Python 2: Getting More out of Python

Lesson 1:Introduction to Eclipse

About Eclipse
Perspectives and the Red Leaflcon

Working Sets

Programming in Python with Eclipse

A First Program
The Interactive Interpreter

First Hurdle Cleared

Quiz 1 Project 1

Lesson 2: Unit Testing
unittest

Assertions
A Basic unittest Example

Breaking Down Tests

Test-Driven Development: Tests As Specifications

Backaround of unittest

Comparing doctest and unittest

One Down

Quiz 1 Quiz 2 Project 1
Lesson 3: Test-Driven Development

Agile Programming and Test-Driven Development

An Example of Test-Driven Development

More About the unittest.TestCase Class

Test Fixture Set-up and Tear-down

Test Case Enumeration
TestCase Methods
Laying the Foundation

Quiz 1 Quiz 2 Project 1

Lesson 4: File Handling
High-Level File Operations

The File Object and the Built-in open() Function

Retrieving File and Path Name Information with os.path

Finding Path Names Using glob

An Application to Sort and Retrieve File Information

The Value of Tests under Refactoring

Getting a Handle on Files
Quiz 1 Quiz 2 Project 1
Lesson 5:Persistent Storage

Persistent Storage

Obiject Serialization and Persistence Using the pickle Module

The shelve Module

Library Project

The JSON Serialization Format and the json Module

homework/IntroductionToEclipse_quiz1.quiz.html
homework/IntroductionToEclipse_proj1.project.html
homework/UnitTesting_quiz1.quiz.html
homework/UnitTesting_quiz2.quiz.html
homework/UnitTesting_proj1.project.html
homework/TestDrivenDevelopment_quiz1.quiz.html
homework/TestDrivenDevelopment_quiz2.quiz.html
homework/TestDrivenDevelopment_proj1.project.html
homework/FileHandling_quiz1.quiz.html
homework/FileHandling_quiz2.quiz.html
homework/FileHandling_proj1.project.html

A Brief Rundown

Quiz 1 Quiz 2 Project 1
Lesson 6: Archives

Reading and Writing Archives Using tarfile and zipfile

Creating a Recent File Archiver

Save Itin the Archives

Quiz 1 Quiz 2 Project 1
Lesson 7:Introduction to Graphical UserInterfaces

The Window Manager

How Programs Interact with the Window Manager

Your First Program with a GUI

Creating Widgets in a Window

Top-Level Application Code

The Program Window

Introducing the Tkinter Widget Set

Configuring Widgets

The config() Method, and Configuration Options

Using More Widgets

Reading Widget Values

A More Complex Program

Further Reading on Tkinter

Quiz 1 Quiz 2 Project 1
Lesson 8: Graphical User Interface Layout

Handling Window Layout

The Pack Geometry Manager

The Grid Geometry Manager

The Place Geometry Manager—Don't Use It

Quiz 1 Quiz 2 Project 1

Lesson 9: More About Graphical UserInterfaces
GUI Events

Binding Events in tkinter

Event Objects
Mouse Event Names

Keyboard Event Names

Keyboard Focus
Keyboard Event Handling

Event Propagation

Adding Menus to Your Programs

Building a Menu Bar

Creating Popup Menus

Tkinter Tearoff Menus

Dialog Boxes
Creating Simple Dialogs

Some Ready-Made Dialogs

Quiz 1 Quiz 2 Project 1

homework/PersistentStorage_quiz1.quiz.html
homework/PersistentStorage_quiz2.quiz.html
homework/PersistentStorage_proj1.project.html
homework/Archives_quiz1.quiz.html
homework/Archives_quiz2.quiz.html
homework/Archives_proj1.project.html
homework/IntroductionToGraphicalUserInterfaces_quiz1.quiz.html
homework/IntroductionToGraphicalUserInterfaces_quiz2.quiz.html
homework/IntroductionToGraphicalUserInterfaces_proj1.project.html
homework/GraphicalUserInterfaceLayout_quiz1.quiz.html
homework/GraphicalUserInterfaceLayout_quiz2.quiz.html
homework/GraphicalUserInterfaceLayout_proj1.project.html
homework/MoreAboutGraphicalUserInterfaces_quiz1.quiz.html
homework/MoreAboutGraphicalUserInterfaces_quiz2.quiz.html
homework/MoreAboutGraphicalUserInterfaces_proj1.project.html

Lesson 10: Handling Databases

Relational Databases: Representing the World in Tables

Your First Database Interactions
Access to a Database

Running MySQL

Structured Query Language
Data Definition Language (DDL)
Data Manipulation Language (DML)
Having No Data: The Null Value

Creating a Table and Inserting Data

Attributes are Columns, Occurrences are Rows
The Python Database API

Relationships and Foreign Keys: Referring to Occurrences

Integrity Constraints

Primary Keys Identify Occurrences

No NULLs in Primary Key Values
No Multi-Valued Attributes
Referential Integrity

Implementing Multi-Valued Attributes

Using Relational Data in Python
Metadata: Data about Data

Quiz 1 Quiz 2 Project 1
Lesson 11: Database Hints and Tricks

Representing Data Rows
Working With Tuples
Representing Tables as Classes
Manipulating SQL in Python
A Data Row Class
A More General-Purpose Approach

Quiz 1 Quiz 2 Project 1
Lesson 12: Handling Electronic Mail Messages
Handling Email

An Example of Email Written to a File

Representing an Email with Message Objects

Sending Emails with smtplib
RFC 2822
MIME Messages

In the Home Stretch

Quiz 1 Quiz 2 Project 1
Lesson 13: Email Search and Display

A Really Useful Program

A Basic Email Database

Message Identities

The Message Table

Beginnings of a Mail Database Module

homework/HandlingDatabases_quiz1.quiz.html
homework/HandlingDatabases_quiz2.quiz.html
homework/HandlingDatabases_proj1.project.html
homework/DatabaseHintsAndTricks_quiz1.quiz.html
homework/DatabaseHintsAndTricks_quiz2.quiz.html
homework/DatabaseHintsAndTricks_proj1.project.html
homework/HandlingElectronicMailMessages_quiz1.quiz.html
homework/HandlingElectronicMailMessages_quiz2.quiz.html
homework/HandlingElectronicMailMessages_proj1.project.html

Extending the Database's Retrieval Capabilities

Practical Application

Adding A GUI
Documentation

Quiz 1 Quiz 2 Project 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/EmailSearchAndDisplay_quiz1.quiz.html
homework/EmailSearchAndDisplay_quiz2.quiz.html
homework/EmailSearchAndDisplay_proj1.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Eclipse

Welcome to the O'Reilly School of Technology's (OST) Getting More Out of Python course! We're happy you've chosen to
learn Python programming with us. By the time you finish the course, you will have expanded your knowledge of Python and
applied itto some really interesting technologies.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find outwhatelse
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. Italso gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance, but don't depend on it. Try to solve problems on yourown. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so cool! I did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try out lots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

k] h] 121 I
TOOK LTI CITT

If we want you to remove existing code, the code to remove witt

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type)

. The commands we want you to type look 1lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information

(usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also setespecially pertinentinformation apartin "Note" boxes:

Before you start programming in Python, let's review a couple of the tools you'll be using. Ifyou took Introduction to
Python, you can skip to the next section if you like, or you might want to go through this section to refresh your memory.

About Eclipse

We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right

now. IDEs assist programmers by performing tasks that need to be done repetitively. IDEs can also help to editand
debug code, and organize projects.

Perspectives and the Red Leaf Icon

The Ellipse Plug-in for Eclipse, developed by the O'Reilly School of Technology, adds a Red Leaficon - to the
toolbar in Eclipse. This icon is your "panic button." Because Eclipse is versatile and allows you to move
things around, like views, toolbars, and such, it's possible to lose your way. If you do get confused and want
to return to the default perspective (window layout), the Red Leaficon is the fastest and easiest way to do that.

The Red Leaficon has these functions:

e Toreset the current perspective: click the icon.

e To change perspectives: click the drop-down arrow beside the icon to select different
perspectives designed for each course that uses Ellipse.

e To select aperspective: click the drop-down arrow beside the Red Leaficon and select the

course (Java, Python, C++, etc.). Selecting a specific course opens the perspective designed for
that particular course.

For this course, you would select Python (it should already be selected for you now):

= 05T Python - Eclipse SDK

File Edit Mawvigate Search Project Run Window Help

|5 - & nPIJ?‘sﬁ%'G"%'\g

Toresetthe perspective, click the Red Leaficon.

T

Java
Start Page Syllabus
CESLEACEES
debug code, and C++ : To select a different perspective, click the drop-down arrow.
Perspectives and the Red Leaf Icon

Note If you selecta Red Leaficon option, it will resetyour session, so you'll need to reselect this
! course and reopen this lesson. !

Working Sets

You'll use working sets for the course. All projects created in Eclipse existin the workspace directory of your
accounton our server. As you create multiple projects for each lesson in each course, your directory could
become pretty cluttered. A working setis a view of the workspace that behaves like a folder, butit's actually an
association of files. Working sets allow you to limit the detail that you see at any given time. The difference
between a working setand a folder is that a working set doesn't actually existin the file system.

A working setis a convenientway to group related items together. You can assign a projectto one or more
working sets. In some cases, like the Python extension to Eclipse, new projects are created in a catch-all
"Other Projects" working set. To better organize your work, we'll have you assign your projects to an

appropriate working set when you create them. To do that, right-click on the project name and select the
Assign Working Sets menu item.

We've already created some working sets for you in the Eclipse IDE. You can turn the working set display on
oroff in Eclipse.

For now, make sure your working sets are displayed by clicking the down-pointing arrow on the top right of
the Package Explorer window, and select Top Level Elements | Working Sets:

[# Package Explare 52 . .0 Problems | < Tasks} El Console} B Terminal 11 E,EL“

_ - = =

[=-#§5 Other Prajects. Click the down-pointing Top Level Elements
451 Python1_Handback arrow and select Top —
L) Configure \Working Sets. ..
e Python1_Community Level Elements |

--ﬂ;_,J Pythonl _Homework, Working Sets. :"«.——:bFiIters...

g Pythoni_Lessons

Package Presenkation »
w Show 'Referenced Libraries' Mode

“i, Link with Editor

Then, click the down-pointing arrow nextto Show Working Sets and selectPython | Python 2:

K e
[& Package Explorer &3 E'._ Problems | «= Tasks} = Eunsule} .;}'J Terminal 11 = 0

Show Wirking Set

: [#-1=% variable_hamewark
- 15 pythonz_Handback

----- J|_|J Python2_Communitsy
i_,J Python2_Homework,
E|J|_|J PywthonZ_Lessons

Android # "
TEP' Archives COD b Pythond
TEP' FileHandling

TEP' IntroEclipse

TE‘) PersistentSkarage
TEP' PetSkar

TEP' TestDrivenDevelopment
-

Programming in Python with Eclipse
A First Program

When learning a new language in computer programming, itis traditional to use the words "hello world" as
your first example. Unfortunately, since "hello world" can be written in a single line, that doesn't make for a
greatexample in Python. Instead, we'll look at a slightly more complicated example that not only prints "hello"
and "goodbye," butalso does a little calculation on the way.

Let's setup an environmentfor our firstfile. In Eclipse, all files must be within projects. A projectis a container
thatholds resources (such as source code, images, and other things) needed to build a piece of software.

We're going to make a projectnamed IntroEclipse. Please use that exact name, with the same
capitalization.

In creating a new project, you'll need to read ahead a few steps because once the dialog box appears, you
will not be able to return to the Lesson until finishing it. You can also view the PDF version of the course
(right-click the link and open itin another window) while creating the project. This is the only time you should
need to work in a separate window in this course.

Now, let's create a PyDev project in Eclipse. (PyDev is the name of the Eclipse add-in that adapts it to
handle Python). To starta new project, select the menu item File | New | PyDev Project. Enter the name
IntroEclipse, select 3.0 for the Grammar Version, and click the link to configure an interpreter:

http://courses.oreillyschool.com/Python2/Eclipse %28updated%29.pdf

&
PyDev Project

Create a new Pydew Project,

Gru:ujeu:t name: | IntroEclipse

Project conkents:
v wse default

Type exactly as shown.

Direckory | W1 workspace! IntroEclipse

Projeck bvpe

Choose the project bype
’Vﬂ' Python € Jvthon € Iron Python /_

Select 3.0.

Grammar Wersion

Interpreter

IDeFault j

CCIick here ko configure an inkerpreter not lisked, :)

f+ add project o the PYTHOMNPATH?
" Create 'sec' folder and add it ta
" Don't configure PYTHOMPATH (to be do

Click to configure the interpreter.

@:l = Back Mext = | Finish I Cancel

On the Preferences screen, click Auto Config to configure the Python interpreter:

& Preferences Hi=l 3

|ty|:|e Filker kaxt

[General

- Builders

[#- Debug

- Editar

- Inberactive Consale
- Inkerpreker - Iron Python
- Inkerpreker - Tvthan
- Inkerpreter - Python
- Logging

- PyLint

- Pl Imik

- Seripking PyDey

- Task Tags

- Remoke Systems

- RunfCebug

- Team

- Terminal

(- Web

- Web Page Editor

[+ XML

I+l
L

F-[F][F
[nn el B v

Python Interpreters - - -

Python interpreters (.9, pythonexe)

Marne | Location |

..... T

o
Auto Config

Bemaoye |
Le |

o)

Click to automatically configure the Python interpreter)""

:

Bl Libraries | Forced Builtins | Predefined I] Envirnnmentl & String Substitution Yariables I
System PYTHOMPATH

Mew Folder
Mew Egg)/Zipls)

Remove

il

Restore Defadlts | Apply |

@

Ok | Cancel |

A Selection Needed screen appears. Click OK to select the default settings:

& Selection needed H=]
Select the folders to be added ko the SYSTEM pythonpath!
IMPORTART: The Folders For wour PROJECTS should NOT be added here, but in wour project configuration.

Check:bttp: f{pvdewy.org/manual_101 _interpreter. hitml For more details.

[=.ic:\Program Files\eclpsetedlipseipluginsiorg. python. pydey_2.4.0,20120201 16y Sec |
O & Ciwindows|system32ipython31 . zip

& CH\Python|DLLs

= CAPythontlib

&, Y Pykhontiblplat-win

= CPython

&= C\Pythonlibsite-packages

O &, \isamba\sambashars|software\Pythond)site-packages

Select All not in Workspace | Select Al | Ceselect Al |

5
l\‘?) 874 I Cancel |

Click OK again to return to the Pydev Project screen. Select the python interpreter we just created, and make
sure Create 'src’ folder and add it to the PYTHONPATH' is selected:

e
PyDev Project

Create a new Pydey Project,

Project name: | IntroEclipse

Project conkents:
W Use default

Diteckary | W iworkspaceIntroEclipse Browse |

Project bype

Chonose the project bype
’Vﬁ“ Python € Ivthon € Iron Pythan

Grammar Wersion

o <]

Interpreter

pythion j

; ﬁ]ect directory to the P¥THORPATH?

@ Create 'src’ folder and add ik to the F‘YTHONPF'.THD
~ Don': configure PYTHOMPATH (ko be done manually later an)

(-*—H.
'\‘?_,' = Back Mext = | Finish I Cancel

Click Finish. You see a promptto change perspectives. Check the Remember my decision box and click
No:

& Dpen Associated Perspective? |

This kind of project is associated with the Pydew perspective, Do wou want ko
‘:I’) open this perspective now?

@ Remember ey decisiDD

Yes Mo

When you first create a PyDev project, itis placed in the Other Projects working set. You'll want to keep
your Python projects together, so go ahead and put your newly created projectinto the Python2_Lessons
working set. Selectthe IntroEclipse project. Right-click it and select Assign Working Sets...:

T e e = - .__,-"’- . 'Ig'fﬁ{l:.lw‘.'-'- e e .J___--r-. ,_._._.-_. .-'.--_..."q
£ Expatt. .,

.ﬁh Refresh F5
Close Projeck

Show in Remote Systems wigw
Fun As

Debug As

Profile As

- Coverage 4s
[% Package Explorer ¢ Tearmn

) A-U\ P \

Compare YWith
Restore Ffrom Local History. ..

IEC- Float-play

1 PyDey ’
ﬁ:é GuesshyhL Source }
*-1= hella_~arld Configure ’

-G Helloworld

Propetties Alt+Enter

= = ESEOT 1 3

f_jd jawal _Lessoni3
Ty w ' "Wssuny"--\.‘“. . ; ’
=, Tl J \\\ “r*-

The Working Set Assignments screen appears. Click Deselect All to clear any selected working sets, and
then check the box for the Python2_Lessons working set (the one for this course), UNcheck the Show only
Package Explorer working sets box, and click OK:

& Working Set Assignments !E

Select working sets for 'TntroEclipse’:

a J.fﬂP';.fthu:unl_Cu:ummunity ﬂ Select Al |
O 15 pythant_Handback

O J.f,‘.lF";.fthu:unl_Hu:umevw:urk Deselect Al |
a J.f,".lF";.fthu:un1_L|E:ssu:||'|s
O 15 pythanz_Community
O 45 pythanz_Handback

Mew...

J.fﬂF";.fthu:unE_Lessnns
Thona__ommndniky

a J.fT.IF";.fI:h|:||'|3_Ha|'u:||:|.En:k

O J.f,‘.lF";.fI:h|:u|'|3_H|:|mew-:urk

a J.f,".lF";.fI:h|:||'|3_L|E:ssu:ur|s

O 15 pythand_Community

O J.f,‘.lF";.fI:hu:urﬁ%_Heu‘u:II:u.En:l»t

a J.f,".lF";.fI:h|:u|'|¢’r_H|:|mElf'-.uzurk

O 15 pythand_Lessons -

Y

q- Show only Package Explorer working sets)-

Confiqure Package Explorer working seks. ..
=
I\‘? ') 0] I Cancel

Click OK when you finish. You will need to do this for each new project you create.

Z
o
~*
®
<
o
c
3
«Q
>
~—
>
o
~—
n
(]
[0}
Q
n
3
Q
=]
<
3
o
=
2.
=]
«Q
[
o
n
<
o
C_
o
2
<
n
(]
[0}
o
>
(93
(2
<)
=
Q
o
c
@
[0
n
<
o
c
=
@
[}
>
=
=)
I
o
5 .

To see the projects in your Python2_Lessons working setin the Package Explorer panel, click the
downward-pointing arrow next to the Show Working Sets button, and selectPython | Python2:

i i Ty
{2 Package Explorer &3 | Tasks\l }'J Tetrminal 11 =) Cn:nns-:nlew = B

Show Working Sgt{ -)— <,}==5 =

----- J.f,‘.l Jawval _Communiky

o {3‘.' Jawal _Homework,
450 Javal_Lessons Android ¥
O0AD b Pythond

Now you should see your IntroEclipse projectlisted in the Python2_Lessons working setin the Package
Explorer panel on the lower left corner of your Eclipse screen:

' e 4
(2 Package Explarer &3 W) Tasksw ."\,.'J Terminal 11 =] Cnnsnle} = O

Show Working Sets = [— Q:b =

(-7 iOther Projects:

------ J.‘_’-TJ Pvthonz_Handback,

o J.'_‘:,‘.l Pvthonz _Cormmmunity
5‘1 Pythonz_Homework,
=45 PythonZ_Lessons
= IntroEclipse

This hierarchical view of the resources (directories and files) in Eclipse is commonly called the workspace.
You now have a project called IntroEclipse in your workspace.

Before you go on, make sure that the IntroEclipse projectis displayed in the Package Explorer window.
Right-click your IntroEclipse projectin the Package Explorer, and select New | File. A New File dialog box

appears. Select the src subdirectory ofIntroEclipse, enter the filename hello_world.py, and then click
Finish:

& New File M=] E3
File

Create a new file resource,

Enter or seleck the parent Folder: \

| IntroEclipsefsrc /

TE‘J javal _LessonOl J
TEJ' javal_Lesson03

TEJ javal_Lesson04

TE‘J javal_Lesson0S

IEJ javal_Lesson0&

TEJ javaz_FlowControl _Original

TEJ javad_Projectll

IEJ javaz_Projectd

TE‘J javas_Projects

TEJ' javad_Hormeworkdl

TE"I javad_HomeworkDz2 j

wd - [

Ghi name: |hel|u:u_wu:ur||:|.|:|';.f|)

advanced =

e .
I\‘?) | Finish I Cancel

A new editor window appears nextto the workspace. You'll edit your code in this window because it
understands Python syntax.

Enter the blue code below into the editor window:

CODE TO TYPE:

print ("Hello World")
print ("I have", 3 + 4, "bananas")
print ("Goodbye, World")

Your code should look like this:
print ({"H=lleo Forl
print {"I hav=", 3 + 4, "bananas")
1]

print { "Goodbve, Forld™)

Save it. In the top Eclipse menu bar (not the O'Reilly tab bar) choose File | Save or click the Save icon at the
top ofthe screen: (we'll show thaticon from now on when we wantyou to save a file).

Now choose Run | Run from the top menu bar (if you don't see this menu choice, click in hello_world.py in

the Editor Window again). You can also click the runicon: . From now on, when we want you to save AND run
a program, we'll show thaticon. The firsttime you run a program, you'll see this prompt:

& Run As Mi=] E3

Select a way to run ‘hello_world. pr's

EE Run on 3erver

2 Jython Run

= Ivthon unit-tesk
@;; Python Coverage

Python Fun
@ Python unit-test

— Descripkion

Description not asvailable

(7) | o, I Cancel

Select Python Run. If you entered the code correctly, you'll see that the workspace switches to the Console
view and displays the output from your very first Python program:

-

ftﬁ Fackage Explorer (E Tasks (::ﬂ Terminal 1 (E Console £3 =0
<kerminated = 4 workspace! IntroEclipsetstch hello_world. pry
R TERN R =R
Hello World N
I hawve 7 bhananas
Goodbye, World

« N

Congratulations! You're officially a Python programmer! Of course this program isn't very complex, but the
interpreter has done the calculation you asked itto do. Patyourself on the back! You're off to a strong start.

Experiment with other calculations. You can probably work out how to save modified programs under
different names (Hint: File | Save As).

The Interactive Interpreter

In Python you can run the interpreter in interactive mode when you want to try things out, and see results
printed right away. That instant feedback is really handy when you're learning a new language.

Eclipse gives you access to interactive Python consoles.

Selectthe Console tab in the workspace window, and click the down arrow to the right of the Open Console

icon:
o
Bl | | = B -{ci-)— O

P24

ri, 1 1Ll ! ﬂ
Click the down arrow.

-,

Select Pydev Console from the pull-down menu:

4 Package Explarer (@, Tasks (@' Terminal 1 (E Console &3 =0 | ﬂ hello_world &3
<terminated > Vi warkspace! IntroEclipselsrcihelo_warld. py 1 print{"Hello World™

b4 Sﬁ%ﬁL_u EEIEIE| “._’ E"f 2 print ("I have", I + 4, "¥

1 Prograrn Cukput Console ardd)
Z Windows Program Output Console
3 CDT Build Consale
4 Java Skack Trace Console

L 5 Host 03Gi Consale

Bl 1 11

C 7 PyDev Cansale

\,-'

Hello World
I hawve 7 bananas
Goodbye, World

KT ;ILI kil

Selecta Python console:

N P W

e |
" Console For currently active editor

{* Python console
" Unable bo create console For Jyvthon (interpreter not configured)

= Unable bo create consale For Inom Python dinterpreter nok configured)

(0] I Zancel

A new console appears, with the interactive prompt>>>. The console is ready for your input:

KFE Package ﬂ"_ Problems (v’- Tasks (E Consale &3 ._ﬁﬂ Terminal \I = E'N
Pydew Console [0]
CRERNEE R = R

import sys; print('%s %s3' % [sys.executable DI;I
C:hpython'y python.exe 3.1.1 (r311:74483, Aug 17 20C

w
4| | »

If you enter one of the lines from the program you just ran, the output will appear in the console window. This
interactive interpreter window allows you to enter both statements and expressions (we'll cover those in detail
later). Statements are executed pretty much as if they were part of a program; the expressions are evaluated
and the resulting value is printed (as long as you're in interactive mode).

Type the code in blue below in the PyDev Console window. (When we say TYPE the code, do it. It's
good for you!) The interpreter prints a resultfor each expression. (You'll see a different prompt after the
fourth line. We'll talk about thatin a minute):

CODE TO TYPE:

>>> "hello" + " world"
'hello world'
>>> 'hello' + ' world'
'hello world'
>>> """hello""" + ''' world'''
'hello world'
>>> """hello
. world"""
'hello\nworld'

So, what happened here? The first three lines are all examples of string concatenation— a second string is
appended to the first, giving a longer string as a result. Strings can have either single (') or double (")
quotation marks around them, and either one quotation mark or three at the beginning and end of the string.
Use exactly the same combination at both ends.

The last expression, running over lines 4 and 5 of the input, shows an important difference between the one-
quotation mark and the three-quotation mark forms. A string given in one-quotation mark form must begin
and end on the same line. Three-quotation mark strings can spread across more than one line.

The fourth example actually does extend across two lines, so the interpreter changed its promptfrom >>> to
... (ellipses) after you entered the firstline. Those ellipses let you know that you've gotan incomplete
statementor expression in your code. When you completed the string with the second line of input, the

interpreter then printed the value of the two-line expression. You can see that the line feed between hello and
world is represented by \n, which is known in Python as a string escape sequence.

First Hurdle Cleared

Phew! That was a whole lot of introduction there. Thanks for sticking with me. Keep it up, you're doing great so far. See
you atthe nextlesson!

As we mentioned at the beginning, you made some changes to your working environment during this
lesson; now, you should exit Eclipse to save those changes and restart it to continue with the homework !
and additional lessons. '

4
o
-
(]

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Unit Testing
Welcome to the second course in the O'Reilly School of Technology's Python series!

Course Objectives

When you complete this course, you will be able to:

e demonstrate understanding of Agile processes and test-driven development.
e manage files, persistent storage, archives, and serialization.

e create a Graphical User Interface in Python.

e design and implementrelational databases using Python and SQL.

e create and send emails from Python programs.

e build a full-fledged Python database application.

In this course, you'll learn more in-depth techniques and strategies for programming with Python. Using the Ellipse integrated
learning environment, you'll get hands-on experience with Python's modular unit testing features; file handling, storage, and
archival; graphical user interfaces; and technologies for working with databases and email.

unittest
Yourfirstlesson in Python 2 picks up where we left off in the Python 1 course, focused on debugging programs. Here

you'll learn about the second, and more widely used, built-in Python testing framework, unittest. Unittestis a more
formal testing framework, which can be integrated with existing uses of docfest, if necessary.

Assertions

An important statement contained within Python that you haven't come across before is the assert statement.
The syntax for this statementis:

OBSERVE: assert statement syntax

assert condition|[, message]

In the assert statement, the condition is tested, and if it evaluates false, an AssertionError exception is
raised. If there's a message, itis printed with the AssertionError. Let's try using the assert statement right now
in an interactive console window.

In case you've forgotten how to get to the interactive console, here's how to do it:

Selectthe Console tab in the workspace window, and click the down arrow to the right of the Open Console

icon:
of _
mE|&=B8-3g-)°C

P4

rm, Sys.iersion) e ;I
Click the down arrow.)

-

SelectPydev Console from the pull-down menu:

] Package Explorer FE, Tasks f@' Terminal 1 (E Console &3
<terminated = V:workspacel IntroEclipsetsrcihelo_world. pry

= Ell [F] hello_world &2 ;
1 print("Hello World™

b4 Sﬁ%§|_u EEIEIE| “._’ E"f 2 print ("I have", I + 4, "¥

Hello World
I hawve 7 bananas
Goodbye, World

K

1 Program Output Console ordd”)
Z Windows Program Output Console
3 CDT Build Consale
4 Jawa Stack Trace Console

! 5 Host 035G Cansale

SelectPython console:

" Console For currently active editor

{* python console

€ Unable bo create console For Jyvthon (interpreter not configured)

= Unable bo create consale For Inom Python dinterpreter nok configured)

0] I Cancel

A new console appears, with the interactive prompt>>>. The console is ready for your input:

KFE Package (t Problems (v’- Tasks (E Consale &3 ._ﬁﬂ Terminal \I = E'N
Pydew Console [0]
CRERREY N = R i

import sys; print('%s %s3' % [sys.executable DI;I
C:hpython'y python.exe 3.1.1 (r311:74483, Aug 17 20C

w
4| | »

Type this code into the interactive interpreter console:

INTERACTIVE SESSION:

>>> assert 1 ==
>>> assert 1 ==
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError
>>> assert 1 == 2, "One isn't two and the universe is still rational"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError: One isn't two and the universe is still rational
>>>

We use assert statements in our programs to assert conditions that we believe must always be true. If we are
correct, the program runs as expected, butifa programming error or mistaken assumption invalidates the
condition, Python will let us know, usually early in the life of the program.

AssertionError exceptions are handled using the unittest module. To write tests, we create test cases that are
subclasses ofthe unittest.TestCase class. Our subclasses can use the methods defined by the
superclass. Many of those methods' names begin with the prefix "assert." By calling these methods, you
have the test case make assertions about your program in a controlled environment. Any AssertionErrors
that arise are handled by the framework and reported as a failure of the associated test. Other exceptions are
regarded as errors.

A Basic unittest Example
Forourfirstexample, we'll use the square () method from our testable.py code that we created in the
"Introduction to Python" course. Our goal now is to write code that will cube the values passed. This will allow
us to compare the two testing modules.

Justto make sure we're all up to speed, let's review setting up a new PyDev project and a Python program:

To starta new project, select the menu item File | New | PyDev Project. Enter the name UnitTesting,
select 3.0 for the Grammar Version, and select the python interpreter (ifit's not available, click on the link to
configure an interpreter):

e =]
PyDev Project

Create a new Pydey Project,

o,
Project name: | UnitTesking _)

Project conkents:
WV Use default

Dttty | W hworkspacelUnitTesking Browse |

Projeck bvpe

Chonose the project bype
f* python € Jvthon & Iron Python

GErammar Wersion \

Cnterpreter E

Click hete ko configure an interpreter nok lisked.

" add project directory ko the PYTHOMPATH?
i« Create 'src' folder and add it to Ehe PYTHORPATH?
" Don': configure PYTHOMPATH (to be done manually later on)

=
',_L?) = Back Mext = | Einish I Cancel

If you clicked the link to configure the interpreter, go to the Preferences screen now and click Auto Config:

& Preferences Hi=l 3

|ty|:|e Filker kaxt

[General

- Builders

[#- Debug

- Editar

- Inberactive Consale
- Inkerpreker - Iron Python
- Inkerpreker - Tvthan
- Inkerpreter - Python
- Logging

- PyLint

- Pl Imik

- Seripking PyDey

- Task Tags

- Remoke Systems

- RunfCebug

- Team

- Terminal

(- Web

- Web Page Editor

[+ XML

I+l
L

F-[F][F
[nn el B v

Python Interpreters - - -

Python interpreters (.9, pythonexe)

Marne | Location |

..... T

o
Auto Config

Bemaoye |
Le |

o)

Click to automatically configure the Python interpreter)""

:

Bl Libraries | Forced Builtins | Predefined I] Envirnnmentl & String Substitution Yariables I
System PYTHOMPATH

Mew Folder
Mew Egg)/Zipls)

Remove

il

Restore Defadlts | Apply |

@

Ok | Cancel |

A Selection Needed screen appears. Click OK to select the default settings:

& Selection Needed [_ O]
Select the Folders to be added ko the SYSTEM pythonpath!
IMPORTAMT: The Folders For wour PROIECTS should MOT be added here, but in wour project configuration,

Check:bktp: ffpvdey.org/manual_101 _interpreter. bl for more details.

O = c:\Program Files\ecipseledipseipluginsiorg. python, pydey _1,5.5, 20100303004y Src
& CPython

&) C\Pythan|DLLs

&) C:\Pythonyib

= CriPythomfibh plak-win

= CHAPythonllibl site-packages

O = c\wiNDowsisystem32ipython31.zip

Select Al | Ceselect All |

(7) i I Cancel |

Click OK to return to the Pydev Project screen, then click Finish. You'll see a promptto change perspectives.
Check the Remember my decision box and then click No:

& Open Associated Perspective? |

This kind of project is associated with the Pydey perspective, Do you want ko
\'/ open this perspective now?

GF Rermermber ry decisiDD

When you first create a PyDev project, itis placed in the Other Projects working set. It's a good idea to keep
your Python projects together, so go ahead and put your newly created projectinto the Python2_Lessons
working set. In the Other Projects working set, find the Unit Testing project. Right-click it and select
Assign Working Sets...:

L

. A i Faa - . T .
LI P g _,.-I‘I'Il:llflft':.. S— e i

7 Export...

Qé’h Refresh FS
Close Project

il Iﬁv|l—.—|m —

C Assign Waorking Sets. ..

Show in Remoke Svskems view
Run &5

Debug As

Profile As

E?’ =riller . 12! Coverage As
: Team

A i

=
[Package Explorer

(1
S

T vy v vy v

L WL B VY L VN J

Corpare With

-LSC string-car Restare From Local History. .

'[EGI Stwling PyDev '
: Source g
Configure }

Properties alt+Enter

IEC- War-pass

Lﬁ var-types

B-=5 wariable_homework,
----- 121 Javas_Handback

----- {5‘1 JawvaS_Comruniky

----- J.fT.I JavaS_Homework,

| UnitTesting

The Working Set Assignments screen appears. Click Deselect All to clear any selected working sets,
and then check the box for the Python2_Lessons working set (the one for this course). Uncheck the Show
only Package Explorer working sets box, and click OK:

& Working Set Assignments !El

Select working sets for 'UnitTesking':

J._lletthl_CDmmunity ﬂ Select Al |
12 Python1_Handback

Jl_]-'P':."thl:lrll_Hl:lmE-'Wl:lrk Deselect Al |
J._ll Pythonl_Lessons
J._.J Pythonz _Cormmmunity

J._,J Pythonz_Handback,
1

[ew, ..

J._,JF";.:'I:h|:||'|2_L|E:55|:||'|s
o Py ERon__ormmonity
12 Python3_Handback
J._,J PythonZ_Hormework,
J._ll Python3_Lessons
12 Python4_Community
J._,J Pythond_Handback,
J._ll Pythonsd_Homework,
J._.J Pythond_Lessons -

(| Show only Package Explorer working sets)
Configure Package Explorer working sets. ..

=
I\‘? ¥ Ik I Cancel

You will need to do this for each new project you create. (Your working sets may differ from those shown
here; you'll only see working sets for the courses in which you are enrolled.)

To see only the working sets for this course, click the drop-down arrow nextto Show Working Sets, and
selectPython | Python 2:

' = 4
[& Package Explorer &3 E’_ Problems | «= Tasks} = Eunsule} .;;'J Terminal 11 = 0
-
=

Shaw Warking Set

H-== variable_homework,
S Pythonz_Handback,
----- J|_|J Python2_Communitsy
i_.l Pythonz_Homework,
E|J|_|J Pythonz_Lessons Android # ;

H=5 Archives 004D b Pythond
= FileHandlirng
= IntroEclipse

LnitTesting

{125 TestDrivenDevelopment j
-

Your UnitTesting projectis now listed in the Package Explorer panel on the lower left corner of your
Eclipse screen, in your Python2_Lessons working set.

This hierarchical view of available resources (directories and files) in Eclipse is commonly called the
workspace. You now have a projectnamed UnitTesting in your workspace.

Before you go on, make sure thatthe UnitTesting projectis displayed in the Package Explorer window.
Click on this new projectto selectit.

From the File menu, select New | File. A New File dialog box appears. Select the src subdirectory of
UnitTesting, enter the filename testable.py, and then click Finish:

& Mew File M=l
File

Create a new file resource,

Gnter ot select the parent Folder: \

IInit Testing//src __/'

=

= smiller.129,4442.1,Lessoni4_Homewark ;I
== smiller.129,4457.1,Lesson16_Homewark

'[_r‘i':' skring

.[Dc skring-conversion

'[DGI' Skyling

e test

122 Threads

= kriangle

-F

Var-Enp

= war-pass J
'[EC- war-types

l+| Ld 'C LI . | 1 1 ﬂ

T
File name: | testable.py|)

advanced == |

@j Finish I Cancel

A new editor window appears next to the workspace. We'll use this editor because it understands Python
syntax. In testable.py, type the blue code as shown:

CODE TO TYPE:

"""Demonstrates the unittest module in action.™""
import unittest

def cube (x) :
'''Returns the cube of a passed value'''
return x*3

class TestCube (unittest.TestCase) :

def test small number (self):
self.assertEqual (cube(3), 27, "Cube of 3 is not 27")

def test large number (self):
self.assertEqual (cube (1000), 1000000000, "Cube of 1000 should be 1000000

000™)
def test bad input (self):
self.assertRaises (TypeError, cube, 'x')
if name == " main ":

unittest.main ()

To run the program, right-click in the editor window and select Run As..., and select Python Run. This
program contains a bug: instead of returning its argument raised to the third power (cubed), the cube()
function returns its argument multiplied by three. This is an easy mistake to make—we just omitted a single
asterisk (*)—butit renders the function incorrect. When you run the program, you see output thatlooks
something like this:

OBSERVE: Output from testable.py with an error in the cube() function

TE

FAIL: test bad input (main .TestCube)
Traceback (most recent call last):
File "V:\workspace\UnitTesting\src\testable.py", line 17, in test bad input
self.assertRaises (TypeError, cube, 'x'")
AssertionError: TypeError not raised by cube

FAIL: test large number (main .TestCube)
Traceback (most recent call last):
File "V:\workspace\UnitTesting\src\testable.py", line 14, in test large number
self.assertEqual (cube (1000), 1000000000, "Cube of 1000 should be 1000000000
)
AssertionError: 3000 != 1000000000 : Cube of 1000 should be 1000000000

FAIL: test small number (main .TestCube)

Traceback (most recent call last):
File "V:\workspace\UnitTesting\src\testable.py", line 11, in test small number
self.assertEqual (cube (3), 27, "Cube of 3 is not 27")
AssertionError: 9 != 27 : Cube of 3 is not 27

Ran 3 tests in 0.032s

FAILED (failures=3)

Failures. Bummer. And notonly do we have failures, our program gives us even more data than doctest did.
For example, our program gives the number of tests, followed by the length oftime ittook to run the tests, and
the tests themselves can be setup to pass messages to the person running the tests.

When you run the program, it calls the unittest.main() method, which runs the unittest Test Runner. The
Test Runnerlooks in your code for test suites, which are identified as Classes that inherit from the
unittest.TestCase class. These test suites contain a number of tests, which are class methods that begin
with the word "test."

Because the assertions within your unittest methods raise AssertionErrors, the package reports them as test
failures, and the output makes it clear that something is wrong with the program. In fact, because of the
message arguments passed to the methods, you geta pretty good idea of what is going wrong. Now, fix the
error by changing the operation in the cube() function to an exponentiation. Modify testable.py as shown:

CODE TO TYPE:

"""Demonstrates the unittest module in action.™""
import unittest

def cube (x):
'''"Returns the cube of a passed value'''
return x**3

class TestCube (unittest.TestCase) :
def test small number (self):

self.assertEqual (cube (3), 27, "Cube of 3 should be 27")

def test large number (self):
self.assertEqual (cube (1000), 1000000000, "Cube of 1000 should be 1000000

000™)
def test bad input (self):
self.assertRaises (TypeError, cube, 'x')
if name == " main ":

unittest.main ()

Right-click in the editor window and select Run As | Python unit-test. With the error now corrected, your
outputfrom testable.py looks like this:

OBSERVE: Output from testing testable.py

Finding files... done.
Importing test modules ... done.

Ran 3 tests in 0.000s

OK

Now, run it by right-clicking in the editor window and selecting Run As | Python Run:

OBSERVE: Output from running testable.py

Ran 3 tests in 0.000s

OK

The three dots at the top represent the three tests. If they had failed, you would have seen an "F" replacing
each failure. If there were significant errors, you would have seen an "E." Such error indications usually mean
that something is wrong with yourlogic. You see the test count and the time for the duration of the tests' run.
Chances are that for this basic test, you'll get a value 0f 0.000, but keep in mind that unittests are not
performance tests. You'll cover performance tests in a later course.

We also corrected the failure on test_bad_input. Why? Because the string x can be "multiplied"
' Note to give xxx, so no TypeErroris raised. Because exponentiation does not work with strings, the
: cube function must be fixed before the test passes.

Breaking Down Tests

Now that you have the tests working, consider how they work. Look over this color-coded test code:

OBSERVE:

"""Demonstrates the unittest module in action."""
import unittest

def cube (%) :
''"'"Returns the cube of a passed value'''
return x**3

class TestCube (unittest.TestCase) :
def test_small number (self):
self.assertEqual (cube(3), 27, "Cube of 3 should be 27")

def test large number (self) :
self.assertEqual (cube (1000), 1000000000, "Cube of 1000 should be 1000000
000"™)

def test bad input (self):
self.assertRaises (TypeError, cube, 'x')
if name == " main ":
unittest.main ()

The test_small_number() method in the TestCube class has a single statement: a call to the

assertEqual() method inherited from unittest.testCase. That statement contains an assertion thatits first
two arguments are equal—that cube(3) is equal to 27. If the values do not match, then the assertion fails and

the message "Cube of 3 should be 27" is returned during the test and reported by the framework.

If you include useful assertion error messages, they will help you remember what your tests are supposed to

be doing. They will also help other programmers understand your tests. It's easier to figure out what to fix

when error messages are meaningful (fortunately, the default messages produced by unittest have improved

recently, as well).

In the third test, test_bad_input() checks to see ifthe cube() function throws a TypeError exception. The
first argument provided is the expected exception; the second argumentis the function to test; the remaining
arguments will be passed to the function in question— the cube() function (a one-argument function, so you

see a single additional argument 'x"); itis possible to use both positional and keyword arguments (but the

function you are testing doesn't take any keyword arguments). Using this method lets you verify that certain

inputs raise specific exceptions.

Test-Driven Development: Tests As Specifications

Now that you've begun to appreciate the value of testing, follow the basic rule of test-driven development

(TDD): only write code to make a failing test pass. This means that you begin your development projects by
creating tests, which then act as a specification for the behavior of the program. By developing software this
way, the programmer is forced to develop only the necessary functionality, and resists including extraneous
elements. As the agile programming community says, "YAGNI"—You Ain't Gonna Need It. Ifit doesn't help

you pass a test, itreally isn't necessary.

Background of unittest

Kent Beck, the creator of Exireme Programming and Test Driven Development, wrote a testing framework for
agile programming in the Smalltalk programming language. Later, along with Erich Gamma, he wrote a Java-

based implementation of this test framework called JUnit. This test framework has since been ported to many

other languages, including Python, where itis sometimes called "PyUnit."

The advantage of unittest is that the core concepts are tried and tested. This is importantin a testframework

because that means you can rely on it. As we learned in the previous course, if we refactor our code and it still

passes the tests, we can be reasonably sure that we haven'tintroduced an error.

unittest uses these important concepts:

e Test Fixtures: The setup for your tests. Fixtures include creation of temporary databases,
servers, and anything else needed to run the test. The fixtures frequently need to be cleaned up after
a test. To use a spelling test analogy, think of a Test Fixture as a combination pencil, eraser, test
sheet, and word list.

e Test Cases: Each testcase is an individual test. It checks for a specific response to an assertion,
and then is distilled to a boolean statement. Using the spelling test analogy again, think of a Test
Case as a single question on the test.

e Test Suite: Atestsuite is a collection of Test Cases (or even other Test Suites). Returning to
our spelling test again, think of a Test Suite as the set of all questions on the test sheet.

e Test Runner: The software that actually runs the tests. The runner can be launched from the
command line, graphical interface, web interface, or any other input method. It returns special
values to indicate the success of the tests, and these values can be evaluated by you or by various
automated tools. In the spelling test analogy, the test runner would be you, the reader, going
through the list of questions.

Comparing doctest and unittest

So, which should you use, doctest or unittest? To a certain extent, this is a matter of individual preference.
Let's compare the two:

doctest unittest

More readily accessible More challenging to learn

Maintains a clean separation between tests and

Documents your code to some degree .
documentation

Harder to maintain as features change Easier to maintain as features change

Assertions are more difficult to Assertions are the primary tools for verifying correct
incorporate performance
Verbose Concise

The Python community generally agrees that while doctests have their place, unittests are usually more
useful. doctests are easier to learn, butin the long run, unittests are the more streamlined choice. ltis
possible to integrate doctests in a unittest environment, though not quite as straightforward as you might like.

One Down

Congratulations! Just like that, you are now equipped with a second Python test framewaork. In the lessons to
come, we'll use both testframeworks to check our work and build good programming habits. According to the
tenets of agile programming, test-driven developmentis the way to go. TDD lets you continue to refactor your
code withoutintroducing errors, and itencourages other programmers to love you for your devotion to best
practices. In the nextlesson, we'll explore test-driven development even further. See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Test-Driven Development

Lesson Objectives

When you complete this lesson, you will be able to:

utilize in test-driven development.

e create your own testcases as subclasses of TestCase.

e create a single subclass with several test methods.

e call a function to create the directory which was called by each test method.
e call the TestCase's run() method.

Agile Programming and Test-Driven Development

So far, we've learned that tests enable us to refactor code, and that refactoring lets us improve our code's clarity and
performance. To support testing, we've learned two test frameworks in Python, doctest and unittest. With those tools in
hand, we're ready to dive into Test-Driven Development (we'll call it TDD from now on).

The concept of TDD is pretty straightforward. Once you've identified the requirements of a program, you begin creating
it, not by coding, but by writing tests. After you're satisfied with the tests you've written (which may require lots of trial
and error, but hey, you're human), you write the code that will pass the tests. The general outline for TDD workflow
incorporates the mantra of agile programmers everywhere: "Do the simplest thing that could possibly work."

1. Write tests

2.Run tests

3. Write some code to pass the tests
4.Run tests

5. Refactor code

6. Repeat

And that's all there is to it.

You know, if you think about it, you've already done some TDD—well almost. In the projects for Python 1, as well as
your first project for Python 2, you were given a set of requirements and then some expected results. In those cases,
formal tests of your code which were performed by running the program, stimulating it with specific inputs, and
observing and validating the results.

If you automate testing, you can repeat the tests reliably whenever you want. And thanks to doctestand unittest, you
can include formal tests of your code in the lessons and projects to come.

An Example of Test-Driven Development

Below is an example of the first step of TDD, writing tests. Suppose that you have been asked to develop
an adder(x,y) function that takes two arguments and adds them together using a somewhat unusual
definition of "add": integer + integer, string + string and list + list, use regular addition; integer + string converts
the integer to a string before concatenation; and adding a string or an integer to a list, appends to the list
(regardless of whether it's the first or second argument).

Create a TestDrivenDevelopment project and assign itto the Python2_Lessons working set. Then,
create a source file named testadder.py. (If you remember how to do this, create itand go on to the section
called editing and running. If you've forgotten the procedure for creating projects, assigning working sets, or
creating source files, we'll give you detailed instructions one more time now.

Creating the Program

SelectFile | New | PyDev Project and create a TestDrivenDevelopment projectas shown:

&
PyDev Project

Create a new Pydew Project,

-

Gru:ujeu:t name: | TestDrivenDeveloprment)

Project conkents:
v wse default

Direckory |'u':'l,wu:urkspau:e'l,TestDrivenDeveImeent Browse |

Projeck bvpe

Choose the project bype
’Vﬂ' Python € Jvthon € Iron Python

Grammar Wersion

Click. here ko configure an interpreter not lisked,

" add project directory to the PYTHOMNPATH?
f* reate 'src' folder and add it to the PYTHOMPATH?
" Don't configure PYTHOMPATH (to be done manually later on)

@:}l = Back Mext > | Finish I Cancel

Click Finish.

If you're prompted to Open Associated Perspective, check the Remember my decision box and click No.

Your new projectis located in the Other Projects working setin the Package Explorer. Find it, right-click it, and
select Assign Working Sets...:

con e Ty e, y——
e TP Refresh T MRy T
lose Projeck
e hakeaPy ; ks -
{ Assign Working Sets. ..
Show in Remoke Syskems wigm
Fun As 3
Debug As 3
Profile s »
rtg Package Explorer &3 Eip ?z::lrage e :
ompare With k
125 smiller,129,4457. 1, Less Restore From Local History. ..
IEC' skring RS ’
.[Ec skring-corversion Source i’
IEG' Styling Zonfigure k
~ test _..\F‘rcuperties AlE+Enter
- - TestDrivenDevelopment)

¥4 = Threads

TEC- kriangle

IEC- War-gxp

TEC' war-pass

15 var-types

IEC- wariable _hormework,
----- J.f,‘.l Pythonz_Handback,
----- J.fTJ Pvthonz _Community
EEI---_IJ.E,‘.I Pythonz_Homework,
EIJS.I PythonZ_Lessons
tﬁ- IntroEclipse
=125 UnitTesting

== s

...... @ testahle.p‘:-"

In the Working Set Assignments dialog, select Show only Package Explorer working sets and
Python2_Lessons:

& Working Set Assignments !E[

Select working sets for 'TestDrivenDevelopment's

O L=eytho... Select Al
O J.f,‘.l Pythonz_Handback
O J.ETJ Pythonz_Homework,

{ J.f,‘.l Pythonz_Lessons)

Deselect Al

i

@Shnw only Package Explorer working sets)

Canfigure Package Explorer warking sets...

@:J K I Cancel

Click OK.

Right-click the TestDrivenDevelopment/src folder in the Package Explorer, and select New | File:

" s w0

Open in Mew Window T Project...
Shows I Alt-+3hifk+it k (% Source Folder
=| Copy Chrl+C H PyDev Package
E= Copy Qualified Mame @ PyDev Module
m 2 Paste Chel+y £
¥ Delete Delete
— Build Path . 2
tf; <l Riefactor Alt+3hifk+T * L=<_I> Example...
o -F N
E z:::li f‘% Import. . < Other... Chrl+
Lo T Ry Export..,
TE skring
TDG' Stylin . Refresh FS
I?__?’ best fssign Warking Sets.. .
"_% Threz
IEC brianc Show in Remoke Svskems wiew
-LSC var-a Run As [
.[Ec var-i Debug As 4
L:g war-b Profile As J
£ . arial Coverage As L
----- 151 Pythonz_ Vsl g
..... Jé__l Pythonz Compare With r
[]5-' Pythonz_ Restore From Local Histary. .,
E|J|3‘.I Pythonz_ PyDev g
IE:P- Inkral SIBUTES g J
EE@‘; Properties Alt+Enter
L) =

J 0+ st - TestDrivenDeveloprment

In the New File dialog, enter the name testadder.py and click Finish:

& Mew File
File

Create a new file resource,

=] E3

TestDrivenDevelopment)sic

Enter or select the parent folder: \

it

'[_r‘i':' string

TDC' skring-canwersion
'[:GI/' Skyling

'[:?' kest

'[gg Threads

= kriangle

H- T UnitTesting

'[EC war-gxp

'[:'3- war-pass

'bc- var-types

2= variable_homewark,

File narme: | testadder. py|)

Advanced == |

©

Finish I Cancel

The file now appears in the Eclipse editor window.

Editing and Running the Program

Intestadder.py, type in the code below as shown:

CODE TO TYPE:

Demonstrates the fundamentals of unittest.

adder () is a function that lets you 'add' integers, strings, and lists.
mwrin

from adder import adder # keep the tested code separate from the tests

import unittest
class TestAdder (unittest.TestCase) :

def test numbers(self):
self.assertEqual (adder(3,4), 7, "3 + 4 should be 7")

def test strings(self):
self.assertEqual (adder ('x','y'), 'xy', "x + y should be xy")

def test lists(self):
self.assertEqual (adder([1,2],[3,4]1), [1,2,3,4]1, "[1,2] + [3,4] should be
[1,2,3,41")

def test number and string(self):
self.assertEqual (adder(l, 'two'), 'ltwo', "1 + two should be 1ltwo")

def test numbers and list(self):
self.assertEqual (adder(4,(1,2,3]), [1,2,3,4]1, "4 + [1,2,3] should be [1,
2,3,41™")

if name == " main ":
unittest.main ()

Don'trun the program just yet. Although itimports an adder function (the function it's eventually going to test),
thatimport will fail unless that function is defined. The simplest code we have to allow the test harness
(automated test framework) to run, is an adder module that contains an empty adder() function. In your
TestDrivenDevelopment/src folder, create adder.py as shown:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.

def adder(x, vy):
pass

Now let's go on to step two of the cycle, run tests.
Save the adder.py file.

Go back to testadder.py and run it.

OBSERVE: Output from testadder.py with an incomplete adder function

FEFFFF

FAIL: test lists (_ main .TestAdder)
Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 17, in test 1
ists
self.assertEqual (adder ([1,2],[3,41), [1,2,3,4], "[1,2] + [3,4] should be [1,
2,3,41")
AssertionError: None != [1, 2, 3, 4] : [1,2] + [3,4] should be [1,2,3,4]

FAIL: test number and string (_ main .TestAdder)
Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 20, in test n
umber and string
self.assertEqual (adder (1, "two'), 'ltwo', "1 + two should be 1ltwo")
AssertionError: None != 'ltwo' : 1 + two should be ltwo

FAIL: test numbers (_ main .TestAdder)

Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 11, in test n

umbers

self.assertEqual (adder (3,4), 7, "3 + 4 should be 7")
AssertionError: None != 7 : 3 + 4 should be 7
FAIL: test numbers and list (_ main .TestAdder)

Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 23, in test n
umbers and list
self.assertEqual (adder (4, [1,2,31), [1,2,3,4], "4 + [1,2,3] should be [1,2,3,
4]")
AssertionError: None != [1, 2, 3, 4] : 4 + [1,2,3] should be [1,2,3,4]

FAIL: test strings (_ main .TestAdder)

Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 14, in test_s

trings
self.assertEqual (adder('x','y"), 'xy', "x + y should be xy")
AssertionError: None != 'xy' : x + y should be xy

Ran 5 tests in 0.016s

FAILED (failures=5)

All five tests have failed. But we expected them to fail (yes, we did), because our adder() method doesn't
actually do anything yet. While failed tests are not the ideal result, atleast the tests didn'tresultin error

messages. When you see error messages, they usually indicate the presence of a programming mistake, for

instance, a function may have the wrong number of arguments, or a call to a method that an object doesn't
have. But since our code didn't return any error messages, we can move on to step three of the TDD cycle:
write code to pass the tests. In this firstinstance, we won't try and pass all of the tests, butinstead
provide a basic initial implementation that will pass some of them, then build from there. Editadder.py,
adding and remeving code as shown:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.

def adder(x, vy):

Pass
return x + y

Run testadder again.

OBSERVE: Ouput from the second run of testadder.py

LS

ERROR: test number and string (_ main .TestAdder)
Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 20, in test n
umber and string
self.assertEqual (adder (1, 'two'), 'ltwo', "1 + two should be 1ltwo")
File "V:\workspace\TestDrivenDevelopment\src\adder.py", line 4, in adder
return x + y
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 23, in test n
umbers and list
self.assertEqual (adder (4,(1,2,3]), [1,2,3,4]1, "4 + [1,2,3] should be [1,2,3,
a1")
File "V:\workspace\TestDrivenDevelopment\src\adder.py", line 4, in adder
return x + y
TypeError: unsupported operand type(s) for +: 'int' and 'list'

Ran 5 tests in 0.0l6s

FAILED (errors=2)

The firstline now contains three dots, each representing a successful test (give yourselfa paton the back for
thosel), and two "E" characters. Those E's represent errors that we get because our implementation works for
only 60% ofthe test cases. That's notbad for a one-line function though, and the output from the test-run
provides lots ofinformation that helps us figure out how to stop the function from throwing exceptions and
causing those errors.

The problems in our code seem to pop up when the arguments aren't of the same type. Since the function
appears to do whatwe need itto do mostofthe time, we'll modify our program explicitly to change its
performance justin the failing cases. We'll do that by adding an integer and a string, and adding an integer and
a list (this last case should apply when adding anything to a list, not justan integer).

Edit your code as shown below:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.

import numbers

def adder(x, y):

if isinstance(x, list):
return x + [y]

elif isinstance(y, list):
return y + [x]

elif isinstance(x, numbers.Number) and isinstance(y, str):
return str(x) + vy

return x+y

We enhanced our code using the built-in isinstance() function. This function lets us check to see if a variable
is of a particular type, or a subclass of that type. We have to importthe numbers module in order to use
numbers.Number, which is a superclass of all numeric types in Python.

Run testadder again. Both of the original errors are fixed, but unfortunately, one of the test cases that
succeeded previously is now broken. Don't worry too much—this a common occurrence. The good news is
that the tests work and let us know about the problems!

OBSERVE: Results of the third testadder.py run

Boooo

FAIL: test lists (main .TestAdder)

Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\testadder.py", line 17, in test 1

ists

self.assertEqual (adder([1,2],([3,4]1), [1,2,3,4], "[1,2] + [3,4] should be [1,
2,3,41")
AssertionError: Lists differ: [1, 2, [3, 4]] '= [1, 2, 3, 4]

First differing element 2:
[3, 4]
3

Second list contains 1 additional elements.
First extra element 3:

4

- [11 2/ [3/ 4]1]

+ [1, 2, 3, 4] : [1,2] + [3,4] should be [1,2,3,4]

Ran 5 tests in 0.016s

FATILED (failures=1)

In the final version of our code, we want to make sure that the new special cases for lists are not applied when
both arguments are lists. In those cases we want them to be left to the default elif case atthe end of the
function. Modify your code as shown:

CODE TO TYPE:

"adder.py: defines an adder function according to a slightly unusual definition.

import numbers

def adder(x, y):

if isinstance(x, list) and not isinstance(y, list):
return x + [y]

elif isinstance(y, list) and not isinstance(x, list):
return y + [x]

elif isinstance(x, numbers.Number) and isinstance(y, str):
return str(x)+y

return x+y

Run testadder again. Nice. Atlast we have the pleasure of seeing all of our tests pass, with five dots on the
firstline of the output. Programmers who use unittest regularly often refer to themselves as "dot-addicted.” It's
amazing how gratifying it can be to see arow of dots printed out from a test!

OBSERVE: Output from testadder.py when all tests pass

Ran 5 tests in 0.000s

OK

More About the unittest.TestCase Class

The TestCase class is the cornerstone of the unittest module. We've learned to create our own test cases as
subclasses of TestCase. Individual tests are written as methods of the subclass and have names that begin
with the string "test." If you have only one testto run, you may implementthattest as the class's runTest()
method. You probably won't do that very much, but you may see itin other people's code, so it's worth
knowing.

Test Fixture Set-up and Tear-down

If you want to define several tests, you could create a separate Test Case subclass for each one, butit's
much simpler to create a single subclass with several test methods instead. So, why might you need more
than one TestCase subclass? Well, one possibility is so that you can include setUp() and tearDown()
methods, which would be run before and after each test method. In this case (as well as in others), grouping
tests that require the same set-up and tear-down processing, is a good way to go.

Suppose you wantto run some tests of code you have written that creates files. Each test needs to create
files. And since the tests create random files (or atleast since each test creates different files), if you run the
tests in any old directory, clean-up could be difficult. To avoid creating such problems for ourselves, we'll
write our code so that each test method creates the directory itself and cleans up the files it creates. To make
our code even more efficient, we'll have it call a function to create the directory which was called by each test
method. We could take it even further and create the directory within the setUp() method. This is called
automatically before the framework calls each test method, justas the tearDown()method is called after
each one. So we could use tearDown() to empty and delete the directory.

Ifthe setUp() method raises an exception, the test framework will declare this testto have errors, and the test
method will notbe run. If it succeeds, the testis run, followed by the tearDown() method.

Let's check this out. In the TestDrivenDevelopment/src folder, create a new program named
setupDemo.py. Type in the following code:

CODE TO TYPE:

o

Demonstration of setUp and tearDown.

The tests do not actually test anything - this is a demo.
mwrin

import unittest

import tempfile

import shutil

import glob

import os

class FileTest (unittest.TestCase) :

def setUp(self):
self.origdir = os.getcwd()
self.dirname = tempfile.mkdtemp ("testdir")
print ("Created", self.dirname)
os.chdir (self.dirname)

def test 1(self):
"Verify creation of files is possible"
for filename in ("this.txt", "that.txt", "the other.txt"):
f = open(filename, "w")
f.write ("Some text\n")
f.close()
self.assertTrue (f.closed)

def test 2(self):
"Verify that the current directory is empty"
self.assertEqual (glob.glob("*"), [], "Directory not empty")

def tearDown (self):
os.chdir(self.origdir)
shutil.rmtree (self.dirname)
print ("Deleted", self.dirname)

if name == " main

unittest.main ()

Here, you have defined a test case with two test methods. In order to make the testrunnable anywhere, first

the setUp() method saves the process's current directory (obtained with os.getcwd() in an instance

variable). Then ituses tempfile.mkdtemp() to create a new temporary directory—the location it chooses
will depend on your platform, so the method prints the directory path out for your inspection. Having created

the new directory, setUp() then makes it the current directory.

The tearDown() method is called after each test. It makes the saved directory the current directory again

(thereby ensuring that the temporary directory is no longer in use), and removes it (along with any content it

may have) using shutil.rmtree().

When you run the program, you might see something like this:

OBSERVE: Output from setupDemo .py

Finding files... done.
Importing test modules ... done.

Created C:\Users\smiller\AppData\Local\Temp\2\tmp5gkymz03testdir
Deleted C:\Users\smiller\AppData\Local\Temp\2\tmp5gkymz03testdir
Created C:\Users\smiller\AppData\Local\Temp\2\tmp9 ukwO4wtestdir
Deleted C:\Users\smiller\AppData\Local\Temp\2\tmp9 ukwO4wtestdir

Ran 2 tests in 0.008s

OK

Here, the output from the test code itselfis mixed with the .. output from the testing framework, making it

difficult to see exactly what's happening (though the absence of error messages is reassuring). ltisn't usually
a good idea to produce output from test cases for a couple of reasons. First, when the test succeeds there
should be no output—this makes it much easier to determine whether tests have passed or failed. Second,
it's quite possible that nobody will read that output anyway.

You may find that you prefer to run your tests using the features built-in to Ellipse to handle unittests. To do
so, selectthe setupDemo.py file and then choose Run | Run As | Python unit-test. Then, your output
will look like this:

OBSERVE: Output from setupDemo.py

Finding files...
['V:\\workspace\\TestDrivenDevelopment\\src\\setupDemo.py'] ... done
Importing test modules ... done.

test 1 (setupDemo.FileTest)

Verify creation of files is possible ... Created c:\docume~l\smiller\locals~1\te
mp\3\tmpzo6uwatestdir

Deleted c:\docume~l\smiller\locals~1\temp\3\tmpzobuwatestdir

ok
test 2 (setupDemo.FileTest)
Verify that the current directory is empty ... Created c:\docume~l\smiller\local

s~1\temp\3\tmpquthgmtestdir
Deleted c:\docume~I1\smiller\locals~1\temp\3\tmpguthgmtestdir
ok

Ran 2 tests in 0.031s

OK

The docstring for each testis now printed before the test starts, but the print statements are definitely
interfering with the output. One way to correct this would be to remove the top-level instructions that call the
unittest.main() function. When you ask Ellipse to run the program as a unit test, it automatically performs
the work in the top-level instructions anyway. Butin most cases, you'll want to retain that code; withoutit the
program will notrun correctly as a stand-alone module (run from outside Ellipse).

So instead, we'll remove the print statements when we modify our code. Let's do that now. Edit
setupDemo.py as shown:

CODE TO TYPE:

Demonstration of setUp/tearDown.

The tests do not actually test anything much - this is a demo.
mwrmn

import unittest

import tempfile

import shutil

import glob

import os

class FileTest (unittest.TestCase) :

def setUp(self):
self.origdir = os.getcwd()
self.dirname = tempfile.mkdtemp ("testdir")

: 1 2 \
PTrIITT T reaTtet 7 eI rramey

os.chdir (self.dirname)

def test 1(self):
"Verify creation of files is possible"
for filename in ("this.txt", "that.txt", "the other.txt"):
f = open(filename, "w")
f.write ("Some text\n")
f.close()
self.assertTrue (f.closed)

def test 2(self):
"Verify that the current directory is empty"
self.assertEqual (glob.glob ("*"), [], "Directory not empty")

def tearDown (self):
os.chdir (self.origdir)
shutil.rmtree (self.dirname)

HENSRYA | § A B I 1 1 g \
PrIITc oereTeS e riamey

if name == " main ":
unittest.main ()

Run this module using Run | Run As | Python Run; your outputlooks like this:

OBSERVE: Output from setupDemo .py

Ran 2 tests in 0.031s

OK

Test Case Enumeration

When you run unittest.main(), or when Eclipse runs a program as a Python unit test, all subclasses of
unittest.TestCase are taken from the module. An instance of each subclass is created, and each method
of the class with a name that begins with "test" is called. (These calls are preceded by a call to the setUp()
method if it exists, and followed by a call to the tearDown() method ifit exists).

All of the above actions are taken when we call the TestCase's run() method. The TestCase class records
the results of the call in a special object, and they are summarized in the output of the test framework, after all
tests have been run.

TestCase Methods

There are a number of methods you can call to make assertions about your program's state. The most
commonly used TestCase Methods are:

http://docs.python.org/tutorial/modules.html

TestCase Method

Description

assertTrue(expr], msg])

Unless expr evaluates as true, the test fails.

assertFalse(expr[, msg])

If expr evaluates as true, the test fails.

assertEqual(first, second],
msg])

Unless first and second are equal, the test fails.

assertNotEqual(first,
second[, msq])

Iffirst and second are equal, the test fails.

assertAlmostEqual(first,
second[, places[, msqg]])

Computes the difference between first and second and rounds it to
places decimal places. If the rounded resultis non-zero, the test fails.

assertNotAlmostEqual(first,
second[, places[, msqg]])

Computes the difference between first and second and rounds itto
places decimal places. If the rounded resultis zero, the test fails.

assertRaises(exception,
callable, ...)

Calls callable, passing it any positional and keyword arguments that follow.
If the call does notraise the given exception, the test fails.

The methods above do have alternative names (assertTrue(), for example, is also known as assert_()),

but the names above are preferred. Most of these methods take an optional message argument. If you don't
provide a message, unittest will try to formulate one that gives you as much information as possible. To test
this, create a new program named messagetest.py in your TestDrivenDevelopment/src project folder

as shown:

CODE TO TYPE:

wwn

LIRIR1]

import unittest

if name
unittest.main ()

Demonstrate a message formulated by the unittest system.

class DemoCase (unittest.TestCase) :
def testMessagel (self):
self.assertEqual ([1,2,3,4],

== " main_ ":

Runitusing Run | Run As | Python Run; the output looks something like this:

OBSERVE: Output from messagetest.py

E

FAIL: testMessagel (_main .DemoCase)

Traceback (most recent call last):
File "V:\workspace\TestDrivenDevelopment\src\messagetest.py", line 9, in testM

essagel
self.assertEqual ([1,2,3,4], [1, 2, [3, 411])
AssertionError: Lists differ: [1, 2, 3, 4] !'= [1, 2, [3, 4]]

First differing element 2:
3
[3, 4]

First list contains 1 additional elements.
First extra element 3:

Ran 1 test in 0.016s

FAILED (failures=1)

The system has performed a fairly detailed analysis of the differences between the two lists, and points out, in
the lengthy message, that the lists differ at element 2, and that the firstlist has an extra element. This
informative message is the result of some recent clean-up work that was done to Python's unittest module.
With this tool available, now if you can't come up with a particularly good error message yourself, you can try
letting the system generate one for you.

Laying the Foundation

In this lesson, you've learned about some basic functions of the unittest module. This will serve you well
during the course, but we've only scratched the surface of unittest!

You have also learned to engage test-driven development practices. For the rest of this course, and all
following courses in the OST Python series, you'll be required to use this methodology, in fact, your instructor
will verify that you've solved problems successfully by running tests againstit. By the end of this course, you'll
be really comfortable with TDD and unittest, and writing tests will become second nature to you!

In the nextlesson, we'll learn about some of Python's file-handling abilities. Keep up the excellentwork and see you in a bit!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

File Handling

Lesson Objectives

When you complete this lesson, you will be able to:

use some of Python's high-level file handling capabilities.
e getinformation from and navigate in our file system.

e search forfiles.

e archive and compress files.

e use the file object and the built-in open() function.

e refrieve file and path name information with os.path.

e find path names using glob.

High-Level File Operations

Now that we have a framework for testing and developing our code, it's time to startlooking at some of Python's other
built-in modules. In the next few lessons, we'll learn about various Python features, and we'll use TDD to develop
small programs with the new features that we learn.

In this lesson, we will explore some of Python's high-level file handling capabilities. Python has lots of built-in
functions and modules geared to help streamline the file handling process. They smooth over many differences
between operating system platforms, so you'll have a single interface for dealing with files, whether you're on
Windows, OS X, or Linux. First we'll review how to read and write files, then, we'll learn how to getinformation from and
navigate in our file system, search for files, and archive and compress our files. We'll be playing with these features:

e the file object and the built-in open() function
e os.path
e glob

The File Object and the Built-in open() Function

Our first example involves the file object. You will create a module that can read inthe contents of a file as a listoflines
(without using file.readline or file.readlines), and write out a list of lines as a file. When the read() function is applied to

the file that write() creates, it produces the same list as that which is passed in to the write () function. Unlike standard
file methods, these functions deal with lines that do not contain the terminating newline.

You'll use newline as the delimiter. The file that you get after you write out a list containing the delimiter, does not need
to produce the same list when it's read back in, so you don't have to figure out whether the lines contain the delimiter.

The setUp() method establishes a common file name and creates a set of test fixtures (particular lists that we have
arbitrarily chosen to testthe code). Each of the individual test methods calls a common verify_file() function with one
ofthe test fixtures as its second argument.

Let's start by writing some tests, test_fileops.py, and stubbing out (thatis, creating a "stub" program that doesn'tdo
anything, so the other program(s) calling itdon't show errors) your module, fileops.py. Don'tforget to add a new test
case ifyou add a new fixture!

Create your FileHandling projectand assign itto the Python2_Lessons working set. Then create test_fileops.py
as shown:

CODE TO TYPE:

import unittest
import os
import fileops

class TestReadWriteFile (unittest.TestCase) :
"""Test case to verify list read/write functionality."""

def setUp(self):
"""This function is run before each test."""
self.fixture file = r"v:\workspace\FileHandling\src\test-read-write.txt"

self.fixture list = ["my", "written", "text"]
self.fixture list empty strings = ["my", "", "", "written", "text"]
self.fixture list trailing empty strings = ["my", "written", "text", "", ""]

def verify file(self, fixture list):
"""Verifies that a given list, when written to a file,
is returned by reading the same file."""
fileops.write list(self.fixture file, fixture list)
observed = fileops.read list(self.fixture file)
self.assertEqual (observed, fixture list,
"%s does not equal %s" % (observed, fixture list))

def test read write list(self):
self.verify file(self.fixture list)

def test read write list empty strings(self):
self.verify file(self.fixture list empty strings)

def test read write list trailing empty strings (self):
self.verify file(self.fixture list trailing empty strings)

def tearDown (self):
"""This function is run after each test."""
try:
os.remove (self.fixture file)
except OSError:
pass

if name == " main ":
unittest.main ()

In this course, we use the absolute path "v:\workspace" in some cases to gain access to files on the
Note system.In areal-life situation, we strongly advise using relative paths, which are easier to maintain and
more portable. For more information about absolute and relative paths, see this Wikipedia article.

Generally, each unittest should testjust one function or method at a time. Otherwise our code will produce fragile

tests, that may break as code is refactored. Our example is a special case, though. We're trying to match the input of
write_list() with the output of read_list (), and rewriting the implementation of one function in our tests justto test the

other seems redundant.

You'll see an error marker on the import fileops line because we haven't created fileops.py yet, so we can'trun
this program.

Now, let's stub the functions in fileops.py. The stubbed module provides functions with the correctinterface, but no
functionality. We don't expect the tests to succeed when we run them, but if the stubbed module is correctly structured

we'll see failures rather than errors.

http://en.wikipedia.org/wiki/Path_%28computing%29

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write list(fn, 1lst):
"""Writes a list to a named file. Each list item will be on
a separate line. Overwrites the file if it already exists.

wmwn

pass

def read list(fn, 1lst):
"""Reads a list from a file without using readline.
Uses standard line endings ("\n") to delimit list items.

won

pass

(7]

ave fileops.py, then run test_fileops.py. Your output will look like this:

OBSERVE: Output from running test_fileops.py with the stubbed module

EEE

ERROR: test read write list (main .TestReadWriteFile)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 24, in test read write lis
t
self.verify file(self.fixture list)
File "V:\workspace\FileHandling\src\test fileops.py", line 19, in verify file
observed = fileops.read list(self.fixture file)
TypeError: read list() missing 1 required positional argument: 'lst'

ERROR: test read write list empty strings (main .TestReadWriteFile)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 27, in test read write lis
t empty strings
self.verify file(self.fixture list empty strings)
File "V:\workspace\FileHandling\src\test fileops.py", line 19, in verify file
observed = fileops.read list(self.fixture file)
TypeError: read list() missing 1 required positional argument: 'lst'

ERROR: test read write list trailing empty strings (main .TestReadWriteFile)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 30, in test read write lis
t trailing empty strings
self.verify file(self.fixture list trailing empty strings)
File "V:\workspace\FileHandling\src\test fileops.py", line 19, in verify file
observed = fileops.read list(self.fixture file)
TypeError: read list() missing 1 required positional argument: 'lst'

Ran 3 tests in 0.0l6s

FAILED (errors=3)

The "E" reports indicate that there is some mismatch between the tests and the stub. You need to getrid ofany such
problems before you replace the stubs with real functionality. The error messages let us know that we're expecting too
many arguments in our read_list() function. Modify fileops.py as shown:

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write list (fn, 1lst):
"""Writes a list to a named file. Each list item will be on
a separate line. Overwrites the file if it already exists.

pass
def read list (fn7—3s%):
"""Reads a list from a file without using readline.
Uses standard line endings ("\n") to delimit list items.
mwn
pass

Save it, and then run test_fileops.py. All the tests fail with "F" now, but that's a good thing—it means that the
interfaces in the tests match those in the stubbed code. Your output will look something like this:

OBSERVE: Output from running test_fileops.py with the stubbed module

FFF

FAIL: test read write list (_ main .TestReadWriteFile)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 24, in test read write lis
t
self.verify file(self.fixture list)
File "V:\workspace\FileHandling\src\test fileops.py", line 21, in verify file

o)

"%s does not equal %s" % (observed, fixture list))

AssertionError: None !'= ['my', 'written', 'text'] : None does not equal ['my', 'written
', 'text']
FAIL: test read write list empty strings (_ main .TestReadWriteFile)

Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 27, in test read write lis
t empty strings
self.verify file(self.fixture list empty strings)
File "V:\workspace\FileHandling\src\test fileops.py", line 21, in verify file
"%s does not equal %s" % (observed, fixture list))
AssertionError: None '= ['my', '', '', 'written', 'text'] : None does not equal ['my',
'', ''", 'written',6 'text']

FATL: test read write list trailing empty strings (main .TestReadWriteFile)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 30, in test read write lis
t trailing empty strings
self.verify file(self.fixture list trailing empty strings)
File "V:\workspace\FileHandling\src\test fileops.py", line 21, in verify file
"%s does not equal %s" % (observed, fixture list))
AssertionError: None '= ['my', 'written',6 'text', '', ''] : None does not equal ['my',
'written', 'text', '', '']

Ran 3 tests in 0.0l6s

FAILED (failures=3)

The FAIL messages include enough traceback to identify the specific lines that are causing problems in the tests, and
the error messages give you a pretty clear idea of what needs to be fixed (hint: don'treturn "None"!)

So now, let's fill out the stubs with real code. Modify fileops.py as shown:

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write list(fn, 1lst):
"""Writes a list to a file. Each list item will be on a separate line.
Overwrites the file if it already exists."""
f = open(fn, "w")
for item in lst:
f.write ("%$s\n" % item)
f.close()
Pass

def read list(fn):
"""Reads a list from a file without using readline. Uses unix style line
endings ("\n") to delimit list items."""
f = open(fn, "r")
s = f.read()
f.close()
1 = s.split("\n")
return 1
pess

This looks like it might work, so let's run our tests again. Bummer—more failures. Can you work out what the problem
is, using the information in the messages?

OBSERVE: Output from test_fileops.py after filling out the stub code in fileops.py

FFF

Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 24, in test read write lis
t
self.verify file(self.fixture list)
File "V:\workspace\FileHandling\src\test fileops.py", line 21, in verify file
"%s does not equal %s" % (observed, fixture list))
AssertionError: Lists differ: ['my', 'written',K 'text', ''] != ['my', 'written',6 'text'

1
First list contains 1 additional elements.

First extra element 3:

- ['my', 'written', 'text',K '']

2 ——

+ ['my', 'written', 'text'] : ['my', 'written', 'text', ''] does not equal ['my', 'writ
ten', 'text']

FAIL: test read write list empty strings (_main .TestReadWriteFile)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 27, in test read write lis
t empty strings
self.verify file(self.fixture list empty strings)
File "V:\workspace\FileHandling\src\test fileops.py", line 21, in verify file
"%s does not equal %s" % (observed, fixture list))
AssertionError: Lists differ: ['my', '', '', 'written', 'text', ''] '= ['my',6 '', '', '
written', 'text']

First list contains 1 additional elements.
First extra element 5:

- [vmyv, Vl, vv’ 'written', ltextl, lv]

? —_—

+ ['my', "', '', 'written', 'text'] : ['my', '', '', 'written', 'text', ''] does not eq
uval ['my', '', "', 'written',K 'text']

FAIL: test read write list trailing empty strings (_ main .TestReadWriteFile)

Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test fileops.py", line 30, in test read write lis
t trailing empty strings
self.verify file(self.fixture list trailing empty strings)
File "V:\workspace\FileHandling\src\test fileops.py", line 21, in verify file
"%$s does not equal %s" % (observed, fixture list))
AssertionError: Lists differ: ['my', 'written',K 'text', '', '', ''] !'= ['my', 'written'
, 'text', ll’ ll]

First list contains 1 additional elements.

First extra element 5:

- ['my', 'written',6 'text',K '', '', '']

2 ———

+ ['my', 'written', 'text', '', '"'] : ['my', 'written',K 'text', '', '', ''] does not eq
uval ['my', 'written', 'text', '', '']

Ran 3 tests in 0.047s

FAILED (failures=3)

If you examine the results carefully, you'll see that each observed resultfrom the read_line() function contains an
extra empty string. The problem is that your write_list() function is inserting a newline after each line it writes. When
you read the file back in with the read_list() function, the split("\n") method expects strings on either side of each
delimiter, so an extra blank line appears.

We can write our code to anticipate those newlines, but we have to make sure that we our files are still handled
correctly in other ways. It's possible for a file, under certain circumstances, to be written without a final newline. The fix
should take that possibility into account and take action only when the final character in the file is a newline terminator.
Apply the fix as shown:

CODE TO TYPE:

"""Reads a list from a file and writes a list to a file."""

def write list(fn, 1lst):
"""Writes a list to a file. Each list item will be on a separate line.
Overwrites the file if it already exists."""
f = open(fn, "w")
for item in lst:
f.write("%s\n" % item)
f.close()

def read list(fn):
"""Reads a list from a file without using readline. Uses unix style line

endings ("\n") to delimit list items."""
f = open(fn, "r")
s = f.read()
f.close()
If the last character in the file is a newline, delete it
if s[-1] == "\n":
s = s[:-1]
1 = s.split("\n")
return 1

Run itagain. Ah. Success! We finally see the correct result:

OBSERVE:

Ran 3 tests in 0.109s

OK

Good job.

Retrieving File and Path Name Information with os.path

The file system identifies files by name and location. The technical term for the name-and-location data is a path or
path name. It details how to navigate through a sequence of folders to the required file. You can extractinformation
from these path names by using the os.path module. Different platiorms have different path name conventions (for
example, Windows uses "\" as its path name separator while Unix-like operating systems use "/").

os.path is actually just a reference to another module thatis platform specific. When your system loads the os
module, code in that module selects and loads the appropriate submodule as os.path. On Windows, the submodule
being used behind the scenes is os.ntpath. It has the same interface as os.path, so you can use mostfunctions
interchangeably. But using os.ntpath on its own means that you can only use Windows-style path names.
os.posixpath is the path module for all operating systems that use Unix-style path names, such as Linux and OS X.

os.path contains utility functions for retrieving path name and file attribute information. Open an interactive session to

see whatos.path can do. We'll start out by creating a temp directory using its mkdir() function, and then go ahead
and use other features. In an interactive shell, type the code as shown:

INTERACTIVE SESSION:

>>> import os

>>> os.mkdir (r"v:\tmp")

>>> fl = open(r"v:\tmp\filel.txt", "
>>> f2 = open(r"v:\tmp\file2.txt", "
>>> fl.close()

>>> f2.close ()

>>> fl.name

"vi\\tmp\\filel.txt'

>>> f2.name

'vi\\tmp\\file2.txt'

>>> os.path.exists (fl.name)

True

>>> os.path.exists (£f2.name)

True

>>> os.path.exists (r"v:\tmp\file3.txt")
False

>>> os.path.getmtime (f1.name)
1270492734.5412514

>>> os.path.getmtime (£2.name)
1270492746.6686897

>>> os.path.basename (f1.name)
'filel.txt'

>>> os.path.basename ("v:\\tmp\\")

T

")
")

W
W

>>> name, extension = os.path.splitext (fl.name)
>>> name

'vi\\tmp\\filel"

>>> extension

Ltxt!

>>> os.path.dirname (f1.name)

"vi\\tmp'

>>> os.path.split (fl.name)

("v:\\tmp', 'filel.txt')

>>> joined = os.path.join(r"v:\tmp", "filel.txt")
>>> joined

'vi\\tmp\\filel.txt'

>>> os.path.exists (joined)

True

>>> joined = os.path.join(os.path.dirname (fl.name), os.path.basename (fl.name))
>>> joined

'vi\\tmp\\filel.txt'

>>> os.path.abspath (r"v:\tmp\..\tmp\filel.txt")
"vi\\tmp\\filel.txt'

os.path.exists() returns True if the path passed as an argument actually exists. On some platforms, the return value
may differ based on file permissions and symbolic links.

os.path.getmtime() returns the amountoftime (in seconds) between your platform's epoch date (the origin oftime
for your particular platform—for example, for Windows, getmtime would return the number of seconds since January
1st, 160 1)—and the last time that a file was modified. getmtime() is part of a group of functions that retrieves time
information from a file. getatime() returns the lasttime the file was accessed and getctime() returns the time the file
was created (on Unix-like systems, this is actually the lasttime a file was changed). You can convert these times to
human-readable strings using functions from the time module, which we will look at later in this course.

As the module's name implies, os.path contains functions for manipulating path names. os.path.basename()
returns the last path name component without any slashes. You can consider the basename as you would an actual
flename componentofa full path. If the path supplied to basename() ends in a slash, an empty string will be returned
(because there is no filename component). To retrieve the path to the file, but not the file name itself, you can use
os.path.dirname().

In the os.path.basename example, we can't create a raw string literal ending with a single backslash
(r"v:dmp\"), so we instead used the non-raw string with double backslashes ("v:\\tmp\\"). Although
Note backslashes are mostly treated as normal characters in raw string literals rather than altering the

literal. This is so that quote characters can still appear in string literals. For more information, see this
stackoverflow article.

The os.path.split() function returns a tuple. The tuple's first elementis what dirname() would return; its second
elementis whatbasename() would return.

os.path.join() does the opposite of split();itjoins path components together into full path names. It will add a slash
between components where necessary, and you can give it as many arguments as you like. Joining the dirname()

and basename() of a path gives back the original path.

Finding Path Names Using glob

So now you know how to read and write files, but what if you want to find a file? For that, you'll need the glob()

significance of the following character, any following quote character is always treated as part of the string

function, which lives in the module of the same name. glob() finds paths that match a particular pattern. The symbols
and patterns in the table below are the same wildcards you mightuse in your command shell and many other places:

Symbol Description Example
? Match any single character exactly once. ?ar matches bar or tar, but not star.
* Match any number of characters. *ar matches bar, tar, star and exemplar.
|[’caf:]agréﬂ]o’[ers or character g/leattch exactly one characterin a range or [a-z]ar matches tar, but not star or 4ar

Now, using the interactive shell, we're going to create a directory containing the following files: test1.txt, test2.txt,
test3.txt,and another.one. Let's see whatglob() can do with these files. Type this code into an interactive Python
console:

INTERACTIVE SESSION:

>>> for i in range(l,4):
f = open(r"v:\tmp\test"+str (i)+".txt", "w")
f.close()

>>> f = open (r"v:\tmp\another.one", "w")

>>> f.close()

>>> import glob

>>> os.chdir (r"v:\tmp")

>>> glob.glob ("*.*")

["another.one', 'filel.txt', 'file2.txt', 'testl.txt', 'test2.txt', 'test3.txt']
>>> glob.glob ("*.txt")

["filel.txt', 'file2.txt', 'testl.txt', 'test2.txt', 'test3.txt']
>>> glob.glob ("*.one")

['another.one']

>>> glob.glob ("test?.txt")

["testl.txt', 'test2.txt', 'test3.txt']

>>> glob.glob ("test[1-2].txt")

["testl.txt', 'test2.txt']

As long as their names share a common pattern, you can access your chosen files. There are also ways to read all of
the entries within a directory, or even to walk through an entire directory tree, but we'll address thatin a later course.

An Application to Sort and Retrieve File Information

Let's try using the glob and os.path modules to create a function that returns a list of the most recently modified files
from a particular path. It will take as arguments, the number of files that we want returned, and the path where we'll look
for the files. You'll reuse and modify the module from our last example, so don'tworry about error handling just yet. To
develop the good programming habits you're going to have, start out with some tests!

http://stackoverflow.com/questions/647769/why-cant-pythons-raw-string-literals-end-with-a-single-backslash

In the directory listing below, file.old is the oldest of the three listed files, and file.new the newest:

, 03:23 PM 10 file.bak
/06/2010 03:24 PM 0 file.new
05/06/2010 03:22 PM 0 file.old

3 File(s) 10 bytes
0 Dir(s) 98,330,996,736 bytes free

In your FileHandling project, create a new file named test_latest.py as shown:

CODE TO TYPE:

import unittest
import latest
import time
import os

PATHSTEM = "v:\\workspace\\FileHandling\\src\\"
class TestlLatest (unittest.TestCase) :

def setUp(self):
self.path = PATHSTEM
self.file names = ["file.old", "file.bak", "file.new"]
for fn in self.file names:
f = open(self.path+fn, "w")
f.close()
time.sleep (1)

def test latest no number (self):
Ensure that calling the function with no arguments returns
the single most recently-created file.
mwwan
expected = [self.path + "file.new"]
latest file = latest.latest (path=self.path)
self.assertEqual (latest file, expected,)

def test latest with args(self):
Ensure that calling the function with arguments of 2 and some
directory returns the two most recently-created files in the directory.
expected = set([self.path + "file.new",
self.path + "file.bak"])
latest files = set(latest.latest (2, self.path))
self.assertEqual (latest files, expected)

def tearDown (self) :
for fn in self.file names:
os.remove (self.path + fn)

if name == " main ":
unittest.main ()

Save it. You can'trun the tests just yet—you need to have something to testfirst. The TestLatest class, above,
defines two tests with common setUp and tearDown. The setUp will take a little longer than our previous tests,
because it needs to create three files with different creation times, and it sleeps for a second after setting up each file.

Note If you want to use these tests in a different location, change the code to suit the local environment by
modifying the PATHSTEM assignment.

Your unittests show that your function should be able to take in arguments for the number of recent files that you want
returned, and the path where it will look for your files. It should also work if you let your function use its default
arguments.

Now, let's create the latest.py module for the test module to import:

CODE TO TYPE:

import glob
import os

def latest (num=1, path="."):
pass

Save it, and then run test_latest.py:

OBSERVE: Output from test_latest.py

FE

ERROR: test latest with args (main .TestLatest)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test latest.py", line 34, in test latest with arg
S
latest files = set(latest.latest (2, self.path))
TypeError: 'NoneType' object is not iterable

FAIL: test latest no number (main .TestLatest)

Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test latest.py", line 25, in test latest no numbe
r
self.assertEqual (latest file, expected,)
AssertionError: None != ['v:\\workspace\\file.new']

Ran 2 tests in 6.031s

FAILED (failures=1, errors=1)

What's wrong here? In this case, the issue is with the behavior of the stub function. The stub function is returning
None, butthe test_latest_with_args() testexpects a list back from latest.latest(). We can fix that, but how?
Pause, ponder, and reflect on that for a minute before going on to the next part...

Okay, now let's see if you can get your tests to pass! Modify latest.py as shown:

CODE TO TYPE:

import glob
import os

def latest (num=1, path="."):

pass
return []

Save itand run test_latest.py.

OBSERVE:

FFE

FAIL: test latest no number (main .TestLatest)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test latest.py", line 25, in test latest no numbe
r
self.assertEqual (latest file, expected,)
AssertionError: Lists differ: [] != ['v:\\workspace\\python2 Lesso...

Second list contains 1 additional elements.
First extra element O:
v:\workspace\FileHandling\src\file.new

- [
+ ['v:\\workspace\\FileHandling\\src\\file.new']

FAIL: test latest with args (main .TestLatest)
Traceback (most recent call last):
File "V:\workspace\FileHandling\src\test latest.py", line 35, in test latest with arg

s

self.assertEqual (latest files, expected)
AssertionError: Items in the second set but not the first:
'v:\\workspace\\FileHandling\\src\\file.new'
'v:\\workspace\\FileHandling\\src\\file.bak'

Ran 2 tests in 6.047s

FAILED (failures=2)

Excellent! A little modification to the stub makes sure that your tests fail properly—without errors! The default
messages from the failed assertions contain lots of detail to help you figure out why your tests are failing.

Now we need to make our tests pass. Editlatest.py as shown:

CODE TO TYPE:

import glob
import os

def latest (num=1, path="."):
files with dates = []
files = glob.glob(os.path.join (path, "*"))
latest files = []
for fn in files:
files with dates.append((os.path.getmtime (fn), os.path.abspath(fn)))
files with dates.sort()
for file info in files with dates[-num:]:
latest files.append(file info[1])
latest files.reverse()
return latest files

retegrr—+

The setUp() method (which is run before each test) needs to create three files with the right sequence of creation
times. The test's setUp() method contains a sleep to make sure that the files' creation times differ by atleastone
second.

Save itand run the test. Both tests should pass:

OBSERVE:

Ran 2 tests in 6.115s

OK

Nice.

The Value of Tests under Refactoring

Another technique used to produce the mostrecentfiles is list comprehension. List comprehensions reduce

the amountofcode in your program.

Note

Shorter code is not always better. Less code could lead to decreased readability. Readability is
one ofthe mostimportant attributes of your code, and should only be sacrificed when
performance demands it. It's up to you to decide which way to go.

Let's try using list comprehensions. Modify latest.py as shown:

CODE TO TYPE:

def

import glob
import os

latest (num=1, path="."):

Lt WITITIUatTT — [

files = glob.glob(os.path.join(path, "*"))

dated files = [(os.path.getmtime (fn), os.path.abspath(fn)) for fn in files]
dated files.sort()

latest files = [f for (d, f) in dated files[-num:]]

latest files.reverse()

return latest files

The latest() function uses a technique called "decorate-sort-undecorate" to achieve its goal. The file paths
need to be sorted by date, so itbuilds a list of (date, filename) tuples, which Python can sort more easily
(the date is the "decoration" here, because itisn't required in the result, even though it's necessary for
sorting.) By default, the tuples are sorted into ascending order, so the paths of the most recent files will be
located at the end.

http://www.python.org/dev/peps/pep-0202/

1 filebak

file news COriginal data: files = glob.glob(os.path.join(path, "*""))
file old
2 two seconds ago, file balk Driginal data, decorated with the file creation times talken from the
one second ago, file new filestore interface: dated_files = [(os.path.getmtime(fn),
three seconds ago, file old os.path.abspath(fn)) for fn in files]
3 three seconds ago, file.old Decorated data, now sorted in decorator order. dated_files.sort()

twio seconds ago, file bak
one second ago, file new

4 file old Sorted in decorator order, with decorators removed: latest_files =
file bak [f for (d, f) in dated_files[-num:]]
file new
5 file new Reversed to give "most recent first” as natural order:
file bal latest_files.reverse()
file old

So, the algorithm (the set of instructions for completing the task) extracts just the filenames of the mostrecent
files, by using the negative index located in this chunk of code:

[for file info in files with dates[-num:]]

-num makes it go backwards through values of num, then reverses the result, placing the most recent files at
the beginning. In other words, -num takes us backwards from end of the list, by num elements (for example,
zoo[-5:]would start at the end of zoo and move back five elements, then chop from there to the end of the
list). So since the list of files was sorted to get the most recently modified ones last, this clips off the num
mostrecentfiles and then shares them in oldest-to-newest order.

When you run your tests, the one-second delay between file creations causes the run to take over six
seconds, but the output should be two successful tests.

Save and run it. With the new latest module, your tests still pass. All is well, and you can move ahead
feeling confident that nothing is broken (or atleast nothing that you're testing for is broken).

Getting a Handle on Files

I'm glad to see you're becoming familiar with some of Python's high-level file handling features: the glob module and
os.path. To reiterate, the glob module helps you to search for files using patterns, while os.path helps to retrieve file
information, used to do various path name acrobatics—like getting the file name out of a full path or splitting and
joining path names.

Now, what do pickles and shelves have in common? We'll find outin the nextlesson—see you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Persistent Storage

Lesson Objectives

When you complete this lesson, you will be able to:

e explain serialization and persistence modules.

e pickle and unpickle various data types.

e update values in a shelf.

e implementthe library class.

Persistent Storage

Python has modules that let you save Python objects. Saving an object actually takes two steps: serialization and
persistence. Serialization (sometimes called marshaling) is the process of converting an objectinto a stream of bytes.
The stream of bytes can be a textual or binary representation of the original object. Persistence means saving that
representation to some sort of data store thatlives beyond your program's execution time or interactive shell session.
Keep in mind that before you persist an object, it mustbe serialized. In this lesson, we'll explore these object
serialization and persistence modules:

pickle
shelve

son

Object Serialization and Persistence Using the pickle Module

Python's pickle module allows you to serialize objects and save them to a file. When using this module, pickling
refers to serialization and unpickling refers to deserialization. You can pickle the following data types:

None, True, False

integers, floating point numbers, complex numbers

strings, bytes, bytearrays

tuples, lists, sets, and dictionaries containing only pickleable objects

built-in functions

functions defined at the top level of a module (not nested within another class or function)
classes that are defined at the top level of a module (not nested within another class or function)

instances of such classes whose __dict__or__setstate_ () is pickleable

Let's try using pickle. We'll use pickle's dump() function to serialize a number of objects and store them to the diskin
the first session. Create a PersistentStorage projectand assignitto your Python2_Lessons working set.

In an interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import pickle

linel = ["one", 2, 3.0]

line2 = {"dictl": {"random": "stuff"}, "dict2": 2.0}

f = open (r"v:\workspace\PersistentStorage\src\picklel.pkl", 'wb')
pickle.dump (linel, £f)

pickle.dump (line2, f)

pickle.dump (None, f)

f.close ()

In the session above, you created a file (written in binary mode, so that the interpreter wouldn't modify the content) and
wrote three objects to it with pickle.dump(). In each dump() statement, the firstargumentis the objectto dump, and
the second argument is the file to which the serialized version should be written. Now we'll use the pickle.load()
function to read the serialized object back from the file. To demonstrate that the file we just created really is permanent,
close your current interactive interpreter console (click the red "Terminate" square) and open a new one for the next
part of the exercise. Now, you can be sure that you're seeing exactly what another user would see.

Note You can also see the pickle1.pkl file we just created in the Package Explorer window. Select the
PersistentStorage/src folder and (if necessary) press the F5 key to refresh the view.

In an interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open (r"v:\workspace\PersistentStorage\src\picklel.pkl", 'rb'")
>>> for 1 in range(3):

o = pickle.load(f)

print (o)

['one', 2, 3.0]

{'"dictl': {'random': 'stuff'}, 'dict2': 2.0}
None

>>> f.close()

>>>

When you open the files, the 'b' option is appended to the mode to deal with the files in binary mode. This is necessary
to ensure that a pickle can be moved from one computer to another with a different architecture (say, from an Intel-
based machine to a Power PC). In the fileops example from the previous lesson, you serialized data into a text format,
but the pickle module in Python 3 uses a binary format by default. You can take a peek at this format by calling read()
on an open pickle file.

You can also see from our example thatit's possible to pickle several items, one after the other, to a file, and then read
them by repeated calls of the pickle.load() function. If you try to read pastthe end of the file, pickle.load() raises an
EOFError exception. In an interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle

>>> open (r"v:\workspace\PersistentStorage\src\picklel.pkl", 'rb').read()
b'"\x80\x03]1g\x00 (X\x03\x00\x00\x000neg\x01K\x02GA\x08\x00\x00\x00\x00\x00\x00e.\x80\x03
}g\x00 (X\x05\x00\x00\x00dictlg\x01}q\x02X\x03\x00\x00\x00barg\x03x\x03\x00\x00\x00bazq\
x04sX\x05\x00\x00\x00dict2g\x05GR\x00\x00\x00\x00\x00\x00\x00u.\x80\x03N. "'

>>>

This binary format is actually pretty compact, especially for more complex data structures. The trade-offis thatit's not
very human readable. We have omitted some of the text to avoid putting a single, very long line in the listing, which
would have made it even more difficult to read. Unlike your fileops module data, which was easy to understand as text,
editing our latest file by hand would be highly impractical. Programs in other languages probably won't be able to read
this format, because it's been designed exclusively for Python use.

In fact, some older versions of Python might notbe able to read this format. There are actually four different pickle
protocols—versions 0 through 3. Version 3 is the default protocol used when pickling an objectin Python 3, and it's
the one that's currently recommended. You can, however, specify which protocol to use as a third argument to the
dump() function. If you're curious about which formats your version of Python can read, or determining your current
default format, thatinformation can be found in the pickle module. More readable information about a pickle file is
located in the pickletools module. In an interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle

>>> import pickletools

>>> pickle.format version

'4.0"

>>> pickle.compatible formats

(v1.o0', 'z.1v, 'r.2', '1.3', '2.0', '3.0', '4.0'"]

>>> f = open (r"v:\workspace\PersistentStorage\src\picklel.pkl", 'rb')
>>> pickletools.dis (f)

0: \x80 PROTO 3

2:] EMPTY LIST

3: g BINPUT 0

5: (MARK

6: X BINUNICODE 'one'

14: g BINPUT 1

16: K BININT1 2

18: G BINFLOAT 3.0
27: e APPENDS (MARK at 5)
28: . STOP

highest protocol among opcodes = 2
>>> pickletools.dis (f)

29: \x80 PROTO 3
31: } EMPTY DICT
32: g BINPUT 0
34: (MARK
35: X BINUNICODE 'dictl'
45: gq BINPUT 1
47: } EMPTY DICT
48: g BINPUT 2
50: X BINUNICODE 'random'
58: q BINPUT 3
60: X BINUNICODE 'stuff'
68: g BINPUT 4
70: s SETITEM
71: X BINUNICODE 'dict2'
81l: q BINPUT 5
83: G BINFLOAT 2.0
92: u SETITEMS (MARK at 34)
93: . STOP
highest protocol among opcodes = 2
>>> pickletools.dis (f)
94: \x80 PROTO 3
96: N NONE
97: . STOP

I
N

highest protocol among opcodes
>>>>>> f.close ()

In our example, pickle has no problem with native data types. The outputfrom pickletools.dis() gives us some
insightinto the way the module stores the data structures, but you don't need to understand serialization format to be
able to pickle things. So, what if you wanted to pickle an instance of a class that you wrote? Let's give ita try. In an
interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> class Example:
def init (self):
self.iteml = None
def item2 (self):
return "instance variable iteml is %s" % (self.iteml)

>>> samplel = Example ()

>>> samplel.iteml = "a string"

>>> samplel.item?2 ()

'instance variable iteml is a string'

>>> f = open (r'v:\workspace\PersistentStorage\src\samplel.pkl', 'wb')
>>> pickle.dump (samplel, f)

>>> f.close()

So far, your sample1.pkl file contains the serialized instance of the Example class.

Now, terminate the console session and open a new interactive one (this is important—you don't want the class
definition to continue to be available from your previous session) and try unpickling the Example instance. In the
console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open(r'v:\workspace\PersistentStorage\src\samplel.pkl', 'rb')
>>> samplel = pickle.load(f)
Traceback (most recent call last):
File "<console>", line 1, in <module>
File "C:\Python31\lib\pickle.py", line 1356, in load
encoding=encoding, errors=errors) .load()
AttributeError: 'module' object has no attribute 'Example'
>>>

What happened here? You can definitely pickle an object instantiated from your own class, but trying to load your
pickled object caused an exception. So, classes that are defined at the top level of a module—thatis, classes that are
notdefined in another class or function—can be pickled.

pickle does notinclude the actual code of the class used to create the instance when serializing an object, it only
includes a reference to the class and the module from where it originated. The original module where the class was
defined must be exportable into the unpickling environment.

In the listing above, the class Example couldn't be found because itwas defined in a previous interactive shell
session, so sample1 was identified as an instance of class __main__.Example. The unpickling module was
correctly named "__main__" (as all interactive sessions are), but there was no class Example there.

We'll fix the error by writing the class in a module that can be imported from your interactive shell sessions. To avoid
having to tinker with your Python path, create your module and start your interactive shell session in the same path.
Everything should work if you create example.py in the PersistentStorage/src directory. Type the code below as
shown:

CODE TO TYPE:

class Example:
def init (self):
self.iteml = None
def item2 (self):
return "instance variable iteml is %s" % (self.iteml)

Now you have the Example class available in a module. You can use itto create a pickle file in an interactive session.
After you've written the pickle file out, you can use pickletools as before to see the class encoded in the file. The
module and class names appear together. In an interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> from example import Example

>>> obj = Example ()

>>> obj.iteml = "some text"

>>> obj.item2 ()

'instance variable iteml is some text'

>>> obj

<example.Example object at 0xO00E51EDO>

>>> import pickle

>>> f = open (r'v:\workspace\PersistentStorage\src\samplel.pkl', 'wb')
>>> pickle.dump (obj, £f)

>>> f.close()

>>> f = open(r'v:\workspace\PersistentStorage\src\samplel.pkl', 'rb')
>>> import pickletools

>>> pickletools.dis (f)

0: \x80 PROTO 3
2: C GLOBAL 'example Example'
19: g BINPUT 0
21:) EMPTY TUPLE
22: \x81 NEWOBJ
23: g BINPUT 1
25: } EMPTY DICT
26: g BINPUT 2
28: X BINUNICODE 'iteml'
38: g BINPUT 3
40: X BINUNICODE 'some text'
54: q BINPUT 4
56: s SETITEM
57: b BUILD
58: . STOP
highest protocol among opcodes = 2

>>>

Again, you'll want to terminate the interactive session and starta new one to make sure thatthe nextsession is
completely isolated from earlier sessions. In the Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle

>>> f = open (r'v:\workspace\PersistentStorage\src\samplel.pkl', 'rb')
>>> obj = pickle.load(f)

>>> f.close()

>>> obj

<example.Example object at 0x00E51CDO>

>>> obj.iteml

'some text'

>>> obj.item2 ()

'instance variable iteml is some text'

>>> import sys

>>> sys.modules|'example']

<module 'example' from 'V:\workspace\PersistentStorage\src\example.py'>
>>>

You can see from the value of sys.modules['example'] that the example module was imported when the class
description was unpickled. The pickle contains the name of the module from which the class was imported, and the
interpreter repeats the import to make sure that the required class is available.

Now change the example.py file name to example1.py, so it will notbe importable under the same name. Do this
using the context menu—move the cursor over your example.py file in the Pydev Package Explorer window, right-
click the filename and select Refactor | Rename. Enter the new name example1.py and click OK.

= src g Al i -
[F] example.py | = Rename Resource =NACIHL X} 3
B foo.py
[E] library.py Mew name: examplel.py
[E] libraryl.py

[F] library2.py
[F] test_library.g
@ Python 31 (C\R

If you repeat the unpickling from the previous session, you will see that it still works, despite renaming the file. Type
these commands in an interactive Python console:

INTERACTIVE SESSION:

>>> import pickle

>>> f = open (r'v:\workspace\PersistentStorage\src\samplel.pkl', 'rb')
>>> obj = pickle.load(f)

>>>

Why does this still succeed? When a module is imported, the interpreter creates a compiled Python file, and even
though you have renamed example.py, the example.pyc file still exists. This is enough for the interpreter to import
the example module. You have to make sure that the compiled version of the file under the original name is removed.
Right-click the PersistentStorage\src directory, and select PyDev | Remove *.pyc, *.pyo and *$py.class files.
You'll have to confirm the actions, after which Ellipse will tell you how many files it has deleted (don'tworry if there is
more than one—the interpreter can recreate these files as necessary).

K|:E Package Explarer &3 E2q Import, q =5
7 Expart. .. =5 7
Bl smiller. 129.4442.1 5 Refresh F5 N
B smiller.128.4457.1 Cloee Project
B-I5 string Close Unrelated Projects

TEC‘ string-coreversion Assign Working Sets. ..
125 Styling

BH-1=% test Show in Remote Systems view
‘_% Threads Run As .
I/‘__Cx‘ kriangle Cebug &s .
TEC' war-gxp Prafile As D
TDC‘ war-pass Coverage fs '
‘_5 var-types Tearn :

#1125 variable_homewor Compare With

----- 15 Pythonz _Handback, al History. ..
..... 12 pythonz_Community Apply 2To3 (ib2to3 must be in PYTHOMPATH)

#-35) Pythonz_Homewark STOFeE J Code analysis

ELJ Python2_Lessons Configure » Remove error markers
L =R o

Properties Alk+Enter

Remove *,pyc, * pyo and *$py.class Files

stenktSkorage

[+ Set as Django Project
B2 src &8 Remove PyDev Project Config

J i PersistentStorage

Finally, start another new Python console and repeat the unpickling from the last session. In the new interactive Python
window, type the commands below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> f = open (r'v:\workspace\PersistentStorage\src\samplel.pkl', 'rb'")
>>> obj = pickle.load(f)
Traceback (most recent call last):
File "<console>", line 1, in <module>

ImportError: No module named 'example'
>>>

The interpreter can no longer unpickle the object, because it cannot locate the module that defines the required class.

So far, we have used functions from the pickle module to handle the pickling and unpickling of objects. The module
also defines a Pickler class, which lets us create objects. The next example session shows what happens when we
try to unpickle too many objects from an Unpickler instance. In an interactive Python console, type the commands
below as shown:

INTERACTIVE SESSION:

>>> import pickle
>>> b = ['teeter', 'totter']
>>> a {'mytoy': Db}
>>> f = open (r'v:\workspace\PersistentStorage\src\samplel.pkl', 'wb')
>>> pickler = pickle.Pickler (f)
>>> pickler.dump (a)
>>> pickler.dump (b)
>>> f.close()
>>> ff = open(r'v:\workspace\PersistentStorage\src\samplel.pkl', 'rb')
>>> unpickler = pickle.Unpickler (ff)
>>> aa = unpickler.load()
>>> bb = unpickler.load()
>>> aa
{'mytoy': ['teeter',6 'totter']}
>>> bb
['teeter', 'totter']
>>> aa['mytoy'] is b
False
>>> extra = unpickler.load()
Traceback (most recent call last):
File "<console>", line 1, in <module>
EOFError: Ran out of input
>>>

The Pickler and Unpickler classes are alternatives to calling the dump() and load() functions directly from the
pickle module. You can instantiate a Pickler object by passing a file objectinto the Pickler constructor. From there, you
can call the instance's own dump() method to store objects into the same file over and over. The Unpickler class
has a corresponding load() method that unpickles objects from the given file sequentially. When we tried to unpickle
more objects than were presentin the file, the EOFError was raised.

The shelve Module

Using Pickler and Unpickler classes allows us to store multiple objects in a single file. Although pickling individual
objects with these classes is fairly straightforward, storing and retrieving multiple objects in one file is not completely
documented, and the interface is limited (retrieving objects has to be done sequentially, and there's no obvious way to
determine how many objects are pickled). An alternative is to use the shelve module to create a "shelf," which is a
persistent dictionary of objects.

You can store objects in a shelf using a key, and then retrieve them with the same key, justlike you would with a
dictionary. The keys must be encodable as strings—anything else will raise an exception—but the values can be
anything that can be pickled (shelve uses pickle as its underlying mechanism for serializing objects). Although ithas a
good interface for storing and retrieving objects, keep in mind that the shelf contents are stored on disk, notin memory,

as are copies of the objects.

To create a shelf object, pass a file name to the shelve.open() function. If the file doesn't exist, it will be created for
you as an empty shelf. The shelf object resulting from the call to shelve.open() can be used like a dictionary. Use

keys to store and retrieve objects. Keys thatdon't exist will raise an exception. The example below uses the Example
class from the example module that you created earlier in this lesson. Make sure you start the interactive shell in the

path where that module lives. Before your proceed, rename example1.py back to example.py. In an interactive
Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import shelve
>>> from example import Example

>>> a = [1, 2, 3]

>>> b = Example ()

>>> b.iteml = 'some text'
>>> a

[1, 2, 3]

>>> b

<example.Example object at 0x00E677D0>

>>> b.item2 ()

'instance variable iteml is some text'

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf.shlf")
>>> shelf['a'] = a

>>> shelf['b'] =D

>>> shelf.close()

Terminate the console and starta new one. In the new interactive Python console, type the commands below as
shown:

INTERACTIVE SESSION:

>>> import shelve
>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf.shlf")
>>> shelf['a']
[1, 2, 31
>>> shelf['b']
<example.Example object at 0xO00EF14B0>
>>> shelf['b'].item2 ()
'instance variable iteml is some text'
>>> shelf['z"']
Traceback (most recent call last):
File "<console>", line 1, in <module>
File "C:\python\lib\shelve.py", line 112, in _ getitem _
f = BytesIO(self.dict[key.encode (self.keyencoding)])
File "C:\python\lib\dbm\dumb.py", line 124, in _ getitem
pos, siz = self. indexl[key] # may raise KeyError
KeyError: b'z'
>>> shelf.close()

If the filename supplied to open() does notexist, the file is created. Be careful, though—if a file does exist, you could

be writing to a shelf that contains existing objects without knowing it. Also, the filename that you specify is the base
filename for the actual file or files that store the shelves' data. Multiple files with various extensions (the ones you

usually see are .dat, .dir and .bak) may be created when you use shelve, so don'tbe surprised if you find more files

than you initially expected.

Shelve objects do notautomatically close themselves; you must explicitly call the close() method. However,

forgetting to call close() does not necessarily mean that your shelve assignments don't get written. Also, indexing into
a shelve object yields a copy of the stored object, not a reference to the original object. In an interactive Python console,

type the commands below as shown:

INTERACTIVE SESSION:

>>> import shelve

>>> a = [1, 2, 3]

>>> b = ['my', 'random', 'text']

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf2.shlf')
>>> shelf['a'] = a

>>> shelf['b'] = Db

>>> shelf.close()

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf2.shlf"')
>>> shelf['a']

(1, 2, 31

>>> shelf['b']

['my', 'random', 'text']

>>> shelf['a'].append(4)

>>> shelf['a']

(1, 2, 31

>>> a = shelf['a']

>>> a

[1, 2, 3]

>>> a.append (4)

>>> a

[1, 2, 3, 4
>>> shelf['
>>> shelf['
(1, 2, 3, 4]

>>> shelf.close()
>>>

]
a'l = a
a

']

One way to update values in a shelfis to take a copy of the object, change the copy, and reassign that new object to the
key to persistit. That seems like a lot of code to write for an update!

You can change shelf values more easily by passing an extra keyword argument, writeback=True, to shelve's
open() function. writeback=True causes shelve to cache access in memory. When the shelf's sync() orclose()
methods are called, the cache is synced back to the actual file. In an interactive Python console, type the commands
below as shown:

INTERACTIVE SESSION:

>>> import shelve

>>>a = [1, 2, 3]

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf3.shlf')
>>> shelf['a'] = a

>>> shelf.close()

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf3.shlf', writeback=
True)

>>> shelf['a']

(1, 2, 31

>>> shelf['a'].append(4)

>>> shelf['a']

[1, 2, 3, 4]

>>> shelf.sync()

>>> shelf.close()

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf3.shlf"')
>>> shelf['a']

[1, 2, 3, 4]

>>>

The downside to using writeback is that memory usage is high because of the cache used. Also, because all of the
writes are performed on either sync() orclose(), those operations will take longer, depending on how many changes
need to be written. Finally, as mentioned in the introduction to this section, shelve does not maintain references when it

persists objects. In an interactive Python console, type the commands below as shown:

INTERACTIVE SESSION:

>>> import shelve

>>> b = ['my', 'random']
>>> a = {'myref':b}

>>> a

{'myref': ['my', 'random']}
>>> b.append ('text')

>>> b

['my', 'random', 'text']

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelf4.shlf")
>>> shelf['a'] = a

>>> shelf['b'] =D

>>> shelf.close()

>>> shelf = shelve.open (r'v:\workspace\PersistentStorage\src\myshelfd4.shlf', writeback=
True)

>>> shelf['a']

{'myref': ['my', 'random', 'text']}

>>> shelf['b']

['my', 'random', 'text']

>>> shelf['b'].append('rules')

>>> shelf['b']

['my', 'random', 'text', 'rules']

>>> shelf['a']

{'myref': ['my', 'random',6 'text']}

>>>

This makes the shelf a little more like a standard dictionary. That's why many programmers prefer to use shelfin this
mode. If your programs terminate in an uncontrolled way, there's a chance that your changes will be lost before they
are saved on disk.

Library Project

Now thatyou've seen some of shelve's capabilities, you can use itto store persistent data in your applications. We'll
build a Library class thatlets us keep track of books in a persistent data store. We'll also implement methods that let
us retrieve a book from our Library class, using its ISBN, title, or author. Let's start with some tests to help us look up
the books. There is one test method for each of those three ways of retrieving a book.

For the tests to have meaning, there mustbe a library to hold the test data. Such a library is established in the setUp()
method, before each testis performed, and then deleted—perhaps a little too enthusiastically—in the tearDown()
method. Eventually, the library would likely become an external store, but for our test purposes, the "fixture" that the
code provides is fine. Create test_library.py below as shown:

CODE TO TYPE:

import unittest
import library
import os
import glob

class TestLibrary(unittest.TestCase) :
def setUp(self):
self.lib fn = r'v:\workspace\PersistentStorage\src\lib.shelve'
self.lib = library.Library(self.lib fn)
self.fixture authorl = library.Author ('Octavia', 'Estelle', 'Butler')
self.fixture bookl = library.Book('0807083100', 'Kindred',
[self.fixture authorl])
self.fixture author2 = library.Author ('Robert', 'Anson', 'Heinlein')
self.fixture book2 = library.Book('0441790348",
'Stranger in a Strange Land', [self.fixture author2])
self.lib.add(self.fixture bookl)
self.lib.add(self.fixture book2)

def testGetByIsbn(self):
observed = self.lib.get by isbn(self.fixture bookl.isbn)
self.assertEqual (observed, self.fixture bookl)

def testGetByTitle (self):
observed = self.lib.get by title(self.fixture book2.title)
self.assertEqual (observed, self.fixture book2)

def testGetByAuthor (self):
observed = self.lib.get by author (self.fixture bookl.authors[0])
self.assertEqual (observed, self.fixture bookl)

def tearDown (self):
self.lib.close()
shelve files = glob.glob(self.lib fn + '*'")
for fn in shelve files:
os.remove (fn)
if name == " main ":
unittest.main ()

In addition to the Library class, there are two other classes in the tests—Book and Author. The Book and Author
classes are already implemented. These classes contain some special methods (methods that are surrounded by
underscores) that will facilitate the development of your Library class. Implementing the special __eq__() method
allows objects to be compared using the == operator. The __dict__() attribute contains all of the attributes of an
object. The combination ofthe __eq__ method and __dict__ can be used to compare two instances of the same class.
Implementing __eq__() allows you to use the == operator to determine whether two instances of an Author or Book

object are the same. As you might have guessed, the != operator is handled by the __ne__() method.

a == b can be considered equivalentto a.__eq__(b):

a

a. eq (b)

With Book and Author already written, your job is to implement the library class. Here's a version with stubbed

methods. In library.py, type the code below as shown:

CODE TO TYPE:

import shelve

class Library:
def init (self, fn):
pass

def add(self, book):
pass

def get by isbn(self, isbn):
pass

def get by title(self, title):
pass

def get by author (self, author):
pass

def close(self):
pass

class Book:
def init (self, isbn, title, authors):
self.isbn, self.title, self.authors = isbn, title, authors

def eq (self, other):
if type(other) is type(self):
return self. dict == other. dict
return False

def ne (self, other):
return not self. eq (other)

class Author:
def init (self, first name, middle name, last name):
self.first name, self.middle name, self.last name = first name, middle name, la
st name

def eq (self, other):
if type(other) is type(self):
return self. dict == other. dict
return False

def ne (self, other):
return not self. eq (other)

Run your tests; all three should fail:

OBSERVE: Output from test_library.py

FEFF

FAIL: testGetByAuthor (main .TestLibrary)
Traceback (most recent call last):
File "V:\workspace\PersistentStorage\src\test library.py", line 29, in testGetByAutho
r
self.assertEqual (observed, self.fixture bookl)
AssertionError: None != <library.Book object at 0x00B833F0>

FAIL: testGetByIsbn (_ main .TestLibrary)
Traceback (most recent call last):
File "V:\workspace\PersistentStorage\src\test library.py", line 21, in testGetByIsbn
self.assertEqual (observed, self.fixture bookl)
AssertionError: None != <library.Book object at 0x00B83CF0>

FAIL: testGetByTitle (_ main .TestLibrary)

Traceback (most recent call last):
File "V:\workspace\PersistentStorage\src\test library.py", line 25, in testGetByTitle
self.assertEqual (observed, self.fixture book2)
AssertionError: None != <library.Book object at 0x00BC1550>

Ran 3 tests in 0.031s

FAILED (failures=3)

Use the shelve module to implement the missing features. It's notas much code as you might think. Modify your
Library class as shown:

CODE TO TYPE:

class Library:
def init (self, fn):
pass
self.fn = fn
self.shelf = shelve.open (fn)

def add(self, book):

Pass
self.shelf[book.isbn] = book

def get by isbn(self, isbn):

pass
return self.shelf[isbn]

def get by title(self, title):
pass
for book in self.shelf.values():
if book.title == title:
return book
return None

def get by author(self, author):
pass
for book in self.shelf.values():
for a in book.authors:
if a == author:
return book
return None

def close(self):

pass
self.shelf.close()

class Book:
def init (self, isbn, title, authors):
self.isbn, self.title, self.authors = isbn, title, authors

def eq (self, other):
if type(other) is type (self):
return self. dict == other. dict
return False

def ne (self, other):
return not self. eqg (other)

class Author:
def init (self, first name, middle name, last name):
self.first name, self.middle name, self.last name = first name, middle name, la
st name

def eq (self, other):
if type(other) is type (self):
return self. dict == other. dict
return False

def ne (self, other):
return not self. eqg (other)

All your tests pass. Those passing tests indicate that Book implementation is working. Check it out:

OBSERVE:

Ran 3 tests in 2.204s

OK

The tests take a significantamount oftime to run, whereas before, when all our tests failed, ittook almost no time at all.
Taking notice of these things during early testing can help you avoid an unpromising line of development (though
sometimes you want to proceed anyway, to prove a line of reasoning correct).

The JSON Serialization Format and the json Module

pickle and shelve are greatfor saving objects into persistent storage for other Python programs (that can read and
write the same pickle protocol), but there are times when we need to save or transmit objects to programs written in a
different language. If we want a human readable, cross-platform and cross-language serialization format, we can use
JSON. JSON is actually a subset of JavaScript's object literal syntax. Although itwas derived from JavaScript, json
parsers existfor many languages. In fact, Python 3 comes with a built-in JSON parser.

The full details of the JSON syntax are beyond the scope of this course, butif you take a look atan example, you'll see
thatitis similar to nested Python lists and dicts. If you wantto know more about JSON, visitthe JSON website.

OBSERVE: JSON example

"fOO" . llbar" 7
"baz": [

1,

2,

If you wanted to serialize a file objector an instance of your custom class, you would have to define a serialization
method or function of your own. Even so, JSON is incredibly useful for exchanging data between programs. You can
play around with JSON using Python's json module. In an interactive Python console, type the commands below as
shown:

INTERACTIVE SESSION:

>>> import Jjson

>>> a = [1, 2, 3]

>>> b = ['my', 'text']

>>> ¢ = {'a':a, 'b':b, 'none':None, 'true':True}

>>> json.dumps (c)

{"a": [1, 2, 3], "none": null, "b": ["my", "text"], "true": true}'
>>> d = json.loads (json.dumps (c))

>>> d['a']

[1, 2, 3]

>>> d['b']

['my', 'text']
>>> d['none']
>>> d['true']
True
>>>

Just like pickle, the json module has dump() and load() functions. But you'll notice thatin the example, you used
dumps() and loads()—both with an "s" atthe end. These methods serialize and unserialize an objectto and from the
json text format, but rather than persisting an object by writing to a file, or reading from persistent object stores (files),
these functions produce and consume strings. Typically, json is used when transmitting or exchanging data over the
web. The producers and consumers do notshare the same file store; instead they send messages over the network.
Consequently, it's more common to serialize objects for transmission, rather than persist them in a file when using the

http://www.json.org/

json module.

Both dumps() and loads() functions can be found in the pickle module. They can be used for
Note serialization there, without persistence for content. (The pickle is usually a convenient format when two '
Python programs communicate). '

JSON defines a few primitive data types—strings, numbers, and booleans, as well as objects and arrays. Curly
brackets signify an object. Like Python dicts, JSON objects contain a comma-separated list of colon-separated
key/value pairs. The values of objects can be any of the types supported by JSON. Arrays, like Python lists, are
delimited by square brackets and elements are comma-separated. Like objects, the elements can be of any type
supported by JSON. Well-formatted json is not difficult to read. But you may already notice a major drawback with this
format—it cannot map every Python type. The supported Python-to-JSON data type mappings are:

Python | JSON

dict object

list, tuple | array

str string

int, float |number

True true

False false

None null

A Brief Rundown

Serialization means taking a Python object and turning itinto a string of bits—either a text or binary format.
Deserialization is recreating an object from a text or binary representation of an object. Serialization and
deserialization are necessary steps for persistent storage and retrieval of Python objects. Python has a few built-in
modules that help deal with serialization and persistence. The pickle module lets you serialize, deserialize, and
persist Python objects in a binary format that—for the most part—only Python programs can understand. The shelve
module uses the pickle format to store several Python objects using a dictionary-like interface. The json module lets
you serialize many of Python's native data types into JSON—a text format that's a subset of JavaScript's object literal
syntax. Each serialization and persistence module has its own place. If you're writing a Python application that needs
to save a complex data structure's state efficiently (like a game or a text editor), pickle or shelve may be your solution. If
you're looking to offer a feed of data to the web, where your clients can be written in any number of various languages,
you would use the json module.

Nice job on this lesson! Keep it up. (And you can thank me later for avoiding any of a number of bad pickle joke
opportunities.) See you in the nextlesson...

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Archives

Lesson Objectives

When you complete this lesson, you will be able to:

e read and write archive files.
e use the tarfile module.

e use the zipfile module.

e read zip files.

e read tarfiles.

Reading and Writing Archives Using tarfile and zipfile

Python has two modules for handling archive files. An archive file is a file that contains an entire directory tree, as well
as information about the directory tree itself. An archive file is not a directory; itis a single file which may encapsulate
an entire directory tree though, which makes it useful for shipping filestore contentfrom one place to another.

Python supports two archive file formats: zip and tar. Zip files can store compressed versions offiles in a directory
tree. Tar files are an archival format; they can be compressed using gzip or bzip2. Python can read both regular and
compressed tar files (.tar.gz, .tgz, .tar.bz2, or .tbz).

The zipfile and tarfile modules are used for reading and writing zip and tar files, respectively. Let's take a quick look
atthese modules; fire up an interactive console. You'll use some of what you learned earlier to prepare a directory to
archive. Let's start with tarfile. Create the Archives project, assign itto the Python2_Lessons working set, startan
interactive console session, and enter the commands as shown:

INTERACTIVE SESSION:

>>> import os
>>> import tarfile
>>> import glob
>>> import shutil
>>> filenames = ["larry",
>>> path =
>>> os.mkdir (path)
>>> for fn in filenames:
f = open(os.path.join (path,
f.close()

"Curly", "moe"]

fn),

>>> glob.glob (os.path.join (path, "*"))

ive me\\curly',
>>> archive fn =
>>> tf = tarfile.open(archive fn,
>>> tf.add(path)

>>> tf.close()

>>> tf = tarfile.open(archive fn)
>>> tf.list ()

"W")

>>> tf =
>>> tf.add (path)
>>> tf.close()

y archive.tar

>>> tf.close()

>>> os.path.getsize (archive fn)

10240

>>> os.path.getsize (archive fn compressed)
209

>>>

r"v:\workspace\Archives\src\archive me

['v:\\workspace\\Archives\\src\\archive me\\larry',
'vi\\workspace\\Archives\\src\\archive me\\moe']
r"v:\workspace\Archives\src\archive me\my archive.tar"

tarfile.open(archive fn compressed,

llw")

'v:\\workspace\\Archives\\src\\arch

19:03:27
19:03:27

workspace/Archives/src/archive me/
workspace/Archives/src/archive me/1
19:03:27 workspace/Archives/src/archive me/c

19:03:27 workspace/Archives/src/archive me/m

-rWXrwxrwx root/root 0 2010-05-28
-rw-rw-rw— root/root 0 2010-05-28
arry

-rw-rw-rw- root/root 0 2010-05-28
urly

-Irw-rw-rw—- root/root 0 2010-05-28

oe

>>> tf.close()

>>> archive fn compressed = archive fn + ".gz"

"W:gz")

19:03:27
19:03:27

workspace/Archives/src/archive me/
workspace/Archives/src/archive me/1
19:03:27 workspace/Archives/src/archive me/c

19:03:27 workspace/Archives/src/archive me/m

>>> tf = tarfile.open(archive fn compressed)
>>> tf.list ()

—I'WXIWXrwxX root/root 0 2010-05-28
-rw-rw-rw—- root/root 0 2010-05-28
arry

-rw-rw-rw- root/root 0 2010-05-28
urly

-rw-rw-rw- root/root 0 2010-05-28
oe

-rw-rw-rw- root/root 10240 2011-05-17

13:50:12 workspace/Archives/src/archive me/m

In these examples, we use "*" to add all files in a folder to an archive. If the archive is in the same

archive itself will be added to the archive, and you can therefore find youselfin an infinite loop

creating an infinitely large archive! While itworks in our limited examples, you should avoid this
practice when you do real work with archives.

-
folder, this can cause a serious problem when you do it again, and repeatedly, because the

Before cleanup, look for these files in the Package Explorer. You may need to refresh the folder view in Package

Explorer (right-click the folder name and select Refresh).

Then, enter this command in the interactive Python console, as shown:

INTERACTIVE SESSION:

>>>shutil.rmtree (path)
>>>

Just like the built-in open() function, tarfile's open() function accepts a file name and a mode. But tarfile's modes are
a bitmore complicated. In addition to r, w, and a for mode (read, write, and append), you mustalso consider access
type and compression:

Access Type |[Symbol Description

Block Mode :(colon) | Opens an actual file on disk

Stream Mode || (pipe) |Opens a stream, socket, or pipe

Compression|Symbol

GZip gz
BZip2 bz2

Block mode and no compression are the defaults. In our example, you used both w and w:gz to write out your tar
files. The second version specifies that your tar file is compressed. At the end of your listing, where you compared the
file sizes of the compressed and uncompressed archive file, the compressed version is significantly smaller.

Once you've opened your tar file for writing, you can use its add() method to add files to the archive. add() can take
both filenames and directories, and by default, it adds directories recursively—if you have subdirectories in the path that
you pass into add(), those subdirectories are also added to the archive. You can read tar files by using open() in read
(r) mode. This is the default mode, so in the interactive shell session, we omitted the mode argument. Once you've
opened a tar file, you can listits contents with the file's list () method. You can also extractits contents using its
extract() orextractall() method.

Also, we used a function called rmtree() from the shutil module, to remove the directory.
Now we'll take a look atthe zipfile module. Again, we'll use the file's name and the mode in which we open itto create

an interface with zip files. But, instead of a function, the zipfile module offers a ZipFile class constructor. In an
interactive shell session for zipfile, type the commands below as shown:

INTERACTIVE SESSION:

>>> import os, tarfile, glob, shutil, zipfile
>>> filenames = ["groucho", "harpo", "chico"]
>>> path = r"v:\workspace\Archives\src\archive me"
>>> os.mkdir (path)
>>> for fn in filenames:
f = open(os.path.join(path, fn), "w")
f.close()

>>> glob.glob(os.path.join (path, "*"))
['v:\\workspace\\Archives\\src\\archive me\\groucho', 'v:\\workspace\\Archives\\src\\ar
chive me\\harpo', 'v:\\workspace\\Archives\\src\\archive me\\chico']
>>> archive fn = r"v:\workspace\Archives\src\archive me\my archive.zip"
>>> zf = zipfile.ZipFile(archive fn, "w")
>>> filenames = glob.glob(os.path.join (path, "*"))
>>> for fn in filenames:
zf.write (fn)

>>> zf.close ()

>>> zf = zipfile.ZipFile (archive fn)

>>> zf.namelist ()

['workspace/Archives/src/archive me/groucho', 'workspace/Archives/src/archive me/harpo’
, 'workspace/Archives/src/archive me/chico', 'workspace/Archives/src/archive me/my arch
ive.zip']

>>> #clean up. (Again, you can check the Package Explorer first to see that the files w
ere created.)

>>> zf.close()
>>> shutil.rmtree (path)

<
o
-
®
—
=
(]
(=1
3
o
<)
=
—
>
(0]
(7]
jV)
=
o
o
=
Q
o
=)
<
(]
=
(]
3
o
@°
=
(]
)
Q
o
(]
[oX
L
o
=
o
c
=
3
©
o
@
5
o
3
®
5
@

One major difference between tarfile and zipfile is the method used to open the files—with zipfile, we use the class
constructor instead of an open() method on an instance. As mentioned above, zip archives may contain compressed
files. By default, files are stored uncompressed. To compress files, we'd pass a third argument to the class constructor
—zipfile.ZIP_DEFLATED.

Unlike tarfile's add() method, ZipFile's write() method does notadd files to the archive recursively. That's why we had
to use glob() to get all of the files before writing them to our archive. (We'd have had to use os.path.walk or some
similar functionality if there had been subdirectories to process).

You can read in a zip file by passing only the filename to the ZipFile constructor. The namelist () method lists all of the
files in the archive and, just as in tarfile, the extract () method will uncompress and extract the files from the archive.
Here's a quick comparison of zipfile and tarfile:

Function tarfile zipfile
Open for Writing tarfile.open(fn, "w") zipfile.ZipFile(fn, "w")
Open for Writing Compressed |tarfile.open(fn, "w:gz") | zipfile.ZipFile(fn, "w", zipfile.ZIP_DEFLATED)
Open for Reading tarfile.open(fn) zipfile.ZipFile(fn)
Add a File to the Archive tarfile.add(path) zipfile.ZipFile.write(path)
List Files in an Archive tarfile.list() zipfile.ZipFile.namelist()
tarfile.extract() zipfile.ZipFile.extract()
Extract Files or or
tarfile.extractall() zipfile.ZipFile.extractall()

Creating a Recent File Archiver

You can build on latest.py to create a function that archives the last modified files in a path. Rather than try to extend

the existing test_latest module, we'll create another module to test the added functionality. For this test, create a new
file named test_ziplatest.py in your Archives project. The two test modules do have some common features, but
for now, we'll write a separate test suite. Enter the code for test_ziplatest.py below as shown:

CODE TO TYPE:

import unittest
import latest
import time
import os
import shutil
import zipfile

class TestZip(unittest.TestCase):

def setUp(self):
self.path = r"v:\workspace\Archives\src\zip test"
self.zip filename = os.path.join(self.path, "test zip latest.zip")
os.mkdir (self.path)
self.file names = ["old", "newer", "newest"]
for fn in self.file names:
f = open(os.path.join(self.path, fn), "w")
f.close()
time.sleep (1)

def test zip latest (self):
latest.zip latest(self.zip filename, 2, self.path)

zf = zipfile.ZipFile(self.zip filename, "w")
files in archive = zf.namelist ()
zf.close()

observed = set ([os.path.basename(f) for f in files in archive])
expected = set(self.file names[1:3])
self.assertEqual (observed, expected)

def tearDown (self):
os.remove (self.zip filename)
try:
shutil.rmtree (self.path, ignore errors=True)
except IOError:
pass
if name == " main ":
unittest.main ()

Now, let's make a copy of latest.py and stub out a function. To copy the file, go to your FileHandling/src project
folder, right-click on latest.py, and select Co py. Then, right-click the Archives/src folder and select Paste. We'll call
the new function zip_latest(). Modify the file as shown:

CODE TO TYPE:

import glob
import os

def latest (num=1, path="."):
files = glob.glob(os.path.join(path, "*"))
dated files = [(os.path.getmtime (fn), os.path.abspath(fn)) for fn in files]
dated files.sort()
latest files = [f for (d, f) in dated files[-num:]]
latest files.reverse()
return latest files

def zip latest (fn, num, path):
pass

A quick run will reveal a single failing test:

OBSERVE: Output from test_ziplatest.py

E

Traceback (most recent call last):
File "V:\workspace\Archives\src\test ziplatest.py", line 27, in test zip latest
self.assertEqual (observed, expected)
AssertionError: Items in the second set but not the first:
'newest'
'newer’

Ran 1 test in 3.032s

FAILED (failures=1)

Now that the test program has created the zip file, we can change it from write mode to read mode. Edit
test_ziplatest.py as shown:

CODE TO TYPE:

import unittest
import latest
import time
import os
import shutil
import zipfile

class TestZip(unittest.TestCase):

def setUp(self):
self.path = r"v:\workspace\Archives\src\zip test"
self.zip filename = os.path.join(self.path, "test zip latest.zip")
os.mkdir (self.path)
self.file names = ["old", "newer", "newest"]
for fn in self.file names:
f = open(os.path.join(self.path, fn), "w")
f.close()
time.sleep (1)

def test zip latest (self):
latest.zip latest(self.zip filename, 2, self.path)

zf = zipfile.ZipFile(self.zip filename, "r")
files in archive = zf.namelist ()
zf.close()

observed = set ([os.path.basename (f) for f in files in archive])
expected = set(self.file names[1:3])
self.assertEqual (observed, expected)

def tearDown (self):
os.remove (self.zip filename)
try:
shutil.rmtree (self.path, ignore errors=True)
except IOError:
pass

if name == " main ":
unittest.main ()

Most of the functionality you need is already within your module. Combine what you've learned about archive files with
your latest(), and add a few lines to latest.py, as shown:

CODE TO TYPE:

import glob
import os
import zipfile

def latest (num=1, path="."):
files = glob.glob(os.path.join (path, "*"))
dated files = [(os.path.getmtime (fn), os.path.abspath(fn)) for fn in files]
dated files.sort()
latest files = [f for (d, f) in dated files[-num:]]
latest files.reverse()
return latest files

def zip latest (fn, num, path):
—pess
files to archive = latest (num, path)
zf = zipfile.ZipFile(fn, "w", zipfile.ZIP_ DEFLATED)
for fn to archive in files to_ archive:
zf.write(fn to archive)
zf.close ()

If the tests pass, your changes to the latest module have worked. Congratulations!

Save It in the Archives

Now you've gota good foundation for two archive file formats: zip and tar. We used Python's zipfile and tarfile
modules to read and write each format. Finally, we integrated this knowledge to write a quick function that archived the

latest n files in a path.
Greatwork so far! Keep it up!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Graphical User Interfaces

Lesson Objectives

When you complete this lesson, you will be able to:

e explaina GUI

e write your first program using a GUI.

e defeine the general behaviors of your GUI.

e define the specific behaviors of your windows the createWidgets() method.
e configure your widgets with keyword arguments to the widget creation call.

e read widgetvalues.

In this lesson, we'll learn the basics of programming graphical user interfaces (GUIs). GUI-based programs are somewhat
different from those you have written so far. Your earlier programs have driven the process of user interaction. When the
programs wanted data, they prompted the user and waited for the user to complete their entry by pressing Enter.

Consider a program with an interface that has buttons, checkboxes, text entry items, and so on. The user can interact with these
elements however they like. Buthow do we write programs that are ready to respond to whatever the user presents?

The Window Manager

Take a look atthe diagram below. The user sees some sort of desktop wallpaper (in this case, an image of the moon)
covered with icons, application windows, and (since the desktop is that of a Windows XP machine) the taskbar that
holds icons representing each running application, a whole load of quick-launch icons, and a Starticon that can be
used to bring up a menu allowing access to most of the facilities of the computer.

S— The computer desktop is
' 'l"” a 2-1/2-dimensional space

z-ordering determines
what obscures what
(and hence which program
“sees” particular events)

F?‘ The User

- hitp:ifwww.onemindonev oice .org
Icons dESKtop u! ? hopelhope update htm
Window manager

[oui] [eur] [eur] [Gur]

- |:W ® 2006 Holden Web What Do You Need to Know Today?

n

The desktop is called a "two-and-a-half dimensional surface" because, although it does not actually have a third

dimension (depth), one window can cover another, just as though it were a piece of paper covering another piece, on a
real, physical desktop. (Sadly, my own physical and virtual desktops are rarely tidy!) When you click on something, the
window manager must know which window is on top where you have clicked, so it can channel the eventto that
window.

In a GUl environment, you write programs that present a description of the desired window structures to the window
manager, which is the system component that handles (among other things) tracking mouse movements and
distributing keystrokes and mouse clicks to the right programs. Which programs receive these events depends on a
number of factors, including the current cursor position and which window has the focus.

Each window is composed of widgets, some of which contain other widgets, and so on. One widget can be positioned
on top of another. The window manager has to make the determination about which widgetis uppermost at the
particular position of the cursor when the click occurs. (We'll go over widgets a bitmore later in the lesson.)

How Programs Interact with the Window Manager

You are reading this textin the Ellipse teaching environment. There's a title bar across the top of the screen.
Under the title bar is the Eclipse window's content area, headed by a menu bar, under which is the foolbar. The
toolbar contains a load of buttons, which you can click to make specific things happen.

& 05T Python - Eclipse Platform

Fle Edk Navigste Search Project Refactor Run Window Help

- w | B M= 1k o (-0 - |8 L T O . 3| @8 05T Pyticn »
@ Statpage | @ Sylabus D3 \ . =g
" _ Title bar)—:I

AAkc

In this lesson, we'll learn the basics of programming graphical user interfaces (GUIs). SU-based programs are somewhat diffe]
have driven the process of user interaction. When the programs wanted data they prompte: user, and waited for the user to co

Menu bar js

zan interact with these elements however they like. But how do we write programs that

Consider a program with an interface that has buttons, checkboxes, text entry items, and so on. The us
are ready to respond to whatever the user presents?

The Window Manager

this case, an image of the moon) covered w Tool bar
g application, a whole load of quick-launch icons, and a Starl icon that can be used {o bring up a

Take a look at the diagram below. The user sees some sort of desktop wallpap2
that of a Windows XP machine) the iaskbar that holds icons representing each run
menu allowing access to maost of the faciliies of the computer

(ALY

% Package Explorer 2 (%1 Problems | v] Tasks | £l Console | .4 Terminal 1
Show Working Sets

#) I smiller,129.4442.1 Lessan14_Homework.
=-1ch smiller, 1284457, 1 Lesson16_Homework
415 string

71125 string-conversion

General content)

var-pass

o145 vartypes

1% varizble_homewerk
Python2_Handback
Python_Community
Python2_Homework,
PrthonZ_Lessons

1> Intro€clipse

41, PersistentStorage

=1l TestDrivenDevelopirent
31 src

| —

URL: php?CoL o

Eclipse needs to know that when you move the cursor over a particular button and click, it has to run the piece
of code that corresponds to the function associated with the button. The structure of the window is created by
Ellipse when it starts-up and is passed to the window manager, which then triggers specific responses to
specific events, calling specific routines. The same is true of any GUI-based program.

All this information is created in a form that the window manager can understand by making calls to a window
library. The main libraries in Python are PyQT, wxPython, and tkinter. We'll use tkinter to explain the principles
of working with GUIs. The descriptions of the window structures include references to the specific pieces of
code (event handlers) that must be run in response to specific events.

The structures can be modified while the program runs. For example, you can arrange for a dialog box to
appear when a particular button is clicked. While a program's main window is usually created at the start of the
program and continues to existfor the duration of the program, itis notatall uncommon for programs to
create and delete other windows as they are required.

Your First Program with a GUI

This example is taken straight from the documentation for the tkinter module. The program creates a window that
looks like this:

tk =]
ik | Hella

When you click the button on the right, the program prints some text on its standard output. When you click the button
on the left, the program terminates. Create a IntroGUI project and assign itto your Python2_Lessons working set.
Then, in the IntroGUl/src folder, create a tkdemo.py file as shown:

CODE TO TYPE:

from tkinter import *

class Application (Frame) :
def say hi(self):
print ("Hi there, everyone!")

def createWidgets(self):
self.QUIT = Button (self)

self.QUIT["text"] = "Quit"
self.QUIT["fg"] = "red"
self.QUIT["command"] = self.quit
self.QUIT.pack({"side": "left"})

self.hi there = Button(self)

self.hi there["text"] = "Hello",
self.hi there["command"] = self.say hi
self.hi there.pack({"side": "left"})

def init (self, master=None):
Frame. init (self, master)
self.pack()

self.createWidgets ()

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. Click the Hello button and then the Quit button, to see what they do.

Let's look atthe code more closely:

OBSERVE:

from tkinter import *

class Application (Frame) :
def say hi (self):
print ("Hi there, everyone!")

def createWidgets (self):
self .QUIT = Button (self)

self .QUIT["text"] = "Quit"
self.QUIT|["£g"] = "red"
self.QUIT["command"] = self.quit

self.QUIT.pack({"side": "left"})

self.hi there = Button (self)

self.hi there["text"] = "Hello",
self.hi there["command"] = self.say hi
self.hi there.pack({"side": "left"})

def _ init (self, master=None):
Frame. init (self, master)
self.pack ()
self.createWidgets ()

root = Tk()
app = Application (master=root)
app.mainloop ()

The majority of the code in the program defines a class named Application, which subclasses the tkinter.Frame
class. The tkinter.Frame class defines all of the general behaviors required of a program's GUI, but these general
behaviors do notencompass the specifics of the contents of this window. For those specifics, we have the
createWidgets() method.

Let's begin by looking atthe tkinter.Frame class's __init__() method. First, it performs all of the standard
tkinter.Frame initialization actions by calling its superclass's (tkinter.Frame's __init__()) method. Next, it calls
the newly created frame's pack() method, which prepares it to be part of the window display. Then, it calls the
createWidgets() method, which as its name suggests, creates the widgets (or components) that go inside ofit.

createWidgets() initializes only two widgets: the firstis the Quit button, which reads "Quit" with the foreground
("fg")textin "red"™ and calls the Frame's self.quit() method (inherited from tkinter.Frame) when clicked; the second is
the hi_there button, which reads "Hello" and calls the Frame's say_hi() method when clicked.

Hey, wait a minute. In the Python 1 course, didn't we say that we should neveruse the from module
import * form of the import statement? In fact we did. But certain modules have been designed
specifically to be used in this way. If tkinter were used in the standard form, then our code would be
Note more difficultto read. When writing a typical program, we use many names from tkinter. Our code
readability is enhanced by limiting the use of qualified names such as tkinter.Tk. The tkinter module
has been designed with thatin mind, and although there is always some danger that you might
unknowingly overwrite one of the 150+ names it defines, in practice this doesn't happen much.

Now, suppose the customer changed the specification for this project. They want to change the colors and text a bit to

make the application to look like this:
Hella | roodbye

The changes include:

e Change the "QUIT" button label to "Goodbye."
e Make the "Hello" label blue.
e Move the "Goodbye" button to the right of the "Hello" button.

Try to make the changes withoutlooking at the answers below.

Try to figure itouton your own first!

I mean it!

Don't peek!

Your changes look something like those in the box below (additions and changes in this color and deletions in this-

style):

CODE TO TYPE:

from tkinter import *

class Application (Frame) :
def say hi(self):
print ("Hi there, everyone!")

def createWidgets(self):
self.hi there = Button(self)

self.hi_there["text"] = "Hello",
self.hi_there["fg"] = "blue"
self.hi there["command"] = self.say hi

self.hi there.pack({"side": "left"})

self.QUIT = Button(self)

self.QUIT["text"] = "Goodbye"
self.QUIT["fg"] = "red"
self.QUIT["command"] = self.quit

self.QUIT.pack({"side": "left"})

Y = =l n A 1 £\
=} o -llJ_iL,llCJ_ T DOTCTTUIT (S [-
1 1 - =l LI 4= 11 7] — NIt 1.1 1
setfhi—theret o=ty Hedde's
1 £ lo o =l L1 <11] 1 £
=} i - .ii;_L,llCL N C UMD | - | e ay_li;
1 .c N il 1 LL <l 11 1] Fay i | IREAY
STT T IIT_CICTICT Pt T TCSTC [/
def init (self, master=None):
Frame. init (self, master)
self.pack()

self.createWidgets ()

root = Tk()
app = Application (master=root)
app.mainloop ()

Creating Widgets in a Window

The createWidgets() method creates precisely two widgets, which it stores as the instance aftributes QUIT
and hi_there. Button is a function defined by the tkinter module. When called, it requires the parent widget
to be provided as the first argument. Since the newly created frame instance (the one whose __init__()
method is being called) is the parent, self is provided as the first argument. This makes the Application
instance the parent of the button.

Once the QUIT widget has been created, the method then sets a number of configuration items. Each of
these items has a name and a value:

Item

Meaning
name

text The label to be shown inside the button

The foreground color used to write inside the button (thatis, the color in which the text label will

fg be written)

command | The function to call when the button is clicked

The text and fg configuration items are pretty straightforward. The command item takes a litle more effort.
This particular code is written to allow the creation of multiple windows, each being an instance of the
Application class. Because the command item is an instance method, when the QUIT button is clicked on
an instance of the Application class, thatinstance's quit() method is called. This method is inherited from the
tkinter.Frame class, and causes the application to terminate.

Once the widget s fully configured, its pack() method is called to place it atthe left-hand side of the
(containing) application window (other options are "right", "top,” and "bottom). That concludes the
configuration of the QUIT button. Next, a second widget (the hi_there button) is created and configured to
call the hi_there method when it's clicked. This button is then packed to the left of the remaining space in the
containing window.

The only other method in the class is say_hi(), which is the event handler for clicks on the hi_there button. It
prints a message on the console whenever it's called by the user.

Top-Level Application Code

Once the Application class is defined, the program needs to create an instance of the application class and
pass control to the window manager. The code for thatimmediately follows the class definition.

The firstline, root = Tk(), creates the application's main window. If the application created any other
windows, they would be children (or grandchildren) ofroot. The nextline, app =
Application(master=root), creates an instance of the application class (as a subclass oftkinter.Frame)
and attaches it to the root window.

The call to the application's mainloop() method (which is inherited from tkinter.Frame) hands control over
to the window manager. This method only returns when the application is terminating—the window manager
makes direct calls to the event handlers when specific events that have been programmed into the window
description occur. Once the application terminates, the program calls its root window's destroy() method to
release any window manager resources before the program ends.

The Program Window

So, when you run the program, you see a window like this:

Hello | Goodbye

The layout of the components was created by calls to the various components' pack() methods. Every time
you click the "Hello" button, the program will print"Hi there, everyone!" in the console window. When you
click the "Goodbye" button (or terminate the program by clicking the "X" button at the top right of the window)
the program terminates.

So, there you have it. You have written and run your first GUI program using Python's tkinter package! Good
foryou!

; By the way, you may be wondering what tkinfer means: tk stands for tool kit, and infer stands for
Note interface.

Introducing the Tkinter Widget Set

The word "widget" is often used as an abstract name for an object, most often for something manufactured. Modern
GUIltoolkits, tkinter included, are comprised of components that are referred to as "widgets." All Tkinter widgets
have a lotin common, even though they may notlook alike.

There aren'ta lot of widgets in the Tkinter toolkit, but using them wisely will allow you to create a variety of useful
graphical interfaces. Below are some important ones that you should know about now:

Widget

Type Purpose

Frame A container for other widgets. You can set the border and background color, and place other widgets
inside ofit.
A special kind of Frame that interacts directly with the windows manager. Toplevels will usually have
a title bar, and features to interact with the window manager. The windows you see on your screen
Toplevel . S o . N
are mostly top-level windows, and your application can create additional Toplevel windows ifitis set
to do that.
Users click on buttons to trigger some action. As you already know from the sample program you
Button justentered and ran, clicks on the button can be translated into actions taken by your program (this is
actually true of many widgets). Buttons usually have text inside of them, but they can also show
graphics.
Checkbutton ﬁtrs]ztremal type of button that has two states; clicking change the state of the button from one to the
Label Labels are used to display pieces of text orimages, usually ones that won't change during the
execution of the application.
Entry Used to enter single lines of text and all kinds of input.
Listbox Used to display a setofchoices. The user can select a single item or multiple items from the list. The
Listbox can also be rendered as a setofradio buttons or checkboxes.
Scale Lets the user set numerical values by dragging a slider.
A multi-line formatted text widget, it allows the textual contentto be "rich." It may also contain
Text .
embedded images and Frames.
Message Similar to a Text, but can automatically wrap text to a particular width, or width and height.
This is the base widget that you use to puta menu in your window (not all programs need one). It
Menu corresponds to the menu bar along the top of your program window, and can also be used to
implement "popup” or "context" menus.
Menubutton | Adds choices to your Menus.
. Represents one of a set of mutually exclusive choices. Selecting one Radiobutton from a set,
Radiobutton
deselects any others.
Scrollbar Implements scrolling on a larger widget such as a Canvas, Listbox, or Text.
Canvas A surface on which you can draw graphs and/or plots, and also use as the basis of your own
widgets.

Each of the above widgets has its own place in user interfaces. Your first program used a Toplevel (created
automatically to contain the application) and a Frame that contained two Buttons. In case you are curious about the
appearance, here is a picture of a "kitchen sink" interface showing various widgets. By the look of the window, you can
probably tell that the elements have been thrown together (in this case, it's the result of a requesti received to "show
the students what all of these things are"). Try and avoid this look at all cost.

"?.é tk

Radiobuttons

Output label

[T Checkbutton 1

" Lowercase { Title case

[T Checkbutton 2

Cne
Twa
Three

—-r_ Checkbuttons .

This is a Text, one of
the more complicated tkinter
widgets Rich text can be edited
through these widgets if necessary

Quit | Operate

And. of course, here's

our old friend the
Button

Configuring Widgets

So, the program you wrote above runs perfectly well, but the code is a bitto wordy. Each attribute of each widget is

configured in a separate statement. If individual aspects of the widgets need to be configured at run-time, this mighta
convenient way to do it, but when you are creating a widget and many aspects need to be configured, there are better

ways.

The basic way to configure your widgets is with keyword arguments to the widget creation call. Rather than having to
write self.QUIT["fg"] = "red" after you have created the button, you can add an argument reading fg="red" when
you create the button. The same principle applies to most other widget configuration items. Try this out by modifying

the tkdemo.py file as shown:

CODE TO TYPE:

from tkinter import *

class Application (Frame) :
def say hi(self):
print ("Hi there, everyone!")

def createWidgets(self):
self.hi there = Button(self, text="Hello", fg="blue", command=self.say hi)
self.hi there.pack(side="left")

self.QUIT = Button(self, text="Goodbye", fg="red", command=self.quit)
self.QUIT.pack (side="1left")

def init (self, master=None):
Frame. init (self, master)
self.pack()
self.createWidgets ()

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. The window will have the same appearance and behavior as before, but you've compressed the code

considerably without sacrificing readability.

Read over the code; you'll see that once the buttons have been created there's no reference to them anywhere else in

the code. So itisn't necessary to save a reference to the buttons in instance attributes, and you could abbreviate the
creation of the QUIT button even further to this:

Button(self,text="Goodbye",fg="red",command=self.quit).pack(side="left")

But that might be taking things justa little too far. It's a judgment call. Remember, the programmer who has to
understand your code in six months might be you! Ask yourself whether brevity is important enough to make your
code that little bit harder to understand.

The config() Method, and Configuration Options

A third way to configure widget options is to call the widget's config() method with keyword arguments,
naming the options you want to setand giving new values. This is sort of half-way between the two methods
you have previously seen, which allows several post-creation changes to be combined into a single
statement.

So far, we have used strings as the values ofthe pack() method's side parameter. Tkinter also provides
named constants LEFT, RIGHT, BOTTOM, and TOP, which are easier to type and stand out more when
you're reading the code. The module provides many similar values that make typing your code easier.

tkinter has many configuration options that you may find confusing at first. Most widgets have a keys()
method that you can use to learn about the options you can configure. We'll try it outand see how itworks. |
betyou'll be surprised athow many options are available for configuration. Type the commands below in an
interactive session as shown:

INTERACTIVE SESSION:

>>> from tkinter import *

>>> b = Button|()

>>> for k in b.keys():
print (k)

activebackground
activeforeground
anchor
background

bd

bg

bitmap
borderwidth
command

compound

cursor

default
disabledforeground
fg

font

foreground
height
highlightbackground
highlightcolor
highlightthickness
image

Jjustify
overrelief

padx

pady

relief
repeatdelay
repeatinterval
state

takefocus

text
textvariable
underline

width

wraplength

>>>

There are too many options to consider all of them in detail here (and many that you might never use, even
after years of programming with tkinter), but we'll go over the ones you'll use most frequently:

Item name Definition

The color of the body of the widget (on some operating systems, it's impossible to
change the background color of some widgets). The colors can be specified as
strings (tkinter knows abouta lotofcolors, and also accepts web-style RGB values
like "#006677"—you can read about them here). You can generate these from
separate RGB values, where each elementis an integer between 0 and 255, using
code like:

background, bg
tk_rgb = "#{0:02X}{1:02X}{2:02X}".format(128,192,200).

If the RGB values are already in a list or tuple, you can use:

tk_rgb = "#{0:02X}{1:02X}{2:02X}".format (*rgb)

foreground, fg The color used to write inside the widget, encoded as described above.

The amount of padding to put around the widget, horizontally and vertically. Without

padx, pady this padding, the widget will be justlarge enough forits contents.

http://en.wikipedia.org/wiki/Web_colors

borderwidth This creates a visible border around a widget.

Specify the height and the width of a widget (some widgets only let you set the width).
height, width Widgets with textin them use a height and width in text units; those containing
graphics use a height and width in pixels.

This specifies the foreground color to use when the widgetis disabled (thatis, when
disabledforeground | it has been configured notto interact with the user). Most interfaces use gray for
disabled foregrounds.

The available states depend on the particular widget. The state can be "normal" (as
the widget usually looks), "disabled" (how itlooks when it won'tinteract with the
user), "active" (how a button looks while the user is interacting with it) or "readonly”
(for a Text or Entry widget with text that can be selected, but not changed, by the user).
You can use the Tkinter constants NORMAL, DISABLED, and ACTIVE to represent
state values as well.

state

Using More Widgets

Now that you understand a bit more about the way GUIs are put together and the use of widgets, we'll try to use a
couple of widgets in an example. We'll create a window that takes a textinput and produces different results, depending
on which of three radio buttons is selected.

We'll be looking at an interface with inputs—we'll have an Entry widgetinto which users can type text, and a set of
Radiobutton widgets that determine which operation the program performs on the text entered, when the user clicks the
Convert button.

Reading Widget Values

For basic widgets like Entry items, you can usually read the item's value by calling its get() method, which
returns the entered value.

More complex widgets like the Radiobutton can't be handled that way. Radiobuttons come in sets, and only
one ofthem can be selected at a time, so you need to get a value from the set, notfrom an individual widget.
In these cases, we use tkinter Variables; tkinter Variables are associated with widget values. Once the
association is made, you can call the Variable's get() method instead of the widget's.

Variable types differ according to the type of values you will be extracting. Use a BooleanVar for simple yes/no
choices, an IntVarforintegers, a DoubleVar for floating-point numbers and a StringVar to retrieve text. Those
last three are usually associated with an Entry widget, using the special textvariable configuration item.

A More Complex Program

Atlast, here's a program that actually does something!

bk =]
r—

Cutput [abel

" Upper case © Lowercase © Title case

ik | Converk |

The next program is longer than previous examples, because it describes a more complicated interface. Two
frames are used inside of the main frame. The first contains an Entry item where the user can enter text, a
Label under it, and three Radiobuttons. The second frame holds the regular buttons.

The value of the Entry widgetis read from the text configuration item, but the Radiobuttons are read using an
associated IntVar, as integer values are associated with the choices.

Create texthandler.py in the Intro GUI/src folder and enter the code as shown:

CODE TO TYPE:

from tkinter import *

class Application (Frame) :
"""Application main window class."™""
def init (self, master=None):
"""Main frame initialization (mostly delegated)"""
Frame. init (self, master)
self.pack()
self.createWidgets ()

def createWidgets (self):
"""Add all the widgets to the main frame."""
top frame = Frame (self)
self.text in = Entry(top_ frame)
self.label = Label (top frame, text="Output label")
self.text in.pack()
self.label.pack()
self.r = IntVar()
Radiobutton (top frame, text="Upper case", variable=self.r, value=1l) .pack

(side=LEFT)

Radiobutton (top frame, text="Lower case", variable=self.r, value=2) .pack
(side=LEFT)

Radiobutton (top frame, text="Title case", variable=self.r, value=3) .pack
(side=LEFT)

top_frame.pack (side=TOP)

bottom frame = Frame (self)

bottom frame.pack (side=TOP)

self.QUIT = Button (bottom frame, text="Quit", command=self.quit)
self.QUIT.pack (side=LEFT)

self.handleb = Button (bottom frame, text="Convert", command=self.handle)
self.handleb.pack (side=LEFT)

def handle (self):
"""Handle a click of the button by processing any text the
user has placed in the Entry widget according to the selected
radio button."""
text = self.text in.get()
operation = self.r.get()
if operation ==
output = text.upper /()
elif operation == 2:
output = text.lower()
elif operation == 3:
output = text.title()
else:
Output = WxkkkxkkxM
self.label.config(text=output)

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. You see a window like the one shown below. If you click the Convert button before you
selectone of the RadioButtons, the label text is filled with asterisks. Enter some text using a combination of
upper and lower case letters. If you make a choice, the appropriate method is applied to the contents of the
Entry widget (the text you entered), and displayed as the text of the label.

tk _ O]
—

Cukput label
i Upper case " Lower case Title case

QuleDnveﬂl

So, now you know something about creating GUIs. The code can get pretty lengthy, butit's relatively straightforward. In
the nextlesson we'll find out more about window layout, which will give us better control over the appearance ofour
windows.

Further Reading on Tkinter

Alotofthe tkinter documentation offers code samples written in Python 2. Don't be afraid to get creative in adapting
them to Python 3. Python 3 isn'treally much differentfrom Python 2 (although the package's name is capitalized in
Python 2). I'm confidentyou'll be able to work out any necessary changes!

Your next port of call should be the Python documentation. The Tkinter Wiki is a community-maintained set of
documentation thatis informal and friendly to read. It's also user-editable and eternally incomplete; you may want to
add your own insights later, as your expertise grows! Onward and forward to the nextlesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://docs.python.org/3.1/library/tkinter.html
http://tkinter.unpythonic.net/wiki/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Graphical User Interface Layout

Lesson Objectives

When you complete this lesson, you will be able to:

e manage the way widgets are laid out within their containers which is known as "geometry management."
e use awidget's grid() method.
e userowspan and columnspan keyword arguments to build flexible layouts.

Handling Window Layout

All managers are called as a method call on a widget, with keyword arguments to specify how the widget (which may
itself be a container) will be positioned inside of its container.

Managing the way widgets are laid out within their containers (typically frames, although there are other containers) is
referred to as "geometry management." The Tkinter module has three different ways of packing widgets into their
containers. You've already seen the pack() method in action. Packing is useful for less complex window layouts, and
pack() has many options you can use to control how the components are laid outinside their parent frames.

If components are laid outin a regular grid, you can use a widget's grid() method instead. If you want to place widgets
at specific locations, use the widget's place() method. Just make sure you never mix calls on pack(), place(), and
grid() methods on the same window. This could throw your program into an infinite loop as it tries to satisfy the needs
ofthe more than one different layout scheme.

The Pack Geometry Manager

The table below shows pack() method's principal keyword arguments. Most of the values are symbols
defined by the tkinter module itself:

Keyword Values

X: fill the container in the horizontal dimension.
fill Y: fill the container in the vertical dimension.
BOTH: fill the container in both dimensions.

False: the widgetis never resized.

expand True: the widgetis resized when the container is resized.

Specifies which side of the container the widget will be packed against (TOP (the default), LEFT,

side RIGHT, or BOTTOM),

Let's create a program that demonstrates some of these features. Create a Pydev project named GUILayo ut
and assign itto your Python2_Lessons working set. In the GUILayo ut/src folder, create a file named
sidebyside.py as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

= Label (root, text="Red Label", bg="red", fg="white")
.pack (side=LEFT)

= Label (root, text="Green Label", bg="green", fg="black")
.pack (side=LEFT)

= Label (root, text="Blue Label", bg="blue", fg="white")
.pack (side=LEFT)

=5 5 5 8 7 %

mainloop ()

When you run the program, you should see a window like this:

Red Label Blue Label

Enlarge the window by dragging a corner of it. The labels remain at the left of the window, and are vertically
centered in it, like this:

the =] 3

Blue Label

Now, close the window, and change the packing side to TOP as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

= Label (root, text="Red Label", bg="red", fg="white")
.pack (side=TOP)

= Label (root, text="Green Label", bg="green", fg="black")
.pack (side=TOP)

= Label (root, text="Blue Label", bg="blue", fg="white")
.pack (side=TOP)

5 = 5 5 5 1

mainloop ()

Now the program's window shows the labels on top of each other, like this:

Red Label

Blue Label

Expand the window; the buttons stick to the top and are centered horizontally, like this:

tk =] E3

Red Label

Blue Label

Close the window, and add a fill=BOTH argument to each pack call:

CODE TO TYPE:

from tkinter import *

root = Tk()

w = Label (root, text="Red Label", bg="red", fg="white")
w.pack (side=TOP, fill=BOTH)

w = Label (root, text="Green Label", bg="green", fg="black")
w.pack (side=TOP, fill=BOTH)

w = Label (root, text="Blue Label", bg="blue", fg="white")
w.pack (side=TOP, fill1=BOTH)

mainloop ()

Now the labels fill the frame. But when you expand the window, the labels only expand horizontally. What's
up?

(0[]

Fed Label

Blue Label

Fed Label

Blue Label

Well, the widgets are notbeing told to expand, so they only getlargerin the dimension where they aren't
stacked. So the final change we'll make will be to add an expand option to the pack() calls (justfor fun, we'll
omitone to see what happens). Close the window and modify sidebyside.py as shown:

CODE TO TYPE:

from tkinter import *

root = Tk()

w = Label (root, text="Red Label", bg="red", fg="white")
w.pack (side=TOP, fill=BOTH)

w = Label (root, text="Green Label", bg="green", fg="black")
w.pack (side=TOP, fill=BOTH, expand=True)

w = Label (root, text="Blue Label", bg="blue", fg="white")
w.pack (side=TOP, fill=BOTH, expand=True)

mainloop ()

When you resize the window, the green and blue labels expand to continue to fill the frame while the red
label (which does nothave expand=True) remains atits original height.

ke =] B3

Blue Label

The Grid Geometry Manager

The grid manager is, as its name suggests, most useful when you wantcomponents to be laid outon a
regular grid. It's probably the most flexible of the managers, and unlike the pack manager, the grid manager
does notrequire you to create a large number of frames to make sure that all of your widgets line up properly
as the window is resized.

Once you have created a widget, you can place itin its container in a notional grid, where rows and columns
are sized automatically to accommodate the widgets each cell contains, by calling the widget's grid()
method. An empty row or column will never be displayed or take up any space within the window, which gives
you some flexibility about row and column numbering. The table below explains the possible arguments:

Keyword Values

row Specifies the row in which this widget should appear.

column Specifies the column in which this widget should appear.
Normally a widget appears centered within its cell. The sticky attribute can be setto one of
four special values, N, S, E, or W, to specify with which side of the cell the widget should be

sticky aligned. You can add these values together to cause the widgetto expand into its cell. For
example, E+W would make expand to occupy the full width of its cell, while N+S+E+W would
cause the widget to spread out to fill the whole cell.
If you want a widget to occupy more than one row and/or column, setrowspan and/or

rowspan, .

columnspan columnspan to the nqmberqfrows a.nd/or. colu'mns you wantitto occupy. The row and
column number associated with the widget identify the top-left corner of the spanned block.

Let's play with the grid manager. In your GUILayo ut/src folder, create a program named tkgrid.py as

shown:

CODE TO TYPE:

from tkinter import *

def colorgen():
while True:

class Application (Frame) :

def init (self, master=None):

colors = colorgen()

Frame. init (self, master)

self.grid()

for r in (1, 22, 333):

for ¢ in (1, 22, 333):
txt = "Item {0}, {1}".format(r, c)
1 = Label (self, text=txt, bg=next (colors))
l.grid(row=r, column=c)
root = Tk()

app = Application (master=root)
app.mainloop ()

yield "red"
yield "blue"

Run the program. It makes the frame rows and columns just big enough for the tallest and widest widgets
they contain. Because we chose row and column numbers with different widths, some of the cells have space
around them, and you can see the grey background of the frame.

Resizing the window demonstrates that only the frame resizes. The cells stay at the top-left corner within the

frame.

OBSERVE: tkgrid.py

from tkinter import *

def colorgen():
while True:
yield "red"
yield "blue"

class Application (Frame) :

def init (self, master=None) :

colors = colorgen /()

Frame. init (self, master)

self.grid()

for r in (1, 22, 333):

for ¢ in (1, 22, 333):

txt = "Item {0}, {1}".format(r, c)
1 = Label (self, text=txt, bg=next(colors))
1l.grid(row=r, column=c)

root = Tk()
app = Application (master=root)
app.mainloop ()

We used an infinite generator to create as many alternating colors as the application requires. Calling the
next() function on a generator is the most convenient way to retrieve the next value in the sequence when
you can'titerate over it.

The nested for loops create a two-dimensional array where r is the row and c is the column; the array
provides the numbers to display in each grid position AND the display positions themselves (we used
multiple-digit numbers to make the text wider for some cells than others; we'd get the same positioning with
(1,2,3)).

Close the window. The white space issue can be addressed by making the cells sticky on the East and West
sides:

CODE TO TYPE:

from tkinter import *
def colorgen():
while True:
yield "red"
yield "blue"

class Application (Frame) :

def init (self, master=None) :

colors = colorgen()
Frame. init (self, master)
self.grid()

for r in (1, 22, 333):
for ¢ in (1, 22, 333):
txt = "Item {0}, {1}".format(r, c)
1 = Label (self, text=txt, bg=next (colors))
l.grid(row=r, column=c, sticky=E+W)

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. This fixes the white space problem by making all cells in each column the same width. When
the window is expanded, however, the rows and columns remain at the top-left of the frame and unchanged in
size.

In order to have the columns and rows expand to fill the frame, we actually need to reconfigure the frame itself.
A frame with widgets that are configured using the grid manager has rowconfigure() and
columnconfigure() methods, which you can call to apply specific configurations. The firstargumentis
always the row or column index; this can be followed by a number of keyword arguments:

Keyword Meaning

Defines the row's or column's minimum size. (Note that the row or column still will notbe

minsize displayed if there are no widgets present within it.)

Sets the size ofthe row or column by adding the specified amount of padding to the height of
pad .

the row or the width ofthe column.

Determines how additional space is distributed between the rows and columns as the frame
weight expands. The higher the weight, the more of the additional space is distributed between the

rows or columns. A row with weight 2 will expand twice as fastas a row with weight 1; it works
the same way for columns.

So by calling rowconfigure() and columnconfigure() methods on the frame, we can fix the second
problem. Close the window and modify tkgrid.py as shown:

CODE TO TYPE:

from tkinter import *

def colorgen() :
while True:
yield "red"
yield "blue"

class Application (Frame) :

def init (self, master=None):
colors = colorgen()
Frame. init (self, master)

self.master.rowconfigure (0, weight=1)
self.master.columnconfigure (0, weight=1)
self.grid(sticky=W+E+N+53)
rcount = 0
for r in (1, 22, 333):
self.rowconfigure (r, weight=rcount)
rcount += 1
ccount = 0
for ¢ in (1, 22, 333):
self.columnconfigure (c, weight=ccount)
ccount += 1
txt = "Item {0}, {1}".format(r, c)
1 = Label (self, text=txt, bg=next (colors))
l.grid(row=r, column=c, sticky=E+W+N+S)

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. The master frame is configured to expand as the program window (a grid ofone row and
one column) expands. Each row and column is given a weight one higher than the preceding one, starting
with zero. This means that as the window expands, the top left cell always stays the same size, and the third
row and column expand more than the second.

Close the window.

Finally, we're going to see how the rowspan and columnspan keyword arguments allow us to build flexible
layouts. In this case, we'll have a column of buttons on the left, a row of buttons along the bottom, and a
frame occupying the remainder of the window. Create grdspan.py as shown:

CODE TO TYPE:

from tkinter import *
ALL = N+S+W+E
class Application (Frame) :

def init (self, master=None):
Frame. init (self, master)
self.master.rowconfigure (0, weight=1)
self.master.columnconfigure (0, weight=1)
self.grid(sticky=ALL)
for r in range(5):
self.rowconfigure (r, weight=1)
Button (self, text="Row {0}".format (r)).grid(row=r, column=0, sticky=

ALL)
self.rowconfigure (5, weight=1)
for ¢ in range(5):
self.columnconfigure(c, weight=1)
Button (self, text="Col {0}".format (c)).grid(row=5, column=c, sticky=
ALL)

f = Frame (self, bg="red")

f.grid(row=0, column=1, rowspan=5, columnspan=4, sticky=ALL)
root = Tk()
app = Application (master=root)
app.mainloop ()

This application again starts out by configuring the frame as a single-row, single-column, expanding grid.
Then it configures five buttons in column zero, and adds a sixth row (humbered 5—remember the numbering
starts from zero here) containing five buttons. The window has six rows and five columns.

The remainder of the window is occupied by a red Frame; its top-left corner is next to the top button. So ithas

to span five rows and four columns. When you run your program, the frame should occupy the whole window,
even after the program window is resized. Because the buttons are sticky on all four edges, they expand to fill

the space the grid manager allocates to them.

The Place Geometry Manager—Don't Use It

We mention this manager only because you might encounter code that uses it. Frankly, the available
documentation is insufficient to explain how it works, but you can place a widget either "relatively" (by
specifying arelx and rely argument between 0 and 1 that says how far along the container's width and height
the widget should be placed) or "absolutely", specifying an x and a y position in absolute screen coordinates.

While the place manager allows most flexibility, itis also the mostdifficultto use, and is outside the scope of
this course.

So now you can achieve a required window layout, using either the pack or the grid geometry managers. Excellent! In
the nextlesson, we'll focus on event handling, and introduce you to a number of tkinter's built-in dialogs. See you
there...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More About Graphical User Interfaces

Lesson Objectives

When you complete this lesson, you will be able to:

write programs thatrespond to events in various ways.

e create windows on the fly for common tasks like opening and saving files.
e bind Events in tkinter.

e use eventobjects.

e assign focus to a widget.

e create popup menus.

e create simple dialogues.

e useready-made dialogues.

GUI Events

Your program can process several different types of events. The most significant events for most programs are
mouse clicks (particularly on buttons) and keystrokes. Some events are processed automatically by the widgets
themselves—for example, when you click a radio button or a checkbox; its state is changed automatically without the
programmer having to program any specific action. Other events include such things as mouse wheel movements,
timers expiring, windows being covered up and exposed, and so on. When you're starting to program GUIs, you can
ignore all butthe mostcommon events, and letthe window manager handle the restfor you.

In this lesson, we'll learn how to write programs thatrespond to events in various ways. You already know how to read
and set the values of some widgets. Now you're going to expand your knowledge and learn to create windows on the
fly for common tasks like opening and saving files.

Binding Events in tkinter

So far, we've bound event handlers to events using the command configuration option with buttons. Many widgets
have a bind() method that dynamically connects a specific event type to a piece of code in a program. Sometimes
you'll need to do this, because not every widget has a natural event to associate with a command configuration
option.

A widget's bind() method has two arguments. The firstis the name of the event to be bound, and the second is the
handler function to run when the eventis detected within the widget. Most events are named using strings starting with
"<" and ending with ">." For example, a click of the left mouse button is named "<Button-1>."

For left-handed mice the buttons are reversed, so the same button numbers apply for left-handed users:

Let's see thatin action. Create a new Pydev project named MoreGUI and assign itto the Python2_Lessons working
set. In the More GUl/src folder, create a program named clickreport.py as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

def handler (event) :
print ("clicked at", event.x, event.y)

frame = Frame (root, width=100, height=100)
frame.bind ("<Button-1>", handler)

frame.pack ()

root.mainloop ()

Save and run it, and click in a few places inside the frame. You see something like this:

(I:E Packag ﬂ:@_\ Proble (E Tasks (E Consol &3 .}}ﬂ Termin} =0

1 it Pai a1 T i @ 1 from tkinter import *
|GeallEl¢ 2B -0 2

clicked at 71 67 ;| 3 root = Tki)

zlicked at 91 S8 4

clicked at 83 75 OUtDUt from def ha.ndler(ex.rent]:

clicked at 69 63 left-clicks in print("clicked at", event.x, event.y)
clicked at 25 49 Frame

frame = Frame (root, width=100, height=100)
9 frage.bind("<Butfton-1>", handler)

10 frame.pack(]

11

: 12 root.mainloop()

[LILI [

Sorry, you won't see those fun little yellow explosions, but each time you left-click the mouse button inside the frame,
you'll see a report of the cursor position in the console window.

OBSERVE:

from tkinter import *
root = Tk()

def handler (event) :
print ("clicked at", event.x, event.y)

frame = Frame (root, width=100, height=100)
frame.bind ("<Button-1>", handler)

frame.pack ()

root.mainloop ()

Our handler is called whenever <Button-1> (the left button on a right-handed mouse, or the right button on a left-
handed mouse) s clicked.

3 root = Tk{)

: ¥ _B__] --_--_—--_----
S=def |handler (event) * | Window manager routes newly-created ;

& print("click=d sC%, event.x, evVent.y) event by calling the bound handler *

2 frame = Fram t, width=100, heigt 100) User

9 Lrame.bind("<ButLO Sgeliern Ter (7 Instructs window manager to pass generates
10 frame.packl() =Button-1= events to a specific handler event

12 root.mainloop ()

Notice that, unlike the widget command functions, a function bound using a widget's bind() method is called with an
argument. This argumentis an eventobject, and contains information about the specific event that triggered the call to
the event handler. In this case, the program extracts the (frame-relative) coordinates of the <Button-1> mouse click
eventand prints those.

Event Objects

The Event object contains data about an event that has just occurred, and itis passed as a single argument to
the event handler function. It has several useful attributes (some others are notlisted below because they are
difficult to use portably):

Attribute Purpose
Name P
widaget The widgetin which the triggering event occurred. This allows the same function to handle
9 events from multiple widgets.
x The cursor position where mouse events occurred, relative to the top-left corner of the
Y widget in which the event occurred.
X_root, The cursor position where mouse events occurred, relative to the top-left corner of the
y_root screen.
height, width | The new size of the widget (only set for "<Configure>" events).
char The character code associated with a "<Key>" event.

Mouse Event Names

You'll need to be able to describe events when you ask tkinter to establish event bindings. As you saw in
the code example above, you can capture a left-click of the mouse with the eventname "<Button-1>".

You may also runin to code thatuses " <ButtonPress-1>" or "<1>" as a name for the same event. These
are equivalent, but we prefer the first form because it's less ambiguous. As you might expect, you can use
"<Button-2>" and "<Button-3>" (and their equivalents) to refer to clicks of the middle and right buttons
respectively. You can also detect double- and triple-clicks with "<Double-Button-n>" and
"<TripleButton-n>" (where nis 1,2, or 3).

You can capture "drag" events—movements of the pointer while a mouse button is held down—with <B1-
Motion>, and "drop" events with "<ButtonRelease-1>" (this applies to buttons 2 and 3 as well).

The "<Enter>" eventis raised when the pointer enters the screen area occupied by a particular widget, and
the "<Leave>" event occurs when the pointer leaves the area.

Keyboard Event Names

You can capture the events that occur when the user presses particular keys, using the event name "<Key>".
When such an event occurs, the event's char attribute tells you which key was pressed (unless itwas a
special key, like one of the arrow keys or a Shift key. Each of these keys has a special name, which can be
used to bind event handlers.

The special key event names are "<Cancel>" (the Break key), "<BackSpace>," "<Tab>,"
"<Return>,"(the Enter key) "<Shift_L>" (any Shift key), "<Control_L>" (any Control key), "<Alt_L>"
(any Altkey), "<Pause>," "<Caps_Lock>," "<Escape>," "<Prior>" (Page Up), "<Next>" (Page Down),
"<End>," "<Home>," "<Left>," "<Up>," "<Right>," "<Down>," "<Print>," "<Insert>,"
"<Delete>," "<F1>" through "<F12>," "<Num_Lock>"s, and "<Scroll_Lock>."

Each individual regular key can also be identified by the string containing the character it produces, without the
surrounding angle brackets. So, to capture a press of the "A" key, use the eventname "A". Remember that

"1" is the name of the event that occurs when the number one (1) key is pressed. But"<1>" is a mouse
button binding event. If your program concerns justa couple of keystrokes, it's usually easier to bind the
individual keystrokes than to bind "<Key>" and then analyze each keystroke.

Keyboard Focus

In a windowed user interface, you can change which widget receives keyboard input. The most straightforward
way to assign focus to a widgetis to click on it, although that also triggers a mouse event. These events are
usually ignored by default, although buttons "expect" to be clicked on, and if a button has an associated
command function, clicking on the button will cause that function to be called. Different types of widget handle
keyboard inputin different ways.

Entry widgets accept most characters and insert them into the value returned by the widget's get() method. A
Radiobutton will only action a space, which is equivalent to selecting that widget from its associated set
(automatically clearing any others in the same set). You can also change the focus by pressing the Tab key
(or Shifted+Tab to move in the opposite direction).

Dialog boxes are special cases, with specific behaviors. The Enter key is equivalent to clicking the default
button in the dialog (which is configured with default=ACTIVE) and the Esc key is equivalentto clicking the
Cancel button.

Keyboard Event Handling

When an eventis fired by the window manager (for example, when you press a key or click a mouse button)
then the eventfires firstin the component thatis "topmost" in the window layout. So when you click a button,
since the button is (usually) inside a frame, the click is sentfirstto the button.

Now, buttons and the other "canned" widgets are special cases, because they make sure that events upon
which they take action are never seen by anything "below" them. In general though, this is notso the case.
Events are normally distributed to every widget thatis part of the hierarchy. So, when you click the mouse on a
frame with a parent thatis the root window, the click eventis delivered first to the frame and then to the root
window. lt works the same way with keyboard events.

In our next program we'll investigate this feature. Create a new Python file in the More GUl/src folder named
evtreport.py, as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

def handler (event) :
print ("Keystroke '{0}' ({1}) {2} ".format (event.char, len(event.char), event
.keycode))

frame = Frame (root, width=100, height=100)
frame.bind ("<Key>", handler)

frame.pack ()

frame. focus ()

root.mainloop ()

Save and run it. Click inside the window, and then try pressing a variety of keys. Most keystrokes are
reported. If you look carefully, you'll see that not all keystrokes have a character associated with them. (Which
ones don't? I's a challenge to handle these keys in a platform-independent way, because they vary according
to hardware and operating systems). If you hold a key down, the automatic repetition associated with doing
this are reported as separate keystrokes (even though no physical key movementon the keyboard). If your
"Caps Lock" key is like mine, it also repeats despite the lack of physical keystrokes.

OBSERVE: evireport.py

from tkinter import *
root = Tk()

def handler (event) :
print ("Keystroke '{0}' ({1}) {2} ".format(event.char, len(event.char), event
.keycode))

frame = Frame (root, width=100, height=100)
frame.bind ("<Key>", handler)

frame.pack ()

frame. focus ()

root.mainloop ()

frame = Frame(root, width=100, height=100) creates a 100 x 100-pixel frame inside the root window.
The bind() function captures all keystroke events in the frame (frame.focus() ensures that whatever the
user types is captured in the frame), and passes them to the handler, which prints the keystroke received.

You can associate events with the root window of your application if you like. This is a good way to make
sure thatan eventis trapped no matter which widgetitis first presented to (so long as that widgetdoesn't stop
the event from propagating through the widget hierarchy).

If you want to trap only certain keys, you can adjust the program so that other key presses aren't handled. This
next modification will do that, handling only lower-case "o" and "k." Modify evtreport.py as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

def handler (event) :
print ("Keystroke '{0}' ({1}) {2} ".format (event.char, len(event.char), event
.keycode))

frame = Frame (root, width=100, height=100)
Framerra{i<k L —rarreHery

frame.bind ("o", handler)

frame.bind ("k", handler)

frame.pack ()

frame.focus ()

root.mainloop ()

Now, most keystrokes don'tresultin any reporting whatsoever from your program. Since you bound only
specific keyboard events to your frame, the handler is triggered only when those events occur.

Event Propagation

So, what happened to the keystrokes that weren't passed to the handler? Were they not passed to the
program, or were they passed to the program and then ignored? Events actually propagate back through a
widget to its container, and then to that container's container, and so on, until they reach the rootwindow,
unless something specifically stops them from propagating. Many of the standard widgets driven by mouse
clicks do stop the clicks from propagating; it would be pretty confusing if a button click had multiple effects!
You can allow mouse events to propagate from the widgets you create in much the same way keyboard
events are currently propagating to the root window of the frame.

You can see what the root window is receiving by binding events to your application's root window (which is
located between the Frame and the window manager) by adding an event binding with a separate handler.
Modify evtreport.py as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

def handler (event) :
print ("Keystroke '{0}' ({1}) {2} ".format (event.char, len(event.char), event
.keycode))

def handler?2 (event) :
print ("RootKeystroke '{0}' ({1}) {2} ".format (event.char, len(event.char), e
vent.keycode))

frame = Frame (root, width=100, height=100)
frame.bind ("o", handler)

frame.bind ("k", handler)

root.bind ("<Key>", handler?2)

frame.pack ()

frame. focus ()

root.mainloop ()

Now when you type an "0" ora "k," you see two events being reported (actually, it's the same event being
reported twice). The first report comes from the Frame, and the second from the rootwindow. Other keys are
reported only by the root window because they aren'tbound in the frame, so the window manager doesn't
notify itabout those events.

Is there some way to inhibit this propagation of events up through the container hierarchy? In fact, there is. If
your handler returns a specific value, the string "break," this tells the event-processing portion of the window
manager to stop propagating the event. This doesn'tjust apply to keystrokes, as our final modification to the
eventreporter program will demonstrate. Modify evtreport.py as shown:

CODE TO TYPE:

from tkinter import *
root = Tk()

def handler (event) :

print ("Keystroke '{0}' ({1}) {2} ".format (event.char, len(event.char), event
.keycode))

return "break"

def handler2 (event) :
print ("RootKeystroke '{0}' ({1}) {2} ".format (event.char, len(event.char), e
vent.keycode))

def handler3 (event) :
print ("Frame clicked at", event.x, event.y)
if event.x > 50 and event.y > 50:
return "break"

def handler4 (event) :
print ("Root clicked at", event.x, event.y)

frame = Frame (root, width=100, height=100)
frame.bind ("o", handler)

frame.bind ("k", handler)

frame.bind ("<Button-1>", handler3)
root.bind ("<Key>", handler?2)

root.bind ("<Button-1>", handleri4)
frame.pack ()

frame. focus ()

root.mainloop ()

Now that the first handler has been modified to return "break," you can see thatthe "o" and "k" keystroke
events no longer propagate to the root window, so each keystroke is reported either by the Frame or by the
rootwindow.

Mouse clicks work similarly, though in those cases some clicks are reported by both widgets. Clicks in the
lower-right quadrant of the frame don't propagate to the rootwindow, because their x and y attributes are both
greater than 50.

Adding Menus to Your Programs

Computer users are used to seeing a menu bar at the top of a program's window. Each word on the bar will drop down
alistof menu choices of varying lengths when clicked. (Ellipse's Search menu, for example, contains three items).

Building a Menu Bar

To add a menu bar to a window, instantiate a Menu widget with the window as its parent, and configure it as the
window's menu item. Then you can add a pulldown Menu widget to the window's menu bar using the menu bar as its
master and calling its add_cascade () method. Finally, you add choices to the pulldown using the pulldown's
add_command() method.

Let's try it. In your More GUl/src folder, create a program named menudemo.py as shown:

CODE TO TYPE:

from tkinter import *

class Application (Frame) :
def init (self, master=None):
Frame. init (self, master)
self.configure (height=75, width=75)
create a menu bar
menu = Menu (root)
root.config (menu=menu)

filemenu = Menu (menu)

menu.add cascade (label="File", menu=filemenu)
filemenu.add command (label="New", command=self.callbackl)
filemenu.add command(label="Open...", command=self.callback?2)
filemenu.add separator ()

filemenu.add command(label="Exit", command=self.callback3)

helpmenu = Menu (menu)
menu.add cascade (label="Help", menu=helpmenu)
helpmenu.add command(label="About...", command=self.callback4)

self.pack()

def callbackl (self):
print ("You selected 'File | New'")

def callback2 (self):
print ("You selected 'File | Open...'")

def callback3(self):
print ("You selected 'File | Exit'")
self.quit ()

def callback4 (self):
print ("You selected 'Help | About...'")

root = Tk()
app = Application (master=root)
app.mainloop ()

Run the program; you'll see a window with two items on its menu bar, like the one shown below. Each menu item
prints outits identifying information, and the File | Exit item actually terminates the program by calling the frame's
quit() method.

tk =] E3
File Help

Creating Popup Menus

You can also create menu structures that display on demand. The usual stimulus for display of a so-called
"context menu" is a right-click. So you can bind a <Button-3> event to the widget you want to provide the
menu, and then call the menu's post() method to display it from the right-button event handler. You can
extract the screen coordinates of the cursor from the event passed to the handler to make the menu display at
the current cursor position. Let's give that a try. Modify menudemo.py as shown:

CODE TO TYPE:

from tkinter import *

class Application (Frame) :
def init (self, master=None):
Frame. init (self, master)
self.configure (height=75, width=75)
create a menu bar
menu = Menu (root)
root.config (menu=menu)

filemenu = Menu (menu)

menu.add cascade (label="File", menu=filemenu)
filemenu.add command (label="New", command=self.callbackl)
filemenu.add command(label="Open...", command=self.callback2)
filemenu.add separator ()

filemenu.add command(label="Exit", command=self.callback3)

helpmenu = Menu (menu)
menu.add cascade (label="Help", menu=helpmenu)
helpmenu.add command (label="About...", command=self.callback4)

self.cmenu = Menu(self)
self.cmenu.add command (label="Copy", command=self.copy)
self.cmenu.add command(label="Paste", command=self.paste)
self.bind ("<Button-3>", self.popup)

self.pack()

def callbackl (self):
print ("You selected 'File|New'")

def callback2 (self):
print ("You selected 'File|Open...'")

def callback3 (self):
print ("You selected 'File|Exit'")
self.quit ()

def callbacki4 (self):
print ("You selected 'Help|About...'")

def copy(self):
print ("Context command 'Copy' selected")

def paste(self):
print ("Context command 'Paste' selected")

def popup(self, event):
self.cmenu.post (event.x root, event.y root)

root = Tk()
app = Application (master=root)
app.mainloop ()

Click the right mouse button (orif you're using a left-handed mouse, click the left button) inside the
program's frame; the context menu appears at the position where you clicked:

File Help

Tkinter Tearoff Menus

You may be wondering why menus include a dotted line across the top of them. This is a non-standard
convenience feature of tkinter menus: if you click the dotted line, the menu becomes a separate window
(which usually appears at the top left of your screen) and you can make selections from the window. Below,
you see the context menu from the example above, rendered as a separate window. Clicking on the
selections works just as if you had brought up the menu using the right button:

Copy
Paste

If you don't want this feature to be active in your windows, add the tearoff=False argumentto the menu
creation call. That way your users won't see a feature they may not understand.

Dialog Boxes
Creating Simple Dialogs

The class of windows called dialog boxes share many characteristics. They are usually modal, which is to say
the program behind them becomes non-responsive until the dialog box is either completed or canceled, and
they are typically only displayed when a specific task needs to be performed.

Dialogs aren't usually designed to be resized, and are often laid out with the grid manager to accommodate
regular rows of labeled entry fields. Tkinter provides a simpledialog module that defines a dialog class that
you can subclass to define your own dialogs.

The dialog class provides a basis for extension, including two buttons to complete or cancel the dialog. As
an example of dialog, we'll use a program that subclasses the dialog class to provide an indication of
whether the dialog was completed or canceled by adding a result attribute.

When painted, a subclass of simpledialog.Dialog will contain two buttons: OK and Cancel. The subclass
provides a body(self, master) method. This method creates widgets that are children ofthe master
argument. It also provides an apply(self) method, which will be called only if the OK button is clicked.

The body() method sets a result attribute to a default value that indicates the dialog was canceled. Then the
apply() method sets an indication that the OK button was clicked. The dialog is modal, which means that the
main program will not be given control until the user dismisses the dialog. This only happens when the user
clicks OK or Cancel. The code that creates the dialog can look at the resultimmediately afterwards, and
determine whether the dialog should be considered valid.

Enter the code below as dialog.py in the More GUIl/src folder:

CODE TO TYPE:

from tkinter import *
from tkinter.simpledialog import Dialog

class MyDialog(Dialog) :
def body(self, master):
self.result = None
for r in range (5):
for ¢ in range(5):
b = Button (master, text="Row {0} Col {1}".format(r, c))
b.grid(row=r, column=c)
print ("Dialog created")

def apply(self):
self.result = "OK"

class Application (Frame) :
def create dialog(self):
d = MyDialog(self)
print (d.result)

def create widgets(self):
self.d button = Button(self, text="Dialog...", command=self.create dialo

self.d button.pack({"side": "left"})

self.QUIT = Button(self, text="Quit", fg="red", command=self.quit)

self.QUIT.pack({"side": "left"})
def init (self, master=None):
Frame. init (self, master)

self.grid()
self.create widgets|()

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. Click Dialog.... You'll see a window like this:

tk

Fow 0 Col 0| Row 0 Cal 1 | Row 0 Caol 2 | Row 0 Col 3 | Row 0 Cal 4

Row 1 Col 0| Row 1 Col 1 |Row 1 Caol 2 | Row 1 Col 3 | Row 1 Cal 4

Powz Col0|Row 2 Col 1 |Row 2 Col 2 | Row 2 Col 3 | Row 2 Col 4

Row 3 Col 0| Row 3 Col 1 | Row 3 Col 2 | Row 3 Col 3 | Row 3 Cal 4

RPow4 Col0|Row4 Col 1 |Row4 Col 2 | Row 4 Col 3 | Row 4 Col 4
0] I Zancel

You can resize the dialog, butits contents don'trespond to this activity. If you click OK, the apply() method is
called and "OK" prints in the console. If you click Cancel, "None" is printed.

Some Ready-Made Dialogs

tkinter provides a number of dialog boxes already programmed for specific purposes. The first setis imported
from the tkinter.messagebox module. They all take a title and a message argument, and you can follow
those with further keyword arguments to tailor their appearance and behavior:

Dialog Name Appearance

Cpam é“
showinfo
showwarning
showerror
askquestion
.'.'-’.'l Lpam ﬁ
askokcancel 0 -
O Cancel
Cpam ﬁ
askyesno o -
T He
Epam '&"
askyesnocancel o
Vam M= Carcel
'.1-:1' fpam ﬂ"
askretrycancel .
Ratry Canca

The keyword arguments available to use include default, which specifies the button selected if the user
presses Enter. The button options are: ABORT, RETRY, IGNORE, OK, CANCEL, YES, or NO. These
constants are defined in the tkinter.messagebox module along with the dialogs.

You can also setthe icon keyword argumentto ERROR, INFO, QUESTION, or WARNING, depending on
which graphic you want to include with the message. You can setthe type argumentto be:
ABORTRETRYIGNORE, OK, OKCANCEL, RETRYCANCEL, YESNO, or YESNOCANCEL.

The askcolor dialog, from the tkinter.colorchooser module, allows you to tell your programs the color
you want something to be. Itnormally returns a two-element tuple; the first elementis a tuple of RGB values,
the second is a string representing the color format used for web content (#RRGGBB). If you cancel the
selection, both elements of the tuple are None.

The filedialog module provides supportfor selecting directories and files. With files, filedialog supports
either loading (providing the selected file exist) or saving. With modules, dialogs will display tkinter's

limitations. We'll see filedialog in action in our last example of this lesson. In your More GUI/src folder,
create dialogdemo.py as shown:

CODE TO TYPE:

from tkinter import *

from tkinter.filedialog import LoadFileDialog, SaveFileDialog, Directory

from tkinter.colorchooser import askcolor

from tkinter.messagebox import (showinfo, showwarning, showerror, askquestion,

ancel)

askokcancel, askyesno, askyesnocancel, askretryc

class Application (Frame) :

def

def

def

def

def

def

def

askdir (self):
d = Directory(self)
print (d.show())

messages (self) :

print ("info", showinfo ("Spam", "Egg Information"))

print ("warning", showwarning ("Spam", "Egg Warning"))

print ("error", showerror ("Spam", "Egg Alert"))

print ("question", askquestion("Spam", "Question?"))

print ("proceed", askokcancel ("Spam", "Proceed?"))

print ("yes/no", askyesno ("Spam", "Got it?"))

print ("yes/no/cancel", askyesnocancel ("Spam", "Want it?"))
print ("try again", askretrycancel ("Spam", "Try again?"))

file open(self):
d = LoadFileDialog(self)
fname = d.go("nosuch.txt", "*.py")
if fname is None:
print ("Canceled...")
else:
print ("Open file", fname)

file save (self):
d = SaveFileDialog(self)
fname = d.go("example", "*.py")
if fname is None:
print ("Canceled...")
else:
print ("Saving file", fname)
color (self) :
d = askcolor ()
print (d)

createWidgets (self) :

d button = Button (self)

d button.config(width=12, text="Directory Test", command=self.askdir)
d button.pack (side=TOP)

m button = Button (self)

m button.config(width=12, text="Messages Test", command=self.messages)
m button.pack ()

c button = Button (self)

c _button.config(width=12, text="Color Choice", command=self.color)

c button.pack()

1 button = Button (self)

1 button.config(width=12, text="Open File", command=self.file open)

1 button.pack/()

s button = Button (self)

s _button.config(width=12, text="Save File", command=self.file save)

s button.pack()

self.QUIT = Button (self)

self.QUIT.config(width=12, text="Quit", fg="red", command=self.quit)
self.QUIT.pack (side=TOP)

__init (self, master=None):
Frame. init (self, master)
self.pack()

self.createWidgets ()

root = Tk()
app = Application (master=root)
app.mainloop ()

Save and run it. You'll see a window with various buttons:

Directary Test
Messages Test
Color Choice
Cpen File
Save File

ik

Click the buttons for examples of the filedialog uses we talked about.
And there you have itl This concludes our discussion of the tkinter library. Next up—Databases! See you there!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Handling Databases

Lesson Objectives

When you complete this lesson, you will be able to:

e use the MySQL database.
e use the Structured Query Language (SQL), a command-based free-form language.

e use the Data Definition Language (DDL), the subset of SQL that allows you to define and modify database objects
such as tables and indexes.

e use the Data Manipulation Language (DML).

e use a special value called null to represent the fact that either no data is available.

e create a new database with a table for storing basic information.

e incorporate foreign keys to express the fact that relationships exist between two entities.

Relational Databases: Representing the World in Tables

You haven't had enough yet? Good! Let's keep our momentum going then, and start talking about relational
databases. Relational databases are based on complex discrete mathematics. Fortunately though, we don't need to
master all of those complex mathematics in order to get the mostfrom a database: the concepts are actually pretty
intuitive.

Relational databases use a language called the Structured Query Language (abbreviated as SQL) to define data
structures, and store and retrieve information. SQL is different from most computer languages in thatitis declarative—
you don'ttell the database how to produce what you want, you simply describe what you wantitto do and the
database works outhow bestto do it.

Database systems are often built as "client/server" systems—your program is a client (maybe one of many) ofa
server program thatruns as a separate process, or maybe even on an entirely separate "database server" computer.
The diagram below of a MySQL database environment, depicts how some programs use the MySQL protocol—that's a
way of speaking SQL that's particular to MySQL clients and servers—to the database server:

Okay, let's get this party started. First we'll run SQL on a MySQL database server elsewhere in the O'Reilly School
network. Your Ellipse setup will be the clientin the top left-hand corner, connecting via the SSH protocol to another
computer, on which you will enter SQL commands to a Linux MySQL client program. The database client program will
then present your SQL to the database server, where the engine will process it.

Then we'll move on to Python database programming. Your programs will resemble the lower of the two remote
processes in the diagram, where you use Python to interact with the database, by means of a special piece of driver
software. Think of your program like this:

(Do you love our sweet diagrams or what?) In this course, you will use a MySQL database provided by OST. Your
database uses the same credentials (login name and password) as the other O'Reilly School systems you use, and
its name is the same as your user name. We've saved you the trouble of installing your own database server; the care
and feeding of these beasts requires some expertise! Your database programs will maintain their data on O'Reilly's
servers.

MySQL conforms closely to the Python DBAPI specifications for the way your programs should interact with the
database. Support for many relational databases, both open source and proprietary, is readily available using well-
tried third-party modules.

SQL is the common interface between databases and their applications. This means that you don't need to
incorporate information about the physical representation of data on the storage media. Also, SQL processors do all
the "gruntwork" of optimization, and do not require programmers to specify the complex operations that complex
queries require.

Your First Database Interactions

http://www.python.org/dev/peps/pep-0249/

Access to a Database

The MySQL database serveris a popular open-source database software, and is available for use on a wide
variety of platforms. We'll use the MySQL database for our examples.

As we mentioned earlier, in this course, you have access to the MySQL database on the OST server. You can
access that database using the same username and password thatyou use to log onto your courses. Your
username is also the name of your database.

If you write in an SQL dialect that most database systems support, your SQL (and therefore your programs)
should run successfully against most database systems without change. Even though SQL is standardized,
each database vendor has a differentinterface, as well as different extensions of SQL. We create our notes
and examples here to be general-purpose, so you can use them on this or other databases, butremember
that changes may be required.

First, we'll connect to your Unix account using SSH. To do that, use the Terminal tab in Ellipse.
Click the Terminal tab and then the Connect icon:

ft& Packag rl"'_ Proble (a.f- Tasks (E Cunsud.;'J Termin @: Eq

k: (cold, useractive, comi23 - CLOSED)

(o o -

il

al

If a Terminal Settings dialog appears, select SSH for the Connection Type, enter cold.oreillyschool.com
for the Host, and enter the username and password you used to getinto this course, and click OK.

An authenticity warning appears:
Warning
‘r:/ The authenticity of host ‘cold.useractive. com' can't be established.
-

R34 key fingerprint is S9e:29:e5:ad:2d:e3:cf90: ad: 27:6e: 72 : 3e: 2be 4f ac,
Are wou sure you want bo continue connecting?

|: es I ' Mo
O —

Click Yes to continue and make the connection.

Running MySQL
Atthe cold:~$ prompt, type:

INTERACTIVE SESSION:

cold:~$ mysgl -h sgl -u <username> -p <username>

OBSERVE: Starting mysql at the cold Prompt

mysgl -h sgl -u <username> -p <username>

(At the firstinstance of username, enter the name you use to login to this course; for the second instance,
username should be replaced with your login name as well—this will become the name of the database.)
When prompted for a password (as required by the -p option), enter the password you use to login to this
course. You'll see a mysql> prompt:

coldl:~§ myagl -h 2gl -u swiller -p smwiller

Enter password:

Welcome to the My30L monitor. Commands end with ; or bhYo.
Your Hy30L connection id is 179555

Server wersion: 5.1.71-log Source distribution

Copyright (o) 2000, 2013, CQracle and/or its affilistes. L1l rights reserved.
COracle is a registered trademark of Oracle Corporation andfor its

affiliate=s. Other nanes mway be trademarks of their respective
OWNEL S .

TSl I

Type 'help:' or '“h' for help. Type '‘c' to clear the current input sStatement.

e~)
& Package Explorer ﬂf.f._ Problems (v‘i Tasks (E Console (‘\;ﬂ Terminal 1 63 =B
35H: (smiller@cold.useractive. com - COMMECTED) IS l= I N: | - -
coldl:~§ ;I
coldl:~§
coldl:~§

L

Excellent! You're in!

Structured Query Language

Structured Query Language (SQL) is a command-based free-form language. All whitespace is considered equivalent,

and the keywords, table names, and column names are not case-sensitive. Itis common convention to write SQL

keywords in upper-case letters so they can be readily identified.

In fact, MySQL is picky about table names, and it's best practice to remain consistent, using the exact table names that

you create originally. No database will ever complain because you got the case right!

Each statementin SQL begins with a characteristic verb or phrase, which indicates the broad purpose of the statement.
SQL actually includes three sub-languages, two of which we'll consider in this course: Data Definition Language and
Data Manipulation Language. (The third, Data Control Language or DCL, is used to determine which users get
permission to perform which operations on which pieces of data, and is outside the scope of this course.)

Data Definition Language (DDL)

DDL is the subset of SQL that allows you to define and modify database objects such as tables and indexes.

There are three basic verbs used in DDL:

e CREATE inserts new definitions into the data dictionary.
e DROP removes definitions from the data dictionary.

e ALTER modifies definitions already presentin the data dictionary.

Here is a description of two relational tables that might be part of a library information system. At the mysql

prompt, enter the SQL shown below to create two tables:

INTERACTIVE SESSION:

mysqgl> CREATE TABLE Book(
-> BkISBN CHAR(12) NOT NULL,
-> BkTitle VARCHAR(30) NOT NULL,
-> BkPubNo INT,
-> BkYear INT) ENGINE = MYISAM;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE Publisher (

-> PubNo INT PRIMARY KEY,

-> PubName VARCHAR(25),

-> PubURL VARCHAR (50)) ENGINE = MYISAM;
Query OK, 0 rows affected (0.01 sec)

Here you create a table in SQL using the phrase "CREATE TABLE" followed by the name of the table you want
to create, followed by a parenthesized list of column specifications separated by commas. Each column
specification determines the data type of the values that are stored in the column and can specify other
constraints (PRIMARY KEY specifies a constrainton the Publisher table—we'll learn about others later).

In many database systems, constraints do notneed to be specified when the table is created. They can be
added later using the ALTER TABLE statement. Now enter these statements in mysq| for the tables you
defined:

INTERACTIVE SESSION:

mysqgl> ALTER TABLE Book
- ADD CONSTRAINT Bk PK
-> PRIMARY KEY (BKISBN) ;

mysqgl> ALTER TABLE Book
- ADD CONSTRAINT Bk Pub FK
-> FOREIGN KEY (BkPubNo) REFERENCES Publisher (PubNo) ;

The second statement expresses the fact that a relationship exists between Book and Publisher: each book is
related to (published by) one of the publishers in the Publisher table. A publisher is identified by its primary
key (the value ofthe PubNo column). Consequently, the publisher of a given book is recorded by storing the
appropriate PubNo value from Publisher, as the value of the BkPubNo column for the row representing the
book. We'll talk more aboutrelationships later.

Data Manipulation Language (DML)

This is the mostcommonly used subsetof SQL; itis used to manipulate and query the data in the relational
structures maintained by the DDL, and is what updates the model and answers questions based on its
content. There are four statements in the Data Manipulation Language:

e INSERT adds new rows to user tables.

e SELECT retrieves information from one or more tables in the database (including data dictionary
tables if requested).

e UPDATE allows changes to be made to existing rows in user tables.
e DELETE removes rows from user tables.

INSERT: Adding A Row to a Table

Now, we'll use the INSERT statement to insert some book and publisher data. In mysql, enter the code as
shown:

INTERACTIVE SESSION:

mysgl> INSERT INTO Publisher (PubNo, PubName, PubURL)
-> VALUES (1, 'O''Reilly', 'www.ora.com');
Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO Publisher (PubNo, PubName, PubURL)
-> VALUES (2, 'New Riders', 'www.newriders.com');
Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO Book (BkISBN, BkTitle, BkPubNo, BkYear)
-> VALUES ('7807', 'Python Web Programming', 2, 2002);
Query OK, 1 row affected (0.00 sec)

mysgl> INSERT INTO Book (BkISBN, BkTitle, BkPubNo, BkYear)
-> VALUES ('0596', 'Learning Python', 1, 2009);
Query OK, 1 row affected (0.00 sec)

Each INSERT statement adds one row to the database table, named after the "INSERT INTO" clause. The

values in the VALUES list match up with the columns given in the listimmediately following the table name.

You may see code containing SQL INSERT statements that don't include the list of column
' Note names,instead relying on the order ofthe column names when the table was created. This is
: nota best practice.

SELECT: Retrieve Data from One or More Tables

Once you have data in your database, you can retrieve information using the SELECT statement. Enter the

code below as shown:

INTERACTIVE SESSION:

mysgl> SELECT BkTitle, BkISBN, PubName
-> FROM Book JOIN Publisher ON BkPubNo = PubNo;

e o e +
| BkTitle | BkISBN | PubName |
o fommmm oo +
| Python Web Programming | 7807 | New Riders |
| Learning Python | 0596 | O'Reilly |
e t—————— o +

2 rows in set (0.05 sec)

mysql>

The statement above retrieves the ISBN and title of the book from the Book table and the relevant publisher's
name from the Publisher table, and puts them together—this is called joining the tables. This results in the two

rows of data shown.

UPDATE: Modify Existing Data in a Table

The UPDATE statementis used to modify existing data, and can change zero, one, or more rows in a single
table. Suppose a second edition of Python Web Programming were published, then the database could be

modified to reflect the new book Add the code below as shown:

INTERACTIVE SESSION:

mysgl> UPDATE Book SET BkTitle='Python Web Programming, 2nd Ed',
-> BkYear=2010
-> WHERE BkISBN='7807";

Query OK, 1 row affected (0.05 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql>

mysqgl> SELECT * FROM Book;

o Bt ettt fmmm o +
| BKISBN | BkTitle | BkPubNo | BkYear |
e e fommm - fommm———— +
| 7807 | Python Web Programming, 2nd Ed | 2 | 2010
| 0596 | Learning Python | 1 2009
e Bt ettt e T e e fomm e +

2 rows in set (0.04 sec)

mysql>

The outputfrom the SELECT statement (the "*" simply means "all columns") shows that, in this case,
precisely one row was updated by the UPDATE statement. That happened because the WHERE clause
specified a condition thatwas only metby one row in the given table.

DELETE: Remove Rows From a Table

The DELETE statementremoves all rows meeting a specific condition, again expressed in a WHERE clause.
You need to be really careful here—if you do not specify a WHERE clause, all rows in the table will disappear!
Atthe MySQL prompt type the code below as shown:

INTERACTIVE SESSION:

mysqgl> DELETE FROM Book WHERE BkISBN='0596";
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM Book;

e o fommm - e +
| BkKISBN BkTitle | BkPubNo | BkYear
o ————— e o o +
| 7807 | Python Web Programming, 2nd Ed | 2 2010
fommm———— e fommmm - e +

1 row in set (0.04 sec)

mysqgl>

Having No Data: The Null Value

Relational systems use a special value called null to represent the fact that either no data is available for a
specific column in a given row, or that that column is irrelevant in the case of the particular row in question.

While the null value (indicated as NULL in SQL statements) has its uses, you need to be careful ofits counter-
intuitive properties. Because the null value in effect represents the absence of data, itintroduces a third
possibility beyond true or false—unknown—as the result of a comparison.

Consequently, if you are testing a column for a given value, NULLs will not be included whether you testfor
equality orinequality (which you do IN SQL using "=" and "<>", respectively). Since we are used to the value
ofa comparison being true or false, it's easy to forget to take this oddity into account. Use mysql to check this
out. Enter this SQL to see how NULL values affect comparisons:

INTERACTIVE SESSION:

mysqgl> INSERT INTO Book (BkISBN, BkTitle, BkPubNo)
-> VALUES ('1234', 'Pythonic Attitudes', 2);
Query OK, 1 row affected (0.01 sec)

mysgl> INSERT INTO Book (BkISBN, BkTitle, BkPubNo, BkYear)
-> VALUES ('0987', 'My Little Python', 1, 2005);
Query OK, 1 row affected (0.01 sec)

mysqgl> SELECT * FROM Book;

o Bt ettt o o +
| BKISBN | BkTitle | BkPubNo | BkYear |
e e fommm - fommm———— +
| 7807 | Python Web Programming, 2nd Ed | 2 | 2010

| 1234 | Pythonic Attitudes | 2 NULL |
| 0987 | My Little Python | 1 | 2005 |
e e fommm - e +

3 rows 1in set (0.05 sec)

mysqgl>

See the NULL value in the BkYear column for "Pythonic Attitudes?" (That's right, | said it. Pythonic Attitudes.)
Now we'll run a number of queries on this updated data. Enter this SQL in the MySql Terminal Window:

INTERACTIVE SESSION:

mysqgl> SELECT COUNT (*) FROM Book;

fommm +
| COUNT (*) |
fom - +
| 3
fommm +

1 row in set (0.04 sec)

mysqgl> SELECT COUNT (*) FROM Book WHERE BkYear <= 2005;

fommm +
| COUNT (*)

fomm +
| 1]
fommm +

1 row in set (0.04 sec)

mysgl> SELECT COUNT (*) FROM Book WHERE BkYear > 2005;

Fommm +
| COUNT (*) |
fommm e +
| 1]
R +

1 row in set (0.04 sec)

mysql>

So, we have three books; one published 2005 or earlier, and one published after 2005, and...wait a minute! If
you don't see the problem here, think about how many books there are in the Books table. The first query
answers that: there are three. Okay, so how many of them were published in or before 20057 The second
query tells us there is one. The third query tells us that there is only one book published after 2005—the
answer is again, one. Butone plus one isn'tthree, and it's easy to overlook that the book with no year data
couldn'tbe included in either result set.

You need to be careful of little things like this when your data allows NULL values, and we recommend that
another best practice is to allow NULL values only where you actively wantto permitthem. So, you find out
how many books there are in total by giving the SQL COUNT () function a "*" (all rows) argument. Counting

the BkYear column is no good—because NULL values in that column are omitted from the COUNT (). Let's
verify in the MySQL Terminal Window that NULLs are not COUNTed. Type in the code below as shown:

INTERACTIVE SESSION:

mysgl> SELECT COUNT (BkYear) FROM Book;

e +
| COUNT (BkYear) |
o +
| 2
o +

1 row in set (0.04 sec)

mysql>

Only two of our books have a BkYear. When we entered the "Pythonic Attitudes" book data, we didn'tinclude
a value for the year (sorry, we did that deliberately). In the result from the SELECT * FROM Bo ok query, we
mentioned that the value for BkYear for that row was NULL.

So,we used COUNT (), a SQL function that aggregates the number of rows that meet the given condition. A
countofall rows clearly shows three rows, but we only saw one row with a year less than or equal to 2005
and one with a year that was greater than 2005. The third row didn't get counted by either of those conditions.
The final query, where we explicitly counted the number of BkYear entries, makes it apparent that only two
rows have an entry in that column.

Creating a Table and Inserting Data

Tables are at the heart of a database. Each table in a properly designed database, holds data concerning precisely one
type of thing (an entity type, as itis more formally called in the database world). Suppose you want to keep information
abouta zoo;you would certainly want to record information about the animals, and you could do so in a single table.

Let's create a new table in our database for storing basic information aboutzoo animals. Again, ifit's not still running,
open a terminal window and start mysql. Enter the code below in an interactive window to create a new table:

INTERACTIVE SESSION:

mysgl> CREATE TABLE animal (
-> id INTEGER PRIMARY KEY AUTO_INCREMENT,
-> name VARCHAR(50),
-> family VARCHAR(50),
-> weight INTEGER) ENGINE = MYISAM;
Query OK, 0 rows affected (0.03 sec)

Attributes are Columns, Occurrences are Rows

In the example above, you used a "CREATE TABLE" statement to create a table interactively with four
columns:id, name, family, and weight. id and weight hold integer values; name and family hold
character strings of varying length. Each column represents a different piece of data about each animal that
can be stored—they are sometimes referred to as "attributes" of the animal entity.

The PRIMARY KEY column designation plays a special role in the table, which we'll discuss at length later.
For now, be aware thatusing its primary key is the only way to guarantee that you are referring to a single row
in the table; primary key values are always unique.

Now that we've created our table, let's put some data into it. The code below shows how to use the SQL
"INSERT" statement. If you were writing SQL for direct execution by the database, you would write something
like this:

INSERT INTO animal (id, name, family, weight) VALUES (1, 'Ellie’, 'Elephant’, 2350)

Note that SQL always uses single quotation marks to delimit string values. In a program though, you usually
have the data in variables. While you could build the exact SQL statement you want to run using string
manipulation, this is a really bad idea. If the data strings are from userinput, itis too easy to allow the user to
mess up your SQL, sometimes with disastrous results (try searching the web for "SQL injection vulnerability"
to see how bad this can be). Fortunately, Python provides a mechanism to avoid these unpleasant security
vulnerabilities. Which brings us to consider how your programs will interact with the database.

The Python Database API

We've used SQL atthe command line after securely logging in to a remote Linux system. Now we need to
learn how to use it from inside of our Python programs, so thatinstead of just displaying the data we retrieve,
we can execute Python statements using the data. That should make things a bit more interesting!

In order for a Python program to be able to talk to a database, it uses a special driver module. We are using
the mysql.connector module, calling its Connect() function to identify ourselves and obtain a database
connection. Once the connection is created, a cursoris used to execute SQL commands over that
connection. This program only inserts data into the database; it does not attempt to retrieve any data.

The DBAPI provides a solution to the SQL injection problem by allowing you to make what are called
"parameterized queries." They're a little like passing arguments to Python functions. You include a special
"parameter mark" ("%s" for the mysql.connector module we use in this course) in the SQL statement to
represent each piece of data, and then provide the data itself as an additional tuple to your database cursor's
execute() method. Let's write a program to insert data into our animal table. Create a new PyDev project
named HandlingDatabases and assign itto the Python2_Lessons working set. Then, in the
HandlingDatabases/src folder, create tablepo p.py as shown:

CODE TO TYPE:

nwnn

Populates a table with data from a Python tuple.
import mysgl.connector
from database import login info
if name ==" main_ ":
db = mysqgl.connector.Connect (**login info)
cursor = db.cursor ()

data = (
("Ellie", "Elephant", 2350),
("Gerald", "Gnu", 1400),
("Gerald", "Giraffe", 940),
("Leonard", "Leopard", 280),
("Sam", "Snake", 24),
("Steve", "Snake", 35),
("Zorro", "Zebra", 340)

)

cursor.execute ("DELETE FROM animal™)

for t in data:
cursor.execute ("""
INSERT INTO animal (name, family, weight)
VALUES (%s, %s, %s)""", t)

db.commit ()
print ("Finished")

When you - save and run this program, naturally, itraises an exception; rather than insert our login credentials
into this program, we're importing them as something called login_info from a module named database,
which doesn't yet exist.

; You may see a warning on the import mysql.connector line in this program. Ignore it for
: Note

Create database.py in your HandlingDat abases/src folder, entering yourlogin username in place of

"username" and your password in place of "password":

CODE TO TYPE:

USERNAME = "username"
PASSWORD = "password"
login info = {
'host': "sgl.oreillyschool.com",

'user': USERNAME,
'password': PASSWORD,
'database': USERNAME,
'port': 3306

}

This code creates a dict. The dict's items will become keyword arguments to the
mysql.connector.Connect() function (remember, the "**" tells the interpreter to convert the dictinto a set
of keyword arguments). Normally, to connect to a database server, you need to know a few pieces of
information, which you have to pass to the driver when connecting to the database. The names of the first four
arguments (host, user, password, and database) will probably make their purpose obvious. The fifth
argument, port, is required so the driver knows exactly where to connect on the database server. Save this
database module, then re-run - tablepop.py. The program inserts seven rows into your database's animal
table, and prints FINISHED. But don't take our word for it—check for yourself after you learn what your
program did! Let's look at the code more closely:

OBSERVE: tablepop.py

Populates a table with data from a Python tuple.
mman
import mysgl.connector
from database import login info
if name ==" main ":
db = mysqgl.connector.Connect (**login_info)
cursor = db.cursor ()

data = (
("Ellie", "Elephant", 2350),
("Gerald", "Gnu", 1400),
("Gerald", "Giraffe", 940),
("Leonard", "Leopard", 280),
("Sam", "Snake", 24),
("Steve", "Snake", 35),
("Zorro", "Zebra", 340)
)

cursor.execute ("DELETE FROM animal")

for t in data:
cursor.execute ("""
INSERT INTO animal (name, family, weight)
VALUES (%s, %s, %s)""", t)

db.commit ()
print ("Finished")

Firstlet's consider the database connection. The statementdb =
mysqgl.connector.Connect(**login_info) is equivalentto db = mysqgl.connector.Connect(host= ...,
user= ...,...), with the dictimported from the database module providing both the names and the values of
the parameters to the Connect() function.

Next, the statement cursor = db.cursor() creates a database cursor, which is how we present SQL
statements to the database for execution (you can create several cursors on the same connection if you want
to, but usually you won't do that). Next, the program loops over each of the tuples in data, presenting each
tuple as the second argument to a call to the cursor's execute() method.

Each time we called the cursor.execute() method, we provided the same parameterized SQL INSERT
statement (containing three "%s" parameter marks to indicate where the data should go) as the firstargument.
The second argument was the tuple of data items. This inserted a new row into the animal table.

The INSERT statement didn't provide a value for the id column. Where did the IDs come from?
When we created the table, we declared id as INTEGER PRIMARY KEY AUTO_INCREMENT.
AUTO_INCREMENT specifies that the id column of any row thatis inserted into the table with no

Note id value specified, will be setto one greater than the highest value that was ever stored in that
column. In practice, this normally means that values start atone and go up, which is whatwe
see here. If you have inserted and deleted other rows (good for you for experimenting!), you
might see different numbering.

So, now that we know what was supposed to happen inside tablepop.py, we should check to make sure
thatitran correctly!

In the Terminal tab, open a connection to the database, and verify the contents of the animal table. Type this
code atthe mysql prompt:

INTERACTIVE SESSION:

mysgl> SELECT * FROM animal;
e ——— o ————— - +
| id | name | family | weight |
B et o o ————— +
1	Ellie	Elephant	2350
2	Gerald	Gnu	1400
3	Gerald	Giraffe	940
4	Leonard	Leopard	280
5	Sam	Snake	24
6	Steve	Snake	35
7	Zorro	Zebra	340
e o o +
7 rows in set (0.04 sec)

Relationships and Foreign Keys: Referring to Occurrences

You already saw in the book/publisher example thatitis possible for a row in one table to refer to a row in another
table. Each book indicates its publisherin a column called BkPubNo that holds the value of the PubNo field of one of
the rows in the Publisher table.

The BkPubNo column in the Book table is called a foreign key—it stores a primary key value from some row in
another table. Since primary key values are guaranteed to be unique, a foreign key value refers justonce to a single
instance of the related entity.

Foreign keys are used to express the fact that relationships exist between two entities. In this case, we might say that
"book is-published-by publisher," or equivalently that "publisher publishes book." Since each book can have only one
publisher, but any given publisher can publish many books, we say that the relationship is "many-to-one" between
book and publisher, or equivalently that itis "one-to-many" between publisher and book.

Relationships can turn mere data into information. Without the relationships, we could not show the publisher of each
book in the query we ran earlier.

Integrity Constraints

For data to be stored in the database, it must meet certain rules, which are we'll summarize in a minute. Most relational
databases will enforce these rules automatically to maintain the integrity of the relational structures. For this reason,
the rules are often referred to as integrity constraints. Your application may also have its own integrity requirements
imposed on the database content.

For example, it's fairly common in order processing systems to assign each customer a credit limit, to allow them to
purchase a certain amount without advance payment. Generally a customer's credit limit will be increased as they
demonstrate their trustworthiness. When a new order is received, the system checks how much the customer already

owes, and if the new order would take them over their credit limit, it refuses to release the new order (atleast without
some manual override action). So the constraint there is that each customer's unpaid order total must be less than
their credit limit. Constraints imposed because of the organization's requirements are often referred to as business
rules, or semantic integrity constraints, but they are still constraints. They are frequently so complex thatitisn't
reasonable to expect the database to maintain them without help from code in the application.

In this section, we discuss the integrity constraints that we usually expect the database to maintain without any help.

Primary Keys Identify Occurrences

Each rowof atable must be uniquely identifiable. The easiestway to ensure this is to have a column
or collection of columns thatis guaranteed unique for every row in the table. This column (or collection) is
designated as the primary key. A primary key thatis made up of more than one column is referred to as a
composite primary key. The database will not allow two rows with the same primary key value to exist. You
can see for yourself by trying to create a duplicate id value in the animal table. In the interactive console, type
the code below as shown:

INTERACTIVE SESSION:

mysgl> INSERT INTO animal (id, name, family, weight)
-> VALUES (1, "Harold", "Hyena", 80);

ERROR 1062 (23000): Duplicate entry 'l' for key 1

mysql>

The error message tells you that the row could not be created because that would have resulted in a duplicate
primary key, which in turn would violate the built-in integrity constraint.

No NULLs in Primary Key Values

No part of the primary key may be null. The primary key is used as the unique identifier for the rows ofa
table. Since the result of a comparison between anything and null is unknown, it would be impossible to
answer yes or no to the question "does the primary key of this row have that value?"

No Multi-Valued Attributes

Attribute values must be "atomic". There is no way to store more than one value for a given attribute in
any row. If you need to do that, you need to create a relationship instead. You can learn more about this under
"Implementing Multi-Valued Attributes" below.

Referential Integrity

Foreign key values must exist as primary key values in the related table. This is a fairly
straightforward interpretation of the meaning of relationships. Because a book's publisher is indicated by its
BkPubNo attribute, the value of that attribute must be a reference to a real publisher.

Implementing Multi-Valued Attributes

What if we wanted to store details about what each animal in our zoo eats? One way to do this would be to add a
food column to the table. But what if an animal can eat more than one type offood? A common mistake of new
database programmers make is to try and store several values in a single column, as in this table:

2

5 Gerald Giraffe 940
4 Leonard |Leopard |280
5 Sam Snake 24
6 Steve Snake 2
7 Zorro Zebra 340

Don'tdo this. The red X is there to remind you that this is a terrible idea. Using a table like this would make it next to
impossible to answer relatively simple queries like "which animals eat grass?" The solution to this problem is to
introduce an entirely new entity to store this information, and put the new entity in a relationship with the animal entity by
storing the primary key of the animal as an attribute of the new food entity. Let's do thatnow. We'll use some DDL to
create the new table and some DML to add the rows. In the HandlingDat abases/src folder, create addfood.py as
shown:

CODE TO TYPE:

wwn

Create the food table and add all necessary data.
Note that the foods are identified by the animal's

name and family, so we have to look up the primary key.

import mysqgl.connector
from database import login info

db = mysgl.connector.Connect (**login info)
cursor = db.cursor ()

cursor.execute ("""DROP TABLE IF EXISTS food""")
cursor.execute ("""
CREATE TABLE food (
id INTEGER PRIMARY KEY AUTO INCREMENT,
anid INTEGER,
feed VARCHAR (20),
FOREIGN KEY (anid) REFERENCES animal (id)) ENGINE = MYISAM

wn n)

data = [('Ellie', 'Elephant', ['hay', 'peanuts']),
('Gerald', 'Gnu', ['leaves', 'shoots']),
('Gerald', 'Giraffe', ['hay', 'grass'l]l),
('Leonard', 'Leopard', ['meat']),
('"Sam', 'Snake', ['mice', 'meat']),
('Steve', 'Snake', ['mice', 'meat']),
('Zorro', 'Zebra', ['grass', 'leaves'])]

for name, family, foods in data:
cursor.execute ("SELECT id FROM animal WHERE name=%s and family=%s",
(name, family))
id = cursor.fetchone () [0]
for food in foods:
cursor.execute ("""INSERT INTO food (anid, feed)
VALUES (%s, %s)""", (id, food))
db.commit ()
print ("Processed", name, family, id)

Unlike tablepop.py, this program does notrequire that the table be created before itis run. To remove
any uncertainty about the state of the table, the DROP TABLE IF EXISTS statementis presentto make
sure that no food table exists when the CREATE TABLE statementis executed. If no such table exists
then the DROP TABLE IF EXISTS statement has no effect.

Z
o
-
[

When you run the program, it prints out each animal's details:

OBSERVE: Output from addfood.py

Processed Ellie Elephant 1
Processed Gerald Gnu 2
Processed Gerald Giraffe 3
Processed Leonard Leopard 4
Processed Sam Snake 5
Processed Steve Snake 6
Processed Zorro Zebra 7

So now you have a record of which animals eat which foods. Again, this is expressed as a relationship: animals eat
food (one-to-many), food is-eaten-by animal (many-to-one). Now try a few queries through the interactive window.
Use mysql to query the database:

INTERACTIVE SESSION:

mysqgl> SELECT * FROM food;

b ——— o +
| id | anid | feed
e Fom +
[1 | hay

|2 | 1 | peanuts |
[3 2 | leaves |
|4 | 2 | shoots |
|5 | 3 | hay

[6 | 3 | grass \
7	4	meat
8	5	mice
9	5	meat
10	6	mice
11	6	meat \
12	7	grass
13	7	leaves
o ——— o +

13 rows in set (0.04 sec)

mysql> SELECT name, family, feed
-> FROM animal JOIN food ON animal.id=food.anid
-> WHERE feed IN ('meat', 'leaves');

t———————— t———————— e +
| name | family | feed

t———————— t———————— e +
Gerald	Gnu	leaves
Leonard	Leopard	meat
Sam	Snake	meat
Steve	Snake	meat

| Zorro | Zebra | leaves |
e e o +

5 rows in set (0.05 sec)
mysqgl> SELECT feed

-> FROM animal JOIN food ON animal.id=food.anid
-> WHERE name='Sam' AND Family='Snake';

2 rows in set (0.04 sec)

mysqgl> SELECT COUNT (*) FROM food WHERE feed='meat';

tommmm - +
| COUNT (*) |
fommm +
| 3|
tomm o +

1 row in set (0.04 sec)

mysqgl>

The output shows that each row in the food table contains the relevant animal id. By joining the animal table to the food
table on equality of animal id, we produce output containing one row for each combination of animal and food. A given
animal can be associated with multiple foods, and the animal data is duplicated as many times as necessary, once for
each related food row. That's how the SQL JOIN feature works.

Using Relational Data in Python

For almost thirty years now, the relational database has been the dominant model for storing persistent data. As you

saw in an earlier lesson, Python has its own mechanisms, which are great when only Python programs are concerned,
butnotso useful when multiple languages mustbe used. In addition, there is a huge amount of "legacy data" already
stored in databases, and Python would notbe a very good programming language if it couldn't make use of that data.
Of course now you understand that it can, although you've only used MySQL, there are Python drivers for almost every
imaginable database.

When you use a database (or any other persistent data store) you are effectively creating a model of selected portions
ofthe world. Though the model describes only those aspects of the world that are of interest to your application. For
instance, when writing a hospital information system, you would probably want to know the names and birth dates of
the patients, but most likely not their favorite football team or the kind of car they drive. Similarly, you would probably
wantto know how many beds are in each ward, but the color the walls are painted would not be particularly relevant.

The value ofthese models is thatif you can keep them up to date (by changing them as the world changes—reducing
the stock quantity of a product when some is sold, for example—you can answer questions about the real world by
querying the model. If someone sends an order in for six widgets and you only have three in stock, you can respond by
telling the customer there will be a slight delay, and then order more widgets from your supplier without having to walk
to the warehouse and check the physical stock.

Metadata: Data about Data

One of the remarkable things aboutrelational structures is that they're powerful enough to describe other
relational structures. Since a database is packed full of routines to handle relational structures, it makes
sense that most relational database management systems (RDBMSs) actually store a relational description
of the application data structures they are used to create.

This description is often called the data dictionary, or the system catalog, or various other

' names. Many databases even allow you to retrieve data from the data dictionary, thereby

Note allowing you to query the structure of the database (the data dictionary is comprised of tables,

! after all). If you are given access to the data dictionary, please remember never to try to update

' those tables directly yourself (unless you happen to be an experienced database administrator)
—that's the RDBMS's job!

If you want to experiment with databases on your own computer, take a look at a standard library module,
sqlite3, thatlets you create and use relational structures without the complexity of an external database
server and client/server communications. All data are stored in files held on the same computer that the
programs run on. sqlite3 has some limitations and a few quirks butit's a good place to start, and has been
used to support many production programs.

Phew! Let's take a little break before moving on to the nextlesson... okay, break's over. Let's go!

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Database Hints and Tricks

Lesson Objectives

When you complete this lesson, you will be able to:

e allow access to data elements by name.

e use an unpacking assignmentin the for loop thatiterates over the result set.
e representtables as classes.

e manipulate SQL in Python.

e constructthe class inside a function, which takes the column and the table names as arguments.

Representing Data Rows

The lastlesson focused on getting data into and out of a database. Now we'll go over some different techniques that
make itmore convenient to use our data, by treating relational data just like other data in our programs. We already
learned that after creating a cursor from a database connection, we pass SQL to the cursor's execute() method. If the
SQL statements produce data, we call an additional cursor method to retrieve the data. Most database cursors have
three methods to retrieve data from the query results. Each data row is a tuple containing an elementfor each column
in the query's result.

Method Name Functionality

fetchone() Returns the next database row from the result set. If no rows are left, it returns None.

fetchmany(n) Returns a listofup to nrows. If the result setis exhausted, it returns an empty list.

fetchall() Returns a list of all rows remaining in the result set.

Working With Tuples

While you can deal with the data as tuples, it's not always the most convenient technique. The issue with
tuples is that you need to use a numeric index to retrieve elements. This can make your code unreadable, as
this first coding exercise will show. Create a DatabaseHints projectand assignitto your
Python2_Lessons working set. Then, copy your database.py from HandlingDatabases/src to
DatabaseHints/src to make yourlogin information available to programs in this lesson's folder. Create
datatest.py in the DatabaseHints/src folder as shown:

CODE TO TYPE:

Demonstration of indexed access to data elements.
import mysqgl.connector
from database import login info

db = mysqgl.connector.Connect (**login_ info)
cursor = db.cursor ()

fmt = "{0:10} {1:10} {2:6}"
print (fmt.format ("Animal", "Weight", "Family"))
print ("-"*28)
cursor.execute ("SELECT * FROM animal")
for animal in cursor.fetchall():
print (fmt.format (animal[l], animal[3], animal([2]))

This code produces a listing of the animals' names, weights, and families as you might expect:

OBSERVE: Output from datatest.py
Animal Weight Family
Ellie 2350 Elephant
Gerald 1400 Gnu
Gerald 940 Giraffe
Leonard 280 Leopard
Sam 24 Snake
Steve 35 Snake
Zorro 340 Zebra

The code uses a cursor's execute() method to request all animal data, and then iterates over the list of
tuples returned by the cursor's fetchall() method. Butlooking at the lastline of the code, itisn'tatall obvious
thatanimal[1] is the animal's name, animal[3] is its weight, and animal[2] represents the animal family.
Since you know that readability is one of the mostimportant aspects of code, itwould be good to allow

access to data elements by name. We can do that using various Python features.

One way to do itthat will immediately improve the readability of our code, is to use an unpacking assignment
in the for loop thatiterates over the result set. At the same time, we'll change the SQL to explicitly retrieve
only the fields we want. Each element of the (three-element) tuple is stored in its own variable, thanks to the
unpacking assignment. This makes the code a bit easier to read, butitdoes not effectits result at all. This
updated version of the code should produce exactly the same output. In datatest.py, type the code below as

shown:

CODE TO TYPE:

Demonstration of indexed access to data elements.
mmon

import mysqgl.connector

from database import login info

db = mysgl.connector.Connect (**login info)
cursor = db.cursor ()

fmt = "{0:10} {1l:6} {2:10}"
print (fmt. format ("Animal", "Weight", "Family"))
print ("-"*28)

i laknkilinial
oSO oTeT oo

%

anl
T
=
T

= . 1 .
TOT —airrifar Tir carSoOTrs

N = S =~ el : k]
PrIfTc(Tic. Tofiac (airriax

ul 3 1 [21 2 1L 1 \
T7 airriar o]y a1tz 7177/
cursor.execute ("SELECT name, weight, family FROM animal")
for name, weight, family in cursor.fetchall():

print (fmt.format (name, weight, family))

Save and runit. You'll see the same results.

Representing Tables as Classes

Another way to make the code more comprehensible is to create an object for each row that has attributes
with the same names as the columns, to hold the data elements retrieved from the database. Then we'll begin
to see thatthe rows returned from a query are actually data objects. In the DatabaseHint s/src folder, create

animal.py as shown:

CODE TO TYPE:

LIRIR1}

animal.py: a class to represent an animal in the database

nwnn

class Animal:

def init (self, id, name, family, weight):
self.id = id
self.name name
self.family = family
self.weight = weight

This class has no tests. We need to write some, quickly! Instead of getting into all the formality of unit tests,
we can include a basic self-test. This will allow us to tailor the way an Animal appears when printed, by
providinga __repr__() method to meet our own specifications. Modify animal.py as shown:

CODE TO TYPE:

wnn

animal.py: a class to represent an animal in the database

class Animal:

def init (self, id, name, family, weight):
self.id = id
self.name = name
self.family = family
self.weight = weight

def repr (self):
return "Animal ({0}, '{1}', '"{2}', {3})".format (
self.id, self.name, self.family, self.weight)

if name == " main ":
import mysql.connector
from database import login_ info
db = mysqgl.connector.Connect (**login info)
cursor = db.cursor()
cursor.execute ("SELECT id, name, family, weight FROM animal')
animals = [Animal (*row) for row in cursor.fetchall ()]
from pprint import pprint
pprint (animals)

Save and run it. You'll see this:

OBSERVE: Output from the animal.py tests

Animal

[Animal (1, 'Ellie', 'Elephant', 2350),
Animal (2, 'Gerald', 'Gnu', 1400),
Animal (3, 'Gerald', 'Giraffe', 940),
Animal (4, 'Leonard', 'Leopard', 280),
Animal (5, 'Sam', 'Snake', 24),
Animal (6, 'Steve', 'Snake', 35),

(7

, 'Zorro', 'Zebra', 340)]

Take a closerlook:

OBSERVE: animal.py

animal.py: a class to represent an animal in the database

class Animal:

def init (self, id, name, family, weight):
self.id = id
self .name = name
self.family = family
self.weight = weight
def _ repr (self):
return "Animal ({0}, '{1}', '{2}', {3})".format(
self.id, self.name, self.family, self.weight)

if name == " main ":
import mysgl.connector
from database import login info
db = mysqgl.connector.Connect (**login info)
cursor = db.cursor ()
cursor.execute ("SELECT id, name, family, weight FROM animal")
animals = [Animal (*row) for row in cursor.fetchall ()]
from pprint import pprint
pprint (animals)

The program now defines the representation of an Animal by implementinga __repr__() method for Animal.
The animals listis created in a list comprehension that provides individual arguments to the Animal creation
using Python's "*" feature. As we learned earlier, Python's "*" feature takes a tuple or listand turns itinto a
series ofindividual arguments, as required by the Animal class's __init__() method. The pprint() function,
imported from the pprint module, displays the representation of each list element by calling the __repr__()
method.

This testisn't perfect, butit does cover most basic functionality. A silently-passing testis usually better. (Can
you think of a way to silence the testing? Consider the exec() function). The test code also shows you one
way to create an instance of this class from a row in a database table. Keep in mind that this method depends
on the precise order of the fields in the database table, which isn't always a given. Someone might change the
structure of the database without your knowledge, which could cause problems.

You can go further by defining a function that returns a tailored class, of which you can create instances to
represent each row. To create the class, you would call:

RC = RecordClass("animal”,"id name family weight")

Once you create the class, you would create instances of that class by calling the class with values for each of
the named columns as follows:

forrowin cursor.fetchall(): row_record = RC(*row)

You have the power to go in many different directions with Python objects. As a relative newcomer to the
programming scene, you might sometimes find yourself almost paralyzed by the limitless number of options
you have. Don't panic. In almost every case, the best way to deal with the quandary is to go ahead and write
something. Ifitneeds to be changed later, that's fine—your tests should save you from big mistakes.

Going further, you'll consider the best way to create the Animal objects, and which methods they should have.
And whatkind of objects should those methods to return? It seems like it would be a good idea to have
read() return an Animal instance, butis it appropriate for a method of Animal to return an animal? And what
arguments should read() be capable of accepting?

Should readAnimal() be a function instead of an Animal method? How aboutwrite()? Or should thatbe
save()? Is there any really important value for that method to return? Maybe the names of the written fields?

Of course, you don'talways want every column of every row. Suppose you only wanted to retrieve certain
columns; would it help to keep the names ofthose columns somewhere, and build the column names into
the query somehow? That way you could have queries that didn't bring unnecessary data into memory, for
example. This is notonly possible, it's what we're going to do next!

Manipulating SQL in Python

Python objects have a defined life-cycle which generally begins by calling the type's __new__() method, then
calling the __init__() method ofthe "instance" returned by that. But most objects' behavior is determined by
the methods you write. You can write their __new__() and __init__() methods if you like. Once you know
what you're doing, you can pretty much install your own logic and have objects behave according to your

plan.

So, how would you like a query to behave? Do you want your query to be on justa single table? If not, you will

need to generate JOINs—if there are n tables, there mustbe n-1 JOIN conditions. Do you wantto be able to
determine which columns from which of the joined tables should be read in, and updated when written? Do
you want to be able to read and write those objects, atleast by primary key?

There are some generic solutions to these problems, butthose frameworks can be intimidating at first. With
your knowledge of Python, you already understand some techniques that make the database data easier to
handle. It's good to have a range of techniques at your command for different situations. In order to

implement those techniques, you'll need to understand how Python can be used to create SQL statements.

Check it out:

OBSERVE: Generic SQL SELECT Query

SELECT column, ... FROM relation WHERE conditions

The relation being queried is often a table, though you can query ajoin as well. The column listin the
statement may consistof simple column names or qualified names. If two or more of the tables in a query
possess columns with the same name, these columns can only be referred to using fablename.columname
syntax. You don't necessarily need all columns of a table each time you reference a row, so you can make a
case for having several different object types for a given table, each using a different set of columns.

partitioning might do? (Answer at bottom)

2
o
-
®

Suppose cols is the listof column names you want, table is the name of the table, and there are no other

conditions on the data. The SQL statementyou'd need to start with is:

"SELECT {0} FROM {1}".format(", ".join(cols), table)

The rows returned by this query have len(cols) elements, and the name of column nis cols[n].

In this next example, you'll generate the SQL from its component parts, and have a chance to observe how
queries can be built. Type the code below into an interactive interpreter session, as shown:

Using only a subset ofthe columns of a table can be taken to its logical extreme by actually
splitting the columns across multiple tables, of "commonly used" and "less commonly used"
columns. The technical name for this is vertical partitioning. What do you imagine a horizontal

INTERACTIVE SESSION:

>>> cols = "id name family".split ()
>>> ", " join(cols)

'id, name, family'

>>> table = "animal"

'SELECT id, name, family FROM animal'

>>> conditionl = "id=7"

>>> conditions = [conditionl]
>>> " AND ".Jjoin(conditions)
'id=7"

>>> conditions.append("family IS NOT NULL")
>>> " AND ".join(conditions)
'id=7 AND family IS NOT NULL'
>>> "SELECT {0} FROM {1} WHERE {2}".format (
", ".join(cols), table, " AND ".join(conditions))

>>>

>>> "SELECT {0} FROM {1}".format (", ".join(cols), table)

'SELECT id, name, family FROM animal WHERE id=7 AND family IS NOT NULL'

Let's take a closer look at that last statement:

OBSERVE: SELECT Statement Building

"SELECT {0} FROM {1} WHERE {2}".format(", ".join(cols), table, " AND ".join (cond
itions))

The result of this expression is:
'SELECT id, name, family FROM animal WHERE id=7 AND family IS NOT NULL'

When a query joins multiple tables, there is always a chance that a name conflict will occur—the same column
name might be defined in multiple tables. If you have enough information about the database, you can predict
and avoid such conflicts by using the fully-qualified name table.column. The SQL interpreter will tell you when
you make mistakes like this.

Let's say you have the column names and corresponding data items in lists. You can create a Python object
for each of the rows retrieved with attributes of the same names as the columns (the column names must be
named in acceptable Python style for the scheme to work properly). Earlier, we looked at how attribute
assignmentworks on Python objects. Don't worry if your memory is a bitfuzzy on this. Justfocus on this
part: if xis some Python object, then the assignment x.name = value is pretty much equivalent to
x.__dict__['name’] = value, which can also be expressed as setattr(x, 'name’, value).

Now, suppose the column names are "id," "name," and "email," and that you have a (three-element) data row
holding a value for each attribute. There are various ways to modify a Python object. The object mustbe an
instance of some user-defined class though, because built-in classes like int and list use a different
mechanism to look up attributes. Type the code below as shown into an interactive interpreter console:

INTERACTIVE SESSION:

>>> COLS = "id name email".split ()
>>> data = (1, "Steve Holden", "stevelholdenweb.com")
>>> class row:

pass

>>> rl = row()
>>> for col, d in zip(COLS, data):
setattr(rl, col, d)

>>> dir(rl)

[' doc_ ', ' module ', ... 'email', 'id', 'name']
>>> rl.id, rl.name, rl.email

(1, 'Steve Holden', 'steve@holdenweb.com')

>>>

So now you know how to inject arbitrary attributes into a Python object. Writing three lines of code to create
the object you want is pretty economical. But when the __dict__ attribute is actually a standard Python dict, it
has an update() method, which you can call with either a dict or a sequence of (key, value) pairs as its sole
argument. The arguments are added to the original dict, overwriting the values of existing keys and adding
new ones as necessary. This means you can achieve the same result even more efficiently. Continue your
previous interactive session, typing the code below as shown:

INTERACTIVE SESSION:

>>> zip (COLS, data)

<zip object at 0x0116F738>

>>> dict (zip (COLS, data))

{'email': 'stevelholdenweb.com', 'id': 1, 'name': 'Steve Holden'}
>>> r2 = row()

>>> r2. dict .update(dict(zip(COLS, data)))

>>> r2.email

'steve@holdenweb.com'

>>> dir (r2)

[' doc_ ', ' module ', ... 'email', 'id', 'name']
>>> r3 = row()

>>> r3. dict .update(zip(COLS, data))

>>> dir (r3)

[' doc_ ', ' module ', ... 'email', 'id', 'name']>>>

As the r3 example above demonstrates, the dict.update() method also accepts a sequence of (name,
value) tuples as an argument, avoiding the unnecessary creation of a dict. This type of manipulation is
common in some applications.

Armed with this knowledge, you can now write a class with a constructor call that takes the column names
and data items as arguments, and returns an object with the attributes set. Keep in mind that database column
names do notalways follow exactly the same rules as Python names, so you might find tables thatdon't
adapt well to this technique. There are often remedies you can apply at the database level to compensate for
poor naming choices, but that topic is beyond the scope of this course.

A Data Row Class

Create datarow.py in your DatabaseHints/src folder as shown below:

CODE TO TYPE:

wun

datarow.py : implements a simple database record class

class row:
def init (self, cols, data):
self. dict .update(zip(cols, data))
def repr (self):

return "user record(id={0.id} name={0.name} email={0.email})".format (sel
f)
if name ==" main ": # Simple self-test
rl = row(['id', 'name', 'email'],
(1, "Steve Holden", "steve@holdenweb.com"))
if rl.id !'= 1 or rl.name != "Steve Holden" or rl.email != "stevel@holdenweb.c
om":

print ("TEST FAILED: id={0.id} name={0.name} email={0.email}".format (rl))

The test code demonstrates a feature of the string .format () method. You can see thatitis notdifficult to
access the named attributes of the format arguments (which are themselves addressed by number). So,
rather than passing three arguments to format (), you just pass one, and select the fields inside the format. If
we had used this ability in the animal.py example earlier, we could have replaced this:

OBSERVE: Original __repr__ () method for Animal class

def repr (self):
return "Animal ({0}, '"{1}', '{2}', {3})".format (
self.id, self.name, self.family, self.weight)

with the slightly more readable:

OBSERVE: Revised __repr__()method for Animal class

def repr (self):
return "Animal ({0.id!r}, {O.name!r}, {0.family!r}, {O.weight!r})".format (sel

)

The Ir atthe end of each format specification tells the interpreter to substitute the object's repr()
representation. (That's why strings will still be displayed with quotation marks around them, even though
none appear in the format).

A More General-Purpose Approach

The row class developed in the preceding section works well enough, but the column names have to be
passed in every time you create a new object. It would be more convenient to create a class with the column
names already incorporated. You can do this by constructing the class inside a function, which takes the
column and the table names as arguments. The function then returns the class after inserting the table name
and the column names as class attributes. The function effectively becomes a "class factory," returning a
slightly different class each time itis called.

We'll write some basic tests for the function we're going to create—this will allow us to to verify its operation.
In the DatabaseHints/src folder, create test ClassFactory.py as shown:

CODE TO TYPE:

import unittest
from classFactory import build row

class DBTest (unittest.TestCase) :

def setUp(self):
C = build row("user", "id name email")
self.c = C([1l, "Steve Holden", "steve@holdenweb.com"])

def test attributes (self):
self.assertEqual (self.c.id, 1)
self.assertEqual (self.c.name, "Steve Holden")
self.assertEqual (self.c.email, "steve@holdenweb.com")

def test repr(self):
self.assertEqual (repr(self.c),
"user record(l, 'Steve Holden', 'stevelholdenweb.com')"
)

if name == " main ":
unittest.main ()

Now, in the DatabaseHints/src folder, create classFactory.py as shown:

CODE TO TYPE:

wun

classFactory: function to return tailored classes

nwnn

def build row(table, cols):
"""Build a class that creates instances of specific rows"""
class DataRow:
"""Generic data row class, specialized by surrounding function"""
def init (self, data):
"""Uses data and column names to inject attributes"""
assert len(data)==len(self.cols)
for colname, dat in zip(self.cols, data):
setattr (self, colname, dat)
def repr (self):
return "{0} record({1l})".format (self.table, ", ".join(["{O!r}".forma
t (getattr(self, c)) for c in self.cols]))
DataRow.table = table
DataRow.cols = cols.split ()
return DataRow

Running the test program, you'll see two passing tests:

OBSERVE:

Ran 2 tests in 0.000s

OK

You're really soaking up this information! You now you have enough knowledge to be able to query a database. Good
job! But we still haven't talked about updating databases yet. There are three particularly important SQL statements that
we'll wantto consider: INSERT, UPDATE and DELETE. In upcoming lessons, we investigate how those statements
can be automated on a case-by-case basis. For now, you're ready to leave the world of databases behind and
immerse yourselfin an entirely different technology: e-mail. See you in the nextlesson...

Note Answer to earlier question "What does a horizontal partitioning do?" It splits the table up into commonly-used and
less-commonly-used sets of rows. Back to question

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Handling Electronic Mail Messages

Lesson Objectives

When you complete this lesson, you will be able to:

e create and send email messages.

e create and send MIME messages.

e create a Message object from a flat file by using the email module's built-in message_from_file() function.
e send emails with smtplib.

e specify the type of content thatis in the message.

Handling Email

In this lesson we'll learn how to create and send email messages. We'll start by creating a plain text email, and send
out that email with Python's email and smtplib modules. We'll look at the source of an email, and get a quick
overview of RFC 2822, the requestfor comments that specifies an email's format.

Once you have an understanding of plain text emails, we'll move on to messages that have attachments and multiple
parts—MIME messages. Again, we'll be dealing with Python's email module, which contains classes for handling
messages thatare composed of multiple parts and types. Just like with plain text emails, we'll experiment with creating
and sending MIME messages. We'll see how MIME messages are composed, and how you can manipulate them
when you have a MIME message to pick apart.

An Example of Email Written to a File

First, let's write a plain text email file. Create a new HandlingEmail project and assignitto the Python2_Lessons
working set. In the HandlingEmail/src folder, create a file named example-email.txt as shown:

CODE TO TYPE:

From: anybody@work.com
To: anybody@home.com
Subject: Handling Emails With Python

This email was sent using Python's smtplib!

Replace the "From:" address, anybody@work.com, with the email address you have registered with O'Reilly (where
you receive email from OST). Replace the "To:" address, anybody@home.com, with the same O'Reilly-registered
address, or any other address you can access. Also, take note of the format of the headers and the empty line
separating the headers from the body.

Representing an Email with Message Objects

Python's email module contains Message—a class with instances that represent email messages. (You'll learn
more about the structure of an email later in this lesson when you getan overview of RFC 2822.) A Message object
has headers and payloads. Headers and the body are the two main parts of an email. You can access the headers
using dictionary-like syntax, or you can use the Message class's instance methods. The Message class handles the
objectrepresentation of an email; it does not actually have the functionality to send emails (that functionality is in the
smiplib module).

The email module also has FeedParser and Parser classes. These objects allow you to parse a stream of
characters or a file as an email. However, since instantiating a parser and then calling a parse method is such a
common sequence of operations for creating Message objects, there are convenience functions in the email module
that bypass the use ofthese two classes. Instead, you can create a Message object from a flat file by using the email
module's built-in message_from_file() function. There is also a similar message_from_string() function. The
next example shows the creation and usage of a Message object. ltincorporates the plain text email that you created
earlier. Type the code below into an interactive Python console as shown:

INTERACTIVE SESSION:

>>> import email, datetime

>>> msg = email.message from file(open (r'v:/workspace/HandlingEmail/src/example-email.t
xt'))

>>> msqg['From']

'anybody@work.com'

>>> msqg['from']

'anybody@work.com'

>>> msg['To']

'anybody@home.com'

>>> msg['Date'] = datetime.datetime.now().strftime("%d $b $Y $H:%M:%S -0600")
>>> msqg['Date']

'5 Aug 2010 10:00:00 -0700"'

>>> msg['Subject']

'Handling Emails With Python'

>>> msg.get ('From')

'anybody@work.com'

>>> msg.get ('from')

'anybody@work.com'

>>> msg

<email.message.Message object at 0x00BF8970>
>>> print (msg.as _string())

From: anybody@work.com

To: anybody@home.com

Subject: Handling Emails With Python

Date: 5 Aug 2010 10:00:00 -0700

This email was sent using Python's smtplib!

>>> msg['X-Holden-Web'] = "Root beer for everyone!"
>>> print (msg.as_string())

From: anybody@work.com

To: anybody@home.com

Subject: Handling Emails With Python

Date: 5 Aug 2010 10:00:00 -0700

X-Holden-Web: Root beer for everyone!

>>> msg.get payload()

"This email was sent using Python's smtplib!\n"

>>>

The message_from_file() function takes an opened file, and reads the file's contents to create a new Message
object. You access its headers using the same kind of indexing that you use with dicts (you can also add headers by
indexing the same way—you are even allowed to add proprietary headers, as long as their names begin with "X-").

Header access is case-insensitive. You can refer to the From header as either "From" or "from," using mapping style
accessors or the get() method. There are multiple methods for poking and prodding the header and body information
in a Message object—get_payload(), as_string(), and so on.

Sending Emails with smtplib

So, now that you have a representation of an email as a Python object, how do you actually send an email? In order to
send an email, you'll need access to a mail server. Public email services like Yahoo, hotmail, or gmail, offer you
access to their mail servers. If you've ever set up an email client, like Outlook, Thunderbird, or mail.app, to work with
your web mail account, you should be familiar with configuring an outgoing mail server. You'll need to know the host
name and portofthe mail server you're going to use when you send emails with Python. The smtplib module's
SMTP class represents a connection to a mail server. It allows you to connect to and send mail from that server.

If you know where to find your regular email settings, you can use those same SMTP server settings in
Note the nextfew exercises. Otherwise, use the settings in the example below. If you do that, all outgoing mail !
from your account will be redirected automatically to the email address you registered with O'Reilly. '

Type the code below into an interactive Python console as shown:

INTERACTIVE SESSION:

>>> import smtplib

>>> srv = smtplib.SMTP('mail.oreillyschool.com', 25)

>>> srv.sendmail (msg['From'], msg['To'], msg.as_string())
{}

>>> srv.quit ()

(221, b'2.0.0 Bye'")

>>>

Note You may see a warning that you are attempting to send spam. This is a security feature of our SMTP
' server; we are currently working on a solution.

When you instantiated the SMTP object srv, you passed a host name and a port to its constructor. An alternative would
be to instantiate the object and then immediately call its connect() method. If you are using a mail server that requires
authentication, you'll need to call login() (with a username and a password as its arguments) before using the
sendmail() method. Finally, as its name implies, sendmail() actually transmits your message. The From and To
addresses mustbe supplied as the first two arguments, and the entire message as a string mustbe passed in as the
third argument. We used the as_string() method to convert the entire message—the headers and the body—into a
string. The entire message is required, including the headers; get_payload() would notbe sufficient. Finally, you must
call quit() to close your connection to your mail server.

You should receive the message that you just sentin the destination "To:" email account. Most email clients allow you
to view an email's source. If you examine the source of the email that was sent, you'll get something like this:

OBSERVE:

Delivered-To: smtplib.example@gmail.com
Received: by 10.229.248.19 with SMTP id mel9csl1186lqgcb;

Thu, 4 Aug 2010 06:16:42 -0700 (PDT)
Received: by 10.227.69.17 with SMTP id x17mr4348340wbi.171.1273151801377;

Thu, 5 Aug 2010 06:16:41 -0700 (PDT)
Return-Path: <smtplib.example@yahoo.com>
Received: from smtpll2.plus.mail.rel.yahoo.com (smtpll2.plus.mail.rel.yahoo.com [69.147
.102.7517)

by mx.google.com with SMTP id pl8si2812439wbc.13.2010.05.06.06.16.39;

Thu, 5 Aug 2010 06:16:40 -0700 (PDT)
Received-SPF: pass (google.com: best guess record for domain of smtplib.example@yahoo.c
om designates 69.147.102.75 as permitted sender) client-ip=69.147.102.75;
Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for doma
in of smtplib.example@yahoo.com designates 69.147.102.75 as permitted sender) smtp.mail
=smtplib.example@yahoo.com; dkim=pass (test mode) header.i=@yahoo.com
Received: (gmail 71453 invoked from network); 6 May 2010 13:16:39 -0000
DomainKey-Signature: a=rsa-shal; g=dns; c=nofws;
s=s1024; d=yahoo.com;
h=DKIM-Signature:Message-ID:Received:X-Yahoo-SMTP:X-YMail-0SG:X-Yahoo-Newman-Property:F
rom:To:Subject:Date;
b=2tutdYAS41Fp/y5boszzbKefffTkEYgEzwkuBVBotA/MwnbX70g0+xWuNN2FvIPgONYkmL81 7p0EJIdWOgXmE
QUnplFOkACuXG7B8UWbj zJmILhbncuWdOtvXKPqtYcOPTXeGT+8Uylt0£fJGi38p3UYHxgH1 VM5 +VuDEQWT3W8Y=
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=yahoo.com; s=s1024; t=127315179
9; bh=mBI+mFk/NBVawMtbV/D/wFxf8YugJRFLgkauQ63aW3I=; h=Message-ID:Received:X-Yahoo-SMTP:
X-YMail-0SG:X-Yahoo-Newman-Property:From:To:Subject:Date; b=p5sdatt7AINABwx85pQEO0yEfNIvK
3BXUgACFm7rN/v4zjCn2TxXKYvekLaGuNj3La8kl71pbf5Xv6vPjRKbcIizuNoXRnuB31lr6aR75rgqzVZexRFHDM
JIKYnI9YyM5XemXbmG71WVAhEThkGm+KOTHAEhVVPNErLHo/y6cNtjQt0=
Message-ID: <317179.69250.gm@smtpll2.plus.mail.rel.yahoo.com>
Received: from [192.168.1.146] (smtplib.example@XXX.XXX.XXX.XXX with plain)

by smtpll2.plus.mail.rel.yahoo.com with SMTP; 05 Aug 2010 06:16:39 -0700 PDT
X-Yahoo-SMTP: TvYTIr2swBBLfJ4hwbbrugqylImdZ uFJ9iC3Ww--
X-YMail-0SG: 1xdPB3cVMImWl 7QIy3YY 1iLhSOcF29P0hOsaltTnh2cV5
AVG1SBuGU130V8SuFKhKicU3FPPX5wCnZrzWz I2anv4G3n.Mnak.bglkyO]
Wa T36GBA8P1XAIEMVRLNjBd3DagEQCu3DgDP_ 5 w3u4CmwIrHI6pkDbGd3o
PTOxapGWroM79XG2JE SKCS5VACE8SvksSGEmtxX0mIZtwB61ZbhnlY5SWOULL
aHPML.XnABew SwVbIGCARyGniU7.p gz9DxmLnk3j64BCDalzGigGOwlbJl
iyF.3uSWgsVG50K03UGrabw BjeSbDNaSGzM0jYG8KVFRR81DsotekR50. 3E
W99v26BEU
X-Yahoo-Newman-Property: ymail-3
From: anybody@work.com
To: anybody@home.com
Subject: Handling Emails With Python
Date: 5 Aug 2010 10:00:00 -0700

This email was sent using Python's smtplib!

Do you see the "X-Holden-Web" header in your message?

RFC 2822

The email's source looks a bit complicated at first glance. You normally don't see all of that stuff when you send and
receive emails; mail clients like Outlook, Thunderbird, and gmail, remove all of the nitty gritty details. Butin order to
enable your program to send email, you'll need to be familiar with the specifications of an email's syntax. These
specifications can be found in documents called RFCs—Requests for Comments. RFC 2822 contains the information
you need to use Python's email-handling modules.

There's a lengthy, detailed standard for RFCs. For more information, refer to the Python library.

Essentially, RFC 2822 is the standard that specifies the message contentformat to be passed between email
systems. A message is actually a series of characters. According to RFC 2822, a message has two parts: the headers
and the body (which is optional). Think of the headers as an envelope and the body as the letter. The envelope, or
headers, contain all of the information necessary for sending the message—the sender, the recipient, the date the
message was created, and so on. The contents, or body (also referred to as the payload), is the actual message to be
transmitted.

http://docs.python.org/library/email.header.html

The header is separated from the payload by exactly one blank line (two consecutive line breaks). Line breaks can be
represented by different characters, orin some cases, by combinations of characters. The RFC 2822 specification for
emails uses the carriage return and line feed pair (CRLF) to represent a line break. Two consecutive CRLFs separate
an email's headers from its body.

RFC 2822 is not the final word on email. Subsequent RFCs refine and clarify standards further. For example, RFCs
2045 through 2049 describe sending structured data, such as images and audio, via email. These RFCs, known
together as Multipurpose Internet Mail Extensions (MIME), extend the definition of an email body. For now, RFC 2822
is enough to get us started with Python's email module. The four headers that we'll use are Orig-date, From, To, and
Subject:

Field Name | Example
orig-date | Date: 24 Apr2010 10:00:00 -0700

from From:someone@domain.bar
to To:foo@example.bar
subject Subject: Hello

Take another look now, atthe source of the email that you sent and received earlier. Pick out the fields that were
required. Look at all of the headers that were inserted by the mail client and the mail server! Find the blank line that
separates the headers from the body.

MIME Messages

So far, you've used string representations of Message objects to send emails with smtplib. But you could as easily
have skipped parsing your email textinto a Message object, and just passed a string directly from your file to the
sendmail() method. The basic RFC 2822 format can make using a Message object to represent a plain text email
seem like overkill.

The real value of the Message object abstraction will become more apparent when you use it to create emails that
have multiple parts, contain non-English text (thatis, character sets other than ASCII), or have non-text attachments.
MIME is a set of standards that allows emails to contain those elements. Incorporating MIME requires some
modification to the way you send plain text emails. You'll need boundaries for multipart messages, and extra headers
that specify which content you're sending. The MIME RFCs specify several headers that are not presentin RFC 2822,
such as Content-Type and MIME-Version. Rather than going through each MIME-related RFC, we'll start with an
example of how to send a basic MIME message with Python's email module.

MIME Messages in Python use the Message class. MIMEBase, a subclass of Message, encapsulates common MIME
Message functionality. MIMEBase, in turn, serves as the parent of a family of classes that provide functionality for
specific MIME types. Our next example shows how to create a MIME Message that's composed of two other
messages—a plain text message and an html message. Let's get going already! Create a container message that
holds the two text messages. Type this code into an interactive Python console:

INTERACTIVE SESSION:

>>> from email.mime.multipart import MIMEMultipart
>>> msg = MIMEMultipart ()

>>> msg

<email.mime.multipart.MIMEMultipart object at 0x00BEB7D0>

>>> msg['To'] = 'anybody@home.com'

>>> msg['From'] = 'anybody@work.com'

>>> msg['Subject'] = 'Sending Multipart HTML Mail'

>>> print (msg.as _string())

Content-Type: multipart/mixed; boundary="=============== 1941993348=="

MIME-Version: 1.0

To: anybody@home.com

From: anybody@work.com

Subject: Sending Multipart HTML Mail

- 1941993348==

- 1941993348==--
>>> msg.get content type ()
'multipart/mixed’

>>> msg.is multipart ()

True

>>> msg.get boundary ()

! 2020970424=="

We used a specific MIME class rather than the Message class or the MIMEBase class to create our container.

MIMEBase is an abstract class—itis notintended to be instantiated directly. Instead, we used a subclass of MIMEBase
—in this case, MIMEMultipart. A MIMEMultipart object automatically sets a couple of headers for you: Content-Type and

MIME-Version. You can see the values of these headers, along with the rest of the message, by calling the
MIMEMultipartinstance's as_string() method. Its headers indicate thatits Content-Type is multipart/mixed.
Alternatively, we can call get_content_type() to view the Content-Type value directly. We can also call the
is_multipart() method to determine whether a message may be composed of subparts. Finally, the
get_boundary() method shows the string that separates the different parts of a message.

Now that we have a container message, we can create the other two messages that we'll attach to it. Continue the
interactive Python console session. Type the code below as shown:

INTERACTIVE SESSION:

>>> from email.mime.text import MIMEText

>>> text msg = MIMEText ('hello!', 'plain')

>>> html msg = MIMEText ('hello!', 'html')
>>> print (text msg.as string())

Content-Type: text/plain; charset="us-ascii"

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

hello!

>>> print (html msg.as string())
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!

>>> text msg.is multipart ()
False

>>> html msg.is multipart()
False

>>> text msg.get content type()
'text/plain'

>>> html msg.get content type ()
'text/html’

You created another two objects that are instances of a type-specific MIME class—MIMEText. The MIMEText
constructor takes the payload as the firstargument, and the subtype of the message as the second. Both messages
are of type text, but one is text/plain, while the other is text/html. These objects do not have subparts; when you call
is_multipart() on them, the resultis False. By using get_content_type(), we see that the appropriate Content-
Type headers are set. Again, the actual headers can be viewed by calling as_string() on either of these objects, oron
the container message.

With these two messages created, we can insert them into the original multipart message that serves as the container.
Continue the interactive Python console session. Type the code below as shown:

INTERACTIVE SESSION:

>>> msg.attach (html msqg)

>>> msg.attach (text msg)

>>> msg.as_string()

'Content-Type: multipart/mixed; boundary=" 1941993348=="
MIME-Version: 1.0

To: anybody@home.com

From: anybody@work.com

Subject: Sending Multipart HTML Mail

-- 1941993348==

Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!

- 1941993348==

Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

hello!
-- 1941993348==--"
>>> msg.get payload()
[<email.mime.text .MIMEText object at 0x00C035B0>, <email.mime.text.MIMEText object at 0
x00C035D0>]
>>> messages = msg.get payload()
>>> for m in messages:
print (m.get content type())

text/html

text/plain

>>> msg.walk()

<generator object walk at 0x00C048C8>

>>> for m in msg.walk() :
print (m.is multipart())
print (m.get content type())

True

multipart/mixed

False

text/html

False

text/plain

Using the attach() method, you can nest messages into your original container email. The submessages thatyou
attached to your container email still retained their headers. Again, by using as_string(), you can see the headers of
your message. This time though, you can see the headers of all of the messages because two them are subparts of
the original. The boundary separates the messages.

When the get_payload() method is called on the top-level multipart message, the resultis the listof the
submessages it contains. The items in this listare also message objects. They are the text and html messages that
you created. As is the case with regular Message objects, you can get the content type and the payload from them. In
fact, everything you can do with Message objects, you can do with the submessages on this list. Going through nested
messages by constantly calling get_payload() would be tedious. So for messages with complex nesting, the
Message object supplies a walk() method which allows you to move through all of the messages parts and subparts.

Now that you have your multipart message constructed, you can send it using the smtplib module. Continue the
interactive Python console session. Type the code below as shown:

>>> import smtplib

>>> srv = smtplib.SMTP('mail.oreillyschool.com', 25)

>>> srv.sendmail (msg['From'], msg['To'], msg.as string())
{}

>>> srv.quit ()

(221, ©'2.0.0 Bye'")

>>>

When you check your email, the source will look something like this:

OBSERVE:

Delivered-To: smtplib.example@gmail.com
Received: by 10.229.184.72 with SMTP id c3j8cs27998qgcb;

Wed, 5 Aug 2010 04:47:15 -0700 (PDT)
Received: by 10.229.230.76 with SMTP id j112mr584775qcb.134.1273664835572;

Wed, 5 Aug 2010 04:47:15 -0700 (PDT)
Return-Path: <smtplib.example@yahoo.com>
Received: from smtplO07.plus.mail.rel.yahoo.com (smtplO7.plus.mail.rel.yahoo.com [69.147
.102.701)

by mx.google.com with SMTP id h8s195375gce.35.2010.05.12.04.47.12;

Wed, 5 Aug 2010 04:47:14 -0700 (PDT)
Received-SPF: pass (google.com: best guess record for domain of smtplib.example@yahoo.c
om designates 69.147.102.70 as permitted sender) client-ip=69.147.102.70;
Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for doma
in of smtplib.example@yahoo.com designates 69.147.102.70 as permitted sender) smtp.mail
=smtplib.example@yahoo.com; dkim=pass (test mode) header.i=@yahoo.com
Received: (gmail 14018 invoked from network); 5 Aug 2010 11:47:12 -0000
DomainKey-Signature: a=rsa-shal; g=dns; c=nofws;
s=s1024; d=yahoo.com;
h=DKIM-Signature:Message-ID:Date:Received:X-Yahoo-SMTP:X-YMail-0SG:X-Yahoo-Newman-Prope
rty:Content-Type:MIME-Version:To:From: Subject;
b=1g60xX10KZAXksTKkzg8elo0O8ieAxFAappES61HNBM+0dbg+8WAEumPAipkzXc+FrfTxp9baEcuEOZHs 6Nymh
CsSrGitG8YdH65g2DSyZ1nZ fx+J8vTwnmBPWUERDLDNb0jcOBjL8Yxp67CoP15sQK70RQWRFA8Zz fuHVRKOF3CGY=
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=yahoo.com; s=s1024; t=127366483
2; bh=9jXFcWGXd3kgMgAgceETpi+pfKBH4iwllLP8TtNzJIo=; h=Message-ID:Date:Received:X-Yahoo-
SMTP:X-YMail-0SG:X-Yahoo-Newman-Property:Content-Type:MIME-Version:To:From:Subject; b=X
4£15CkB4Nncb53WVyv7W8DTVRH2 6barOUPgtggRXSWaDoVpl6ShOauxPgtoOw]jHFYSb+k3RHQ7cDV2mmLLdacPc
bhm7nCnElkcyjN+9YHyclvDjcvSv4mC8cfCBhOB1BwPAQUpDzvEe508WHi1AG+HHpeoRcrhdMk2vd8zz75fc=
Message-ID: <666948.12858.gmlsmtpl07.plus.mail.rel.yahoo.com>
Date: Wed, 5 Aug 2010 04:47:12 -0700 (PDT)
Received: from [192.168.1.146] (smtplib.example@XXX.XXX.XXX.XXX with plain)

by smtplO07.plus.mail.rel.yahoo.com with SMTP; 5 Aug 2010 04:47:12 -0700 PDT
X-Yahoo-SMTP: TvYTIr2swBBLfJ4hwbbrugylImdZ uFJ9iC3Ww--
X-YMail-0SG: .WEVb9sVMI11BMCoj.KTsuu4ud90TVz2xFhg 0fgAIj82I6t
wG.1W3STKXIRYDBpPxsHA1HKn6nVLd SHKOFi5Q3QgNDxvNI1rURL3r4rLVS5g
wal.7VIWZYVtB9dzHB3BTCUczn7WN fojpSzk2muQn0DlpOLd 6 Pj2Alwgm
XGpHCgGgBSrvBzdtTAfWvSGarkEzXpopsRBwrJcnODFE3W65LVualdx9b6z41
zCr HHODZIPOBAgOKOPDANhvpWoCY1lhAHbsQoT4eLexZX63jSZ06VylQlu j
gqlbgDaAFRgP1tsNs4sxMASuTOjJr9dVK vP50tgQL11dxDgR60JIrEQNNRI6

cjM1EiGVD
X-Yahoo-Newman-Property: ymail-3
Content-Type: multipart/mixed; boundary=" 0044803118=="

MIME-Version: 1.0

To: smtplib.example@gmail.com

From: smtplib.example@yahoo.com
Subject: Sending Multipart HTML Mail

= 0044803118==

Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

hello!
== 0044803118==
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit

hello!
- 0044803118==--

There are a few headers in the source that you haven't encountered yet. Again, MIME adds several new headers to the
email specification to describe the contents of an email. These new headers include:

e MIME-Version

e Content-Type

e Content-Transfer-Encoding
e Content-ID

e Content-Disposition
Only the first three—MIME-Version, Content-Type, and Content-Transfer-Encoding—are required for a MIME message.

MIME-Version indicates that the message conforms to the MIME standard. This is a signal to email clients and other
email programs to perform the additional processing necessary to handle MIME messages. In practice, the value of
this header is usually "1.0." It should appear at the top level of a message, though it can appear again if more MIME
messages are attached to the original message (more on nesting messages later in this lesson).

OBSERVE: MIME-Version header

MIME-Version: 1.0

Once you have signaled that a message conforms to the MIME standards by using the MIME-Version header, you
have to specify the type of content thatis in the message. MIME messages are notlimited to justtext! The Content-
Type header describes the kind of data that comprises the body. This description is made up of two parts, separated
by a forward slash: type/subtype. The type is the general kind of data. The subtype is the format of that data. Some
common Content-Type values are:

Type/Subtype; Parameter Description
. A plain text message. In the absence of a Content-Type header, text/plain is
text/plain
usually assumed.
An HTML email—this tells your mail client that the email should be rendered as
text/html .
HTML, like a web page.
Message/RFC822 The Content-Type of another message; for example, in a reply, the original
message may be attached.
Image/Jpeg An image in jpeg format.
multipart/mixed; A message with multiple parts. The parts are separated by the boundary—
boundary=gcOy0pkb9ex gcOy0Opkb9ex.

OBSERVE: Content-Type header

Content-Type: text/plain; charset="us-ascii"

Content-ID is a "world-unique" identifier for a part of MIME message. Just like the Message-ID header, this is usually
automatically generated so thatitis unique, regardless of when and where it was created. A message's Content-ID can
be used in several different contexts. For example, it can aid in caching message parts, or it can serve as mechanism
for maintaining references between different message parts.

OBSERVE: Content-ID header

Content-ID: <d41d8cd98f00b204e9800998ecf8427e@foo.bar>

The Content-Disposition headeris an optional field that specifies how a MIME message partis displayed in your
mail client. An inline partis automatically displayed in the regular flow of the message. An attachment partis not
automatically displayed; instead, it requires some user action in order for it to be viewed (such as opening a pdf
reader). The Content-Disposition header also allows you to specify a file name for an attachment. This is done by
adding a filename parameter to the end of the header.

OBSERVE: Content-Disposition header

Content-Disposition: attachment; filename="files.zip"

Because binary data can't be transferred over some protocols, it has to be represented as ASCII text. For example,
images and audio need a binary-to-text encoding in order to be sent. The Content-Transfer-Encoding header
specifies which encoding—if any—was used. Base64 is a common binary-to-text encoding scheme. Right-click on the

image below, select Save Picture As..." and save itas v:/workspace/python-logo.png.

@ python

M

OBSERVE: Content-Transfer-Encoding header

Content-Transfer-Encoding: base64

Go ahead and type the code below into an interactive Python console:

INTERACTIVE SESSION:

>>> import os
>>> from email.mime.image import MIMEImage
>>> fn = 'v:/workspace/python-logo.png'
>>> import mimetypes
>>> mimetypes.guess type (fn)
('"image/png', None)
>>> with open (fn, 'rb') as fp:
img = MIMEImage (fp.read())

>>> img['MIME-Version']

'1.0"

>>> img['Content-Type']

'image/png'

>>> img['Content-Transfer-Encoding']
'baseocd'

>>> img['Content-Disposition']

>>> img.get filename ()

>>> img.add header ('Content-Disposition', 'attachment', filename=os.path.basename (fn))
>>> img['Content-Disposition']

'attachment; filename="python-logo.png"'

>>> img.get filename ()

'python-logo.png'

There is a mimetypes module that contains a guess_type() method that guesses the content type of a file by looking
atits extension. This can be handy for determining which MIME type class you should use to representa message or
file in your program, without doing content analysis. A few headers, such as MIME-Version, Content-Type, and
Content-Transfer-Encoding, are automatically set by using the MIMEImage constructor. If you want to attach a file so
thatit's displayed as an attachment rather than inline, you can use the add_header() method and putin the
appropriate header names and header values manually. The add_header() method takes as keyword arguments, the
header name, the header value, and any optional parameters that you want to setfor the header. Once you set the
attachment's filename, you can retrieve the attachment's filename programmatically, using the get_filename()
method.

In the Home Stretch

Using Python's email and smtplib modules, along with your knowledge about how emails are formatted, you can send
emails as well as parse them. An email can be a single plain text email, or it can be a message that contains several
sub-parts. Depending on what type of email you're sending, you'll set various headers that specify the details of your
email—who it's from, who it goes to, what kind of content it contains, and so on. Python's email module offers a

variety of classes, from the base Message class to the MIME* classes, to representemail messages. These classes
offer conveniences like setting certain headers automatically, as well as methods that allow access to various parts of
an email message (such as get_payload(),orget()), and methods thataid in the creation of messages
(add_header(), attach(), etc.). Once you've created a Python representation of your message, you can use the
smtplib module to connectto your mail server and send your message.

Wow, can you believe it? You've only gotone more lesson to go. It seems like only yesterday you were learning about
unittest...justlook at you now! We've covered a lot of ground here, and you've done a great job. Still, ifany part ofiitis
confusing or you need some guidance, please call on your faithful instructor. See you in the next and final lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Email Search and Display

Lesson Objectives

When you complete this lesson, you will be able to:

write a program to create the necessary table in the MySQL database.
e create a library to handle storage and retrieval of information in the database.

write tests that exercise the storage and retrieval functionality.

write a GUI-based program to query the database and display the resulting messages.

A Really Useful Program

You have picked up lots of empowering skills in this course. You know how to build GUIs, you understand about
various types of persistent storage, and you can handle email. In this lastlesson, we'll build an email storage and
retrieval mechanism, then attach that to a graphical user interface so that the user can enter various search criteria and
click on a button to see a list of matching messages. Clicking on a message from the list will display the message
body. Not only that, but the messages will be stored in a relational database on an entirely different computer from the
one running the program. How cool is that?

So, how will we be able to search the email? Potentially by date and by partial match on the names and email
addresses of senders. We'll also be able to extend this software to handle additional headers as retrieval keys.

We'll start by writing a program to create the necessary table in the MySQL database. We'll follow that with a library to
handle storage and retrieval ofinformation in the database, along with tests that exercise the storage and retrieval
functionality. Finally, we'll write a GUI-based program to query the database and display the resulting messages.

A Basic Email Database

To store messages, we need a defined structure. A single table is the simpleststore, so for now, we'll develop a
single-table store. Once the basic message storage function is working (and tested!), we'll add columns to the table to
enable new types of retrieval.

Message Identities

The modern email system is pretty good about allocating each individual message a globally-unique
identification, which is carried in the Message-ld header. Here's a sample header from the author's current
inbox:

OBSERVE: Sample Email Header

Message-ID: <20100529085040.32283.76682@betelnutz>

To keep relationships efficient and representations clear, each message in the database will have two unique
columns. There will be msglD (an integer column automatically inserted as necessary by the RDBMS and
used as the primary key) and msgMessagelD (the globally-unique mail system identifier). msgID will be
used to refer to a message wherever possible in the system. Messages themselves do sometimes refer to
each other by the Message-ID value though, so thataccess path is worth putting into even a basic
implementation.

This initial immplementation records the Message-ID header value as a database column so you can use SQL
to query it. Later, certain other information will also be extracted from the messages and recorded directly in
the database for the same reason. This will allow full relational operations on that data, letting the database
do the retrieval tasks for which itis optimized.

The store needs an Application Programmer Interface or API. This intimidating-sounding thing is actually a set
of "how-to instructions for users of the message store." The fundamental operations of storage and retrieval
are described in the API. Storing a message requires thatthe message be passed in to the storage function.
Retrieving messages requires some kind of identity to be passed in, and for the function to return a message
(orraise some sort of MessageNotFound exception). Since you have decided (well, okay, we've decided) to
retrieve with both "msgID" and "MessagelD," it makes sense to provide two functions. Here is the API that will
help you accomplish your tasks:

Function Purpose and interface

Adds the message to the store and returns its msgID value. Ifa
message with the same value for the Message-ID headeris
already presentin the store, the msgID of the existing message is
returned.

store(msg)

Returns the message whose primary key value is id or raises an

message_by_id(id) exception if no such message is present.

Returns the message whose Messageld value is message_id or

message_by_messageid(message_id)| NS .
7= — " /|raises an exception if no such message is present.

This is only an initial attempt to define the interface. Don't think of itas something setin stone. Often, after
working with a newly-designed API for a little while, itturns out to be less than ideal. In that case, feel free to
change it—programmer convenience is more important than strict adherence to existing APIs. Never be afraid
to rework a portion of your design; well-designed systems are the result of experimentation and revision.

The Message Table

The message store is deliberately uncomplicated. You may be surprised at how sophisticated your queries
have become by the end of the lesson. Initially there are justthree columns: the id (automatically generated
by the database), the Message-ID header value, and the message itself, represented in the most
fundamental way: as the sequence of characters that was received over the network. This sequence can be
parsed by the email module to produce email.Message objects. More columns will be added to the
database table as its scope and capabilities grow.

Start MySQL at the terminal window, and create this table as shown:

INTERACTIVE SESSION:

mysqgl> CREATE TABLE message (

-> msgID INTEGER AUTO INCREMENT PRIMARY KEY,
-> msgMessageID VARCHAR (128),
-> msgText LONGTEXT) ENGINE = MYISAM;

Query OK, 0 rows affected (0.18 sec)

That's it. You now have a table in which to store your messages. The message itselfis stored as a character
sequence in a LONGTEXT column. This particular type of column is designed to allow storage of arbitrary
character strings. Email can be fricky stuff to store; notall messages will necessarily be in the same character
setand no global default can be applied. (For example, sometimes the header data explains that certain
portions of the message are in specific encodings).

Processing the message to create an email.Message objectis the most efficient way to extract the
Message-ld header. For now, if you want to find out anything else aboutthe message once it's been stored,
you'll need to read its textin from the database and parse it again. By ensuring all messages are parsed
before entering the database, you guarantee they can be parsed upon retrieval.

Atsome pointyou may consider using some more efficient storage representation, such as a pickle. But an
email is not necessarily bestrepresented as a single object, so your initial approach will be the more
conservative one outlined above. Remember—first, make it work! You can update the storage mechanism
later if necessary.

You only need two pieces ofdata in order to inserta new row (representing a new message) into the
message table: the Message ID and the bytestring representation of the message. The third column (primary
key) will be populated automatically. So if you have the Message ID and the string representation in variables
message_id, and text respectively, along with a database cursorin curs, the required statementwould look
like this:

OBSERVE: Inserting Data in the message Table

curs.execute ("INSERT INTO message (msgMessageID, msgText) VALUES (%s, %s)",
(message_id, text))

Beginnings of a Mail Database Module

Now that the table has been created, you need Python functionality that allows you to store, and retrieve,
email messages.

Users of this APl don'tneed to know how the data is stored in the database. Ifthe APl does not
' provide them with the features they need, knowledge of the structures allows the use of raw '
. Note SQL, butit's better to try and avoid this. If only your code updates the database, then only you '
are responsible for its consistency. This is a good practice to adhere to in database
' management. '

Before you insert the message into the database, you need to make sure thatitisn'tin there already. You
could either retrieve the setofall rows having the given message ID and make sure thatitis empty, or you
could count all of the rows with a specific message-id. Since you need the primary key of the message when
itis presentin the database anyway (to return as the value of the function), you may as well try and retrieve it
now.

Note When there is a possibility of retrieving lots of rows, but you only wantto know how many there
are, it's usually much more efficientto use the SQL COUNT (*) function we discussed earlier.

Create a EmailSearch project and assign itto the Python2_Lessons working set. Copy the database.py
file from DatabaseHints/src to your EmailSearch/src folder. Then, in the EmailSearch/src folder, create a
new Python file named maildb.py as shown:

CODE TO TYPE:

Email message handling module: contains logic to store
email messages using a MySQL relational database.

nwnn

from email import message from string

def store(msg, conn, curs):

Stores an email message, if necessary, returning its primary key.

mwn

message id = msg['message-id']

text = msg.as_string()

curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

result = curs.fetchone()
if result:
return result[0]
curs.execute ("INSERT INTO message (msgMessagelD, msgText) VALUES (%s, %s)",
(message_id, text))
conn.commit ()
curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

return curs.fetchone () [0]

This maildb module defines a single function, which takes a parsed email.Message and its textual
equivalent as arguments. First, the function extracts the message's Message-ID header value, and attempts
to retrieve the msgid of the message with that message_id (in case it already exists).

Sadly, we broke the firstrule of test-driven development herel Remember it? "Only write code to make a
failing test pass." But we wrote the code before writing the tests. Yes, we have led you down a dark and evil
path. Don'tletus do itagain! Let's write the tests now. To getgoing in the right direction, we'll even add some
tests that we know the existing code cannot pass, and then augment our code to make them pass in true test-
driven development fashion.

In our consideration of email, we saw that the Message-ID header was a possible (candidate) primary key.
While we do need to store this value as a column in the database (messaging systems often use Message-
ID values to refer to other messages), it should not be the primary key—it's too long, and strings take longer
to compare than numbers. So we made the primary key the msgid column, with values that are automatically
allocated as rows are added to the database.

Now we can store messages in the database, right? Well, the only way to test storage is to retrieve data and
verify that it agrees with what was stored. So we need a way of getting the information out—in fact we need
two ways. We need to be able to retrieve a message with a given primary key, and with a given Message-ID
header value. The code for each is somewhat similar.

Here's our testing strategy: each message is reconstituted from a text file, then stored using the
maildb.store() function. As the program iterates over the message files and stores the messages, it builds
two dicts. The first one, msgids, maps Message-ID values to primary keys. The second, message_ids,
maps primary key values to Message-ID values. The content of the dicts is used by the test_msg_ids() and
test_message_ids() methods to verify that the expected message does indeed come back after retrieval by
one or the other of the keys.

In the EmailSearch/src folder, create a testMaildb.py file as shown:

CODE TO TYPE:

Read in and parse email messages to verify readability.

NOTE: This test creates the message table, dropping any
previous version and should leave it empty. DANGER: this
test will delete any existing message table.

o

from glob import glob

from email import message from string
import mysql.connector as msc

from database import login info
import maildb

import unittest

conn = msc.Connect (**login info)
curs = conn.cursor ()

TBLDEF = """\

CREATE TABLE message (
msgID INTEGER AUTO INCREMENT PRIMARY KEY,
msgMessageID VARCHAR (128),
msgText LONGTEXT

) ENGINE = MYISAM"""

FILESPEC = "C:/PythonData/*.eml"

class testRealEmail traffic(unittest.TestCase):
def setUp(self):
mon
Reads an arbitrary number of mail messages and
stores them in a brand new messages table.

DANGER: Any existing message table WILL be lost.

wnn

self.conn = msc.Connect (**login info)
self.curs = self.conn.cursor()
self.curs.execute ("DROP TABLE IF EXISTS message")
self.conn.commit ()
curs.execute (TBLDEF)
conn.commit ()
files = glob(FILESPEC)
self.msgids = {} # Keyed by message id
self.message ids = {} # keyed by id
for £ in files:
ff = open(f)
text = ff.read()
msg = message from string(text)
id = self.msgids[msg['message-id']] = maildb.store(msg, self.conn, s
elf.curs))
self.message ids[id] = msg['message-id']

def test not empty(self):
Verify that the setUp method actually created some messages.
If it finds no files there will be no messages in the table,
the loop bodies in the other tests will never run, and potential
errors will never be discovered.
curs.execute ("SELECT COUNT (*) FROM message")
messagect = curs.fetchone () [0]
self.assertGreater (messagect, 0, "Database message table is empty")

def test message ids(self):

wnn

Verify that items retrieved by id have the correct Message-ID.

o

for message id in self.msgids.keys():
pk, msg = maildb.msg by id(self.msgids[message id])
self.assertEqual (msg['message-id'], message id)

def test ids(self):

wnn

Verify that items retrieved by message id have the correct Message-ID.
for id in self.message ids.keys():
pk, msg = maildb.msg by message id(self.message ids[id])
self.assertEqual (msg['message-id'], self.message ids[id])

def tearDown (self) :
self.conn.close()
if name = == " main ":
unittest.main ()

Save and run it. The tests fail, because the code calls two retrieval functions that we may not have written yet.
In the code editor window, you'll see two error flags in the left margin:

X

Move your cursor over the red "X," and you'll see a tooltip that says something like "Undefined variable from
import: msg_by_id". Even so, Eclipse will letyou try and run the program. The resulting AttributeError
exceptions cause the test to fail:

OBSERVE: Result of Initial Run of testMaildb.py

EE.

ERROR: test ids (_ main .testRealEmail traffic)
Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 62, in test ids
pk, msg = maildb.msg by message id(self.message ids[id])
AttributeError: 'module' object has no attribute 'msg by message id'

ERROR: test message ids (_ main .testRealEmail traffic)

Traceback (most recent call last):

File "V:\workspace\EmailSearch\src\testMaildb.py", line 54, in test message id
s

pk, msg = maildb.msg by id(self.msgids[message id])
AttributeError: 'module' object has no attribute 'msg by id'

Ran 3 tests in 0.688s

FAILED (errors=2)

The tests fail because there is no code presentto implement the retrieval functions msg_by_id() and
msg_by_message_id(). In this case, failure is great news—it means we're in proper test-driven
development mode, now all we have to do is write those functions to pass the tests. Both of the retrieval
functions return the message and its primary key. No matter how data is retrieved, store it using the primary
key value to select the row to be updated.

The msg_by_id() function takes a primary key (id) value as its argument and executes a query to retrieve the
message (along with the primary key). If this query returns an empty result set, the function raises a KeyError
exception. Otherwise, msg_by_id() extracts the message text and its primary key from the database, and
returns the primary key and a newly-parsed mail message.

This test mechanism is somewhat inefficient because it creates the table and then drops it for each individual

test; it would be better to run the data creation once and then run each individual test. But we wantto have two
separate tests to make sure that a failure in one retrieval routine won't stop us from testing the other, so for
now we'll put up with this bit of inefficiency.

Edit your maildb.py library to add this retrieval function as shown:

CODE TO TYPE:

Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.

from email import message from string

def store(msg, conn, curs):

Stores an email message, if necessary, returning its primary key.

mwan

message id = msg['message-id']

text = msg.as string()

curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

result = curs.fetchone()
if result:
return result[0]
curs.execute ("INSERT INTO message (msgMessagelD, msgText) VALUES (%s, %s)",
(message_id, text))
conn.commit ()
curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

return curs.fetchone () [0]

def msg by id(id, conn, curs):
Return the (presumably singleton) message whose primary key is given
or raise KeyError if no such message exists.
curs.execute ("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
result = curs.fetchone ()
if not result:
raise KeyError ("Id {0} not found in store".format (id))
id, text = result
msg = message from string(text)
return id, msg

With this new logic in place, one of the tests will succeed when you re-run testMaildb.py:

OBSERVE:
T o
ERROR: test ids (_ main .testRealEmail traffic)

Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 62, in test ids
pk, msg = maildb.msg by message id(self.message ids([id])
AttributeError: 'module' object has no attribute 'msg by message id'

Ran 3 tests in 0.578s

FAILED (errors=1l)

There is little difference between msg_by_id() and msg_by_message_id(). Itis justa matter of using a
slightly different condition on the query. Modify maildb.py by adding the code below as shown:

CODE TO TYPE:

o

Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.

wnn

from email import message from string

def store(msg, conn, curs):

Stores an email message, if necessary, returning its primary key.

mwn

message id = msg['message-id']

text = msg.as_string()

curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

result = curs.fetchone ()
if result:
return result[0]
curs.execute ("INSERT INTO message (msgMessagelID, msgText) VALUES (%s, %s)",
(message id, text))
conn.commit ()
curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message 1id,

return curs.fetchone () [0]

def msg by id(id, conn, curs):
mwn
Return the (presumably singleton) message whose primary key is given
or raise KeyError if no such message exists.
curs.execute ("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
result = curs.fetchone()
if not result:
raise KeyError ("Id {0} not found in store".format (id))
id, text = result
msg = message_ from string(text)
return id, msg

def msg by message id(message id, conn, curs):

mwn

Return the (presumably singleton) message whose "Message-ID" is given

or raise KeyError if no such message exists.

curs.execute ("SELECT msglID, msgText FROM message WHERE msgMessageID=%s", (me
ssage_1id,))

result = curs.fetchone()

if not result:

raise KeyError ("Message-Id {0} not found in store".format (message id))

id, text = result

msg = message_ from string(text)

return id, msg

Finally, all of our tests pass, and we can proceed to develop this basic library into something we can really
use:

OBSERVE: Life is good when tests pass

Ran 3 tests in 0.580s

OK

Extending the Database's Retrieval Capabilities

According to our tests, we can now store email messages in a relational database and retrieve them either by
primary key or Message-ID value. The Message-ID is extracted from the message when itis stored. ltdoesn't
hurt to leave records lying around after a test, to allow testers to query the database manually and see what
else can be done with the records, though the production installers prefer to have the tables leftin a known
empty state. It certainly doesn't hurt to know that the table passed its basic tests after installation. There are
other pieces ofinformation about the messages that you mightlike to store in the relational database to
expand your retrieval capabilities even further. Specifically, you want to be able to retrieve messages sent
between specific dates and/or times, and from specific senders, by name or address.

To accomplish that, we'll add a new column containing the message date. But it wouldn't be particularly useful
to store it as a text column in the database, because the database cannot execute time-based calculations on
strings. So instead, after you have extracted the Date header value from the parsed message, convertitinto a
Python datetime.datetime object, which the database driver will then convertinto a MySQL DATETIME
value, for storage in the database.

We'll modify the test program, adding a msgDate column to the table definition and add tests of the date
retrieval function. We'll write that function later; it will look like this:

def msgs_by_date(mindate, maxdate)

Retrieval by date is different from retrieval by primary key or Message -ID—there is a real possibility that
multiple messages will have the same date, causing the new function to return multiple records.

Our tests should work independently of the test data. To test the date routine, we'll change the date creation
code in the setUp() method so thatitalso records the minimum and maximum datetime and a message
count. Then we'll add a third test, test_dates(), that requests retrieval of all messages between the minimum
and maximum datetimes, and verifies that the countis correct, and that all messages have the correct msgid
values. Modify test Maildb.py as shown:

CODE TO TYPE:

Read in and parse email messages to verify readability.

NOTE: This test creates the message table, dropping any
previous version and should leave it empty. DANGER: this
test will delete any existing message table.

from glob import glob

from email import message from string

import mysqgl.connector as msc

from database import login info

import maildb

import unittest

import datetime

from email.utils import parsedate tz, mktime tz

conn = msc.Connect (**login_info)
curs conn.cursor ()

TBLDEF = """\
CREATE TABLE message (
msgID INTEGER AUTO INCREMENT PRIMARY KEY,
msgMessageID VARCHAR(128),
msgDate DATETIME,
msgText LONGTEXT
) ENGINE = MYISAM"""
FILESPEC = "C:/PythonData/*.eml"

class testRealEmail traffic(unittest.TestCase):
def setUp(self):
Reads an arbitrary number of mail messages and
stores them in a brand new messages table.

DANGER: Any existing message table WILL be lost.
self.conn = msc.Connect (**login_ info)
self.curs = self.conn.cursor()
self.curs.execute ("DROP TABLE IF EXISTS message")
self.conn.commit ()
curs.execute (TBLDEF)
conn.commit ()
files = glob(FILESPEC)
self.msgids = {} # Keyed by message_ id
self.message ids = {} # keyed by id
self.msgdates = []
self.rowcount = 0
for £ in files:
ff = open (f)
text = ff.read()
msg = message_ from string(text)
id = self.msgids[msg['message-id']] = maildb.store(msg, self.conn, s
elf.curs)
self.message ids[id] = msg['message-id']
date = msg['date']
self.msgdates.append(datetime.datetime.fromtimestamp (mktime tz (parse
date tz(date))))
self.rowcount += 1 # Assuming no duplicated Message-IDs

def test not empty(self):
man
Verify that the setUp method actually created some messages.
If it finds no files there will be no messages in the table,
the loop bodies in the other tests will never run, and potential
errors will never be discovered.

curs.execute ("SELECT COUNT (*) FROM message")
messagect = curs.fetchone() [0]
self.assertGreater (messagect, 0, "Database message table is empty")

def test message ids(self):

Verify that items retrieved by id have the correct Message-ID.
for message id in self.msgids.keys():
id, msg = maildb.msg by id(self.msgids[message id], self.conn, self.
curs)
self.assertEqual (msg['message-id'], message id)
self.assertEqual (id, self.msgids[message id])

def test ids(self):

wnn

Verify that items retrieved by message id have the correct Message-ID.
for id in self.message ids.keys():
idl, msg = maildb.msg by message id(self.message ids[id], self.conn,
self.curs)
self.assertEqual (msg['message-id'], self.message ids[id])
self.assertEqual (id, idl)

def test dates(self):
Verify that retrieving records between the minimum and maximum dates
returns an appropriate number of records.
man
mind = min (self.msgdates)
mindate = datetime.date (mind.year, mind.month, mind.day)
maxd = max (self.msgdates)
maxdate = datetime.date (maxd.year, maxd.month, maxd.day)
self.assertEqual (self.rowcount,
len(maildb.msgs by date (mindate=mindate,
maxdate=maxdate)))

def tearDown () :
self.conn.close()

if name == " main ":
unittest.main ()

By assigning this test the task of creating the table, we ensure that the table definition stays up to date. This is
actually the only way the tests can succeed—if SQL refers to a nonexistent column, the Python code thatuses
it will raise an exception.

Save and run it. The updated test fails, because we haven't updated the library yet. But hey, atleast the
original tests are still passing! The new test fails because it calls a function that we haven't written yet:

OBSERVE:
ERROR: test dates (_ main .testRealEmail traffic)

Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 83, in test dates
len(maildb.msgs by date (mindate=mindate,
AttributeError: 'module' object has no attribute 'msgs by date'

Ran 4 tests in 0.672s

FAILED (errors=1)

We don't need to add much code to store the messages—the change looks bigger than it otherwise might

because some operations have been re-ordered to avoid unnecessary work. We do need to importa couple
of bits of code from email.utils and datetime. And, if the record isn't already present, the store() function
extracts and converts the date, before storing itas an additional column in the table.

Now we need some way of retrieving the messages by date. We'll add a msgs_by_date() function that takes
a minimum and/or a maximum date. The SQL thatis generated makes sure that only one date will be
provided. The parameters are dates rather than date-times, because we assume that humans are more
interested in dates than times for most purposes. For the upper limit, we add a day to the given date and use a
"less than" comparison. The code requires that at least one criterion be provided, and there is some logic to
allow the code to work with either one or two conditions. Modify maildb.py as shown below:

CODE TO TYPE:

Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.

from email import message from string
from email.utils import parsedate tz, mktime tz
from datetime import datetime, timedelta

def

Sy

def

def

store (msg, conn, curs):

Stores an email message, if necessary, returning its primary key.
moan

message id = msg['message-id']

text—"n g as tLiiL\j\)
curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,
result = curs.fetchone()

if result:
return result[0]
date = msg['date']
dt = datetime.fromtimestamp (mktime tz (parsedate tz(date)))
text = msg.as_string()
curs.execute ("INSERT INTO message (msgMessagelID, msgDate, msgText) VALUES (%

%s, %s)",

(message_id, dt, text))
conn.commit ()
curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

return curs.fetchone () [0]

msg by id(id, conn, curs):
Return the (presumably singleton) message whose primary key is given
or raise KeyError if no such message exists.
mwn
curs.execute ("SELECT msglID, msgText FROM message WHERE msgID=%s", (id,))
result = curs.fetchone()
if not result:
raise KeyError ("Id {0} not found in store".format (id))
id, text = result
msg = message from string(text)
return id, msg

msg by message id(message id, conn, curs):
Return the (presumably singleton) message whose "Message-ID" is given
or raise KeyError if no such message exists.

curs.execute ("SELECT msgID, msgText FROM message WHERE msgMessageID=%s", (me

ssage _1id,))

def

result = curs.fetchone ()
if not result:
raise KeyError ("Message-Id {0} not found in store".format (message id))
id, text = result
msg = message from string(text)
return id, msg

msgs_ by date (mindate=None, maxdate=None, conn, curs):
if not (mindate or maxdate) :
raise TypeError ("Must provide at least one of mindate, maxdate")
conds = []
data = []
if mindate:
conds.append ("msgDate >= %$s'")
data.append (mindate)
if maxdate:

conds.append ("msgdate < %$s")
data.append (maxdatet+timedelta (days=1))

sgl = "SELECT msgid, msgText FROM message WHERE "
sgl += " AND ".join (conds)

curs.execute (sgl, tuple(data))

result = []

for id, text in curs.fetchall():
result.append((id, message from string(text)))
return result

Save and run it (from test Maildb.py) to verify that all of the tests now pass and also to confirm that we have
implemented date-based storage correctly:

OBSERVE:

Ran 4 tests in 0.890s

OK

Tests all passed. Excellent. Proceed!

Practical Application

You might have thought you had the beginnings of a useful library with maildb.py, but the design is missing
something—descriptions of the practical uses your program could fulfill using the library or use cases.

We know we can retrieve mail by date now, but typically we want to apply the date restrictions along with other
constraints, like "sent by user@domain” or "recipients include user@domain." Before we go any further, we'll
wantto know more about the application that will be using the library.

You can always work directly with the database tables to provide a date-ordered listing of subjects. In the
EmailSearch/src folder, create mlist1.py as shown:

CODE TO TYPE:

Sample program to list subjects by date.
mwrmn
from database import login info
import mysqgl.connector
from email import message from string
conn = mysgl.connector.Connect (**login_ info)
curs = conn.cursor ()
curs.execute ("SELECT msgText FROM message ORDER BY msgDate")
for text, in curs.fetchall():
msg = message from string(text)
print (msg['date'], msg['subject'])

So, what are the retrieval requirements of this application? The intention is to allow the user to enter any or all
of a start date, an end date, sender's name, and sender's email address, and then to list the dates and subject
lines of each message. They should be able to click a message to display it.

As we saw earlier, the existing date field in the table allows us to select dates, but at present, we are not
extracting the other necessary values—sender's name and email address—as database columns. We need
to fix that. The sender's data are held in the From header. The format of the header data allows the inclusion
ofboth a textual name and email address; the email.utils library has a parseaddr() function that we can use
to move both pieces of information from the From header into a (name, address) tuple. That data can then be
stored in two additional columns in the messages table. The code changes are subtle, particularly since we
aren'tadding any new retrieval routines this time around. Modify maildb.py as shown:

CODE TO TYPE:

Email message handling module: contains logic to store and retrieve
email messages using a MySQL relational database.

mwrrn

from email import message from string

from email.utils import parsedate tz, mktime tz, parseaddr

from datetime import datetime, timedelta

def store(msg, conn, curs):

Stores an email message, if necessary, returning its primary key.

mwan

message id = msg['message-id']

curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

result = curs.fetchone()
if result:
return result[0]
date = msg['date']
name, email = parseaddr (msg['from'])
dt = datetime.fromtimestamp (mktime tz (parsedate tz(date)))
text = msg.as_string()
curs.execute ("""INSERT INTO message
(msgMessageID, msgDate, msgSenderName, msgSenderAddress, msg
Text)
VALUES (%s, %s, %s, %s, %s)""",
(message id, dt, name, email, text))
conn.commit ()
curs.execute ("SELECT msgID FROM message WHERE msgMessageID=%s", (message id,

return curs.fetchone () [0]

def msg by id(id, conn, curs):
mwn
Return the (presumably singleton) message whose primary key is given
or raise KeyError if no such message exists.
curs.execute ("SELECT msgID, msgText FROM message WHERE msgID=%s", (id,))
result = curs.fetchone()
if not result:
raise KeyError ("Id {0} not found in store".format (id))
id, text = result
msg = message_ from string(text)
return id, msg

def msg by message id(message id, conn, curs):

mwn

Return the (presumably singleton) message whose "Message-ID" is given

or raise KeyError if no such message exists.

curs.execute ("SELECT msglID, msgText FROM message WHERE msgMessageID=%s", (me
ssage_1id,))

result = curs.fetchone ()

if not result:

raise KeyError ("Message-Id {0} not found in store".format (message id))

id, text = result

msg = message_ from string(text)

return id, msg

@,
Hh

N Ao (oot o d o o T Ao o N \
TS S © o te TS ce=Noe o xCa ce=None, —Coi, —Cu1rS7—

def msgs(conn, curs, mindate=None, maxdate=None, namesearch=None, addsearch=None

Return a list of all messages sent on or after mindate and on or before maxd
ate.
If mindate is not specified, there is no lower bound on the date, and simila

rly
if maxdate is not specified, no upper bound. If namesearch is given, the
result set is restricted to messages with sender names containing that strin
g. If
addsearch is given, the result set is restricted to messages with email
addresses containing that string.
moan
Hrot—f{mindate—or—tmedater+
ratse—Pypebrror{!Mustprovide—at—teastore—of mindatemaxcet
conds = []
data = []
if mindate:
conds.append ("msgDate >= %s")
data.append (mindate)
if maxdate:
conds.append ("msgdate < %s")
data.append (maxdate+timedelta (days=1))
if namesearch:
conds.append ("msgSenderName LIKE $s'")
data.append ("$" + namesearch.strip() .lower () + "&")
if addsearch:
conds.append ("msgSenderAddress LIKE %s")
data.append ("%" + addsearch.strip() .lowe

[INaknkdhnlals] ol m L T AN TIrT
OO ONT T o9 rcy; Mg TeXx T L ONoOrT e age—WIT

[T
7

r()
Akl 11
oINS

o

i1} A : L o)
N O TCoSITSST

m—
sql = "SELECT msgid, msgText FROM message"
if conds:
sql += " WHERE " + " AND ".join (conds)
curs.execute (sql, tuple(data))
result = []
for id, text in curs.fetchall():
result.append((id, message from string(text)))
return result

Save itand run testMaildb.py. This revision breaks our existing tests. The library now references columns
that have not been added to the database yet, so the driver complains during setup for each of the tests when
we try to add a row. Also, pay attention to the change of function names in the module. Because the new
retrieval function we wrote does more now that just retrieve mail by date, its name is something less
specialized: msgs.

OBSERVE: test failures are induced by adding new columns in the library code

EEEE

ERROR: test dates (main .testRealEmail traffic)
Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
id = self.msgids[msg['message-id']] = maildb.store (msqg)
File "V:\workspace\EmailSearch\src\maildb.py", line 30, in store
(message_id, dt, name, email, text))
File "C:\python\lib\site-packages\mysqgl\connector\cursor.py", line 307, in exe
cute
res = self.db() .protocol.cmd query (stmt)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 137, in d
eco
return func(*args, **kwargs)
File "C:\python\lib\site-packages\mysqgl\connector\protocol.py", line 482, in c
md query
return self.handle cmd result (self. recv packet())
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 175, in
recv_packet
MySQLProtocol.raise error (buf)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 169, in r
aise error
raise errors.get mysgl exception (errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
'field list'

ERROR: test ids (_ main .testRealEmail traffic)
Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
id = self.msgids[msg['message-id']] = maildb.store (msqg)
File "V:\workspace\EmailSearch\src\maildb.py", line 30, in store
(message_id, dt, name, email, text))
File "C:\python\lib\site-packages\mysqgl\connector\cursor.py", line 307, in exe
cute
res = self.db() .protocol.cmd query (stmt)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 137, in d
eco
return func(*args, **kwargs)
File "C:\python\lib\site-packages\mysqgl\connector\protocol.py", line 482, in c
md query
return self.handle cmd result (self. recv packet())
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 175, in
recv_packet
MySQLProtocol.raise error (buf)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 169, in r
aise error
raise errors.get mysgl exception (errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
'field list'

ERROR: test message ids (_ main .testRealEmail traffic)
Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
id = self.msgids[msg['message-id']] = maildb.store (msqg)
File "V:\workspace\EmailSearch\src\maildb.py", line 30, in store
(message _id, dt, name, email, text))
File "C:\python\lib\site-packages\mysqgl\connector\cursor.py", line 307, in exe
cute
res = self.db() .protocol.cmd query (stmt)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 137, in d
eco

return func(*args, **kwargs)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 482, in c
md query
return self.handle cmd result (self. recv packet())
File "C:\python\lib\site-packages\mysqgl\connector\protocol.py", line 175, in _
recv_packet
MySQLProtocol.raise error (buf)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 169, in r
aise error
raise errors.get mysql exception(errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
'field list'

ERROR: test not empty (main .testRealEmail traffic)
Traceback (most recent call last):
File "V:\workspace\EmailSearch\src\testMaildb.py", line 51, in setUp
id = self.msgids[msg['message-id']] = maildb.store (msqg)
File "V:\workspace\EmailSearch\src\maildb.py", line 28, in store
(message_id, dt, name, email, text))
File "C:\python\lib\site-packages\mysqgl\connector\cursor.py", line 307, in exe

cute
res = self.db() .protocol.cmd query (stmt)
File "C:\python\lib\site-packages\mysqgl\connector\protocol.py", line 137, in d
eco

return func(*args, **kwargs)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 482, in c
md query
return self.handle cmd result (self. recv packet())
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 175, in
recv_packet
MySQLProtocol.raise error (buf)
File "C:\python\lib\site-packages\mysgl\connector\protocol.py", line 169, in r
aise error
raise errors.get mysql exception(errno,errmsg)
mysql.connector.errors.ProgrammingError: 1054: Unknown column 'msgSenderName' in
'field list'

Ran 4 tests in 0.171s

FATILED (errors=3)

We need to update the test program and add the two more columns to the message table. Since we're
familiar with adding columns now, let's bypass writing tests for these. Modify test Maildb.py as shown:

CODE TO TYPE:

Read in and parse email messages to verify readability.

NOTE: This test creates the message table, dropping any
previous version and should leave it empty. DANGER: this
test will delete any existing message table.

from glob import glob

from email import message from string

import mysqgl.connector as msc

from database import login info

import maildb

import unittest

import datetime

from email.utils import parsedate tz, mktime tz

conn = msc.Connect (**login_info)
curs = conn.cursor ()
TBLDEF = """\

CREATE TABLE message (
msgID INTEGER AUTO INCREMENT PRIMARY KEY,
msgMessageID VARCHAR(128),
msgDate DATETIME,
msgSenderName VARCHAR (128),
msgSenderAddress VARCHAR(128),
msgText LONGTEXT

) ENGINE = MYISAM"™"

FILESPEC = "C:/PythonData/*.eml"

class testRealEmail traffic(unittest.TestCase):
def setUp(self):
Reads an arbitrary number of mail messages and
stores them in a brand new messages table.

DANGER: Any existing message table WILL be lost.
self.conn = msc.Connect (**login_info)
self.curs = self.conn.cursor ()
self.curs.execute ("DROP TABLE IF EXISTS message")
self.conn.commit ()
curs.execute (TBLDEF)
conn.commit ()
files = glob (FILESPEC)
self.msgids = {} # Keyed by message_ id
self.message ids = {} # keyed by id
self.msgdates []
self.rowcount 0
for £ in files:

ff = open(f)

text = ff.read()

msg = message from string(text)

id = self.msgids[msg['message-id']] = maildb.store(msg, self.conn, s

elf.curs)

self.message ids[id] = msg['message-id']

date = msg['date']

self.msgdates.append (datetime.datetime.fromtimestamp (mktime tz (parse
date tz(date))))

self.rowcount += 1 # Assuming no duplicated Message-IDs

def test not empty(self):
Verify that the setUp method actually created some messages.
If it finds no files there will be no messages in the table,
the loop bodies in the other tests will never run, and potential

errors will never be discovered.

curs.execute ("SELECT COUNT (*) FROM message")

messagect = curs.fetchone () [0]

self.assertGreater (messagect, 0, "Database message table is empty")

def test message ids(self):

Verify that items retrieved by id have the correct Message-ID.
for message id in self.msgids.keys():
id, msg = maildb.msg by id(self.msgids[message id], self.conn, self.
curs)
self.assertEqual (msg['message-id'], message id)
self.assertEqual (id, self.msgids[message id])

def test ids(self):

Verify that items retrieved by message id have the correct Message-ID.
for id in self.message ids.keys():
idl, msg = maildb.msg by message id(self.message ids[id], self.conn,
self.curs)
self.assertEqual (msg['message-id'], self.message ids[id])
self.assertEqual (id, idl)

def test dates(self):
Verify that retrieving records between the minimum and maximum dates
returns an appropriate number of records, and that each separate day
shows one email for each sender.
mind = min (self.msgdates)
mindate = datetime.date (mind.year, mind.month, mind.day)
maxd = max (self.msgdates)
maxdate = datetime.date (maxd.year, maxd.month, maxd.day)
self.assertEqual (self.rowcount,
len(maildb.msgs—y—date(self.conn, self.curs, mindate=m
indate,
maxdate=maxdate)))
def tearDown (self):
self.conn.close()
if name == " main ":
unittest.main ()

Of course, we expected all tests to pass. And the mlist1.py program that we wrote earlier still functions
perfectly, even though new columns have been added to the table since lastyou ran it:

OBSERVE:

Ran 4 tests in 0.892s

OK

Adding A GUI

Our tests give us some confidence that our email storage library is sound. How difficult would it be to build a
graphical user interface to use with it? Nottoo difficult if we use a basic layout to prototype the program.

In earlier lessons, we used the tkinter grid layout to produce quick interface layouts. This is fine—so long as
when the final interface is produced, the widgets that matter (the ones used by the methods) keep the same
names.

This particular application offers four search field entries: two for the minimum and maximum dates, one for

the email address, and one for the name. We'll place these with appropriate labels on a four-by-two grid, with
the labels right-justified and the entry widgets left-justified. We'll add a button to trigger the search to the
second column in the fifth row, and the final two rows will hold a listbox and a text widget.

In the EmailSearch/src folder, create mailgui.py as shown:

CODE TO TYPE:

from tkinter import *
from maildb import msgs
import datetime

class Application (Frame) :

def init (self, master=None):

Establish the window structure, leaving some widgets accessible
as app instance variables.
Frame. init (self, master)
self.master.rowconfigure (0, weight=1)
self.master.columnconfigure (0, weight=1)
self.grid(sticky=W+E+N+S)
10 = Label (self, text="Email Database Search", font=("Helvetica", 16))
10.grid(row=0, column=1, columnspan=2)
11 = Label (self, text="Not Before (yyyy-mm-dd):")
1l.grid(row=1, column=1, sticky=E+N+S3)
self.mindate = Entry(self)
self.mindate.grid(row=1, column=2, sticky=W+N+S)
12 = Label (self, text="Not After (yyyy-mm-dd):")
12.grid(row=2, column=1, sticky=E+N+S3)
self.maxdate = Entry(self)
self.maxdate.grid(row=2, column=2, sticky=W+N+S)
13 = Label (self, text="Sender's E-mail Contains:")
13.grid(row=3, column=1, sticky=E+N+S3)
self.addsearch = Entry(self)
self.addsearch.grid(row=3, column=2, sticky=W+N+S)
14 = Label (self, text="Sender's Name Contains:")
14.grid(row=4, column=1, sticky=E+N+3)
self.namesearch = Entry(self)
self.namesearch.grid (row=4, column=2, sticky=W+N+S)
button = Button(self, text="Search")
button.grid(row=5, column=2)
self.msgsubs = Listbox(self, height=10, width=100)
self.msgsubs.grid(row=8, column=1, columnspan=2)
self.message = Text (self, width=100)
self.message.grid(row=9, column=1, columnspan=2)
if name == " main ":

root = Tk()

app = Application(master=root)

app.mainloop ()

When you run this code, you see a GUI thatlooks like this—as promised, ugly but functional:

(]

b L -

Email Database Search
Mat Befare (yyyy-mim-dd)
Mot After (yyyy-mim-dd)
Sender's E-mail Containg
Sender's Mame Containg

Search

With the interface rendering properly as a window on the screen, now we need to plug in the "works." First,
we'll add a search routine to run when the Search button is clicked. lt should perform a search and populate
the Listbox with the subjectlines of each message.

The maildb.msgs search function does notrequire all arguments, butwe wantto be able to search on all of
them, we'll provide them all. We'll arrange for the value None to be presented whenever the user's Entry is
empty.

Dates are just a little trickier. We'll add a simple conversion function, and require that the user enters dates as
"YYYY-MM-DD." ltisn't particularly user-friendly to require such closely-formatted entries, but we can improve
that later if necessary. The function converts those strings into a datetime.date objectfor passing to
maildb.msgs().

The main addition is the search_mail() method, which does all the necessary preparation and finally calls
maildb.msgs() to retrieve the specified messages and display the subject header value of each in a Listbox.
We trigger the instance's search_mail() method by adding itas the command configuration parameter to
the Button's creation. The search_mail() method is also called at startup, before the window is displayed.
Modify mailgui.py as shown:

CODE TO TYPE:

from tkinter import *
from maildb import msgs
import datetime

def get date(s):

wwn

Assumes a date of form yyyy-mm-dd, returns a corresponding datetime.date.
syear = s[:4]

smonth = s[5:7]

sday = s[8:]

return datetime.date (int (syear), int(smonth), int (sday))

class Application (Frame) :

def init (self, master=None):
Establish the window structure, leaving some widgets accessible
as app instance variables. Connect button clicks to search mail
method.
Frame. init (self, master)
self.master.rowconfigure (0, weight=1)
self.master.columnconfigure (0, weight=1)
self.grid(sticky=W+E+N+S)
10 = Label (self, text="Email Database Search", font=("Helvetica", 16))
10.grid(row=0, column=1, columnspan=2)
11 = Label (self, text="Not Before (yyyy-mm-dd):")
11l.grid(row=1, column=1, sticky=E+N+S3)
self.mindate = Entry(self)
self.mindate.grid(row=1, column=2, sticky=W+N+S3)
12 = Label (self, text="Not After (yyyy-mm-dd):")
12.grid(row=2, column=1, sticky=E+N+S3)
self.maxdate = Entry(self)
self.maxdate.grid(row=2, column=2, sticky=W+N+3)
13 = Label (self, text="Sender's E-mail Contains:")
13.grid(row=3, column=1, sticky=E+N+3)
self.addsearch = Entry(self)
self.addsearch.grid(row=3, column=2, sticky=W+N+S)
14 = Label (self, text="Sender's Name Contains:")
14.grid(row=4, column=1, sticky=E+N+S)
self.namesearch = Entry(self)
self.namesearch.grid(row=4, column=2, sticky=W+N+S3)
button = Button(self, text="Search", command=self.search mail)
button.grid (row=5, column=2)
self.msgsubs = Listbox(self, height=10, width=100)
self.msgsubs.grid(row=8, column=1, columnspan=2)
self.message = Text (self, width=100)
self.message.grid(row=9, column=1, columnspan=2)

def search mail (self):
win
Take the database search parameters provided by the user
(trying to make sense of the dates) and select the appropriate
messages from the database, displaying the subject lines of the
messages in a scrolling selection list.
mindate = self.mindate.get ()
if not mindate:
mindate = None
else:
mindate = get date (mindate)
maxdate = self.maxdate.get ()
if not maxdate:
maxdate = None
else:

maxdate = get date (maxdate)
addsearch = self.addsearch.get ()
if not addsearch:
addsearch = None
namesearch = self.namesearch.get ()
if not namesearch:
namesearch = None
self.msglist = msgs (mindate=mindate, maxdate=maxdate, addsearch=addsearc
h, namesearch=namesearch)
self.msgsubs.delete (0, END)
for pk, msg in self.msglist:
self.msgsubs.insert (END, msgl'subject'])
if name == " main ":
root = Tk()
app = Application (master=root)
app.search mail ()
app.mainloop ()

Now we have a program that will list the subjectlines of the messages that meet the search criteria. By default,
you'll see whatever contentis in the database (which is usually whatever was left by the last testin the
messages table). So the window looks more or less the same when you run it as it did before, except that
you see messages listed in the Listbox.

T el

Email Database Search

Mat Befare (yyyy-mm-dd)
Mot After (yyyy-mm-dd)
Sender's E-mail Contains
Sender's Marme Containg

Search

Google Alert - python -manty -snake
Google Alert - python -manty -snake
Google Alert - python -manty -snake
Google &lert - python -manty -snake
Google Alert - pythen -manty -mnake
Google Alest - python -monty -snake
Google lert - python -manty -snake
Google Alert - python -maonty -snake
Google Alert - python -monty -snake

The final step is to connect a double-click on a Listbox entry to display the content of that message in the Text
widget at the bottom of the window. Again, the code changes are fairly straightforward. The required double-
click eventis bound to the new display_mail() method, and the method extracts the selection from the
Listbox and deletes any existing content from the Text widget. Then itinserts up to three headers, followed by
a blank line and the body of the messages (unless it happens to be a multipart message—those are a little
trickier to handle). Modify mailgui.py as shown:

CODE TO TYPE:

from tkinter import *
from maildb import msgs
import datetime

def get date(s):

Assumes a date of form yyyy-mm-dd, returns a corresponding datetime.date.
syear = s[:4]

smonth = s[5:7]

sday = s[8:]

return datetime.date (int (syear), int (smonth), int (sday))

class Application (Frame) :

def init (self, master=None):
Establish the window structure, leaving some widgets accessible
as app instance variables. Connect button clicks to search mail
method and subject double-clicks to display mail method.
Frame. init (self, master)
self.master.rowconfigure (0, weight=1)
self.master.columnconfigure (0, weight=1)
self.grid(sticky=W+E+N+S)
10 = Label (self, text="Email Database Search", font=("Helvetica", 16))
10.grid(row=0, column=1, columnspan=2)
11 = Label (self, text="Not Before (yyyy-mm-dd):")
11l.grid(row=1, column=1, sticky=E+N+S3)
self.mindate = Entry(self)
self.mindate.grid(row=1, column=2, sticky=W+N+S3)
12 = Label (self, text="Not After (yyyy-mm-dd):")
12.grid(row=2, column=1, sticky=E+N+S3)
self.maxdate = Entry(self)
self.maxdate.grid(row=2, column=2, sticky=W+N+3)
13 = Label (self, text="Sender's E-mail Contains:")
13.grid(row=3, column=1, sticky=E+N+3)
self.addsearch = Entry(self)
self.addsearch.grid(row=3, column=2, sticky=W+N+S)
14 = Label (self, text="Sender's Name Contains:")
14.grid(row=4, column=1, sticky=E+N+S)
self.namesearch = Entry(self)
self.namesearch.grid(row=4, column=2, sticky=W+N+S3)
button = Button(self, text="Search", command=self.search mail)
button.grid (row=5, column=2)
self.msgsubs = Listbox(self, height=10, width=100)
self.msgsubs.grid(row=8, column=1, columnspan=2)
self.msgsubs.bind ("<Double-Button-1>", self.display mail)
self.message = Text(self, width=100)
self.message.grid(row=9, column=1, columnspan=2)

def search mail (self):
Take the database search parameters provided by the user
(trying to make sense of the dates) and select the appropriate
messages from the database, displaying the subject lines of the
messages in a scrolling selection list.
mindate = self.mindate.get ()
if not mindate:
mindate = None
else:
mindate = get date (mindate)
maxdate = self.maxdate.get ()
if not maxdate:
maxdate = None

else:
maxdate = get date (maxdate)
addsearch = self.addsearch.get()
if not addsearch:
addsearch = None
namesearch = self.namesearch.get ()
if not namesearch:
namesearch = None
self.msglist = msgs (mindate=mindate, maxdate=maxdate, addsearch=addsearc
h, namesearch=namesearch)
self.msgsubs.delete (0, END)
for pk, msg in self.msglist:
self.msgsubs.insert (END, msg['subject'])

def display mail (self, event):
mwrmn
Display the message corresponding to the subject line that the
user just clicked on.

LIRIR1}

indexes = self.msgsubs.curselection()
if len(indexes) != 1:
return

self.message.delete (1.0, END)
pk, msg = self.msglist[int (indexes[0])]
for header name in "Subject", "Date", "From":
hdr = msgl[header name]
if hdr:
self.message.insert (INSERT, "{0}: {1}\n".format (header name, hdr

self.message.insert (END, "\n")
if msg.is multipart():

self.message.insert (END, "MULTIPART MESSAGE - SORRY!")
self.message.insert (END, msg.get payload())

if name == " main ":

root = Tk()

app = Application (master=root)
app.search mail ()
app.mainloop ()

When you run this modified code, you see the final (but not necessarily complete) form of our GUI-based
mail retrieval program. It searches messages by date range, sender name, and email address, and allows
you to view any message in the search results by double-clicking the message subject. This sortofcode
might be considered "alpha quality"—it can be released for testing purposes, butit's not quite ready for prime
time.

r'?“ = ® ' . - . " ‘ - a @ w . =l
Email Database Search

Mot Before (yyyy-mm-dd: |
Not After (yyyy-mm-ddk|
Sender's E-mail Containg: |
Sender's Marme Cuntlin;i

Google Alert - python -manty -snake
| Google Alert - python -manty -snake
| Google Alert - python -manty -snake

G5o -k ¢

Google Alert - python -monty -snake
Google &lert - python -maonty -snake
Google Alert - python -maonty -snake
Google Alert - python -monty -snake

Eubject: Google Alert - python -monty -anake
Date: Toe, 91 Jun 2010 20:43:-44 +0000
From: SFoogle Alerts <googlealerts-noreplydgoogle.com>

+hitmlrtheadr< / headr<bodyrtdiv styla=iD"font-family: sans-serif">
wprifent size=30"+1"rGoogle Hews Alact for: <brpython -monty -snake-t/Bo-/fo=
REFC/ B

<rabla sallpadding=30"0" sellaspasing=3iD"0" Bardar=3070" wideh=3D"E00"r<EEF<=
ed geyla=iD"padding-borcem: las">

<a scyle=iD"eslar: hlua™ hRraf=30"hcep://wnr.googlae.comfurl PTaa=3DNLamn; q=30Dn=
Cop /. nboed fu_ comy around-cown/ shopping/ Dolly-Fythons -Kaw-Dige-85307678 . h=
taliamp; cc=3lgakamp; cad=30-al c 2wl 101t ad i pd it lZ2TE4ZE02 4 Lamp,; cd=3D13¥Vu=
33 Dmhiamp; nag=3DAF0 CHEEZ [u—Ca Il POYENNVBYHEBvEAS INaw™>

Dolly <p>Fython&f38;s Hew Digs

«NBL Dallas-Forcz Worth</fonti>

Ey LISR FETIY Take a short ride East on Haskell from 78 to cne of DallasGEd=
'!'.' most notable vintage shops, Dolly Fython. Owner Gretchen BellEgdi=
||i® treasuze chest of <br...«/bribcr
<a style=iD"coloz: gresn™ href=3D"httgp: /S www, google.comiuzsl Tea=iDKsang: q=30=
Nheep: /S naws . gocgle . con/ v/ stes Y IFasldADhetp: / fuvid, abed v, coms assund-town=
||/ shopping/Dolly-Fythons—Hew-Dige-35307673 . hemld 6h1¥5Densanp, co=IDgacans: ca=
|e=3D:81:£2:v0:40: 1 00:p0: el2 75425024 samp cd=3D12¥Vuas_DrAsasp, usg=30RFR]C=
| [FHaQU-4 0bYnPEaHUTI IeAgPenlE " cicle=3D"hrop: //news . google . con/newe,/ sToEyin=
||el=3DRcop: / fuvi . nbodfu . com/ arcund-town/ shapping/Dolly-Pychons—Hew-Dige—9530=

The appearance of the interface could be improved, but the program's basic design is sound. The program is
constructed plainly, and we can see how to extend itin various ways.

For example, if you wanted to add subject search features, it's pretty clear that you'd need to add an
msgSubject column to the message table and therefore to the logicof maildb.store(). The interface to
maildb.msgs() would need to be augmented by a subjectsearch argument, and the GUl would need to
add another Entry element to capture the user's search string. Fortunately, this program is logically organized,
and you should be able to proceed with confidence.

Documentation

Open a new pydev console, select the Console tab, and maximize the console so thatyou can see the
output. Enter the commands below as shown:

>>> import maildb
>>> help(maildb)

The Python help system uses all of the docstrings you've putinto your code to produce a brief description of
your maildb module.

4 Pydev Package Explorer | [£ Problems |] Tesks | Bl Console 3 = = w2 B-3-°
Pyder Conzole [4]

import maildb

help (m

Help on module maildb:

(HAME

maildb
FIL]

ciusershsholdenworkspace\python2 lessonl2\srcmaildb.py
DESCRIFTION

Pmoil message handling module: comtains logic to store and zetricwve

email messages using a HySQL relaticnal database.

FUNCTIONS
mag_by_id{id)
Return the (pr
raise HeyErr

esumably singlecon] measajge whose Drimary key 18 given
oF 1f no such mesage axistcs.

msg by message id(message id)
umably singlaton) messsge whosse "Massage-ID" is given

raise HeyFrror if no sSuch message exiscs.

ate=lon=, maxdate=Hon=, namesearch=Hon=, adds=azrch=Hon=)

7 a list of all mesasages sent on or after mindate and cn or befor= maxdate.

indate iz not specified there is no lower bound on the date, and

ne vpper bound if maxdate 19 not specifisd. If namessazch 12 given the

reselt set is restricted to messages whose sender name contains that string. I
addsearch ia given then the result set is restricted to messages whose email
address contains that string.

store (mag)
Srores an email message, if neceasary, returning ics primary key,

DATA

at Ox0ZDA4330>

abject at Ox0ZESET1O0»

t "agl.oreillyschool.ocom’,

Congratulations! Your hard work is really paying off. You've powered through all of the challenges we've thrown atyou
and arrived at the finish line of this second O'Reilly School of Technology Python course. Your command of the
language is astounding! You can integrate databases and graphical user interfaces, and you're prepared to explore the
bigger Python landscape. Now let's dazzle your instructor and put those skills to work in your final project! It's been a
real pleasure working with you. See you in the next course!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Creating the Program
	Editing and Running the Program
	INSERT: Adding A Row to a Table
	SELECT: Retrieve Data from One or More Tables
	UPDATE: Modify Existing Data in a Table
	DELETE: Remove Rows From a Table

