO TYPE:

"""
Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.
"""
from email import message_from_string
from email.utils import parsedate_tz, mktime_tz, parseaddr
from datetime import datetime, timedelta

def store(msg, conn, curs):
 """
 Stores an email message, if necessary, returning its primary key.
 """
 message_id = msg['message-id']
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 result = curs.fetchone()
 if result:
 return result[0]
 date = msg['date']
 name, email = parseaddr(msg['from'])
 dt = datetime.fromtimestamp(mktime_tz(parsedate_tz(date)))
 text = msg.as_string()
 curs.execute("""INSERT INTO message
 (msgMessageID, msgDate, msgSenderName, msgSenderAddress, msg
Text)
 VALUES (%s, %s, %s, %s, %s)""",
 (message_id, dt, name, email, text))
 conn.commit()
 curs.execute("SELECT msgID FROM message WHERE msgMessageID=%s", (message_id,
))
 return curs.fetchone()[0]

def msg_by_id(id, conn, curs):
 """
 Return the (presumably singleton) message whose primary key is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Id {0} not found in store".format(id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

def msg_by_message_id(message_id, conn, curs):
 """
 Return the (presumably singleton) message whose "Message-ID" is given
 or raise KeyError if no such message exists.
 """
 curs.execute("SELECT msgID, msgText FROM message WHERE msgMessageID=%s", (me
ssage_id,))
 result = curs.fetchone()
 if not result:
 raise KeyError("Message-Id {0} not found in store".format(message_id))
 id, text = result
 msg = message_from_string(text)
 return id, msg

def msgs_by_date(mindate=None, maxdate=None, conn, curs):
def msgs(conn, curs, mindate=None, maxdate=None, namesearch=None, addsearch=None
):
 """
 Return a list of all messages sent on or after mindate and on or before maxd
ate.
 If mindate is not specified, there is no lower bound on the date, and simila

rly
 if maxdate is not specified, no upper bound. If namesearch is given, the
 result set is restricted to messages with sender names containing that strin
g. If
 addsearch is given, the result set is restricted to messages with email
 addresses containing that string.
 """
 if not (mindate or maxdate):
 raise TypeError("Must provide at least one of mindate, maxdate")
 conds = []
 data = []
 if mindate:
 conds.append("msgDate >= %s")
 data.append(mindate)
 if maxdate:
 conds.append("msgdate < %s")
 data.append(maxdate+timedelta(days=1))
 if namesearch:
 conds.append("msgSenderName LIKE %s")
 data.append("%" + namesearch.strip().lower() + "%")
 if addsearch:
 conds.append("msgSenderAddress LIKE %s")
 data.append("%" + addsearch.strip().lower() + "%")
 sql = "SELECT msgid, msgText FROM message WHERE "
 sql += " AND ".join(conds)
 sql = "SELECT msgid, msgText FROM message"
 if conds:
 sql += " WHERE " + " AND ".join(conds)
 curs.execute(sql, tuple(data))
 result = []
 for id, text in curs.fetchall():
 result.append((id, message_from_string(text)))
 return result

 Save it and run t est Maildb.py. This revision breaks our existing tests. The library now references co lumns
that have not been added to the database yet, so the driver complains during setup for each o f the tests when
we try to add a row. Also, pay attention to the change o f function names in the module. Because the new
retrieval function we wrote does more now that just retrieve mail by date, its name is something less
specialized: msgs.

OBSERVE: test failures are induced by adding new co lumns in the library code

EEEE
==
ERROR: test_dates (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
 id = self.msgids[msg['message-id']] = maildb.store(msg)
 File "V:\workspace\EmailSearch\src\maildb.py", line 30, in store
 (message_id, dt, name, email, text))
 File "C:\python\lib\site-packages\mysql\connector\cursor.py", line 307, in exe
cute
 res = self.db().protocol.cmd_query(stmt)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 137, in d
eco
 return func(*args, **kwargs)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 482, in c
md_query
 return self.handle_cmd_result(self._recv_packet())
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 175, in _
recv_packet
 MySQLProtocol.raise_error(buf)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 169, in r
aise_error
 raise errors.get_mysql_exception(errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
 'field list'

==
ERROR: test_ids (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
 id = self.msgids[msg['message-id']] = maildb.store(msg)
 File "V:\workspace\EmailSearch\src\maildb.py", line 30, in store
 (message_id, dt, name, email, text))
 File "C:\python\lib\site-packages\mysql\connector\cursor.py", line 307, in exe
cute
 res = self.db().protocol.cmd_query(stmt)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 137, in d
eco
 return func(*args, **kwargs)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 482, in c
md_query
 return self.handle_cmd_result(self._recv_packet())
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 175, in _
recv_packet
 MySQLProtocol.raise_error(buf)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 169, in r
aise_error
 raise errors.get_mysql_exception(errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
 'field list'

==
ERROR: test_message_ids (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
 id = self.msgids[msg['message-id']] = maildb.store(msg)
 File "V:\workspace\EmailSearch\src\maildb.py", line 30, in store
 (message_id, dt, name, email, text))
 File "C:\python\lib\site-packages\mysql\connector\cursor.py", line 307, in exe
cute
 res = self.db().protocol.cmd_query(stmt)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 137, in d
eco

 return func(*args, **kwargs)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 482, in c
md_query
 return self.handle_cmd_result(self._recv_packet())
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 175, in _
recv_packet
 MySQLProtocol.raise_error(buf)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 169, in r
aise_error
 raise errors.get_mysql_exception(errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
 'field list'

==
ERROR: test_not_empty (__main__.testRealEmail_traffic)
--
Traceback (most recent call last):
 File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
 id = self.msgids[msg['message-id']] = maildb.store(msg)
 File "V:\workspace\EmailSearch\src\maildb.py", line 28, in store
 (message_id, dt, name, email, text))
 File "C:\python\lib\site-packages\mysql\connector\cursor.py", line 307, in exe
cute
 res = self.db().protocol.cmd_query(stmt)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 137, in d
eco
 return func(*args, **kwargs)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 482, in c
md_query
 return self.handle_cmd_result(self._recv_packet())
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 175, in _
recv_packet
 MySQLProtocol.raise_error(buf)
 File "C:\python\lib\site-packages\mysql\connector\protocol.py", line 169, in r
aise_error
 raise errors.get_mysql_exception(errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
 'field list'

--
Ran 4 tests in 0.171s

FAILED (errors=3)

We need to update the test program and add the two more co lumns to the message table. Since we're
familiar with adding co lumns now, let's bypass writing tests fo r these. Modify t est Maildb.py as shown:

CODE TO TYPE:

"""
Read in and parse email messages to verify readability.

NOTE: This test creates the message table, dropping any
previous version and should leave it empty. DANGER: this
test will delete any existing message table.
"""
from glob import glob
from email import message_from_string
import mysql.connector as msc
from database import login_info
import maildb
import unittest
import datetime
from email.utils import parsedate_tz, mktime_tz

conn = msc.Connect(**login_info)
curs = conn.cursor()

TBLDEF = """\
CREATE TABLE message (
 msgID INTEGER AUTO_INCREMENT PRIMARY KEY,
 msgMessageID VARCHAR(128),
 msgDate DATETIME,
 msgSenderName VARCHAR(128),
 msgSenderAddress VARCHAR(128),
 msgText LONGTEXT
) ENGINE = MYISAM"""
FILESPEC = "C:/PythonData/*.eml"

class testRealEmail_traffic(unittest.TestCase):
 def setUp(self):
 """
 Reads an arbitrary number of mail messages and
 stores them in a brand new messages table.

 DANGER: Any existing message table WILL be lost.
 """
 self.conn = msc.Connect(**login_info)
 self.curs = self.conn.cursor()
 self.curs.execute("DROP TABLE IF EXISTS message")
 self.conn.commit()
 curs.execute(TBLDEF)
 conn.commit()
 files = glob(FILESPEC)
 self.msgids = {} # Keyed by message_id
 self.message_ids = {} # keyed by id
 self.msgdates = []
 self.rowcount = 0
 for f in files:
 ff = open(f)
 text = ff.read()
 msg = message_from_string(text)
 id = self.msgids[msg['message-id']] = maildb.store(msg, self.conn, s
elf.curs)
 self.message_ids[id] = msg['message-id']
 date = msg['date']
 self.msgdates.append(datetime.datetime.fromtimestamp(mktime_tz(parse
date_tz(date))))
 self.rowcount += 1 # Assuming no duplicated Message-IDs

 def test_not_empty(self):
 """
 Verify that the setUp method actually created some messages.
 If it finds no files there will be no messages in the table,
 the loop bodies in the other tests will never run, and potential

 errors will never be discovered.
 """
 curs.execute("SELECT COUNT(*) FROM message")
 messagect = curs.fetchone()[0]
 self.assertGreater(messagect, 0, "Database message table is empty")

 def test_message_ids(self):
 """
 Verify that items retrieved by id have the correct Message-ID.
 """
 for message_id in self.msgids.keys():
 id, msg = maildb.msg_by_id(self.msgids[message_id], self.conn, self.
curs)
 self.assertEqual(msg['message-id'], message_id)
 self.assertEqual(id, self.msgids[message_id])

 def test_ids(self):
 """
 Verify that items retrieved by message_id have the correct Message-ID.
 """
 for id in self.message_ids.keys():
 id1, msg = maildb.msg_by_message_id(self.message_ids[id], self.conn,
 self.curs)
 self.assertEqual(msg['message-id'], self.message_ids[id])
 self.assertEqual(id, id1)

 def test_dates(self):
 """
 Verify that retrieving records between the minimum and maximum dates
 returns an appropriate number of records, and that each separate day
 shows one email for each sender.
 """
 mind = min(self.msgdates)
 mindate = datetime.date(mind.year, mind.month, mind.day)
 maxd = max(self.msgdates)
 maxdate = datetime.date(maxd.year, maxd.month, maxd.day)
 self.assertEqual(self.rowcount,
 len(maildb.msgs_by_date(self.conn, self.curs, mindate=m
indate,
 maxdate=maxdate)))
 def tearDown(self):
 self.conn.close()

if __name__ == "__main__":
 unittest.main()

Of course, we expected all tests to pass. And the mlist 1.py program that we wrote earlier still functions
perfectly, even though new co lumns have been added to the table since last you ran it:

OBSERVE:

....
--
Ran 4 tests in 0.892s

OK

Adding A GUI

Our tests give us some confidence that our email storage library is sound. How difficult would it be to build a
graphical user interface to use with it? Not too difficult if we use a basic layout to pro to type the program.

In earlier lessons, we used the t kint er grid layout to produce quick interface layouts. This is fine—so long as
when the final interface is produced, the widgets that matter (the ones used by the methods) keep the same
names.

This particular application o ffers four search field entries: two for the minimum and maximum dates, one for

the email address, and one for the name. We'll place these with appropriate labels on a four-by-two grid, with
the labels right- justified and the entry widgets left- justified. We'll add a button to trigger the search to the
second co lumn in the fifth row, and the final two rows will ho ld a listbox and a text widget.

In the EmailSearch/src fo lder, create mailgui.py as shown:

CODE TO TYPE:

from tkinter import *
from maildb import msgs
import datetime

class Application(Frame):

 def __init__(self, master=None):
 """
 Establish the window structure, leaving some widgets accessible
 as app instance variables.
 """
 Frame.__init__(self, master)
 self.master.rowconfigure(0, weight=1)
 self.master.columnconfigure(0, weight=1)
 self.grid(sticky=W+E+N+S)
 l0 = Label(self, text="Email Database Search", font=("Helvetica", 16))
 l0.grid(row=0, column=1, columnspan=2)
 l1 = Label(self, text="Not Before (yyyy-mm-dd):")
 l1.grid(row=1, column=1, sticky=E+N+S)
 self.mindate = Entry(self)
 self.mindate.grid(row=1, column=2, sticky=W+N+S)
 l2 = Label(self, text="Not After (yyyy-mm-dd):")
 l2.grid(row=2, column=1, sticky=E+N+S)
 self.maxdate = Entry(self)
 self.maxdate.grid(row=2, column=2, sticky=W+N+S)
 l3 = Label(self, text="Sender's E-mail Contains:")
 l3.grid(row=3, column=1, sticky=E+N+S)
 self.addsearch = Entry(self)
 self.addsearch.grid(row=3, column=2, sticky=W+N+S)
 l4 = Label(self, text="Sender's Name Contains:")
 l4.grid(row=4, column=1, sticky=E+N+S)
 self.namesearch = Entry(self)
 self.namesearch.grid(row=4, column=2, sticky=W+N+S)
 button = Button(self, text="Search")
 button.grid(row=5, column=2)
 self.msgsubs = Listbox(self, height=10, width=100)
 self.msgsubs.grid(row=8, column=1, columnspan=2)
 self.message = Text(self, width=100)
 self.message.grid(row=9, column=1, columnspan=2)

if __name__ == "__main__":

 root = Tk()
 app = Application(master=root)
 app.mainloop()

 When you run this code, you see a GUI that looks like this—as promised, ugly but functional:

With the interface rendering properly as a window on the screen, now we need to plug in the "works." First,
we'll add a search routine to run when the Search button is clicked. It should perform a search and populate
the Listbox with the subject lines o f each message.

The maildb.msgs search function does not require all arguments, but we want to be able to search on all o f
them, we'll provide them all. We'll arrange for the value No ne to be presented whenever the user's Entry is
empty.

Dates are just a little trickier. We'll add a simple conversion function, and require that the user enters dates as
"YYYY-MM-DD." It isn't particularly user-friendly to require such closely-formatted entries, but we can improve
that later if necessary. The function converts those strings into a dat et ime.dat e object fo r passing to
maildb.msgs() .

The main addition is the search_mail() method, which does all the necessary preparation and finally calls
maildb.msgs() to retrieve the specified messages and display the subject header value o f each in a Listbox.
We trigger the instance's search_mail() method by adding it as the co mmand configuration parameter to
the Button's creation. The search_mail() method is also called at startup, before the window is displayed.
Modify mailgui.py as shown:

CODE TO TYPE:

from tkinter import *
from maildb import msgs
import datetime

def get_date(s):
 """
 Assumes a date of form yyyy-mm-dd, returns a corresponding datetime.date.
 """
 syear = s[:4]
 smonth = s[5:7]
 sday = s[8:]
 return datetime.date(int(syear), int(smonth), int(sday))

class Application(Frame):

 def __init__(self, master=None):
 """
 Establish the window structure, leaving some widgets accessible
 as app instance variables. Connect button clicks to search_mail
 method.
 """
 Frame.__init__(self, master)
 self.master.rowconfigure(0, weight=1)
 self.master.columnconfigure(0, weight=1)
 self.grid(sticky=W+E+N+S)
 l0 = Label(self, text="Email Database Search", font=("Helvetica", 16))
 l0.grid(row=0, column=1, columnspan=2)
 l1 = Label(self, text="Not Before (yyyy-mm-dd):")
 l1.grid(row=1, column=1, sticky=E+N+S)
 self.mindate = Entry(self)
 self.mindate.grid(row=1, column=2, sticky=W+N+S)
 l2 = Label(self, text="Not After (yyyy-mm-dd):")
 l2.grid(row=2, column=1, sticky=E+N+S)
 self.maxdate = Entry(self)
 self.maxdate.grid(row=2, column=2, sticky=W+N+S)
 l3 = Label(self, text="Sender's E-mail Contains:")
 l3.grid(row=3, column=1, sticky=E+N+S)
 self.addsearch = Entry(self)
 self.addsearch.grid(row=3, column=2, sticky=W+N+S)
 l4 = Label(self, text="Sender's Name Contains:")
 l4.grid(row=4, column=1, sticky=E+N+S)
 self.namesearch = Entry(self)
 self.namesearch.grid(row=4, column=2, sticky=W+N+S)
 button = Button(self, text="Search", command=self.search_mail)
 button.grid(row=5, column=2)
 self.msgsubs = Listbox(self, height=10, width=100)
 self.msgsubs.grid(row=8, column=1, columnspan=2)
 self.message = Text(self, width=100)
 self.message.grid(row=9, column=1, columnspan=2)

 def search_mail(self):
 """
 Take the database search parameters provided by the user
 (trying to make sense of the dates) and select the appropriate
 messages from the database, displaying the subject lines of the
 messages in a scrolling selection list.
 """
 mindate = self.mindate.get()
 if not mindate:
 mindate = None
 else:
 mindate = get_date(mindate)
 maxdate = self.maxdate.get()
 if not maxdate:
 maxdate = None
 else:

 maxdate = get_date(maxdate)
 addsearch = self.addsearch.get()
 if not addsearch:
 addsearch = None
 namesearch = self.namesearch.get()
 if not namesearch:
 namesearch = None
 self.msglist = msgs(mindate=mindate, maxdate=maxdate, addsearch=addsearc
h, namesearch=namesearch)
 self.msgsubs.delete(0, END)
 for pk, msg in self.msglist:
 self.msgsubs.insert(END, msg['subject'])

if __name__ == "__main__":

 root = Tk()
 app = Application(master=root)
 app.search_mail()
 app.mainloop()

Now we have a program that will list the subject lines o f the messages that meet the search criteria. By default,
you'll see whatever content is in the database (which is usually whatever was left by the last test in the
messages table). So the window looks more or less the same when you run it as it did before, except that
you see messages listed in the Listbox.

The final step is to connect a double-click on a Listbox entry to display the content o f that message in the Text
widget at the bottom of the window. Again, the code changes are fairly straightforward. The required double-
click event is bound to the new display_mail() method, and the method extracts the selection from the
Listbox and deletes any existing content from the Text widget. Then it inserts up to three headers, fo llowed by
a blank line and the body o f the messages (unless it happens to be a multipart message—those are a little
trickier to handle). Modify mailgui.py as shown:

CODE TO TYPE:

from tkinter import *
from maildb import msgs
import datetime

def get_date(s):
 """
 Assumes a date of form yyyy-mm-dd, returns a corresponding datetime.date.
 """
 syear = s[:4]
 smonth = s[5:7]
 sday = s[8:]
 return datetime.date(int(syear), int(smonth), int(sday))

class Application(Frame):

 def __init__(self, master=None):
 """
 Establish the window structure, leaving some widgets accessible
 as app instance variables. Connect button clicks to search_mail
 method and subject double-clicks to display_mail method.
 """
 Frame.__init__(self, master)
 self.master.rowconfigure(0, weight=1)
 self.master.columnconfigure(0, weight=1)
 self.grid(sticky=W+E+N+S)
 l0 = Label(self, text="Email Database Search", font=("Helvetica", 16))
 l0.grid(row=0, column=1, columnspan=2)
 l1 = Label(self, text="Not Before (yyyy-mm-dd):")
 l1.grid(row=1, column=1, sticky=E+N+S)
 self.mindate = Entry(self)
 self.mindate.grid(row=1, column=2, sticky=W+N+S)
 l2 = Label(self, text="Not After (yyyy-mm-dd):")
 l2.grid(row=2, column=1, sticky=E+N+S)
 self.maxdate = Entry(self)
 self.maxdate.grid(row=2, column=2, sticky=W+N+S)
 l3 = Label(self, text="Sender's E-mail Contains:")
 l3.grid(row=3, column=1, sticky=E+N+S)
 self.addsearch = Entry(self)
 self.addsearch.grid(row=3, column=2, sticky=W+N+S)
 l4 = Label(self, text="Sender's Name Contains:")
 l4.grid(row=4, column=1, sticky=E+N+S)
 self.namesearch = Entry(self)
 self.namesearch.grid(row=4, column=2, sticky=W+N+S)
 button = Button(self, text="Search", command=self.search_mail)
 button.grid(row=5, column=2)
 self.msgsubs = Listbox(self, height=10, width=100)
 self.msgsubs.grid(row=8, column=1, columnspan=2)
 self.msgsubs.bind("<Double-Button-1>", self.display_mail)
 self.message = Text(self, width=100)
 self.message.grid(row=9, column=1, columnspan=2)

 def search_mail(self):
 """
 Take the database search parameters provided by the user
 (trying to make sense of the dates) and select the appropriate
 messages from the database, displaying the subject lines of the
 messages in a scrolling selection list.
 """
 mindate = self.mindate.get()
 if not mindate:
 mindate = None
 else:
 mindate = get_date(mindate)
 maxdate = self.maxdate.get()
 if not maxdate:
 maxdate = None

 else:
 maxdate = get_date(maxdate)
 addsearch = self.addsearch.get()
 if not addsearch:
 addsearch = None
 namesearch = self.namesearch.get()
 if not namesearch:
 namesearch = None
 self.msglist = msgs(mindate=mindate, maxdate=maxdate, addsearch=addsearc
h, namesearch=namesearch)
 self.msgsubs.delete(0, END)
 for pk, msg in self.msglist:
 self.msgsubs.insert(END, msg['subject'])

 def display_mail(self, event):
 """
 Display the message corresponding to the subject line that the
 user just clicked on.
 """
 indexes = self.msgsubs.curselection()
 if len(indexes) != 1:
 return
 self.message.delete(1.0, END)
 pk, msg = self.msglist[int(indexes[0])]
 for header_name in "Subject", "Date", "From":
 hdr = msg[header_name]
 if hdr:
 self.message.insert(INSERT, "{0}: {1}\n".format(header_name, hdr
))
 self.message.insert(END, "\n")
 if msg.is_multipart():
 self.message.insert(END, "MULTIPART MESSAGE - SORRY!")
 self.message.insert(END, msg.get_payload())

if __name__ == "__main__":

 root = Tk()
 app = Application(master=root)
 app.search_mail()
 app.mainloop()

 When you run this modified code, you see the final (but not necessarily complete) fo rm of our GUI-based
mail retrieval program. It searches messages by date range, sender name, and email address, and allows
you to view any message in the search results by double-clicking the message subject. This sort o f code
might be considered "alpha quality"—it can be released for testing purposes, but it's not quite ready for prime
time.

The appearance o f the interface could be improved, but the program's basic design is sound. The program is
constructed plainly, and we can see how to extend it in various ways.

For example, if you wanted to add subject search features, it's pretty clear that you'd need to add an
msgSubject co lumn to the message table and therefore to the logic o f maildb.st o re() . The interface to
maildb.msgs() would need to be augmented by a subject search argument, and the GUI would need to
add another Entry element to capture the user's search string. Fortunately, this program is logically organized,
and you should be able to proceed with confidence.

Documentation

Open a new pydev conso le, select the Co nso le tab, and maximize the conso le so that you can see the
output. Enter the commands below as shown:

INTERACTIVE SESSION:

>>> import maildb
>>> help(maildb)

The Python help system uses all o f the docstrings you've put into your code to produce a brief description o f
your maildb module.

Congratulations! Your hard work is really paying o ff. You've powered through all o f the challenges we've thrown at you
and arrived at the finish line o f this second O'Reilly School o f Technology Python course. Your command of the
language is astounding! You can integrate databases and graphical user interfaces, and you're prepared to explore the
bigger Python landscape. Now let's dazzle your instructor and put those skills to work in your final pro ject! It's been a
real pleasure working with you. See you in the next course!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Creating the Program
	Editing and Running the Program
	INSERT: Adding A Row to a Table
	SELECT: Retrieve Data from One or More Tables
	UPDATE: Modify Existing Data in a Table
	DELETE: Remove Rows From a Table

