
Python 3: The Python Environment
Lesson 1: Making Sense o f User Input s

About Eclipse
Perspectives and the Red Leaf Icon
Working Sets

Getting Information for Programs

Command Line Arguments
Emulating the Command Line in Eclipse

String Analysis and Manipulation
Data Validation
Testing Strategy
Zip Code Validation

Quiz 1 Pro ject 1
Lesson 2: Co nvert ing Dat a int o St ruct ured Object s

Constructing Classes
Introducing the Bunch Class
Adding a Behavior to the Bunch Class
Fixing a Bunch Class Issue

Application Programming Interfaces
Designing an API
Building the API
Sharing APIs
Calling the API

Method Reso lution Order
Basic Method Reso lution Order
More Complicated Method Reso lution Order
Introspecting Inheritance Relationships
Laying the Foundation

Quiz 1 Quiz 2 Pro ject 1
Lesson 3: It erat io n in Pyt ho n

Iterables vs. Iterators
Old-Style Iteration
New-Style Iteration
Creating Your Own Iterators

Generators: Avo iding Creation o f Large Sequences
Advantages o f Generator Functions
A Simple Generator Function
An Iterator Equivalent o f the Generator

Generator Expressions

Quiz 1 Quiz 2 Pro ject 1
Lesson 4: Basic Regular Expressio ns

Matching and Searching

Finding Characters: Regular Expression Patterns

Grouping in Patterns

homework/MakingSenseOfUserInputs_quiz1.quiz.html
homework/MakingSenseOfUserInputs_proj1.project.html
homework/ConvertingDataIntoStructuredObjects_quiz1.quiz.html
homework/ConvertingDataIntoStructuredObjects_quiz2.quiz.html
homework/ConvertingDataIntoStructuredObjects_proj1.project.html
homework/IterationInPython_quiz1.quiz.html
homework/IterationInPython_quiz2.quiz.html
homework/IterationInPython_proj1.project.html

Substitution for Patterns

Trying Out Patterns

Quiz 1 Quiz 2 Pro ject 1
Lesson 5: Mo re On Regular Expressio ns

Fundamentals o f Regular Expressions
The Telephone Number Search
Regular Expressions and Raw Strings
match() vs search()
More Regular Expression Features
More Complex Matching
Finding all with findall() and finditer()
More on Modifying Strings With sub() and subn()
Breaking Strings Apart with split()

Use Regular Expressions With Care
Cn U Rd Ths?
String Methods Versus Regular Expressions

Quiz 1 Quiz 2 Pro ject 1
Lesson 6 : Co mpiling and Flagging Regular Expressio ns

Compiling Regular Expressions
Using re.compile() to Make a Pattern Object
Pattern objects and positional arguments

Flagging Regular Expressions
Verbose Regular Expressions
Ignoring Case

Quiz 1 Quiz 2 Pro ject 1
Lesson 7: Pyt ho n's Object -Orient ed Feat ures

Encapsulation

Inheritance
A quick subclassing review
Multiple Inheritance

Polymorphism
Polymorphism: Same Operations, Different Types
Overriding vs. Extending methods

Quiz 1 Quiz 2 Pro ject 1
Lesson 8 : Co nsuming and Creat ing Binary Dat a

Python Data vs. Raw Computer Data
How Computers Represent Data
Endianness
Data Alignment

The struct Module
Format Strings
Packing and Unpacking Values

Quiz 1 Pro ject 1
Lesson 9 : Advanced Object s: Special Met ho ds

Basic Customization

homework/BasicRegularExpressions_quiz1.quiz.html
homework/BasicRegularExpressions_quiz2.quiz.html
homework/BasicRegularExpressions_proj1.project.html
homework/MoreOnRegularExpressions_quiz1.quiz.html
homework/MoreOnRegularExpressions_quiz2.quiz.html
homework/MoreOnRegularExpressions_proj1.project.html
homework/CompilingAndFlaggingRegularExpressions_quiz1.quiz.html
homework/CompilingAndFlaggingRegularExpressions_quiz2.quiz.html
homework/CompilingAndFlaggingRegularExpressions_proj1.project.html
homework/PythonsObjectOrientedFeatures_quiz1.quiz.html
homework/PythonsObjectOrientedFeatures_quiz2.quiz.html
homework/PythonsObjectOrientedFeatures_proj1.project.html
homework/ConsumingAndCreatingBinaryData_quiz1.quiz.html
homework/ConsumingAndCreatingBinaryData_proj1.project.html

__new__(): Creating New Objects
Representing objects as strings: __str__()
__repr__()

Attribute Access
__setattr__()
__getattr__()
__delattr__()

Emulating Functions: the __call__() Method

Quiz 1 Quiz 2 Pro ject 1
Lesson 10: Pro pert ies

Putting Computations Behind Attributes
A Teacher Class Constructed o f Properties
Decorator Syntax
Settable Properties
Setting Values via Properties
Deleting Attributes Using Properties

Quiz 1 Quiz 2 Pro ject 1
Lesson 11: A First Lo o k at Lo gging

Setting Up a Basic Logger

Other Logging Functions

Other Logging Levels

Getting Tests to Use Different Logging Levels

Log Formatting

Quiz 1 Quiz 2 Pro ject 1
Lesson 12: Engineering Yo ur Pro grams

optparse: A Powerful Command-line Processor
A Simple optparse Example
A Complex optparse Example
Validating optparse Options
Showtime!
Displaying All the Records
optparse Type Validation

configparser: Contro lling Settings the Right Way
configparser to Store Database Settings
Multiple Sections

Quiz 1 Quiz 2 Pro ject 1
Lesson 13: T ime-Based Co mput at io ns

What Time is It?
Time Representations

If it Takes Thirty-One Days...?
There Must be a Better Way to Add Days to a Date!
timedeltas for Weeks, Hours, Minutes, and Seconds
timedeltas for Years and Months

How Many Days Until my Birthday?
When is Your Birthday?

homework/AdvancedObjectsSpecialMethods_quiz1.quiz.html
homework/AdvancedObjectsSpecialMethods_quiz2.quiz.html
homework/AdvancedObjectsSpecialMethods_proj1.project.html
homework/Properties_quiz1.quiz.html
homework/Properties_quiz2.quiz.html
homework/Properties_proj1.project.html
homework/AFirstLookAtLogging_quiz1.quiz.html
homework/AFirstLookAtLogging_quiz2.quiz.html
homework/AFirstLookAtLogging_proj1.project.html
homework/EngineeringYourPrograms_quiz1.quiz.html
homework/EngineeringYourPrograms_quiz2.quiz.html
homework/EngineeringYourPrograms_proj1.project.html

More Ways to Construct Dates
Fetching Years, Months, Hours, etc. from a Datetime Object
Finishing the birthday counter
Summary

Quiz 1 Quiz 2 Pro ject 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/TimeBasedComputations_quiz1.quiz.html
homework/TimeBasedComputations_quiz2.quiz.html
homework/TimeBasedComputations_proj1.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Making Sense of User Inputs

Welcome to the O'Reilly School o f Technology (OST) Python Environment course! We're happy you've chosen to learn Python
programming with us.

Course Objectives
When you complete this course, you will be able to :

parse command-line arguments and perform string validation.
build sophisticated structures like bunch classes.
create your own APIs.
enhance your code with iterables, iterators, and generators.
manipulate textual data with regular expressions.
apply advanced object-oriented programming techniques to Python development.
exchange binary data with o ther languages and systems.
configure user setups and log activity.
calculate date and time.

By the time you finish the course, you will have expanded your knowledge o f Python and applied it to some really interesting
techno logies.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it

Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

Before you start programming in Python, let's review a couple o f the too ls you'll be using. If you took Int ro duct io n t o
Pyt ho n and/or Get t ing Mo re Out o f Pyt ho n, you can skip to the next section if you like, or you might want to go through
this section to refresh your memory.

About Eclipse
We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right
now. IDEs assist programmers by performing tasks that need to be done repetitively. IDEs can also help to edit and
debug code, and organize pro jects.

Perspectives and the Red Leaf Icon

The Ellipse Plug-in fo r Eclipse, developed by the O'Reilly School o f Technology, adds a Red Leaf icon to the
too lbar in Eclipse. This icon is your "panic button." Because Eclipse is versatile and allows you to move
things around, like views, too lbars, and such, it's possible to lose your way. If you do get confused and want
to return to the default perspective (window layout), the Red Leaf icon is the fastest and easiest way to do that.

Use the Red Leaf icon to :

reset t he current perspect ive: click the icon.
change perspect ives: click the drop-down arrow beside the icon to select different perspectives
designed for each course that uses Ellipse.
select a perspect ive: click the drop-down arrow beside the Red Leaf icon and select the course
(Java, Pyt ho n, C++ , etc.). Selecting a specific course opens the perspective designed for that
particular course.

For this course, select Pyt ho n.

Working Sets

You'll use working sets fo r this course. All pro jects created in Eclipse exist in the workspace directory o f your
account on our server. As you create multiple pro jects fo r each lesson in each course, your directory could
become pretty cluttered. A working set is a view of the workspace that behaves like a fo lder, but it's actually an
association o f files. Working sets allow you to limit the detail that you see at any given time. The difference
between a working set and a fo lder is that a working set doesn't actually exist in the file system.

A working set is a convenient way to group related items together. You can assign a pro ject to one or more
working sets. In some cases, like the Python extension to Eclipse, new pro jects are created in a catch-all
"Other Pro jects" working set. To better organize your work, we'll have you assign your pro jects to an
appropriate working set when you create them. To do that, right-click on the pro ject name and select the
Assign Wo rking Set s menu item.

We've already created some working sets for you in the Eclipse IDE. You can turn the working set display o n
or o f f in Eclipse.

For this course, we'll display just the working sets you need. In the upper right corner o f the Package Explorer
panel, click the downward-po int arrow and select Co nf igure Wo rking Set s:

Select the working sets associated with this course (the ones that begin with "Python3"), and click OK:

Now, we'll create a pro ject to store our programs for this lesson. Select File | New | Pydev Pro ject , and
enter information as shown:

Click Finish. When asked if you want to open the associated perspective, check the Remember my
decisio n box and click No :

By default, the new pro ject is added to the Other Pro jects working set. Find Pyt ho n3_Lesso n01 there, right-
click it, and select Assign Wo rking Set s... as shown:

Select the Pyt ho n3_Lesso ns working set and click OK.

Getting Information for Programs
Programs have to process data. In the preceding two courses, we have used the built- in input () function to prompt the
user fo r data we needed. This works well enough for small quantities o f data, but would be inconvenient fo r large
amounts. It is much more difficult to write scripts around programs that request data interactively.

Sometimes it's easier fo r the user, when they are invoking your program by typing a command, to provide information
as a part o f the command line they enter. Obviously this is most useful fo r small amounts o f data—nobody wants to
write an essay at the command line! But fo r filenames and options (indications to the program of how to modify its
processing), the command line is very useful. This also makes writing scripts to use the program much simpler.

Where larger amounts o f data are concerned, you frequently get invo lved in reading textual data and transforming it into
other Python types. You have already had to do this when reading numbers via the input () function, since that always
returns strings. You have to do similar things when reading from files sometimes. The majority o f data arrives as text,
because much o f it is generated by humans.

Data that arrive in textual fo rm need to be transformed into data that the appropriate Python operations can be
performed on. So we are go ing to start this third course in the Python Certificate Series by looking at another way to get
data into your programs, and ensure that it can be transformed safely into appropriate Python data types.

Command Line Arguments
The sys module contains a number o f mechanisms for interacting with the system environment, and sys.argv gives
you access to the command line the user typed to start the program.

For example, if the user entered the command pyt ho n mypro g.py o ne t wo t hree , sys.argv would contain the value
['mypro g.py', 'o ne', ' t wo ', ' t hree '] . In o ther words, the program name is sys.argv[0] , the first argument to the
program call is sys.argv[1] and so on.

Emulating the Command Line in Eclipse

Under normal circumstances, you run programs from the command line, but during this class you run them
from the Eclipse-based learning system. In previous exercises, there has been no need to examine the
command line, and so you started your programs with a simple "Run" command. Now you need to
understand how to start a program with a simulated command line.

In order to understand the procedure, we'll create a program that prints out the contents o f its command line.

Right-click the Pyt ho n3_Lesso n01/src fo lder in the Package Explorer and select New | File :

In the New File dialog, enter the name cmdline.py, and click Finish:

In the editor, type the code as shown:

CODE TO TYPE: cmdline.py

"""
Simple program to dump the command line arguments
"""
import sys
for n, arg in enumerate(sys.argv):
 print(n, ":", arg)

Next we have to tell Eclipse what values to provide for the command line arguments. The easiest way to do
this is to create a "Run Configuration", which is a set o f specifications o f the environment to apply when the
program runs. Select Run | Run Co nf igurat io ns... from the menu, click the left icon on the Run
Configurations dialog too lbar.

This creates a new run configuration, initially named New_configuration, with empty values. Enter cmdline in
the Name: entry box at the top o f the dialog; fo r the Pro ject, click Bro wse to select the Pyt ho n3_Lesso n01
pro ject; and for the Main Module, click Browse to select your cmdline.py program as the program to run.
Observe that Ellipse shows you which directories will be on your Python path.

Next, select the Argument s tab. In the Program Arguments field, enter ${st ring_pro mpt } . This special
value tells Ellipse to ask you for the arguments to the program when you run this configuration. Leave
everything else as it is:

Click Apply to save this run configuration, and then click Run. You will see a new dialog box, entitled
"Variable Input" appear. Enter several words in the dialog box separated by one or more spaces:

Click OK. In the Conso le tab on the left, you should see the output from this run with the arguments you
entered.

Now you know how to access the command line arguments inside your program. When you run programs
outside o f Ellipse, you'd just put the data values on the command line (fo r example, cmdline.py t was brillig
and t he slit hy t o ves) instead o f having to run the program and then respond to a prompt.

String Analysis and Manipulation
You have already learned quite a lo t about Python strings, and this knowledge will be useful when it comes to
accepting data from the user and ensuring, before you try to use it in calculations or fo r o ther purposes, that it is
appropriate for the intended use.

Data Validation

Ideally, a program should never use data inputs from the user without first checking their reasonableness.
Quite o ften, you need to validate input data by verifying that it conforms to a specific pattern. For example, US
ZIP codes are either five digits (the o lder short fo rm) or nine digits with a dash between the fifth and sixth digit.
UK postal codes are somewhat more complicated, with two groups o f characters separated by a space. The
first group is one or two letters fo llowed by one or two digits, the second group is always one digit fo llowed
by two letters:

Other validations might require not only that inputs are numbers, but that they fall within a specific range. The
methods o f Python's string objects, together with the ability to "carve up" a string using slicing, can be used to
perform a limited analysis o f a string's contents. If these techniques do not suffice, we need to "bring out the
big guns" and use regular expressions, which you will learn about in due course.

For a validation routine, you might decide to return True if the data is acceptable and False if it is not. That
approach makes it difficult fo r the user, though. It is less than helpful to tell them "something is wrong with this
data"—you need to explain what is wrong with it, and ideally, how they can fix it. This, in turn, means that you
have to have some way o f getting error indications back from the validation process.

One simple way o f validating is to write a function that returns an error message if something is wrong, or
None when there are no problems with the data. Once you have saved the result o f the function, you can test it
(immediately or later) and display the error message if appropriate. You need to be careful with naming o f

such functions. The result they return will test as True when errors are detected, so use a name like
dat a_erro rs() rather than verif y_dat a() , because when the function returns a value it signifies there are
errors in the data.

If you want your error checking to be particularly complete, you might want to return more than one error
message about a particular piece o f data. The natural way to return this would be to accumulate a list inside
the validation function and then return the list. If the list is empty, the data is valid. You will see examples o f
various techniques in the remainder o f this lesson.

Testing Strategy

The primary issue with testing validation routines is that the routines are designed to succeed or fail
according to the "goodness" o f the input data. You therefore need to test both that correct data are correctly
validated and that incorrect data are correctly declared invalid.

This means you need two kinds o f tests: you have to test that the function fails on bad data, and that it
succeeds on good data. If it doesn't do both o f these things, it isn't working.

Zip Code Validation

Suppose that you want to verify that a string contains an acceptable US zip code. This kind o f task can be
puzzling, but it is worth trying to work out fo r yourself the logic you would apply. The most straightforward and
readable way is usually the best—don't worry about efficiency unless you experience a performance problem
(you usually won't).

In this particular case, the conditions are fairly easily stated: The zip code must be a string o f length five or ten
characters. The first five must be numeric; if the length o f the string is ten, the sixth character must be a minus
sign and the last four must be numeric. Before you get carried away, though, think about how you are go ing to
provide this functionality. Since a zip code check might be useful in all sorts o f contexts it probably makes
sense to write a function, in a module on its own (you can add o ther address checking functionality later).

Next, you need to decide on an API fo r your verification function and write some tests fo r it. For simplicity, let's
just say that it returns a single error message when it finds a problem with the zip code. Remember, if a
function continues execution until it "drops o ff the end," the call will automatically return None, indicating
success.

You will start, as usual, by writing the tests. This time we are go ing to get as much help from Ellipse as
possible. In the Package Explorer, right-click the Pyt ho n3_Lesso n01/src fo lder, and select New | Pydev
Mo dule from the context menu.

In the dialog that appears:

Leave the Package field blank.
For Name, enter t est _zipcheck (you don't need to add the ".py"—Ellipse knows that is needed).
For Template, select Mo dule:unit t est from the list.
Click Finish.

This creates a new module with quite a lo t o f source code already filled in:

If you now immediately enter "_zip_erro rs" (without the quote marks) you will see that not only is the name
of the method completed but the list element in the commented statement (line 17) is also changed. This is a
convenience feature from Ellipse—you won't be using the commented statement, but it's neat to see what the

software can do.

Next, modify the program by changing the new method's body code and adding another method:

CODE TO EDIT: test_zipcheck.py

'''
Created on Aug 29, 2010

@author: sholden

Test the zip_errors() function from the zipcheck module
'''
import unittest
from zipcheck import zip_errors

class Test(unittest.TestCase):

 def testName(self):
 def test_zip_errors(self):
 "Tests ensuring errors in data cause validation failures."
 raise TypeError("No tests yet present.")

 def test_zip_successes(self):
 "Test ensuring that valid data passes."
 pass

if __name__ == "__main__":
 #import sys;sys.argv = ['', 'Test.test_zip_errors']
 unittest.main()

Before running this program you want to make sure that you at least provide a stub zip_erro rs() function so
that your tests fail rather than giving errors when trying to import the function, so create the zipcheck.py file
as shown below. Note that the stub returns None—although a stub should ideally fail, and the default value o f
None returned by a stub containing only a pass statement will be regarded as successful, you cannot
implement a stub that fails when it is supposed to and succeeds when it is supposed to without writing the
validation function in all its glory!

CODE TO TYPE: zipcheck.py

'''
zipcheck.py: validation function for US zip codes
'''

def zip_errors(z):
 """
 Validate z as either NNNNN or NNNNN-NNNN.
 """
 pass

 Save and run your t est _zipcheck.py file now. It shows a failure.

Observe that the test method terminates with the first failure

E.
==
ERROR: test_zip_errors (__main__.Test)
Tests ensuring errors in data cause validation failures.
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson01\src\test_zipcheck.py", line 15, in test_zi
p_errors
 raise TypeError("No tests yet present.")
TypeError: No tests yet present.

--
Ran 2 tests in 0.016s

FAILED (errors=1)

As usual, this is hardly surprising with an empty stub replacing the desired functionality. Note, however, that
the second test passes in its entirety. This is because the function has to either succeed or fail, and since by
default it succeeds, by default good zip codes are accepted as good.

In fact the second test is there to verify that there are no failures to accept good data. Unless you induce such
failures, you will probably never see a failure o f this test. If you do, however, you know something serious has
gone wrong. Furthermore the first test, being a stub, would have also succeeded if you hadn't specifically
made it fail with the raise statement.

You can remove the raise as soon as you introduce real tests, which is the next step. You are go ing to add
negative tests, which will fail if the validation function affirms data acceptable when it should not be, and
positive tests, which will fail if the function refuses to accept a string when it should.

This is a matter o f balance. For now, leave your stub function as it is and make the tests a little more
comprehensive.

CODE TO EDIT: test_zipcheck.py

'''
Created on Aug 29, 2010

@author: sholden

Test the zip_errors() function from the zipcheck module
'''
import unittest
from zipcheck import zip_errors

class Test(unittest.TestCase):

 def test_zip_errors(self):
 "Tests ensuring that errors in data cause validation failures."
 raise TypeError("No tests yet present.")
 self.assertIsNotNone(zip_errors("1234"), "Accepting length 4")
 self.assertIsNotNone(zip_errors("12345-678"), "Accepting length 9")
 self.assertIsNotNone(zip_errors("1234e"), "Accepting alphabetic 5")
 self.assertIsNotNone(zip_errors("12345-678Y"), "Accepting alphabetic 5+4
")
 self.assertIsNotNone(zip_errors("12345/6789"), "Accepting non-hyphen")

 def test_zip_successes(self):
 "Test ensuring that valid data passes."
 pass
 self.assertIsNone(zip_errors("12345"), "Not accepting 5-digit zips")
 self.assertIsNone(zip_errors("12345-6789"), "Not accepting 9-digit zips"
)

if __name__ == "__main__":
 #import sys;sys.argv = ['', 'Test.test_zip_errors']
 unittest.main()

 Save and run the test. We still see a failure, but now at least we can see that zip codes o f incorrect length are
being caught.

OBSERVE: With real tests in there, the first test still fails

F.
==
FAIL: test_zip_errors (__main__.Test)
Tests ensuring that errors in data cause validation failures.
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson01\src\test_zipcheck.py", line 15, in test_zi
p_errors
 self.assertIsNotNone(zip_errors("1234"), "Accepting length 4")
AssertionError: unexpectedly None : Accepting length 4

--
Ran 2 tests in 0.015s

FAILED (failures=1)

So now we need to enhance zipcheck to test the length o f the input. There are only two valid values.

CODE TO EDIT: zipcheck.py

'''
zipcheck.py: validation function for US zip codes
'''

def zip_errors(z):
 """
 Validate z as either NNNNN or NNNNN-NNNN.
 """
 pass
 if len(z) not in (5, 10):
 return "Zip codes should be 5 or 10 characters long"
 return

 Save and run the test. Notice that the validation function now accepts an input as valid if it doesn't specifically
find anything wrong with it. This requires your error checks to be exhaustive (which they aren't at the moment,
as you discover by running your tests again).

OBSERVE: Running test_zipcheck.py shows length checks are working

F.
==
FAIL: test_zip_errors (__main__.Test)
Tests ensuring that errors in data cause validation failures.
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson01\src\test_zipcheck.py", line 17, in test_zi
p_errors
 self.assertIsNotNone(zip_errors("1234e"), "Accepting alphabetic 5")
AssertionError: unexpectedly None : Accepting alphabetic 5

--
Ran 2 tests in 0.000s

FAILED (failures=1)

You also need to make sure that the first five characters o f the zip are all numeric (and for ten-digit inputs, that
the last four characters are numeric too). This is a relatively simple modification: you just return an error
message complaining about the characters unless they are all numeric. The only slightly tricky part is not
testing the last four unless the length o f the input is ten.

CODE TO EDIT: zipcheck.py

'''
zipcheck.py: validation function for US zip codes
'''

def zip_errors(z):
 """
 Validate z as either NNNNN or NNNNN-NNNN.
 """
 if len(z) not in (5, 10):
 return "Zip codes should be 5 or 10 characters long"
 if (not z[:5].isdigit() or
 len(z) == 10 and not z[6:].isdigit()):
 return "Zip code contains non-numeric characters"
 return

 Save and run the test. Now the function correctly raises errors for zips with non-numeric characters in them,
but you still see failures because there is nothing yet that checks to make sure that, in a zip+4, the two parts o f
the zip are separated by a dash.

OBSERVE: the tests still fail, even though further checks have been added

F.
==
FAIL: test_zip_errors (__main__.Test)
Tests ensuring that errors in data cause validation failures.
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson01\src\test_zipcheck.py", line 19, in test_zi
p_errors
 self.assertIsNotNone(zip_errors("12345/6789"), "Accepting non-hyphen")
AssertionError: unexpectedly None : Accepting non-hyphen

--
Ran 2 tests in 0.016s

FAILED (failures=1)

The final test makes sure that ten-digit zips have a dash in the correct position. This is the last check that we
can make—any zip that passes all those tests is good. If none o f the tests detect a failure it's OK to succeed
by returning No ne , which as usual happens by default.

CODE TO EDIT: zipcheck.py

'''
zipcheck.py: validation function for US zip codes
'''

def zip_errors(z):
 """
 Validate z as either NNNNN or NNNNN-NNNN.
 """
 if len(z) not in (5, 10):
 return "Zip codes should be 5 or 10 characters long"
 if (not z[:5].isdigit() or
 (len(z) == 10 and not z[6:].isdigit())):
 return "Zip code has non-numeric characters"
 if len(z) == 10 and z[5] != "-":
 return "Ten-digit zips must have a dash between the two parts"
 return

 Save and run the test. Finally, it passes! The bad zip codes are returning error messages and the good zip
codes aren't.

OBSERVE: Finally the test passes

..
--
Ran 2 tests in 0.000s

OK

Notice that separation between the tests o f good zips and the tests o f bad zips made it somewhat easier to
observe that the test coverage was improving. The fact that the second test always succeeded simply shows
that the code was developing along the right lines. Had it failed at any time, you would have seen that the
validator was failing to approve valid data, which would have been valuable feedback.

So, that gives you a brief introduction to data validation in Python. Ideally you should never use data that has not been
through some validation process. Failure to validate inputs is the source o f many well-known security issues,
including "buffer overflow" attacks and "SQL Injection" attacks. All data that flows into a system should be validated.
Once it is stored by a program that has validated it the data can generally be considered trustworthy, but any new inputs
from outside (users, even remote servers in certain cases) should be treated with suspicion. Get in the habit o f
validating your data, and make sure that you use tested validation routines so you can have a reasonable degree o f
confidence that they are go ing to validate as expected.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Converting Data into Structured Objects
Lesson Objectives

When you complete this lesson, you will be able to :

constructing classes.
utilize application programming interfaces.
apply method reso lution order.

In the previous courses, we've touched on various methods o f structuring data. Iterators such as list s and t uples have their
place, as does the dict . The clever usage o f these fundamental structural elements in Python is a defining hallmark o f a skilled
developer.

Sometimes, though, you need objects that behave in different ways. Assigning one behavior to the data such as "render to
CSV" can be easy. But what if you have a dozen behaviors to consider? What if you need to include behaviors such as 'print
prettily to the screen, sum up the integer values, add an ISBN from the O'Reilly bookstore', and a dozen more operations?

You could use your list , t uple , o r dict structures in combination with a dozen functions to create the functionality you need.
However, that isn't very portable, as remembering to import all your functions across multiple modules is error-prone and time-
consuming. Really what you are looking for is a way to carry the functions around with the data, making them really easy to
apply.

This means it's time for us to revisit object oriented programming. With a little bit o f work, you can apply a sound structure to
incoming data. Applying this sound structure to your data can provide a number o f positive benefits. Since the data is in a
predictable format, you can more easily write code to support the data. The structure can also be assigned behaviors, which can
be applied to the data. All the behaviors are defined in a class definition, making them readily available to all instances o f the
class.

If you document the expected structure o f the data you expect to receive, you are providing an interface for yourself to fo llow in
the future. The wonderful thing is that Python gives you the too ls to easily create interfaces that are easy to understand, flexible,
and very powerful.

Constructing Classes
In previous courses and lessons, we learned how to write classes and create objects. We also learned about the
__init __() special constructor method used each time an object is instantiated. Now, we'll learn a few more things
about the __init __() method and things you can do to better handle behavior o f data.

You may remember that instances o f your classes normally keep their instance attribute values in a dict known as
self .__dict __. Remind yourself with a quick interactive interpreter session.

CODE TO TYPE: Enter the fo llowing code at an interactive conso le session

>>> class Meter:
... def __init__(self, voltage):
... self.limit = voltage
...
>>> m1 = Meter(20)
>>> m1.label = "Apartment 2214"
>>> m1.__dict__
{'limit': 20, 'label': 'Apartment 2214'}

See how self .__dict __ implements the instance m1's local namespace? When we bind a value to the name "limit" in
the instance's namespace with self.limit = vo ltage, a new key "limit" appears in the instance's __dict__, associated with
the value "20." One o f the reasons why namespaces seem so like dicts is that a dict is o ften used to implement a
namespace.

Introducing the Bunch Class

Through the use o f keyword arguments, Python gives us the ability to create a bunch class. A bunch class
takes incoming data and saves it as attributes. That sounds more sophisticated than it is, so let's write a

bunch class and see what it means. Create a new Pyt ho n3_Lesso n02 pro ject and assign it to your
Pyt ho n3_Lesso ns working set. Then create bunchclass.py in your Pyt ho n3_Lesso n02/src fo lder as
shown:

CODE TO TYPE: bunchclass.py

"""
Simple bunch class
"""
class Bunch(object):
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

if __name__ == "__main__":
 b = Bunch(name="Python 3", language="Python 3.0.1")
 print(b.name)
 print(b.language)
 print(b.__dict__)

 Save and run it.

OBSERVE: The attribute values and the updated __dict__

Python 3
Python 3.0.1
{'name': 'Python 3', 'language': 'Python 3.0.1'}

You see the two values, "Python 3" and "Python 3.0 .1," printed from the "name" and "language" attributes o f
the "b" object. But the Bunch class lacks those attributes!

Remember that instances keep their attributes in a dict- like object (named __dict __), and that the code
guarded by if __name__ == "__main__": will only be executed if the module is run as a main program, and
not when it is imported by some other program. In the latter case, you don't want print statements running in
the middle o f someone else's program!

Let's take a closer look:

OBSERVE: bunchclass.py

"""
Simple bunch class
"""
class Bunch(object):
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

if __name__ == "__main__":
 b = Bunch(name="Python 3", language="Python 3.0.1")
 print(b.name)
 print(b.language)
 print(b.__dict__)

This Bunch class uses the magic __dict __ attribute's updat e() method to dynamically add attributes to the
object based according to the keywo rd argument s passed into the class. Note that the __init __()
method's second argument is prefixed by "**", so keyword arguments are co llected in a dict named kwargs.
Calling __dict __'s updat e() method copies the keys and values from kwargs to __dict __.

Note
In Python 3, when we define a class, we don't need to specify that it inherits from o bject , but it
doesn't hurt to do so. We do it here just to remind you that the Bunch class is a child o f the
built- in o bject .

All our code should have tests, even programs as seemingly simple as this. Convert the above program to
use the unit t est framework.

CODE TO EDIT: bunchclass.py

"""
Simple bunch class
"""
import unittest

class Bunch(object):
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

class TestBunch(unittest.TestCase):
 def test_attributes(self):
 b = Bunch(name="Python 3", language="Python 3.0.1")
 self.assertEqual("Python 3", b.name)
 self.assertEqual("Python 3.0.1", b.language)

if __name__ == "__main__":
 b = Bunch(name="Python 3", language="Python 3.0.1")
 print(b.name)
 print(b.language)
 print(b.__dict__)
 unittest.main()

 Save and run it.

OBSERVE: The test passes when you run the program

.
--
Ran 1 test in 0.000s

OK

The tests are small here, so it is OK to add them to the basic module rather than making a separate test
module. The current code always imports the unit t est module even when it is not go ing to be used (when
the module is imported rather than running as a main program). You can correct this by moving both the
import o f unit t est and the code for the test class itself so that these pieces o f code are only executed when
required:

CODE TO EDIT: bunchclass.py

"""
Simple bunch class
"""
import unittest
class Bunch(object):
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

class TestBunch(unittest.TestCase):
 def test_attributes(self):
 b = Bunch(name="Python 3", language="Python 3.0.1")
 self.assertEqual("Python 3", b.name)
 self.assertEqual("Python 3.0.1", b.language)

if __name__ == "__main__":
 import unittest
 class TestBunch(unittest.TestCase):
 def test_attributes(self):
 b = Bunch(name="Python 3", language="Python 3.0.1")
 self.assertEqual("Python 3", b.name)
 self.assertEqual("Python 3.0.1", b.language)

 unittest.main()

While this works, it is really rather simpler to put the testing code into an entirely separate module that does
not cause additional work when testing is not required. So we'll undo these modifications in a minute to keep
the code in the remaining examples as straightforward as possible.

Adding a Behavior to the Bunch Class

The bunch class is useful in handling incoming data, but what about sending it out? For example, what if we
want to print all the data? A first approximation to that task could simply use print (b.__dict __) , but the output
is hardly user-friendly. You can easily add a method to the Bunch class.

CODE TO EDIT: bunchclass.py

"""
Simple bunch class with a pretty printing method
"""
import unittest

class Bunch(object):
 def __init__(self, *args, **kwargs):
 self.__dict__.update(kwargs)

 def pretty(self):
 text = ""
 for key, value in self.__dict__.items():
 text += "%s: %s\n" % (key, value)
 return text

class TestBunch(unittest.TestCase):
 def test_attributes(self):
 b = Bunch(name="Python 3", language="Python 3.0.1")
 self.assertEqual("Python 3", b.name)
 self.assertEqual("Python 3.0.1", b.language)
 def test_pretty(self):
 b = Bunch(name="Steve Holden", profession="Pythonista")
 p = b.pretty()
 self.assertTrue("name: Steve Holden" in p)
 self.assertTrue("profession: Pythonista" in p)
 self.assertEqual(len(p.splitlines()), 2, "Too many lines in output")

if __name__ == "__main__":
 import unittest;
 class TestBunch(unittest.TestCase):
 def test_attributes(self):
 b = Bunch(name="Python 3", language="Python 3.0.1")
 self.assertEqual("Python 3", b.name)
 self.assertEqual("Python 3.0.1", b.language)
 unittest.main()

This version o f the bunch class uses a pret t y() method to display the attributes by accessing the object's
magic __dict __ property. Calling this method renders the attributes o f the instance—with each key, value pair
printing as key: value . Of course adding a new method means adding tests fo r it too , so t est _pret t y() tries
to verify that it is creating the expected output.

 Run your tests again to verify that they both succeed:

OBSERVE: the new test should pass first time

..
--
Ran 2 tests in 0.000s

OK

Fixing a Bunch Class Issue

There is an issue with the updated Bunch class. It hasn't created any problems so far, but some interactive
commands will make it clear:

commands will make it clear:

CODE TO TYPE: Run the fo llowing code in an interactive interpreter session

>>> from bunchclass import Bunch
>>> b = Bunch(name="Audrey", job="Software Developer", pretty=True)
>>> b.pretty()
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: 'bool' object is not callable
>>>

When we tried to call the b.pret t y() method, we got a T ypeErro r exception. This is because the argument
pret t y=T rue just overrode the pret t y() method (remember: the interpreter looks for attributes in the
instance's __dict__ before it looks in the class's __dict__), so the instance's pret t y attribute is masking the
class's pret t y() method—the interpreter never gets around to looking in the class because it finds what it is
looking for in the instance.

One so lution is to use the built- in hasat t r() and set at t r() functions. Modify bunchclass.py to disallow
masking o f class attributes:

CODE TO EDIT: bunchclass.py

"""
Simple bunch class with a pretty printing method that protects its API
"""

import unittest

class Bunch(object):
 def __init__(self, *args, **kwargs):
 self.__dict__.update(kwargs)
 for key, value in kwargs.items():
 if hasattr(self, key):
 raise AttributeError("API conflict: '%s' is part of the '%s' API
" % (key, self.__class__.__name__))
 else:
 setattr(self, key, value)
 def pretty(self):
 text = ""
 for key, value in self.__dict__.items():
 text += "%s: %s\n" % (key, value)
 return text

class TestBunch(unittest.TestCase):
 def test_attributes(self):
 b = Bunch(name="Python 3", language="Python 3.0.1")
 self.assertEqual("Python 3", b.name)
 self.assertEqual("Python 3.0.1", b.language)
 def test_pretty(self):
 self.assertRaises(AttributeError, Bunch, name="Audrey", job="Software De
veloper", pretty=True)
 b = Bunch(name="Audrey", job="Software Developer")
 p = b.pretty()
 self.assertTrue("Audrey" in p)
 self.assertFalse("pretty: True" in p)
 b = Bunch(name="Steve Holden", profession="Pythonista")
 p = b.pretty()
 self.assertTrue("name: Steve Holden" in p)
 self.assertTrue("profession: Pythonista" in p)
 self.assertEqual(len(p.splitlines()), 2, "Too many lines in output")

if __name__ == "__main__":
 unittest.main()

Run this program and see how the tests pass. Now, let's take a closer look at some of the code to

understand what's go ing on.

OBSERVE: The Bunch class

class Bunch(object):
 def __init__(self, *args, **kwargs):
 for key, value in kwargs.items():
 if hasattr(self, key):
 raise AttributeError("API conflict: '%s' is part of the '%s' API
" % (key, self.__class__.__name__))
 else:
 setattr(self, key, value)
 def pretty(self):
 text = ""
 for key, value in self.__dict__.items():
 text += "%s: %s\n" % (key, value)
 return text

The __init __ method uses the kwargs it ems() method which it gets fo r being o f type dict to pass an iterable
of keys and values that are tested for presence in the self object via the hasat t r built- in. If the attribute
doesn't exist yet, the set at t r built- in is used to add the attribute. If the attribute does exist, we raise an
At t ribut eErro r, which is used to identify when attribute assignment or references fail.

Python gives you the power to change the attributes o f class objects almost at will. This is because Python
makes the assumption that you are a "consenting adult" and understand the ramifications o f what you do.
This may sound a bit intimidating but this sort o f confidence in the people who want to use Python is a
hallmark o f the language and the community that surrounds the language.

Note
Certain applications—such as the contro l o f nuclear reactors, flight contro l systems, and the like
—require the ability to reason about program structures as a part o f integrity verification.
Dynamic languages like Python would require analysis that is too complex to be practical at
today's state o f the art.

Application Programming Interfaces
Suppose you wrote some software that lets you calculate something important, such as the speed o f small birds
tasked with carrying objects in a basket. This program would let an individual add and remove objects fo r the bird to
carry, and when unladen it would simply go faster. You want to share this so ftware with o thers, and to encourage its
use, you want to make it easy for them to use.

The way this is done is through an Application Programming Interface, or API. An API refers to a specified interface
between components, and allows us to build applications that use already existing software (and sometimes
hardware). Sophisticated APIs drive our modern world and make it possible to send/receive email o r text messages,
take O'Reilly Software Courses, use on-line mapping too ls, and a million o ther tasks. As a designer, your desire is to
hide the complexity you have programmed into the classes from your users, who simply call API functions (and
classes).

You will use what you learned in creating Bunch classes to build a simple API.

Designing an API

The first step in designing an API is to figure out what data it should handle and what behaviors it should have.
Our API should have the fo llowing capabilities:

init ialize: Gives the user the ability to create a Bird object carrying any number o f small objects in
its basket.
add: Add another object fo r the Bird to carry in its basket.
remo ve: Remove an object from the Bird's basket
calculat e: Calculate the bird's current speed.
basket : Return an attractive string that lists the materials in the basket.

Does this look very similar to how you have designed Python classes in the past? It should, because the
preferred method in API design is to fo llow an object-oriented approach. This lets people find data

represented by an object and then call behaviors and methods to act upon that data. Importing the class and
creating instances automatically gives o ther programmers access to the API you have designed.

Building the API

We've got enough information to lay out the skeleton code for our API. Since the Bunch class already
embodies a lo t o f the functionality we need, we'll subclass the Bunch class, allowing us to build on existing
code. The bird API specification (which is what the fo llowing code essentially comprises) goes in a new file,
bird_api.py in your Pyt ho n3_Lesso n02/src fo lder:

CODE TO TYPE: bird_api.py

"""
API for software birds carrying objects.
"""
from bunchclass import Bunch

class Bird(Bunch):

 def add(self, name, value):
 """
 Add an object for the Bird to carry in its basket.
 Name is what you call the object.
 Value is the actual object being placed in the basket.
 """

 def remove(self, name):
 """
 Remove an object from the basket.
 Name is the string of the object to be removed.
 """

 def calculate(self):
 """
 Calculate the speed of the bird.
 Algorithm: 100 - (5*number of objects in the basket).
 Result cannot be less than zero.
 """

 def basket(self):
 """
 Print the list of objects in the basket in an attractive format.
 """

if __name__ == "__main__":
 swallow = Bird(fruit=("coconut", "orange"), drink="apple juice")
 swallow.add("cars", 3)
 print(swallow.basket())
 print(swallow.calculate())
 swallow.remove("drink")
 print(swallow.basket())
 print(swallow.calculate())
 help(swallow)

 Save and run it. You'll get nothing as a result except a bunch o f No nes and the output from the help() . The
help output is really critical because it allows you to view your so ftware through the eyes o f another
programmer. This o ther guy or girl doesn't know any o f the great stuff about your so ftware that you do, so
they will likely read the help to find out how to use your so ftware—and whether they might want to . APIs
without quality documentation are functionally impossible to use. Also, writing the documentation in an API
you are providing can help you clean up the design.

If you have defined a module correctly, everything important in it should be documented. You should be able
to verify this from the conso le window after running bird_api. Alternatively you can access the help from an
interactive conso le session. (You may want to maximize the interactive conso le pane: select the conso le tab

 and then its maximize button—remember you can get back to your regular class view by
selecting Pyt ho n from the red leaf drop-down menu in Ellipse).

CODE TO TYPE: Accessing the bird API documentation interactively

>>> import bird_api
>>> help(bird_api.Bird)
Help on class Bird in module bird_api:

class Bird(bunchclass.Bunch)
 | Method resolution order:
 | Bird
 | bunchclass.Bunch
 | builtins.object
 |
 | Methods defined here:
 |
 | add(self, name, value)
 | Add an object for the Bird to carry in its basket.
 | Name is what you call the object.
 | Value is the actual object being placed in the basket.
 |
 | basket(self)
 | Print the list of objects in the basket in an attractive format.
 |
 | calculate(self)
 | Calculate the speed of the bird.
 | Algorithm: 100 - (5*number of objects in the basket).
 | Result cannot be less than zero.
 |
 | remove(self, name)
 | Remove an object from the basket
 | Name is the string of the object to be removed.
 |
 | --
 | Methods inherited from bunchclass.Bunch:
 |
 | __init__(self, *args, **kwargs)
 |
 | pretty(self)
 |
 | --
 | Data descriptors inherited from bunchclass.Bunch:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

Note that there is no need for individual method descriptions anywhere except in the docstring for that
method. The help system co llects all that information together fo r the user in one convenient place.

Now that our API is documented, let's add the behavior code in each method:

CODE TO EDIT: bird_api.py

"""
API for software birds carrying objects.
"""
from bunchclass import Bunch

class Bird(Bunch):

 def add(self, name, value):
 """
 Add an object for the Bird to carry in its basket.
 Name is what you call the object.
 Value is the actual object being placed in the basket.
 """
 if hasattr(self, name):
 raise KeyError("'%s' object cannot be placed in basket" % (self.name
))
 else:
 setattr(self, name, value)

 def remove(self, name):
 """
 Remove an object from the basket.
 Name is the string of the object to be removed.
 """
 if name in self.__dict__:
 delattr(self, name)
 else:
 raise KeyError("'%s' object not found in basket" % (self.name,))

 def calculate(self):
 """
 Calculate the speed of the bird.
 Algorithm: 100 - (number of objects in the basket * 10), minimum of
0.
 Result cannot be less than zero.
 """
 return max(100 - len(self.__dict__) * 10, 0)

 def basket(self):
 """
 Print the list of objects in the basket in an attractive format.
 """
 return "Basket Objects\n" + self.pretty()

if __name__ == "__main__":
 swallow = Bird(fruit=("coconut", "orange"), drink="apple juice")
 swallow.add("cars", 3)
 print(swallow.basket())
 print(swallow.calculate())
 swallow.remove("drink")
 print(swallow.basket())
 print(swallow.calculate())
 help(swallow)

 Save and run it. We now have a working class that stores data in a structured format and has assigned
behaviors to it. The documentation is such that you can easily figure out what is go ing on, making it possible
to call it from other programs for a variety o f uses. Suppose someone needed to model a flock o f birds
carrying objects from one location to another (perhaps they plan to start a courier service based on bird
power).

Sharing APIs

A good aphorism for API work is "A good API is simply code, and code that is documented to the best o f your

ability." No one is go ing to want to use your API if all you do is provide a list o f methods that you think is
intuitive. Accurate and complete documentation is a hallmark o f successful API design. Python's docstrings
are a great too l fo r sharing your code.

There are a number o f common ways to share an API. While outside the scope o f this class, one o f the more
accessible methods is via the Internet. A very current example is the ability o f social networking sites to
provide cross-site login contro ls via an API called OpenID (http://en.wikipedia.org/wiki/OpenID). These more
sophisticated APIs require the use o f various modules taken from the Python standard library such as urllib,
f t plib, smt plib, and more.

However, an API can also be called via simple object instantiation inside o f code. In fact, this is the first
method o f testing done against an API during design. The Unit Tests with which you are familiar are
commonly used in testing API designs and code.

Calling the API

In this section, we'll just call the API by importing the Bird class into a new program and using it. This is the
most common way o f using an API, and builds on what you already know. Create a new program in your
Pyt ho n3_Lesso n02/src fo lder named f lo ck.py as shown:

CODE TO TYPE: flock.py

from bird_api import Bird

class Flock(object):

 birds = []

 def add_bird(self, bird):
 """
 Add a bird object to the flock
 """
 self.birds.append(bird)

 def race(self):
 """
 Show how far the birds of the flock can go in one hour carrying their re
spective loads.
 """
 print("Distance flown in one hour by the flock")
 for bird in self.birds:
 distance = "-" * (bird.calculate() // 10)
 notice = "%s: %s carrying %s items" % (distance, bird.name, len(bird
.__dict__))
 print(notice)

if __name__ == "__main__":
 swallow = Bird(coconut=1, name="Swallow")
 african = Bird(coconut=1, piece="of string", visited=False, name="African Sw
allow")
 european = Bird(coconut=1, lottery_numbers=(23, 12, 34), piece="of string",
visited=True, name="European Swallow")
 european.add("cereal_boxes", 5)
 european.add("Norway", True)
 european.add("England", True)

 flock = Flock()
 flock.add_bird(swallow)
 flock.add_bird(african)
 flock.add_bird(european)
 flock.race()

In this API example, we import the Bird class from the bird_api module and call it to create a number o f birds
(Bird instances). We add the birds to our flock object and race them against each o ther. When you run the
program, the output clearly shows that the least-heavily laden swallow travels farthest.

http://en.wikipedia.org/wiki/OpenID

OBSERVE: The output from running flock.py as a main program

Distance flown in one hour by the flock
--------: Swallow carrying 2 items
------: African Swallow carrying 4 items
--: European Swallow carrying 8 items

We use the API objects without modification, and only add attributes via the specified methods o f the API. This
is really important because Python is a very dynamic language that allows you many freedoms. You can
break the API by replacing critical methods "from outside," as we found earlier in the case o f the simple Bunch
class.

There, the code triggered a T ypeErro r exception because the Bunch class's pret t y() method was masked
by a data attribute on the instance, which we then attempted to call. While the Bunch class now pro tects this
from happening during object instantiation, there is nothing to prevent you from masking the pret t y() method
simply by setting bunch.pret t y = T rue after creating an instance.

Therefore, when using an object or value returned by an API, it is a good practice to use only the object's
methods to modify its data (unless the documentation specifically gives you leave to change attribute values).
To add further data, incorporate the objects into some other structure containing the associated information,
as in the modification to f lo ck.py shown below:

CODE TO EDIT: flock.py

from bird_api import Bird

class Flock(object):

 birds = []

 def add_bird(self, bird):
 """
 Add a bird object to the flock
 """
 self.birds.append(bird)

 def race(self):
 """
 Show how far the birds of the flock can go in one hour carrying their re
spective loads.
 """
 print("Distance flown in one hour by the flock")
 for bird in self.birds:
 distance = "-" * (bird.calculate() // 10)
 notice = "%s: %s carrying %s items" % (distance, bird.name, len(bird
.__dict__))
 print(notice)
if __name__ == "__main__":
 swallow = Bird(coconut=1, name="Swallow")
 african = Bird(coconut=1, piece="of string", visited=False, name="African Sw
allow")
 european = Bird(coconut=1, lottery_numbers=(23, 12, 34), piece="of string",
visited=True, name="European Swallow")
 european.add("cereal_boxes", 5)
 european.add("Norway", True)
 european.add("England", True)

 birds = (
 ("Swallows are a group of birds in the family Hirundinidae.", swallow),
 ("African swallows are said to be able to carry coconuts.", african),
 ("European swallows are said to have trouble carrying coconuts.", europe
an),
)

 flock = Flock()
 flock.add_bird(swallow)
 flock.add_bird(african)
 flock.add_bird(european)
 for stmt, bird in birds:
 print(stmt)
 flock.add_bird(bird)
 print("*"*40)
 flock.race()

 Save and run it, and you see this:

OBSERVE: Output from the modified flock.py

Swallows are a group of birds in the family Hirundinidae.
African swallows are said to be able to carry coconuts.
European swallows are said to have trouble carrying coconuts.
**
Distance flown in one hour by the flock
--------: Swallow carrying 2 items
------: African Swallow carrying 4 items
-----: European Swallow carrying 5 items

In this example, you used tuples to store some extra information along with the new bird objects. You didn't
modify the existing API objects and so could be secure that the results would not throw an exception. Tuples

are a valuable way to save associated data, since you know that no o ther portion o f the code can modify the
tuple because o f its immutable nature.

Method Resolution Order
Let's think about a small family. For the sake o f brevity we'll use "parent" instead o f "mother" or "father," and "child"
instead o f "son" or "daughter." What we have then is a family consisting o f a parent and child. The parent has certain
features such as hair co lor and vo ice. The child when grown will have similar features to those o f its parent. However,
children generally have more than one parent, and their parents have parents, and so on. Determining the features the
child inherits becomes complicated very rapidly—more so as you add in the unpredictability o f genetics. Also, the child
can modify their appearance and vo ice. Maybe they dye their hair o r scream too much at concerts and their vo ice is
altered. Now they have some features different from any o f their ancestors.

In programming, names o f familial relationships are used to describe similar relationships among object classes.
Inheritance, parent, and child are frequently used to describe the elements o f object inheritance. One noticeable
difference in termino logy is that instead o f "features," object inheritance tracks the behaviors we call methods.

Another important difference is that programmatic inheritance does not have any genetic variety, instead being fixed
and static. Programmers tend to prefer this: while life may lack interest without the rich pro fusion o f genetic mutation, it
does have a certain predictability which is welcome when thinking about what is actually happening in a program.

Basic Method Resolution Order

If you explore some of the previous code in this lesson, you can see the inheritance relationship between the
Bunch and Bird classes:

Bunch is the parent o f Bird, and Bird is the child o f Bunch. Bird has all the methods o f Bunch. We call the
Bunch __init __() method when we instantiate a Bird object and the pret t y() methods when we test the
results o f the Bird class.

Let's change the Bird's pret t y() method. Bird is vain so instead o f displaying its attributes we'll have the
pret t y() method return "pret t y bird". In order to do this, all we need to do is add a new pret t y() method to
the Bird class to override what it inherited from the Bunch class:

CODE TO EDIT: bird_api.py

"""
API for software birds carrying objects.
"""
from bunchclass import Bunch

class Bird(Bunch):

 def pretty(self):
 """
 Replacement pretty() method
 """
 return "pretty bird!"

 def add(self, name, value):
 """
 Add an object for the Bird to carry in its basket.
 Name is what you call the object
 Value is the actual object being placed in the basket.
 """
 if hasattr(self, name):
 raise KeyError("'%s' object cannot be placed in basket")
 else:
 setattr(self, name, value)

 def remove(self, name):
 """
 Remove an object from the basket
 Name is the string of the object to be removed
 """
 if name in self.__dict__:
 delattr(self, name)
 else:
 raise KeyError("'%s' object not found in basket")

 def calculate(self):
 """
 Calculate the speed of the bird.
 algorithm: 100 - (number of objects in the basket * 10) minimum of 0
 result cannot be less than zero.
 """
 return max(100 - len(self.__dict__) * 10, 0)

 def basket(self):
 """
 Print in an attractive format the list of objects in the basket.
 """
 return "Basket Objects\n" + self.pretty()

if __name__ == "__main__":
 swallow = Bird(fruit=("coconut", "orange"), drink="apple juice")
 swallow.add("cars", 3)
 print(swallow.basket())
 print(swallow.calculate())
 swallow.remove("drink")
 print(swallow.basket())
 print(swallow.calculate())
 help(swallow)

 Save and run it. Instead o f "fruit: ('coconut', 'o range')" you'll get "pretty bird!".

OBSERVE: Output from modified bird_api tests

Basket Objects
pretty bird!
70
Basket Objects
pretty bird!
80

To summarize, if a child class inherited a method from its parent class, you can override that inherited
method by adding a method o f the same name to the child class.

More Complicated Method Resolution Order

Let's continue with the family analogy. Regardless o f the marital status, the child has two immediate genetic
donors known by the common vernacular as "mother" and "father," o r co llectively as "parents." Those
parents have parents o f their own. Python lets you model this sort o f genetic structure (and many o thers). With
that in mind, let's model the hair co lor o f the fo llowing inheritance structure:

Let's assume that we all have four different grandparents with four different hair co lors—except Grandpa
Isadore, who went bald early. Python gives precedence to the leftmost inherited object; to see what the child
ends up with, create inhairit ance.py and t est _inhairit ance.py in your Pyt ho n3_Lesso n02/src fo lder as
shown:

CODE TO TYPE: inhairitance.py

"""
Complex inheritance program
"""

import unittest

class Maurice(object):
 def hair(self):
 return "red"

class Vivian(object):
 def hair(self):
 return "brown"

class Isadore(object):
 def hair(self):
 return "bald"

class Tracy(object):
 def hair(self):
 return "gray"

class Mother(Maurice, Vivian):
 pass

class Father(Isadore, Tracy):
 pass

class Child(Father, Mother):
 pass

if __name__ == "__main__":
 child = Child()
 print(child.hair())

CODE TO TYPE: test_inhairitance.py

"""
Inheritance test program
"""

import unittest
from inhairitance import Child

class TestHair(unittest.TestCase):

 def test_hair(self):
 child = Child()
 hair = child.hair()
 self.assertNotEqual(hair, "red")
 self.assertNotEqual(hair, "brown")
 self.assertNotEqual(hair, "gray")
 self.assertEqual(hair, "bald")

if __name__ == "__main__":
 unittest.main()

 Save and run it. We can deduce by the fact that the tests succeed that the child's hair is "bald." This is
because the method reso lution order tries the "base classes" in its search for a method from left to right (in
the order they are given in the class statement). Thus a method for child will be sought first in Father, then in
Mother. Father, o f course, has no hair() method, and so its base classes are searched, again in left-right
order. This is known as a left-first depth-first search.

If you switch the order o f inheritance, say, Mother with Father, the child will have red hair. Indeed, if genetics
were as straightforward as programming in Python, a lo t more people would be happy with their hair—except

maybe Grandpa Isadore.

In any case, most o f the time when you program, all you need is single inheritance and method reso lution
order in Python is pretty straightforward. Inheritance is a powerful too l but it can get complicated rather quickly.
It is a good practice to keep inheritance as simple as possible with clearly named classes. If things get too
complicated for simple inheritance, there are o ther too ls you can wield from the programming armory to
so lve those problems.

Introspecting Inheritance Relationships

Python has two built- in functions that can help you in determining whether your code has been provided with
values o f a particular type. Note that this should not be a frequent requirement o f your code, but it is
sometimes justifiable usage.

issubclass(cls, classinf o) returns True if the object passed as cls is a direct or indirect subclass o f one o f
the classes specified by classinf o . This second argument can either be a single class or a tuple o f classes.
In the latter case the result is True if cls is a subclass o f any o f the classes in the tuple. An indirect subclass o f
a class is a subclass o f the class or one if its subclasses. For the purposes o f issubclass() all classes are
regarded as subclasses o f themselves.

isinst ance(o bj, classinf o) returns True if the o bj argument is an instance o f some class that is a subclass
of one o f the classes specified by the classinf o argument. Again this argument may be either a single class
or a tuple o f classes.

Laying the Foundation

In this lesson, you've learned about some basic practices o f structuring data in Python. We'll use these
practices in further lessons; they are commonly used in real-world applications. Good data structuring takes
practice and there are different standards on how to do it. The best methods result in code that is clear to read
and easy to extend. The poor methods make code hard to interpret and "fragile"—the code o ften breaks
without much warning. If you lay out a structure and it becomes hard for you to fo llow, o ften that means you
need to stop and refactor your code. Fortunately, you wrote unit tests, right? If so , you can be reasonably
confident that your refactoring has not caused any new defects.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Iteration in Python
Lesson Objectives

When you complete this lesson, you will be able to :

differentiate between iterables and iterators.
use gnerators to avo id the creation o f large sequences.
use generator expression.

Iterables vs. Iterators
In the broadest possible terms, an iterable is something you can iterate over, and an iterator is what the interpreter
uses to do the iteration. This description, however, is too general to be o f enough value. The fundamental question is:
what does the interpreter do when you write f o r i in s: in your program or o ther module?

In modern Python, iteration is supported by two quite separate mechanisms. So the answer to the question "how does
the interpreter iterate over objects?" depends on the presence o f specific methods on the object. If the object has an
__it er__() method, then it is iterable using the new-style iteration mechanism. Otherwise the interpreter looks for a
__get it em__() method and, if it finds one, uses the o ld-style iteration mechanism. If neither method is present, the
interpreter raises a TypeError exception because the object is not iterable.

Old-Style Iteration

If an object, o, has no __it er__() method and you tell the interpreter to iterate over it, the interpreter initializes
an internal variable to zero and repeatedly calls the object's __get it em__() method with successively higher
values o f the internal variable. From the po int o f view of the object, it's as though it were being manipulated by
this code:

OBSERVE: Effective logic o f an o ld-style fo r loop

Approximate equivalent of:
for val in o:
[loop body]
intern = 0
while True:
 try:
 val = o[intern]
 except IndexError:
 break
 # [loop body]
 intern += 1

In fact, you can create your own classes whose instances can be iterated over in this way. All you need to do
is provide a __get it em__(n) method that raises an IndexErro r exception when the value o f n is too high.
Suppose you wanted to implement fixed-length sequences o f objects. You could define a function to create
an appropriate sequence (list o r tuple or string) with the required number o f components in it (so f ls("*" , 12)
would return "************" , fo r example).

Alternatively, you could define an f ls class, whose __init __() method had the same signature as the function
above. Create a new Pyt ho n3_Lesso n03 pro ject and assign it to your Pyt ho n3_Lesso ns working set.
Then, create f ls.py in the Pyt ho n3_Lesso n03 pro ject as shown.

CODE TO TYPE: fls.py

"""
Simple demonstration of the "old iteration protocol" - still available.
"""
class fls(object):
 def __init__(self, val, times):
 self.val = val
 self.count = times
 def __getitem__(self, n):
 if n >= self.count:
 raise IndexError("Object has no item %s" % (n,))
 return self.val

thing = fls("*", 5)
for c in thing:
 print(c)

thing = fls(120,3)
for c in thing:
 print(c)

 Save and run it. You see the fo llowing output:

OBSERVE: Output from running the fls class

*
*
*
*
*
120
120
120

So, for iteration purposes, you can see that the f ls objects appear to act like o ther sequences, only with very
boring behavior because all elements are constrained to be the same—the only value that __get it em__()
ever returns is the one that was passed in to __init __() . But the main po int is that you know a little more
about Python's iteration mechanism. Now try a few other cases for yourself—use an interactive conso le
session to create and test out some further f ls objects interactively.

Note Remember you will need to import the fls class from the fls module in order to be able to create
instances o f it.

New-Style Iteration

The iteration mechanism outlined above is all very well when you are iterating over numbered items in a
sequence, but it does not naturally extend to co llections like sets and dicts, which do not specify a natural
ordering for their items. Dicts, in fact, do have a __get it em__() method, but it takes a key value and returns
the appropriate item (assuming that a key with that value exists—if there is no such key, it raises a KeyErro r
exception). Sets don't even have a __get it em__() method, since they are effectively "item-less dicts".

It was to overcome issues like this that the "new-style" iteration pro toco l was defined. You learned above that
the interpreter will look for an __it er__() method on the objects that you iterate over. If it finds __it er__() , it
uses it to create an iterator from the iterable you are iterating over.

The iterator will have a __next __() method—this is a requirement o f the iteration pro toco l. Each time around
the loop, the interpreter obtains the next value for the iterable by calling the iterator's __next __() method.
Again, you can perhaps understand this more easily with an approximate Python equivalent to a for- loop over
a new-style iterable:

OBSERVE: Effective logic o f an new-style for loop

Approximate equivalent of:
for val in o:
[loop body]
it = o.__iter__()
while True:
 try:
 val = it.__next__()
 except StopIteration:
 break
 # [loop body]

You may wonder why Python insists on creating a new object fo r each iteration: couldn't it just use the iterable
directly? The answer to that question is "no": the iterator contains the current state o f the iteration, and code
that iterates over the same iterable twice is perfectly legal. Iterating over the same iterator, however, gives
results that are not usually what you want. You can see this by playing with the interactive interpreter.

CODE TO TYPE: Enter the fo llowing in an interactive interpreter session

>>> lst = [1, 2, 3]
>>> dir(lst)
[..., '__getitem__', ..., '__init__', ...]
>>> for i in lst:
... for j in lst:
... print(i, j)
...
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
>>> li = lst.__iter__()
>>> dir(li)
[..., '__iter__', ..., '__next__', ...]
>>> for i in li:
... for j in li:
... print(i, j)
...
1 2
1 3
>>> lii = li.__iter__()
>>> li
<list_iterator object at 0x01995270>
>>> lii
<list_iterator object at 0x01995270>
>>> l2 = lst.__iter__()
>>> l2.__next__()
1
>>> l2.__next__()
2
>>> l2.__next__()
3
>>> l2.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

What's the difference between the first f o r loop and the second? Look at the dir() listing o f lst, which is a list
instance, and note that it has both __it er__() and __get it em__() methods. When the interpreter iterates

over the list, calling its __it er__() method creates a new iterator, yielding a complete sequence o f values,
every time it encounters a f o r loop.

We then created a list iterator object by manually calling our list's __it er__() method. Note that the list iterator
object also has an __it er__() method, and adds a __next __() method, but it lacks a __get it em__() . The
__it er__() method o f the iterator is rather different from that o f the list, however:

OBSERVE: __iter__() method - in Python it would read:

def __iter__(self):
 return self

In o ther words, each time you iterate over a list (which is an iterable), the call to its __it er__() method creates
a new iterator, which has its own independent state. The iterator's __it er__() method, however, does not
create a new iterator, which means that the inner and outer loops are sharing the same iterator. This in turn
means that by the time the outer loop is trying to begin its second iteration, the iterator has already been
exhausted by the inner loop and (for the second time) raises the St o pIt erat io n exception.

The final few statements demonstrated this by manually go ing through the steps that the interpreter does
when iterating over a list. We saw the l2 iterator produce three values on successive __next __() calls before
raising a St o pIt erat io n exception. Normally, o f course, the exception is caught internally by the logic o f the
f o r loop, and therefore does not become visible.

In summary, calling an iterable's __it er__() method creates an iterator that can be used to iterate over the
iterable.

Creating Your Own Iterators

Now that you understand Python's iteration processes somewhat better, you may be wondering whether you
can define your own iterable classes. The answer is "yes"! You will need to provide an __it er__() method
(which can simply return self if you are implementing an iterator rather than a more general iterable: this is
usually OK, since when you write an iterator class it is easy to create multiple instances, each having
independent state). The __next __() method should return successive values until there are no more, at
which po int it should raise a St o pIt erat io n exception.

Rather than create an example now, we'll create it in the next section. First, we'll create a generator, and then
we'll build an equivalent iterator.

Generators: Avoiding Creation of Large Sequences
The iteration pro toco l discussed above also comes into play with so-called generator functions. The only apparent
difference between a generator function and the regular kind you have dealt with before is the appearance o f the yie ld
keyword in the function body. So what's the difference between a regular function and a generator function?

The answer is that calling a generator function produces a special type o f iterator object (a "generator"). The function
namespace is created and initialized with the argument values. The function code only starts executing with the first call
to the generator's __next __() method. Execution continues until a yie ld expression is evaluated: the value o f the
expression fo llowing yie ld becomes the value o f the __next __() method call. You can see this with a very simple
generator function in an interactive session.

CODE TO TYPE: Enter the fo llowing code in an interactive interpreter window

>>> def g(x):
... yield x
... x *= 2
... yield x
...
>>> g
<function g at 0x02286A98>
>>> gen = g("##")
>>> gen
<generator object g at 0x02285A08>
>>> dir(gen)
['__class__', ..., '__iter__', ..., '__next__', ...]
>>> gen.__next__()
'##'
>>> gen.__next__()
'####'
>>> gen.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> gen.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

g() is a generator function, though when you ask the interpreter about it you don't see any difference from any o ther
function. Calling it creates a generator object, though, and the dir() listing shows that it has the necessary methods for
an iterator. Calling the object's __next __() method returns the result o f the next yie ld expression in the function's
code body.

If the function ends before encountering a yie ld expression (either by executing a ret urn statement or dropping o ff the
bottom), the __next __() method call raises a St o pIt erat io n exception just like any o ther iterator. Also note that,
once the generator starts to raise St o pIt erat io n exceptions when __next __() is called, it continues to do so for
each subsequent call—the iterator is exhausted.

Advantages of Generator Functions

The really convenient thing about generator functions is that they allow you to perform all sorts o f complex
calculations to produce the values in a sequence, but the code that consumes (makes use o f) these values
can be entirely separated from the generator that produces them. The values are consumed in a simple f o r
loop—or any o ther similar iterative context in Python, such as a list comprehension.

Not only do they make your code simpler by separating out the production and consumption o f sequences,
but generators allow you to create sequence values one at a time, as they are consumed. There is no need to
build a list o r tuple to store them in, which means your programs will use less storage and operate more
quickly (though these advantages do not really make much difference unless the number o f objects becomes
large).

A Simple Generator Function

Suppose you need to produce sequences determined by a list, but need to repeat the first list element once,
the second twice, and so on. So given a list [2, 4 , 6] , the resulting sequence would be 2, 4, 4, 6 , 6 , 6 . Let's
write a generator that produces such sequences. First, though, we'll write tests to ensure that our generator
function works. Create t est gen.py in your Pyt ho n3_Lesso n03/src fo lder as shown:

CODE TO TYPE: testgen.py

"""
testgen.py: simple test for a sequence generator
"""
import unittest
from gen123 import gen123

class TestGen(unittest.TestCase):

 def testEmpty(self):
 self.assertEqual(list(gen123([])), [], "Empty list does not give empty l
ist")

 def test123(self):
 self.assertEqual(list(gen123([1])), [1], "[1] does not give [1]")
 self.assertEqual(list(gen123([1, 2])), [1, 2, 2])
 self.assertEqual(list(gen123([1, 2, 3])), [1, 2, 2, 3, 3, 3])

if __name__ == "__main__":
 unittest.main()

As usual, we start out with a simple stub function to make sure that the tests fail. Now, create gen123.py in
your Pyt ho n3_Lesso n03/src fo lder as shown:

CODE TO TYPE: gen123.py

"""
gen123.py: generate sequences from a base list, repeating
 each element one more time than the last
"""

def gen123(m):
 yield None

 Save it, and run the test program:

OBSERVE: Results from running testgen.py

FF
==
FAIL: test123 (__main__.TestGen)
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson03\src\testgen.py", line 13, in test123
 self.assertEqual(list(gen123([1])), [1], "[1] does not give [1]")
AssertionError: Lists differ: [None] != [1]

First differing element 0:
None
1

- [None]
+ [1] : [1] does not give [1]

==
FAIL: testEmpty (__main__.TestGen)
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson03\src\testgen.py", line 10, in testEmpty
 self.assertEqual(list(gen123([])), [], "Empty list does not give empty list"
)
AssertionError: Lists differ: [None] != []

First list contains 1 additional elements.
First extra element 0:
None

- [None]
+ [] : Empty list does not give empty list

--
Ran 2 tests in 0.032s

FAILED (failures=2)

Now, let's see how it does with some real code in there.

CODE TO EDIT: gen123.py

"""
gen123.py: generate sequences from a base list, repeating
 each element one more time than the last
"""

def gen123(m):
 yield None
 n = 0
 for item in m:
 n += 1
 for i in range(n):
 yield item

 Save it, and run the test program:

OBSERVE: Output from testgen.py; the tests now pass

..
--
Ran 2 tests in 0.000s

OK

An Iterator Equivalent of the Generator

As you learned above, it is also possible to write classes that obey the iteration pro toco l. You will end this
lesson by writing an iterator equivalent o f the generator function above. Since you want it to perform exactly
the same as the gen123 generators, you can use the same tests to verify its operation—that is one o f the
benefits o f a test-driven environment! The new component should ideally be a "drop-in replacement" fo r the
generator function. Create class123.py in your Pyt ho n3_Lesso n03/src fo lder as shown:

CODE TO TYPE: class123.py

"""
A simple iterator object specification.
"""
class gen123:
 def __init__(self, lst):
 "Initialize the iterator object."
 self.lst = lst
 self.itemno = 0
 self.count = 1
 def __iter__(self):
 "This object is not an iterable."
 return self
 def __next__(self):
 "Return the next value in the output sequence."
 if self.count > self.itemno:
 try:
 self.val = self.lst[self.itemno]
 except IndexError:
 raise StopIteration
 self.itemno += 1
 self.count = 1
 self.count += 1
 return self.val

This code is considerably more complex. This should not be surprising, because generator functions were
devised to so lve this type o f problem cleanly and simply.

Instead o f calling the generator function, the test routine will now call your iterator's class (which, you will
no tice, has the same name). This causes its __init __() method to be run, and the list o f values is stored as
an instance variable. Two o ther instance variables are initialized: one to keep track o f which item is currently
being output, and the o ther to keep track o f how many times the current value has been produced.

All the magic, o f course, takes place in the __next __() method. First it checks to see whether it is time to
move to the next element o f the value list (the item number and count are set up initially to ensure that this
branch is actioned on the first call). If so , the val instance variable is retrieved.

If no more values are available, the method raises a St o pIt erat io n exception to terminate the loop. Note
carefully that this action can be repeated—once the method starts to raise the exception, it should be raised
for every subsequent call.

Once the correct item value is established, the count is incremented and the value is returned as the result o f
the call.

This code is about twice as long as that o f the generator so lution, and so you would probably choose to write
a generator function for problems like this. But if you need close contro l over iterative behavior, you may end
up needing to write your own iterators.

Testing the module is easy. Just make the fo llowing change to the test program:

CODE TO EDIT: testgen.py

"""
testgen.py: simple test for a list generator function
"""
import unittest
from class123 import gen123

class TestGen(unittest.TestCase):

 def testEmpty(self):
 self.assertEqual(list(gen123([])), [], "Empty list does not give empty l
ist")

 def test123(self):
 self.assertEqual(list(gen123([1])), [1], "[1] does not give [1]")
 self.assertEqual(list(gen123([1, 2])), [1, 2, 2])
 self.assertEqual(list(gen123([1, 2, 3])), [1, 2, 2, 3, 3, 3])

if __name__ == "__main__":
 unittest.main()

 Save and run the updated test program; you should see a successful result immediately, thereby giving
strong evidence that the two implementations are equivalent.

Generator Expressions
After the new-style iteration pro toco l was adopted in Python, one o f the developers observed that it would be very
useful to be able to write expressions that were similar to list comprehensions in using iteration (f o r) and selection
(if) elements to produce expressions that generated their results rather than producing a list. The reasoning behind
this is just the same as the reasoning behind standard generators—creating the objects one by one "on demand" is
more space-efficient, and is likely to speed up programs dealing with large sequences considerably, as well as
reducing their memory requirements.

The syntax o f a generator expression is the same as for list comprehensions (learned in an earlier course), but with
parentheses instead o f brackets. Because they are generators, however, you only see the individual values when you
consume them inside an iteration. Learn a little more about them by playing in an interactive interpreter session.

INTERACTIVE SESSION:

>>> gx1 = (x for x in range(10) if x % 3)
>>> gx1
<generator object <genexpr> at 0x0230FD78>
>>> list(gx1)
[1, 2, 4, 5, 7, 8]
>>> list(gx1)
[]
>>> sum(i for i in range(100))
4950
>>> gx2 = (ord(c) for c in "Jim")
>>> next(gx2)
74
>>> next(gx2)
105
>>> next(gx2)
109
>>> next(gx2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

Note that the generator expressions are iterators, but not iterables: once you have iterated over them they are
exhausted, and any further attempt to iterate over the expression raises an immediate St o pIt erat io n. Also observe

that you used a new built- in function in that session. Calling next (o) is pretty much equivalent to calling
o .__next __() , right down to the raising o f a St o pIt erat io n execution when no more values are available.

Generators and generator expressions primarily o ffer memory savings, though this can equate to time savings if you
are avo iding a lo t o f memory allocation and deallocation. For very large data sets, it can make a computation practical
that you might o therwise not have enough memory for.

You now know much more about the way Python iterates over objects than you formerly did. With luck, this knowledge
will allow you to build objects that help you so lve your problems more effectively.

When you finish the lesson, return to the syllabus and complete the quizzes and pro jects.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Basic Regular Expressions
Lesson Objectives

When you complete this lesson, you will be able to :

match and search.
try out patterns.

Suppose you've been given a big block o f text and to ld you need to pull all o f the US-style phone numbers from it. Writing a
program like that requires breaking up all the words via the String split () method, then writing code to make sure that the
numbers and dashes are all in the right places. We are talking about at least a dozen lines o f code, and that doesn't even begin
to account fo r special cases, like when the area code is in parentheses.

What if there was a special syntax so that you could find those numbers with a single line o f code? Something like xxx-xxx-
xxxx o r (xxx) xxx-xxxx that you could apply to the text? The "x" would mean "any number," and the pattern would be applied
and would return a list.

Fortunately, there is: Python lets you use regular expressions, which do that and much more besides! They aren't the answer to
every string-related problem, but regular expressions are an important part o f any developer's too lkit. This lesson will go over
the basics o f what you can do with regular expressions and will be fo llowed by a more complete exposition o f the capabilities
of the re module.

In the 1950s, mathematician Stephen Cole Kleene described automata theory and formal language theory in a set o f models
using a notation called regular sets as a method to do pattern matching. Active usage o f this system, called Regular
Expressions, started in the 1960s and continued under such pioneers as David J. Farber, Ralph E. Griswold, Ivan P. Po lonsky,
Ken Thompson, and Henry Spencer.

Regular expressions, also called res or regexes, provide a concise and flexible means for matching strings o f text. They are a
common programming too l used not just in Python but many languages in common use today.

Matching and Searching
The re module provides features to enable pattern matching in Python. The basic mode o f operation is to call either
the mat ch() o r search() function from that module with a regex as the first argument, and a string to match against as
the second argument. If the regex matches the string, the module returns a match object, and analysis o f the match
object can give you information about (fo r example) the exact strings matched by various portions o f the pattern.

INTERACTIVE SESSION:

>>> import re
>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m
<_sre.SRE_Match object at 0x01D557C8>
>>> m.groups()
('Isaac', 'Newton')
>>> m.group(0)
'Isaac Newton'
>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group('first_name')
'Malcolm'
>>> m.group('last_name')
'Reynolds'
>>> m.groupdict()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}
>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.
>>> m.group(1) # Returns only the last match.
'c3'
>>> m = re.search("\\d+", "hello123extra")
>>> m.start()
5
>>> m.end()
8
>>> m.span()
(5, 8)
>>> m.group(0)
'123'
>>>

In the interactive session above, we used the re module's mat ch() and search() functions to determine whether
strings conformed to a specific pattern (provided as the first argument to the function call). mat ch() requires the pattern
to occur at the start o f the target string, while search() will move through the target string looking for it. If the pattern is
not present in the string, the function call returns None. Otherwise it returns a match object ("m," above) that can be
queried for specific aspects o f the matched string by calling its various methods.

Finding Characters: Regular Expression Patterns
A regular expression pattern is a way o f describing a set o f character strings. These descriptions can be relatively
concise: the pattern "x" matches precisely one character, the lowercase letter "x." Some characters have special
meanings, so the pattern "x+" matches any string o f one or more lower case "x"s—the plus sign generates a more
complex pattern from the pattern it fo llows.

Most characters can be used in patterns like the lower case "x" to "stand for themselves," so for example if you wanted
to match the literal string "thing" you would do so with a pattern that reads "thing"—the "t" in the pattern matches a "t" in
the string, and so on. But there are quite a few abbreviations: fo r example, '\d' matches any decimal digit (making it
equivalent to the pattern "[0123456789]," as we will learn shortly). Here are some of the more common abbreviations.

Pat t ern
St ring Descript io n

. Matches any character except a newline in the target string.

^ Matches the start o f the target string, or the start o f a line within the target string.

$ Matches the end o f the string, or just before the end o f a line within the string. f o o matches both "foo"
and "foobar," while the regular expression f o o $ matches only "foo."

* Matches the regex it fo llows, zero or more times, so ab* will match "a," "ab," or "a" fo llowed by any
number o f "b"s.

+ Matches the regex it fo llows, one or more times, so ab+ will match "a" fo llowed by any number o f
"b"s, but will no t match "a" alone.

? Optionally matches an occurrence o f the regex that precedes it. ab? matches either o f "a" or "ab."

Matches special characters literally, allowing you to match plus signs, asterisks and o ther characters

\ having special significance in regexes. Also introduces a special sequence such as '\d' to match any
digit.

{m} (where
m is an
integer)

Matches exactly m occurrences o f the regex it fo llows.

{m,n}
(where m
and n are
integers)

Matches between m and n occurrences o f the regex it fo llows.

[...]
Matches any one o f the set o f characters appearing between the brackets. Special characters do not
have their usual significance inside brackets, so [abc$] matches any o f "a," "b," "c" or "$." A dash (-)
between two characters specifies a range, so [a-z] matches any lower-case character.

[^...] Matches any character except one o f the set appearing after the caret between the brackets. Note that
the caret only has this special meaning when it immediately fo llows the opening left bracket.

| Alternation. A|B, where A and B are any regexes, first tries to match A and, if that fails, tries to match B.
Any number o f regexes can be used as alternates in this way, not just two.

(...)
Groups a number o f regexes together, usually fo r the purpose o f treating them as a single element
(for example, to use as an alternate with |). When a match object is created, the string matched by the
parenthesized group is available using methods o f the match object.

Tip There are many regex references available on the Internet; you might want to find and bookmark one or two
of them!

Grouping in Patterns
As the last line above indicates, patterns can contain groups, indicated by parentheses. The strings matched by the
groups are, under certain circumstances, available—again, by calling the match object's methods. The groups can be
numbered (according to their relative positions in the pattern, and starting at one rather than Python's usual zero—
group 0 refers to the match as a whole) and they can also be named if the group's opening parenthesis in the pattern
is fo llowed by a question mark, an upper case "P" and a name in angle brackets, as we saw with "(?
P<first_name>\w+)" in the earlier interactive session.

Groupings in the pattern are the principal way o f extracting required information from the match object. Strings matched
by non-grouping portions o f the pattern cannot be individually identified in the match object. When you are testing a
new regular expression, it is o ften useful to interactively inspect the result o f calling the match objects' gro ups() and
gro updict () methods to verify that your pattern is matching as you expect.

When testing patterns, you can test fo r equality with those objects; but you should also remember to test that
unacceptable strings are not, in fact, matched. This will usually invo lve the use o f your test case's assert No ne()
method on the match result.

Substitution for Patterns
Besides the mat ch() and search() functions, the re module provides functions that allow you to make replacements
of patterns in the target string (these functions return new strings, o f course, because strings are immutable in Python).
The re .sub() function takes not only a pattern and a target string but also a replacement string, as shown below.

re.sub() Syntax

re.sub(pat, replacement, target[, count, flags])

This replaces each non-overlapping occurrence o f the given pat t ern in the t arget string with the replacement
element given as the third argument. If replacement is a string, any backslash escapes in it are processed down to
individual characters (so , fo r example, "\n" is replaced by a newline character). Escapes o f the form \n (where n is a
decimal digit) allow replacement by one o f the matched groups from the pattern. The replacement argument can also
be a function, in which case it is called for each replacement with a single argument, which is the match object
corresponding to the currently matched string that is to be replaced.

The optional argument co unt is the maximum number o f pattern occurrences to be replaced; co unt must be a non-
negative integer. If omitted or zero , all occurrences will be replaced. Empty matches for the pattern are replaced only
when not adjacent to a previous match, so sub('x*', '- ', 'abc') returns '-a-b-c- '. The f lags, if present, are the usual

regular expression matching flags, which we'll discuss a little later. Let's get an idea o f what you can do with the
replacement facilities.

This example simply shows straight pattern replacement: both calls to re.sub() replace all occurrences o f the string "1"
with a newline character. When the pattern contains characters like newline (normally represented by escape
sequences), o r special patterns (which also require backslashes), r(aw) strings can make patterns more readable and
easier to type. The more complex the patterns become, the truer this is.

INTERACTIVE SESSION:

>>> import re
>>> re.sub("1", "\\n", "123123123123") # replace digit one with newline
'\n23\n23\n23\n23'
>>> re.sub("1", r"\n", "123123123123") # replace digit one with newline
'\n23\n23\n23\n23'

The next call to re .sub() uses a function to supply the replacement string: if the function is replacing a single minus
sign it returns a space, but two minus signs are translated into a plus sign.

INTERACTIVE SESSION:

>>> def dashrepl(matchobj):
... if matchobj.group(0) == "-": return " "
... else: return "+"
...
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
'pro++gram files'

The next example finds the "#" marker and removes it and everything after it, then removes everything but the digits
from the remaining string.

INTERACTIVE SESSION:

>>> s = "(123) 456-7890 # Commented phone number"
>>> nocomment = re.sub("#.*$", "", s)
>>> nocomment
'(123) 456-7890 '
>>> re.sub(r"\D", "", nocomment)
'1234567890'

These examples attempt to match any string beginning and ending in an at sign ("@") with zero or more sequences o f
"=+=" in the middle (the "+" must be escaped to make the matching code treat it as an ordinary character).

INTERACTIVE SESSION:

>>> re.sub("@(=\+=)*@", "xxx", "@@")
'xxx'
>>> re.sub("@(=\+=)*@", "xxx", "@=+=@")
'xxx'
>>> re.sub("@(=\+=)*@", "xxx", "@=+==+=@")
'xxx'
>>> re.sub("@(=\+=)*@", "xxx", "@=+=+=@")
'@=+=+=@'

The last example shows a pattern (a single vowel) being used to make many replacements—all vowels in the target
string are replaced with a dash.

INTERACTIVE SESSION:

>>> re.sub("[aeiouAEIOU]", "-", "The Quick Brown Fox Jumps Over the Lazy Dog")
'Th- Q--ck Br-wn F-x J-mps -v-r th- L-zy D-g'
>>>

Trying Out Patterns
It's useful to be able to try out lo ts o f patterns as you are learning how they are made up. See if you can understand the
fo llowing patterns by trying them against various strings. To help you do that, we'll write a little program that allows you
to see the results o f searching and matching for a specific pattern against a number o f strings. The program reads a
pattern, and if it's the empty string, terminates. Otherwise, it reads target strings and applies matches and searches on
the strings that are subsequently input until the user enters an empty string, in which case it goes back to requesting a
new pattern. Create a Pyt ho n3_Lesso n04 pro ject and assign it to the Pyt ho n3_Lesso ns working set. Then, create
pat t est .py in your Pyt ho n3_Lesso n04/src fo lder as shown:

CODE TO TYPE: pattest.py

"""
pattest.py: Allows the checking of various patterns and target strings
"""
import re
while True:
 pat = input("Pattern: ")
 if not pat:
 break
 while True:
 s = input("Target : ")
 if not s:
 break
 mm = re.match(pat, s)
 if mm:
 print("Match : matched {0!r}".format(s[mm.start():mm.end()]))
 print("Match : groups:", mm.groups())
 print("Match : gdict :", mm.groupdict())
 else:
 print("Match : no match")
 ms = re.search(pat, s)
 if ms:
 print("Search: matched {0!r}".format(s[ms.start():ms.end()]))
 print("Search: groups:", ms.groups())
 print("Search: gdict :", ms.groupdict())
 else:
 print("Search: no match")

This lets you test many strings against the same pattern quite quickly. Run it and ensure that you can think o f strings
that both match and don't match the patterns given below.

Pat t ern Descript io n

[0123456789]+ Matches one or more decimal digits.

[\d]+ Same as above. Remember to verify that some strings don't match the pattern -

[\w]+ +[\w]+ Matches two words separated by any number o f spaces.

\(\d\d\d\) \d\d\d-
\d\d\d\d

Matches a US telephone number with parentheses around the area code and a dash between
the exchange and the number.

home-?brew There should be exactly two strings that match this pattern.

\$\d+(\.\d{2})? An amount o f money (in do llars) with optional cents.

We've made a start on the use o f regular expressions. While they aren't the answer to every problem, they can help to so lve
tricky text recognition problems. Just don't treat them as the first weapon in your arsenal—the string methods were provided for
a reason! In the next lesson, we'll expand our knowledge o f regular expressions further.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More On Regular Expressions
Lesson Objectives

When you complete this lesson, you will be able to :

execute the fundamentals o f regular expressions.
use regular expressions with care.

Fundamentals of Regular Expressions
Now that we've learned the basics o f regular expressions, we can look at some more advanced aspects. Remember
at the start o f the last lesson, we introduced regular expressions by wondering how we might search for US telephone
numbers in a specific text. You are now in a position to so lve that problem.

The Telephone Number Search

We want to search a block o f text fo r phone numbers in Python using Regular Expressions. As usual, first,
we'll write a test to confirm that we're getting the behavior we want, and then we'll write the code. Create the
Pyt ho n3_Lesso n05 pro ject and assign it to your Pyt ho n3_Lesso ns working set. Then, in your
Pyt ho n3_Lesso n05/src fo lder, create t est _pho ne.py as shown:

CODE TO TYPE: test_phone.py

import unittest
from phone import get_phone, text

class TestRegex(unittest.TestCase):

 def test_phone(self):
 numbers = get_phone(text)
 self.assertEqual(len(numbers), 5)

if __name__ == "__main__":
 unittest.main()

 Save the test program. Our first code finds only the phone numbers whose area codes are not surrounded
by parentheses, and the test is satisfied as long as the function detects five phone numbers in the text—
without verifying that it has the exact numbers right. It is, however, much better than not having any tests! Now
create pho ne.py as shown.

phone.py

"""
Demonstrate use of re.findall().
"""
import re

text = """While I was at the store I tried to call 555-123-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555) 123-4567 again now.
"""

def get_phone(text):
 "Scan a text, locating telephone numbers."
 # Note the use of a "raw" string constant
 return re.findall(r"\d\d\d-\d\d\d-\d\d\d\d", text)

if __name__ == '__main__':
 print(get_phone(text))

 Save and run phone.py.

OBSERVE: The output o f phone.py

['555-123-4567', '555-754-4321', '999-999-9999', '000-000-0000', '555-555-0000']

 Now, run test_phone.py.

OBSERVE: The output o f the test

.
--
Ran 1 test in 0.000s

OK

Note In this lesson we'll use tests very heavily, because in regular expressions it can be easy to
generate false positives: answers that return positive values but fail in some way.

phone.py

Demonstrate use of re.findall().
"""
import re

text = """While I was at the store I tried to call 555-123-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555) 123-4567 again now.
"""

def get_phone(text):
 "Scan a text, locating telephone numbers."
 # Note the use of a "raw" string constant
 return re.findall(r"\d\d\d-\d\d\d-\d\d\d\d", text)

if __name__ == '__main__':
 print(get_phone(text))

The first thing this program does is impo rt the Python regular expression library, re . The get _pho ne()
function uses a regular expression as the first argument to the f indall() function from that library. The pattern
\d\d\d-\d\d\d-\d\d\d\d is applied to the t ext , and the result is a list o f strings matched by the pattern.

The regex pattern " \d\d\d-\d\d\d-\d\d\d\d" is the central component o f the code above. If you replace each
"\d" with an "X," you get XXX-XXX-XXXX—the template for matching the phone numbers.

You probably noticed that your code does not find the phone number with the prefix in parentheses. We'll
cover that later in this lesson.

Regular Expressions and Raw Strings

Regular expressions o ften use the backslash (\) character. Mostly it indicates special meanings for the
characters immediately fo llowing, but it can also be used to "escape" the standard meanings o f certain
characters in pattern strings, so that you can recognize these special characters too. You probably remember
that the backslash also has a special meaning in string literals ("\n" means newline, "\t" means tab, and so
on).

You probably remember that to represent a single backslash in a string, you normally need to use two
backslashes—"\\." This would make regular expressions very difficult to read. Consequently, we have "raw"
string constants (whose representations are preceded by the letter "r") to represent regex patterns. These let
you represent the backslashes without escaping, which makes them much more readable.

match() vs search()

The basic use case for regular expressions is finding occurrences o f strings that conform to a pattern. The
Python regular expression library gives you two ways to perform this action, re .mat ch() and re .search() .
The difference between them is as fo llows:

mat ch() checks at the start o f a string and returns None if no thing is found.
search() moves up the string, looking for the first occurrence o f the given pattern, and returns
None only if the pattern occurs nowhere in the string.

For example, suppose we have several paragraphs and want to see if they start with or contain a phone
number. If a paragraph starts with a phone number, we'll assume that the paragraph is just a phone number
and we want to return it. Otherwise, if a paragraph contains a phone number, we want to return the length o f
the paragraph. If a paragraph has no telephone numbers, we'll return No ne . Create
t est _mat ch_vs_search.py in your Pyt ho n3_Lesso n05/src fo lder as shown:

test_match_vs_search.py

import unittest
from match_vs_search import check_number

p1 = """While I was at the store in Washington, DC 20001 I tried to call 555-123
-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555) 123-4567 again now."""

p2 = "555-555-5555"

p3 = "What is the author's phone number?"

class TestRegex(unittest.TestCase):

 def test_match(self):
 result = check_number(p2)
 self.assertEqual("555-555-5555", result)

 def test_search(self):
 result = check_number(p1)
 self.assertEqual(305, result)

 def test_none(self):
 result = check_number(p3)
 self.assertIsNone(result)

if __name__ == "__main__":
 unittest.main()

 Save it and create mat ch_vs_search.py in the same fo lder:

match_vs_search.py

"""
Demonstrate the difference between match() and search().
"""

import re

def check_number(text):
 regex = r"\d\d\d-\d\d\d-\d\d\d\d"
 match = re.match(regex, text)
 if match:
 return match.group()
 match = re.search(regex, text)
 if match:
 return len(text)

 Save it and run the test program:

OBSERVE: Running test_match_vs_search.py

...
--
Ran 3 tests in 0.000s

OK

Now, let's try our match_vs_search program.

CODE TO TYPE: Check the difference between match() and search()

>>> from match_vs_search import *
>>> check_number("707-867-5309")
'707-867-5309'
>>> check_number("Jenny's number is 707-867-5309")
30

Let's look at how it works.

OBSERVE: The check_number() Function

def check_number(text):
 regex = r"\d\d\d-\d\d\d-\d\d\d\d"
 match = re.match(regex, text)
 if match:
 return match.group()
 match = re.search(regex, text)
 if match:
 return len(text)

The check_number() function first attempts to match a telephone number at the beginning o f the t ext . If that
succeeds, it returns a match object mat ch, described below.

If the re .mat ch() call fails to find the pattern, it returns No ne , and the function then calls the re .search()
function to try and find a number somewhere in the interio r o f the t ext . If the search succeeds, then the
function returns the length o f the paragraph. Otherwise it "falls o ff the bottom" and returns None (as is
standard in Python).

Let's continue our session to explore the difference between match() and search():

CODE TO TYPE: Check the difference between match() and search()

>>> import re
>>> target = "This is a string"
>>> def t(p, t):
... if re.match(p, t):
... print("match")
... if re.search(p, t):
... print("search")
...
>>> t("is", target)
search
>>> t("This", target)
match
search
>>> t("Th", target)
match
search
>>> t("ing", target)
search
>>> t("^ing", target)
>>>

The last two examples show that a pattern for which search() is successful becomes unsuccessful if changed
to require (with ^) that the match occur at the start o f the string.

Any successful application o f matching or searching returns a match object. This match object includes a
number o f useful methods, the most important o f which are:

Met ho d Descript io n Value Ret urned f o r p2 ("555-555-
5555")

group() Returns the entire matched string. 555-555-5555

start() Returns the start index o f the match. 0

end() Returns the end index o f the match. 12

span() Returns a tuple with the start and end indexes o f the
match. (0 , 12)

The match object returned from an re .mat ch() call always has a start() value o f 0 and the span() method
also always returns 0 as the first element o f the tuple. This is because, as noted earlier, the mat ch() function
only returns patterns found at the start o f a string.

On the o ther hand, the search() function finds strings anywhere. The test_search() function in the tests calls
check_number(p1), which calls search() . This also returns a match object, although it isn't returned to the
caller. If we apply search() to paragraph 1, we see:

Met ho d Descript io n Value Ret urned f o r p1

group() Returns the string matched. "555-123-4567"

start() Returns the start index o f the match. 65

end() Returns the end index o f the match. 77

span() Returns a tuple with the start and end indexes o f the match. (65, 77)

As you can see, mat ch() and search() are two very similar functions with a single important difference.

More Regular Expression Features

The code you wrote found numbers o f the form XXX-XXX-XXXX, because the re module's functions
recognize "\d" as requiring a digit in the scanned string. (The backslash tells the functions that the "d" is to be
specially interpreted—without it, they would only match the literal character "d"). But what about (555)-123-
4567? That is a phone number, but it doesn't fo llow the same pattern.

You could write a second regular expression for this, and then try matching the first and only try the second if

the first one did not match. This could become clumsy quite rapidly in the case o f complex patterns.
Fortunately, regular expressions can model complex patterns to handle this sort o f problem. Regular
expressions can specify using alternate patterns using the "|" special character, which means a pattern like
the one below will find phone numbers fo llowing either the XXX-XXX-XXXX or (XXX)-XXX-XXXX patterns.

OBSERVE: Syntax for Regex With | (o r) Matching

r"\d\d\d-\d\d\d-\d\d\d\d|\(\d\d\d\)(-|)\d\d\d-\d\d\d\d"

By now you are probably thinking that every character in a regular expression must be preceded by a
backslash! This is not the case, but as we've learned, the parentheses have a specific meaning to the regular
expression matching routines, so they need to be escaped to tell the routines to look for them just as regular
characters.

One o f the difficulties o f the pattern above is that both alternate patterns have the same ending but different
beginnings. We can overcome this by using parentheses to group portions o f our pattern. So an equivalent
pattern (ignoring complexities we haven't yet covered) would be

OBSERVE: Alternative Syntax for Regex With | (o r) Matching

r"(\d\d\d|\(\d\d\d\))(-|)\d\d\d-\d\d\d\d"

In this pattern the alternation is restricted to the portions inside the parent heses—that is, the parentheses
that are not preceded by backslashes. So the part o f the pattern in parentheses will match either three digits or
three digits surrounded by parentheses. Then it will match either a dash (-) o r a space. In either case the rest
o f the pattern is the same. Now modify match_vs_search.py to use this extended pattern.

CODE TO EDIT: match_vs_search.py

"""
Demonstrate the difference between match() and search().
"""

import re

def check_number(text):
 regex = r"\d\d\d-\d\d\d-\d\d\d\d"
 regex = r"(\d\d\d|\(\d\d\d\))(-|)\d\d\d-\d\d\d\d"
 match = re.match(regex, text)
 if match:
 return match.group()

 match = re.search(regex, text)
 if match:
 return len(text)

 Save your changes. To correctly test this update, we also need to modify the test routine by adding tests that
require correct matching o f numbers whose area codes are in parentheses and fo llowed by a dash or a
space. You will see there is also some simplification o f the test code, since there is no need to store the
result in a variable before testing it.

CODE TO EDIT: test_match_vs_search.py

import unittest
from match_vs_search import check_number

p1 = """While I was at the store in Washington, DC 20001 I tried to call 555-123
-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555) 123-4567 again now."""

p1a = """While I was at the store in Washington, DC 20001 I tried to call (555)
123-4567 on my mobile
but accidentally called (555)-754-4321. The person on the line redirected me to

(999)-999-9999 which I don't think is a real number. Neither is (000)-000-0000 o
r (555) 555-0000.
Well, I will try (555) 123-4567 again now."""

p2 = "555-555-5555"
p2a = "(555)-555-5555"

p3 = "What is the author's phone number?"

class TestRegex(unittest.TestCase):
 def test_match(self):
 result = check_number(p2)
 self.assertEqual("555-555-5555", result)
 self.assertEqual("555-555-5555", check_number(p2))
 self.assertEqual("(555)-555-5555", check_number(p2a))

 def test_search(self):
 result = check_number(p1)
 self.assertEqual(305, result)
 self.assertEqual(305, check_number(p1))
 self.assertEqual(315, check_number(p1a))

 def test_none(self):
 result = check_number(p3)
 self.assertIsNone(result)

if __name__ == "__main__":
 unittest.main()

 Save and run it.

OBSERVE: Tests all pass.

...
--
Ran 3 tests in 0.001s

OK

More Complex Matching

So far, we've only seen a little o f what regular expressions can do. It is quite easy to extend the searching
facilities to alphanumeric patterns. Suppose we need to find a city, state, and zip code in a paragraph—the text
would fo llow this rough pattern: City Name, State Abbreviation Zip Code. How do you express a pattern to
match such strings?

The first thing we want to do is get the capital letter that starts each city name. In regular expressions, we can
match a single occurrence from a set o f characters by putting the characters in square brackets—to match any
upper-case letter, we can use [ABCDEFGHIJKLMNOPQRST UVWXYZ] . This is rather tedious to type, so we
can use a range, [A-Z] , instead.

Next we need to match the o ther letters o f the city name (we assume there will be one or more further
characters). For that we'll use the brackets and range again, but add a little more: [a-z]+ . The plus sign allows
for any number o f lower-case letters to match. So the pattern to match a capitalized word is [A-Z][a-z]+ .

Some cities have multiple words in their name (Falls Church and San Francisco come to mind). Thus, the first
word can optionally be fo llowed by one or more further words, each separated from its predecessor by white
space. So we need to fo llow the original pattern with zero or more repeats to the same pattern, with the
repeats preceded by a whitespace. The pattern for that is (\s[A-Z][a-z]+)*.

Note that, in order to apply the * character to the whole grouping, parentheses are required.

Now, we need to account fo r the state abbreviations. The easiest way to do it in regular expressions is via [A-
Z]{2} , which only allows two uppercase letters, matching the US postal designation for American states. Add
that to our regular expression, include a comma, and allow for a little white space: ,\s[A-Z]{2} .

Finally, we handle zip code handling portion o f the pattern. We won't check for nine-digit o r fo reign postal
codes right now, so for our purposes, \d{5} will suffice. This makes the final pattern [A-Z][a-z]+(\s[A-Z][a-
z]+)*,\s[A-Z]{2} \s\d{5} .

Now we'll try incorporating that into a function that finds the required addresses. Naturally, we need to write
some tests first. In your Pyt ho n3_Lesso n05/src fo lder, create t est _cit y_search.py as shown:

CODE TO TYPE: test_city_search.py

import unittest

from city_search import city_search

p1 = """While I was at the store I tried to call 555-123-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555) 123-4567 again now."""

p2 = "I live in Washington, DC 20002. Where do you live?"
p3 = "I live in Falls Church, VA 20188. And you?"

class TestRegex(unittest.TestCase):

 def test_city_search(self):
 self.assertEqual("Washington, DC 20002", city_search(p2))
 self.assertEqual("Falls Church, VA 20188", city_search(p3))

 def test_city_search_failure(self):
 self.assertIsNone(city_search(p1))

if __name__ == "__main__":
 unittest.main()

 Save it. Most o f the work has already been done with the design o f the regular expression, and the function
now simply needs to use it to locate addresses. Create cit y_search.py as shown:

CODE TO TYPE: city_search.py

"""
String regular expressions
"""

import re

def city_search(text):

 regex = r"[A-Z][a-z]+(\s[A-Z][a-z]+)*,\s[A-Z]{2}\s\d{5}"

 search = re.search(regex, text)
 if search:
 return search.group()

 Save it, and then run t est _cit y_search.py.

OBSERVE: Results o f Running test_city_search.py

..
--
Ran 2 tests in 0.001s

OK

Regular expressions have a power which their apparent simplicity belies, as you can now start to appreciate.

Finding all with findall() and finditer()

The first programming example in this lesson used a regular expression function named f indall() . In that
code, it returned a list o f non-overlapping matching phone numbers from the paragraph. This is useful fo r
providing a list o f strings, but what if you need to know the start and end index o f each o f those phone
numbers, in o ther words familiar data shown below, but fo r each found part o f the string? While findall returns
a list o f the matching strings, finditer returns a list o f the matching objects, and each match object has these
methods:

Met ho d Descript io n

group() Returns the string matched.

group(n) Returns the string matched by the nth parenthesised group in the pattern.

group(m, n,
...)

Returns a tuple o f the strings matched by the mth, nth, and so on parenthesized groups in
the pattern.

start() Returns the start index o f the match in the target string (always 0 for re .mat ch()).

end() Returns the end index o f the match.

span() Returns a tuple with the start and end indexes o f the match.

More on Modifying Strings With sub() and subn()

Suppose you don't want to publish all the phone numbers in this lesson, but you do want to show area
codes. Regular expressions let you find patterns, and they also provide too ls to allow you to modify them.
The regular expression sub() method can make this sort o f substitution. Pass in your pattern, what you want
it replaced with, and the string to modify: re .sub(" \d\d\d-\d\d\d\d", "XXX-XXXX", t ext) .

Let's make a program to show this in action. Create t est _pho ne_hide.py in your
Pyt ho n3_Lesso n05/src fo lder:

CODE TO TYPE: test_phone_hide.py

import unittest

from phone_hide import phone_hide

text = """While I was at the store I tried to call 555-123-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555)-123-4567 again now.
"""

class TestRegex(unittest.TestCase):

 def test_phone(self):
 response = phone_hide(text)
 self.assertFalse("555-123-4567" in response)
 self.assertTrue("555-XXX-XXXX" in response)
 self.assertTrue("(555)-XXX-XXXX" in response)

if __name__ == "__main__":
 unittest.main()

Then, create pho ne_hide.py in the same fo lder:

CODE TO TYPE: phone_hide.py

import re

def phone_hide(text):

 # Don't forget to use a raw string constant!
 return re.sub(r"\d{3}-\d{4}", "XXX-XXXX", text)

 Save both programs and run the test:

OBSERVE: Running test_phone_hide.py

.
--
Ran 1 test in 0.022s

OK

What if we want to know how many substitutions occurred? Then we can use the subn() function, which
returns a two-element tuple containing the result string and the number o f substitutions. Modify
t est _pho ne_hide.py as shown:

CODE TO EDIT: test_phone_hide.py

import unittest

from phone_hide import phone_hide

text = """While I was at the store I tried to call 555-123-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.
Well, I will try (555)-123-4567 again now.
"""

class TestRegex(unittest.TestCase):

 def test_phone(self):

 response, count = phone_hide(text)
 self.assertFalse("555-123-4567" in response)
 self.assertTrue("555-XXX-XXXX" in response)
 self.assertTrue("(555)-XXX-XXXX" in response)
 self.assertEqual(6, count)

if __name__ == "__main__":
 unittest.main()

 Save and run it:

OBSERVE: Running test_phone_hide.py

E
==
ERROR: test_phone (__main__.TestRegex)
--
Traceback (most recent call last):
 File "C:\Users\sholden\workspace\Python3_Lesson4\src\test_phone_hide2.py", lin
e 14, in test_phone
 response, count = phone_hide(text)
ValueError: too many values to unpack (expected 2)

--
Ran 1 test in 0.001s

FAILED (errors=1)

It fails because the current pho ne_hide() function still returns a single value. We need to modify it to call
subn() instead o f sub() .

CODE TO EDIT: phone_hide.py

import re

def phone_hide(text):

 # Don't forget the 'r' at the start of the string!
 return re.subn(r"\d{3}-\d{4}", "XXX-XXXX", text)

Inserting that single letter "n" should be enough to restore everything to a fully functional state.

 Save it, and run the test again:

OBSERVE: test_phone_hide.py now passes again

.
--
Ran 1 test in 0.001s

OK

Breaking Strings Apart with split()

Now suppose we want to split up a paragraph into a list o f sentences. Python's split () function makes this
problem trivial to so lve. The regular expression pattern to find a sentence end (assuming some
simplifications) is r"[?.!]\s+" .

The bracketed set contains the punctuation characters ?, ., and !, which represents the ending o f each
sentence. Although these characters all have special meanings in regular expressions, remember that within
a character set specification, they are treated as literal.

The '\s+' portion o f the pattern requires a space or spaces after the ending punctuation o f a sentence. The
more precise you make a pattern the better your results will be. Without the spaces, a period used as a
decimal po int inside a number would be treated as ending a sentence.

Let's give it a try! As usual we'll begin by writing the tests. In your Pyt ho n3_Lesso n05/src fo lder, create
t est _sent ence_split .py as shown:

CODE TO TYPE: test_sentence_split.py

import unittest

from sentence_split import sentence_split

text = "Hello! My name is Steve. What is yours? I hope you enjoyed this class!"

class TestRegex(unittest.TestCase):

 def test_split_sentence(self):
 numbers = sentence_split(text)
 self.assertEqual(len(numbers), 4)

if __name__ == "__main__":
 unittest.main()

Then, in the same fo lder, create sent ence_split .py:

CODE TO TYPE: sentence_split.py

import re

def sentence_split(text):
 return re.split(r"[?.!]\s+", text)

 Save both files, and run the test:

results o f test_sentence_split.py

.
--
Ran 1 test in 0.001s

OK

Use Regular Expressions With Care
Regular expressions are extremely powerful. As you expand your knowledge, you'll be amazed by what they can do.
However, with great power comes great responsibility! So here are a couple o f warnings about the use o f regular

However, with great power comes great responsibility! So here are a couple o f warnings about the use o f regular
expressions in programming.

Cn U Rd Ths?

Regular expressions can get extremely complex. For example, let's say you want to pull all o f the email
addresses from a paragraph. This sounds like a simple enough task, right? Something like r"[a-zA-Z .-
]+\@[a-zA-Z .-]+" should work, right?

Unfortunately, if you apply that pattern to "So ... um...@o reilly we f o und his email was
st eve@o reilly.co m." you will get st eve@o reilly.co m out, but it will also give you um...@o reilly!

So your pattern should be able to handle only proper email prefixes and should not allow repetition o f dots.
There are o ther specifications for allowed domain suffixes such as nations, .info , .com, and o thers. You
should really research RFC 2822, which is the o fficial email specification, with all its special cases and rules.
And that sort o f complexity generates regular expressions that look like this:

"[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\.)+(?:[A-Z]{2} |co m|o rg|net |edu|go v|mil|biz|inf o |mo bi|name|aero |asia|jo bs|museum)\b"

As you can see, regular expressions can get out o f hand—and this is just fo r emails! Regular expression
syntax is arguably not very clear compared to the elegance o f Python, and it is not uncommon for authors o f
regular expressions to lose track o f what their effo rt is supposed to do.

There are ways to make regular expressions more legible, but be aware o f the code clarity issues that regular
expressions can cause.

String Methods Versus Regular Expressions

"When the only too l you own is a hammer, every problem begins to resemble a nail."
-Abraham Maslow, American educator

You've just been introduced to the world o f regular expressions, an amazingly powerful too lbox that can do
incredible things. You've also been warned about the dangers o f regular expressions. There is still much
more to learn, and the Python documentation describes regular expressions in rather more detail (a
confusing amount o f detail fo r beginners, we suspect).

For over two courses and about thirty lessons, we've been able to rely on string methods. And that is
because Python's string methods are fast and powerful, and yet easy to use. By all means, continue to use
them when it is easy and faster to do so.

Sometimes regular expressions aren't the right too l fo r the job. Sometimes it pays to write a dozen lines o f
Python code instead o f a single regular expression. There are no hard and fast rules to fo llow; it is just
something that you learn over time.

For some reason, we find that regexes enthuse people to the po int that they become the hammer with which
they try to so lve all string-processing problems. Don't let this happen to you.

In the next lesson, you'll learn that Python allows you to build regular expression pattern objects, which can make your
code more compact and readable as well as more efficient.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Compiling and Flagging Regular Expressions
Lesson Objectives

When you complete this lesson, you will be able to :

compile regular expressions.
flag regular expressions.

In preceding lessons, you learned about regular expressions and their basic use in the Python language. In this lesson, you'll
learn about how to compile regular expression patterns, Python's special regular expression flags, and additional pattern
matching strings. Of course, we'll try more examples. By the end o f this lesson, you'll know enough to handle most o f your
regex needs.

Compiling Regular Expressions
So far, we've used the module-level functions in Python's re library in order to do pattern matches. The advantage o f
this is that it makes for quick-to-write code, but from a performance po int o f view, it is not the most efficient method. For
the small examples we've used so far, it hasn't been a problem, but regular expressions are o ften called in huge
vo lumes on gigantic strings and the module-level functions have their limits. So when you anticipate a need for greater
performance, it is a good practice to compile the regular expressions before use.

Compiled regular expressions are called a pattern object. All o f your favorite Python re search functions are methods
of the pattern object. Actually, many o f these methods have additional features that the basic search functions lack,
which allow you to really fine-tune your searches.

When you compile your patterns, since they are no longer strings, your code is more compact, more readable, and
more usable.

Using re.compile() to Make a Pattern Object

To compile a regular expression into a pattern object, you pass a pattern string into the re .co mpile()
function. Once you've done that, you can start using the re functions you've learned before, such as match(),
search(), findall()—albeit now as methods:

CODE TO TYPE: Run the fo llowing code in an interactive terminal session

>>> import re
>>> regex = re.compile('Python')
>>> my_str = "I'm glad O'Reilly has Python courses and books!"
>>> result = regex.search(my_str)
>>> result
<_sre.SRE_Match object; span=(22, 28), match='Python'>
>>> result.group()
'Python'
>>> regex.match(my_str) == None # Match fails because 'Python' is not at the sta
rt
True
>>> regex.findall(my_str)
['Python']

If you continue to play around with the pattern object, you'll see you can use f indit er() , sub() , and subn() as
methods. Indeed, the pattern object functionality matches that o f the core re library functions.

Pattern objects and positional arguments

Actually, the statement 'the pattern object functionality matches that of the core re library functions' is incorrect.
The pattern object also includes for many o f its methods pos and endpos arguments. These act just like string
slicing, but if the endpos argument is less than the pos argument, the method returns a None object instead
of an empty string on the match() and search() methods and an empty list/iterator fo r the findall() and finditer()
methods, respectively.

CODE TO TYPE: Continuation o f session above

>>> new_str = 'Python is a language; a Python is a snake'
>>> regex.findall(new_str)
['Python', 'Python']
>>> regex.findall(new_str, 6) # starts at position 6
['Python']
>>> regex.findall(new_str, 6, 10) # starts at position 6, ends at position 10
[]
>>> regex.findall(new_str, 10, 5)
[]
>>> type(regex.match(new_str, 10, 5))
<class 'NoneType'>

Not all pattern object methods include position arguments, so here is a reference guide:

Met ho d Po sit io nal Argument s?

search yes

match yes

split no

findall yes

finditer yes

sub no

subn no

Flagging Regular Expressions
When you get into writing longer and more complex regular expressions, it becomes hard to read the pattern. Wouldn't
it be nice to be able to be able to include comments in your regular expressions? Or spread the regular expression
across multiple lines without creating false positives? Or ignore alphabet case by default? Or only Flags give you that
and more.

Verbose Regular Expressions

Earlier, we used this regular expression to find cities in a text string:

[A-Z][a-z]+(\s[A-Z][a-z]+)*,\s[A-Z]{2} \s\d{5}

This is not very easy to read. Fortunately, we can break it up and still keep it usable, with the re.VERBOSE flag.
Let's make an example. Create the Pyt ho n3_Lesso n06 pro ject and assign it to the Pyt ho n3_Lesso ns
working set. Then, copy cit y_search.py and t est _cit y_search.py from the previous lesson into the
Pyt ho n3_Lesso n06/src fo lder. Edit cit y_search.py as shown:

CODE TO EDIT: city_search.py

"""
String regular expressions
"""

import re

def city_search(text):

 regex = r"[A-Z][a-z]+(\s[A-Z][a-z]+)*,\s[A-Z]{2}\s\d{5}"
 regex = re.compile(r"""
 [A-Z][a-z]+ # the first word of a city
 (\s[A-Z][a-z]+)* # possible additional words of a city
 ,\s[A-Z]{2}\s # The two-letter abbreviation for a US state
 \d{5} # five-digit US zip code
 """, re.VERBOSE)

 search = re.search(regex, text)
 search = regex.search(text)
 if search:
 return search.group()

 Save it and run t est _cit y_search.py. It still passes the tests.

As you can see, when the pattern object is compiled, you passed in re.VERBOSE as an extra argument. This
argument allowed you to include white space and Python-style comments without breaking the regular
expression.

The trick with this particular flag is that all the white space is removed, except that which is declared, so you
need to remember to include \s, \n, \r, \f, \t, and \v instead o f literal spaces, tabs, and return characters.

Ignoring Case

If you need to match a pattern and ignore case, the best way to do it is with the re.IGNORECASE flag:

CODE TO TYPE: Run the fo llowing code in an interactive terminal session

>>> import re
>>> regex = re.compile(r"""python # the language
... |guido # the bdfl
... """, re.IGNORECASE | re.VERBOSE)
>>> for m in regex.findall("""Python was invented by Guido, and while its mascot
 is a
... python, it was named after Monty Python"""):
... print(m)
...
Python
Guido
python
Python

Note that when we pass in two flags, we use the pipe (|) symbol, thus: re .IGNORECASE | re .VERBOSE

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Python's Object-Oriented Features
Lesson Objectives

When you complete this lesson, you will be able to :

use encapsulation.
apply the principles o f inheritance.
utilize po lymorphism.

Earlier in this course, you learned some of the basics o f object-oriented programming (OOP), which was first discussed in
"Beginning Python." In this lesson, you'll learn more about OOP, and understand more deeply the object-oriented features that
Python o ffers.

Encapsulation
Encapsulation is the idea that the only way to access or change the data inside an object is by calling its methods. This
idea has never really gained much ground in the Python world, and it is normally considered acceptable to both read
and set an object's attributes from anywhere in a program.

Occasionally, you may find that storing new information in an object requires you to perform other calculations. While it
might seem that a method call would be necessary in such circumstances, you can instead choose to perform the
calculations by implementing a property, which we will show how to do later.

Inheritance

A quick subclassing review

You have already used Python's inheritance features, so you know something about them. In programming,
when a child class inherits from a parent class, that is referred to as subclassing. In Python, we say that the
subclass (child) inherits from a base class (parent). To the programmer, it appears that the subclass has all o f
the same attributes (including methods) as the base class—though in fact this is actually implemented by the
interpreter fo llowing a well-defined method resolution order (MRO) to locate attributes. Run an example in an
interactive interpreter window as fo llows to clarify this.

CODE TO TYPE: Run the fo llowing code in an interactive terminal session

>>> class Parent:
... skin_color = "green"
...
>>> class Child1(Parent):
... pass
...
>>> class Child2(Parent):
... skin_color = "blue"
...
>>> Child1.skin_color
'green'
>>> Child2.skin_color
'blue'
>>> Child2.__mro__
(<class '__main__.Child2'>, <class '__main__.Parent'>, <class 'object'>)
>>> object
<class 'object'>
>>> dir(object)
['__class__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__',
 '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__',
 '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
 '__sizeof__', '__str__', '__subclasshook__']
>>> dir(Parent)
['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__g
e__',
 '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__',
 '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '
__setattr__',
 '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'skin_color']
>>> type(object.__dict__)
<class 'mappingproxy'>

>>> Parent.__dict__
mappingproxy({'skin_color': 'green', '__weakref__': <attribute '__weakref__' of
'Parent' objects>,
'__doc__': None, '__module__': '__main__', '__dict__': <attribute '__dict__' of
'Parent' objects>})

>>> sorted(list(Parent.__dict__))
['__dict__', '__doc__', '__module__', '__weakref__', 'skin_color']
>>> sorted(list(Child1.__dict__))
['__doc__', '__module__']
>>> sorted(list(Child2.__dict__))
['__doc__', '__module__', 'skin_color']
>>> sorted(list(object.__dict__))
['__class__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__',
 '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__',
 '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
 '__sizeof__', '__str__', '__subclasshook__']
>>>

Note Some of the lines above have been wrapped for your reading convenience.

In the example above, the value o f Child1.skin_co lo r is "green," because if the interpreter doesn't find the
attribute it is looking for in the class it will next look in its base class. The Child2 class sets its own
skin_co lo r, however, and so when the interpreter looks for a "skin_co lor" attribute in the class's
namespace, it finds it without any need to look in the parent class. We say that the Child2 class overrides the
base class's skin co lor.

The diagram above shows the inheritance relationship between Parent, Child1, and Child2, which makes it
obvious why Child1 has green skin. You can see the MRO of a class by examining its __mro__ attribute, as is
shown in the interactive session. This tuple is a list o f the class's base classes. You will observe that
although it is never explicitly mentioned in any o f the class definitions, Python classes ultimately inherit from a
built- in class called o bject , and that much o f the behavior o f your classes is actually defined in that class.

Note
Technically, the built- in classes are usually referred to as types. There are a few differences
between those types and the classes you define yourself, but you don't need to be concerned
about them just yet.

You can also see that the names that have been defined locally to a class generally live in its __dict __. To a
first approximation, the output o f dir() on a class will be its __dict __ plus the __dict __s o f all its base
classes. That is because the class's __dict __ is where the class attributes are stored.

You might also notice that classes don't actually use a Python dict as their __dict __, but instead have a
specialized object called a dict_proxy. This is a "lightweight" dict, designed to operate lookups as quickly as
possible because name lookups are so frequent in Python.

One o ther term to remember: the base class that is the immediate parent o f a class is o ften called its
superclass.

Multiple Inheritance

Python implements multiple inheritance: you can specify more than one base class in a class definition, and
your class will inherit the characteristics o f all its base classes. This allows you to define classes called mix-in
classes that you can use specifically to add behaviors to o ther classes.

This naturally gives rise to the question "what happens if more than one o f the base classes defines the
same attribute—which value does my class inherit?" As with so many questions about Python, the interactive
interpreter is your friend. Let's use it to find out.

CODE TO TYPE: Investigate more complex inheritance in an interactive interpreter session

>>> class Mother:
... hair_color = "blonde"
... temperament = "placid"
...
>>> class Father:
... hair_color = "ginger"
... curiosity = "high"
...
>>> class Daughter(Mother, Father):
... pass
...
>>> class Son(Father, Mother):
... pass
...
>>> Daughter.hair_color
'blonde'
>>> Son.hair_color
'ginger'
>>> Daughter.temperament, Daughter.curiosity
('placid', 'high')
>>> Son.temperament, Son.curiosity
('placid', 'high')
>>>

The Daughter class inherits the Mother class's hair_co lo r because the base classes are searched left-to -
right. Similarly the Son class inherits the Father class's hair_co lo r. However, both children inherit
t emperament from the Mother class and curio sit y from the Father class, because only one base class
defines each o f these attributes. Inheritance o f methods works in exactly the same way: in reso lving a method
or attribute name, the interpreter searches the base classes (and their subclasses, and so on) starting from
the left—all subclasses o f the first base class are considered before the second base class

.

Polymorphism

Polymorphism: Same Operations, Different Types

One of the concepts that Python supports very well is Subtype Po lymorphism, known less formally as
polymorphism. Po lymorphism gives you the ability to write code without concerning yourself about the types
of the data it is dealing with.

Early in this series o f classes, you used Python to perform some basic math on integers, and eventually
expanded your knowledge to understand that you could add (or more properly "concatenate") strings and
various iterators together. Use the interactive interpreter to remind yourself again about this interesting
property o f Python.

CODE TO TYPE: Use the interactive interpreter to define a po lymorphic function

>>> def add(x, y):
... return x+y
...
>>> add(3, 5)
8
>>> add("big", "string")
'bigstring'
>>> add([1, 2, 4], [8, 16])
[1, 2, 4, 8, 16]
>>> add((1, 1, 1), (2, 2, 2))
(1, 1, 1, 2, 2, 2)
>>>

The above function demonstrates that in Python, numbers, strings, lists, and tuples are polymorphic with
respect to addition. As long as both arguments are o f the same type, you can add them together.

Did you ever stop to wonder about how the + and * operators "know" how to do the correct operations on the
operands on either side? If you think about it, the computer has to perform quite different operations to add
two strings and two numbers. This po lymorphism is achieved by examining and calling methods o f the
operands.

When the interpreter has to evaluate the expression a + b, it first tries to evaluate a.__add__(b) . This may or
may not be possible: the a object may not have an __add__() method, or the method might return
NotImplemented when called with b as an argument. In either o f these cases, the interpreter falls back to trying
to call b.__radd__(a) to evaluate the expression. If this is impossible (again, either because b has no
__radd__() method, or because that method raises NotImplemented when called with a as its argument) the
interpreter raises a TypeError exception.

One more thing before we explore actual usage—in an earlier lesson, we wrote code to determine a child's
hair co lor. Our tests checked the response o f an expected hair() method. This was yet another example o f
po lymorphism.

Let's create a working example that does use po lymorphism. You've got a farm and you need to list all the
animals, the sounds they make, and whether they have wings. Create the Pydev pro ject fo r
Pyt ho n3_Lesso n07 and assign it to the Pyt ho n3_Lesso ns working set. Then, in the
Pyt ho n3_Lesso n07/src fo lder, create t est _animal_f arm.py as shown:

CODE TO TYPE: test_animal_farm.py

'''
Test the animal_farm animals
'''
import unittest
from animal_farm import Animal, Pig, Dog, Chicken

class Test(unittest.TestCase):

 def test_base_animal_class(self):
 "Tests the basics of the Animal class."
 animal = Animal("Orwell")
 self.assertRaises(NotImplementedError, animal.sound)
 self.assertFalse(animal.has_wings())

 def test_pig(self):
 "Tests the inhabitants of the farm"
 pig = Pig("Napoleon")
 self.assertEqual(pig.sound(), "oink!")
 self.assertFalse(pig.has_wings())

 def test_dog(self):
 dog = Dog("Bluebell")
 self.assertEqual(dog.sound(), "woof!")
 self.assertFalse(dog.has_wings())

 def test_chicken(self):
 chicken = Chicken("Kulak")
 self.assertEqual(chicken.sound(), "bok bok!")
 self.assertTrue(chicken.has_wings())

if __name__ == "__main__":
 unittest.main()

The tests first determine that the base animal class works as expected. Then the individual animal classes are
tested to make sure that they return the right sound and the right answer to the wing question.

Note that the Animal class's so und() method raises a NotImplementedError. This is a reminder that we
assume all farm animals make sound, and the developer writing classes representing the beasts needs to
implement this method. In programming parlance, the sound() method is called an abstract method. It doesn't
do anything besides inform developers looking to use the Animal class what they need to do to make the
class function correctly, and requires subclasses to implement the method.

The has_wings() method is different, assuming that most o f the farm animals will by default not have wings,
and so provides a default return o f "False."

Now we need to create some animal classes to match the tests. In the Pyt ho n3_Lesso n07/src fo lder,
create animal_f arm.py as shown:

code to enter: animal_farm.py

class Animal(object):

 def __init__(self, name):
 self.name = name

 def sound(self):
 raise NotImplementedError("Animals need a sound method")

 def has_wings(self):
 return False

class Pig(Animal):

 def sound(self):
 return "oink!"

class Dog(Animal):

 def sound(self):
 return "woof!"

class Chicken(Animal):

 def sound(self):
 return "bok bok!"

 def has_wings(self):
 return True

 Save the files and run the tests, and you have a working example o f po lymorphism.

OBSERVE: All four tests should pass

....
--
Ran 4 tests in 0.001s

OK

While tests are good to have, it's nice to see the actual application working too! Let's try this out on the
command line:

OBSERVE: animal_farm in action

>>> from animal_farm import *
>>> animal = Animal('Mystery Meat')
>>> animal.name
'Mystery Meat'
>>> animal.sound()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "animal_farm.py", line 7, in sound
raise NotImplementedError("Animals need a sound method")
NotImplementedError: Animals need a sound method
>>> dog = Dog('Rover')
>>> dog.name
'Rover'
>>> dog.sound()
'woof!'

Overriding vs. Extending methods

You saw earlier how the definition o f an attribute in a class will be chosen in preference to the definition o f the
same attribute in a base class. This is due to the method reso lution order adopted in Python. When searching
for an attribute (including a method), the interpreter first looks in the instance's namespace; next it looks in the
namespace o f the instance's class; after that it looks in the base classes one by one, raising an AttributeError
exception if the attribute is not found.

If a class defines a method o f the same name as a method o f one o f its base classes, it is said to override the
method o f the base class. So in the example above, the Chicken class's has_wings() method overrides the
Animal class's has_wings() method, by providing its own implementation.

Sometimes, however, the subclass needs to use its superclass's method as a part o f implementing its own
method, and Python has a special feature to easily let you refer to a class's superclass—the super()
function. You will see it in use in the next example, where we start by defining a Car class and then extend it by
subclassing. The T o yo t a subclass needs an extra argument to its __init __() method, but it also needs to
go through the usual initialization for cars. Create t est _ext end.py in your Pyt ho n3_Lesso n07/src fo lder
as shown

CODE TO TYPE: test_extend.py

'''
test_extend.py: verify that Ford successfully
 extends the Car. __init__() method
'''
import unittest
from extend import Car, Ford, Toyota

class TestCars(unittest.TestCase):
 def test_Toyota(self):
 car1 = Car("red", 2000)
 car2 = Toyota("red", 2000, "Corolla")
 self.assertEqual(car1.color, car2.color)
 self.assertEqual(car1.cc, car2.cc)
 self.assertEqual(car2.model, "Corolla")

 def test_Ford(self):
 car1 = Car("red", 2000)
 car2 = Ford("red", 2000, "Taurus")
 self.assertEqual(car1.color, car2.color)
 self.assertEqual(car1.cc, car2.cc)
 self.assertEqual(car2.model, "Taurus")

if __name__ == '__main__':
 unittest.main()

The idea is that Toyotas are cars and Fords are cars, so they should use the Car.__init __() method to do

the initialization that they have in common to set the instance variables. Observe that both the T o yo t a and
Fo rd classes take an extra argument when you create a new instance, so clearly Car.__init __() alone is not
go ing to suffice. The two subclasses are quite similar, differing only in the way they call their superclass's
__init __() method. Now, create the ext end.py program as shown:

CODE TO TYPE: extend.py

'''
extend.py: demonstrate how to extend a superclass method.
'''

class Car:
 def __init__(self, color, cc):
 self.color = color
 self.cc = cc

class Toyota(Car):
 def __init__(self, color, cc, model):
 Car.__init__(self, color, cc)
 self.model = model

class Ford(Car):
 def __init__(self, color, cc, model):
 super().__init__(color, cc)
 self.model = model

Note that the T o yo t a class's __init __() method calls Car.__init __() directly. Since Car is a class and not
an instance, it is necessary to provide an explicit instance to the call.

The Fo rd.__init __() method, however, uses the built- in super() function. This returns a special object that
delegates the calls to the parent class without needing an instance to be provided. If the tests all pass, that
demonstrates that the two classes are equivalent in operation.

Note In version 2.7 o f Python, super() has a different syntax (with arguments).

OBSERVE: Results o f running test_extend.py

..
--
Ran 2 tests in 0.000s

OK

So both the subclasses, in their own way, extend the Car.__init __() method.

After this more extended look at Python's object-oriented features, you are better prepared to deploy the language to
so lve real-world problems. In the next lesson, we'll take a look at the features the language has for reading and storing
data in compact binary formats.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Consuming and Creating Binary Data
Lesson Objectives

When you complete this lesson, you will be able to :

differentiate between Python data and raw computer data.
use the struct Module.

Python Data vs. Raw Computer Data
You have learned about many different data types that Python can deal with. This lesson explains how Python can be
persuaded to exchange data with arbitrary programs, over whose data you have no contro l.

So far, all the external data (coming to and from files or the conso le) has been character o r string data. You have
handled this data without really needing to understand how it is represented, and now it is time to think about that a
little. This requires you to understand something about character data to start with.

For quite a long time, the computer industry got by using character sets with only a limited number o f characters. This
was acceptable because people in most countries were writing programs for local consumption, and so they could
encode their local alphabet so that each character was mapped onto one o f the possible values o f a byte. (A byte
contains eight bits, so there are 256 different possible values from 0 to 255). Such a mapping is o ften referred to as an
encoding o f a character set. There has to be an agreement that different programs will treat the same byte values as
representing the same character. For a long time, Python's string type used the US ASCII character set, using one byte
to represent each character.

Then, the realization dawned that computer programs would eventually need to be capable o f handling multiple
languages, and in the mid-1980s work began on a way to encode much larger character sets, with the ultimate
intention o f being able to represent any text at all. This work ultimately led to the development o f a standard called
Unicode, which is what Python now uses to represent its strings. Internally, this requires the interpreter to represent
each character as one to four bytes, using an encoding known as UTF-8. Python also provides support fo r many o ther
encodings.

Unicode is not the most memory-efficient way to represent strings, and so for external storage and transmission a
number o f different ways o f representing Unicode strings (normally referred to as encodings, just like ASCII) have been
devised. Probably the most common in the Western world is UTF-8, which has been specially devised so that Unicode
strings containing only ASCII characters will encode into the equivalent ASCII strings. The Python installed in Ellipse
makes a default assumption that the external encoding o f the text strings that it reads is UTF-8, but you may find that
o ther Python interpreters have been configured to expect o ther encodings. You can ask the interpreter how it has been
configured by calling sys.get def ault enco ding() , and you can determine the assumption it makes about the
contents o f text files by calling sys.get f ilesyst emenco ding() . The two will no t necessarily be the same, as you can
see:

CODE TO TYPE: Type this code in an interactive Python conso le session

>>> import sys
>>> sys.getdefaultencoding()
'utf-8'
>>> sys.getfilesystemencoding()
'mbcs'

There are, however, times when it's important to be able to communicate in o ther than character terms. Sometimes, fo r
example, you will receive a binary file and a description o f its layout, and you will need to convert that data into the
necessary Python types in order to be able to operate on it. Sometimes you will need to write your Python data out in a
format required by o ther programs, with "raw" computer data types rather than string-based representations.

How Computers Represent Data

Most computers only work with a very limited set o f different types o f data: integers (o f various sizes),
floating-po int numbers (o f various sizes), and (sometimes) strings o f bytes. Data types like Python's dicts
and lists are not dealt with directly by the central processing unit (CPU). That is what the interpreter is fo r: it is a
special-purpose program specifically designed to give you the impression that Python's data types are built

http://www.columbia.edu/kermit/ascii.html

in.

If you were to look at the layout in memory o f a Python floating-po int number, fo r example, you would see that
it is far more complicated than a regular floating-po int number used by the CPU. This is because the
interpreter must maintain a bunch o f overhead to do things like keeping track o f how many references there
are to an object (so the memory it uses can be reclaimed when it is no longer in use). But programs in o ther
languages would not be able to make any sense out o f Python's representation; they just want the data
without any o f that overhead.

So this leads to the interesting question o f how the CPU actually represents the basic data types it is capable
of dealing with. Fortunately "there's a module for that" in Python: the st ruct module (discussed later). It
allows you to build memory structures (Python bytes objects) that can be written out to files or transmitted
across networks for consumption by o ther programs.

The byte is the smallest addressable unit o f memory in a modern computer and, as mentioned above, ho lds
eight bits. A bytes object is a sequence o f bytes, and so it can be subscripted and sliced just like strings and
lists. When you open a file in binary mode and read data from it, what you get back is a bytes object. No
decoding takes place on input, and no encoding on output. When a bytes object is read or written, you get the
data transmitted, with no attempts to change it.

Note
Python also implements a bytearray type. This is similar to the bytes type, but unlike strings and
bytes, the bytearray is mutable, so you can change individual bytes by indexing, or sub-arrays by
slicing.

The bytes and bytearray objects allow you to map the individual bytes o f a file's contents, or o f a sequence o f
bytes read over the network. The st ruct module allows you to interpret these values as the computer's basic
data types—bytes, integers, and floating-po int numbers.

The memory that your program works with (under the hood, that is, rather than the Python data types) is like a
large bytearray, and the index o f each byte is usually called its address. Addresses start, like Python indexes,
at zero and go up by ones.

Endianness

The numbers that computers can deal with have grown bigger over the years. The more bits a number has,
the larger the range o f values it can represent. In modern computers, integers (whole numbers) will typically
be represented as four bytes (though with the emergence o f 64-bit computers, they can also be eight bytes).
In o lder machines, they would be two bytes, now often referred to as a "short." Furthermore, integers can be
either signed or unsigned, the former being able to represent both positive and negative values, the latter
always interpreted as positive values.

There are two principal ways to store numbers, known (for reasons we need not go into) as "big-endian" and
"little-endian". The difference between them is the way that the bytes are stored: in a big-endian system, the
most significant byte o f a number is stored at the lowest memory address; in a little-endian system, it is
stored at the highest memory address. For simplicity, let's consider a 16-bit (2-byte) representation o f the
number 1027.

The most significant byte will have the value 4, and the least significant byte will have the value 3 because
1027 = (4 * 256) + 3.

If this is stored at address 325676 in your program's memory, on a big-endian system it would look like this:

On a little-endian system, the same value stored at the same address would look like this:

This might not seem like much o f a difference, but you have to know which endianness the data has when you
are dealing with numbers made up o f more than one byte. Otherwise you will interpret the numbers wrongly.
The same thing occurs with longer values, though the arithmetic invo lved is more complex. Suppose you had
the fo llowing bytes stored in memory starting at address 1367744.

If this were a big-endian number, its most significant byte would be the 4 shown on the left, and its value
would be (((4*256+3)*256+2)*256+1 = 67,305,985 .

If it were little-endian, however, its most significant byte would be the 1 on the right, making its value
(((1*256+2)*256+3)*256+4 = 16,909,060 .

This should, we hope, convince you o f the necessity to understand which type o f data you are dealing with,
since to deal with it the wrong way will lead to values that are just plain wrong!

Data Alignment

Yet another factor to take into account is the alignment o f data. It is common for data to be aligned so that
their starting address is a whole multiple o f their size, so long (4-byte) integers will always be stored at an
address that is an even multiple o f 4, and so on.

These alignment rules are usually advisory rather than mandatory, but they are important: due to the way
memory access works, it can take several times as long for the computer to add two non-aligned integers as
it does to add two correctly-aligned ones. It's important to note that if the data are aligned this way, there may
be so-called "packing" bytes inserted between values o f different sizes. If you fail to take account o f this, you
will end up using the wrong bytes!

The struct Module
The st ruct module has been designed specifically to allow you to handle chunks o f data that have been stored or
transmitted in binary form to your Python program. Typically, you will read the data either from a file opened in binary
mode or across a network connection. The module provides an unpack() function to let you interpret binary data and
convert it to the appropriate Python data types. Its pack() function does the opposite, taking various Python data and
converting them to a bytes object that can be stored or transmitted for o ther programs to interpret.

Format Strings

Both pack() and unpack() require a description o f the data types in the bytes. This is presented as what the
documentation refers to as a format string, whose first character is used to indicate the endianness o f the
data. In the fo llowing table, "native" means according to the rules o f the particular computer on which the
program is running. "Standard" alignment simply uses no packing bytes no matter whether items are correctly
aligned or not. If the first character is none o f those shown, it is assumed to be part o f the format, and native
settings are assumed.

First Charact er Endianness Packing

@ Native Native

= Native Standard

< Little-endian Standard

> Big-endian Standard

! Network (same as big-endian) Standard

The remainder o f the format string is a description o f the individual data items that appear in the bytes object
(fo r unpacking) or that are to be placed into the bytes object (fo r packing). The format characters can be
preceded by a number, which indicates the number o f values o f that type to expect (except when the format
character is "s," in which case it indicates the number o f bytes in the string. This table shows the meanings o f
the various format characters.

Fo rmat C Dat a T ype Pyt ho n T ype

x Pad byte -

c char bytes (length 1)

b signed char integer

B unsigned char integer

? _Bool boo l

h short integer

H unsigned short integer

i int integer

I unsigned int integer

l long integer

L unsigned long integer

q long long integer

Q unsigned long long integer

f float float

d double float

s char[] bytes

p char[] bytes

P vo id* integer

If you aren't a C programmer, the "C types" may not mean that much. All you really need to know is that the
unsigned types will always give positive values, and that if you try to pack a value that's too large to be held in
the field, the interpreter will raise an exception.

Packing and Unpacking Values

When you print a floating-po int value in Python, the language does its best to produce a string that, when
converted back into a floating-po int value, gives the same number. This is appropriate when the computer
has to pass information to a human reader, but fo r storage and inter- and intra-process communication, it
invo lves large amounts o f unnecessary conversion. It is therefore more usual fo r such purposes to use an
eight-byte representation for floating po int numbers that corresponds to the way they are stored in computer
memory. That way, as long as both sender (storer) and recipient (reader) use the same floating-po int fo rmat,
no conversion o f any kind is required. Most modern computer hardware uses a floating-po int representation
defined by the IEEE.

Since the binary representation o f floats is o f a fixed length, this also has the advantage that large arrays o f
floats can be mapped on to chunks o f memory without incurring the overhead o f each element being a full
Python object, rather just a pure value. As long as the shape (number and size o f each dimension) o f the
array is known, the location o f any element can be computed arithmetically from its coordinates in the array.
Packages such as Numpy and SciPy use these techniques to make efficient numerical data structures
available to Python code.

Create the Pyt ho n3_Lesso n08 pro ject and assign it to your Pyt ho n3_Lesso ns working set. Then, in the
Pyt ho n3_Lesso n08/src fo lder, create f lo at t est .py as shown:

CODE TO TYPE: floattest.py

"""
floattest.py: demonstrate use of floating-point values in files.
"""
import random, os, struct
filename = r"v:\workspace\Python3_Lesson08\src\floatdata.bin"
rlist = [random.random() for i in range(10)]
f = open(filename, "wb")
f.write(struct.pack("=10d", *rlist))
f.close()
f = open(filename, "rb")
for i in range(10):
 s = f.read(8)
 x, = struct.unpack("=d", s)
 if x != rlist[i]:
 print(i, x, rlist[i], abs(x-rlist[i]))
 else:
 print(i, x, "values agree")
print(filename, os.stat(filename).st_size)
f.close()

 Save and run it. The code uses the st ruct .pack() function to convert ten floating-po int numbers (the
elements o f rlist , represented as positional arguments by the use o f the * argument syntax) to fixed-length
byte strings, which are written out to the (binary) floatdata.bin file. Next, it reads back eight bytes at a time,
converting each bytes object back into a Python float.

OBSERVE: Binary representation appears to be exact

0 0.505352274992 values agree
1 0.560349256654 values agree
2 0.86326435433 values agree
3 0.775838375892 values agree
4 0.498425623965 values agree
5 0.577260996053 values agree
6 0.247810402776 values agree
7 0.473451623047 values agree
8 0.184083222943 values agree
9 0.388145971055 values agree
V:\floatdata.bin 80

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Advanced Objects: Special Methods
Lesson Objectives

When you complete this lesson, you will be able to :

apply basic customization.
attribute access.
emulate functions: the __call__() Method

Since you started writing classes and creating objects in Python, you've become familiar with the __init __() method in the
initialization o f the object to set up the object data. You've also learned about the __add__() method. Methods whose names
start and end with double underscores ("__") designate special behaviors for Python classes via what are called special
methods.

These special method names are tied directly into Python's infrastructure. They contro l how objects are created and destroyed,
how they render through the print () function, and many o ther things. Their advantage is that they let you do a lo t o f very
interesting, almost magical things with Python classes—which is why an alternative name for special methods is magic
methods. Fortunately, the magic is like stage magic. Wonderful things seem to "just happen," but behind the scenes very explicit
things are taking place, based on the way the interpreter has been designed. The wonderful part is that you can define your own
objects to interact with the interpreter in pretty much the same way that Python's built- in objects do.

Basic Customization
The most commonly used special methods are __init __() , __new__() , __repr__() , and __st r__() . You've already
used the __init __() method many times to initialize instance variables when new objects are created, so now we'll
focus on the o thers. For each method. we'll provide some descriptive information, and then will include a brief example
at the end to help you familiarize yourself with it.

__new__(): Creating New Objects

At first glance, The __new__() method seems similar to the __init __() method, but it is actually quite
different. You will remember that you instantiate a class (that is, create a new instance o f that class) by calling
the class. The __init __() method returns nothing—it merely initializes what __new__() has created. The
__new__() method, on the o ther hand, returns the object that will become the return value o f the instantiation
call.

Like __init __() , __new__() receives the arguments that the caller passes when calling the class. Unlike
__init __() , __new__() receives a first argument that is the class to be created rather than the newly-created
instance.

This is important: the default __new__() method (inherited from the object type) can be used to create
immutable object instances. Most o f the time you use this when extending immutable built- in types like
numbers and strings, since it would not be possible to change them in the __init __() method. In our
example, we'll create ust r, an extension o f the basic st r type that returns a string object that always has
upper-case versions o f any letters it may contain. Create the Pyt ho n3_Lesso n09 pro ject and assign it to
the Pyt ho n3_Lesso ns working set. Then, in the Pyt ho n3_Lesso n09/src fo lder, create newmagic.py as
shown:

CODE TO TYPE: newmagic.py

"""
Python classes with magic methods
"""

class ustr(str):
 "An upper case string object."
 def __new__(cls, arg):
 arg = str(arg)
 return str.__new__(cls, arg.upper())

Before we continue, let's look closely at this class.

OBSERVE: The ustr Class

class ustr(str):
 "An upper case string object."
 def __new__(cls, arg):
 arg = str(arg)
 return str.__new__(cls, arg.upper())

This example defines the class ust r as a subclass o f the built- in st r type used to represent Unicode strings.
Because Python's type names are lower-case, we break from the tradition o f naming a class in MixedCase,
and use a lower-case class name. The class defines a __new__() method that accepts cls and arg
arguments.

The cls parameter is the actual class that was called—this is different from the self argument passed to o ther
methods, which represents the instantiated object. Like self, the cls argument is provided automatically by the
interpreter. The whole purpose o f the __new__() method is to create and return the new object: this method is
directly responsible for instantiation!

The arg parameter is the argument provided to the class when it is called. The value o f arg is converted into a
string, and the last statement returns a new string. It does so, however, by calling the built- in string type's
__new__() method explicitly, asking it (with the first argument) to return an object o f the correct type. The
second argument to st r.__new__() provides the value for the string, and upper case is guaranteed by calling
its .upper() method.

The call to st r.__new__() is analogous to an explicit call on a class method giving an instance as the first
argument. The call to st r.__new__() returns a ust r object, because the first argument to __new__() specifies
the return type required. Test the class at the interactive conso le:

CODE TO TYPE: Test your ustr class at the interactive prompt

>>> from newmagic import *
>>> s = ustr("Steve Holden")
>>> s
'STEVE HOLDEN'
>>> type(s)
<class 'newmagic.ustr'>
>>> s.lower()
'steve holden'
>>> len(s)
12
>>> s.size = 12
>>> s.size
12
>>> ss = "A regular string"
>>> ss.size = 16
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'str' object has no attribute 'size'
>>>

You can see that instances o f the ust r class behave almost the same as instances o f st r, except that they
must be created with an explicit call to the class. There is also the difference that you can set new attributes on
ust r instances, but you cannot do that with the built- in type.

Representing objects as strings: __str__()

The built- in st r() seems to be a function, but strictly speaking, it is actually a built- in type that can be used like
a function. When you call it with a single argument, it tries to return a string representation o f the argument by
calling the argument's __st r__() method. The print () built- in function does the same thing.

The return value o f __st r__() must be a string object. In our example below, the Perso n class is a normal
class and the NamedPerso n class provides a more attractive print statement. Create st rmagic.py as
shown:

CODE TO TYPE: strmagic.py

"""
Demonstrate string representations using inheritance
"""
class Person:
 "Represents a person"
 def __init__(self, name):
 self.name = name

class NamedPerson(Person):
 "Represents a person using their name"
 def __str__(self):
 return self.name

The difference between the two classes is that NamedPerso n has an __st r__() method, which Perso n
does not. You can see the difference quite easily in an interactive interpreter session.

CODE TO TYPE: Test your objects in the interactive interpreter

>>> from strmagic import *
>>> p1 = Person("Danny Greenfeld")
>>> p1
<strmagic.Person object at 0x01E1D710>
>>> print(p1)
<strmagic.Person object at 0x01E1D710>
>>> p2 = NamedPerson("Danny Greenfeld")
>>> p2
<strmagic.NamedPerson object at 0x01E1D850>
>>> print(p2)
Danny Greenfeld
>>>

The string returned by __st r__() is supposed to be an "informal" representation o f the object, which can be
used to convey its principal characteristics without necessarily allowing you to reproduce the object exactly.
For the latter purpose, Python expects your objects to provide another magic method, __repr__() .

__repr__()

The __repr__() method o f object o is called by repr(o) . The built- in function repr() is supposed to represent
the "o fficial" string representation o f an object. Ideally, this representation should look like a valid Python
expression which, when evaluated, produces the object being represented. Its primary use is in debugging or
logging, and is best not revealed to users. The information should be as rich as possible.

The st r() representation o f a container object such as a list o r a tuple also represents the contained objects
using their repr() representation. Containers themselves generally use the same representation for both
st r() and repr() , and this is the easiest way to ensure that their representations are meaningful.

To determine a little more about the relationship between the two representational methods, we'll create four
different classes that have different combinations o f those methods. You can then see how they interact with
the interactive interpreter and the print () function. (Don't fo rget, if you have o ther questions about this, the
interactive interpreter is the best way to answer those questions). Create reprmagic.py as shown:

CODE TO TYPE: reprmagic.py

"""
Demonstrate differences between __str__() and __repr__().
"""

class neither:
 pass

class stronly:
 def __str__(self):
 return "STR"

class repronly:
 def __repr__(self):
 return "REPR"

class both(stronly, repronly):
 pass

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 def __str__(self):
 return self.name
 def __repr__(self):
 return "Person({0.name!r}, {0.age!r})".format(self)

The neit her class simply inherits all its behavior from Python's fundamental object. The st ro nly class, as its
name implies, only implements __st r__() , while the repro nly class only implements __repr__() . The bo t h
class uses multiple inheritance to implement both methods. Finally, the Perso n class represents its
instances as a string by using the instance's name and provides a full representation that could actually be
pasted into a Python program as code. Note that it uses the !r fo rmat effector to include the formal
representations o f the instance's name and age. This avo ids any tricky problems o f representing strings with
characters inside them that require escapes and so on.

CODE TO TYPE: Enter the fo llowing code in an interactive interpreter session

>>> from reprmagic import *
>>> o1 = neither()
>>> print(str(o1), repr(o1))
<reprmagic.neither object at 0x01E1DAD0> <reprmagic.neither object at 0x01E1DAD0
>
>>> o2 = stronly()
>>> print(str(o2), repr(o2))
STR <reprmagic.stronly object at 0x01E1DBB0>
>>> o3 = repronly()
>>> print(str(o3), repr(o3))
REPR REPR
>>> o4 = both()
>>> print(str(o4), repr(o4))
STR REPR
>>> o1
<reprmagic.neither object at 0x01E1DAD0>
>>> o2
<reprmagic.stronly object at 0x01E1DBB0>
>>> o3
REPR
>>> o4
REPR
>>> steve = Person("Steve Holden", 21)
>>> print(str(steve), repr(steve))
Steve Holden Person('Steve Holden', 21)
>>> tim = Person('Tim O\'Reilly', 55)
>>> tim
Person("Tim O'Reilly", 55)
>>>

In the lines where we asked the interactive interpreter directly fo r the objects o1 through o4, it presented the
repr() o f the objects. Remember that this behavior is specific to the interpreter's interactive mode: if you write
an expression on its own in a Python module that is run as a main program, the interpreter simply calculates
the value o f the expression. Also note, from the example o f the repro nly() object bound to o 3, that if an
object has a __repr__() method but no __st r__() method, the __repr__() method is used for both
purposes.

Attribute Access
Attributes are where objects store data. Python lets you override the interpreter's normal attribute-handling behaviors
by providing further special methods: __get at t r__() , __set at t r__() , and __delat t r__() are used to access, set, and
delete attributes respectively. These methods should be defined with great care: it is quite possible to end up with
completely unusable objects if you are not sufficiently careful, o r (even worse) objects that seem to do what you want
them to but under certain circumstances don't behave as planned. As with __st r__() and __repr__() , there are
functions that you can use to access an object's special methods for attribute access, summarized here:

Funct io n
Call Descript io n

hasattr(o ,
name)

Returns T rue if object o has an attribute whose name is the same as the name argument, (which must
be a string), o therwise returns False .

setattr(o ,
name,
value)

Sets object o 's name attribute to value (provided that the object allows it). Equivalent to
o .__set at t r__(name, value) .

delattr(o ,
name)

If object o has an attribute called name , deletes the attribute. If no such attribute exists, raises an
AttributeError exception. Equivalent to o .__delat t r__(name) .

getattr(o ,
name[,
default])

If object o has an attribute whose name is the same as the call's name argument (which should be a
string), returns its value. If no such attribute exists, returns the default (if it is provided in the call); if no
default is provided, raises an AttributeError exception.

__setattr__()

Normally, when you set an attribute on an object, the name is used as a key and the value is stored in the
object's __dict__, a special attribute used specifically to store instance variables. This method is called each
and every time an attribute is set. In the code sample below, we use this feature to print a message each time
an attribute is set. Create at t rmagic.py in your Pyt ho n3_Lesso n09/src fo lder as shown:

CODE TO TYPE: attrmagic.py

"""
Demonstrate magic methods for attribute access.
"""
class AttrMixin:
 "Displays a message when an instance's attributes are set."
 def __setattr__(self, key, value):
 print("ATTR: setting attribute {0!r} to {1!r}".format(key, value))
 self.__dict__[key] = value

class Person(AttrMixin):
 "Represents a person"
 def __init__(self, name):
 self.name = name

Note
In object-oriented languages, a mixin class is a class that contains a certain behavior to be
inherited by subclasses to add specific behaviors. A class can inherit some or all o f its
behaviors from one or more mixins. Ending the name with "Mixin" is not required; it's simply a
flag so that your behavior-focused classes are clearly delineated.

Here the Perso n class inherits its attribute setting behavior from the AttrMixin class. The
At t rMixin.__set at t r__() method does here make the definite assumption that the classes it will be mixed in
with are storing all attributes using the standard instance __dict__ mechanism. When you start to see the
layers o f behavior that Python allows you to add to the process o f attribute assignment, you will realize that
this may be a dangerous assumption, but certainly it ho lds for the Perso n class.

As usual, you can verify the actions o f this code in the interactive interpreter. Note that the setting o f an
attribute is reported whether it is set inside an object method or in external code.

__getattr__()

Attribute retrieval works a little differently from attribute setting. When you try to access an attribute o f some
instance o, the interpreter looks in o .__dict__; if the attribute is not found there, it looks in the instance's class,
then in that class's superclass, and so on. Only if the attribute is not found does the interpreter then call the
instance's __getattr__() method with the name of the attribute. It is conventional fo r __get at t r__() to raise the
AttributeError exception when the attribute name provided is unacceptable for some reason.

CODE TO EDIT: attrmagic.py

"""
Demonstrate magic methods for attribute access.
"""
class AttrMixin:
 "Displays a message when an object's attributes are retrieved or set."

 def __setattr__(self, key, value):
 print("ATTR: setting attribute {0!r} to {1!r}".format(key, value))
 self.__dict__[key] = value

 def __getattr__(self, key):
 print("ATTR: getting attribute {0!r}".format(key))
 self.__setattr__(key, "No value")
 return "No value"

class Person(AttrMixin):
 "Represents a person"
 def __init__(self, name):
 self.name = name

Start an entirely new interactive conso le session in which to test the updated module—remember, the code o f
a module is executed only on the first import. Trying to import the updated module will therefore fail, and you
will no t see the expected behaviors.

Note

There are ways to trigger re-import o f a module without restarting the interactive interpreter. The
Ellipse teaching system surrounds your interactive conso le and provides a subtly different
environment from the classic interactive conso le, and since Ellipse makes it so easy, we have
you start new interactive sessions. This ensures that you are starting with a pristine
environment, to ensure that you get the same results we observed and recorded during course
production.

CODE TO TYPE: Enter the fo llowing code in an interactive conso le session

>>> from attrmagic import *
>>> steve = Person("Steve Holden")
ATTR: setting attribute 'name' to 'Steve Holden'
>>> steve.newattr
ATTR: getting attribute 'newattr'
ATTR: setting attribute 'newattr' to 'No value'
'No value'
>>> steve.newattr
'No value'
>>> steve.name
'Steve Holden'
>>>

Observe that while the first access to the newat t r attribute results in a call to __get at t r__() , the second one
does not. This is because the first call actually sets a value in the object's __dict__ and so the second attempt
finds the attribute using the standard methods.

Note
The interpreter uses a slightly different mechanism to access the special attributes whose
names begin and end in double underscores. This is done to enforce certain standard object
behaviors, which o therwise could be overridden.

__delattr__()

This method is called whenever an attribute is deleted from an object. Again, we'll publish a message to show
what can be done with this method.

CODE TO EDIT: attrmagic.py

"""
Demonstrate magic methods for attribute access.
"""
class AttrMixin:
 "Displays a message when an object's attributes are retrieved, deleted, or s
et."

 def __setattr__(self, key, value):
 print("ATTR: setting attribute {0!r} to {1!r}".format(key, value))
 self.__dict__[key] = value

 def __getattr__(self, key):
 print("ATTR: getting attribute {0!r}".format(key))
 self.__setattr__(key, "No value")
 return "No value"

 def __delattr__(self, key):
 print("ATTR: Deleting key {0!r}".format(key))
 object.__delattr__(self, key)

class Person(AttrMixin):
 "Represents a person"
 def __init__(self, name):
 self.name = name

Note that your version o f __delattr__ simply delegates the deletion to Python's standard o bject behavior.
This allows you to ignore whatever complexities may be required in deletion. Again, test your modifications:

CODE TO TYPE: Test your modifications in a new interactive interpreter conso le

>>> from attrmagic import *
>>> student = Person("your name")
ATTR: setting attribute 'name' to 'your name'
>>> student.age
ATTR: getting attribute 'age'
ATTR: setting attribute 'age' to 'No value'
'No value'
>>> student.age = 21
ATTR: setting attribute 'age' to 21
>>> student.age
21
>>> del student.age
ATTR: Deleting key 'age'
>>> student.age
ATTR: getting attribute 'age'
ATTR: setting attribute 'age' to 'No value'
'No value'
>>> del student.__delattr__
ATTR: Deleting key '__delattr__'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "attrmagic.py", line 18, in __delattr__
 object.__delattr__(self, key)
AttributeError: __delattr__
>>>

You can see that the attempt to delete __delattr__ fails, because the special attributes are not discovered in
the same way as the regular ones. This avo ids the deletion o f standard behaviors that are required to be true
of all objects.

Emulating Functions: the __call__() Method

Implementing the __call__() method allows you to make your instances callable, just as though they were regular
functions. Create callmagic.py in your Pyt ho n3_Lesso n09/src fo lder as shown:

CODE TO TYPE: callmagic.py

"""
Demonstrate how to make instances callable.
"""

class funclike:
 def __call__(self, *args, **kwargs):
 print("Args are:", args)
 print("Kwargs are:", kwargs)

f = funclike()
f(1, 2, 3, this="one", that="the other")

 Save and run it:

OBSERVE: Result o f running callmagic.py

Args are: (1, 2, 3)
Kwargs are: {'this': 'one', 'that': 'the other'}

In this chapter, we've started to investigate the relationship between the interpreter and the objects that we create. This
explanation should make you more aware o f what is go ing on "under the hood," and give you some idea o f the wider
possibilities for using Python to so lve your problems. Most o f the time the standard interpreter behavior is perfectly
acceptable. For those occasions when it is not, you now have some idea how to modify it.

There are o ther special methods that we have not covered yet, but fo r now you have done quite enough. Take a break,
and then move on to the next lesson, where you will be learning how to make your objects' behaviors even more
complex while retaining the essential simplicity o f Python.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Properties
Lesson Objectives

When you complete this lesson, you will be able to :

put computations behind attributes.
use properties.
create a property with a Decorator.
construct a teacher class using properties.
delete attributes using properties.

A property is a special sort o f class attribute. You access it like a standard attribute, but "under the hood," the interpreter runs
methods ("getters" to access the data and "setters" to store new data) to produce the required results. The data-like syntax is
easier to read and write than lo ts o f method calls, yet the interposition o f the method calls allows for data validation, active
updating, and/or read-only attributes. Before looking in detail at properties, you should understand some of the reasons they
are desirable.

Putting Computations Behind Attributes
In the last lesson, we learned about several special methods that let us access and contro l attributes—__get at t r__() ,
__set at t r__() , and __delat t r__() . You can use these techniques to contro l the value o f various attributes—but
remember that the __get at t r__() method will only be used if normal attribute access fails to find the named attribute.
Therefore, you'll want to store the values o f "managed" attributes (values that must be processed on retrieval) in a
special directory, to ensure that normal attribute access does not find them. The fo llowing code sample demonstrates
contro l o f specific attributes via the __get at t r__() method.

Suppose you want to keep a first name, last name, age, list o f classes, and a grade for teachers in a schoo l. Further
suppose that you were prepared to allow some laxity in data entry, but that you always wanted to return the names
properly capitalized, the age as an integer, the list o f classes in sorted order and the grade as a string (though it should
be entered as a number). This kind o f management is precisely what the attribute-handling special methods were
designed for.

As is usually the case, there must be test code, which fo llows first in the time-honored tradition o f TDD—Test-Driven
Development. Create a Pyt ho n3_Lesso n10 pro ject and assign it to the Pyt ho n3_Lesso ns working set. Then,
create t est _t eacher.py in your Pyt ho n3_Lesso n10/src fo lder as shown:

test_teacher.py

import unittest
from teacher import Teacher

class TestTeacher(unittest.TestCase):

 def setUp(self):
 self.teacher = Teacher("steve",
 "holden",
 "63",
 ["Python 3-1","Python 3-2","Python 3-3"],
 5)

 def test_get(self):
 self.assertEqual(self.teacher.first_name, "Steve")
 self.assertEqual(self.teacher.last_name, "Holden")
 self.assertEqual(self.teacher.age, 63)
 self.assertEqual(self.teacher.classes, ["Python 3-1","Python 3-2","Python 3-3"]
)
 self.assertEqual(self.teacher.grade, "Fifth")
 self.teacher.description = "curmudgeon"
 self.assertEqual(self.teacher.description, "curmudgeon")

if __name__ == "__main__":
 unittest.main()

We'll start out with a simplistic implementation o f the T eacher class that simply stores the attributes as regular values
and relies on the standard Python mechanism for attribute retrieval. Since no transformation is taking place on the
data, it should not be too surprising if this first naive implementation fails. Create t eacher.py in the same fo lder as
shown:

CODE TO TYPE: teacher.py

class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.classes = classes
 self.grade = grade

 Save both files and run t est _t eacher.py. Sure enough, you see a failure:

OBSERVE: The simple implementation fails

F
==
FAIL: test_get (__main__.TestTeacher)
--
Traceback (most recent call last):
 File "C:\Users\sholden\workspace\Python3_Lesson8\src\test_teacher.py", line 14, in te
st_get
 self.assertEqual(self.teacher.first_name, "Steve")
AssertionError: 'steve' != 'Steve'
- steve
? ^
+ Steve
? ^

--
Ran 1 test in 0.001s

FAILED (failures=1)

One of the beauties o f Python, however, is that it is almost infinitely flexible, and so it is quite possible to change this
implementation to do what is required. Although it may seem contradictory, the first thing you need to change is the
way the object stores attributes—until you do that, the attribute assignments will always result in their being available
without invoking __get at t r__() .

CODE TO EDIT: teacher.py

"""
Demonstrate simple attribute management
"""
class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self.__dict__['_attrs'] = {}
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.classes = classes
 self.grade = grade

 def __setattr__(self, name, value):
 self._attrs[name] = value

 def __getattr__(self, name):
 if name not in self._attrs:
 raise AttributeError("Teacher has no attribute {0!r}".format(name))
 value = self._attrs[name]
 if name in ("first_name", "last_name"):
 return value.capitalize()
 elif name == "age":
 return int(value)
 elif name == "classes":
 return sorted(value)
 elif name == "grade":
 return self.grades[value]
 else:
 return value

Here the __init __ method creates a regular attribute called _attrs, a dict in which the attribute values are kept, by
making a direct entry in the instance's __dict__. It uses this technique to avo id a direct assignment, which would invoke
the instance's __set at t r__() method. That method attempts to store the attribute value against its name self ._at t rs,
which would need to be looked up by __get at t r__() . This in turn would try and find the name "_attrs" in the
self ._at t rs dict, which would again invoke __get at t r__() , and so on. This infinite regression would only terminate

when the interpreter ran out o f stack, the area o f memory where it stores partially-completed function namespaces.

Note
The convention in Python is that attributes whose names begin with "_" are internal to the implementation
of a class. Because o f that, such attributes don't appear in help but do appear in the output from dir() .
While there is nothing to stop you from accessing these attributes directly, the naming convention acts as
a flag that outside interference is likely to break the internal logic.

Now, all attributes are stored in the _at t rs dict, and the __get at t r__() method uses the name of the retrieved attribute
to decide what processing needs to be performed on the stored value in order to meet specifications. Save both files
and run t est _t eacher.py. Happily, the updated object should now pass its tests.

OBSERVE: All tests now pass

.
--
Ran 1 test in 0.000s

OK

This may not look so bad at a glance, but maintenance for this code is challenging. For example, if you wanted to
create a subclass that had different behavior on just the "age" attribute, you would have to rewrite the __get at t r__()
method for the child class. Then if the parent had a bug, you might have to rewrite both the parent and child. As you
might imagine, this quickly leads to fragile code, and tends to encourage code duplication (which is normally held to be
a bad thing).

For example, suppose you want to create a Teacher subclass that supports gender differences. If male, the Teacher
subclass returns "Mr." at the start o f "first_name." If female, it returns "Ms." The current design forces you to completely
rewrite the __get at t r__() method, because it is "monolithic"—all the attributes are dealt with in the same method, so
changing the response for just one attribute is difficult o r impossible.

An alternative is to use properties. Properties let you assign computations to accesses invo lving a specific attribute, so
if you inherit the class, you can easily extend it without having to dance around the subtleties o f __get at t r__() . This
allows you to easily change one small method without worrying about tangling with a multitude o f unrelated attributes.

A Teacher Class Constructed of Properties

A property in Python is a data component to which access is mediated by methods, even though the user o f
the property can treat it as a simple data attribute. This allows you to hide a layer o f logic underneath attribute-
style access to an object's data.

Note

If you know in advance that the logic is required, there is something to recommend simply
writing the methods and documenting them as the necessary so lution to the problem.
Properties excel when the logic needs to be introduced later, after you have already written code
that treats the data as simple attributes. Under those circumstances, properties allow you to
insert a layer o f logic without changing the code that currently uses the attributes.

Like a lo t o f o ther programming descriptions, this sounds a lo t more complex than it is. And since a bit o f
code o ften helps to clarify new concepts, let's construct the teacher class with properties using the techniques
as we've described:

CODE TO EDIT: teacher.py

class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self.__dict__['_attrs'] = {}
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.classes = classes
 self.grade = grade
 self._first_name = first_name # internal data attributes are set
 self._last_name = last_name
 self._age = age
 self._classes = classes
 self._grade = grade

 def __setattr__(self, name, value):
 self._attrs[name] = value

 def __getattr__(self, name):
 if name not in self._attrs:
 raise AttributeError("Teacher has no attribute {0!r}".format(name))
 value = self._attrs[name]
 if name in ("first_name", "last_name"):
 return value.capitalize()
 elif name == "age":
 return int(value)
 elif name == "classes":
 return sorted(value)
 elif name == "grade":
 return self.grades[value]
 else:
 return value

 def first_name(self):
 return self._first_name.capitalize()
 first_name = property(first_name)

 def last_name(self):
 return self._last_name.capitalize()
 last_name = property(last_name)

 def age(self):
 return int(self._age)
 age = property(age)

 def classes(self):
 return sorted(self._classes)
 classes = property(classes)

 def grade(self):
 return self.grades[self._grade]
 grade = property(grade)

 Save both files and run t est _t eacher.py.

running test_teacher.py with teacher.py changed to use properties

.
--
Ran 1 test in 0.000s

OK

Thanks to the magic o f unit t est , this demonstration o f a new programming technique appears to be a valid
refactoring. At least you have passed a definite "smoke test" by passing the current tests. Let's review the
changes in the code o f teacher.py:

OBSERVE: teacher.py __init__() method

def __init__(self, first_name, last_name, age, classes, grade):
 self._first_name = first_name # internal data attributes are set
 self._last_name = last_name
 self._age = age
 self._classes = classes
 self._grade = grade

In the __init__() method, we set f irst _name via self ._f irst _name . This is done to provide a data attribute
on which to base the f irst _name property (if it had the same name as the property, the assignment would
overwrite the method!). We made similar changes for the o ther managed attributes.

OBSERVE: New Methods in teacher.py

def first_name(self):
 return self._first_name.capitalize()
first_name = property(first_name)

def last_name(self):
 return self._last_name.capitalize()
last_name = property(last_name)

def age(self):
 return int(self._age)
age = property(age)

def classes(self):
 return sorted(self._classes)
classes = property(classes)

def grade(self):
 return self.grades[self._grade]
grade = property(grade)

The f irst _name() method accesses the _f irst _name data attribute, and processes it before returning it as
the value o f the attribute. We provide similar methods for the o ther managed attributes.

The f irst _name() method becomes a property when it is replaced inside the class body by the result o f
calling the built- in pro pert y() function with the method as an argument. We changed the o ther managed
attributes likewise into properties.

You can see that if you wanted to create a Teacher subclass where the first_name attribute was modified by a
gender attribute, you would only need to redefine the first_name property in your subclass—the o ther property
definitions would continue to stand. This is in distinction to the preceding class, whose "monolithic" (all in
one piece) __get at t r__() makes it hard to separate one attribute from another.

Decorator Syntax

Because defining a function or method and then applying a function such as pro pert y() to it is a common
pattern, Python has a special shorthand for it. The syntax we used above was:

Standard Property Creation

def method(self, ...):
 """Method body."""
 ...
method = property(method)

This application o f a function to another function is called decoration, and the applied function (in this case
pro pert y) is called a decorator. If the method is lengthy, the final reassignment to the method name is easy

to miss. Consequently you can also use the fo llowing syntax, which is merely a shortcut fo r the standard
mechanism above:

Property Creation with a Decorator

@property
def method(self, ...):
 """Method body."""
 ...

You should find that the code works exactly the same using this syntax as it does using the standard property
creation. Try it, just to be sure.

CODE TO EDIT: teacher.py

class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self._first_name = first_name # internal data attributes are set
 self._last_name = last_name
 self._age = age
 self._classes = classes
 self._grade = grade

 @property
 def first_name(self):
 return self._first_name.capitalize()
 first_name = property(first_name)

 @property
 def last_name(self):
 return self._last_name.capitalize()
 last_name = property(last_name)

 @property
 def age(self):
 return int(self._age)
 age = property(age)

 @property
 def classes(self):
 return sorted(self._classes)
 classes = property(classes)

 @property
 def grade(self):
 return self.grades[self._grade]
 grade = property(grade)

As always, the first thing that you should do after changing your code is... run your tests! These two ways to
apply properties to methods are entirely equivalent, so your tests should continue to pass.

Settable Properties

Note that while the first implementation correctly allowed you to reassign the managed attributes through use
of the __set at t r__() method, this one does not. Neither can you delete managed attributes (which was also
an issue with the earlier code, though we did not mention it at the time. You can verify this using an interactive
interpreter session:

CODE TO TYPE: Verify

>>> from teacher import *
>>> t = Teacher("steve", "holden", "63",
... ["Python 3-1","Python 3-2","Python 3-3"], 5)
>>>
>>> t.first_name
'Steve'
>>> t.first_name = "joe"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>> del t.first_name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't delete attribute
>>>

So at the moment you can neither assign to nor delete the managed attributes. You will be changing the tests
to include these features shortly, to provide failing tests that new functionality in your t eacher module can
turn into success.

The built- in pro pert y function is actually rather more complicated than you have so far seen. Its full signature
(the pattern o f arguments it can be called with) is as fo llows.

property function signature

property(fget=None, fset=None, fdel=None, doc=None)

f get is the getter function, f set is the setter function, f del is the deleter function and do c is the
documentation. So the reason that the properties you have defined so far cannot be set is that the decorator
syntax only passes a single argument to the call of property(). This single positional argument is associated
(positionally) with the f get parameter, so you can get the attribute value, but there is no way to set or delete
the attributes (and no documentation!)

Setting Values via Properties

Properties do more than just provide the ability to compute values during retrieval o f attributes. They also let
you perform calculations while setting values. This is useful during validation o f incoming data. For example,
what if you wanted to confirm that the age attribute was passed a valid integer rather than converting it to an
integer when it was accessed? Using standard techniques, you would declare a second method and pass it
as the second argument to the call o f pro pert y() . First, o f course, we need to add a new test to the test suite
that fails. This should be fairly easy with the experience we had in the interactive interpreter session above.
Since we want the values we can assign to age to be limited to integers, we'll also add a test to make sure
that any o ther type o f data raises a ValueError exception.

CODE TO EDIT: test_teacher.py

import unittest
from teacher import Teacher

class TestTeacher(unittest.TestCase):

 def setUp(self):
 self.teacher = Teacher("steve",
 "holden",
 "63",
 ["Python 3-1","Python 3-2","Python 3-3"],
 5)

 def test_get(self):
 self.assertEqual(self.teacher.first_name, "Steve")
 self.assertEqual(self.teacher.last_name, "Holden")
 self.assertEqual(self.teacher.age, 63)
 self.assertEqual(self.teacher.classes, ["Python 3-1","Python 3-2","Pytho
n 3-3"])
 self.assertEqual(self.teacher.grade, "Fifth")

 self.teacher.description = "curmudgeon"
 self.assertEqual(self.teacher.description, "curmudgeon")

 def test_set(self):
 self.teacher.age = "21"
 self.assertEqual(self.teacher._age, 21)
 self.assertEqual(self.teacher.age, 21)
 self.assertRaises(ValueError, self.setAgeWrong)

 def setAgeWrong(self):
 self.teacher.age = "twentyone"

if __name__ == "__main__":
 unittest.main()

Note that unit t est .T est Case.assert Raises expects a function and an exception as arguments. It calls the
function, and flags a failure if the call does not raise the specified exception type. After these modifications,
you would expect your new test to fail, and sure enough it does (before it even gets around to testing to see
whether the set AgeWro ng method raises the required exception).

Tests fail as expected before you update your teacher class

.E
==
ERROR: test_set (__main__.TestTeacher)
--
Traceback (most recent call last):
 File "C:\Users\sholden\workspace\Python3_Lesson8\src\test_teacher2.py", line 2
3, in test_set
 self.teacher.age = "21"
AttributeError: can't set attribute

--
Ran 2 tests in 0.002s

FAILED (errors=1)

Having updated the tests to make it obvious that an upgrade is required to the teacher module, we need to
add the necessary new code. We'll start by using the standard method to give the age attribute both a getter
and a setter.

CODE TO EDIT: teacher.py

class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self._first_name = first_name # internal data attributes are set
 self._last_name = last_name
 self._age = age
 self.age = age
 self._classes = classes
 self._grade = grade

 @property
 def first_name(self):
 return self._first_name.capitalize()

 @property
 def last_name(self):
 return self._last_name.capitalize()

 @property
 def age(self):
 return int(self._age)

 def getage(self):
 return self._age

 def setage(self, value):
 self._age = int(value)

 age = property(getage, setage, doc="Teacher's age: must be convertible to in
teger")

 @property
 def classes(self):
 return sorted(self._classes)

 @property
 def grade(self):
 return self.grades[self._grade]

Note
You will see that the __init __() method is now relying on the property to establish the initial
value o f the managed attribute rather than directly assigning to the underlying data member. This
is generally a good thing, since if the setter method performs validations these will also be
applied to the initial value passed in as an argument to __init __() .

Now the age attribute has both a getter and a setter, you should see that it passes all tests with flying co lors.

OBSERVE: All tests pass once teacher.py is modified

..
--
Ran 2 tests in 0.000s

OK

You may wonder whether it is possible to achieve the same ends using decorators, and the answer is yes.
This is because a read-only property (which, you will remember, can be created with the use o f a decorator
because it only requires a single argument) has a set t er() method that can be used to decorate a... setter
method! This means that you can create the age property as before, with a decorator, and then decorate the
setter() method with a method o f the getter() property that you just created.

This may sound a little confusing, but once you have typed the code, it should seem a little more natural. The

age() property goes back to its original code, and the age setter is decorated by one o f the getter property's
methods (the getter has been defined specifically to provide these extra methods as a convenience).

CODE TO EDIT: teacher.py

class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self._first_name = first_name # internal data attributes are set
 self._last_name = last_name
 self.age = age
 self._classes = classes
 self._grade = grade

 @property
 def first_name(self):
 return self._first_name.capitalize()

 @property
 def last_name(self):
 return self._last_name.capitalize()

 def getage(self):
 @property
 def age(self):
 return self._age

 def setage(self, value):
 @age.setter
 def age(self, value):
 self._age = int(value)

 age = property(getage, setage, doc="Teacher's age: must be convertible to in
teger")

 @property
 def classes(self):
 return sorted(self._classes)

 @property
 def grade(self):
 return self.grades[self._grade]

Note The second age definition might be flagged as a "duplicate signature" in Eclipse; you can safely
ignore this fo r now.

You should, o f course, confirm as usual that your tests continue to succeed.

Deleting Attributes Using Properties

Deleting attributes works in nearly the same fashion as setting attributes. Create yet another function with the
same name as your attribute and place a @<my-at t ribut e-name>.delet er. In our next example, removing
a grade means creating a grade function, placing a @grade.delet er above it, and then in the logic, adding a
year to the age o f the teacher.

First, let's write a test fo r our expected behavior:

CODE TO EDIT: test_teacher.py

import unittest
from teacher import Teacher

class TestTeacher(unittest.TestCase):

 def setUp(self):
 self.teacher = Teacher("steve",
 "holden",
 "63",
 ["Python 3-1","Python 3-2","Python 3-3"],
 5)

 def test_get(self):
 self.assertEqual(self.teacher.first_name, "Steve")
 self.assertEqual(self.teacher.last_name, "Holden")
 self.assertEqual(self.teacher.age, 63)
 self.assertEqual(self.teacher.classes, ["Python 3-1","Python 3-2","Pytho
n 3-3"])
 self.assertEqual(self.teacher.grade, "Fifth")

 self.teacher.description = "curmudgeon"
 self.assertEqual(self.teacher.description, "curmudgeon")

 def test_set(self):
 self.teacher.age = "21"
 self.assertEqual(self.teacher._age, 21)
 self.assertEqual(self.teacher.age, 21)
 self.assertRaises(ValueError, self.setAgeWrong)

 def setAgeWrong(self):
 self.teacher.age = "twentyone"

 def test_delete(self):
 del self.teacher.grade
 self.assertEqual(self.teacher.age, 64)
 self.assertRaises(AttributeError, self.accessGrade)

 def accessGrade(self):
 return self.teacher.grade

if __name__ == "__main__":
 unittest.main()

As usual, a newly added test should fail. You should verify this, as usual, by running the updated test suite.

OBSERVE: The deletion tests fail, as expected

E..
==
ERROR: test_delete (__main__.TestTeacher)
--
Traceback (most recent call last):
 File "C:\Users\sholden\workspace\Python3_Lesson8\src\test_teacher3.py", line 3
2, in test_delete
 del self.teacher.grade
AttributeError: can't delete attribute

--
Ran 3 tests in 0.001s

FAILED (errors=1)

Now, modify the teacher.py code to add the deleter method:

CODE TO EDIT: teacher.py

class Teacher(object):

 grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

 def __init__(self, first_name, last_name, age, classes, grade):
 self._first_name = first_name
 self._last_name = last_name
 self._age = age
 self._classes = classes
 self._grade = grade

 @property
 def first_name(self):
 return self._first_name.capitalize()

 @property
 def last_name(self):
 return self._last_name.capitalize()

 @property
 def age(self):
 return int(self._age)

 @age.setter
 def age(self, value):
 self._age = int(value)

 @property
 def classes(self):
 return sorted(self._classes)

 @property
 def grade(self):
 return self.grades[self._grade]

 @grade.setter
 def grade(self, value):
 self.grades[value] # throw error if value != a key
 self._grade = value

 @grade.deleter
 def grade(self):
 self.age += 1
 del self._grade

Note
The updated "age" property now applies the int() built- in to its argument. This allows users to
specify the age as a character string without the code breaking. Whether this is a good idea or
not, and whether the setter should even accept strings or not, is an interesting question—one
that we will ignore for now.

 Save it and run the test. All tests should pass immediately.

OBSERVE: The newly-added deleter tests now pass

...
--
Ran 3 tests in 0.000s

OK

So you now understand how you can put logic behind all types o f attribute access. Beware o f using this
technique when it isn't really necessary: remember, if you know method calls are go ing to be required from
the outset, it is much better to build them into the API fo r your objects from the start. If the logic needs to be

retro fitted, however, properties are a really useful way o f fitting it.

Properties allow you to iso late each piece o f logic in its own method, making it easy to extend and reuse as a parent
superclass or to implement in child classes. They are o ften used for validation, logging, fo rmatting, and a myriad o f o ther tasks.
The only possible downside to properties is that they require a little bit o f extra work, but the extra functionality they provide is
generally well worth that effort.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

A First Look at Logging
Lesson Objectives

When you complete this lesson, you will be able to :

set up a basic logger.
use o ther logging functions.
access o ther logging levels.
get tests to use different logging levels.
perform log formatting.

When you want to save data about a program's operation (typically to record the actions o f your program, or particular error
conditions that have occurred) you have a number o f cho ices. Informal results can be printed to the standard output stream, but
the only person who will see this output is the user, and once the window is closed the output is lost (there is also a standard
error stream, with the same disadvantages). You could also write information to a file. This can work for a program, but it is
difficult to use as part o f a module that might be used in many different circumstances: ideally the program will log all output to
the same destination, but how can you make an unrelated co llection o f modules do that?

Furthermore, it would be nice to be able to store information during debugging, and then be able to suppress the debug output
when the program goes into production. Ideally, you'd like to do this without having to edit the code to remove or comment out
the debugging output statements, and the debug output would be cleanly separated from the program's normal output. Then the
stored output could form a long-term information stream that allows you to examine your program's performance over its entire
lifespan.

Finally and perhaps most importantly, you want to be able to share your code! What if you need to capture the progress and
mistakes o f o thers using your work? Yes, you could do this by writing user actions to a file, but then you run into the danger o f
making your code somewhat confusing—especially if your program relies on file output fo r real tasks such as saving important
files.

This is where logging comes to the rescue! This is not the process in which certain trees are cut down by a lumberjack, but
rather a process whereby data is stored over time in such a way as to be as unobtrusive to the operating software as possible.
Due to a certain lack o f imagination, however, the programming examples will invo lve lumberjacks in the best Monty Python
tradition.

Fortunately the standard library contains the so lution for all o f these issues in the logging module. It is easy to use and flexible
in operation. There's a lo t to learn!

Setting Up a Basic Logger
To set up a basic logger, you import the lo gging module, call its basicCo nf ig() utility function, and then start logging.
First, create a Pyt ho n3_Lesso n11 pro ject as usual and assign it to the Pyt ho n3_Lesso ns working set, so we have
a place to store the files. Then type the code shown below.

CODE TO TYPE: Create a log from the interactive conso le

>>> import logging
>>> logging.basicConfig(filename='V:/workspace/Python3_Lesson11/src/output.log',level=l
ogging.DEBUG)
>>> logging.debug('My first log entry!')

This creates a file in your Pyt ho n3_Lesso n11/src fo lder named o ut put .lo g. Let's take a look at the contents.

contents o f output.log

DEBUG:root:My first log entry!

This is pretty handy, but doesn't really showcase how useful logging is. So let's create a slightly more sophisticated
example representing lumberjacks cutting down trees. A Lumberjack starts with no tree. After you assign a Tree object
to the Lumberjack, he can chop it down, which turns it into a number o f boards (determined by the size o f the tree), and

then you remove the tree from the Lumberjack object.

The basic API fo r a Tree is pretty simple. You create it by calling T ree(s) where s is a size code—one of "S," "M," "L,"
"XL," or "XXL". Instances have a get _bo ards() method that you call to learn the number o f boards the tree can
produce (1 for a size "S" tree, 5 for a size "XXL"). Trees represent themselves as "Tree: Size S" or similar.

The Lumberjack is not that much more complicated in its initial implementation. Created by calling the class
Lumberjack() , each instance starts out with no tree. Once a tree is assigned it can be cut down and converted into
boards by calling the Lumberjack's cut _do wn_t ree() method. If this method is called when the Lumberjack has no
tree, a TypeError exception is raised.

As usual, we'll start by writing basic tests fo r the Tree and Lumberjack classes. We test the Trees in a number o f ways:
for each size o f tree, t est _lumber() verifies that the tree size returns the expected number o f boards. t est _st ring()
verifies that the Tree objects do represent themselves as required, and t est _co de() verifies that an exception is
raised when the class is called with an invalid size code. You test the lumberjack by creating a new one for each size
of tree, verifying there is initially no tree, assigning a tree, cutting it down and verifying that the Lumberjack no longer
has a tree and that the right number o f boards were produced. In your Pyt ho n3_Lesso n11/src fo lder, create
t est _f o rest ry.py as shown:

CODE TO TYPE: test_forestry.py

import unittest

from forestry import Lumberjack, Tree

sizes = (("S", 1), ("M", 2), ("L", 3), ("XL", 4), ("XXL", 5))

class TestTree(unittest.TestCase):

 def test_lumber(self):
 for code, boards in sizes:
 tree = Tree(code)
 self.assertEqual(boards, tree.get_boards())

 def test_string(self):
 tree = Tree("L")
 self.assertEqual(str(tree), "Tree: Size L")

 def test_exceptions(self):
 self.assertRaises(ValueError, Tree, "parrot")
 self.assertRaises(TypeError, Lumberjack().cut_down_tree)

class TestLumberjack(unittest.TestCase):

 def test_lumberjack(self):
 for code, boards in sizes:
 tree = Tree(code)
 graham = Lumberjack()
 self.assertIsNone(graham.tree)
 graham.tree = tree
 brds = graham.cut_down_tree()
 self.assertIsNone(graham.tree)
 self.assertEqual(boards, brds)

if __name__ == "__main__":
 unittest.main()

If you are getting the hang o f test-driven development, you're already thinking about what your Tree and Lumberjack
classes need to do to pass these tests, but you should start with the "simplest possible thing that can fail" first and
verify that the tests do actually fail o r give errors.

In your Pyt ho n3_Lesso n11/src fo lder, create f o rest ry.py as shown

CODE TO TYPE: forestry.py

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize."
 self.size = size

 def get_boards(self):
 "Return number of boards equivalent."
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 pass

 When you run the test with this vestigial implementation, you will no t surprisingly find that the tests don't all pass (but
note that some do, because Tree correctly implements both get _bo ards() and __st r__()).

OBSERVE: Not all tests pass—that's OK!

EF..
==
ERROR: test_lumberjack (__main__.TestLumberjack)
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson11\src\test_forestry.py", line 28, in test_lumberjac
k
 self.assertIsNone(graham.tree)
AttributeError: 'Lumberjack' object has no attribute 'tree'

==
FAIL: test_exceptions (__main__.TestTree)
--
Traceback (most recent call last):
 File "V:\workspace\Python3_Lesson11\src\test_forestry.py", line 19, in test_exception
s
 self.assertRaises(ValueError, Tree, "parrot")
AssertionError: ValueError not raised by Tree

--
Ran 4 tests in 0.000s

FAILED (failures=1, errors=1)

The t est _lumberjack() fails because the test assumes that a newly created Lumberjack object will have a t ree
attribute with the value No ne . This is easily arranged in its __init __() method. t est _except io ns() fails because the
__init __() method is not validating the size argument. This is again fairly easily added. Make the necessary changes
and ensure that then all four tests pass.

CODE TO EDIT: fo restry.py

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize: insist that size is a valid code."
 if size not in self.sizes:
 message = "Tree size must be one of: %s" % ",".join(self.sizes.keys())
 raise ValueError(message)
 self.size = size

 def get_boards(self):
 "Return number of boards equivalent."
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."
 def __init__(self):
 "Initialize: start with no tree."
 self.tree = None

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 pass
 if not self.tree:
 raise TypeError("Cannot cut_down_tree(): Lumberjack has no tree!")
 boards = self.tree.get_boards()
 self.tree = None
 return boards

if __name__ == "__main__":
 "Demonstrate basic usage."
 john = Lumberjack()
 john.tree = Tree("XXL")
 if john.cut_down_tree() != 5:
 print("Error: XXL tree should yield 5 boards")

 Save it and run the test again. All tests should pass now, and we can add in a simple logger. This just invo lves adding
a few lines at the beginning o f the module.

CODE TO EDIT: fo restry.py

import the logging module
import logging

set up the logger
logging.basicConfig(filename='forestry.log',level=logging.DEBUG)

log a message
logging.info('Starting up the forestry program')

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize: insist that size is a valid code."
 if size not in self.sizes:
 message = "Tree size must be one of: %s" % ",".join(self.sizes.keys())
 raise ValueError(message)
 self.size = size

 def get_boards(self):
 "Return number of boards equivalent."
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."
 def __init__(self):
 "Initialize: start with no tree."
 self.tree = None

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 boards = self.tree.get_boards()
 self.tree = None
 return boards

if __name__ == "__main__":
 "Demonstrate basic usage."
 john = Lumberjack()
 john.tree = Tree("XXL")
 if john.cut_down_tree() != 5:
 print("Error: XXL tree should yield 5 boards")

 Run both test_forestry.py and forestry.py. The tests should continue to pass, and the forestry program should run
without errors or any output. In the Pyt ho n3_Lesso n11/src fo lder, you'll see a new f o rest ry.lo g file. Open it and
you should see:

contents o f fo restry.log

INFO:root:Starting up the forestry program
INFO:root:Starting up the forestry program

Look familiar? But why are there two entries? There are two entries because you loaded forestry.py twice, once when
you ran it by itself and the o ther time in test_forestry.py, thanks to the line f ro m f o rest ry impo rt Lumberjack, T ree .
Also , because the logging system records things over time, each time it is called it appends to the existing file. This
means that your log files are a living history o f your application (though that history is o f somewhat limited interest right
now due to the restricted information that appears in it). But, every time your module is used, it logs that fact in the log
file!

Now let's make it a little more interesting. Sprinkle some log messages throughout the f o rest ry.py code:

CODE TO EDIT: fo restry.py

import logging

set up the logger
logging.basicConfig(filename='forestry.log',level=logging.DEBUG)

log a message
logging.info('Starting up the forestry program')

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize: insist that size is a valid code."
 if size not in self.sizes:
 message = "Tree size must be one of: %s" % ",".join(self.sizes.keys())
 raise ValueError(message)
 self.size = size
 logging.info('Instantiated a tree')

 def get_boards(self):
 "Return number of boards equivalent."
 logging.info('tree.get_boards method called')
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."
 def __init__(self):
 "Initialize: start with no tree."
 self.tree = None
 logging.info('Instantiated a Lumberjack')

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 if not self.tree:
 raise TypeError("Cannot cut_down_tree(): Lumberjack has no tree!")
 boards = self.tree.get_boards()
 self.tree = None
 logging.info('Lumberjack.tree cut down')
 return boards

if __name__ == "__main__":
 "Demonstrate basic usage."
 john = Lumberjack()
 john.tree = Tree("XXL")
 if john.cut_down_tree() != 5:
 print("Error: XXL tree should yield 5 boards")

Clear the contents o f the forestry.log file in your editor window, then save it as empty. Go ahead and run
t est _f o rest ry.py, and then check f o rest ry.lo g again (If you see a "Resource is out o f sync" message, press F5).
You'll see a nice list o f log entries about progress made.

OBSERVE: Contents o f log file after a run o f test_forestry.py

INFO:root:Starting up the forestry program
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a Lumberjack
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree

Also, look at the code. The logging messages are clearly logging messages. As you code, you'll find you mentally filter
them out when you don't need them and they pop into focus when you do need them. This tends to be less obtrusive
than print() calls that might be program-related or might be merely debugging information.

Other Logging Functions
The logging module makes it easy to flag issues with different levels o f severity—in this next change, instead o f
lo gging.debug() , you'll use lo gging.erro r() . Try it out by adding lo gging.erro r() to the __init __() method o f your
Tree class and the cut _do wn_t ree() method o f the Lumberjack.

CODE TO EDIT: fo restry.py

import logging

set up the logger
logging.basicConfig(filename='forestry.log',level=logging.DEBUG)
logging.basicConfig(filename='forestry.log',level=logging.ERROR)

log a message
logging.info('Starting up the forestry program')

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize: insist that size is a valid code."
 if size not in self.sizes:
 message = "Tree size must be one of: %s" % ",".join(self.sizes.keys())
 logging.error(message)
 raise ValueError(message)
 self.size = size
 logging.info('Instantiated a tree')

 def get_boards(self):
 "Return number of boards equivalent."
 logging.info('tree.get_boards method called')
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."
 def __init__(self):
 "Initialize: start with no tree."
 self.tree = None
 logging.info('Instantiated a Lumberjack')

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 if not self.tree:
 raise TypeError("Cannot cut_down_tree(): Lumberjack has no tree!")
 msg = "Cannot cut_down_tree(): Lumberjack has no tree!"
 logging.error(msg)
 raise TypeError(msg)
 boards = self.tree.get_boards()
 self.tree = None
 logging.info('Lumberjack.tree cut down')
 return boards

if __name__ == "__main__":
 "Demonstrate basic usage."
 john = Lumberjack()
 john.tree = Tree("XXL")
 if john.cut_down_tree() != 5:
 print("Error: XXL tree should yield 5 boards")

Now clear the forestry.log file again, and run t est _f o rest ry.py. Your tests should continue to pass:

OBSERVE: test_forestry.py results

....
--
Ran 4 tests in 0.008s

Now, check the new forestry.log:

added items to forestry.log

ERROR:root:Tree size must be one of: S,M,L,XL,XXL
ERROR:root:Cannot cut_down_tree(): Lumberjack has no tree!

With the Python logging library, you can set the logging level to filter out debug, info , warning, and error messages. The
change we made at the beginning o f the file ensured that only messages with ERROR or CRITICAL severity levels
were even added to the log file.

The logging library includes these levels o f built- in logger functions:

Level Precedence Descript io n

DEBUG 10 Use for low-level debugging output

INFO 20 General information

WARNING 30 Warning messages such as deprecated functions and code

ERROR 40 Reporting exceptions and errors

CRITICAL 50 System crashes, security penetrations, data corruption, etc.

If the level at which you log a message is o f lower prio rity than the level established for the logger when it is created,
nothing is actually logged. This level o f contro l is a good compromise, allowing you to easily suppress the logging o f
usually-unimportant messages without throwing away important ones.

Other Logging Levels
Logging presents a way to store data about programs in operation, and this is a good thing. But most o f the time you
do not want your program recording the mundane trivia o f its existence. That is why you can specify a logging level
when you create the logger. This will also log anything o f higher precedence, so when you set it to ERROR, it also
includes CRITICAL results. If you set the logging level to logging.INFO, it would show the INFO, WARNING, ERROR,
and CRITICAL levels.

From now on, we'll set our logging level using a st art _lo gging() function. Note that this uses a dict as a lookup table,
allowing the caller to supply string values like "error" rather than having to import the numeric values from the logging
module.

CODE TO EDIT: fo restry.py

import logging
LOG_FILENAME = "forestry.log"
DEFAULT_LOG_LEVEL = "error" # Default log level
LEVELS = {'debug': logging.DEBUG,
 'info': logging.INFO,
 'warning': logging.WARNING,
 'error': logging.ERROR,
 'critical': logging.CRITICAL
 }

def start_logging(filename=LOG_FILENAME, level=DEFAULT_LOG_LEVEL):
 "Start logging with given filename and level."
 logging.basicConfig(filename=filename, level=LEVELS[level])
 # log a message
 logging.info('Starting up the forestry program')

set up the logger
logging.basicConfig(filename='forestry.log',level=logging.ERROR)

log a message
logging.info('Starting up the forestry program')

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize: insist that size is a valid code."
 if size not in self.sizes:
 message = "Tree size must be one of: %s" % ",".join(self.sizes.keys())
 logging.error(message)
 raise ValueError(message)
 self.size = size
 logging.info('Instantiated a tree')

 def get_boards(self):
 "Return number of boards equivalent."
 logging.info('tree.get_boards method called')
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."
 def __init__(self):
 "Initialize: start with no tree."
 self.tree = None
 logging.info('Instantiated a Lumberjack')

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 if not self.tree:
 msg = "Cannot cut_down_tree(): Lumberjack has no tree!"
 logging.error(msg)
 raise TypeError(msg)
 boards = self.tree.get_boards()
 self.tree = None
 logging.info('Lumberjack.tree cut down')
 return boards

if __name__ == "__main__":
 "Demonstrate basic usage."
 john = Lumberjack()
 john.tree = Tree("XXL")

 if john.cut_down_tree() != 5:
 print("Error: XXL tree should yield 5 boards")

We now need to modify test_forestry.py to ensure that it still passes its tests. It needs to call the forestry module's
start_logging function, which it does with a level argument value o f "error," which is automatically converted inside the
function to logging.ERROR.

CODE TO EDIT: test_forestry.py

import unittest

from forestry import Lumberjack, Tree, start_logging

sizes = (("S", 1), ("M", 2), ("L", 3), ("XL", 4), ("XXL", 5))

class TestTree(unittest.TestCase):

 def test_lumber(self):
 for code, boards in sizes:
 tree = Tree(code)
 self.assertEqual(boards, tree.get_boards())

 def test_string(self):
 tree = Tree("L")
 self.assertEqual(str(tree), "Tree: Size L")

 def test_exceptions(self):
 self.assertRaises(ValueError, Tree, "parrot")
 self.assertRaises(TypeError, Lumberjack().cut_down_tree)

class TestLumberjack(unittest.TestCase):

 def test_lumberjack(self):
 for code, boards in sizes:
 tree = Tree(code)
 graham = Lumberjack()
 self.assertIsNone(graham.tree)
 graham.tree = tree
 brds = graham.cut_down_tree()
 self.assertIsNone(graham.tree)
 self.assertEqual(boards, brds)

if __name__ == "__main__":
 start_logging(level="error")
 unittest.main()

Getting Tests to Use Different Logging Levels
Right now, when you run test_forestry.py, it always runs under the ERROR level because it overrides the forestry.py
default logging level. Which means all that is logged from the current code base is:

test_forestry.py results - Error level restricts output!

ERROR:root:Tree size must be one of: S,M,L,XL,XXL
ERROR:root:Cannot cut_down_tree(): Lumberjack has no tree!

Since you probably want as much information as possible to be generated by your unittests, you can do a local
override o f the logger configuration item by modifying the call to st art _lo gging in test_forestry.py.

CODE TO EDIT: test_forestry.py

import unittest

from forestry import Lumberjack, Tree, start_logging

sizes = (("S", 1), ("M", 2), ("L", 3), ("XL", 4), ("XXL", 5))

class TestTree(unittest.TestCase):

 def test_lumber(self):
 for code, boards in sizes:
 tree = Tree(code)
 self.assertEqual(boards, tree.get_boards())

 def test_string(self):
 tree = Tree("L")
 self.assertEqual(str(tree), "Tree: Size L")

 def test_exceptions(self):
 self.assertRaises(ValueError, Tree, "parrot")
 self.assertRaises(TypeError, Lumberjack().cut_down_tree)

class TestLumberjack(unittest.TestCase):

 def test_lumberjack(self):
 for code, boards in sizes:
 tree = Tree(code)
 graham = Lumberjack()
 self.assertIsNone(graham.tree)
 graham.tree = tree
 brds = graham.cut_down_tree()
 self.assertIsNone(graham.tree)
 self.assertEqual(boards, brds)

if __name__ == "__main__":
 start_logging(level="error")
 start_logging(level="info")
 unittest.main()

Run test_forestry.py to get these added log entries in fo restry.log

INFO:root:Starting up the forestry program
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get_boards method called
INFO:root:Lumberjack.tree cut down
ERROR:root:Tree size must be one of: S,M,L,XL,XXL
INFO:root:Instantiated a Lumberjack
ERROR:root:Cannot cut_down_tree(): Lumberjack has no tree!
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get_boards method called
INFO:root:Instantiated a tree

Log Formatting
The log entries are providing a lo t o f information, but the default fo rmatting we've used so far only provides a small
subset o f what the logger can capture for you. You'll use the log formatter to display significantly more data.

CODE TO EDIT: fo restry.py

import logging
LOG_FILENAME = "forestry.log"
LOG_FORMAT = "%(asctime)s %(name)s:%(levelname)s:%(filename)s function:%(funcName)s lin
e:%(lineno)d %(message)s"
DEFAULT_LOG_LEVEL = "warning" # Default log level
LEVELS = {'debug': logging.DEBUG,
 'info': logging.INFO,
 'warning': logging.WARNING,
 'error': logging.ERROR,
 'critical': logging.CRITICAL
 }

def start_logging(filename=LOG_FILENAME, level=DEFAULT_LOG_LEVEL):
 "Start logging with given filename and level."
 logging.basicConfig(filename=filename, level=LEVELS[level], format=LOG_FORMAT)
 # log a message
 logging.info('Starting up the forestry program')

class Tree(object):
 "Represent a tree in a forest that can be converted into boards."
 sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

 def __init__(self, size="L"):
 "Initialize: insist that size is a valid code."
 if size not in self.sizes:
 message = "Tree size must be one of: %s" % ",".join(self.sizes.keys())
 logging.error(message)
 raise ValueError(message)
 self.size = size
 logging.info('Instantiated a tree')

 def get_boards(self):
 "Return number of boards equivalent."
 logging.info('tree.get_boards method called')
 return self.sizes[self.size]

 def __str__(self):
 "Render as a string."
 return "Tree: Size %s" % self.size

class Lumberjack(object):
 "Represent a lumberjack who can cut down trees."
 def __init__(self):
 "Initialize: start with no tree."
 self.tree = None
 logging.info('Instantiated a Lumberjack')

 def cut_down_tree(self):
 "Convert tree to boards and go back to not having a tree."
 if not self.tree:
 msg = "Cannot cut_down_tree(): Lumberjack has no tree!"
 logging.error(msg)
 raise TypeError(msg)
 boards = self.tree.get_boards()
 self.tree = None
 logging.info('Lumberjack.tree cut down')
 return boards

if __name__ == "__main__":
 "Demonstrate basic usage."
 john = Lumberjack()
 john.tree = Tree("XXL")
 if john.cut_down_tree() != 5:
 print("Error: XXL tree should yield 5 boards")

This small change to the forestry framework makes a great deal o f difference to the output in the logging stream. If you
clear the log file and run t est _f o rest ry.py, your log should look like the fo llowing.

Results o f test_forestry.py

2010-11-08 20:04:58,319 root:INFO:forestry.py function:start_logging line:17 Starting u
p the forestry program
2010-11-08 20:04:58,382 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,382 root:INFO:forestry.py function:__init__ line:46 Instantiated a
Lumberjack
2010-11-08 20:04:58,382 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,384 root:INFO:forestry.py function:cut_down_tree line:56 Lumberjack
.tree cut down
2010-11-08 20:04:58,384 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,384 root:INFO:forestry.py function:__init__ line:46 Instantiated a
Lumberjack
2010-11-08 20:04:58,384 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,384 root:INFO:forestry.py function:cut_down_tree line:56 Lumberjack
.tree cut down
2010-11-08 20:04:58,384 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,384 root:INFO:forestry.py function:__init__ line:46 Instantiated a
Lumberjack
2010-11-08 20:04:58,384 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,385 root:INFO:forestry.py function:cut_down_tree line:56 Lumberjack
.tree cut down
2010-11-08 20:04:58,385 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,385 root:INFO:forestry.py function:__init__ line:46 Instantiated a
Lumberjack
2010-11-08 20:04:58,385 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,387 root:INFO:forestry.py function:cut_down_tree line:56 Lumberjack
.tree cut down
2010-11-08 20:04:58,387 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,387 root:INFO:forestry.py function:__init__ line:46 Instantiated a
Lumberjack
2010-11-08 20:04:58,387 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,388 root:INFO:forestry.py function:cut_down_tree line:56 Lumberjack
.tree cut down
2010-11-08 20:04:58,388 root:ERROR:forestry.py function:__init__ line:27 Tree size must
 be one of: S,M,L,XL,XXL
2010-11-08 20:04:58,388 root:INFO:forestry.py function:__init__ line:46 Instantiated a
Lumberjack
2010-11-08 20:04:58,388 root:ERROR:forestry.py function:cut_down_tree line:52 Cannot cu
t_down_tree(): Lumberjack has no tree!
2010-11-08 20:04:58,388 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,388 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,388 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,390 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,391 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,391 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,391 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree
2010-11-08 20:04:58,391 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,391 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree

2010-11-08 20:04:58,391 root:INFO:forestry.py function:get_boards line:34 tree.get_boar
ds method called
2010-11-08 20:04:58,391 root:INFO:forestry.py function:__init__ line:30 Instantiated a
tree

You now have log entries that provide the date and time down to the microsecond for when the entry was recorded, the
name of the file and the function/method that called it, and the line number if was called from. All o f this from this line o f
Formatter String:

It should look like this but all on one line

%(asctime)s
 %(name)s:%(levelname)s:%(filename)s
 function:%(funcName)s line:%(lineno)d
 %(message)s

The dark blue elements above, such as "f unct io n:," are there to display the output in a more readable format. The
dark red elements above are mapping keys that tell the logger where to put the data it co llects. Some of the most
useful keys are:

Key Pro vides

%(name) The owner o f the log file

%(levelno)s Numeric logging level fo r the message (DEBUG=10, INFO=20, WARNING=30, ERROR=40,
CRITICAL=50)

%(levelname)s Text logging level fo r the message ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')

%(pathname)s Full pathname of the source file where the logging call was issued (if available)

%(filename)s Filename portion o f pathname

%(module)s Module (name portion o f filename)

%(funcName)s Name of function/method containing the logging call

%(lineno)d Source line number where the logging call was issued (if available)

%(asctime)s Time when the log entry was created

%(message)s The message passed into the log entry by the logger

It is o ften tempting to put everything into the log entry, but this can prove to be a mistake because too much text on a
single line is hard for the human eye to interpret. In addition, if you have to scro ll side-to-side on a log file you are
prone to miss things. So here are some quick tips to making your log formats useful:

Well-written messages make log files much more readable and searchable.
Instead o f adding print () calls, try changing your log format to include more information.
%(pathname)s and %(filename)s are useful to identify the source o f a message.
Since you can search your code for log messages, recording the line number (%(lineno)d), though tempting,
is less useful than you might imagine.
Because the Python logging module can't capture which class objects generated an entry. the %(module)s
and %(funcName)s keys can be troublesome.

The fo llowing is a reasonable example o f a log file fo rmat:

OBSERVE: A Good Log File Format

%(asctime)s - %(name)s - %(levelname)s - %(message)s

Logging isn't just a useful too l, it is like code comments and tests in that consistent use o f it will impress experienced
developers and good IT managers. That is because as much as good developers try to have all their code properly covered by
tests, bugs creep in. Without logging, it can be nearly impossible to analyze sophisticated software behavior, uncover subtle
errors, or see exactly step-by-step how a hacker tried to penetrate a system. With logging, you can provide a usage history that
allows yourself and o thers to see what has happened with your programs. It is just another way to make processes visible.
Don't be afraid o f that visibility or the mistakes it may uncover; instead embrace it and learn from what is exposed.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Engineering Your Programs
Lesson Objectives

When you complete this lesson, you will be able to :

use optparse, a powerful command-line processor.
use configparser to contro l settings correctly.

In a previous lesson, we learned how to use sys.argv to access command line elements. However, sys.argv is only useful fo r
providing per-run information about what you want a program to do. If there are actions you want a program to always take, you
need a mechanism that allows that (while still allowing the use o f command-line arguments for the per-run data).

For example, problems quickly arise if you need to accept several arguments. Let's say besides logging when you start a
program, you need to po int a program to a specific database, let the user set a specific directory to save files, and accept user
name/password combinations. Now instead o f one, you have five command-line arguments, each o f which needs validation
and precise help instructions. The logic to handle this would likely invo lve lo ts o f nested if blocks to handle field
determination/validation and print () calls fo r help instructions, and you'd spend significant effort, no t just in writing and testing
the command-line code, but also in maintaining it.

Thankfully, Python provides two libraries for handling this exact issue. The first library, o pt parse , is a more powerful
command-line system than simply processing sys.argv "by hand." The second library, co nf igparser, lets you create
configuration files, o ften used to establish default program settings that can become, either fo r a single user or across a
system, the defaults fo r command-line operation. This can sometimes shorten the "average" command line.

optparse: A Powerful Command-line Processor
o pt parse is a convenient, flexible, and powerful library for parsing command-line options. It fo llows the conventional
GNU/POSIX syntax, which sounds fancy but really just means that command-line users on Windows, Mac, Unix, Linux,
and BSD will find it matches the general operation o f their existing command-line too ls.

A Simple optparse Example

Here we'll see how to capture a loglevel using the o pt parse library. This behavior may be useful to o ther
programs, so we'll implement it in a new file. Create a Pyt ho n3_Lesso n12 pro ject, and assign it to the
Pyt ho n3_Lesso ns working set. In your Pyt ho n3_Lesso n12 fo lder, create co mmands.py as shown:

CODE TO TYPE: commands.py

"""
commands.py: Parse logging level options from sys.argv
"""
from optparse import OptionParser

if __name__ == "__main__":

 # instantiate an OptionParser object
 parser = OptionParser()
 parser.add_option("-l", "--loglevel",
 action="store",
 dest="level",
 default="warning",
 help="set level of logger: debug, info, warning (default
), error, critical")
 (options, args) = parser.parse_args()
 print("level: %s" % options.level)

Now, let's try this out by using -l debug as command-line arguments.

Remember, to set up command-line arguments in Ellipse, first, select Run | Run Co nf igurat io ns... from
the menu and click the left icon (New Launch Co nf igurat io n) on the Run Configurations dialog too lbar.
Enter co mmands.py in the Name field at the top o f the dialog; fo r the Pro ject, click Bro wse to select the
Pyt ho n3_Lesso n12 pro ject; and for the Main Module, click Bro wse to select your co mmands.py program
(in the src fo lder) as the program to run. Next, select the Argument s tab. In the Program Arguments field,

enter ${st ring_pro mpt } . This special value tells Ellipse to ask you for the arguments to the program when
you run this configuration. Leave everything else as it is. Click Run at the bottom of the window. When
prompted for the command-line arguments, enter -l debug.

commands.py called with '- l debug' argument

level: debug

 Try the same thing with -l crit ical fo r a different result (you can just run co mmand.py like you would run
any Python program; Ellipse will remember to prompt you for the arguments):

commands.py called with '- l critical'

level: critical

 Run it again, leaving the arguments field empty. It even provides a default value:

commands.py called without any argument

level: warning

Pretty handy, but besides a lo t more typing, this isn't do ing anything that sys.argv doesn't do , right? Lets go
ahead and prove that assumption wrong. Run it with the -h argument:

commands.py called with -h argument

Usage: commands.py [options]

Options:
 -h, --help show this help message and exit
 -l LEVEL, --loglevel=LEVEL
 set level of logger: debug, info, warning (default),
 error, critical

There you have it—instant help! And help that fo llows the same format that you get any time you do '-h' o r '--
h' on a command-line too l. Also , note that the print () command did not run. This is because all Python
programs, regardless o f whether or not they use the o pt parse library, do not run any code except to produce
the help text when the user calls fo r help. So users can call the -h command without fear that they will
inadvertently run your program.

A Complex optparse Example

Let's do something familiar and create a very simple email address book program. It will allow you to add,
delete, and list all addresses from the command line. The addresses will be stored using the shelve module.

The first thing to do is to get our program to add and delete emails. You'll need two options for this, the first
one to let your users pick the add, edit, o r delete actions, and the second being the email value in question.
So create addressbo o k.py as shown below. You will need to add another run configuration that allows you
to set the command-line arguments when you run it, just like you did for commands.py.

CODE TO TYPE: addressbook.py

from optparse import OptionParser

if __name__ == '__main__':
 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action", action="store", help="req
uires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email", action="store", help="email
 used in the -a option")
 (options, args) = parser.parse_args()

 Save and run it with the -h option:

OBSERVE: Running addressbook.py With -h Argument

Usage:
addressbook.py [options]
Options: -h, --help show this help message and exit
 -a ACTION, --action=ACTION requires -e option.
 Actions: add/edit/delete
 -e EMAIL, --email=EMAIL email used in the -a option

Validating optparse Options

Now, we'll add some more validation. First we'll check that, when a user provides the --act io n option, they
also provide an --email option. Then we'll check that the email provided is valid (fo r the sake o f simplicity,
we'll just check that it contains the "@" character).

The first validation, that --action has an --email (and vice versa) is done by checking that if one o f those
options exists, so should the o ther. If only one exists, a parser.erro r() is called. Edit addressbo o k.py as
shown:

CODE TO EDIT: addressbook.py

from optparse import OptionParser

if __name__ == '__main__':
 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action", action="store",
 help="requires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email", action="store",
 help="email used in the -a option")
 (options, args) = parser.parse_args()
 # validation
 if options.action and not options.email:
 parser.error("option -a requires option -e")
 elif options.email and not options.action:
 parser.error("option -e requires option -a")
 print(options)

 Save and run it with -a add:

OBSERVE: Running addressbook.py with -a add

Usage: addressbook.py [options]

addressbook.py: error: option -a requires option -e

 Now, run it with -e st eve@o reilly.co m :

OBSERVE: Running addressbook.py with -e steve@oreilly.com

Usage: addressbook.py [options]

addressbook.py: error: option -e requires option -a

The requirement fo r both options to appear together is working, so it only remains to ensure that when both
options are present they are correctly captured in the o pt io ns dict. You can do this by running the program
with both options.

 Run it with -a st eve -e so met hing:

OBSERVE: Running addressbook.py with -a steve -e something

{'action': 'steve', 'email': 'something'}

Now, can you figure out how to validate that user-provided email includes "@"? Try it before we show you!

...

...

...

...

...

Go ahead; try it!

...

...

...

...

...

We're waiting!

...

...

...

...

...

You should have arrived at something like this:

CODE TO EDIT: addressbook.py

from optparse import OptionParser

if __name__ == '__main__':
 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action",
 action="store", help="requires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email",
 action="store", help="email used in the -a option")
 (options, args) = parser.parse_args()

 # validation
 if options.action and not options.email:
 parser.error("option -a requires option -e")
 elif options.email and not options.action:
 parser.error("option -e requires option -a")
 elif options.email and '@' not in options.email:
 parser.error("option -e requires a valid email address")
 print(options)

 Run it with -a st eve -e so met hing:

OBSERVE: Running addressbook.py with -a steve -e something

Usage: addressbook.py [options]

addressbook.py: error: option -e requires a valid email address

Showtime!

Okay, it's time to add the code that handles the emails. But before we do that, let's add the obligatory tests.
Create t est _addressbo o k.py as shown:

CODE TO TYPE: test_addressbook.py

import unittest
import addressbook

class TestEmailHandlers(unittest.TestCase):

 def setUp(self):
 self.email = 'test123@t.com'

 def test_email_delete(self):
 addressbook.email_add(self.email) # ensure the email is active
 self.assertEqual(addressbook.email_delete(self.email)[0], True)
 self.assertEqual(addressbook.email_delete(self.email)[0], False)

 def test_email_add(self):
 self.assertEqual(addressbook.email_add(self.email)[0], True)
 self.assertEqual(addressbook.email_add(self.email)[0], False)

if __name__ == "__main__":
 unittest.main()

Now edit the addressbo o k program to accommodate the tests:

CODE TO EDIT: addressbook.py

from optparse import OptionParser
import shelve
import sys

shelf_location = 'V:/workspace/Python3_Lesson12/src/email.shelf'

def email_add(email):
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 if email in emails:
 message = False, 'Email "%s" already in address book' % email
 else:
 emails.append(email)
 message = True, 'Email "%s" added to address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def email_delete(email):
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 try:
 emails.remove(email)
 message = True, 'Email "%s" removed from address book' % email
 except ValueError:
 message = False, 'Email "%s" was not in the address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def main(options):
 "routes requests"
 if options.action == 'add':
 return email_add(options.email)
 elif options.action == 'delete':
 return email_delete(options.email)

if __name__ == '__main__':
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 shelf.close()
 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action", action="store",
 help="requires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email",
 action="store", help="email used in the -a option")

 (options, args) = parser.parse_args()
 # validation
 if options.action is None:
 sys.exit("You must specify an action (add or delete) with '-a action'")
 if options.action and not options.email:
 parser.error("option -a requires option -e")
 elif options.email and not options.action:
 parser.error("option -e requires option -a")
 elif options.email and '@' not in options.email:
 parser.error("option -e requires a valid email address")
 print(options)
 print(main(options)[1])

Of course, you wrote tests fo r this code before writing it. Better try out the tests before trying to exercise the
code. Save both programs and run t est _addressbo o k.py:

OBSERVE: Testing with test_addressbook.py

..
--
Ran 2 tests in 0.003s

OK

Well, that seemed to work out OK, or at least the tests seem to indicate that the add and delete functionality is
succeeding and failing where expected. So let's see what we get with various calls from the command line.

 Run addrbook.py with -a add -e st eve@h.co m :

OBSERVE: Running addressbook.py with -a add -e steve@h.com

Email "steve@h.com" added to address book

 Run addrbook.py with -a add -e st eve@h.co m again:

OBSERVE: Running addressbook.py again with -a add -e steve@h.com

Email "steve@h.com" already in address book

 Run addrbook.py with -a delet e -e st eve@h.co m :

OBSERVE: Running addressbook.py with -a delete -e steve@h.com

Email "steve@h.com" removed from address book

 Run addrbook.py with -a delet e -e st eve@h.co m again:

OBSERVE: Running addressbook.py again with -a delete -e steve@h.com

Email "steve@h.com" was not in the address book

You've now got a grip on quite a few of the fundamentals o f using o pt parse . Notice how, once the code gets
past o pt parse validation, the action turns to functions. This makes things much easier to extend and test, in
turn helping you to reuse this code in o ther modules. In fact, the email validation ought to take place in its own
function called by the email handlers, and would raise an exception that would be caught by the parse handler.
Something like this could work:

CODE TO EDIT: addressbook.py

from optparse import OptionParser
import shelve
import sys

shelf_location = 'V:/workspace/Python3_Lesson12/src/email.shelf'

class InvalidEmail(Exception):
 pass

def validate_email(email):
 if '@' not in email:
 raise InvalidEmail("Invalid email: "+email)

def email_add(email):
 validate_email(email)
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 if email in emails:
 message = False, 'Email "%s" already in address book' % email
 else:
 emails.append(email)
 message = True, 'Email "%s" added to address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def email_delete(email):
 validate_email(email)
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 try:
 emails.remove(email)
 message = True, 'Email "%s" removed from address book' % email
 except ValueError:
 message = False, 'Email "%s" was not in the address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def main(options):
 "routes requests"
 if options.action == 'add':
 return email_add(options.email)
 elif options.action == 'delete':
 return email_delete(options.email)

if __name__ == '__main__':
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 shelf.close()
 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action", action="store",
 help="requires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email",
 action="store", help="email used in the -a option")

 (options, args) = parser.parse_args()
 # validation
 if options.action is None:
 sys.exit("You must specify an action (add or delete) with '-a action'")
 if options.action and not options.email:

 parser.error("option -a requires option -e")
 elif options.email and not options.action:
 parser.error("option -e requires option -a")
 elif options.email and '@' not in options.email:
 parser.error("option -e requires a valid email address")
 print(main(options)[1])
 try:
 print(main(options)[1])
 except InvalidEmail:
 parser.error("option -e requires a valid email address")

 Go ahead and test this code. All tests should continue to pass.

OBSERVE: Refactored code passes all tests

..
--
Ran 2 tests in 0.016s

OK

 Then run the program itself. It should work just as before, but the refactoring makes the code more easily
extended.

Displaying All the Records

Now, suppose we want to list the contents o f the shelf file. For this, all we need is an option without a value.
Perhaps just -d o r --display without a value to show every address in the system. We'll do it with this parser
option:

boo lean flag parser option

 parser.add_option('-d',
 '--display', dest="display", action="store_true", help="show all emails"
)

In this parser option, the action o f 'store_true' means that if you call it via the box above, the display attribute
of options will be a boo lean True. Otherwise it is a No ne object. With that in your too l-chest, you can add to
your existing code base. First, as usual, we'll add a test fo r the new functionality. Edit t est _addressbo o k.py
as shown:

CODE TO EDIT: test_addressbook.py

import unittest, shelve
import addressbook

class TestEmailHandlers(unittest.TestCase):

 def setUp(self):
 self.email = 'test123@t.com'
 shelf_location = addressbook.shelf_location

 shelf = shelve.open(shelf_location)
 if 'emails' in shelf:
 if self.email in shelf['emails']:
 shelf['emails']=[]
 shelf.close()

 def test_email_delete(self):
 addressbook.email_add(self.email) # ensure the email is active
 self.assertEqual(addressbook.email_delete(self.email)[0], True)
 self.assertEqual(addressbook.email_delete(self.email)[0], False)

 def test_email_add(self):
 self.assertEqual(addressbook.email_add(self.email)[0], True)
 self.assertEqual(addressbook.email_add(self.email)[0], False)

 def test_email_display(self):
 addressbook.email_add(self.email)
 val, display = addressbook.email_display()
 self.assertTrue(self.email in display)

if __name__ == "__main__":
 unittest.main()

Now, add the functionality; edit addressbo o k.py as shown:

CODE TO EDIT: addressbook.py

from optparse import OptionParser
import shelve
import sys

shelf_location = 'V:/workspace/Python3_Lesson12/src/email.shelf'

class InvalidEmail(Exception):
 pass

def validate_email(email):
 if '@' not in email:
 raise InvalidEmail("Invalid email: "+email)

def email_add(email):
 validate_email(email)
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 if email in emails:
 message = False, 'Email "%s" already in address book' % email
 else:
 emails.append(email)
 message = True, 'Email "%s" added to address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def email_delete(email):
 validate_email(email)
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 try:
 emails.remove(email)
 message = True, 'Email "%s" removed from address book' % email
 except ValueError:
 message = False, 'Email "%s" was not in the address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def email_display():
 shelf = shelve.open(shelf_location)
 emails = shelf['emails']
 shelf.close()
 text = ''
 for email in emails:
 text += email + '\n'
 return True,text

def main(options):
 "routes requests"
 if options.action == 'add':
 return email_add(options.email)
 elif options.action == 'delete':
 return email_delete(options.email)
 elif options.display == True:
 return email_display()

if __name__ == '__main__':
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 shelf.close()

 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action", action="store",
 help="requires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email",
 action="store", help="email used in the -a option")

 parser.add_option('-d', '--display', dest="display", action="store_true",
 help="show all emails")
 (options, args) = parser.parse_args()
 # validation
 if options.action is None:
 sys.exit("You must specify an action (add or delete) with '-a action'")
 if options.action and not options.email:
 parser.error("option -a requires option -e")
 elif options.email and not options.action:
 parser.error("option -e requires option -a")
 try:
 print(main(options)[1])
 except InvalidEmail:
 parser.error("option -e requires a valid email address")

 Run your tests, and then add some emails and run addressbo o k.py with the -d/--display flag. You'll get a
printed display o f all your email entries.

optparse Type Validation

Let's say we want to change the -d/--display flag to provide a number o f records based on an integer we pass
in. Normally that means we'll have to do type checking via the int () built- in, but with o pt parse , we get a
shortcut.

OBSERVE: Adding an Integer Check

parser.add_option('-d', '--display', dest="display", type="int",
 action="store_true", help="show all emails limited by value")

The o pt parse module also includes type checking for string, float, and choices. These should all be obvious,
except fo r choices.

The o pt parse module lets you easily write scripts that handle arguments in a fashion that is consistent with the rest o f
the world. In o ther words, it is common to put all o f your optparse code under the if __name__ == '__main__' block
of code, since that means if another module extends your code it doesn't trigger the optparse code in your program.

configparser: Controlling Settings the Right Way
Let's say you just bought a brand new computer. The first time you start it up, the computer asks you your name,
password, time zone, language, and probably some other questions. It isn't hard to do, but it takes away from your
time with your new machine. Wouldn't it be nice if you could simply save this configuration information on one
computer and place it on another as needed?

Actually, you can. System Engineers o ften use too ls that set up computers with all the configuration information set
exactly how they want it. With some automated scripting, they can start up a new computer this way in minutes and
sometimes seconds. This is how companies that provide hosting for individuals or firms that run gigantic server farms
can maintain hundreds and thousands o f machines.

Python's co nf igparser library provides an easily used API fo r interacting with one o f the popular fo rmats used to
save configurations, the INI file fo rmat. Frequently associated with Microsoft Windows, INI is in fact also used by o ther
platforms such as Linux and Mac OS X.

configparser to Store Database Settings

In previous courses and earlier in this lesson, we used simple files, pickle, shelve, or SQL databases to save
information. The information that handled your settings was coded right into your programs. While this works
on small pro jects under well-defined academic conditions such as Eclipse, Ellipse, and the O'Reilly teaching
environment, it can be problematic under pro fessional conditions. For example, because Python is so
portable you might save data on Windows at c:\dat a\emails.shelf , but this simply won't work on Linux or

Mac OS X, which might want to see something like /usr/lo cal/dat a/emails.shelf . Python has too ls that
make it easy to detect operating systems, but then users might want to save their data in a specific location.
This fo rces them to change your code to store data where they want, which introduces the risk o f breaking
your code, and only works if they were actually given access to your code (source files).

This is where config files can be priceless. Users not familiar with Python can quickly figure out the format and
change things. Furthermore, since the file usually has a .cf g (o r less commonly, .ini) extension, most users
will be able to quickly identify it as a configuration file.

So, let's make a configuration file. Create addressbo o k.cf g as shown:

CODE TO TYPE: addressbook.cfg

[database]
mac os x or linux
file = /workspace/Python3_lesson12/src/email.shelf
windows
file = V:\workspace\Python3_lesson12\src\email.shelf

[dat abase] is a section header. That means any option variables defined under it use "database" as part o f
the process o f displaying them. Under that are a series o f comments that use Python '#' syntax so that they
are not loaded. Finally, f ile = V:\wo rkspace\Pyt ho n3_lesso n12\src\email.shelf sets the file variable
under the database section. To display this addressbook.cfg file, create a co nf ig.py file as shown:

CODE TO TYPE: config.py

import configparser

create a config parser object
config = configparser.RawConfigParser()

open and read the addressbook.cfg file into the config parser
config.read('addressbook.cfg')

loop through the sections
for section in config.sections():
 print(section)
 # get all the options for the current section
 for option in config.options(section):
 # print the option and its value indented for clarity
 text = ' %s = %s' % (option, config.get(section, option))
 print(text)

 Save and run it:

OBSERVE: the results o f running config.py

database
 file = V:\workspace\Python3_lesson12\src\email.shelf

As you can see, this gives us the ability to provide per-system config files. This is a good thing, because it
means you don't have to worry so much about users needing to change settings. A system administrator can
establish a central configuration file (and savvy users can provide their own configurations). Let's use the
addressbook.cfg file to set the database location in addressbook.py:

CODE TO EDIT: addressbook.py

import configparser
from optparse import OptionParser
import shelve

shelf_location = 'V:/workspace/Python3_Lesson12/src/email.shelf'
config = configparser.RawConfigParser()
config.read('V:/workspace/Python3_Lesson12/src/addressbook.cfg')
shelf_location = config.get('database', 'file')

class InvalidEmail(Exception):
 pass

def validate_email(email):
 if '@' not in email:
 raise InvalidEmail("Invalid email: "+email)

def email_add(email):
 validate_email(email)
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 if email in emails:
 message = False, 'Email "%s" already in address book' % email
 else:
 emails.append(email)
 message = True, 'Email "%s" added to address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def email_delete(email):
 validate_email(email)
 shelf = shelve.open(shelf_location)
 if 'emails' not in shelf:
 shelf['emails'] = []
 emails = shelf['emails']
 try:
 emails.remove(email)
 message = True, 'Email "%s" removed from address book' % email
 except ValueError:
 message = False, 'Email "%s" was not in the address book' % email
 shelf['emails'] = emails
 shelf.close()
 return message

def email_display():
 shelf = shelve.open(shelf_location)
 emails = shelf['emails']
 shelf.close()
 text = ''
 for email in emails:
 text += email + '\n'
 return True,text

def main(options):
 "routes requests"
 if options.action == 'add':
 return email_add(options.email)
 elif options.action == 'delete':
 return email_delete(options.email)
 elif options.display == True:
 return email_display()

if __name__ == '__main__':
 shelf = shelve.open(shelf_location)

 if 'emails' not in shelf:
 shelf['emails'] = []
 shelf.close()
 parser = OptionParser()
 parser.add_option('-a', '--action', dest="action", action="store",
 help="requires -e option. Actions: add/delete")
 parser.add_option('-e', '--email', dest="email",
 action="store", help="email used in the -a option")

 parser.add_option('-d', '--display', dest="display", action="store_true",
 help="show all emails")
 (options, args) = parser.parse_args()
 # validation
 if options.action and not options.email:
 parser.error("option -a requires option -e")
 elif options.email and not options.action:
 parser.error("option -e requires option -a")
 try:
 print(main(options)[1])
 except InvalidEmail:
 parser.error("option -e requires a valid email address")

 Save and run your tests and your code. There should be no difference in the results. Now, let's see what
happens when we don't provide a file option. Comment it out in the cfg file as shown:

CODE TO EDIT: addressbook.cfg

[database]
mac os x or linux
file = /workspace/Python3_lesson12/src/email.shelf
windows
#file = V:\workspace\Python3_lesson12\src\email.shelf

 Save it and run your addressbo o k.py.

OBSERVE: Running addressbook.py with no defined database.

Traceback (most recent call last):
 File "addressbook.py", line 7, in <module>
 shelf_location = config.get('database', 'file')
 File "configparser.py", line 327, in get
 raise NoOptionError(option, section)
configparser.NoOptionError: No option 'file' in section: 'database'

Your code has just thrown an exception! You can have the co nf ig.get () method pass in a default, but
usually you want to leave these exceptions as they are. Users who play with config files need as much
information as possible to get their configurations working, and passing in defaults means they may not
understand what happens when they pass in a setting incorrectly. Remember, good Python programmers like
to be as explicit as possible!

Multiple Sections

Here's a sample config file that might be used to set up a computer. This is just a simple example to show
you how system engineers o ften work:

Operating System Basic Setup

[personal]
first_name = Steve
last_name = Holden
age = 33
gender = male

[professional]
occupation = author
website = http://holdenweb.com

[location]
language = English (USA)
timezone = EST

[authentication]
username = sholden
password = like I'm going to tell you

The co nf igparser too l is extremely readable and quite machine-friendly. A significant portion o f the Python
community uses the INI fo rmat to describe critical dependency lists and so do users from other programming
languages. While there are o ther competing formats, such as XML, the INI fo rmat remains popular because
quite simply it is easy for humans to read and for machines it is as fast as, if no t faster than, the o thers to
parse and interpret. This ease o f interpretation has meant that XML usage for configuration has declined in
recent years while use o f the o lder INI fo rmat has grown.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Time-Based Computations
Lesson Objectives

When you complete this lesson, you will be able to :

use time-based functions.
represent time in various ways.
calculate time in Python.

What time is it?

If it takes seven days for the check to arrive, on what day will it arrive?

How many days until my birthday?

While these might seem amusing, they are serious—and common—questions for so ftware developers. Time-based functions
are invariably complex because we track time by non-decimal methods. While we might have 10 fingers and a meter has 100
centimeters, when it comes to time an hour has 60 minutes, a week has 7 days, and a month can have from 28 to 31 days.
Also, almost every four years you have to account fo r leap year. Many day-tracking calculations have to take into account the
standard business days o f Monday through Friday, and the weekend days o f Saturday and Sunday. The list o f "edge cases" in
time calculations is almost infinite!

It is arguably fo r this reason that Python has three built- in libraries for handling time issues: dat et ime , t ime , and calendar,
each o f which has a lo t o f sophisticated functionality. Because o f the vo lume of functionality provided by each library, this
lesson will focus on the dat et ime library. In fact, this lesson will focus on the three questions asked at the start, since they
provide an excellent introduction to many features o f handling time from the perspective o f a software developer.

What Time is It?
A common way to find the current time is with the code in this interactive session:

CODE TO TYPE: Type this code in an interactive conso le session

>>> import datetime
>>> print(datetime.datetime.now())
2010-09-26 20:21:50.813824

And there you have the time!

Time Representations

How a date is fo rmatted depends on who is looking at it. For a software developer, engineer, system
administrator, o r scientist, the format shown in that last session is a good way to see time. Because the date
is in YYYY-MM-DD format and the time uses the 24-hour clock, you can do easy sorting on the results either
by hand or with computers, whereas the American (MM/DD/YYYY) and European (DD/MM/YYYY) date
methods require more work for sorting, and the 12-hour clock repeats itself, so times after noon won't sort
correctly.

In fact, o ften people working in these time-sensitive fields rely on alternate time measurement methods like
counting seconds since the epoch or the Julian date (JD) system used by the astronomy community. Python
supports these alternate methods extremely well, which is one minor reason why Python is so frequently
used by the scientific community.

However, most people don't like, or even understand, this way o f representing time. It isn't what they're used
to seeing and forcing them to use a new time representation format is a good way to lose their interest in your
pro jects. Let's do some formatting to make this a little more natural to the American eye. Continue your
interactive session:

CODE TO TYPE: Type this code in an interactive conso le session

>>> now = datetime.datetime.now()
>>> format_string = "%x %X"
>>> now.strftime(format_string)
09/26/10 20:35:04

From previous lessons, you know what a formatter string does. Now nearly every time object by Python
supports the st rf t ime() method, which accepts a format string with any number o f predefined mapping keys.
"%x %X" fetches the datetime setup you defined on your computer when you set it up.

These predefined mapping keys let you map exactly what date and time setup you want your users to
experience. The legal mapping keys are:

key Meaning

%a Locale's abbreviated weekday name.

%A Locale's full weekday name.

%b Locale's abbreviated month name.

%B Locale's full month name.

%c Locale's appropriate date and time representation.

%d Day o f the month as a decimal number [01,31].

%f Microsecond as a decimal number [0 ,999999], zero-padded on the left

%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%j Day o f the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale's equivalent o f either AM or PM.

%S Second as a decimal number [00,61].

%U Week number o f the year (Sunday as the first day o f the week) as a decimal number [00,53]. All days
in a new year preceding the first Sunday are considered to be in week 0 .

%w Weekday as a decimal number [0(Sunday),6].

%W Week number o f the year (Monday as the first day o f the week) as a decimal number [00,53]. All days
in a new year preceding the first Monday are considered to be in week 0 .

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%z UTC offset in the form +HHMM or -HHMM (empty string if the object is naive).

%Z Time zone name (empty string if the object is naive).

%% A literal '%' character.

Armed with this table and the strftime() function, you can now provide a much more attractive date format
customized for your target user. Continue your interactive session now to try it out:

CODE TO TYPE: Type this code in an interactive conso le session

>>> format_string = "%A, %B %d, %Y at %I:%M %p."
>>> now.strftime(format_string)
Sunday, September 26, 2010 at 8:35 PM.

If it Takes Thirty-One Days...?
At a glance this should be easy—you just take the date o f the month as fetched by dat et ime.dat et ime.no w() and
add 31, right? Lets give it a try. Create a Pyt ho n3_Lesso n13 pro ject and assign it to the Pyt ho n3_Lesso ns working
set. Then, in your Pyt ho n3_Lesso n13/src fo lder, create co unt _t hirt yo ne_days.py as shown:

CODE TO TYPE: count_thirtyone_days.py

import datetime
now = datetime.datetime.now()
date = now.strftime("%d")
delivery = int(date) + 31
print("Today: %s" % date)
print("Delivery: %s" % delivery)

 At a glance, this looks like it should work, but in fact you'll get a response like this:

OBSERVE: Running count_thirtyone_days.py on November 29th

Today: 29
Delivery: 60

In theory, you could write a bit o f code that would handle month ro llovers and the leap year. This is not a small
undertaking and will probably take more time than you really want to dedicate to the problem of adding thirty-one days
to the current date. Also, your result would lack the ability to reformat the results via the st rf t ime() method because it
would be a simple integer, not a time object.

There Must be a Better Way to Add Days to a Date!

Yes, there is a way. The Python datetime library has an object named t imedelt a, which represents the
difference between two dates or times. This difference is called a duration. You can add a timedelta to the
current date, and it will account fo r month ro llovers and the leap year. Modify co unt _t hirt yo ne_days.py as
shown:

CODE TO EDIT: count_thirtyone_days.py

from datetime import datetime, timedelta # more attractive import
now = datetime.datetime.now()
delta = timedelta(31) # create a timedelta of 31 days
delivery = now + delta # add the timedelta to the current datetime.
print("Today: %s" % now.strftime("%d"))
print("Delivery: %s" % delivery.strftime("%d"))

 Save and run it. You'll see that it works correctly:

Running count_thirtyone_days.py on November 29th

Today: 29
Delivery: 30

You may have noticed that what was printed was string values returned from the st rf t ime() methods on the
no w() and delivery objects. This means that you can execute further calculations as needed on these
objects—they have not been changed at all. This becomes really useful when you want to skip over
weekends. Thanks to the dat et ime object's iso weekday() method which returns a numeric value as shown
below, we can write code that skips over weekends with some ease.

Value ret urned f ro m iso weekday() Weekday name

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

The next example shows how to skip over weekends. It doesn't take into account national or bank ho lidays,
but it is similar to what organizations use to determine when they can expect payments and o ther letters to
arrive.

CODE TO TYPE: Enter the code below as skip_weekdays.py

from datetime import datetime, timedelta

delivery = datetime.now()
delta = timedelta(1)
count = 0
while count < 31:
 delivery = delivery + delta
 if delivery.isoweekday() in (6, 7):
 continue
 count += 1

now = datetime.now()
print(now)
print(delivery)
print("Today: %s" % now.strftime("%d"))
print("Delivery: %s" % delivery.strftime("%d"))

 Save and run it. It counts only working days.

OBSERVE: Running skip_weekdays.py on November 29th

2010-11-29 10:40:26.439000
2011-01-11 10:40:26.439000
Today: 29
Delivery: 11

timedeltas for Weeks, Hours, Minutes, and Seconds

The t imedelt a object can be instantiated with o ther values than days. Some of the ones you'll use frequently
are weeks, hours, minutes, and seconds. All you need to do is add one or more o f these items as arguments
and the timedelta is constructed accordingly. Create mo re_delt as.py as shown to see what you get:

CODE TO TYPE: more_deltas.py

from datetime import datetime, timedelta

weeks = timedelta(weeks=2)
hours = timedelta(hours=1)
minutes = timedelta(minutes=100)
seconds = timedelta(seconds=1000)
composite = timedelta(hours=1, minutes=30)

now = datetime.now()
print(now)
print(now + weeks)
print(now + hours)
print(now + minutes)
print(now + seconds)
print(now + composite)

 Save and run it (your results will vary unless you traveled back in time to November 29, 2010):

OBSERVE: Running more_deltas.py

2010-11-29 10:41:06.312000
2010-12-13 10:41:06.312000
2010-11-29 11:41:06.312000
2010-11-29 12:21:06.312000
2010-11-29 10:57:46.312000
2010-11-29 12:11:06.312000

timedeltas for Years and Months

Years and months are not constants, thanks to the leap year issue and the general inconsistency o f month
durations. Therefore, the timedelta does not accept them as arguments. However, because the o ther
arguments (weeks, hours, minutes, etc.) are constants, timedeltas can handle the leapyear and month
durations, which works well fo r years and not so well fo r months.

This means you can provide an almost exact year timedelta by simply do ing this:

CODE TO TYPE: Type this code in an interactive conso le session

>>> from datetime import timedelta
>>> timedelta(365)
datetime.timedelta(365)

On the o ther hand, this obviously fails because months range in duration from 28 to 31 days:

CODE TO TYPE: Type this code in an interactive conso le session

>>> timedelta(30)
datetime.timedelta(30)

The general indeterminate duration o f a month is exactly why bankers use 30 days as their standard value
and why scientists prefer o ther date formats.

How Many Days Until my Birthday?
Remember when you were a kid and carefully counted the days until your next birthday? As a programmer you can
skip marking o ff each day and simply write a program to do the work for you. You can write a simple program that:

1. Takes your birthday.

2. Converts your birthday to a datetime object.
3. Subtracts the current date from your birthday object.
4. Publishes the results.

Ready? Let's do this thing!

When is Your Birthday?

The first step is to accept a date as your birthday. Let's use optparse to accept a string to be converted into a
datetime object. Then we'll use a new method, dat et ime.st rpt ime() to not only convert the string to a date,
but confirm that it is a valid date. The dat et ime.st rpt ime() method works like dat et ime.st rf t ime() , but in
reverse, converting strings to date objects. You use the same date-formatting keys as described for
dat et ime.st rf t ime() , which means you can create common formatting strings used across your
application for both creating and rendering time objects.

CODE TO TYPE: Type this code in an interactive conso le session

>>> formatter_string = "%m-%d-%Y" # format for MM-DD-YYYY
>>> from datetime import datetime
>>> datetime.strptime("07-24-1967", formatter_string) # The conversion code
datetime.datetime(1967, 7, 24, 0, 0)

But what if someone enters a date such as "1967-07-24" or something like "Python ROCKS" or even "15-35-
2010"? Since those does not match the format specified by the formatter string and are not valid dates,
dat et ime.st rpt ime() throws a ValueError exception. This makes it trivial to create datetime validators
without having to lean on string methods or even regular expressions, which could handle the rough
formatting issue o f numbers, but can't as easily handle the confirmation that a date is real.

With what we've learned so far, let's write some birt hday.py code:

CODE TO TYPE: birthday.py

import logging
from datetime import datetime
from optparse import OptionParser

logging.basicConfig(filename='birthday.log',level=logging.DEBUG)

class InvalidDateFormat(Exception):
 pass

def string_to_date(date):
 """
 Converts 'MM-DD-YYYY' to a date/time object
 or throws an InvalidDateFormat exception
 """
 try:
 # create a datetime object from the date value
 formatter_string = "%m-%d-%Y"
 birthday = datetime.strptime(date, formatter_string)
 except ValueError as e:
 # log the format error then raise it again so it can be handled graceful
ly
 logging.error(e)
 raise InvalidDateFormat(e)
 return birthday

def birthday_counter(birthday):
 """
 Returns the number of days until your birthday.
 (not yet fully implemented)
 """
 return 100

if __name__ == '__main__':
 parser = OptionParser()
 parser.add_option('-b', '--birthday', dest="birthday", action="store",
 help="Your birthday in MM-DD-YYYY format")
 (options, args) = parser.parse_args()

 format_error_message = "birthday.py requires a date in MM-DD-YYYY format"
 if not options.birthday:
 parser.error(format_error_message)

 try:
 print(birthday_counter(options.birthday))
 except InvalidDateFormat:
 parser.error(format_error_message)

Note
A more modern approach would use ArgParse instead o f the somewhat dated OptionParser.
We will update this course soon to show how to do that. Meanwhile, check out the examples at
the Argparse tutorial page; it's not that different from optparse, but it removes some limitations in
design.

This looks pretty good, but how do you know it works? Time to write a unittest!

https://docs.python.org/dev/library/argparse.html
https://docs.python.org/dev/howto/argparse.html

CODE TO TYPE: test_birthday.py

from datetime import datetime
import unittest

from birthday import *

class TestBirthday(unittest.TestCase):

 def test_birthday_counter(self):
 self.assertEqual(birthday_counter("10-31-1948"), 100)

 def test_string_to_date(self):

 self.assertRaises(InvalidDateFormat, string_to_date, "10-32-1948")
 # create a new datetime object from scratch
 datetime_obj = datetime(2012, 10, 31)
 self.assertEqual(datetime_obj, string_to_date("10-31-2012"))

if __name__ == "__main__":
 unittest.main()

 Save and run it as a Python unit-test ; bo th tests pass. Take a careful look at the second test, which checks
that the st ring_t o _dat e() function works properly. To do that, its second assertion requires a datetime
created from scratch. Hence this line o f code:

CODE TO TYPE: Type this code in an interactive conso le session

>>> from datetime import datetime
>>> datetime(2012, 10, 31)
datetime.datetime(2010, 10, 31, 0, 0)

Note that the self .assert Equal(dat et ime_o bj, st ring_t o _dat e("10-31-1948")) assertion is actually just
do ing dat et ime_o bj == st ring_t o _dat e("10-31-1948") . Just as you can add or subtract datetime
objects to or from each o ther, you can also do comparisons against them. This means you can do any o f
these comparisons:

Sign Descript io n

== equals

> greater than

>= greater than or equals

< less than

<= less than or equals

More Ways to Construct Dates

You can get a lo t more specific than days. You can specify hours, minutes, seconds, and microseconds. This
is good for constructing tests and setting up deadlines and o ther time-related po ints. Create
making_t ime.py as shown:

CODE TO TYPE: making_time.py

from datetime import datetime
print(datetime(2012, 10, 31))
print(datetime(2012, 10, 31, 12))
print(datetime(2012, 10, 31, 12, 30))
print(datetime(2012, 10, 31, 12, 30, 59))
print(datetime(2012, 10, 31, 12, 30, 59, 300))

 Save and run it:

OBSERVE: Results from Running making_time.py

2012-10-31 00:00:00
2012-10-31 12:00:00
2012-10-31 12:30:00
2012-10-31 12:30:59
2012-10-31 12:30:59.000300

Fetching Years, Months, Hours, etc. from a Datetime Object

The datetime object has integer attributes that are specific year, month, day, hour, minute, second, and
microsecond representations for that object. Create t ime_at t ribut es.py as shown below to demonstrate
your options:

code to enter: time_attributes.py

from datetime import datetime
dt = datetime(2012, 10, 31, 12, 30, 59, 300)
print(dt.year)
print(dt.month)
print(dt.day)
print(dt.hour)
print(dt.minute)
print(dt.second)
print(dt.microsecond)

 Save and run it:

OBSERVE: Results from Running time_attributes.py

2012
10
31
12
30
59
300

Finishing the birthday counter

We now have enough information to finish the birt hday.py program and test it adequately. Let's expand the
unittest to properly test the birt hday_co unt er() function.

CODE TO EDIT: test_birthday.py

from datetime import datetime
import unittest

from birthday import *

class TestBirthday(unittest.TestCase):

 def test_birthday_counter(self):
 self.assertEqual(birthday_counter("10-31-1948"), 100)
 # will fail on October 31
 self.assertTrue(birthday_counter("10-31-1948") > 0)

 # will fail on February 1
 self.assertTrue(birthday_counter("02-01-1999") > 0)

 def test_string_to_date(self):

 self.assertRaises(InvalidDateFormat, string_to_date, "10-32-1948")
 # create a new datetime object from scratch
 datetime_obj = datetime(2012, 10, 31)
 self.assertEqual(datetime_obj, string_to_date("10-31-2012"))

if __name__ == "__main__":
 unittest.main()

Now, we'll finish the birt hday_co unt er() itself. Because datetime handling can get tricky, we'll include lo ts o f
comments and lo gging.debug statements. Once we confirm that the provided birthday is valid, we can
construct an upcoming birthday using attributes from your own birthday and the current year. Give it a try:

CODE TO EDIT: birthday.py

import logging
from datetime import datetime, timedelta
from optparse import OptionParser

logging.basicConfig(filename='birthday.log',level=logging.DEBUG)

class InvalidDateFormat(Exception):
 pass

def string_to_date(date):
 """
 Converts 'MM-DD-YYYY' to a date/time object
 or throws an InvalidDateFormat exception
 """
 try:
 # create a datetime object from the date value
 formatter_string = "%m-%d-%Y"
 birthday = datetime.strptime(date, formatter_string)
 except ValueError as e:
 # log the format error then raise it again so it can be handled graceful
ly
 logging.error(e)
 raise InvalidDateFormat(e)
 return birthday

def birthday_counter(birthday):
 """
 Returns the number of days until your birthday.
 (not yet fully implemented)
 """
 return 100
 now = datetime.now()
 birthday = string_to_date(birthday)
 logging.debug("birthday: %s" % birthday)

 # construct the upcoming birthday from this year, your birthday month, and b
irthday day
 upcoming = datetime(now.year, birthday.month, birthday.day)
 logging.debug("upcoming: %s" % upcoming)

 # Make sure that upcoming is in the future, not the past
 if upcoming < now:
 upcoming = upcoming + timedelta(365)
 logging.debug("fixed upcoming: %s" % upcoming)

 # create a timedelta (duration) between the now and your birthday
 duration = upcoming - now
 logging.debug("duration: %s" % duration)

 # return only the days
 return duration.days

if __name__ == '__main__':
 parser = OptionParser()
 parser.add_option('-b', '--birthday', dest="birthday", action="store",
 help="Your birthday in MM-DD-YYYY format")
 (options, args) = parser.parse_args()

 format_error_message = "birthday.py requires a date in MM-DD-YYYY format"
 if not options.birthday:
 parser.error(format_error_message)

 try:
 print(birthday_counter(options.birthday))
 except InvalidDateFormat:
 parser.error(format_error_message)

You'll need to set the Run Configuration for birt hday.py, as learned earlier, to prompt fo r the argument
${st ring_pro mpt } . For detailed instructions, see the beginning o f the previous lesson.

 Save both programs and run the unit-test again:

OBSERVE: Results from Running test_birthday.py

..
--
Ran 2 tests in 0.172s

OK

Once the tests pass, run the program:

birthday.py -b 11-01-1957 (as done on 11-29-2010)

336

So how many days is it until your birthday?

Summary

Handling basic dates and times seems easy for us humans to do in our head because we've been taught
from a very young age how to read clocks. However, as soon as you need to calculate adding 156 minutes to
the current time or 65 days to the current day, things get very challenging. We often need to stop and think
about things because the math is not clear—we are converting from decimal into a chaotic mix o f base 60,
base 24 and o ther counting systems. Because o f this lack o f clarity, we need to take extra special care when
writing any kind o f date/time code.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and pro ject(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

