Python 3: The Python Environment

Lesson 1: Making Sense of User Inputs

About Eclipse
Perspectives and the Red Leaflcon

Working Sets

Getting Information for Programs

Command Line Arguments

Emulating the Command Line in Eclipse

String Analysis and Manipulation

Data Validation

Testing Strategy
Zip Code Validation

Quiz 1 Project 1
Lesson 2:Converting Data into Structured Objects

Constructing Classes
Introducing the Bunch Class
Adding a Behavior to the Bunch Class

Fixing a Bunch Class Issue

Application Programming Interfaces

Designing an API

Building the API
Sharing APIs
Calling the API

Method Resolution Order
Basic Method Resolution Order

More Complicated Method Resolution Order

Introspecting Inheritance Relationships

Laying the Foundation

Quiz 1 Quiz 2 Project 1
Lesson 3:lteration in Python

Iterables vs. Iterators
Old-Style lteration
New-Style Iteration

Creating Your Own lterators

Generators: Avoiding Creation of Large Sequences

Advantages of Generator Functions

A Simple Generator Function

An lterator Equivalent of the Generator

Generator Expressions
Quiz 1 Quiz 2 Project 1
Lesson 4: Basic Regular Expressions

Matching and Searching

Finding Characters: Regular Expression Patterns

Grouping in Patterns

homework/MakingSenseOfUserInputs_quiz1.quiz.html
homework/MakingSenseOfUserInputs_proj1.project.html
homework/ConvertingDataIntoStructuredObjects_quiz1.quiz.html
homework/ConvertingDataIntoStructuredObjects_quiz2.quiz.html
homework/ConvertingDataIntoStructuredObjects_proj1.project.html
homework/IterationInPython_quiz1.quiz.html
homework/IterationInPython_quiz2.quiz.html
homework/IterationInPython_proj1.project.html

Substitution for Patterns

Trying Out Patterns

Quiz 1 Quiz 2 Project 1
Lesson 5: More On Regular Expressions

Fundamentals of Regular Expressions

The Telephone Number Search

Reqular Expressions and Raw Strings

match() vs search()

More Regular Expression Features

More Complex Matching

Finding all with findall() and finditer()

More on Modifying Strings With sub() and subn()
Breaking Strings Apart with split()

Use Reqular Expressions With Care
CnURdThs?
String Methods Versus Reqular Expressions

Quiz 1 Quiz 2 Project 1

Lesson 6: Compiling and Flagging Regular Expressions

Compiling Regular Expressions

Using re.compile() to Make a Pattern Object

Pattern objects and positional arguments

Flagging Regular Expressions

Verbose Regular Expressions
Ignoring Case
Quiz 1 Quiz 2 Project 1
Lesson 7:Python's Object-Oriented Features
Encapsulation

Inheritance

A quick subclassing review

Multiple Inheritance

Polymorphism
Polymorphism: Same Operations, Different Types

Overriding vs. Extending methods

Quiz 1 Quiz 2 Project 1
Lesson 8:Consuming and Creating Binary Data

Python Data vs. Raw Computer Data

How Computers Represent Data

Endianness

Data Alignment

The struct Module

Format Strings
Packing and Unpacking Values

Quiz 1 Project 1
Lesson 9: Advanced Objects: Special Methods

Basic Customization

homework/BasicRegularExpressions_quiz1.quiz.html
homework/BasicRegularExpressions_quiz2.quiz.html
homework/BasicRegularExpressions_proj1.project.html
homework/MoreOnRegularExpressions_quiz1.quiz.html
homework/MoreOnRegularExpressions_quiz2.quiz.html
homework/MoreOnRegularExpressions_proj1.project.html
homework/CompilingAndFlaggingRegularExpressions_quiz1.quiz.html
homework/CompilingAndFlaggingRegularExpressions_quiz2.quiz.html
homework/CompilingAndFlaggingRegularExpressions_proj1.project.html
homework/PythonsObjectOrientedFeatures_quiz1.quiz.html
homework/PythonsObjectOrientedFeatures_quiz2.quiz.html
homework/PythonsObjectOrientedFeatures_proj1.project.html
homework/ConsumingAndCreatingBinaryData_quiz1.quiz.html
homework/ConsumingAndCreatingBinaryData_proj1.project.html

new__(): Creating New Objects

Representing objects as strings: __str__ ()

repr

Attribute Access
setattr ()
getattr ()
delattr ()

Emulating Functions:the call () Method
Quiz 1 Quiz 2 Project 1

Lesson 10: Properties
Putting Computations Behind Attributes

A Teacher Class Constructed of Properties

Decorator Syntax

Settable Properties

Setting Values via Properties

Deleting Attributes Using Properties

Quiz 1 Quiz 2 Project 1
Lesson 11: A First Look at Logging

Setting Up a Basic Logger

Other Logging Functions

Other Logging Levels

Getting Tests to Use Different Logging Levels

Log Formatting
Quiz 1 Quiz 2 Project 1
Lesson 12: Engineering Your Programs

optparse: A Powerful Command-line Processor

A Simple optparse Example

A Complex optparse Example

Validating optparse Options

Showtime!
Displaying All the Records

optparse Type Validation

configparser: Controlling Settings the Right Way

configparser to Store Database Settings

Multiple Sections

Quiz 1 Quiz 2 Project 1
Lesson 13: Time-Based Computations
What Time is It?
Time Representations

If it Takes Thirty-One Days...?
There Must be a Better Way to Add Days to a Date!
timedeltas for Weeks, Hours, Minutes, and Seconds

timedeltas for Years and Months

How Many Days Until my Birthday?
When is Your Birthday?

homework/AdvancedObjectsSpecialMethods_quiz1.quiz.html
homework/AdvancedObjectsSpecialMethods_quiz2.quiz.html
homework/AdvancedObjectsSpecialMethods_proj1.project.html
homework/Properties_quiz1.quiz.html
homework/Properties_quiz2.quiz.html
homework/Properties_proj1.project.html
homework/AFirstLookAtLogging_quiz1.quiz.html
homework/AFirstLookAtLogging_quiz2.quiz.html
homework/AFirstLookAtLogging_proj1.project.html
homework/EngineeringYourPrograms_quiz1.quiz.html
homework/EngineeringYourPrograms_quiz2.quiz.html
homework/EngineeringYourPrograms_proj1.project.html

More Ways to Construct Dates
Fetching Years, Months, Hours, etc. from a Datetime Object

Finishing the birthday counter
Summary
Quiz 1 Quiz 2 Project 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/TimeBasedComputations_quiz1.quiz.html
homework/TimeBasedComputations_quiz2.quiz.html
homework/TimeBasedComputations_proj1.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Making Sense of User Inputs

Welcome to the O'Reilly School of Technology (OST) Python Environment course!l We're happy you've chosen to learn Python
programming with us.

Course Objectives

When you complete this course, you will be able to:

e parse command-line arguments and perform string validation.

e build sophisticated structures like bunch classes.

e create yourown APlIs.

e enhance your code with iterables, iterators, and generators.

e manipulate textual data with regular expressions.

e apply advanced object-oriented programming techniques to Python development.
e exchange binary data with other languages and systems.

e configure user setups and log activity.

e calculate date and time.

By the time you finish the course, you will have expanded your knowledge of Python and applied itto some really interesting
technologies.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. Italso gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.

e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance,but don't depend on it. Try to solve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fair game.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it

until you've mastered the skill. We wantyou to get that satisfied, "I'm so cool! I did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try outlots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).
If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove witt—took—Ttike—this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is

provided by the system (not for you to type). The commands we want you to type look 1lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics)

for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:

Before you start programming in Python, let's review a couple of the tools you'll be using. If you took Introduction to

Python and/or Getting More Out of Python, you can skip to the next section if you like, or you might wantto go through
this section to refresh your memory.

About Eclipse

We're using an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right

now. IDEs assist programmers by performing tasks that need to be done repetitively. IDEs can also help to editand
debug code, and organize projects.

Perspectives and the Red Leaf Icon

The Ellipse Plug-in for Eclipse, developed by the O'Reilly School of Technology, adds a Red Leaficon - to the
toolbar in Eclipse. This icon is your "panic button." Because Eclipse is versatile and allows you to move
things around, like views, toolbars, and such, it's possible to lose your way. If you do get confused and want
to return to the default perspective (window layout), the Red Leaficon is the fastest and easiestway to do that.

Use the Red Leaficon to:

e reset the current perspective: click the icon.

e change perspectives: click the drop-down arrow beside the icon to select different perspectives
designed for each course that uses Ellipse.

e select aperspective: click the drop-down arrow beside the Red Leaficon and select the course
(Java, Python, C++, etc.). Selecting a specific course opens the perspective designed for that
particular course.

For this course, selectPython.

= 05T Python - Eclipse SDK

File Edit Mawvigate Search Project Run Window Help
+ Toresetthe perspective, click the Red Leaficon.
J W - | [T} J #&?‘ T 0 - % '\\

‘ Skart Page (‘ Syllabus (‘ 358
To select a different perspective, click the drop-down arrow. }

API J
I

debug code, and CH+

Perspectives and the Red Leaf Icon

Working Sets

You'll use working sets for this course. All projects created in Eclipse existin the workspace directory of your
accounton our server. As you create multiple projects for each lesson in each course, your directory could
become pretty cluttered. A working setis a view of the workspace that behaves like a folder, butit's actually an
association of files. Working sets allow you to limit the detail that you see at any given time. The difference
between a working setand a folder is that a working set doesn't actually existin the file system.

A working setis a convenientway to group related items together. You can assign a projectto one or more
working sets. In some cases, like the Python extension to Eclipse, new projects are created in a catch-all
"Other Projects" working set. To better organize your work, we'll have you assign your projects to an
appropriate working set when you create them. To do that, right-click on the project name and select the
Assign Working Sets menu item.

We've already created some working sets for you in the Eclipse IDE. You can turn the working set display on
oroff in Eclipse.

For this course, we'll display just the working sets you need. In the upper right corner of the Package Explorer
panel, click the downward-pointarrow and select Configure Working Sets:

[% package 22 - [20 Problems} e Tasks} = Console} B Terrninal 1 = EJl
EES)

-5 pythonl_LessoniZ Top Level Elements P |
= pythonl _Lessonl3
= pythonl_Lessonld
= pythonl_Lessonis o Filters...
{3;—; pvthonl _Lessanls

=P

= Pythonz_Homeworkd1

Canfiqure

Package Presentation 4

'_:,P Pythan2_HomewarkDz v Show 'Referenced Libraries' Node
P
= Pythonz_Homeworko3 <}=='=>Link with Editar

=5 Pythonz_Homeworkd4

.
L J
= Pythonz_Homeworkds
IUP prthonZ_Lesson0l
=5 pythonZ_Lesson0z2

'_,j'; pythonz_Lesson03
= pythonz_Lessonod
'_,j; pythonz_Lesson0s
'_:F; pvthonz_Lessonds
'_f? pvthonz_Lessond?
Ljp pvthonz _Lessonds
{35 pvthonz _Lessonds
{:pp pvthonz_Lessonld
IUP pvthonz_Lessonll
{35 pvthonz_Lessonlz
EHE P
Igc read_names
F-12E raading ;I

Select the working sets associated with this course (the ones that begin with "Python3"), and click OK:

= Configure Working Sets M=] 1

Select and sort warking sets wisible in Package Explorer:

O 1= pythont_Commurity ﬂ Up |

O JSJ Pvthonl_Handback,

O Jf,".lF";.fthu:unl_Hu:umen-'-.u:urk D |
O J.3‘-'F";.fl:hn:-nl_Less':-ns Select Al |
O 15 pythanz_Community

O 15 pythanz_Handback Deselect Al |

O JS-' Pvthonz_Homework,

J.f,‘.lF";.fI:h|:u|'|3_C|:|mml_lniI:';.-'
J.f,".lF";.fI:h|:||'|3_Ha|'u:||:|.En:k
120 Python3_Homewark
4= Python3_Lessons

SR __armmany
O 15 pythan4_Handback
O 45 pythand_Haomewark
O 15 Pythand_Lessans =

Mew., .. | Edit. .. | Remove |

[:‘:?:] Ik I Cancel

Now, we'll create a project to store our programs for this lesson. SelectFile | New | Pydev Project, and
enter information as shown:

&
PyDev Project

Create a new Pydew Project,

Bt
@rnject name: | Pvthon3_Lesson0l _)

Project conkents:
v Use default

Direckary: | Wi workspacePython3_Lessondl Browse |

Projeck bvpe

® python € Jython & Iron Python

Grammar Wersion \\
50 ~l

"Chcu:use the project kvpe

Click. here ko configure an interpreter not lisked,

" add project directory to the PYTHOMNPATH?
{ Create'src' folder and add it ko the P?THONPAT@
Don't configure PYTHOMPATH (to be done manually later on)

o
'M?) = Back Mext = | Einish I Cancel

Click Finish. When asked if you want to open the associated perspective, check the Remember my
decision box and click No:

= Open Associated Perspective? |

This kind of project is associated with the Pydey perspective, Do you want ko
gtl,) open this perspective now?

@ Rermermber ry decisiu:uD

s Mo |
""‘-_-""r

By default, the new projectis added to the Other Projects working set. Find Python3_Lesson01 there, right-
click it, and select Assign Working Sets... as shown:

e e e —

e n

My Courses

Sign Out

Mew
G0 Inka

R ___/’ﬁ”“.f'-“lyr e s e 7 ST T

My Meszages

& To get started on r’

want to wark on,
Be sure to use yvour
Learning Sandbo:x,
¥t Tou can work onoa
paced,
Tou can view and

Cpen in Mew Window
Show In AlE-+Shifk+

To cornrnunicate dif.
o Log in to uMail e
k| o Usethe OST Cnn!

=] Capy CErl+C
E=j Copy Qualified Name

o Email us directl
autornatically be re

As an 05T student

s

Assign wWiorking Sets. ..

L O Use code 4SCH
- Past Chrli
Lzl Faste ' books and a 50%
3 Delete Delete o UUse code URMF
i = T
[Package I Rermove Frorm Conbesxk i 1 | o LR =
Build Path » ,3:‘:} =
 ES pythy Refactor Alb+Shift+T M A
CoAe
{3?’: pyth g Impart. .,
5= Pyth 2 Evoort
5155 Pyth 5 Export, .,
H P
L:: Pythu .éh Refresh FS
l[:i Pythy Close Project
I:;- Py

L,:F':' pykhu Run &s

B P

F= pythe Debug As

B4 pyth Team

B P

Bz pythe Compare Wikh

545 oyt

-

*:: WE:' Pydey

; E;: ':"”th' PDE Toals
“f pythe

F

Restore from Local Histarsy, ..

Source

Alk+Enter

t '[:E‘; Python3_Lesson0l
i P

TEC- read_names
'[EC- reading

IEC' scope_hormewark,
mT:ﬁ chinrke ik

J :1} Python3_Lesson0l

Selectthe Python3_Lessons working setand click OK.

= Working Set Assignments !li[

Select working sets For 'Python3_Lesson01':

O J._.: Python3_Community Select all
O J._,: Python3_Handback,
O J._,: PythonZ_Homework,

(15 Pythond_Lessons)

Deselect Al

i

¥ Show only Package Explorer working sets Configure.. .

Getting Information for Programs

Programs have to process data. In the preceding two courses, we have used the built-in input () function to prompt the
user for data we needed. This works well enough for small quantities of data, but would be inconvenient for large
amounts. Itis much more difficult to write scripts around programs thatrequest data interactively.

Sometimes it's easier for the user, when they are invoking your program by typing a command, to provide information
as a partofthe command line they enter. Obviously this is mostuseful for small amounts of data—nobody wants to
write an essay atthe command line! But for filenames and options (indications to the program of how to modify its
processing), the command line is very useful. This also makes writing scripts to use the program much simpler.

Where larger amounts of data are concerned, you frequently getinvolved in reading textual data and transforming itinto
other Python types. You have already had to do this when reading numbers via the input () function, since that always
returns strings. You have to do similar things when reading from files sometimes. The majority of data arrives as text,
because much ofitis generated by humans.

Data that arrive in textual form need to be transformed into data that the appropriate Python operations can be
performed on. So we are going to start this third course in the Python Certificate Series by looking at another way to get
data into your programs, and ensure that it can be transformed safely into appropriate Python data types.

Command Line Arguments

The sys module contains a number of mechanisms for interacting with the system environment, and sys.argv gives
you access to the command line the user typed to start the program.

For example, if the user entered the command python myprog.py one two three, sys.argv would contain the value
['myprog.py’,'one’,'two’, 'three’']. In other words, the program name is sys.argv[0], the firstargumentto the
program call is sys.argv[1] and so on.

Emulating the Command Line in Eclipse

Under normal circumstances, you run programs from the command line, but during this class you run them
from the Eclipse-based learning system. In previous exercises, there has been no need to examine the
command line, and so you started your programs with a simple "Run" command. Now you need to
understand how to starta program with a simulated command line.

In order to understand the procedure, we'll create a program that prints out the contents ofits command line.

Right-click the Python3_Lesson01/src folder in the Package Explorer and select New | File:

‘ Stark Page &3

O’REILLY ‘

SCHOOL of
TECHNOLOGY

_}’ Pydew Project

— =% Project...

LIpEN 1IN Mew window

art Page

In the New File dialog, enter the name cmdline.py, and click Finish:

Show In Ale+Shift-+ > 8 Source Foider
(2| Copy ki £ Pydew Package
= Copy Qualified Mame [F] Pydey Module s, click on the ENTE‘B;»,
(2 Paste Cerl+v - “Mhogin, NOT your ema'g
¥ Delete Delete .
PP _phurses at any tlme’
Remave From Context Chrl-AlEHShifEHDaven . L receipt ar invoice
Build Path » [Example. .. wour instructor, you
Refactor Alk+SHiFE+T > andbox login and pass,
= Other... Chrl4N |and choose the "I am
ol . errrerme—areeerr—eerearrra o Feillyschool.com,
=] AMpOrt. .. automatically be routed to your instructor,
£ Expart. .. X
A5 an OST student, you have access to the following
o o Use code 4SCHT at hittp:/foreilly .comyfstored to r
s BElEED Fs books and a 50% discount on e-books,
Assign Working Sets. .. o Use code URMFGDE at Safari Books Online to r
{2 package &3 Run &5 9
Debug As (3 3
o : y P
#0 Other Pro =a
— Compare With L
JE‘._' PytthS_I Restore From Local Histary. ..
le_:lj Python3_| Pydey 3
=45 Python3 | Source ’
L =P
= I’:" Pytho Properties Alk+Enter

= Mew File ISI=] E3
File

Creake a new file resource,

Enter or select the parent Folder:

| Python3_Lesson0l fsre

EP? PywthonData
IEC- read_names
IEC reading

'[EC scope_homework,
=% sharkcut

1= simple-if

'[Ec skring

IEC- skring-conversion
1= kriangle

125 War-Exp

= war-pass

'[EC var-types

e -

Gile name: | emdline. pl)

advanced =

1 EEEEEE E

N

(7) | Finish I Cancel

In the editor, type the code as shown:

CODE TO TYPE: cmdline.py

o

Simple program to dump the command line arguments
mwrin

import sys
for n, arg in enumerate(sys.argv):
print(n, ":", arqg)

Next we have to tell Eclipse what values to provide for the command line arguments. The easiestway to do
this is to create a "Run Configuration", which is a set of specifications of the environment to apply when the
program runs. Select Run | Run Configurations... from the menu, click the lefticon on the Run
Configurations dialog toolbar.

= Run Configurations [x|

Create, manage. and run configurations ;

s

L1
el = —*l,
(J}E‘ X | El & - Mame: IPythonS_LessonDl crdline. py
\ENBW launch conFlgurat|0n|) Main 6= F\rguments} - Interpreter\I Q:><h Refreshw m Environmenq =| Common\I
----ep pvthon2_LessonUSﬂ .
"--ep pythonZ_Lessoné Project
e” pythonZ_Lessonds IPytthS_LessonDl Browse. .. |
eP python2_Lesson0?
ep python2_Lesson0? [~ Main Maduls
ep pythonZ_ esson0? I${w0rkspace_|oc:PythonS_LessonDl,l'src,l'cmdline.py}- Browse |
eF pythonz_Lesson0g
e” pythonz_Lesson0s PYTHOMPATH that will be used in the run:
ép pythonZ_Lesson& C:WProgram Filestedipseleclipselpluginsiorg. python. pydey_1.6.0,201007 181 3Py arcipydey_sitecustomize
ep pythanz_Lessonia g:l'iwotrtlflzpnace'gpyth0n3_LessonU1'|,src
e: pythonz_Lesson0s C;'l,Ezthon'l,DLLs
@ python2_Lesson09 Cipythomlib
e” pythonz_Lessonod C:'I,pyth-:n'l,l?b'l,p_lat-win
P Chpythonliblsite-packages
gp pvt:on;_ll:essonTE CiPythoniLiblsite-packagesimysqlconnector
prythonZ_Lesson
eF pythonZ_Lessonl0
eP python2_Lessonln
ep python2_Lessonl0
ep pythonZ_Lessonl0
eF pythonz_Lessonlz
eF pythonZ_Lessonl2
----eP Python3_Lesson0l
I:I---éI Python unittest -
LI_I b Aoy | Rewert |
Filter makched 186 of 188 items

This creates a new run configuration, initially named New_configuration, with empty values. Enter cmdline in
the Name: entry box at the top of the dialog; for the Project, click Browse to selectthe Python3_Lesson01
project; and for the Main Module, click Browse to select your cmdline.py program as the program to run.
Observe that Ellipse shows you which directories will be on your Python path.

= Run Configurations

Create, manage. and run configurations

»

£

VAALLAALLLALLLLLLLEL LN,

|type filker kext

Lessonlﬁ_Homeworﬂ
Lessonlé_Homewor
Lessonlé_Homewor
Mew_configuration
pvthonl _Lesson01:
pythonl _Lesson01e
pythonl _Lesson02
pythonl _Lesson02
pythonl _Lesson0z2
pythonl _[esson03
pythonl _Lesson03
pythonl _Lesson04
pythonl _Lesson04
pythonl _Lesson04
pythonl _[esson04
pythonl _Lesson0s
pythonl _Lesson0S
pythonl _Lessona
pythonl _Lessonié
pythonl _Lesson0é
pythonl _Lesson0a
pythonl _Lesson0?

pythonl _Lesson0? vI
»

—
t Mame: I cmdline }

) Main 6= F\rguments} - Interpreter\I Q:><h Refreshw m Environmenq =| Common\I
rProject Vs
IPytthS_LessonDl -+ {\ Browse, ..

~Main Module
I f{workspace_loc:Python3_Lesson0l fsrcfcmdling. py) f\j

PYTHOMPATH that will be used in the run:

C:\Program Filesteclipseledlipse\plugins'org. python, pydev_1.6.0.2010071813\Pyarcipydey_sitecustomize
Yi\workspace\Python3_Lesson01Ysrc

Ciipython

CtiypythomDLLs

Cipythomlib

Chpythonlibplat-win

Chpythonliblsite-packages

CiPythoniLiblsite-packagesimysqlconnector

apply | Rewert |
Filter makched 1587 of 189 items
6 Run | Close

Next, select the Arguments tab. In the Program Arguments field, enter ${string_prompt}. This special
value tells Ellipse to ask you for the arguments to the program when you run this configuration. Leave
everything else as itis:

= Run Configurations

Create. manage, and run configurations

GEX|B3®-

|type filker kaxt

Lessoan_Homewor;I
Lessonlé_Homewor
Lessonlé_Homewor
Mew_configuration
pythonl _Lesson0l:
pythonl _Lesson0l:z
pythonl _Lesson0z
python! _Lesson02
pythonl _Lesson0Z
pythonl_Lesson03
pythonl _Lesson03
pythonl _Lesson04
pythonl _Lesson04
python! _Lesson04
pythonl _Lesson04
pythonl_Lesson0s
pythonl _Lesson0S
pythonl _Lesson0e
pythonl _Lesson0eé
python! _Lesson06
pythonl _Lesson06
pythonl_LessonQ7?

pythonl_Lessond7 -
L] | | » |

Filker matched 157 of 159 kems

LALAALALLLELLLLLLL LN,

Marne: I crdline

(

ﬂ Maﬁ ()= Arguments >lr3 Interpreteq

Qéh ReFresh\I ® Environmenq =] Commolﬂ

—Pr '
’w—-\

$4string_promptH|
M /’

Wariables...

_l‘_l'_

—WM arguments (Far python.exe or java.exe):

-
[

Yariables... |

—Working directory:

* Default:
 Other:

| $4project_lock

Warkspace, . FiIeSystem...l Vatiables. .. |

Apply | Rewert |

Click Apply to save this run configuration, and then click Run. You will see a new dialog box, entitled
"Variable Input" appear. Enter several words in the dialog box separated by one or more spaces:

=variblempu |

Please input & value

B

l:liwas brillig and the slithy I:-:w'es|)

(0].4 I Zancel

Click OK. In the Console tab on the left, you should see the output from this run with the arguments you

entered.

se th Conta rm and choose the "I am currently a student” option,
o Emaill us directly st learn@oreillyschool.com, and your email wil
autarnatically be rovted to your ingtructor.

student, you have access to the fallawing student discounts:

ASCHT at http: Aoreilly .comy ra/ ta receive a40% discount on print
1 a 50% discount on e-books,
| ade URMFGDE st Safan Books Online to receive 30% off an individual
|% Package Explarer | [£ Problems | v Tasks | £ Console 21 4™ Tesminal 1 = B[[F) emdine & .
<herminated> boves ‘=L
ISR LA = i imple program to dump the command line Arguments
0 1 ¥Vi\workspace\Pythond Ll-ssnnnl‘,srn‘,nmrilinﬁ.pD ;I e
—rwm 4 imporr ays
2 ¢ brillig 5 for n, Arg in enuwmerace [3ys.argv) :
3 1 and £ print o, |*:", acg)
4 : the
S : =lithy
& : toves

AN AN A

L |

| Wiritable Insert 6114 \

Now you know how to access the command line arguments inside your program. When you run programs
outside of Ellipse, you'd just put the data values on the command line (for example, cmdline.py twas brillig
and the slithy toves) instead of having to run the program and then respond to a prompt.

String Analysis and Manipulation

You have already learned quite a lot about Python strings, and this knowledge will be useful when itcomes to
accepting data from the user and ensuring, before you try to use itin calculations or for other purposes, thatitis
appropriate for the intended use.

Data Validation

Ideally, a program should never use data inputs from the user without first checking their reasonableness.
Quite often, you need to validate input data by verifying that it conforms to a specific pattern. For example, US
ZIP codes are either five digits (the older shortform) or nine digits with a dash between the fifth and sixth digit.
UK postal codes are somewhat more complicated, with two groups of characters separated by a space. The
firstgroup is one or two letters followed by one or two digits, the second group is always one digit followed
by two letters:

GU|16|| 7PW
| | |Sector]|

Other validations might require not only thatinputs are numbers, but that they fall within a specific range. The
methods of Python's string objects, together with the ability to "carve up" a string using slicing, can be used to
perform a limited analysis of a string's contents. If these techniques do not suffice, we need to "bring out the
big guns" and use regular expressions, which you will learn aboutin due course.

For a validation routine, you might decide to return True if the data is acceptable and False ifitis not. That
approach makes it difficult for the user, though. ltis less than helpful to tell them "something is wrong with this
data"—you need to explain whatis wrong with it, and ideally, how they can fix it. This, in turn, means that you
have to have some way of getting error indications back from the validation process.

One simple way of validating is to write a function that returns an error message if something is wrong, or
None when there are no problems with the data. Once you have saved the result of the function, you can test it
(immediately or later) and display the error message if appropriate. You need to be careful with naming of

such functions. The result they return will test as True when errors are detected, so use a name like
data_errors() rather than verify_data(), because when the function returns a value it signifies there are
errors in the data.

If you want your error checking to be particularly complete, you might want to return more than one error
message about a particular piece of data. The natural way to return this would be to accumulate a listinside
the validation function and then return the list. If the listis empty, the data is valid. You will see examples of
various techniques in the remainder of this lesson.

Testing Strategy

The primary issue with testing validation routines is that the routines are designed to succeed or fail
according to the "goodness" of the input data. You therefore need to test both that correct data are correctly
validated and that incorrect data are correctly declared invalid.

This means you need two kinds of tests: you have to test that the function fails on bad data, and that it
succeeds on good data. Ifitdoesn'tdo both of these things, itisn't working.

Zip Code Validation

Suppose that you want to verify that a string contains an acceptable US zip code. This kind of task can be
puzzling, butitis worth trying to work out for yourself the logic you would apply. The most straightforward and
readable way is usually the best—don't worry about efficiency unless you experience a performance problem
(you usually won't).

In this particular case, the conditions are fairly easily stated: The zip code must be a string oflength five or ten
characters. The first five must be numeric; if the length of the string is ten, the sixth character mustbe a minus
sign and the lastfour must be numeric. Before you get carried away, though, think about how you are going to
provide this functionality. Since a zip code check might be useful in all sorts of contexts it probably makes
sense to write a function, in a module on its own (you can add other address checking functionality later).

Next, you need to decide on an APl for your verification function and write some tests for it. For simplicity, let's
justsay thatitreturns a single error message when it finds a problem with the zip code. Remember, ifa
function continues execution until it "drops off the end," the call will automatically return None, indicating
success.

You will start, as usual, by writing the tests. This time we are going to getas much help from Ellipse as
possible. In the Package Explorer, right-click the Python3_Lesson01/src folder, and select New | Pydev
Module from the context menu.

= 05T Python - Python3_Lesson01/src/cmdline.py - Eclip¥

elipze. oreilyechool.com

File Edit Source Refactor Source Refactoring Mavigate Search Projectk Run Window Help

| |- [F-0-Q-]S -]

. Start Page &3

O'REILLY" ‘ oaNoToGy

L, YR

(I - ¢ oo
Go Into [Project... rt P
. : H age
Cpen in Mew Window [Source Folder g
Shiaw In Alt+Shift+w
|| Copy Chrl+C X
5= Copy Qualified Mame ~ 51, click on the ENTER button next to the o
o “ Fi . .
[Pasts chriy LT File Login, NOT your email address, when lo
Delete Delets = Untitled Text File -
ourses at any time, as they are comple
Remave from Conbesxt Chr+Alb+Ehif+Down ([Example) o
e N br receipt or invoice below,
uild Pal - i
_ rﬁOther... M our instructor, you can do any of the fol
Refackor alt+shift+T 3 andbox login and password.
0 Use the OST Contact Form and choose the "I am currently a studen
f2g Import. .. o Ernail us directly at learn@oreillyschool.com, and your email wil
autornatically be routed to your instructor,
£ Expart...
As an 05T student, you have access to the following student discounts:
Q:gh Refresh F5 O Use code 4SCHT at http:/foreilly.comd/store/ to receive a 40% discou
)) books and a 50% discount on e-books.
Assign ‘Working Sets. . O Use code URMFGDB at Safari Books Online to receive 30% off an in
[% Package Exploi Run As b jnal 11 = 0|/ [F] cmdline #
?::rung s : 0& - 1= rrr.rrr '__
ﬂﬁj Other Pra; . 2 Simple program to dump the command
Compare With + 3 men
J.ﬁ‘l Python3_c §)
JSJ Pythan t Restare From Local Histary. .. 4 |import sys]
= Pred » i .
J‘ﬁj Python_| ey ; 5 for n, . arg 1rr1r inumerat.e 3] argvj'
EJ&F Pythan3_L Source & printin, :T.oarg)
: -
B Properties alt+Enker

In the dialog that appears:

'-«""‘M«M—J‘h‘x.."-r“\-’“‘"“-’“\;MH‘ \rﬂa.wd""‘r‘“‘\l\

e Leave the Package field blank.

e ForName, entertest_zipcheck (you don'tneed to add the ".py"—Ellipse knows thatis needed).

e For Template, select Module:unittest from the list.

e Click Finish.

Create a new Python module '

Source Folder |,|'P~,fthu:un3_LesscunEIl,l'srn: Browse, ., |
Package | Browse, .. |
Marne (! test_zipn:heclf)

<Emphkw =
Module: Class

e rai——— ,
Templake ‘ Module: Unitkest Config. ..
T RER——

setlp and tearDown

(7) Finish I Cancel
This creates a new module with quite a lot of source code already filled in:

[F] emdline [F] *test_zipcheck &2 =0
e 5

Cregted oxn Qct 13, 2010
Fauthor: smiller « ‘\[Ellipse enters today's date

o & and your name.

2
3
4
5
5 import unittest
-
g
=]

clas=s Test (unitctest.Tesclase) :
10
11
1z def test]fngiself]:
13 pass
14
15
16 if _ name == " main ":
17
15 unittest.maini)

4 | s o

If you now immediately enter "_zip_errors" (without the quote marks) you will see thatnotonly is the name
ofthe method completed but the list elementin the commented statement (line 17) is also changed. This is a
convenience feature from Ellipse—you won't be using the commented statement, butit's neatto see what the

software can do.

Next, modify the program by changing the new method's body code and adding another method:

CODE TO EDIT: test_zipcheck.py

Created on Aug 29, 2010

@author: sholden

Test the zip errors() function from the zipcheck module

import unittest
from zipcheck import zip errors

class Test (unittest.TestCase):

<l £ 2NL L 1 £\
def—testName{setfi
def test zip errors(self):
"Tests ensuring errors in data cause validation failures."

raise TypeError ("No tests yet present.")

def test zip successes(self):
"Test ensuring that valid data passes."

pass
if name == " main ":
#import sys;sys.argv = ['', 'Test.test zip errors']

unittest.main ()

Before running this program you want to make sure that you atleast provide a stub zip_errors() function so
that your tests fail rather than giving errors when trying to import the function, so create the zipcheck.py file
as shown below. Note that the stub returns None—although a stub should ideally fail, and the default value of
None returned by a stub containing only a pass statement will be regarded as successful, you cannot

implement a stub that fails when itis supposed to and succeeds when itis supposed to without writing the
validation function in all its glory!

CODE TO TYPE: zipcheck.py

T

zipcheck.py: validation function for US zip codes

def zip errors(z):

Validate z as either NNNNN or NNNNN-NNNN.

won

pass

Save and run your test_zipcheck.py file now. It shows a failure.

Observe that the test method terminates with the first failure

S

ERROR: test zip errors (_ main .Test)
Tests ensuring errors in data cause validation failures.
Traceback (most recent call last):
File "V:\workspace\Python3 LessonOl\src\test zipcheck.py", line 15, in test zi
p_errors
raise TypeError ("No tests yet present.")
TypeError: No tests yet present.

Ran 2 tests in 0.016s

FAILED (errors=1)

As usual, this is hardly surprising with an empty stub replacing the desired functionality. Note, however, that
the second test passes in its entirety. This is because the function has to either succeed or fail, and since by
default it succeeds, by default good zip codes are accepted as good.

In fact the second testis there to verify that there are no failures to acceptgood data. Unless you induce such
failures, you will probably never see a failure of this test. If you do, however, you know something serious has
gone wrong. Furthermore the first test, being a stub, would have also succeeded if you hadn't specifically
made it fail with the raise statement.

You can remove the raise as soon as you introduce real tests, which is the next step. You are going to add
negative tests, which will fail if the validation function affirms data acceptable when it should notbe, and
positive tests, which will fail if the function refuses to accept a string when it should.

This is a matter of balance. For now, leave your stub function as itis and make the tests a little more
comprehensive.

Save and run the test. We still see a failure, but now atleast we can see that zip codes ofincorrect length are

CODE TO EDIT: test_zipcheck.py

v

Created on Aug 29, 2010
@author: sholden

Test the zip errors() function from the zipcheck module
LN]

import unittest

from zipcheck import zip errors

class Test (unittest.TestCase) :

def test zip errors(self):
"Tests ensuring that errors in data cause validation failures."

[TENA

: m = L n
T ITYyPeLT ot VO

TeSTSyet present
self.assertIsNotNone (zip errors("1234"), "Accepting length 4")
self.assertIsNotNone (zip errors("12345-678"), "Accepting length 9")
self.assertIsNotNone (zip errors("1234e"), "Accepting alphabetic 5")
self.assertIsNotNone (zip errors("12345-678Y"), "Accepting alphabetic 5+4

self.assertIsNotNone (zip errors("12345/6789"), "Accepting non-hyphen")

def test zip successes(self):
"Test ensuring that valid data passes."
Pass
self.assertIsNone (zip errors("12345"), "Not accepting 5-digit zips")
self.assertIsNone (zip errors("12345-6789"), "Not accepting 9-digit zips"

if name == " main ":
#import sys;sys.argv = ['', 'Test.test zip errors']
unittest.main ()

being caught.

So

OBSERVE: With real tests in there, the first test still fails

s

FAIL: test zip errors (_ main .Test)
Tests ensuring that errors in data cause validation failures.
Traceback (most recent call last):
File "V:\workspace\Python3 LessonOl\src\test zipcheck.py", line 15, in test zi
p_errors
self.assertIsNotNone (zip errors("1234"), "Accepting length 4")
AssertionError: unexpectedly None : Accepting length 4

Ran 2 tests in 0.015s

FATILED (failures=1)

now we need to enhance zipcheck to test the length of the input. There are only two valid values.

CODE TO EDIT: zipcheck.py

v

zipcheck.py: validation function for US zip codes

def zip errors(z):

Validate z as either NNNNN or NNNNN-NNNN.

PEss
if len(z) not in (5, 10):

return "Zip codes should be 5 or 10 characters long"
return

Save and run the test. Notice that the validation function now accepts an input as valid if it doesn't specifically

find anything wrong with it. This requires your error checks to be exhaustive (which they aren't at the moment,
as you discover by running your tests again).

OBSERVE: Running test_zipcheck.py shows length checks are working

7'

FAIL: test zip errors (_ main .Test)
Tests ensuring that errors in data cause validation failures.

Traceback (most recent call last):

File "V:\workspace\Python3 LessonOl\src\test zipcheck.py", line 17, in test zi
p_errors

self.assertIsNotNone (zip errors("1234e"), "Accepting alphabetic 5")
AssertionError: unexpectedly None : Accepting alphabetic 5

Ran 2 tests in 0.000s

FAILED (failures=1)

You also need to make sure that the first five characters of the zip are all numeric (and for ten-digit inputs, that
the last four characters are numeric too). This is a relatively simple modification: you justreturn an error

message complaining about the characters unless they are all numeric. The only slightly tricky partis not
testing the lastfour unless the length of the inputis ten.

CODE TO EDIT: zipcheck.py

zipcheck.py: validation function for US zip codes

def zip errors(z):

non

Validate z as either NNNNN or NNNNN-NNNN.

if len(z) not in (5, 10):
return "Zip codes should be 5 or 10 characters long"
if (not z[:5].isdigit () or

len(z) == 10 and not z[6:].isdigit()):
return "Zip code contains non-numeric characters"
return

Save and run the test. Now the function correctly raises errors for zips with non-numeric characters in them,

but you still see failures because there is nothing yet that checks to make sure that, in a zip+4, the two parts of
the zip are separated by a dash.

OBSERVE: the tests still fail, even though further checks have been added

17

FAIL: test zip errors (_main .Test)
Tests ensuring that errors in data cause validation failures.

Traceback (most recent call last):
File "V:\workspace\Python3 LessonOl\src\test zipcheck.py", line 19, in test zi
p_errors

self.assertIsNotNone (zip errors("12345/6789"), "Accepting non-hyphen")
AssertionError: unexpectedly None : Accepting non-hyphen

Ran 2 tests in 0.016s

FAILED (failures=1)

The final test makes sure that ten-digit zips have a dash in the correct position. This is the last check that we
can make—any zip that passes all those tests is good. If none of the tests detect a failure it's OK to succeed
by returning None, which as usual happens by default.

CODE TO EDIT: zipcheck.py

T

zipcheck.py: validation function for US zip codes

def zip errors(z):

Validate z as either NNNNN or NNNNN-NNNN.

if len(z) not in (5, 10):
return "Zip codes should be 5 or 10 characters long"
if (not z[:5].isdigit() or

(len(z) == 10 and not z[6:].isdigit())):

return "Zip code has non-numeric characters"
if len(z) == 10 and z[5] != "-":

return "Ten-digit zips must have a dash between the two parts"
return

Save and run the test. Finally, it passes! The bad zip codes are returning error messages and the good zip
codes aren't.

OBSERVE: Finally the test passes

Ran 2 tests in 0.000s

OK

Notice that separation between the tests of good zips and the tests of bad zips made it somewhat easier to
observe that the test coverage was improving. The fact that the second test always succeeded simply shows
that the code was developing along the rightlines. Had it failed at any time, you would have seen that the
validator was failing to approve valid data, which would have been valuable feedback.

So, that gives you a briefintroduction to data validation in Python. Ideally you should never use data that has notbeen
through some validation process. Failure to validate inputs is the source of many well-known security issues,
including "buffer overflow" attacks and "SQL Injection" attacks. All data that flows into a system should be validated.
Once itis stored by a program that has validated it the data can generally be considered trustworthy, but any new inputs
from outside (users, even remote servers in certain cases) should be treated with suspicion. Getin the habitof
validating your data, and make sure that you use tested validation routines so you can have a reasonable degree of
confidence that they are going to validate as expected.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Converting Data into Structured Objects

Lesson Objectives

When you complete this lesson, you will be able to:

e constructing classes.

e utilize application programming interfaces.

e apply method resolution order.

In the previous courses, we've touched on various methods of structuring data. lterators such as lists and tuples have their
place, as does the dict. The clever usage of these fundamental structural elements in Python is a defining hallmark of a skilled
developer.

Sometimes, though, you need objects that behave in different ways. Assigning one behavior to the data such as "render to
CSV" can be easy. Butwhatif you have a dozen behaviors to consider? What if you need to include behaviors such as 'print
prettily to the screen, sum up the integer values, add an ISBN from the O'Reilly bookstore', and a dozen more operations?

You could use your list, tuple, or dict structures in combination with a dozen functions to create the functionality you need.
However, thatisn't very portable, as remembering to import all your functions across multiple modules is error-prone and time-
consuming. Really what you are looking for is a way to carry the functions around with the data, making them really easy to

apply.

This means it's time for us to revisit object oriented programming. With a little bit of work, you can apply a sound structure to
incoming data. Applying this sound structure to your data can provide a number of positive benefits. Since the datais in a
predictable format, you can more easily write code to support the data. The structure can also be assigned behaviors, which can
be applied to the data. All the behaviors are defined in a class definition, making them readily available to all instances of the
class.

If you document the expected structure of the data you expect to receive, you are providing an interface for yourselfto follow in
the future. The wonderful thing is that Python gives you the tools to easily create interfaces that are easy to understand, flexible,
and very powerful.

Constructing Classes

In previous courses and lessons, we learned how to write classes and create objects. We also learned about the
__init__() special constructor method used each time an objectis instantiated. Now, we'll learn a few more things
aboutthe __init__() method and things you can do to better handle behavior of data.

You may remember thatinstances of your classes normally keep their instance attribute values in a dict known as
self.__dict__. Remind yourself with a quick interactive interpreter session.

CODE TO TYPE: Enter the following code at an interactive console session

>>> class Meter:
def init (self, voltage):
self.limit = voltage

>>> ml = Meter (20)

>>> ml.label = "Apartment 2214"
>>> ml. dict
{'"limit': 20, 'label': 'Apartment 2214'}

See how self.__dict__ implements the instance m1's local namespace? When we bind a value to the name "limit" in
the instance's namespace with selflimit = voltage, a new key "limit" appears in the instance's __dict__, associated with
the value "20." One of the reasons why namespaces seem so like dicts is thata dictis often used to implementa
namespace.

Introducing the Bunch Class

Through the use of keyword arguments, Python gives us the ability to create a bunch class. A bunch class
takes incoming data and saves it as attributes. That sounds more sophisticated than itis, so let's write a

bunch class and see what it means. Create a new Python3_Lesson02 projectand assign itto your
Python3_Lessons working set. Then create bunchclass.py in your Python3_Lesson02/src folder as
shown:

CODE TO TYPE: bunchclass.py

wwn

Simple bunch class
class Bunch (object) :
def init (self, **kwargs):
self. dict .update(kwargs)

if name == " main ":
b = Bunch (name="Python 3", language="Python 3.0.1")
print (b.name)
print (b.language)
print (b. dict)

Save and run it.

OBSERVE: The attribute values and the updated __ dict__

Python 3
Python 3.0.1
{'name': 'Python 3', 'language': 'Python 3.0.1'}

You see the two values, "Python 3" and "Python 3.0.1," printed from the "name" and "language" attributes of
the "b" object. Butthe Bunch class lacks those attributes!

Remember thatinstances keep their attributes in a dict-like object (named __dict__), and that the code
guarded by if __name__=="__main__": will only be executed if the module is run as a main program, and
notwhen itis imported by some other program. In the latter case, you don't want print statements running in
the middle of someone else's program!

Let's take a closerlook:

OBSERVE: bunchclass.py

wnn

Simple bunch class
class Bunch (object) :
def __init (self, **kwargs):
self. dict__ .update (kwargs)

if name == " main ":
b = Bunch (name="Python 3", language="Python 3.0.1")
print (b.name)
print (b.language)
print (b. dict)

This Bunch class uses the magic __dict__ attribute's update() method to dynamically add attributes to the
object based according to the keyword arguments passed into the class. Note thatthe __init__()
method's second argumentis prefixed by "**", so keyword arguments are collected in a dict named kwargs.
Calling __dict__'s update() method copies the keys and values from kwargs to __dict__.

E In Python 3, when we define a class, we don't need to specify that it inherits from object, but it E
' Note doesn'thurtto do so.We do ithere justto remind you thatthe Bunch class is a child of the '
: built-in object. :

All our code should have tests, even programs as seemingly simple as this. Convert the above program to
use the unittest framework.

CODE TO EDIT: bunchclass.py

Simple bunch class

wnn

import unittest

class Bunch (object) :
def init (self, **kwargs):
self. dict .update(kwargs)

class TestBunch(unittest.TestCase) :
def test attributes (self):
b Bunch (name="Python 3", language="Python 3.0.1")
self.assertEqual ("Python 3", b.name)

self.assertEqual ("Python 3.0.1", b.language)
if name == " main_ "
b i =D 1 1 1 =D 1 2 ral .
b—-—Burch{trare— o —rargtage="PyEhor—3—6—+Y

SNFERYA)
PrIITc (oL Iramne s

A P |
PrIfTc (o angaagey

4 \
= 7

unittestfﬁain(?ﬁ

Lo (1 s
TrTITT (o~ o

Save and run it.

OBSERVE: The test passes when you run the program

Ran 1 test in 0.000s

OK

The tests are small here, so itis OK to add them to the basic module rather than making a separate test
module. The current code always imports the unittest module even when itis notgoing to be used (when
the module is imported rather than running as a main program). You can correct this by moving both the
importofunittest and the code for the test class itself so that these pieces of code are only executed when
required:

CODE TO EDIT: bunchclass.py

Simple bunch class

e
class Bunch (object) :
def init (self, **kwargs):
self. dict .update(kwargs)

1 innl =1 /[. = il = AY
+ass—FestRurehturittestFestCasey)
3 £ . A= e) = L 1 £
A A T C dCCLTTUUOCT Y I
1o n |~ N Al 201 1 N =l 2 fal e B 1 AN
1) o DUITCIT (ITaImS i CITUIT 7 7 J_Ctll\j uG\\jC* iy CITUIT . . L
= o 1 (D N 201 N~ \
=} LTI« = L L,J_AL:LLAQJ. A e CIT 1T J 7 T TTIAITET
= =10 1 (D =1 2 ral i 1 1o 1 AY
setf= reberat ' Pythor—S—60—1+ b —tenguase)
3 — " 2 "
if name == main

import unittest
class TestBunch (unittest.TestCase) :
def test attributes(self):
b Bunch (name="Python 3",

language="Python 3.0.1")

unittes

self.assertEqual ("Python 3",

self.assertEqual ("Python 3.0.1",

t.main ()

b.name)
b.language)

While this works, itis really rather simpler to put the testing code into an entirely separate module thatdoes
not cause additional work when testing is notrequired. So we'll undo these modifications in a minute to keep
the code in the remaining examples as straightforward as possible.

Adding a Behavior to the Bunch Class

The bunch class is useful in handling incoming data, but what about sending it out? For example, what if we
wantto printall the data? A firstapproximation to thattask could simply use print(b.__dict__), but the output
is hardly user-friendly. You can easily add a method to the Bunch class.

CODE TO EDIT: bunchclass.py

Simple bunch class with a pretty printing method

o

import unittest

class Bunch (object) :
def init (self, *args, **kwargs):
self. dict .update(kwargs)

def pretty(self):
text = ""
for key, value in self. dict .items():
text += "%s: %$s\n" & (key, value)
return text

class TestBunch (unittest.TestCase) :

def test attributes(self):
b = Bunch (name="Python 3", language="Python 3.0.1")
self.assertEqual ("Python 3", b.name)
self.assertEqual ("Python 3.0.1", b.language)

def test pretty(self):
b = Bunch (name="Steve Holden", profession="Pythonista")
p = b.pretty()
self.assertTrue ("name: Steve Holden" in p)
self.assertTrue ("profession: Pythonista" in p)
self.assertEqual (len(p.splitlines()), 2, "Too many lines in output")

— " "
if name main
2 = i 4=
Trport—unittests
1 lanl =1 i L i inul =0 \
+ass—FestRurehturittestFestCasey
<l £ = A= St o A= 1\
A=A p T T aC CLTTToUUOCT AN f gy
1o n i N =l 211 N =l 2 fal i 1
T o DUITCIT (TTATIT 7 EYL,I,\ 1T J 12 J_Glll‘juag 7 EYL,\J 1T T e T B 7
1 £ o 1 /(0D =l 11 \
L L .o J.L,J_AKJ_LUGJ.\ E C1T 1T 12 L TTCTIIT T
1 £ =10 1 (1D =l fa) 1.0 N~ 1
etfasserthagrat{Python 1 b—tanguage)

unittest.main ()

This version of the bunch class uses a pretty() method to display the attributes by accessing the object's
magic __dict__ property. Calling this method renders the attributes of the instance—with each key, value pair
printing as key: value. Of course adding a new method means adding tests forittoo, so test_pretty() tries
to verify thatitis creating the expected output.

Run your tests again to verify that they both succeed:

OBSERVE: the new test should pass firsttime

Ran 2 tests in 0.000s

OK

Fixing a Bunch Class Issue

There is an issue with the updated Bunch class. It hasn't created any problems so far, but some interactive
commands will make it clear:

CODE TO TYPE: Run the following code in an interactive interpreter session

>>> from bunchclass import Bunch
>>> b = Bunch (name="Audrey", job="Software Developer", pretty=True)
>>> b.pretty()
Traceback (most recent call last):
File "<console>", line 1, in <module>
TypeError: 'bool' object is not callable
>>>

When we tried to call the b.pretty() method, we gota TypeError exception. This is because the argument
pretty=True justoverrode the pretty() method (remember: the interpreter looks for attributes in the
instance's __dict _ before itlooks in the class's __dict), so the instance's pretty attribute is masking the

class's pretty() method—the interpreter never gets around to looking in the class because it finds whatitis
looking forin the instance.

One solution is to use the built-in hasattr() and setattr() functions. Modify bunchclass.py to disallow
masking of class attributes:

CODE TO EDIT: bunchclass.py

Simple bunch class with a pretty printing method that protects its API

import unittest

class Bunch (object) :
def init (self, *args, **kwargs):
setf—ciet——updetetkwaras)
for key, value in kwargs.items() :
if hasattr(self, key):
raise AttributeError ("API conflict: '$s' is part of the '$s' API
" % (key, self. class . name))
else:
setattr(self, key, value)
def pretty(self):
text = ""
for key, value in self. dict .items():
text += "%s: %$s\n" % (key, value)
return text

class TestBunch (unittest.TestCase) :

N2 L [K VNS I on hl B [K = VN N i S W 1 BN
e o Ty oo o 7 rTaigoaoy Ty oo o~)
1 c LT R IVA | I = VN I o 1 \
eI & cTrTogua T Ly oot o 5 oL raiey)
1 LT 1 (uD. Ll o S W I 1 1 . | \
ST & cerTcoduaTr T Ty oot o- - & 5 . rangoagey

def test pretty(self):
self.assertRaises (AttributeError, Bunch, name="Audrey", job="Software De
veloper", pretty=True)
b = Bunch (name="Audrey", Jjob="Software Developer")
p = b.pretty()
self.assertTrue ("Audrey" in p)
self.assertFalse ("pretty: True" in p)

la. n N~ |l el Il 1 ol 11 £ 2 N =l 2 = L1AY
) — DUITCIT (ITAIImS O Co < TTOTCTTIT 12 tJJ_UJ_ O EYL,IIKJJAJ_ X
T O pPTreTTy U/
= Faal L1 O Il 1 = 1] 2
setfrasserefrae{tratm S+ Hotden'—+r—p
1 £ Fanl yail £ D =l A= 111 4 \
setf= rEfrge-{lerofessior—Pyehonistall—a—p)
1 £ =10 1 1 L 1 =] L AY o) nm 1 - . A= g | Y
L L .. A l,l_J\iLAGlJ; LT <1T \LJ tJLL CLTITITT \WAAYZ 2 OO lllally LT ITITCTS LTIT KJl,ll,tJl,ll, 7
3 —_—n 2 LLE
if name == main :

unittest.main ()

Run this program and see how the tests pass. Now, let's take a closerlook at some of the code to

understand what's going on.

OBSERVE: The Bunch class

class Bunch (object) :
def __init (self, *args, **kwargs):
for key, value in kwargs.items() :
if hasattr(self, key):
raise AttributeError ("API conflict: '$s' is part of the '$s' API
" % (key, self. class . name))
else:
setattr (self, key, value)
def pretty (self) :
text = ""
for key, value in self. dict .items():
text += "%s: %$s\n" $ (key, value)
return text

The __init_ method uses the kwargs items() method which it gets for being of type dict to pass an iterable
ofkeys and values that are tested for presence in the self object via the hasattr built-in. If the attribute
doesn'texistyet, the setattr built-in is used to add the attribute. If the attribute does exist, we raise an
AttributeError, which is used to identify when attribute assignment or references fail.

Python gives you the power to change the attributes of class objects almostatwill. This is because Python
makes the assumption that you are a "consenting adult" and understand the ramifications of whatyou do.
This may sound a bitintimidating but this sort of confidence in the people who wantto use Python is a
hallmark of the language and the community that surrounds the language.

Certain applications—such as the control of nuclear reactors, flight control systems, and the like
—require the ability to reason about program structures as a part of integrity verification.
Dynamic languages like Python would require analysis thatis too complex to be practical at
today's state of the art.

Z
(@)
-
®

Application Programming Interfaces

Suppose you wrote some software that lets you calculate something important, such as the speed of small birds
tasked with carrying objects in a basket. This program would let an individual add and remove objects for the bird to
carry, and when unladen itwould simply go faster. You want to share this software with others, and to encourage its
use, you wantto make it easy for them to use.

The way this is done is through an Application Programming Interface, or API. An API refers to a specified interface
between components, and allows us to build applications that use already existing software (and sometimes
hardware). Sophisticated APIs drive our modern world and make it possible to send/receive email or text messages,
take O'Reilly Software Courses, use on-line mapping tools, and a million other tasks. As a designer, your desire is to
hide the complexity you have programmed into the classes from your users, who simply call APl functions (and
classes).

You will use what you learned in creating Bunch classes to build a simple API.

Designing an API

The first step in designing an APl is to figure out what data it should handle and what behaviors it should have.
Our APl should have the following capabilities:

e initialize: Gives the user the ability to create a Bird object carrying any number of small objects in
its basket.

e add: Add another object for the Bird to carry in its basket.

e remove: Remove an objectfrom the Bird's basket

e calculate: Calculate the bird's current speed.

e basket: Return an attractive string that lists the materials in the basket.

Does this look very similar to how you have designed Python classes in the past? It should, because the
preferred method in APl design is to follow an object-oriented approach. This lets people find data

represented by an object and then call behaviors and methods to act upon that data. Importing the class and
creating instances automatically gives other programmers access to the APl you have designed.

Building the API

We've gotenough information to lay out the skeleton code for our API. Since the Bunch class already
embodies a lot of the functionality we need, we'll subclass the Bunch class, allowing us to build on existing
code. The bird API specification (which is what the following code essentially comprises) goes in a new file,
bird_api.py in yourPython3_Lesson02/src folder:

CODE TO TYPE: bird_api.py

API for software birds carrying objects.
mwrrn

from bunchclass import Bunch
class Bird (Bunch) :

def add(self, name, value):
Add an object for the Bird to carry in its basket.
Name is what you call the object.
Value is the actual object being placed in the basket.

def remove (self, name):
moan
Remove an object from the basket.
Name is the string of the object to be removed.

LIRIR1}

def calculate(self):
Calculate the speed of the bird.
Algorithm: 100 - (5*number of objects in the basket).
Result cannot be less than zero.

def basket (self):

wnn

Print the list of objects in the basket in an attractive format.

[IRIR1}

if name == " main ":
swallow = Bird(fruit=("coconut", "orange"), drink="apple juice")
swallow.add ("cars", 3)
print (swallow.basket ())
print (swallow.calculate())
swallow.remove ("drink")
print (swallow.basket ())
print (swallow.calculate())
help (swallow)

Save and run it. You'll get nothing as a result excepta bunch of Nones and the output from the help(). The
help outputis really critical because itallows you to view your software through the eyes of another
programmer. This other guy or girl doesn'tknow any of the great stuff about your software thatyou do, so
they will likely read the help to find outhow to use your software—and whether they might wantto. APIs
without quality documentation are functionally impossible to use. Also, writing the documentation in an API
you are providing can help you clean up the design.

If you have defined a module correctly, everything importantin it should be documented. You should be able
to verify this from the console window after running bird_api. Alternatively you can access the help from an
interactive console session. (You may wantto maximize the interactive console pane: select the console tab

£l Console and then its - maximize button—remember you can get back to your regular class view by
selecting Python from the red leaf drop-down menu in Ellipse).

CODE TO TYPE: Accessing the bird APl documentation interactively

>>> import bird api
>>> help (bird api.Bird)
Help on class Bird in module bird api:

class Bird(bunchclass.Bunch)
| Method resolution order:
Bird
bunchclass.Bunch
builtins.object

Methods defined here:

add (self, name, value)
Add an object for the Bird to carry in its basket.
Name is what you call the object.
Value is the actual object being placed in the basket.

Print the list of objects in the basket in an attractive format.

calculate (self)
Calculate the speed of the bird.
Algorithm: 100 - (5*number of objects in the basket).
Result cannot be less than zero.

remove (self, name)

Remove an object from the basket

\

\

\

\

\

\

\

\

\

\

\

| basket (self)
\

\

\

\

\

\

\

\

\

\ Name is the string of the object to be removed.
\

Methods inherited from bunchclass.Bunch:

\
\
| _ init (self, *args, **kwargs)
\
| pretty(self)

\

Data descriptors inherited from bunchclass.Bunch:

\
\
| dict

| dictionary for instance variables (if defined)
\

\

\

__weakref
list of weak references to the object (if defined)

Note that there is no need for individual method descriptions anywhere exceptin the docstring for that
method. The help system collects all thatinformation together for the userin one convenient place.

Now thatour APl is documented, let's add the behavior code in each method:

CODE TO EDIT: bird_api.py

API for software birds carrying objects.

wnn

from bunchclass import Bunch
class Bird(Bunch) :

def add(self, name, value):
moan
Add an object for the Bird to carry in its basket.
Name is what you call the object.
Value is the actual object being placed in the basket.
mwrmn
if hasattr(self, name):
raise KeyError ("'%s' object cannot be placed in basket" % (self.name

else:
setattr (self, name, value)

def remove (self, name):
mwrmn
Remove an object from the basket.
Name is the string of the object to be removed.
if name in self. dict :
delattr(self, name)
else:
raise KeyError ("'%s' object not found in basket" % (self.name,))

def calculate(self):
Calculate the speed of the bird.
Algorithm: 100 - (number of objects in the basket * 10), minimum of

Result cannot be less than zero.

return max (100 - len(self. dict) * 10, 0)

def basket (self):

Print the list of objects in the basket in an attractive format.
mwrmn

return "Basket Objects\n" + self.pretty()

if name == " main ":
swallow = Bird(fruit=("coconut", "orange"), drink="apple juice")
swallow.add ("cars", 3)
print (swallow.basket ())
print (swallow.calculate())
swallow.remove ("drink")
print (swallow.basket ())
print (swallow.calculate())
help (swallow)

Save and run it. We now have a working class that stores data in a structured format and has assigned
behaviors to it. The documentation is such that you can easily figure out whatis going on, making it possible
to call it from other programs for a variety of uses. Suppose someone needed to model a flock of birds
carrying objects from one location to another (perhaps they plan to start a courier service based on bird
power).

Sharing APIs

A good aphorism for APl work is "A good APl is simply code, and code thatis documented to the bestofyour

ability." No one is going to wantto use your APl if all you do is provide a list of methods that you think is
intuitive. Accurate and complete documentation is a hallmark of successful APl design. Python's docstrings
are a greattool for sharing your code.

There are a number of common ways to share an API. While outside the scope of this class, one of the more
accessible methods is via the Internet. A very current example is the ability of social networking sites to
provide cross-site login controls via an API called OpenlID (http:/en.wikipedia.org/wiki/OpenID). These more
sophisticated APIs require the use of various modules taken from the Python standard library such as urllib,
ftplib, smtplib, and more.

However, an API can also be called via simple object instantiation inside of code. In fact, this is the first
method of testing done againstan APl during design. The Unit Tests with which you are familiar are
commonly used in testing APl designs and code.

Calling the API

In this section, we'll just call the API by importing the Bird class into a new program and using it. This is the
mostcommon way of using an API, and builds on what you already know. Create a new program in your
Python3_Lesson02/src folder named flock.py as shown:

CODE TO TYPE: flock.py

from bird api import Bird
class Flock(object):
birds = []

def add bird(self, bird):

o

Add a bird object to the flock

wnn

self.birds.append (bird)

def race(self):
Show how far the birds of the flock can go in one hour carrying their re
spective loads.
print ("Distance flown in one hour by the flock")
for bird in self.birds:

distance = "-" * (bird.calculate() // 10)

notice = "%$s: $s carrying %s items" % (distance, bird.name, len (bird
. dict))

print (notice)
if name == " main ":

swallow = Bird(coconut=1, name="Swallow")

african = Bird(coconut=1l, piece="of string", visited=False, name="African Sw
allow")

european = Bird(coconut=1l, lottery numbers=(23, 12, 34), piece="of string",
visited=True, name="European Swallow")

european.add ("cereal boxes", 5)

european.add ("Norway", True)

european.add ("England", True)

flock = Flock()
flock.add bird(swallow)
flock.add bird(african)
flock.add bird(european)
flock.race()

In this APl example, we import the Bird class from the bird_api module and call it to create a number of birds
(Bird instances). We add the birds to our flock object and race them against each other. When you run the
program, the output clearly shows that the least-heavily laden swallow travels farthest.

http://en.wikipedia.org/wiki/OpenID

OBSERVE: The output from running flock.py as a main program

Distance flown in one hour by the flock
———————— : Swallow carrying 2 items
—————— : African Swallow carrying 4 items
--: European Swallow carrying 8 items

We use the APl objects without modification, and only add attributes via the specified methods ofthe API. This
is really important because Python is a very dynamic language that allows you many freedoms. You can
break the API by replacing critical methods "from outside," as we found earlier in the case of the simple Bunch
class.

There, the code triggered a TypeError exception because the Bunch class's pretty() method was masked
by a data attribute on the instance, which we then attempted to call. While the Bunch class now protects this
from happening during object instantiation, there is nothing to prevent you from masking the pretty() method
simply by setting bunch.pretty = True after creating an instance.

Therefore, when using an object or value returned by an AP, itis a good practice to use only the object's
methods to modify its data (unless the documentation specifically gives you leave to change attribute values).
To add further data, incorporate the objects into some other structure containing the associated information,
as in the modification to flock.py shown below:

CODE TO EDIT: flock.py

from bird api import Bird
class Flock(object):
birds = []

def add bird(self, bird):

wnn

Add a bird object to the flock

self.birds.append (bird)

def race(self):

Show how far the birds of the flock can go in one hour carrying their re

spective loads.
mwrmn

print ("Distance flown in one hour by the flock")
for bird in self.birds:

distance = "-" * (bird.calculate() // 10)
notice = "%$s: $s carrying %s items" % (distance, bird.name, len (bird

. dict))
print (notice)

if name == " main ":

swallow = Bird(coconut=1, name="Swallow")

african = Bird(coconut=1l, piece="of string", visited=False, name="African Sw
allow")

european = Bird(coconut=1, lottery numbers=(23, 12, 34), piece="of string",
visited=True, name="European Swallow")

ol (1 1 = 1 C)
trropean—aceH reat—oxest—Soy
1l JINT 11 inul
uLuycan.auu\ INOLTWC 12 LT 7
ool (1T 1 il lnnl \
uJ_UtJ T . ATy l_nll\jJ_Glllu 12 LTTITT
birds = (

("Swallows are a group of birds in the family Hirundinidae.", swallow),
("African swallows are said to be able to carry coconuts.", african),
("European swallows are said to have trouble carrying coconuts.", europe

flock = Flock()

£ 1 =l ol 1o =l L 11

- Ch . ada T arT LA = = N T
£ 1 ol 1o L £ o
fHeoek—add—birdtafricany
£ 1 1 alal loa 1L \
T TUOUCNKN .U T 8 \CuLUPCClll/

for stmt, bird in birds:
print (stmt)
flock.add bird(bird)

print ("*"*40)

flock.race()

Save and run it, and you see this:

OBSERVE: Output from the modified flock.py

Swallows are a group of birds in the family Hirundinidae.
African swallows are said to be able to carry coconuts.
European swallows are said to have trouble carrying coconuts.
khkkhkkhkhkhkkhkhkhkhkhkhhkhkkhhkhhkhhhkhkhhkhrhkkhkhhrhkkhkhkrhkhhhkhk*x

Distance flown in one hour by the flock

———————— : Swallow carrying 2 items

—————— : African Swallow carrying 4 items

————— : European Swallow carrying 5 items

In this example, you used tuples to store some extra information along with the new bird objects. You didn't
modify the existing APl objects and so could be secure that the results would not throw an exception. Tuples

are a valuable way to save associated data, since you know that no other portion of the code can modify the
tuple because of its immutable nature.

Method Resolution Order

Let's think about a small family. For the sake of brevity we'll use "parent" instead of "mother" or "father," and "child"
instead of "son" or "daughter." What we have then is a family consisting of a parent and child. The parent has certain
features such as hair color and voice. The child when grown will have similar features to those of its parent. However,
children generally have more than one parent, and their parents have parents, and so on. Determining the features the
child inherits becomes complicated very rapidly—more so as you add in the unpredictability of genetics. Also, the child
can modify their appearance and voice. Maybe they dye their hair or scream too much at concerts and their voice is
altered. Now they have some features different from any of their ancestors.

In programming, names of familial relationships are used to describe similar relationships among object classes.
Inheritance, parent, and child are frequently used to describe the elements of objectinheritance. One noticeable
difference in terminology is thatinstead of "features," object inheritance tracks the behaviors we call methods.

Another important difference is that programmatic inheritance does not have any genetic variety, instead being fixed
and static. Programmers tend to prefer this: while life may lack interest without the rich profusion of genetic mutation, it
does have a certain predictability which is welcome when thinking about what is actually happening in a program.

Basic Method Resolution Order

If you explore some of the previous code in this lesson, you can see the inheritance relationship between the
Bunch and Bird classes:

Bunch()

Bird()

Bunch is the parent of Bird, and Bird is the child of Bunch. Bird has all the methods of Bunch. We call the
Bunch __init__() method when we instantiate a Bird object and the pretty() methods when we test the
results of the Bird class.

Let's change the Bird's pretty() method. Bird is vain so instead of displaying its attributes we'll have the
pretty() method return "pretty bird". In order to do this, all we need to do is add a new pretty() method to
the Bird class to override what itinherited from the Bunch class:

CODE TO EDIT: bird_api.py

API for software birds carrying objects.

wnn

from bunchclass import Bunch
class Bird(Bunch) :

def pretty(self):

wun

Replacement pretty() method

nwnn

return "pretty bird!"

def add(self, name, value):
Add an object for the Bird to carry in its basket.
Name is what you call the object
Value is the actual object being placed in the basket.
if hasattr(self, name):
raise KeyError ("'%s' object cannot be placed in basket")
else:
setattr (self, name, value)

def remove (self, name):
man
Remove an object from the basket
Name is the string of the object to be removed
mon
if name in self. dict :
delattr (self, name)
else:
raise KeyError ("'$s' object not found in basket")

def calculate(self):
Calculate the speed of the bird.
algorithm: 100 - (number of objects in the basket * 10) minimum of O
result cannot be less than zero.

return max (100 - len(self. dict) * 10, 0)

def basket (self):

Print in an attractive format the list of objects in the basket.
mwrmn

return "Basket Objects\n" + self.pretty()

if name == " main ":
swallow = Bird(fruit=("coconut", "orange"), drink="apple juice")
swallow.add ("cars", 3)
print (swallow.basket ())
print (swallow.calculate())
swallow.remove ("drink")
print (swallow.basket ())
print (swallow.calculate())

Fetptswatiow-

Save and run it. Instead of "fruit: ('coconut’, 'orange')" you'll get "pretty bird!".

OBSERVE: Output from modified bird_api tests

Basket Objects
pretty bird!
70

Basket Objects
pretty bird!
80

To summarize, if a child class inherited a method from its parent class, you can override that inherited
method by adding a method of the same name to the child class.

More Complicated Method Resolution Order

Let's continue with the family analogy. Regardless of the marital status, the child has two immediate genetic
donors known by the common vernacular as "mother" and "father," or collectively as "parents." Those
parents have parents of their own. Python lets you model this sort of genetic structure (and many others). With
thatin mind, let's model the hair color of the following inheritance structure:

Grandpa Grandma Crandpa Grandma
Maurice Vivian [sadore Tracy
Mother Father
Child

Let's assume that we all have four different grandparents with four different hair colors—except Grandpa
Isadore, who went bald early. Python gives precedence to the leftmostinherited object; to see what the child
ends up with, create inhairitance.py and test_inhairitance.py in your Python3_Lesson02/src folder as
shown:

CODE TO TYPE: inhairitance.py

o

Complex inheritance program
mmon

import unittest

class Maurice (object) :
def hair (self):
return "red"

class Vivian (object) :
def hair (self):
return "brown"

class Isadore (object):
def hair (self):
return "bald"

class Tracy (object) :
def hair (self):
return "gray"

class Mother (Maurice, Vivian):
pass

class Father (Isadore, Tracy):
pass

class Child(Father, Mother):
pass

if name == " main ":

child = Child()

print (child.hair())

CODE TO TYPE: test_inhairitance.py

Inheritance test program

LIRIR1]

import unittest
from inhairitance import Child

class TestHair (unittest.TestCase) :

def test hair(self):
child = Child()
hair = child.hair()
self.assertNotEqual (hair, "red")
self.assertNotEqual (hair, "brown")
self.assertNotEqual (hair, "gray")
self.assertEqual (hair, "bald")

if name == " main ":
unittest.main ()

Save and run it. We can deduce by the fact that the tests succeed that the child's hair is "bald." This is
because the method resolution order tries the "base classes” in its search for a method from left to right (in
the order they are given in the class statement). Thus a method for child will be sought firstin Father, then in
Mother. Father, of course, has no hair() method, and so its base classes are searched, again in left-right
order. This is known as a left-first depth-first search.

If you switch the order of inheritance, say, Mother with Father, the child will have red hair. Indeed, if genetics
were as straightforward as programming in Python, alot more people would be happy with their hair—except

maybe Grandpa Isadore.

In any case, mostofthe time when you program, all you need is single inheritance and method resolution
order in Python is pretty straightforward. Inheritance is a powerful tool butit can get complicated rather quickly.
Itis a good practice to keep inheritance as simple as possible with clearly named classes. If things gettoo
complicated for simple inheritance, there are other tools you can wield from the programming armory to
solve those problems.

Introspecting Inheritance Relationships

Python has two built-in functions that can help you in determining whether your code has been provided with
values of a particular type. Note that this should not be a frequent requirement of your code, butitis
sometimes justifiable usage.

issubclass(cls, classinfo) returns True if the object passed as cls is a direct or indirect subclass of one of
the classes specified by classinfo. This second argument can either be a single class or a tuple of classes.
In the latter case the resultis True if cls is a subclass of any of the classes in the tuple. An indirect subclass of
aclass is a subclass ofthe class or one ifits subclasses. For the purposes ofissubclass() all classes are
regarded as subclasses of themselves.

isinstance(obj, classinfo) returns True if the obj argumentis an instance of some class thatis a subclass
of one of the classes specified by the classinfo argument. Again this argument may be either a single class
or atuple of classes.

Laying the Foundation

In this lesson, you've learned about some basic practices of structuring data in Python. We'll use these
practices in further lessons; they are commonly used in real-world applications. Good data structuring takes
practice and there are different standards on how to do it. The best methods resultin code thatis clear to read
and easy to extend. The poor methods make code hard to interpret and "fragile"—the code often breaks
without much warning. If you lay out a structure and it becomes hard for you to follow, often that means you
need to stop and refactor your code. Fortunately, you wrote unit tests, right? If so, you can be reasonably
confident that your refactoring has not caused any new defects.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Iteration in Python

Lesson Objectives

When you complete this lesson, you will be able to:

e differentiate between iterables and iterators.

e use gnerators to avoid the creation of large sequences.

e use generator expression.

Iterables vs. Iterators

In the broadest possible terms, an iterable is something you can iterate over, and an iterator is what the interpreter
uses to do the iteration. This description, however, is too general to be of enough value. The fundamental question is:
what does the interpreter do when you write for i in s: in your program or other module?

In modern Python, iteration is supported by two quite separate mechanisms. So the answer to the question "how does
the interpreter iterate over objects?" depends on the presence of specific methods on the object. If the object has an
__iter__() method, then itis iterable using the new-style iteration mechanism. Otherwise the interpreter looks for a
__getitem__() method and, ifitfinds one, uses the old-style iteration mechanism. If neither method is present, the
interpreter raises a TypeError exception because the objectis notiterable.

Old-Style Iteration

If an object, 0, has no __iter__() method and you tell the interpreter to iterate over it, the interpreter initializes
an internal variable to zero and repeatedly calls the object's __getitem__() method with successively higher
values of the internal variable. From the point of view of the object, it's as though it were being manipulated by
this code:

OBSERVE: Effective logic of an old-style for loop

Approximate equivalent of:

for val in o:
[loop body]
intern = 0
while True:
try:
val = o[intern]
except IndexError:
break

[loop bodyl
intern += 1

In fact, you can create your own classes whose instances can be iterated over in this way. All you need to do
is provide a __getitem__(n) method thatraises an IndexError exception when the value of nis too high.
Suppose you wanted to implement fixed-length sequences of objects. You could define a function to create
an appropriate sequence (list or tuple or string) with the required number of components in it (so fls("*", 12)
would returp "*¥ExREREREER for example).

Alternatively, you could define an fls class, whose __init__() method had the same signature as the function
above. Create a new Python3_Lesson03 projectand assignitto your Python3_Lessons working set.
Then, create fls.py in the Python3_Lesson03 projectas shown.

CODE TO TYPE: fls.py

LIRIR1}

Simple demonstration of the "old iteration protocol™ - still available.
class fls(object):
def init (self, val, times):
self.val = val
self.count = times
def getitem (self, n):
if n >= self.count:
raise IndexError ("Object has no item %s" $ (n,))
return self.val

thing = fls("*", 5)
for ¢ in thing:
print (c)

thing = fl1s(120,3)
for ¢ in thing:
print (c)

Save and run it. You see the following output:

OBSERVE: Output from running the fls class

* % X X

*

120
120
120

So, for iteration purposes, you can see that the fls objects appear to act like other sequences, only with very
boring behavior because all elements are constrained to be the same—the only value that__getitem__()
ever returns is the one that was passedinto __init__(). Butthe main pointis that you know a litle more
about Python's iteration mechanism. Now try a few other cases for yourself—use an interactive console
session to create and test out some further fls objects interactively.

Note Remember you will need to import the fls class from the fls module in order to be able to create
! instances ofit.

New-Style Iteration

The iteration mechanism outlined above is all very well when you are iterating over numbered items in a
sequence, butitdoes not naturally extend to collections like sets and dicts, which do not specify a natural
ordering for their items. Dicts, in fact, do have a __getitem__() method, butit takes a key value and returns
the appropriate item (assuming that a key with that value exists—if there is no such key, itraises a KeyError
exception). Sets don'teven have a __getitem__() method, since they are effectively "item-less dicts".

Itwas to overcome issues like this thatthe "new-style" iteration protocol was defined. You learned above that
the interpreter will look foran __iter__() method on the objects that you iterate over. Ifit finds __iter__(), it
uses itto create an iterator from the iterable you are iterating over.

The iterator will have a __next__() method—this is a requirement of the iteration protocol. Each time around
the loop, the interpreter obtains the next value for the iterable by calling the iterator's __next__() method.
Again, you can perhaps understand this more easily with an approximate Python equivalentto a for-loop over
a new-style iterable:

OBSERVE: Effective logic of an new-style for loop

Approximate equivalent of:

for val in o:
[loop body]
it = o. iter ()
while True:
try:
val = it. next ()
except Stoplteration:
break

[loop body]

You may wonder why Python insists on creating a new object for each iteration: couldn'tit just use the iterable
directly? The answer to that question is "no": the iterator contains the current state of the iteration, and code
thatiterates over the same iterable twice is perfectly legal. lterating over the same iterator, however, gives
results that are not usually what you want. You can see this by playing with the interactive interpreter.

CODE TO TYPE: Enter the following in an interactive interpreter session

>>> 1st = [1, 2, 3]
>>> dir (lst)
[..., ' getitem ', ..., ' idinit ', ...]
>>> for i in 1lst:
for j in 1st:
print (i, 3j)

W W wWMhNDNDNNDRE PR
WNE WNEFE WN R

>>> 1i = 1st. iter ()
>>> dir(11)
(..., ' dter ', ..., ' next ', ...]
>>> for i in 1li:
for j in 1i:

print (i, j)
12
13
>>> 1ii = 1i. iter ()
>>> 11 o o
<list iterator object at 0x01995270>
>>> 1ii
<list iterator object at 0x01995270>
>>> 12 = 1lst. iter ()
>>> 12. next ()

1
>>> 12. next ()
2
>>> 12. next ()
3

>>> 12. next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>>

What's the difference between the firstfor loop and the second? Look at the dir() listing of Ist, which is a list
instance, and note thatithas both __iter__() and __getitem__() methods. When the interpreter iterates

over the list, calling its __iter__() method creates a new iterator, yielding a complete sequence of values,
every time itencounters a for loop.

We then created a listiterator object by manually calling our list's __iter__() method. Note that the list iterator
objectalso has an __iter__() method, and adds a __next__() method, butitlacks a __getitem__(). The
__iter__() method of the iterator is rather different from that of the list, however:

OBSERVE: __iter__() method - in Python itwould read:

def iter (self):
return self

In other words, each time you iterate over a list (which is an iterable), the call to its __iter__() method creates
a new iterator, which has its own independent state. The iterator's __iter__() method, however, does not
create a new iterator, which means that the inner and outer loops are sharing the same iterator. This in turn
means that by the time the outerloop is trying to begin its second iteration, the iterator has already been
exhausted by the innerloop and (for the second time) raises the Stoplteration exception.

The final few statements demonstrated this by manually going through the steps that the interpreter does
when iterating over a list. We saw the 12 iterator produce three values on successive __next__() calls before
raising a Stoplteration exception. Normally, of course, the exception is caughtinternally by the logic of the
forloop, and therefore does notbecome visible.

In summary, calling an iterable's __iter__() method creates an iterator that can be used to iterate over the
iterable.

Creating Your Own Iterators

Now that you understand Python's iteration processes somewhat better, you may be wondering whether you
can define your own iterable classes. The answeris "yes"! You will need to provide an __iter__() method
(which can simply return self if you are implementing an iterator rather than a more general iterable: this is
usually OK, since when you write an iterator class itis easy to create multiple instances, each having
independent state). The __next__() method should return successive values until there are no more, at
which pointitshould raise a Stoplteration exception.

Rather than create an example now, we'll create itin the next section. First, we'll create a generator, and then
we'll build an equivalentiterator.

Generators: Avoiding Creation of Large Sequences

The iteration protocol discussed above also comes into play with so-called generator functions. The only apparent
difference between a generator function and the regular kind you have dealt with before is the appearance of the yield
keyword in the function body. So what's the difference between a regular function and a generator function?

The answer is that calling a generator function produces a special type ofiterator object (a "generator"). The function
namespace is created and initialized with the argument values. The function code only starts executing with the first call
to the generator's __next__() method. Execution continues until a yield expression is evaluated: the value of the
expression following yield becomes the value ofthe __next__() method call. You can see this with a very simple
generator function in an interactive session.

CODE TO TYPE: Enter the following code in an interactive interpreter window

>>> def g(x):
yield x
X *= 2
yield x
>>> g
<function g at 0x02286A98>
>>> gen = g("##")
>>> gen
<generator object g at 0x02285A08>
>>> dir (gen)

['" class ', ..., ' diter ', ..., ' next ', ...]
>>;_gen.4:gext47() o o o o

l##l

>>> gen. next ()

VHEH

>>> gen. next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Stoplteration

>>> gen. next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Stoplteration

>>>

d() is a generator function, though when you ask the interpreter about it you don't see any difference from any other
function. Calling it creates a generator object, though, and the dir() listing shows that it has the necessary methods for
an iterator. Calling the object's __next__() method returns the result of the next yield expression in the function's
code body.

If the function ends before encountering a yield expression (either by executing a return statement or dropping off the
bottom), the __next__() method call raises a Stoplteration exception justlike any other iterator. Also note that,
once the generator starts to raise Stoplteration exceptions when __next__() is called, it continues to do so for
each subsequent call—the iterator is exhausted.

Advantages of Generator Functions

The really convenient thing about generator functions is that they allow you to perform all sorts of complex
calculations to produce the values in a sequence, but the code that consumes (makes use of) these values
can be entirely separated from the generator that produces them. The values are consumed in a simple for
loop—or any other similar iterative contextin Python, such as a list comprehension.

Notonly do they make your code simpler by separating out the production and consumption of sequences,
but generators allow you to create sequence values one ata time, as they are consumed. There is no need to
build a list or tuple to store them in, which means your programs will use less storage and operate more
quickly (though these advantages do notreally make much difference unless the number of objects becomes
large).

A Simple Generator Function

Suppose you need to produce sequences determined by a list, but need to repeat the firstlist element once,
the second twice, and so on. So given a list[2, 4, 6], the resulting sequence would be 2,4,4,6,6,6. Let's
write a generator that produces such sequences. First, though, we'll write tests to ensure that our generator
function works. Create testgen.py in your Python3_Lesson03/src folder as shown:

CODE TO TYPE: testgen.py

LIRIR1}

testgen.py: simple test for a sequence generator

o

import unittest
from genl23 import genl23

class TestGen (unittest.TestCase) :

def testEmpty(self):

self.assertEqual (1list (genl23([]1)), [], "Empty list does not give empty 1
ist"™)

def testl23(self):
self.assertEqual (1list (genl23([1])), [1], "[1l] does not give [1]")
self.assertEqual (list (genl23([1, 21)), [1, 2, 21)
self.assertEqual (list (genl23([1, 2, 31)), [1, 2, 2, 3, 3, 31])

if name == " main ":
unittest.main ()

As usual, we start out with a simple stub function to make sure that the tests fail. Now, create gen123.py in
your Python3_Lesson03/src folder as shown:

CODE TO TYPE: gen123.py

genl23.py: generate sequences from a base list, repeating
each element one more time than the last

[IRIR1]

def genl23(m) :
yield None

Save it, and run the test program:

OBSERVE: Results from running testgen.py

FFE

FAIL: testl23 (_ main .TestGen)
Traceback (most recent call last):
File "V:\workspace\Python3 Lesson03\src\testgen.py", line 13, in testl23
self.assertEqual (1list (genl23([1])), [1], "[1l] does not give [1]")
AssertionError: Lists differ: [None] != [1]

First differing element O:
None
1

- [None]
+ [1] : [1] does not give [1]

FATL: testEmpty (main .TestGen)

Traceback (most recent call last):
File "V:\workspace\Python3 Lesson03\src\testgen.py", line 10, in testEmpty
self.assertEqual (1list (genl23([])), [], "Empty list does not give empty list"
)

AssertionError: Lists differ: [None] != []
First list contains 1 additional elements.
First extra element 0:

None

- [None]

+ [] : Empty list does not give empty list

Ran 2 tests in 0.032s

FAILED (failures=2)

Now, let's see how it does with some real code in there.

CODE TO EDIT: gen123.py

genl23.py: generate sequences from a base list, repeating
each element one more time than the last

wnn

def genl23(m) :
yiretd—Nore
n=20
for item in m:
n += 1
for i in range(n):
yield item

Save it, and run the test program:

OBSERVE: Output from testgen.py; the tests now pass

Ran 2 tests in 0.000s

OK

An Iterator Equivalent of the Generator

As you learned above, itis also possible to write classes that obey the iteration protocol. You will end this
lesson by writing an iterator equivalent of the generator function above. Since you wantitto perform exactly
the same as the gen123 generators, you can use the same tests to verify its operation—thatis one of the
benefits of a test-driven environment! The new componentshould ideally be a "drop-in replacement” for the
generator function. Create class123.py in your Python3_Lesson03/src folder as shown:

CODE TO TYPE: class 123.py

A simple iterator object specification.
moan
class genl23:
def init (self, 1st):
"Initialize the iterator object."”
self.lst = 1lst
self.itemno = 0
self.count = 1
def iter (self):
"This object is not an iterable."
return self
def next (self):
"Return the next value in the output sequence."
if self.count > self.itemno:
try:
self.val = self.lst[self.itemno]
except IndexError:
raise Stoplteration
self.itemno += 1
self.count =1
self.count += 1
return self.val

This code is considerably more complex. This should not be surprising, because generator functions were
devised to solve this type of problem cleanly and simply.

Instead of calling the generator function, the test routine will now call your iterator's class (which, you will
notice, has the same name). This causes its __init__() method to be run, and the list of values is stored as
an instance variable. Two other instance variables are initialized: one to keep track of which item is currently
being output, and the other to keep track of how many times the current value has been produced.

All the magic, of course, takes place in the __next__() method. Firstit checks to see whetheritis time to
move to the next element of the value list (the item number and count are set up initially to ensure that this
branch is actioned on the first call). If so, the val instance variable is retrieved.

If no more values are available, the method raises a Stoplteration exception to terminate the loop. Note
carefully that this action can be repeated—once the method starts to raise the exception, it should be raised
for every subsequent call.

Once the correct item value is established, the countis incremented and the value is returned as the result of
the call.

This code is about twice as long as that of the generator solution, and so you would probably choose to write
a generator function for problems like this. Butif you need close control over iterative behavior, you may end
up needing to write your own iterators.

Testing the module is easy. Just make the following change to the test program:

CODE TO EDIT: testgen.py

testgen.py: simple test for a list generator function

wnn

import unittest
from classl23 import genl23

class TestGen (unittest.TestCase) :

def testEmpty(self):
self.assertEqual (1ist (genl23([]1)), [], "Empty list does not give empty 1

ist")
def testl23(self):
self.assertEqual (1list(genl23([1])), [1], "[1l] does not give [1]")
self.assertEqual (1list (genl23([1, 2])), [1, 2, 21)
self.assertEqual (list (genl123([1, 2, 31)), [1, 2, 2, 3, 3, 31)
if name == " main ":

unittest.main ()

Save and run the updated test program; you should see a successful resultimmediately, thereby giving
strong evidence that the two implementations are equivalent.

Generator Expressions

After the new-style iteration protocol was adopted in Python, one of the developers observed thatit would be very
useful to be able to write expressions that were similar to list comprehensions in using iteration (for) and selection
(if) elements to produce expressions that generated their results rather than producing a list. The reasoning behind
this is justthe same as the reasoning behind standard generators—creating the objects one by one "on demand" is
more space-efficient, and is likely to speed up programs dealing with large sequences considerably, as well as
reducing their memory requirements.

The syntax of a generator expression is the same as for list comprehensions (learned in an earlier course), but with
parentheses instead of brackets. Because they are generators, however, you only see the individual values when you
consume them inside an iteration. Learn a litle more about them by playing in an interactive interpreter session.

INTERACTIVE SESSION:
>>> gxl = (x for x in range(1l0) if x % 3)
>>> gxl

<generator object <genexpr> at 0x0230FD78>
>>> list (gxl)

(1, 2, 4, 5, 7, 81

>>> list (gx1)

[]

>>> sum(i for i in range (100))

4950

>>> gx2 = (ord(c) for c in "Jim")
>>> next (gx2)

74

>>> next (gx2)

105

>>> next (gx2)

109

>>> next (gx2)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIlteration

>>>

Note that the generator expressions are iterators, but notiterables: once you have iterated over them they are
exhausted, and any further attempt to iterate over the expression raises an immediate Stoplteration. Also observe

that you used a new built-in function in that session. Calling next (o) is pretty much equivalent to calling
o.__next__(), rightdown to the raising ofa Stoplteration execution when no more values are available.

Generators and generator expressions primarily offer memory savings, though this can equate to time savings if you
are avoiding a lotof memory allocation and deallocation. For very large data sets, it can make a computation practical
that you might otherwise not have enough memory for.

You now know much more about the way Python iterates over objects than you formerly did. With luck, this knowledge
will allow you to build objects that help you solve your problems more effectively.

When you finish the lesson, return to the syllabus and complete the quizzes and projects.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Basic Regular Expressions

Lesson Objectives

When you complete this lesson, you will be able to:

e match and search.
e {ry outpatterns.

Suppose you've been given a big block of text and told you need to pull all of the US-style phone numbers from it. Writing a
program like that requires breaking up all the words via the String split () method, then writing code to make sure that the
numbers and dashes are all in the right places. We are talking about atleasta dozen lines of code, and that doesn't even begin
to account for special cases, like when the area code is in parentheses.

What if there was a special syntax so that you could find those numbers with a single line of code? Something like xxx-xxx-
xxxx or (xxx) xxx-xxxx that you could apply to the text? The "x" would mean "any number," and the pattern would be applied
and would return a list.

Fortunately, there is: Python lets you use regular expressions, which do thatand much more besides! They aren't the answer to
every string-related problem, but regular expressions are an important part of any developer's toolkit. This lesson will go over
the basics of what you can do with regular expressions and will be followed by a more complete exposition of the capabilities

ofthe re module.

In the 19505s, mathematician Stephen Cole Kleene described automata theory and formal language theory in a setof models
using a notation called regular sets as a method to do pattern matching. Active usage of this system, called Regular
Expressions, started in the 1960s and continued under such pioneers as David J. Farber, Ralph E. Griswold, Ilvan P. Polonsky,
Ken Thompson, and Henry Spencer.

Regular expressions, also called res or regexes, provide a concise and flexible means for matching strings of text. They are a
common programming tool used notjustin Python but many languages in common use today.

Matching and Searching

The re module provides features to enable pattern matching in Python. The basic mode of operation is to call either
the match() or search() function from that module with a regex as the firstargument, and a string to match againstas
the second argument. If the regex matches the string, the module returns a match object, and analysis of the match
object can give you information about (for example) the exact strings matched by various portions of the pattern.

INTERACTIVE SESSION:

>>> import re

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m

< sre.SRE Match object at 0x01D557C8>

>>> m.groups ()

("Isaac', 'Newton')

>>> m.group (0)

'Isaac Newton'

>>> m = re.match(r" (?P<first name>\w+) (?P<last name>\w+)", "Malcolm Reynolds")
>>> m.group ('first name')

'Malcolm'

>>> m.group ('last name')

'Reynolds'’

>>> m.groupdict ()

{'first name': 'Malcolm', 'last name': 'Reynolds'}

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.

>>> m.group (1) # Returns only the last match.

IC3I

>>> m = re.search ("\\d+", "hellol23extra")
>>> m.start ()

5

>>> m.end ()

8

>>> m.span ()

(5, 8)

>>> m.group (0)

'123"

>>>

In the interactive session above, we used the re module's match() and search() functions to determine whether
strings conformed to a specific pattern (provided as the firstargument to the function call). mat ch() requires the pattern
to occur at the start of the target string, while search() will move through the target string looking for it. If the pattern is
not presentin the string, the function call returns None. Otherwise it returns a match object ("m," above) that can be
queried for specific aspects of the matched string by calling its various methods.

Finding Characters: Regular Expression Patterns

A regular expression pattern is a way of describing a set of character strings. These descriptions can be relatively
concise: the pattern "x" matches precisely one character, the lowercase letter "x." Some characters have special
meanings, so the pattern "x+" matches any string ofone or more lower case "x"s—the plus sign generates a more

complex pattern from the pattern it follows.

Most characters can be used in patterns like the lower case "x" to "stand for themselves," so for example if you wanted
to match the literal string "thing" you would do so with a pattern that reads "thing"—the "t" in the pattern matches a "t" in
the string, and so on. But there are quite a few abbreviations: for example, '\d' matches any decimal digit (making it

equivalent to the pattern "[0123456789]," as we will learn shortly). Here are some of the more common abbreviations.

Pattern Description
String P
Matches any character except a newline in the target string.
A Matches the start of the target string, or the start of a line within the target string.
$ Matches the end of the string, or just before the end of a line within the string. foo matches both "foo"
and "foobar," while the regular expression foo$ matches only "foo."
" Matches the regexitfollows, zero or more times, so ab* will match "a," "ab," or "a" followed by any
number of"b"s.
+ Matches the regexitfollows, one or more times, so ab+ will match "a" followed by any number of
"b"s, but will not match "a" alone.
? Optionally matches an occurrence of the regex that precedes it. ab? matches either of"a" or "ab."
Matches special characters literally, allowing you to match plus signs, asterisks and other characters

\ having special significance in regexes. Also introduces a special sequence such as '\d' to match any
digit.

{m} (where
m is an Matches exactly m occurrences of the regex it follows.
integer)

{m,n}

(where m
and n are
integers)

Matches between m and n occurrences of the regex itfollows.

Matches any one of the set of characters appearing between the brackets. Special characters do not
[...] have their usual significance inside brackets, so [abc$] matches any of"a," "b," "¢" or "$." A dash (-)
between two characters specifies a range, so [a-z] matches any lower-case character.

[A...] Matches any character except one of the set appearing after the caret between the brackets. Note that
the caret only has this special meaning when itimmediately follows the opening left bracket.

| Alternation. A|B, where A and B are any regexes, first tries to match A and, if that fails, tries to match B.
Any number of regexes can be used as alternates in this way, notjusttwo.

Groups a number of regexes together, usually for the purpose of treating them as a single element
(...) (for example, to use as an alternate with |). When a match objectis created, the string matched by the
parenthesized group is available using methods of the match object.

There are many regex references available on the Internet; you might want to find and bookmark one or two
ofthem!

Grouping in Patterns

As the last line above indicates, patterns can contain groups, indicated by parentheses. The strings matched by the
groups are, under certain circumstances, available—again, by calling the match object's methods. The groups can be
numbered (according to their relative positions in the pattern, and starting at one rather than Python's usual zero—
group 0O refers to the match as a whole) and they can also be named if the group's opening parenthesis in the pattern
is followed by a question mark, an upper case "P" and a name in angle brackets, as we saw with "(?
P<first_name>\w+)" in the earlier interactive session.

Groupings in the pattern are the principal way of extracting required information from the match object. Strings matched
by non-grouping portions of the pattern cannot be individually identified in the match object. When you are testing a
new regular expression, itis often useful to interactively inspect the result of calling the match objects' groups() and
groupdict() methods to verify that your pattern is matching as you expect.

When testing patterns, you can test for equality with those objects; but you should also remember to test that
unacceptable strings are not, in fact, matched. This will usually involve the use of your test case's assertNone()
method on the match result.

Substitution for Patterns

Besides the match() and search() functions, the re module provides functions that allow you to make replacements
of patterns in the target string (these functions return new strings, of course, because strings are immutable in Python).
The re.sub() function takes notonly a pattern and a target string but also a replacement string, as shown below.

re.sub() Syntax

re.sub (pat, replacement, target[, count, flags])

This replaces each non-overlapping occurrence of the given pattern in the target string with the replacement
elementgiven as the third argument. If replacement is a string, any backslash escapes in it are processed down to
individual characters (so, for example, "\n" is replaced by a newline character). Escapes of the form \n (where nis a
decimal digit) allow replacement by one of the matched groups from the pattern. The replacement argument can also
be a function, in which case itis called for each replacement with a single argument, which is the match object
corresponding to the currently matched string thatis to be replaced.

The optional argument count is the maximum number of pattern occurrences to be replaced; count mustbe a non-
negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are replaced only
when not adjacent to a previous match, so sub('x*','-', 'abc') returns '-a-b-c-'. The flags, if present, are the usual

regular expression matching flags, which we'll discuss a little later. Let's get an idea of what you can do with the
replacement facilities.

This example simply shows straight pattern replacement: both calls to re.sub() replace all occurrences of the string "1"
with a newline character. When the pattern contains characters like newline (normally represented by escape
sequences), or special patterns (which also require backslashes), r(aw) strings can make patterns more readable and
easier to type. The more complex the patterns become, the truer this is.

INTERACTIVE SESSION:

>>> import re
>>> re.sub("1", "\\n", "123123123123") # replace digit one with newline
'"\n23\n23\n23\n23"

>>> re.sub("1", r"\n", "123123123123") # replace digit one with newline
'"\n23\n23\n23\n23"

The next call to re.sub() uses a function to supply the replacement string: if the function is replacing a single minus
sign itreturns a space, buttwo minus signs are translated into a plus sign.

INTERACTIVE SESSION:

>>> def dashrepl (matchobj) :
if matchobj.group(0) == "-": return " "
else: return "+"

>>> re.sub('-{1,2}"', dashrepl, 'pro----gram-files')
'prot++gram files'

The next example finds the "#" marker and removes it and everything after it, then removes everything but the digits
from the remaining string.

INTERACTIVE SESSION:
>>> g = " (123) 456-7890 # Commented phone number"
>>> nocomment = re.sub ("#.*$", "", s)

>>> nocomment

'(123) 456-7890 '

>>> re.sub (r"\D", "", nocomment)
'1234567890"

These examples attempt to match any string beginning and ending in an atsign ("@") with zero or more sequences of
"=+=" in the middle (the "+" must be escaped to make the matching code treat it as an ordinary character).

INTERACTIVE SESSION:

>>> re.sub ("@ (=\+=) *@", "xxx", "@Q")

'xxx'

>>> re.sub ("@ (=\+=)*Q@", "xxx", "@=+=@")
'xxx'

>>> re.sub ("Q@ (=\+=) *@", "xxx", "Q@=t==+=Q@")
'xxx'

>>> re.sub ("@ (=\+=) *Q@", "xxx", "@=+=+=Q")
T@=t=+=Q"

The last example shows a pattern (a single vowel) being used to make many replacements—all vowels in the target
string are replaced with a dash.

INTERACTIVE SESSION:

>>> re.sub (" [aeiouAEIOU]", "The Quick Brown Fox Jumps Over the Lazy Dog")
'Th- Q--ck Br-wn F-x J-mps -v-r th- L-zy D-g'
>>>

n_nmn
’

Trying Out Patterns

It's useful to be able to try outlots of patterns as you are learning how they are made up. See if you can understand the
following patterns by trying them against various strings. To help you do that, we'll write a little program that allows you
to see the results of searching and matching for a specific pattern againsta number of strings. The program reads a
pattern, and ifit's the empty string, terminates. Otherwise, it reads target strings and applies matches and searches on
the strings that are subsequently input until the user enters an empty string, in which case itgoes back to requesting a
new pattern. Create a Python3_Lesson04 project and assign itto the Python3_Lessons working set. Then, create
pattest.pyinyourPython3_Lesson04/src folder as shown:

CODE TO TYPE: pattest.py

wun

pattest.py: Allows the checking of various patterns and target strings
import re
while True:
pat = input ("Pattern:
if not pat:
break
while True:
S input ("Target :

ll)

H)

if not s:
break
mm = re.match (pat, s)

if mm:

print ("Match :
print ("Match :

matched {0!r}".format (s[mm.start () :mm.end()]))
groups:", mm.groups())

print ("Match : gdict :", mm.groupdict())
else:
print ("Match : no match")
ms = re.search (pat, s)
if ms:
print ("Search: matched {0!r}".format (s[ms.start():ms.end()]))
print ("Search: groups:", ms.groups())
print ("Search: gdict :", ms.groupdict())
else:
print ("Search: no match")

This lets you test many strings against the same pattern quite quickly. Run itand ensure that you can think of strings
that both match and don't match the patterns given below.

Pattern Description
[0123456789]+ |Matches one or more decimal digits.
]+ Same as above. Remember to verify that some strings don't match the pattern -
[w]+ +[\w]+ Matches two words separated by any number of spaces.
\(\d\d\d\) \d\d\d- | Matches a US telephone number with parentheses around the area code and a dash between
\d\d\d\d the exchange and the number.
home-?brew There should be exactly two strings that match this pattern.
\$\d+(\.\d{2})? An amountofmoney (in dollars) with optional cents.

We've made a start on the use ofregular expressions. While they aren't the answer to every problem, they can help to solve
tricky text recognition problems. Justdon'ttreat them as the first weapon in your arsenal—the string methods were provided for
areason!In the nextlesson, we'll expand our knowledge of regular expressions further.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More On Regular Expressions

Lesson Objectives

When you complete this lesson, you will be able to:

e execute the fundamentals of reqular expressions.

e use reqular expressions with care.

Fundamentals of Regular Expressions

Now that we've learned the basics of regular expressions, we can look at some more advanced aspects. Remember
atthe start of the lastlesson, we introduced regular expressions by wondering how we might search for US telephone
numbers in a specific text. You are now in a position to solve that problem.

The Telephone Number Search

We want to search a block of text for phone numbers in Python using Regular Expressions. As usual, first,
we'll write a testto confirm that we're getting the behavior we want, and then we'll write the code. Create the
Python3_Lesson05 projectand assignitto your Python3_Lessons working set. Then, in your
Python3_Lesson05/src folder, create test_phone.py as shown:

CODE TO TYPE: test_phone.py

import unittest
from phone import get phone, text

class TestRegex (unittest.TestCase) :
def test phone (self):
numbers = get phone (text)

self.assertEqual (len (numbers),

if name == " main ":
unittest.main ()

5)

Save the test program. Our first code finds only the phone numbers whose area codes are not surrounded
by parentheses, and the testis satisfied as long as the function detects five phone numbers in the text—
without verifying that it has the exact numbers right. Itis, however, much better than not having any tests! Now

create phone.py as shown.

phone.py

Demonstrate use of re.findall().

o

import re

but accidentally called 555-754-4321.

5-555-0000.
Well, I will try

LIRIR1]

(555)

def get phone (text):
"Scan a text,

if name == "' main ':
print (get phone (text))

text = """While I was at the store I tried to call 555-123-4567 on my mobile
999-999-9999 which I don't think is a real number.

123-4567 again now.

locating telephone numbers."
Note the use of a "raw" string constant
return re.findall (r"\d\d\d-\d\d\d-\d\d\d\d",

The person on the line redirected me to
Neither is 000-000-0000 or 55

text)

Save and run phone.py.

OBSERVE: The output of phone.py

['555-123-4567", '555-754-4321"', '999-999-9999', '000-000-0000", '555-555-0000"]

Now, run test_phone.py.

OBSERVE: The output of the test

Ran 1 test in 0.000s

OK
e I
Note In this lesson we'll use tests very heavily, because in regular expressions it can be easy to
' generate false positives: answers that return positive values but fail in some way. '

phone.py

Demonstrate use of re.findall().

import re

text = """While I was at the store I tried to call 555-123-4567 on my mobile
but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.

Well, I will try (555) 123-4567 again now.

def get_phone (text) :
"Scan a text, locating telephone numbers."
Note the use of a "raw" string constant
return re.findall (r"\d\d\d-\d\d\d-\d\d\d\d", text)

if name == ' main ':
print (get phone (text))

The first thing this program does is import the Python regular expression library, re. The get_phone()
function uses a regular expression as the firstargument to the findall() function from that library. The pattern
\d\d\d-\d\d\d-\d\d\d\d is applied to the text, and the resultis a list of strings matched by the pattern.

The regex pattern "\d\d\d-\d\d\d-\d\d\d\d" is the central component of the code above. If you replace each
"\d" with an "X," you get XXX-XXX-XXXX—the template for matching the phone numbers.

You probably noticed that your code does notfind the phone number with the prefix in parentheses. We'll
cover that later in this lesson.

Regular Expressions and Raw Strings

Regular expressions often use the backslash (\) character. Mostly it indicates special meanings for the
characters immediately following, butit can also be used to "escape" the standard meanings of certain
characters in pattern strings, so that you can recognize these special characters too. You probably remember
that the backslash also has a special meaning in string literals ("\n" means newline, "\t" means tab, and so
on).

You probably remember that to represent a single backslash in a string, you normally need to use two
backslashes—"\\." This would make regular expressions very difficult to read. Consequently, we have "raw"
string constants (whose representations are preceded by the letter "r") to represent regex patterns. These let
you represent the backslashes without escaping, which makes them much more readable.

match() vs search()

The basic use case for regular expressions is finding occurrences of strings that conform to a pattern. The
Python regular expression library gives you two ways to perform this action, re.match() and re.search().
The difference between them is as follows:

e match() checks atthe start of a string and returns None if nothing is found.

e search() moves up the string, looking for the first occurrence of the given pattern, and returns
None only if the pattern occurs nowhere in the string.

Forexample, suppose we have several paragraphs and want to see if they start with or contain a phone
number. If a paragraph starts with a phone number, we'll assume that the paragraph is justa phone number
and we want to return it. Otherwise, if a paragraph contains a phone number, we want to return the length of
the paragraph. If a paragraph has no telephone numbers, we'll return None. Create
test_match_vs_search.pyin your Python3_Lesson05/src folder as shown:

test_match_vs_search.py

import unittest

from match vs search import check number

pl = """While I was at the store in Washington, DC 20001 I tried to call 555-123
-4567 on my mobile

but accidentally called 555-754-4321.

The person on the line redirected me to

999-999-9999 which I don't think is a real number.

Neither is 000-000-0000 or 55

5-555-0000.
Well, I will try (555) 123-4567 again now."""
p2 = "555-555-5555"

p3 = "What is the author's phone number?"

class TestRegex (unittest.TestCase) :

def test match(self):
result = check number (p2)
self.assertEqual ("555-555-5555", result)
def test search(self):
result = check number (pl)
self.assertEqual (305, result)
def test none(self):
result = check number (p3)
self.assertIsNone (result)

if name == " main ":
unittest.main ()

[0

ave itand create match_vs_search.py in the same folder:

match_vs_search.py

LIRIR1}

Demonstrate the difference between match ()

nwnn

and search () .

import re

def check number (text) :

regex = r"\d\d\d-\d\d\d-\d\d\d\d"
match = re.match (regex, text)
if match:
return match.group ()
match = re.search(regex, text)
if match:

return len (text)

Save itand run the test program:

OBSERVE: Running test_match_vs_search.py

Ran 3 tests in 0.000s

OK

Now, let's try our match_vs_search program.

CODE TO TYPE: Check the difference between match() and search()

>>> from match vs search import *

>>> check number ("707-867-5309")

'707-867-5309"'

>>> check number ("Jenny's number is 707-867-5309")
30

Let's look athow it works.

OBSERVE: The check_number() Function

def check number (text) :
regex = r"\d\d\d-\d\d\d-\d\d\d\d"
match = re.match(regex, text)
if match:
return match.group ()
match = re.search(regex, text)
if match:
return len (text)

The check_number() function first attempts to match a telephone number at the beginning of the text. If that
succeeds, it returns a match object match, described below.

If the re.match() call fails to find the pattern, it returns None, and the function then calls the re.search()
function to try and find a number somewhere in the interior of the text. If the search succeeds, then the
function returns the length of the paragraph. Otherwise it "falls off the bottom" and returns None (as is
standard in Python).

Let's continue our session to explore the difference between match() and search():

CODE TO TYPE: Check the difference between match() and search()

>>> import re
>>> target = "This is a string"
>>> def t(p, t):
if re.match(p, t):
print ("match")
if re.search(p, t):
print ("search")

>>> t("is", target)
search

>>> t ("This", target)
match

search

>>> t ("Th", target)
match

search

>>> t ("ing", target)
search

>>> t ("*ing", target)
>>>

The lasttwo examples show that a pattern for which search() is successful becomes unsuccessful if changed
to require (with A) that the match occur at the start of the string.

Any successful application of matching or searching returns a match object. This match objectincludes a
number of useful methods, the mostimportant of which are:

Method Description Value Ret“r"‘;g;g.r.fz ("555-555-
group() |Returns the entire matched string. 555-555-5555

start() Returns the startindex of the match. 0

end() Returns the end index of the match. 12

span() rl?qzttli;ﬁs a tuple with the startand end indexes of the ©,12)

The match object returned from an re.match() call always has a start() value of 0 and the span() method
also always returns 0 as the firstelement ofthe tuple. This is because, as noted earlier, the match() function
only returns patterns found at the startof a string.

On the other hand, the search() function finds strings anywhere. The test_search() function in the tests calls
check_number(p1), which calls search(). This also returns a match object, although itisn'treturned to the
caller. If we apply search() to paragraph 1, we see:

Method Description Value Returned for p1
group() |Returns the string matched. "555-123-4567"

start() Returns the startindex of the match. 65

end() Returns the end index of the match. 77

span() |Returns a tuple with the start and end indexes of the match.| (65, 77)

As you can see, match() and search() are two very similar functions with a single important difference.

More Regular Expression Features

The code you wrote found numbers of the form XXX-XXX-XXXX, because the re module's functions
recognize "\d" as requiring a digit in the scanned string. (The backslash tells the functions that the "d" is to be
specially interpreted—without it, they would only match the literal character "d"). But what about (555)-123-
45677 Thatis a phone number, butitdoesn'tfollow the same pattern.

You could write a second regular expression for this, and then try matching the first and only try the second if

the first one did not match. This could become clumsy quite rapidly in the case of complex patterns.
Fortunately, regular expressions can model complex patterns to handle this sort of problem. Regular
expressions can specify using alternate patterns using the "|" special character, which means a pattern like
the one below will find phone numbers following either the XXX-XXX-XXXX or (XXX)-XXX-XXXX patterns.

OBSERVE: Syntax for Regex With | (or) Matching

r"\d\d\d-\d\d\d-\d\d\d\d |\ (\d\d\d\) (=])\d\d\d-\d\d\d\d"

By now you are probably thinking that every character in a regular expression must be preceded by a
backslash! This is notthe case, but as we've learned, the parentheses have a specific meaning to the regular
expression matching routines, so they need to be escaped to tell the routines to look for them just as regular
characters.

One of the difficulties of the pattern above is that both alternate patterns have the same ending but different
beginnings. We can overcome this by using parentheses to group portions of our pattern. So an equivalent
pattern (ignoring complexities we haven't yet covered) would be

OBSERVE: Alternative Syntax for Regex With | (or) Matching

" (\d\d\d |\ (\d\d\d\)) (=)\d\d\d-\d\d\d\d"

In this pattern the alternation is restricted to the portions inside the parentheses—thatis, the parentheses
that are not preceded by backslashes. So the part of the pattern in parentheses will match either three digits or
three digits surrounded by parentheses. Then it will match either a dash (-) or a space. In either case the rest
of the pattern is the same. Now modify match_vs_search.py to use this extended pattern.

CODE TO EDIT: match_vs_search.py

Demonstrate the difference between match() and search().
mmoan

import re

def check number (text) :

—_— T\ I\ N\ PRANDSANDS B WP |
€5 =X Saawayes e — <

regex = r" (\d\d\d|\ (\d\d\d\)) (
match = re.match (regex, text)
if match:

return match.group ()

A\ Ju
Sy
=1

) \d\d\d-\d\d\d\d"

match = re.search (regex, text)
if match:
return len (text)

Save your changes. To correctly test this update, we also need to modify the test routine by adding tests that
require correct matching of numbers whose area codes are in parentheses and followed by a dash ora
space. You will see there is also some simplification of the test code, since there is no need to store the
resultin a variable before testing it.

CODE TO EDIT: test_match_vs_search.py

import unittest
from match vs search import check number

-4567 on my mobile
5-555-0000.

Well, I will try (555) 123-4567 again now."""

pla = """While I was at the store in Washington, DC 20001 I tried to call
123-4567 on my mobile

r (555) 555-0000.
Well, I will try (555) 123-4567 again now."""

p2 = "555-555-5555"
p2a = " (555)-555-5555"

p3 = "What is the author's phone number?"

class TestRegex (unittest.TestCase) :
def test match(self):

I N hl . (D)
= T T CIT Koo eE P

R] TR | el el e el el el el il el il 1 1
SE et crooguar it JoJ I TITT 7 rteouarcy

self.assertEqual ("555-555-5555", check number (p2))
self.assertEqual (" (555)-555-5555", check number (p2a))

def test search(self):

1 1 1 1 LT
. O C _ CITC U RN ITTUINOTT \J:)L[

1c e 1/o0C 1
=) T« =L L,J_A\:LLAQJ.\\J 12 1 oI C)

self.assertEqual (305, check number (pl))
self.assertEqual (315, check number (pla))

def test none(self):
result = check number (p3)
self.assertIsNone (result)

if name == " main ":
unittest.main ()

pl = """While I was at the store in Washington, DC 20001 I tried to call 555-123

but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55

but accidentally called (555)-754-4321. The person on the line redirected me to

(999)-999-9999 which I don't think is a real number. Neither is (000)-000-0000 o

w

ave and run it.

OBSERVE: Tests all pass.

Ran 3 tests in 0.001s

OK

More Complex Matching

So far, we've only seen a little of what regular expressions can do. Itis quite easy to extend the searching
facilities to alphanumeric patterns. Suppose we need to find a city, state, and zip code in a paragraph—the text
would follow this rough pattern: City Name, State Abbreviation Zip Code. How do you express a pattern to

match such strings?

The first thing we want to do is get the capital letter that starts each city name. In regular expressions, we can
match a single occurrence from a set of characters by putting the characters in square brackets—to match any
upper-case letter, we can use [ABCDEFGHIJKLMNOPQRSTUVWXYZ]. This is rather tedious to type, so we

can use a range, [A-Z], instead.

Next we need to match the other letters of the city name (we assume there will be one or more further
characters). For that we'll use the brackets and range again, but add a little more: [a-z]+. The plus sign allows
forany number of lower-case letters to match. So the pattern to match a capitalized word is [A-Z][a-z]+.

Some cities have multiple words in their name (Falls Church and San Francisco come to mind). Thus, the first
word can optionally be followed by one or more further words, each separated from its predecessor by white
space. So we need to follow the original pattern with zero or more repeats to the same pattern, with the
repeats preceded by a whitespace. The pattern for thatis (\s[A-Z][a-z]+)*.

Note that, in order to apply the * character to the whole grouping, parentheses are required.

Now, we need to account for the state abbreviations. The easiest way to do itin regular expressions is via [A-
Z1{2}, which only allows two uppercase letters, matching the US postal designation for American states. Add
thatto our regular expression, include a comma, and allow for a little white space: ,\s[A-Z]{2}.

Finally, we handle zip code handling portion of the pattern. We won't check for nine-digit or foreign postal
codes rightnow, so for our purposes, \d{5} will suffice. This makes the final pattern [A-Z][a-z]+(\s[A-Z][a-
z]+)*\s[A-Z]{2}\s\d{5}.

Now we'll try incorporating thatinto a function that finds the required addresses. Naturally, we need to write
some tests first. In your Python3_Lesson05/src folder, create test_city_search.py as shown:

CODE TO TYPE: test_city_search.py

import unittest
from city search import city search

pl = """While I was at the store I tried to call 555-123-4567 on my mobile

but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.

Well, I will try (555) 123-4567 again now."""

p2 = "I live in Washington, DC 20002. Where do you live?"
p3 = "I live in Falls Church, VA 20188. And you?"

class TestRegex (unittest.TestCase) :
def test city search(self):
self.assertEqual ("Washington, DC 20002", city search(p2))

self.assertEqual ("Falls Church, VA 20188", city search (p3))

def test city search failure(self):
self.assertIsNone (city search(pl))

if name == " main ":
unittest.main ()

Save it. Most of the work has already been done with the design of the regular expression, and the function
now simply needs to use itto locate addresses. Create city_search.py as shown:

CODE TO TYPE: city_search.py

String regular expressions

LIRIR1]

import re

def city search (text):
regex = r"[A-Z] [a-z]+ (\s[A-Z] [a-z]+)*,\s[A-2] {2}\s\d{5}"
search = re.search(regex, text)

if search:
return search.group ()

Save it, and then run test_city_search.py.

OBSERVE: Results of Running test_city_search.py

Ran 2 tests in 0.001s

OK

Regular expressions have a power which their apparent simplicity belies, as you can now start to appreciate.

Finding all with findall() and finditer()

The first programming example in this lesson used a regular expression function named findall(). In that
code, itreturned a list of non-overlapping matching phone numbers from the paragraph. This is useful for
providing a list of strings, but what if you need to know the start and end index of each ofthose phone
numbers, in other words familiar data shown below, butfor each found part of the string? While findall returns
a list of the matching strings, finditer returns a list of the matching objects, and each match object has these

methods:
Method Description
group() Returns the string matched.
group(n) Returns the string matched by the nth parenthesised group in the pattern.
group(m, n, |Returns a tuple of the strings matched by the mth, nth, and so on parenthesized groups in
the pattern.
start() Returns the startindex of the match in the target string (always 0 for re.match()).
end() Returns the end index of the match.
span() Returns a tuple with the start and end indexes of the match.

More on Modifying Strings With sub() and subn()

Suppose you don'twant to publish all the phone numbers in this lesson, but you do wantto show area
codes. Regular expressions let you find patterns, and they also provide tools to allow you to modify them.
The regular expression sub() method can make this sort of substitution. Pass in your pattern, what you want
it replaced with, and the string to modify: re.sub("\d\d\d-\d\d\d\d", " XXX-XXXX", text).

Let's make a program to show this in action. Create test_phone_hide.py in your
Python3_Lesson05/src folder:

Th

wn

CODE TO TYPE: test phone_hide.py

import unittest
from phone hide import phone hide

text = """While I was at the store I tried to call 555-123-4567 on my mobile

but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.

Well, I will try (555)-123-4567 again now.

class TestRegex (unittest.TestCase) :

def test phone (self):
response = phone hide (text)
self.assertFalse ("555-123-4567" in response)
self.assertTrue ("555-XXX-XXXX" in response)
self.assertTrue (" (555) -XXX-XXXX" in response)

if name == " main ":
unittest.main ()

en, create phone_hide.py in the same folder:

CODE TO TYPE: phone_hide.py

import re
def phone hide (text):

Don't forget to use a raw string constant!
return re.sub (r"\d{3}-\d{4}", "XXX-XXXX", text)

ave both programs and run the test:

OBSERVE: Running test_phone_hide.py

Ran 1 test in 0.022s

OK

What if we want to know how many substitutions occurred? Then we can use the subn() function, which
returns a two-element tuple containing the result string and the number of substitutions. Modify
test_phone_hide.py as shown:

CODE TO EDIT: test_phone_hide.py

import unittest
from phone hide import phone hide

text = """While I was at the store I tried to call 555-123-4567 on my mobile

but accidentally called 555-754-4321. The person on the line redirected me to
999-999-9999 which I don't think is a real number. Neither is 000-000-0000 or 55
5-555-0000.

Well, I will try (555)-123-4567 again now.

class TestRegex (unittest.TestCase) :
def test phone(self):

response, count = phone hide (text)
self.assertFalse ("555-123-4567" in response)
self.assertTrue ("555-XXX-XXXX" in response)
self.assertTrue (" (555) -XXX-XXXX" in response)
self.assertEqual (6, count)

if name == " main ":
unittest.main ()

Save and run it:

OBSERVE: Running test_phone_hide.py

E

ERROR: test phone (_ main .TestRegex)
Traceback (most recent call last):
File "C:\Users\sholden\workspace\Python3 Lesson4\src\test phone hide2.py", lin
e 14, in test phone
response, count = phone hide (text)
ValueError: too many values to unpack (expected 2)

Ran 1 test in 0.001s

FAILED (errors=1)

It fails because the current phone_hide() function still returns a single value. We need to modify it to call
subn() instead of sub().

CODE TO EDIT: phone_hide.py

import re
def phone hide (text):

Don't forget the 'r' at the start of the string!
return re.subn (r"\d{3}-\d{4}", "XXX-XXXX", text)

Inserting that single letter "n" should be enough to restore everything to a fully functional state.

Save it, and run the test again:

OBSERVE: test_phone_hide.py now passes again

Ran 1 test in 0.001s

OK

Breaking Strings Apart with split()

Now suppose we want to splitup a paragraph into a list of sentences. Python's split() function makes this
problem ftrivial to solve. The regular expression pattern to find a sentence end (assuming some
simplifications)is r"[?.!]\s+".

The bracketed set contains the punctuation characters ?, ., and !, which represents the ending of each
sentence. Although these characters all have special meanings in regular expressions, remember that within
a character set specification, they are treated as literal.

The "\s+' portion of the pattern requires a space or spaces after the ending punctuation of a sentence. The
more precise you make a pattern the better your results will be. Without the spaces, a period used as a
decimal pointinside a number would be treated as ending a sentence.

Let's give it a try! As usual we'll begin by writing the tests. In your Python3_Lesson05/src folder, create
test_sentence_split.py as shown:

CODE TO TYPE: test_sentence_split.py

import unittest
from sentence split import sentence split
text = "Hello! My name is Steve. What is yours? I hope you enjoyed this class!"
class TestRegex (unittest.TestCase) :
def test split sentence (self):

numbers = sentence split (text)
self.assertEqual (len (numbers), 4)

if name == " main ":
unittest.main ()

Then, in the same folder, create sentence_split.py:

CODE TO TYPE: sentence_split.py

import re

def sentence split (text):
return re.split(r"[?.!]\s+", text)

n

ave both files, and run the test:

results of test_sentence_split.py

Ran 1 test in 0.001s

OK

Use Regular Expressions With Care

Regular expressions are extremely powerful. As you expand your knowledge, you'll be amazed by what they can do.
However, with great power comes great responsibility! So here are a couple of warnings about the use of reqular

expressions in programming.

CnURd Ths?

Regular expressions can get extremely complex. For example, let's say you want to pull all of the email
addresses from a paragraph. This sounds like a simple enough task, right? Something like r"[a-zA-Z.-
]*\@[a-zA-Z.-]1+" should work, right?

Unfortunately, if you apply that pattern to "So... um...@oreilly we found his email was
steve@oreilly.com." you will getsteve@oreilly.com out, but it will also give you um...@oreilly!

So your pattern should be able to handle only proper email prefixes and should not allow repetition of dots.
There are other specifications for allowed domain suffixes such as nations, .info, .com, and others. You
should really research RFC 2822, which is the official email specification, with all its special cases and rules.
And that sort of complexity generates regular expressions thatlook like this:

"[a-z0-91#$%& *+/=22_{|}~-1*(?:\.[a-20-9#$ % & *+/=?*_*{|}~-]*+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\.)+(?:[A-Z]{2}|com|org|net|edu|gov|mil|biz]info|mobi|lname|aero|asialjobs|museum)\b"

As you can see, regular expressions can get out of hand—and this is justfor emails! Regular expression
syntax is arguably not very clear compared to the elegance of Python, and itis notuncommon for authors of
regular expressions to lose track of what their effortis supposed to do.

There are ways to make regular expressions more legible, but be aware of the code clarity issues that regular
expressions can cause.

String Methods Versus Regular Expressions

"When the only tool you own is a hammer, every problem begins to resemble a nail."
-Abraham Maslow, American educator

You've just been introduced to the world of regular expressions, an amazingly powerful toolbox that can do
incredible things. You've also been warned about the dangers of regular expressions. There is still much
more to learn, and the Python documentation describes regular expressions in rather more detail (a
confusing amount of detail for beginners, we suspect).

Forovertwo courses and about thirty lessons, we've been able to rely on string methods. And thatis
because Python's string methods are fast and powerful, and yet easy to use. By all means, continue to use
them when itis easy and faster to do so.

Sometimes regular expressions aren't the righttool for the job. Sometimes it pays to write a dozen lines of
Python code instead of a single regular expression. There are no hard and fastrules to follow; itis just
something thatyou learn over time.

For some reason, we find that regexes enthuse people to the point that they become the hammer with which
they try to solve all string-processing problems. Don't let this happen to you.

In the nextlesson, you'll learn that Python allows you to build regular expression pattern objects, which can make your
code more compact and readable as well as more efficient.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and project(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Compiling and Flagging Regular Expressions

Lesson Objectives

When you complete this lesson, you will be able to:

e compile reqular expressions.

e flag reqular expressions.

In preceding lessons, you learned about regular expressions and their basic use in the Python language. In this lesson, you'll
learn abouthow to compile regular expression patterns, Python's special regular expression flags, and additional pattern
matching strings. Of course, we'll try more examples. By the end of this lesson, you'll know enough to handle mostofyour
regex needs.

Compiling Regular Expressions

So far, we've used the module-level functions in Python's re library in order to do pattern matches. The advantage of
this is that it makes for quick-to-write code, but from a performance point of view, itis notthe most efficient method. For
the small examples we've used so far, ithasn't been a problem, but regular expressions are often called in huge
volumes on gigantic strings and the module-level functions have their limits. So when you anticipate a need for greater
performance, itis a good practice to compile the regular expressions before use.

Compiled regular expressions are called a pattern object. All of your favorite Python re search functions are methods
ofthe pattern object. Actually, many of these methods have additional features that the basic search functions lack,
which allow you to really fine-tune your searches.

When you compile your patterns, since they are no longer strings, your code is more compact, more readable, and
more usable.

Using re.compile() to Make a Pattern Object

To compile a regular expression into a pattern object, you pass a pattern string into the re.compile()
function. Once you've done that, you can start using the re functions you've learned before, such as match(),
search(), findall()—albeit now as methods:

CODE TO TYPE: Run the following code in an interactive terminal session

>>> import re

>>> regex = re.compile ('Python')

>>> my str = "I'm glad O'Reilly has Python courses and books!"
>>> result = regex.search(my str)

>>> result

< sre.SRE Match object; span=(22, 28), match='Python'>

>>> result.group ()

'Python'

>>> regex.match(my str) == None # Match fails because 'Python' is not at the sta
rt

True

>>> regex.findall (my str)

["Python']

If you continue to play around with the pattern object, you'll see you can use finditer(), sub(), and subn() as
methods. Indeed, the pattern object functionality matches that of the core re library functions.

Pattern objects and positional arguments

Actually, the statement 'the pattern object functionality matches that of the core re library functions' is incorrect.
The pattern object also includes for many of its methods pos and endpos arguments. These act just like string
slicing, but if the endpos argumentis less than the pos argument, the method returns a None objectinstead
of an empty string on the match() and search() methods and an empty list/iterator for the findall() and finditer()
methods, respectively.

CODE TO TYPE: Continuation of session above

>>> new str = 'Python is a language; a Python is a snake'
>>> regex.findall (new str)

['"Python', 'Python']

>>> regex.findall (new str, 6) # starts at position 6
["Python']

>>> regex.findall (new_str, 6, 10) # starts at position 6,
L]

>>> regex.findall (new str, 10, 5)

[]

>>> type (regex.match (new str, 10, 5))

<class 'NoneType'>

ends at position 10

Not all pattern object methods include position arguments, so here is a reference guide:

Method |Positional Arguments?
search |yes
match yes
split no
findall yes
finditer |yes
sub no
subn no

Flagging Regular Expressions

When you getinto writing longer and more complex regular expressions, itbecomes hard to read the pattern. Wouldn't
it be nice to be able to be able to include comments in your regular expressions? Or spread the regular expression
across multiple lines without creating false positives? Orignore alphabet case by default? Or only Flags give you that

and more.

Verbose Regular Expressions
Earlier, we used this regular expression to find cities in a text string:

[A-Z][a-z]+(\s[A-Z][a-z]+)*\s[A-Z]{2}\s\d{5}

This is not very easy to read. Fortunately, we can break it up and still keep it usable, with the re. VERBOSE flag.
Let's make an example. Create the Python3_Lesson06 projectand assign itto the Python3_Lessons
working set. Then, copy city_search.py and test_city_search.py from the previous lesson into the

Python3_Lesson06/src folder. Edit city_search.py as shown:

CODE TO EDIT: city_search.py

String regular expressions
mon

import re

def city search(text):

reg B S e o 2 W w2 2 B B A2+ H5T

regex = re.compile (x"""
[A-Z] [a-z]+ # the first word of a city
(\s[A-Z][a-z]+)* # possible additional words of a city
,\s[A-Z]{2}\s # The two-letter abbreviation for a US state
\d{5} # five-digit US zip code

""", re.VERBOSE)

eareh——rerSearehtreges—texty)
search = regex.search (text)
if search:

return search.group ()

Save itand run test_city_search.py. It still passes the tests.

As you can see, when the pattern objectis compiled, you passed in re. VERBOSE as an extra argument. This
argument allowed you to include white space and Python-style comments without breaking the regular
expression.

The trick with this particular flag is that all the white space is removed, except that which is declared, so you
need to remember to include \s, \n, \, \f, \t, and \v instead of literal spaces, tabs, and return characters.

Ignoring Case
If you need to match a pattern and ignore case, the bestway to do itis with the re IGNORECASE flag:

CODE TO TYPE: Run the following code in an interactive terminal session

>>> import re
>>> regex = re.compile (r"""python # the language
|guido # the bdfl
... """, re.IGNORECASE | re.VERBOSE)
>>> for m in regex.findall ("""Python was invented by Guido, and while its mascot
is a
. python, it was named after Monty Python"""):
print (m)
Python
Guido
python
Python

Note that when we pass in two flags, we use the pipe (|) symbol, thus: re.IGNORECASE | re. VERBOSE
When you finish the lesson, return to the syllabus and complete the quiz(zes) and project(s).

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Python's Object-Oriented Features

Lesson Objectives

When you complete this lesson, you will be able to:

e use encapsulation.

e apply the principles of inheritance.

e utilize polymorphism.

Earlier in this course, you learned some of the basics of object-oriented programming (OOP), which was firstdiscussed in
"Beginning Python." In this lesson, you'll learn more about OOP, and understand more deeply the object-oriented features that
Python offers.

Encapsulation

Encapsulation is the idea that the only way to access or change the data inside an objectis by calling its methods. This
idea has never really gained much ground in the Python world, and itis normally considered acceptable to both read
and setan object's attributes from anywhere in a program.

Occasionally, you may find that storing new information in an object requires you to perform other calculations. While it
might seem that a method call would be necessary in such circumstances, you can instead choose to perform the
calculations by implementing a property, which we will show how to do later.

Inheritance

A quick subclassing review

You have already used Python's inheritance features, so you know something about them. In programming,
when a child class inherits from a parent class, thatis referred to as subclassing. In Python, we say that the
subclass (child) inherits from a base class (parent). To the programmer, it appears that the subclass has all of
the same attributes (including methods) as the base class—though in fact this is actually implemented by the
interpreter following a well-defined method resolution order (MRO) to locate attributes. Run an example in an
interactive interpreter window as follows to clarify this.

CODE TO TYPE: Run the following code in an interactive terminal session

>>> class Parent:
skin color = "green"

>>> class Childl (Parent) :
pass

>>> class Child2 (Parent) :
skin color = "blue"

>>> Childl.skin color

'green'

>>> Child2.skin color

'blue’

>>> Child2. mro

(<class ' main_ .Child2'>, <class ' main .Parent'>, <class 'object'>)

>>> object
<class 'object'>
>>> dir (object)

[' class ', ' delattr ', ' doc_ ', ' eq ', ' format ', ' ge ',
' getattribute ', ' gt ', ' hash ', ' init ', ' le ', ' 1t ',
' ne ', ' new ', ' reduce ', ' reduce ex ', ' repr ', ' setattr ',
' sizeof ', ' str ', ' subclasshook ']
>>> dir (Parent)
[' class ', ' delattr ', ' dict ', ' doc ', ' eq ', ' format ', ' g
e ',
' getattribute ', ' gt ', ' hash ', ' init ', ' le ', ' 1t ',
' module ', ' ne ', ' new ', ' reduce ', ' reduce ex ', ' repr ', '
___setattr ',
' sizeof ', ' str ', ' subclasshook ', ' weakref ', 'skin color']

>>> type (object. dict)
<class 'mappingproxy'>

>>> Parent. dict

mappingproxy ({'skin color': 'green', ' weakref ': <attribute ' weakref ' of
'Parent' objects>,
' doc_ ': None, ' module ': ' main ', ' dict ': <attribute ' dict ' of

"Parent' objects>})

>>> sorted(list (Parent. dict))

[' dict ', ' doc_ ', ' module ', ' weakref ', 'skin color']

>>> sorted(list(Childl. dict))

[' doc_ ', ' module ']

>>> sorted(list (Child2. dict))

[' doc_ ', ' module ', 'skin color']

>>> sorted(list (object. dict))

[' class ', ' delattr ', ' doc ', ' eq ', ' format ', ' ge ',
' getattribute ', ' gt ', ' hash ', ' init ', ' le ', ' 1t ',
' ne ', ' new ', ' reduce ', ' reduce ex ', ' repr ', ' setattr ',
' sizeof ', ' str ', ' subclasshook ']

>>>

P T E T m T hl

In the example above, the value of Child1.skin_color is "green," because if the interpreter doesn't find the
attribute itis looking for in the class it will nextlook in its base class. The Child2 class sets its own
skin_color, however, and so when the interpreter looks for a "skin_color" attribute in the class's
namespace, it finds it without any need to look in the parent class. We say that the Child2 class overrides the
base class's skin color.

Parent

Childl Child2

skin_color: "blue”

The diagram above shows the inheritance relationship between Parent, Child1, and Child2, which makes it
obvious why Child1 has green skin. You can see the MRO ofa class by examining its __mro___ attribute, as is
shown in the interactive session. This tuple is a list of the class's base classes. You will observe that
although itis never explicitly mentioned in any of the class definitions, Python classes ultimately inheritfrom a
built-in class called object, and that much of the behavior of your classes is actually defined in that class.

Technically, the built-in classes are usually referred to as fypes. There are a few differences
' Note between those types and the classes you define yourself, but you don't need to be concerned '
' about them just yet. '

You can also see thatthe names that have been defined locally to a class generally live inits __dict__.To a
firstapproximation, the output of dir() on a class will be its __dict__ plus the __dict__s ofall its base
classes. Thatis because the class's __dict__ is where the class attributes are stored.

You might also notice that classes don't actually use a Python dict as their __dict__, butinstead have a
specialized object called a dict_proxy. This is a "lightweight" dict, designed to operate lookups as quickly as
possible because name lookups are so frequentin Python.

One other term to remember: the base class thatis the immediate parent of a class is often called its
superclass.

Multiple Inheritance

Python implements multiple inheritance: you can specify more than one base class in a class definition, and
your class will inherit the characteristics of all its base classes. This allows you to define classes called mix-in
classes that you can use specifically to add behaviors to other classes.

This naturally gives rise to the question "what happens if more than one of the base classes defines the
same attribute—which value does my class inherit?" As with so many questions about Python, the interactive
interpreter is your friend. Let's use it to find out.

CODE TO TYPE: Investigate more complex inheritance in an interactive interpreter session

>>> class Mother:
hair color = "blonde"
temperament = "placid"

>>> class Father:
hair color = "ginger"
curiosity = "high"

>>> class Daughter (Mother, Father):
pass

>>> class Son (Father, Mother):
pass

>>> Daughter.hair color

'blonde’

>>> Son.hair color

'ginger'

>>> Daughter.temperament, Daughter.curiosity
('placid', 'high'")

>>> Son.temperament, Son.curiosity
('placid', 'high'")

>>>

The Daughter class inherits the Mother class's hair_color because the base classes are searched left-to-
right. Similarly the Son class inherits the Father class's hair_color. However, both children inherit
temperament from the Mother class and curiosity from the Father class, because only one base class
defines each of these attributes. Inheritance of methods works in exactly the same way: in resolving a method
or attribute name, the interpreter searches the base classes (and their subclasses, and so on) starting from
the left—all subclasses of the first base class are considered before the second base class

Polymorphism

Polymorphism: Same Operations, Different Types

One of the concepts that Python supports very well is Subtype Polymorphism, known less formally as
polymorphism. Polymorphism gives you the ability to write code without concerning yourself about the types
ofthe data itis dealing with.

Early in this series of classes, you used Python to perform some basic math on integers, and eventually
expanded your knowledge to understand that you could add (or more properly "concatenate") strings and
various iterators together. Use the interactive interpreter to remind yourself again about this interesting
property of Python.

CODE TO TYPE: Use the interactive interpreter to define a polymorphic function

>>> def add(x, y):
return x+y

>>> add (3, 5)

8

>>> add ("big", "string")
'bigstring'

>>> add([1, 2, 4], [8, 16])

(1, 2, 4, 8, 16]

>>> add((1, 1, 1), (2, 2, 2))
(1, 1, 1, 2, 2, 2)

>>>

The above function demonstrates thatin Python, numbers, strings, lists, and tuples are polymorphic with
respect to addition. As long as both arguments are of the same type, you can add them together.

Did you ever stop to wonder about how the + and * operators "know" how to do the correct operations on the
operands on either side? If you think about it, the computer has to perform quite different operations to add
two strings and two numbers. This polymorphism is achieved by examining and calling methods of the
operands.

When the interpreter has to evaluate the expression a + b, itfirsttries to evaluate a.__add__(b). This may or
may notbe possible: the a object may not have an __add__() method, or the method might return
Notlimplemented when called with b as an argument. In either of these cases, the interpreter falls back to trying
to call b.__radd__(a) to evaluate the expression. If this is impossible (again, either because b has no
__radd__() method, or because that method raises Notimplemented when called with a as its argument) the
interpreter raises a TypeError exception.

One more thing before we explore actual usage—in an earlier lesson, we wrote code to determine a child's
hair color. Our tests checked the response of an expected hair() method. This was yetanother example of
polymorphism.

Let's create a working example that does use polymorphism. You've gota farm and you need to list all the
animals, the sounds they make, and whether they have wings. Create the Pydev project for
Python3_Lesson07 and assignitto the Python3_Lessons working set. Then, in the
Python3_Lesson07/src folder, create test_animal_farm.py as shown:

CODE TO TYPE: test_animal_farm.py

T

Test the animal farm animals

LI)

import unittest

from animal farm import Animal, Pig, Dog, Chicken

class Test (unittest.TestCase) :

def test base animal class(self):
"Tests the basics of the Animal class."
animal = Animal ("Orwell")
self.assertRaises (NotImplementedError, animal.sound)
self.assertFalse(animal.has_wings())

def test pig(self):
"Tests the inhabitants of the farm"
pig = Pig("Napoleon")
self.assertEqual (pig.sound(), "oink!")
self.assertFalse(pig.has wings())

def test dog(self):
dog = Dog ("Bluebell™)
self.assertEqual (dog.sound (), "woof!")
self.assertFalse (dog.has wings())

def test chicken(self):
chicken = Chicken ("Kulak")
self.assertEqual (chicken.sound (), "bok bok!")
self.assertTrue (chicken.has wings())

if name == " main ":
unittest.main ()

The tests first determine that the base animal class works as expected. Then the individual animal classes are
tested to make sure that they return the right sound and the right answer to the wing question.

Note that the Animal class's sound() method raises a NotimplementedError. This is a reminder that we
assume all farm animals make sound, and the developer writing classes representing the beasts needs to
implement this method. In programming parlance, the sound() method is called an abstract method. It doesn't
do anything besides inform developers looking to use the Animal class what they need to do to make the
class function correctly, and requires subclasses to implement the method.

The has_wings() method is different, assuming that most of the farm animals will by default not have wings,
and so provides a default return of "False."

Now we need to create some animal classes to match the tests. In the Python3_Lesson07/src folder,
create animal_farm.py as shown:

code to enter: animal_farm.py

class Animal (object) :

def init (self, name):
self.name = name

def sound(self):
raise NotImplementedError ("Animals need a sound method")

def has wings(self):
return False

class Pig(Animal) :

def sound(self):
return "oink!"

class Dog(Animal) :

def sound(self):
return "woof!"

class Chicken (Animal) :

def sound(self):
return "bok bok!"

def has wings(self):
return True

[

ave the files and run the tests, and you have a working example of polymorphism.

OBSERVE: All four tests should pass

Ran 4 tests in 0.001s

OK

While tests are good to have, it's nice to see the actual application working too! Let's try this outon the
command line:

OBSERVE: animal_farm in action

>>> from animal farm import *

>>> animal = Animal ('Mystery Meat')

>>> animal.name

'Mystery Meat'

>>> animal.sound ()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "animal farm.py", line 7, in sound

raise NotImplementedError ("Animals need a sound method")
NotImplementedError: Animals need a sound method
>>> dog = Dog('Rover'")

>>> dog.name

'Rover'

>>> dog.sound ()

'woof !

Overriding vs. Extending methods

You saw earlier how the definition of an attribute in a class will be chosen in preference to the definition of the
same attribute in a base class. This is due to the method resolution order adopted in Python. When searching
for an attribute (including a method), the interpreter first looks in the instance's namespace; nextitlooks in the
namespace of the instance's class; after thatitlooks in the base classes one by one, raising an AttributeError

exception if the attribute is notfound.

If a class defines a method of the same name as a method of one of its base classes, itis said to override the
method of the base class. So in the example above, the Chicken class's has_wings() method overrides the

Animal class's has_wings() method, by providing its own implementation.

Sometimes, however, the subclass needs to use its superclass's method as a part ofimplementing its own

method, and Python has a special feature to easily let you refer to a class's superclass—the super()

function. You will see itin use in the next example, where we start by defining a Car class and then extend it by
subclassing. The Toyota subclass needs an extra argumentto its __init__ () method, butitalso needs to
go through the usual initialization for cars. Create test _extend.py in your Python3_Lesson07/src folder

as shown

CODE TO TYPE: test_extend.py

v

test extend.py: verify that Ford successfully
extends the Car. init () method

L]

import unittest

from extend import Car, Ford, Toyota

class TestCars (unittest.TestCase) :
def test Toyota(self):
carl = Car ("red", 2000)
car2 = Toyota("red", 2000, "Corolla")
self.assertEqual (carl.color, car2.color)
self.assertEqual (carl.cc, car2.cc)
self.assertEqual (car2.model, "Corolla")

def test Ford(self):
carl = Car ("red", 2000)
car?2 = Ford("red", 2000, "Taurus")
self.assertEqual (carl.color, car2.color)
self.assertEqual (carl.cc, car2.cc)
self.assertEqual (car2.model, "Taurus")

if name == "' main ':
unittest.main ()

The idea is that Toyotas are cars and Fords are cars, so they should use the Car.__init__() method to do

the initialization that they have in common to setthe instance variables. Observe thatboth the Toyota and
Ford classes take an extra argument when you create a new instance, so clearly Car.__init__() alone is not
going to suffice. The two subclasses are quite similar, differing only in the way they call their superclass's
__init__() method. Now, create the extend.py program as shown:

CODE TO TYPE: extend.py

v

extend.py: demonstrate how to extend a superclass method.
T

class Car:
def init (self, color, cc):
self.color = color
self.cc = cc

class Toyota (Car) :
def init (self, color, cc, model):
Car. init (self, color, cc)
self.model = model

class Ford(Car) :
def init (self, color, cc, model):
super (). init (color, cc)
self.model = model

Note thatthe Toyota class's __init__() method calls Car.__init__() directly. Since Car is a class and not
an instance, itis necessary to provide an explicitinstance to the call.

The Ford.__init__() method, however, uses the built-in super() function. This returns a special object that
delegates the calls to the parent class without needing an instance to be provided. If the tests all pass, that
demonstrates that the two classes are equivalentin operation.

Z
o
—*
®
=
<
[}
=
@
o
=)
N
~
(]
=
o
<
=1
>
o
>
n
[
o
[¢]
=
f—
>0
QO
(2
Q
Q
=
(]
=
[}
=)
=3
()
<
=}
-
Q
x
—
=
=
=
QO
=
«Q
c
3
[}
>
2]
~

Ran 2 tests in 0.000s

OK

So both the subclasses, in their own way, extend the Car.__init__() method.
After this more extended look at Python's object-oriented features, you are better prepared to deploy the language to
solve real-world problems. In the nextlesson, we'll take a look at the features the language has for reading and storing
data in compact binary formats.
When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Consuming and Creating Binary Data

Lesson Objectives

When you complete this lesson, you will be able to:

o differentiate between Python data and raw computer data.

e use the struct Module.

Python Data vs. Raw Computer Data

You have learned about many different data types that Python can deal with. This lesson explains how Python can be
persuaded to exchange data with arbitrary programs, over whose data you have no control.

So far, all the external data (coming to and from files or the console) has been character or string data. You have
handled this data without really needing to understand how itis represented, and now itis time to think about thata
little. This requires you to understand something about character data to start with.

For quite a long time, the computer industry got by using character sets with only a limited number of characters. This
was acceptable because people in most countries were writing programs for local consumption, and so they could
encode their local alphabet so that each character was mapped onto one of the possible values of a byte. (A byte
contains eightbits, so there are 256 different possible values from 0 to 255). Such a mapping is often referred to as an
encoding of a character set. There has to be an agreement that different programs will treat the same byte values as
representing the same character. For a long time, Python's string type used the US ASCIl character set, using one byte
to represent each character.

Then, the realization dawned that computer programs would eventually need to be capable of handling multiple
languages, and in the mid-1980s work began on a way to encode much larger character sets, with the ultimate
intention of being able to represent any text at all. This work ultimately led to the development of a standard called
Unicode, which is what Python now uses to representits strings. Internally, this requires the interpreter to represent
each character as one to four bytes, using an encoding known as UTF-8. Python also provides support for many other
encodings.

Unicode is notthe most memory-efficient way to represent strings, and so for external storage and transmission a
number of different ways of representing Unicode strings (normally referred to as encodings, just like ASCIl) have been
devised. Probably the mostcommon in the Western world is UTF-8, which has been specially devised so that Unicode
strings containing only ASCII characters will encode into the equivalent ASCII strings. The Python installed in Ellipse
makes a default assumption that the external encoding of the text strings thatitreads is UTF-8, but you may find that
other Python interpreters have been configured to expect other encodings. You can ask the interpreter how it has been
configured by calling sys.getdefaultencoding(), and you can determine the assumption it makes about the
contents of text files by calling sys.getfilesystemencoding(). The two will not necessarily be the same, as you can
see:

CODE TO TYPE: Type this code in an interactive Python console session

>>> import sys

>>> sys.getdefaultencoding ()
'utf-8"'

>>> sys.getfilesystemencoding ()
'mbcs’

There are, however, times when it's important to be able to communicate in other than character terms. Sometimes, for
example, you will receive a binary file and a description of its layout, and you will need to convert that data into the
necessary Python types in order to be able to operate on it. Sometimes you will need to write your Python data outin a
formatrequired by other programs, with "raw" computer data types rather than string-based representations.

How Computers Represent Data

Most computers only work with a very limited set of different types of data: integers (of various sizes),
floating-point numbers (of various sizes), and (sometimes) strings of bytes. Data types like Python's dicts
and lists are not dealt with directly by the central processing unit (CPU). Thatis what the interpreteris for: itis a
special-purpose program specifically designed to give you the impression that Python's data types are built

http://www.columbia.edu/kermit/ascii.html

in.

If you were to look at the layoutin memory of a Python floating-point number, for example, you would see that
itis far more complicated than a regular floating-point number used by the CPU. This is because the
interpreter must maintain a bunch of overhead to do things like keeping track of how many references there
are to an object (so the memory ituses can be reclaimed when itis no longer in use). But programs in other
languages would not be able to make any sense out of Python's representation; they just want the data
without any of that overhead.

So this leads to the interesting question of how the CPU actually represents the basic data types itis capable
ofdealing with. Fortunately "there's a module for that" in Python: the struct module (discussed later). It
allows you to build memory structures (Python byfes objects) that can be written out to files or transmitted
across networks for consumption by other programs.

The byte is the smallest addressable unitof memory in a modern computer and, as mentioned above, holds
eight bits. A bytes objectis a sequence of bytes, and so it can be subscripted and sliced just like strings and
lists. When you open a file in binary mode and read data from it, what you get back is a bytes object. No
decoding takes place on input, and no encoding on output. When a bytes objectis read or written, you get the
data transmitted, with no attempts to change it.

Python also implements a bytearray type. This is similar to the bytes type, but unlike strings and
' Note Dbytes, the bytearray is mutable, so you can change individual bytes by indexing, or sub-arrays by !
' slicing. '

The bytes and bytearray objects allow you to map the individual bytes of a file's contents, or of a sequence of
bytes read over the network. The struct module allows you to interpret these values as the computer's basic
data types—bytes, integers, and floating-point numbers.

The memory that your program works with (under the hood, thatis, rather than the Python data types) is like a
large bytearray, and the index of each byte is usually called its address. Addresses start, like Python indexes,
atzero and go up by ones.

Endianness

The numbers that computers can deal with have grown bigger over the years. The more bits a number has,
the larger the range of values it can represent. In modern computers, integers (whole numbers) will typically
be represented as four bytes (though with the emergence of 64-bit computers, they can also be eight bytes).
In older machines, they would be two bytes, now often referred to as a "short." Furthermore, integers can be
either signed or unsigned, the former being able to represent both positive and negative values, the latter
always interpreted as positive values.

There are two principal ways to store numbers, known (for reasons we need notgo into) as "big-endian" and
"little-endian". The difference between them is the way that the bytes are stored: in a big-endian system, the
most significant byte of a number is stored atthe lowest memory address; in a litle-endian system, itis
stored at the highest memory address. For simplicity, let's consider a 16-bit (2-byte) representation of the
number 1027.

The most significant byte will have the value 4, and the least significant byte will have the value 3 because
1027 = (4 *256) + 3.

If this is stored at address 325676 in your program's memory, on a big-endian system it would look like this:

Address: 325676 325677
00000100 00000011

On a little-endian system, the same value stored atthe same address would look like this:

Address: 325676 3256717

3 4

00000011 00000100

This might not seem like much of a difference, but you have to know which endianness the data has when you
are dealing with numbers made up of more than one byte. Otherwise you will interpret the numbers wrongly.
The same thing occurs with longer values, though the arithmetic involved is more complex. Suppose you had
the following bytes stored in memory starting at address 1367744.

Address: 1367744 1367745 1367746 1367747
00000100 00000011 00000010 00000001

If this were a big-endian number, its most significant byte would be the 4 shown on the left, and its value
would be (((4*256+3)*256+2)*256+1 =67,305,985.

If it were little-endian, however, its most significant byte would be the 1 on the right, making its value
(((1*256+2)*256+3)*256+4 = 16,909,060.

This should, we hope, convince you of the necessity to understand which type of data you are dealing with,
since to deal with it the wrong way will lead to values that are just plain wrong!

Data Alignment

Yetanother factor to take into accountis the alignmentofdata. ltis common for data to be aligned so that
their starting address is a whole multiple of their size, so long (4-byte) integers will always be stored atan
address thatis an even multiple of4, and so on.

These alignment rules are usually advisory rather than mandatory, but they are important: due to the way
memory access works, it can take several times as long for the computer to add two non-aligned integers as
itdoes to add two correctly-aligned ones. It's important to note that if the data are aligned this way, there may
be so-called "packing" bytes inserted between values of different sizes. If you fail to take account of this, you
will end up using the wrong bytes!

The struct Module

The struct module has been designed specifically to allow you to handle chunks of data that have been stored or
transmitted in binary form to your Python program. Typically, you will read the data either from a file opened in binary
mode or across a network connection. The module provides an unpack() function to let you interpret binary data and
convertitto the appropriate Python data types. Its pack() function does the opposite, taking various Python data and
converting them to a bytes object that can be stored or transmitted for other programs to interpret.

Format Strings

Both pack() and unpack() require a description of the data types in the bytes. This is presented as what the
documentation refers to as a format string, whose first character is used to indicate the endianness of the
data. In the following table, "native" means according to the rules of the particular computer on which the
program is running. "Standard" alignment simply uses no packing bytes no matter whether items are correctly
aligned or not. If the first character is none ofthose shown, itis assumed to be part of the format, and native
settings are assumed.

First Character Endianness Packing
@ Native Native

= Native Standard
< Little-endian Standard
> Big-endian Standard
! Network (same as big-endian) | Standard

The remainder of the format string is a description of the individual data items that appear in the bytes object
(for unpacking) or that are to be placed into the bytes object (for packing). The format characters can be
preceded by a number, which indicates the number of values of that type to expect (except when the format
characteris "s," in which case itindicates the number of bytes in the string. This table shows the meanings of
the various format characters.

Format C Data Type Python Type

X Pad byte -
c char bytes (length 1)
b signed char integer
B unsigned char integer
? _Bool bool
h short integer
H unsigned short integer
i int integer
| unsigned int integer
I long integer
L unsigned long integer
q long long integer
Q unsigned long long |integer
f float float
d double float
s charl] bytes
p char(] bytes
void* integer

If you aren'ta C programmer, the "C types" may not mean that much. All you really need to know is that the
unsigned types will always give positive values, and that if you try to pack a value that's too large to be held in
the field, the interpreter will raise an exception.

Packing and Unpacking Values

When you print a floating-point value in Python, the language does its bestto produce a string that, when
converted back into a floating-point value, gives the same number. This is appropriate when the computer
has to pass information to a human reader, but for storage and inter- and intra-process communication, it
involves large amounts of unnecessary conversion. Itis therefore more usual for such purposes to use an
eight-byte representation for floating point numbers that corresponds to the way they are stored in computer
memory. That way, as long as both sender (storer) and recipient (reader) use the same floating-point format,
no conversion of any kind is required. Most modern computer hardware uses a floating-point representation
defined by the IEEE.

Since the binary representation of floats is of a fixed length, this also has the advantage thatlarge arrays of
floats can be mapped on to chunks of memory withoutincurring the overhead of each element being a full
Python object, rather just a pure value. As long as the shape (number and size of each dimension) of the
array is known, the location of any element can be computed arithmetically from its coordinates in the array.
Packages such as Numpy and SciPy use these techniques to make efficient numerical data structures
available to Python code.

Create the Python3_Lesson08 projectand assignitto your Python3_Lessons working set. Then, in the
Python3_Lesson08/src folder, create floattest.py as shown:

CODE TO TYPE: floattest.py

LIRIR1}

floattest.py: demonstrate use of floating-point values in files.
import random, os, struct
filename = r"v:\workspace\Python3 Lesson08\src\floatdata.bin"
rlist = [random.random() for i in range (10)]
f = open(filename, "wb")
f.write(struct.pack("=10d", *rlist))
f.close()
f = open(filename, "rb")
for i in range(10):
s = f.read(8)
x, = struct.unpack("=4d", s)
if x !'= rlist[i]:
print (i, x, rlist[i], abs(x-rlist[i]))
else:
print (i, x, "values agree")
print (filename, os.stat(filename).st size)
f.close()

Save and run it. The code uses the struct.pack() function to convert ten floating-point numbers (the

elements ofrlist, represented as positional arguments by the use of the * argument syntax) to fixed-length

byte strings, which are written out to the (binary) floatdata.bin file. Next, it reads back eight bytes ata time,
converting each bytes object back into a Python float.

OBSERVE: Binary representation appears to be exact

0.505352274992 values agree
0.560349256654 values agree
0.86326435433 values agree

0.775838375892 values agree
0.498425623965 values agree
0.577260996053 values agree
0.247810402776 values agree
0.473451623047 values agree
0.184083222943 values agree
0.388145971055 values agree
\floatdata.bin 80

< W oo Joy Ul WN - O

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Advanced Objects: Special Methods

Lesson Objectives

When you complete this lesson, you will be able to:

e apply basic customization.

e attribute access.
e emulate functions:the call__ () Method

Since you started writing classes and creating objects in Python, you've become familiar with the __init__ () method in the
initialization of the object to setup the object data. You've also learned aboutthe __add__() method. Methods whose names
start and end with double underscores ("__") designate special behaviors for Python classes via what are called special
methods.

These special method names are tied directly into Python's infrastructure. They control how objects are created and destroyed,
how they render through the print() function, and many other things. Their advantage is that they let you do a lot of very
interesting, almost magical things with Python classes—which is why an alternative name for special methods is magic
methods. Fortunately, the magic is like stage magic. Wonderful things seem to "just happen," but behind the scenes very explicit
things are taking place, based on the way the interpreter has been designed. The wonderful partis that you can define your own
objects to interact with the interpreter in pretty much the same way that Python's built-in objects do.

Basic Customization

The mostcommonly used special methods are __init__(),__new__(),__repr__(),and __str__(). You've already
used the __init__() method many times to initialize instance variables when new objects are created, so now we'll
focus on the others. For each method. we'll provide some descriptive information, and then will include a brief example
atthe end to help you familiarize yourself with it.

__new__(): Creating New Objects

Atfirstglance, The __new__() method seems similar to the __init__() method, butitis actually quite
different. You will remember that you instantiate a class (thatis, create a new instance of that class) by calling
the class. The __init__() method returns nothing—it merely initializes what __new__() has created. The
__new__() method, on the other hand, returns the object that will become the return value of the instantiation
call.

Like __init__(), __new__() receives the arguments that the caller passes when calling the class. Unlike
__init__(),__new__() receives a firstargument thatis the class fo be created rather than the newly-created
instance.

This is important: the default__new__() method (inherited from the object type) can be used to create
immutable objectinstances. Most of the time you use this when extending immutable built-in types like
numbers and strings, since itwould not be possible to change them in the __init__() method. In our
example, we'll create ustr, an extension of the basic str type that returns a string object that always has
upper-case versions of any letters it may contain. Create the Python3_Lesson09 projectand assign itto
the Python3_Lessons working set. Then, in the Python3_Lesson09/src folder, create newmagic.py as
shown:

CODE TO TYPE: newmagic.py

Python classes with magic methods

o

class ustr(str):
"An upper case string object."
def new (cls, arg):
arg = str(arg)
return str. new (cls, arg.upper/())

Before we continue, let's look closely at this class.

OBSERVE: The ustr Class

class ustr(str):
"An upper case string object."
def _ new__ (cls, arg):
arg = str(arg)
return str. new (cls, arg.upper())

This example defines the class ustr as a subclass of the built-in str type used to represent Unicode strings.
Because Python's type names are lower-case, we break from the tradition of naming a class in MixedCase,
and use a lower-case class name. The class defines a __new__() method thataccepts cls and arg
arguments.

The cls parameter is the actual class that was called—this is different from the se/fargument passed to other
methods, which represents the instantiated object. Like self, the cls argumentis provided automatically by the
interpreter. The whole purpose ofthe __new__() method is to create and return the new object: this method is
directly responsible for instantiation!

The arg parameter is the argument provided to the class when itis called. The value of arg is converted into a
string, and the last statement returns a new string. It does so, however, by calling the built-in string type's
__new__() method explicitly, asking it (with the first argument) to return an object of the correct type. The
second argumentto str.__new__() provides the value for the string, and upper case is guaranteed by calling
its .upper() method.

The call to str.__new__() is analogous to an explicit call on a class method giving an instance as the first
argument. The call to str.__new__() returns a ustr object, because the firstargumentto __new__() specifies
the return type required. Test the class at the interactive console:

CODE TO TYPE: Testyour ustr class at the interactive prompt

>>> from newmagic import *

>>> s = ustr ("Steve Holden")

>>> s

'STEVE HOLDEN'

>>> type (s)

<class 'newmagic.ustr'>

>>> s.lower ()

'steve holden'

>>> len(s)

12

>>> s.size = 12

>>> s.size

12

>>> ss = "A regular string"

>>> ss.size = 16

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'str' object has no attribute 'size'

>>>

You can see thatinstances of the ustr class behave almost the same as instances of str, except that they
must be created with an explicit call to the class. There is also the difference that you can set new attributes on
ustr instances, but you cannot do that with the built-in type.

Representing objects as strings: __str__ ()

The built-in str() seems to be a function, but strictly speaking, itis actually a built-in type that can be used like
a function. When you call it with a single argument, ittries to return a string representation of the argument by
calling the argument's __str__() method. The print() built-in function does the same thing.

The return value of __str__() mustbe a string object. In our example below, the Person class is a normal
class and the NamedPerson class provides a more attractive print statement. Create strmagic.py as
shown:

CODE TO TYPE: strmagic.py

LIRIR1}

Demonstrate string representations using inheritance
mmn
class Person:
"Represents a person"
def init (self, name):
self.name = name

class NamedPerson (Person) :
"Represents a person using their name"
def str (self):
return self.name

The difference between the two classes is that NamedPerson has an __str__() method, which Person
does not. You can see the difference quite easily in an interactive interpreter session.

CODE TO TYPE: Test your objects in the interactive interpreter

>>> from strmagic import *

>>> pl = Person ("Danny Greenfeld")

>>> pl

<strmagic.Person object at 0x01E1D710>
>>> print (pl)

<strmagic.Person object at 0x01E1D710>
>>> p2 = NamedPerson ("Danny Greenfeld")
>>> p2

<strmagic.NamedPerson object at 0x01E1D850>
>>> print (p2)

Danny Greenfeld

>>>

The string returned by __str__() is supposed to be an "informal” representation of the object, which can be
used to convey its principal characteristics without necessarily allowing you to reproduce the object exactly.
For the latter purpose, Python expects your objects to provide another magic method, __repr__().

__repr__()

The __repr__() method of object o is called by repr(o). The built-in function repr() is supposed to represent
the "official" string representation of an object. Ideally, this representation should look like a valid Python
expression which, when evaluated, produces the object being represented. Its primary use is in debugging or
logging, and is bestnotrevealed to users. The information should be as rich as possible.

The str() representation of a container object such as a listor a tuple also represents the contained objects
using their repr() representation. Containers themselves generally use the same representation for both
str() and repr(), and this is the easiest way to ensure that their representations are meaningful.

To determine a little more about the relationship between the two representational methods, we'll create four
different classes that have different combinations ofthose methods. You can then see how they interact with
the interactive interpreter and the print() function. (Don'tforget, if you have other questions about this, the
interactive interpreter is the bestway to answer those questions). Create reprmagic.py as shown:

CODE TO TYPE: reprmagic.py

o

Demonstrate differences between str () and repr ().

o

class neither:
pass

class stronly:
def str (self):
return "STR"

class repronly:
def repr (self):
return "REPR"

class both(stronly, repronly):
pass

class Person:

def init (self, name, age):
self.name = name
self.age = age

def str (self):
return self.name

def repr (self):
return "Person({O.name!r}, {0O.age!r})".format (self)

The neither class simply inherits all its behavior from Python's fundamental object. The stronly class, as its
name implies, only implements __str__(), while the repronly class only implements __repr__(). The both
class uses multiple inheritance to implement both methods. Finally, the Person class represents its
instances as a string by using the instance's name and provides a full representation that could actually be
pasted into a Python program as code. Note thatit uses the Ir format effector to include the formal
representations of the instance's name and age. This avoids any tricky problems of representing strings with
characters inside them that require escapes and so on.

CODE TO TYPE: Enter the following code in an interactive interpreter session

>>>
>>>
>>>

>>>

>>>
>>>

>>>

<reprmagic.neither object at O0x01E1DADO> <reprmagic.neither object at 0x01E1DADO

>

>>> 02 = stronly()

>>> print (str(o2), repr(o2))

STR <reprmagic.stronly object at 0xOlE1DBBO>
>>> 03 = repronly ()

>>> print (str(o3), repr(o3))

REPR REPR

>>> 04 = both()

>>> print (str(o4), repr(o4))

STR REPR

>>> ol

<reprmagic.neither object at 0x01E1DADO>
>>> 02

<reprmagic.stronly object at 0x01E1DBBO>
>>> 03

REPR

>>> 04

REPR

>>> steve = Person ("Steve Holden", 21)

Steve Holden Person('Steve Holden', 21)

Person("Tim O'Reilly", 55)

from reprmagic import *
ol = neither()
print(str(ol), repr(ol))

print (str(steve), repr(steve))

tim = Person('Tim O\'Reilly', 55)
tim

In the lines where we asked the interactive interpreter directly for the objects 01 through 04, it presented the
repr() of the objects. Remember that this behavior is specific to the interpreter's interactive mode: if you write
an expression on its own in a Python module thatis run as a main program, the interpreter simply calculates
the value of the expression. Also note, from the example of the repronly() objectbound to 03, thatifan
objecthas a__repr__() method butno __str__() method, the __repr__() method is used for both
purposes.

Attribute

Access

Attributes are where objects store data. Python lets you override the interpreter's normal attribute-handling behaviors
by providing further special methods: __getattr__(), __setattr__(),and __delattr__() are used to access, set, and
delete attributes respectively. These methods should be defined with great care: itis quite possible to end up with
completely unusable objects if you are not sufficiently careful, or (even worse) objects that seem to do what you want
them to but under certain circumstances don't behave as planned. As with __str__() and __repr__(), there are
functions that you can use to access an object's special methods for attribute access, summarized here:

Function Description

Call P
hasattr(o, |Returns True ifobject o has an attribute whose name is the same as the name argument, (which must
name) be a string), otherwise returns False.
setattr(o,
name Sets object o's name attribute to value (provided that the object allows it). Equivalent to

’ o.__setattr__(name, value).

value)
delatir(o, |[Ifobjecto has an attribute called name, deletes the attribute. If no such attribute exists, raises an
name) AttributeError exception. Equivalentto o.__delattr__(name).
getattr(o, |Ifobjecto has an attribute whose name is the same as the call's name argument (which should be a
name|[, string), returns its value. If no such attribute exists, returns the default (ifitis provided in the call); if no
default]) defaultis provided, raises an AttributeError exception.

__setattr__ ()

Normally, when you set an attribute on an object, the name is used as a key and the value is stored in the
object's __dict__, a special attribute used specifically to store instance variables. This method is called each
and every time an attribute is set. In the code sample below, we use this feature to printa message each time
an attribute is set. Create attrmagic.py in your Python3_Lesson09/src folder as shown:

CODE TO TYPE: attrmagic.py

nwnn

Demonstrate magic methods for attribute access.
class AttrMixin:
"Displays a message when an instance's attributes are set."
def setattr (self, key, value):
print ("ATTR: setting attribute {0!r} to {1l!r}".format (key, value))
self. dict [key] = value

class Person (AttrMixin) :
"Represents a person"
def init (self, name):
self.name = name

In object-oriented languages, a mixin class is a class that contains a certain behavior to be

' Note inherited by subclasses to add specific behaviors. A class can inheritsome or all of its

' behaviors from one or more mixins. Ending the name with "Mixin" is notrequired; it's simply a
E flag so that your behavior-focused classes are clearly delineated.

Here the Person class inherits its attribute setting behavior from the AttrMixin class. The
AttrMixin.__setattr__() method does here make the definite assumption that the classes it will be mixed in
with are storing all attributes using the standard instance __dict __ mechanism. When you startto see the
layers of behavior that Python allows you to add to the process of attribute assignment, you will realize that
this may be a dangerous assumption, but certainly it holds for the Person class.

As usual, you can verify the actions of this code in the interactive interpreter. Note that the setting of an
attribute is reported whether itis setinside an object method or in external code.

__getattr__ ()

Attribute retrieval works a little differently from attribute setting. When you try to access an attribute of some
instance o, the interpreter looks in o.__dict__;ifthe attribute is notfound there, itlooks in the instance's class,
then in that class's superclass, and so on. Only ifthe attribute is not found does the interpreter then call the
instance's __getattr__ () method with the name of the aftribute. Itis conventional for__getattr__() to raise the
AttributeError exception when the attribute name provided is unacceptable for some reason.

CODE TO EDIT: attrmagic.py

nwnn

Demonstrate magic methods for attribute access.
class AttrMixin:
"Displays a message when an object's attributes are retrieved or set."

def setattr (self, key, value):
print ("ATTR: setting attribute {0!r} to {1l!r}".format (key, value))
self. dict [key] = value

def getattr (self, key):
print ("ATTR: getting attribute {0!r}".format (key))
self. setattr (key, "No value")
return "No value"

class Person (AttrMixin) :
"Represents a person"
def init (self, name):
self.name = name

Start an entirely new interactive console session in which to test the updated module—remember, the code of
amodule is executed only on the firstimport. Trying to import the updated module will therefore fail, and you
will not see the expected behaviors.

There are ways to trigger re-import of a module without restarting the interactive interpreter. The
Ellipse teaching system surrounds your interactive console and provides a subtly different

Note environment from the classic interactive console, and since Ellipse makes itso easy, we have
you start new interactive sessions. This ensures that you are starting with a pristine
environment, to ensure that you getthe same results we observed and recorded during course
production.

CODE TO TYPE: Enter the following code in an interactive console session

>>> from attrmagic import *

>>> steve = Person ("Steve Holden")

ATTR: setting attribute 'name' to 'Steve Holden'
>>> steve.newattr

ATTR: getting attribute 'newattr'

ATTR: setting attribute 'newattr' to 'No value'
'No value'

>>> steve.newattr

'No value'

>>> steve.name

'Steve Holden'

>>>

Observe that while the firstaccess to the newattr attribute results ina callto __getattr__(), the second one
does not. This is because the first call actually sets a value in the object's __dict__and so the second attempt
finds the attribute using the standard methods.

The interpreter uses a slightly different mechanism to access the special attributes whose
' Note names begin and end in double underscores. This is done to enforce certain standard object '
: behaviors, which otherwise could be overridden. '

__delattr__()

This method is called whenever an attribute is deleted from an object. Again, we'll publish a message to show
what can be done with this method.

CODE TO EDIT: attrmagic.py

Demonstrate magic methods for attribute access.
mon
class AttrMixin:
"Displays a message when an object's attributes are retrieved, deleted, or s
et."

def setattr (self, key, value):
print ("ATTR: setting attribute {0!r} to {1l!r}".format (key, value))
self. dict [key] = value

def getattr (self, key):
print ("ATTR: getting attribute {0!r}".format (key))
self. setattr (key, "No value")
return "No value"

def delattr (self, key):
print ("ATTR: Deleting key {0!r}".format (key))
object. delattr (self, key)

class Person (AttrMixin) :
"Represents a person"
def init (self, name):
self.name = name

Note thatyour version of __delattr__ simply delegates the deletion to Python's standard object behavior.
This allows you to ignore whatever complexities may be required in deletion. Again, test your modifications:

CODE TO TYPE: Test your modifications in a new interactive interpreter console

>>> from attrmagic import *

>>> student = Person ("your name")

ATTR: setting attribute 'name' to 'your name'

>>> student.age

ATTR: getting attribute 'age'

ATTR: setting attribute 'age' to 'No value'

'No value'

>>> student.age = 21

ATTR: setting attribute 'age' to 21

>>> student.age

21

>>> del student.age

ATTR: Deleting key 'age'

>>> student.age

ATTR: getting attribute 'age'

ATTR: setting attribute 'age' to 'No value'

'No value'

>>> del student. delattr

ATTR: Deleting key ' delattr '

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "attrmagic.py", line 18, in delattr

object. delattr (self, key)

AttributeError: _ delattr

>>>

You can see that the attemptto delete __ delattr__ fails, because the special attributes are notdiscovered in
the same way as the regular ones. This avoids the deletion of standard behaviors that are required to be true
ofall objects.

Emulating Functions: the ___call___ () Method

Implementing the __call__() method allows you to make yourinstances callable, justas though they were regular
functions. Create callmagic.py in your Python3_Lesson09/src folder as shown:

CODE TO TYPE: callmagic.py

o

Demonstrate how to make instances callable.

LIRIR1}

class funclike:
def call (self, *args, **kwargs):
print ("Args are:", args)
print ("Kwargs are:", kwargs)

f = funclike ()
£f(1, 2, 3, this="one", that="the other")

Save and run it:

OBSERVE: Result of running callmagic.py

Args are: (1, 2, 3)
Kwargs are: {'this': 'one', 'that': 'the other'}

In this chapter, we've started to investigate the relationship between the interpreter and the objects that we create. This
explanation should make you more aware of whatis going on "under the hood," and give you some idea of the wider
possibilities for using Python to solve your problems. Most of the time the standard interpreter behavior is perfectly
acceptable. For those occasions when itis not, you now have some idea how to modify it.

There are other special methods that we have not covered yet, but for now you have done quite enough. Take a break,
and then move on to the nextlesson, where you will be learning how to make your objects' behaviors even more
complex while retaining the essential simplicity of Python.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Properties

Lesson Objectives

When you complete this lesson, you will be able to:

e putcomputations behind attributes.

e use properties.

e create a property with a Decorator.

e constructa teacher class using properties.
e delete attributes using properties.

A property is a special sortof class attribute. You access it like a standard attribute, but "under the hood," the interpreter runs
methods ("getters” to access the data and "setters" to store new data) to produce the required results. The data-like syntax is
easier to read and write than lots of method calls, yet the interposition of the method calls allows for data validation, active
updating, and/or read-only attributes. Before looking in detail at properties, you should understand some ofthe reasons they
are desirable.

Putting Computations Behind Attributes

In the lastlesson, we learned about several special methods thatlet us access and control attributes—__getattr__(),
__setattr__(),and __delattr__(). You can use these techniques to control the value of various attributes—but
remember thatthe __getattr__ () method will only be used if normal attribute access fails to find the named attribute.
Therefore, you'll want to store the values of "managed" attributes (values that must be processed on retrieval) in a
special directory, to ensure that normal attribute access does not find them. The following code sample demonstrates
control of specific attributes via the __getattr__() method.

Suppose you want to keep a first name, last name, age, list of classes, and a grade for teachers in a school. Further
suppose that you were prepared to allow some laxity in data entry, but that you always wanted to return the names
properly capitalized, the age as an integer, the list of classes in sorted order and the grade as a string (though it should
be entered as a number). This kind of managementis precisely what the attribute-handling special methods were
designed for.

As is usually the case, there must be test code, which follows firstin the time-honored tradition of TDD—Test-Driven
Development. Create a Python3_Lesson10 projectand assignitto the Python3_Lessons working set. Then,
create test_teacher.py in your Python3_Lesson10/src folder as shown:

test_teacher.py

import unittest
from teacher import Teacher

class TestTeacher (unittest.TestCase) :

def setUp(self):
self.teacher = Teacher ("steve",
"holden",
"e3",
["Python 3-1","Python 3-2","Python 3-3"],
5)

def test get(self):
self.assertEqual (self.teacher.first name, "Steve")
self.assertEqual (self.teacher.last name, "Holden")
self.assertEqual (self.teacher.age, 63)
self.assertEqual (self.teacher.classes, ["Python 3-1","Python 3-2","Python 3-3"]

self.assertEqual (self.teacher.grade, "Fifth")
self.teacher.description = "curmudgeon"
self.assertEqual (self.teacher.description, "curmudgeon")

if name == " main ":
unittest.main ()

We'll start out with a simplisticimplementation of the Teacher class that simply stores the attributes as regular values
and relies on the standard Python mechanism for attribute retrieval. Since no transformation is taking place on the
data, it should not be too surprising if this first naive implementation fails. Create teacher.py in the same folder as
shown:

CODE TO TYPE: teacher.py

class Teacher (object) :
grades = {1l: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):
self.first name = first name
self.last name = last name
self.age = age
self.classes = classes
self.grade = grade

Save both files and run test_teacher.py. Sure enough, you see a failure:

OBSERVE: The simple implementation fails

E

FAIL: test get (_ main .TestTeacher)

Traceback (most recent call last):
File "C:\Users\sholden\workspace\Python3 Lesson8\src\test teacher.py", line 14, in te

st get
self.assertEqual (self.teacher.first name, "Steve")
AssertionError: 'steve' != 'Steve'
= Steve
?/\
+ Steve
?/\

Ran 1 test in 0.001s

FAILED (failures=1)

One ofthe beauties of Python, however, is thatitis almostinfinitely flexible, and so itis quite possible to change this
implementation to do what is required. Although it may seem contradictory, the first thing you need to change is the
way the object stores attributes—until you do that, the attribute assignments will always resultin their being available
withoutinvoking __getattr__().

CODE TO EDIT: teacher.py

Demonstrate simple attribute management
mwrn

class Teacher (object) :

grades = {1l: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):
self. dict [' attrs'] = {}
self.first name = first name
self.last name = last name
self.age = age

self.classes = classes
self.grade = grade

def setattr (self, name, value):
self. attrs[name] = value

def getattr (self, name):
if name not in self. attrs:
raise AttributeError ("Teacher has no attribute {0!r}".format (name))
value = self. attrs[name]
if name in ("first name", "last name"):
return value.capitalize ()
elif name == "age":
return int (value)
elif name == "classes":
return sorted(value)
elif name == "grade":
return self.grades[value]
else:
return value

Here the __init__ method creates a regular attribute called _attrs, a dictin which the attribute values are kept, by
making a direct entry in the instance's __dict__. ltuses this technique to avoid a direct assignment, which would invoke
the instance's __setattr__() method. That method attempts to store the attribute value againstits name self._attrs,
which would need to be looked up by __getattr__(). This in turn would try and find the name "_attrs" in the
self._attrs dict, which would again invoke __getattr__ (), and so on. This infinite regression would only terminate

when the interpreter ran out of stack, the area of memory where it stores partially-completed function namespaces.

The convention in Python is that attributes whose names begin with "_" are internal to the implementation

Note of a class. Because of that, such attributes don't appearin help but do appear in the output from dir().
While there is nothing to stop you from accessing these attributes directly, the naming convention acts as
a flag that outside interference is likely to break the internal logic.

Now, all attributes are stored in the _attrs dict, and the __getattr__() method uses the name of the retrieved attribute
to decide what processing needs to be performed on the stored value in order to meet specifications.. Save both files
and run test_teacher.py. Happily, the updated object should now pass its tests.

OBSERVE: All tests now pass

Ran 1 test in 0.000s

OK

This may notlook so bad at a glance, but maintenance for this code is challenging. For example, if you wanted to
create a subclass that had different behavior on just the "age" attribute, you would have to rewrite the __getattr__()
method for the child class. Then if the parent had a bug, you might have to rewrite both the parent and child. As you
mightimagine, this quickly leads to fragile code, and tends to encourage code duplication (which is normally held to be
a bad thing).

For example, suppose you want to create a Teacher subclass that supports gender differences. If male, the Teacher
subclass returns "Mr." at the start of "first_name." If female, itreturns "Ms." The current design forces you to completely
rewrite the __getattr__() method, because itis "monolithic"—all the attributes are dealt with in the same method, so
changing the response for just one attribute is difficult orimpossible.

An alternative is to use properties. Properties let you assign computations to accesses involving a specific attribute, so
if you inherit the class, you can easily extend it without having to dance around the subtleties of __getattr__(). This
allows you to easily change one small method without worrying about tangling with a multitude of unrelated attributes.

A Teacher Class Constructed of Properties

A property in Python is a data component to which access is mediated by methods, even though the user of
the property can treat it as a simple data attribute. This allows you to hide a layer of logic underneath attribute-
style access to an object's data.

E If you know in advance that the logic is required, there is something to recommend simply E
' writing the methods and documenting them as the necessary solution to the problem. '
. Note Properties excel when the logic needs to be introduced later, after you have already written code .
that treats the data as simple attributes. Under those circumstances, properties allow you to
' insert a layer of logic without changing the code that currently uses the attributes. '

Like a lotof other programming descriptions, this sounds a lot more complex than itis. And since a bit of
code often helps to clarify new concepts, let's construct the teacher class with properties using the techniques
as we've described:

CODE TO EDIT: teacher.py

class Teacher (object) :

grades = {l1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):

1c <l i r A 1] £

[i s mary I CT [_acct T 7T
= £ = £ =

setf—first—ram first—ram
1 £ 1 A= — 1 =

setf—Fast—ram tarst—ranm
1 £

'CJ;L.OKJC T Gl\jc
= 1 1

=} [B N re) = T |\ e ey =}
= <l

=} J.J_-kJJ_a\A. T ij_au

self. first name = first name # internal data attributes are set

self. last name = last name
self. age = age

self. classes = classes
self. grade = grade

et et 1 k])
ST cTacct TSCeT T, amncy [cEmvISY
1 ot L 1 k|
S€TT JCCro ramne T — [emmvL
et PR L 1 \
SeT geTatTcr T Ty rae) .
s c de 1 c o
T rame Tot it eI, acctro.
TS, (um N T dode e 4 (ol n o e/ \
T Se—FSCcCcEr oo centrTorT ettt To—aTcCorTIoutce 1T oU £ - toriac (rate 7
1 dodo L 1
[eEmvy =3S€TT ICCL o [IaieT]
= : VA= 4 " " i "y
T ot TIr—(LI ST frait 7 TS C It T
. k| LI, I \
reToriT groc.caprcarrze 7/
1. c n 1
cT T ot age
4 Ao d h] \
recorir—Tac(varacy
1 s £ N | P | n
e T T frair cTasSsS g
. el k]
reTTrtT orTeatvaraey
1 c n il
cT T ame grace
4 1 | r h] 1
reTorit Serr-graaesSTvartae]

i bl
FeToTETT [SEgea,

def first name(self):
return self. first name.capitalize()
first name = property(first name)

def last name (self):
return self. last name.capitalize()
last name = property(last name)

def age(self):
return int(self. age)
age = property(age)

def classes(self):
return sorted(self. classes)
classes = property(classes)

def grade(self):
return self.grades[self. grade]
grade = property(grade)

Save both files and run test_teacher.py.

running test_teacher.py with teacher.py changed to use properties

Ran 1 test in 0.000s

OK

Thanks to the magic of unittest, this demonstration of a new programming technique appears to be a valid
refactoring. Atleast you have passed a definite "smoke test" by passing the current tests. Let's review the
changes in the code of teacher.py:

OBSERVE: teacher.py __init_ () method

def init (self, first name, last name, age, classes, grade):
self. first name = first name # internal data attributes are set
self. last name = last name
self. age = age
self. classes = classes
self. grade = grade

Inthe __init_ () method, we setfirst_name via self._first_name. This is done to provide a data attribute
on which to base the first_name property (ifit had the same name as the property, the assignment would
overwrite the method!). We made similar changes for the other managed attributes.

OBSERVE: New Methods in teacher.py

def first name (self):
return self. first name.capitalize()
first name = property(first name)

def last name (self):
return self. last name.capitalize()
last name = property(last name)

def age (self):
return int(self. age)
age = property (age)

def classes (self):
return sorted(self. classes)
classes = property(classes)

def grade (self) :
return self.grades[self. grade]
grade = property(grade)

The first_name() method accesses the _first_name data attribute, and processes it before returning it as
the value of the attribute. We provide similar methods for the other managed attributes.

The first_name() method becomes a property when itis replaced inside the class body by the result of
calling the built-in property() function with the method as an argument. We changed the other managed
attributes likewise into properties.

You can see thatif you wanted to create a Teacher subclass where the first_name attribute was modified by a
gender attribute, you would only need to redefine the first name property in your subclass—the other property
definitions would continue to stand. This is in distinction to the preceding class, whose "monolithic" (all in
one piece) __getattr__() makes it hard to separate one attribute from another.

Decorator Syntax

Because defining a function or method and then applying a function such as property() to itis acommon
pattern, Python has a special shorthand for it. The syntax we used above was:

Standard Property Creation

def method(self, ...):
mm "Method body . mwwn

method = property (method)

This application of a function to another function is called decoration, and the applied function (in this case
property)is called a decorator. If the method is lengthy, the final reassignment to the method name is easy

to miss. Consequently you can also use the following syntax, which is merely a shortcut for the standard
mechanism above:

Property Creation with a Decorator

@property
def method(self, ...):
mn "Method body . mwwn

You should find that the code works exactly the same using this syntax as itdoes using the standard property
creation. Try it, just to be sure.

CODE TO EDIT: teacher.py

class Teacher (object) :
grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):
self. first name = first name # internal data attributes are set
self. last name = last name
self. age = age
self. classes = classes
self. grade = grade

@property
def first name (self):
return self. first name.capitalize()

£ & —_ & £ o
TSt PropPerTy ST aitey

@property
def last name (self):
return self. last name.capitalize()

hl i . hl =
TCrS T Irartr = PTroOpPTIrCTy (IfaSCT Iracy

@property
def age(self):
return int(self. age)
¢

Cl\jc 7 J:/Lk/t_/ Lt Q\jc)
@property
def classes(self):
return sorted(self. classes)

A kil \
CTaSS =pProperTy (cTasS ST

@property
def grade (self):
return self.grades[self. grade]

<l e |
grate—pProperTy (gracey

As always, the first thing that you should do after changing your code is... run your tests! These two ways to
apply properties to methods are entirely equivalent, so your tests should continue to pass.

Settable Properties

Note that while the firstimplementation correctly allowed you to reassign the managed attributes through use
ofthe __setattr__() method, this one does not. Neither can you delete managed attributes (which was also
an issue with the earlier code, though we did not mention itat the time. You can verify this using an interactive
interpreter session:

CODE TO TYPE: Verify

>>> from teacher import *

>>> t = Teacher ("steve", "holden", "63",

. ["Python 3-1","Python 3-2","Python 3-3"], 5)

>>>

>>> t.first name

'Steve'

>>> t.first name = "joe"

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

>>> del t.first name

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't delete attribute

>>>

So atthe moment you can neither assign to nor delete the managed attributes. You will be changing the tests
to include these features shortly, to provide failing tests that new functionality in your teacher module can
turn into success.

The built-in property function is actually rather more complicated than you have so far seen. lts full signature
(the pattern of arguments it can be called with) is as follows.

property function signature

property (fget=None, fset=None, fdel=None, doc=None)

fget is the gefter function, fset is the setter function, fdel is the deleter function and doc is the
documentation. So the reason that the properties you have defined so far cannot be setis that the decorator
syntax only passes a single argument to the call of property(). This single positional argumentis associated
(positionally) with the fget parameter, so you can get the attribute value, but there is no way to setor delete
the attributes (and no documentation!)

Setting Values via Properties

Properties do more than just provide the ability to compute values during retrieval of attributes. They also let
you perform calculations while sefting values. This is useful during validation ofincoming data. For example,
what if you wanted to confirm that the age attribute was passed a valid integer rather than converting itto an
integer when it was accessed? Using standard techniques, you would declare a second method and pass it
as the second argument to the call of property(). First, of course, we need to add a new test to the test suite
that fails. This should be fairly easy with the experience we had in the interactive interpreter session above.
Since we want the values we can assign to age to be limited to integers, we'll also add a testto make sure
that any other type of data raises a ValueError exception.

CODE TO EDIT: test_teacher.py

import unittest
from teacher import Teacher

class TestTeacher (unittest.TestCase) :

def setUp(self):
self.teacher = Teacher ("steve",
"holden",
"e3",
["Python 3-1","Python 3-2","Python 3-3"],
5)

def test get(self):
self.assertEqual (self.teacher.first name, "Steve")
self.assertEqual (self.teacher.last name, "Holden")
self.assertEqual (self.teacher.age, 63)
self.assertEqual (self.teacher.classes, ["Python 3-1","Python 3-2","Pytho
n 3-3"1)
self.assertEqual (self.teacher.grade, "Fifth")

self.teacher.description = "curmudgeon"
self.assertEqual (self.teacher.description, "curmudgeon")

def test set(self):
self.teacher.age = "21"
self.assertEqual (self.teacher. age, 21)
self.assertEqual (self.teacher.age, 21)
self.assertRaises (ValueError, self.setAgeWrong)

def setAgeWrong (self):
self.teacher.age = "twentyone"

if name == " main ":
unittest.main ()

Note thatunittest.TestCase.assertRaises expects a function and an exception as arguments. It calls the
function, and flags a failure if the call does notraise the specified exception type. After these modifications,
you would expect your new test to fail, and sure enough it does (before it even gets around to testing to see
whether the set AgeWrong method raises the required exception).

Tests fail as expected before you update your teacher class

S

ERROR: test set (_ main .TestTeacher)
Traceback (most recent call last):
File "C:\Users\sholden\workspace\Python3 Lesson8\src\test teacher2.py", line 2
3, in test set
self.teacher.age = "21"
AttributeError: can't set attribute

Ran 2 tests in 0.002s

FAILED (errors=1l)

Having updated the tests to make it obvious that an upgrade is required to the teacher module, we need to
add the necessary new code. We'll start by using the standard method to give the age attribute both a getter
and a setter.

CODE TO EDIT: teacher.py

class Teacher (object) :
grades = {l: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):
self. first name = first name # internal data attributes are set

self. last name = last name
S lf.ia\:j =79
self.age = age

self. classes = classes
self. grade = grade

@property
def first name (self):
return self. first name.capitalize()

@property
def last name (self):
return self. last name.capitalize()

L k|
oge T

4 H) k]
eToriT— Tt T

def getage(self):
return self. age

def setage(self, value):
self. age = int(value)

age = property(getage, setage, doc="Teacher's age: must be convertible to in
teger")

@property
def classes(self):
return sorted(self. classes)

@property
def grade (self):
return self.grades[self. grade]

You will see thatthe __init__() method is now relying on the property to establish the initial

Note value of the managed attribute rather than directly assigning to the underlying data member. This
is generally a good thing, since if the setter method performs validations these will also be
applied to the initial value passed in as an argumentto __init__().

Now the age attribute has both a getter and a setter, you should see thatit passes all tests with flying colors.

OBSERVE: All tests pass once teacher.py is modified

Ran 2 tests in 0.000s

OK

You may wonder whether itis possible to achieve the same ends using decorators, and the answer is yes.
This is because a read-only property (which, you will remember, can be created with the use ofa decorator
because itonly requires a single argument) has a setter() method thatcan be used to decorate a... setter

method! This means that you can create the age property as before, with a decorator, and then decorate the
setter() method with a method of the getter() property that you just created.

This may sound a little confusing, but once you have typed the code, it should seem a little more natural. The

age() property goes back to its original code, and the age setter is decorated by one of the getter property's
methods (the getter has been defined specifically to provide these extra methods as a convenience).

CODE TO EDIT: teacher.py

class Teacher (object) :
grades = {1: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):
self. first name = first name # internal data attributes are set
self. last name = last name
self.age = age
self. classes = classes
self. grade = grade

@property
def first name (self):
return self. first name.capitalize()

@property
def last name (self):
return self. last name.capitalize()
def—getage{set
@property
def age(self):
return self. age

| £ A= 1 1
e tage{SeTTy TracT .
@age.setter

def age(self, value):

self. age = int(value)
A L 4 A <l nm 1. 1 A 1o L . | . 2
Cl\jc 7 t_/J_L/L_/ 1 C \3 L,Gl\jc, L,Cl\jc, ot e A CITTCTT O.\jc. TITCT T 1) CUIT LTI T TIT
@property

def classes(self):
return sorted(self. classes)

@property
def grade (self):
return self.grades[self. grade]

Note The second age definition might be flagged as a "duplicate signature" in Eclipse; you can safely
' ignore this for now.

You should, of course, confirm as usual that your tests continue to succeed.

Deleting Attributes Using Properties

Deleting attributes works in nearly the same fashion as setting attributes. Create yet another function with the
same name as your aftribute and place a @<my-attribute-name>.deleter. In our next example, removing
a grade means creating a grade function, placing a @grade.deleter above it, and then in the logic, adding a
year to the age of the teacher.

First, let's write a test for our expected behavior:

CODE TO EDIT: test_teacher.py

import unittest
from teacher import Teacher

class TestTeacher (unittest.TestCase) :

def setUp(self):
self.teacher = Teacher ("steve",
"holden",
"e3",
["Python 3-1","Python 3-2","Python 3-3"],
5)

def test get(self):
self.assertEqual (self.teacher.first name, "Steve")
self.assertEqual (self.teacher.last name, "Holden")
self.assertEqual (self.teacher.age, 63)
self.assertEqual (self.teacher.classes, ["Python 3-1","Python 3-2","Pytho
n 3-3"1)
self.assertEqual (self.teacher.grade, "Fifth")

self.teacher.description = "curmudgeon"
self.assertEqual (self.teacher.description, "curmudgeon")

def test set(self):
self.teacher.age = "21"
self.assertEqual (self.teacher. age, 21)
self.assertEqual (self.teacher.age, 21)
self.assertRaises (ValueError, self.setAgeWrong)

def setAgeWrong (self):
self.teacher.age = "twentyone"

def test delete(self):
del self.teacher.grade
self.assertEqual (self.teacher.age, 64)
self.assertRaises (AttributeError, self.accessGrade)

def accessGrade (self):
return self.teacher.grade
if name == " main ":
unittest.main ()

As usual, a newly added test should fail. You should verify this, as usual, by running the updated test suite.

OBSERVE: The deletion tests fail, as expected

Bo o

ERROR: test delete (_ main .TestTeacher)
Traceback (most recent call last):
File "C:\Users\sholden\workspace\Python3 Lesson8\src\test teacher3.py", line 3
2, in test delete
del self.teacher.grade
AttributeError: can't delete attribute

Ran 3 tests in 0.001s

FAILED (errors=1l)

Now, modify the teacher.py code to add the deleter method:

CODE TO EDIT: teacher.py

class Teacher (object) :
grades = {l: "First", 2: "Second", 3: "Third", 4: "Fourth", 5: "Fifth"}

def init (self, first name, last name, age, classes, grade):
self. first name = first name
self. last name = last name
self. age = age
self. classes = classes
self. grade = grade

@property
def first name(self):
return self. first name.capitalize()

@property
def last name (self):
return self. last name.capitalize()

@property
def age(self):
return int(self. age)

@age.setter
def age(self, value):
self. age = int(value)

@property
def classes (self):
return sorted(self. classes)

@property
def grade(self):
return self.grades[self. grade]

@grade.setter

def grade(self, value):
self.grades|[value] # throw error if value != a key
self. grade = value

@grade.deleter

def grade(self):
self.age += 1
del self. grade

The updated "age" property now applies the int() built-in to its argument. This allows users to

Note specify the age as a character string without the code breaking. Whether this is a good idea or
not, and whether the setter should even accept strings or not, is an interesting question—one
that we will ignore for now.

Save itand run the test. All tests should pass immediately.

OBSERVE: The newly-added deleter tests now pass

Ran 3 tests in 0.000s

OK

So you now understand how you can putlogic behind all types of attribute access. Beware of using this
technique when itisn'treally necessary: remember, if you know method calls are going to be required from
the outset, itis much better to build them into the APl for your objects from the start. If the logic needs to be

retrofitted, however, properties are a really useful way of fitting it.

Properties allow you to isolate each piece of logic in its own method, making it easy to extend and reuse as a parent
superclass or to implementin child classes. They are often used for validation, logging, formatting, and a myriad of other tasks.
The only possible downside to properties is that they require a little bit of extra work, but the extra functionality they provide is

generally well worth that effort.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

A First Look at Logging

Lesson Objectives

When you complete this lesson, you will be able to:

e setup abasiclogger.

e use otherlogging functions.

e access otherlogging levels.

e gettests to use differentlogging levels.

e perform log formatting.

When you want to save data abouta program's operation (typically to record the actions of your program, or particular error
conditions that have occurred) you have a number of choices. Informal results can be printed to the standard output stream, but
the only person who will see this outputis the user, and once the window is closed the outputis lost (there is also a standard
error stream, with the same disadvantages). You could also write information to a file. This can work for a program, butitis
difficult to use as partofa module that might be used in many different circumstances: ideally the program will log all output to
the same destination, but how can you make an unrelated collection of modules do that?

Furthermore, it would be nice to be able to store information during debugging, and then be able to suppress the debug output
when the program goes into production. Ideally, you'd like to do this without having to editthe code to remove or comment out
the debugging output statements, and the debug output would be cleanly separated from the program's normal output. Then the
stored output could form a long-term information stream that allows you to examine your program's performance over its entire
lifespan.

Finally and perhaps mostimportantly, you want to be able to share your code! What if you need to capture the progress and
mistakes of others using your work? Yes, you could do this by writing user actions to a file, but then you run into the danger of
making your code somewhat confusing—especially if your program relies on file output for real tasks such as saving important
files.

This is where logging comes to the rescuel This is not the process in which certain trees are cut down by a lumberjack, but
rather a process whereby data is stored over time in such a way as to be as unobftrusive to the operating software as possible.
Due to a certain lack of imagination, however, the programming examples will involve lumberjacks in the best Monty Python
tradition.

Fortunately the standard library contains the solution for all of these issues in the logging module. ltis easy to use and flexible
in operation. There's a lotto learn!

Setting Up a Basic Logger

To setup a basiclogger, you import the logging module, call its basicConfig() utility function, and then startlogging.
First, create a Python3_Lesson11 project as usual and assign itto the Python3_Lessons working set, so we have
a place to store the files. Then type the code shown below.

CODE TO TYPE: Create a log from the interactive console

>>> import logging

>>> logging.basicConfig(filename="'V:/workspace/Python3 Lessonll/src/output.log',level=1
ogging.DEBUG)

>>> logging.debug('My first log entry!')

This creates a file in your Python3_Lesson11/src folder named output.log. Let's take a look at the contents.

contents of output.log

DEBUG:root:My first log entry!

This is pretty handy, but doesn't really showcase how useful logging is. So let's create a slightly more sophisticated
example representing lumberjacks cutting down trees. A Lumberjack starts with no tree. After you assign a Tree object
to the Lumberjack, he can chop itdown, which turns itinto a number of boards (determined by the size of the tree), and

then you remove the tree from the Lumberjack object.

The basic APl for a Tree is pretty simple. You create it by calling Tree(s) where s is a size code—one of "S," "M," "L,"
"XL," or "XXL". Instances have a get_boards() method that you call to learn the number of boards the tree can
produce (1forasize "S" tree, 5 for a size "XXL"). Trees representthemselves as "Tree: Size S" or similar.

The Lumberjack is not that much more complicated in its initial implementation. Created by calling the class
Lumberjack(), each instance starts out with no tree. Once a tree is assigned it can be cut down and converted into
boards by calling the Lumberjack's cut_down_tree() method. If this method is called when the Lumberjack has no
tree, a TypeError exception is raised.

As usual, we'll start by writing basic tests for the Tree and Lumberjack classes. We test the Trees in a number of ways:
for each size oftree, test_lumber() verifies that the tree size returns the expected number ofboards. test_string()
verifies that the Tree objects do representthemselves as required, and test_code() verifies that an exception is
raised when the class is called with an invalid size code. You test the lumberjack by creating a new one for each size
of tree, verifying there is initially no tree, assigning a tree, cutting it down and verifying that the Lumberjack no longer
has a tree and that the right number of boards were produced. In your Python3_Lesson11/src folder, create
test_forestry.py as shown:

CODE TO TYPE: test_forestry.py

import unittest

from forestry import Lumberjack, Tree

sizes = (("s", 1), ("M", 2), ("L, 3), ("XL", 4), ("XXL", 5))
class TestTree (unittest.TestCase) :

def test lumber (self):
for code, boards in sizes:
tree = Tree (code)
self.assertEqual (boards, tree.get boards())

def test string(self):
tree = Tree ("L")
self.assertEqual (str(tree), "Tree: Size L")

def test exceptions(self):
self.assertRaises (ValueError, Tree, "parrot")
self.assertRaises (TypeError, Lumberjack().cut down tree)

class TestLumberjack (unittest.TestCase) :

def test lumberjack(self):
for code, boards in sizes:
tree = Tree(code)
graham = Lumberjack/()
self.assertIsNone (graham. tree)
graham.tree = tree
brds = graham.cut down tree ()
self.assertIsNone (graham.tree)
self.assertEqual (boards, brds)
if name == " main ":
unittest.main ()

If you are getting the hang of test-driven development, you're already thinking about what your Tree and Lumberjack
classes need to do to pass these tests, but you should start with the "simplest possible thing that can fail" first and
verify that the tests do actually fail or give errors.

Inyour Python3_Lesson11/src folder, create forestry.py as shown

CODE TO TYPE: forestry.py

class Tree (object) :
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):
"Initialize."
self.size = size

def get boards(self) :
"Return number of boards equivalent."
return self.sizes[self.size]

def str (self):

"Render as a string."
return "Tree: Size %s" % self.size

class Lumberjack (object) :
"Represent a lumberjack who can cut down trees."

def cut down tree(self):
"Convert tree to boards and go back to not having a tree."
pass

When you run the test with this vestigial implementation, you will not surprisingly find that the tests don'tall pass (but
note thatsome do, because Tree correctly implements both get_boards() and __str__()).

OBSERVE: Not all tests pass—that's OKI

I 5 o

ERROR: test lumberjack (main .TestLumberjack)
Traceback (most recent call last):
File "V:\workspace\Python3 Lessonll\src\test forestry.py", line 28, in test lumberjac
k
self.assertIsNone (graham.tree)
AttributeError: 'Lumberjack' object has no attribute 'tree'

FAIL: test exceptions (_main .TestTree)
Traceback (most recent call last):
File "V:\workspace\Python3 Lessonll\src\test forestry.py", line 19, in test exception
s
self.assertRaises (ValueError, Tree, "parrot")
AssertionError: ValueError not raised by Tree

Ran 4 tests in 0.000s

FAILED (failures=1, errors=1)

The test_lumberjack() fails because the testassumes that a newly created Lumberjack object will have a tree
attribute with the value None. This is easily arranged in its __init__() method. test_exceptions() fails because the
__init__() method is not validating the size argument. This is again fairly easily added. Make the necessary changes
and ensure thatthen all four tests pass.

CODE TO EDIT: forestry.py

class Tree (object):
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):
"Initialize: insist that size is a valid code."
if size not in self.sizes:

message = "Tree size must be one of: %$s" % ",".join(self.sizes.keys())
raise ValueError (message)
self.size = size

def get boards(self):
"Return number of boards equivalent."
return self.sizes[self.size]

def str (self):

"Render as a string."
return "Tree: Size %s" $ self.size

class Lumberjack (object) :
"Represent a lumberjack who can cut down trees."
def init (self):
"Initialize: start with no tree."
self.tree = None

def cut down tree(self):
"Convert tree to boards and go back to not having a tree."
pass
if not self.tree:
raise TypeError ("Cannot cut down tree(): Lumberjack has no tree!")
boards = self.tree.get boards()
self.tree = None
return boards

if name == " main ":
"Demonstrate basic usage."
john = Lumberjack/()
john.tree = Tree ("XXL")
if john.cut down tree() != 5:
print ("Error: XXL tree should yield 5 boards")

Save itand run the testagain. All tests should pass now, and we can add in a simple logger. This justinvolves adding
a few lines at the beginning of the module.

CODE TO EDIT: forestry.py

import the logging module
import logging

set up the logger
logging.basicConfig(filename="'forestry.log', level=1logging.DERUG)

log a message
logging.info ('Starting up the forestry program')

class Tree (object):
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):
"Initialize: insist that size is a valid code.”
if size not in self.sizes:

message = "Tree size must be one of: %$s" & ",".join(self.sizes.keys())
raise ValueError (message)
self.size = size

def get boards(self):
"Return number of boards equivalent."
return self.sizes[self.size]

def str (self):
"Render as a string."
return "Tree: Size %s" $ self.size

class Lumberjack (object) :
"Represent a lumberjack who can cut down trees."
def init (self):
"Initialize: start with no tree."
self.tree = None

def cut down tree(self):
"Convert tree to boards and go back to not having a tree."
boards = self.tree.get boards()
self.tree = None
return boards

if name == " main ":
"Demonstrate basic usage."
john = Lumberjack()
john.tree = Tree ("XXL")
if john.cut down tree() != 5:
print ("Error: XXL tree should yield 5 boards")

Run both test _forestry.py and forestry.py. The tests should continue to pass, and the forestry program should run
without errors or any output. In the Python3_Lesson11/src folder, you'll see a new forestry.log file. Open itand
you should see:

contents of forestry.log

INFO:root:Starting up the forestry program
INFO:root:Starting up the forestry program

Look familiar? But why are there two entries? There are two entries because you loaded forestry.py twice, once when
you ran it by itself and the other time in test_forestry.py, thanks to the line from forestry import Lumberjack, Tree.
Also, because the logging system records things over time, each time itis called itappends to the existing file. This
means that yourlog files are a living history of your application (though that history is of somewhat limited interest right
now due to the restricted information that appears in it). But, every time your module is used, itlogs thatfactin the log
file!

Now let's make it a little more interesting. Sprinkle some log messages throughout the forestry.py code:

CODE TO EDIT: forestry.py

import logging

set up the logger
logging.basicConfig(filename="'forestry.log', level=logging.DEBUG)

log a message
logging.info ('Starting up the forestry program')

class Tree (object):
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):
"Initialize: insist that size is a valid code."
if size not in self.sizes:

message = "Tree size must be one of: %$s" % ",".join(self.sizes.keys())
raise ValueError (message)
self.size = size

logging.info ('Instantiated a tree')

def get boards(self):
"Return number of boards equivalent."
logging.info ('tree.get boards method called')
return self.sizes[self.size]

def str (self):

"Render as a string."
return "Tree: Size %s" $ self.size

class Lumberjack (object) :
"Represent a lumberjack who can cut down trees."
def init (self):
"Initialize: start with no tree."
self.tree = None
logging.info ('Instantiated a Lumberjack')

def cut down tree(self):
"Convert tree to boards and go back to not having a tree."
if not self.tree:
raise TypeError ("Cannot cut down tree(): Lumberjack has no tree!")
boards = self.tree.get boards()
self.tree = None
logging.info ('Lumberjack.tree cut down')
return boards

if name == " main ":
"Demonstrate basic usage."
john = Lumberjack/()
john.tree = Tree ("XXL")
if john.cut down tree() != 5:
print ("Error: XXL tree should yield 5 boards")

Clear the contents of the forestry.log file in your editor window, then save itas empty. Go ahead and run
test_forestry.py, and then check forestry.log again (If you see a "Resource is outof sync" message, press F5).
You'll see a nice listoflog entries about progress made.

OBSERVE: Contents of log file after a run of test_forestry.py

INFO:root:Starting up the forestry program
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a Lumberjack
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree

Also, look atthe code. The logging messages are clearly logging messages. As you code, you'll find you mentally filter
them outwhen you don't need them and they pop into focus when you do need them. This tends to be less obtrusive
than print() calls that might be program-related or might be merely debugging information.

Other Logging Functions

The logging module makes it easy to flag issues with different levels of severity—in this next change, instead of
logging.debug(), you'lluse logging.error(). Try itout by adding logging.error() to the __init__() method of your
Tree class and the cut_down_tree() method of the Lumberjack.

CODE TO EDIT: forestry.py

import logging

set up the logger

1 c DI

i h] - I H e \
Ore ST Y- TS 7 = EEpaERUAS AS = 54w pp P nAvAS

b : L Sl £ V=
TOGOSTITS-0aST T T T T gt

logging.basicConfig(filename="'forestry.log', level=logging.ERROR)

log a message
logging.info ('Starting up the forestry program')

class Tree (object):
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):

"Initialize: insist that size is a valid code.”

if size not in self.sizes:
message = "Tree size must be one of: %$s" & ",".join(self.sizes.keys())
logging.error (message)
raise ValueError (message)

self.size = size

logging.info ('Instantiated a tree')

def get boards(self):
"Return number of boards equivalent."
logging.info('tree.get boards method called')
return self.sizes[self.size]

def str (self):

"Render as a string."
return "Tree: Size %s" % self.size

class Lumberjack (object) :
"Represent a lumberjack who can cut down trees."
def init (self):
"Initialize: start with no tree."
self.tree = None
logging.info('Instantiated a Lumberjack')

def cut down tree(self):
"Convert tree to boards and go back to not having a tree."
if not self.tree:

2 nal I 11 Fal A= = <l A L) I 1o) 1 N~
LTarToT T ypeoL TUL aTTITOT T UOUWIT T L™ \WADEEESIS I SA—E S R A S R e 1T L=
msg = "Cannot cut down tree(): Lumberjack has no tree!"
logging.error (msqg)
raise TypeError (msg)
boards = self.tree.get boards()
self.tree = None
logging.info ('Lumberjack.tree cut down')
return boards

if name == " main ":
"Demonstrate basic usage."
john = Lumberjack/()
john.tree = Tree ("XXL")
if john.cut down tree() != 5:
print ("Error: XXL tree should yield 5 boards")

Now clear the forestry.log file again, and run test_forestry.py. Your tests should continue to pass:

OBSERVE: test_forestry.py results

Ran 4 tests in 0.008s

Now, check the new forestry.log:

added items to forestry.log

ERROR:root:Tree size must be one of: S,M,L,XL,XXL
ERROR:root:Cannot cut down tree(): Lumberjack has no tree!

With the Python logging library, you can set the logging level to filter out debug, info, warning, and error messages. The
change we made at the beginning of the file ensured that only messages with ERROR or CRITICAL severity levels
were even added to the log file.

The logging library includes these levels of built-in logger functions:

Level Precedence Description
DEBUG 10 Use for low-level debugging output
INFO 20 General information
WARNING |30 Warning messages such as deprecated functions and code
ERROR 40 Reporting exceptions and errors
CRITICAL |50 System crashes, security penetrations, data corruption, etc.

If the level at which you log a message is of lower priority than the level established for the logger when itis created,
nothing is actually logged. This level of control is a good compromise, allowing you to easily suppress the logging of
usually-unimportant messages without throwing away importantones.

Other Logging Levels

Logging presents a way to store data about programs in operation, and this is a good thing. But mostofthe time you
do notwantyour program recording the mundane trivia of its existence. Thatis why you can specify a logging level
when you create the logger. This will also log anything of higher precedence, so when you setitto ERROR, italso
includes CRITICAL results. Ifyou set the logging level to logging.INFO, it would show the INFO, WARNING, ERROR,
and CRITICAL levels.

From now on, we'll setourlogging level using a start_logging() function. Note that this uses a dict as a lookup table,
allowing the caller to supply string values like "error" rather than having to import the numeric values from the logging
module.

CODE TO EDIT: forestry.py

import logging
LOG FILENAME = "forestry.log"
DEFAULT LOG LEVEL = "error" # Default log level
LEVELS = {'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL

def start logging(filename=LOG_FILENAME, level=DEFAULT LOG LEVEL) :
"Start logging with given filename and level."
logging.basicConfig(filename=filename, level=LEVELS[levell])
log a message
logging.info('Starting up the forestry program')

ES

b
TT TOTSEeY

+
=] T LALJ
1 - o - a o | =y . 1 1 ul 1 1 . AmAnkn) hmY
LUH\lei\j . T UllLL\j T T ITTITAnTT— TOTTOS L_LY .‘LUH 7 L< CL_LUHHLLLU.QL T NT
TR
L . \j oIS G.\j
1 : = 1oy P N £ . 1)
TOgT IS IIITO T otatr oIy P the rToreSTtrEy—Progratt 7

class Tree (object):
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):

"Initialize: insist that size is a valid code."

if size not in self.sizes:
message = "Tree size must be one of: %$s" & ",".join(self.sizes.keys())
logging.error (message)
raise ValueError (message)

self.size = size

logging.info ('Instantiated a tree')

def get boards(self):
"Return number of boards equivalent."
logging.info('tree.get boards method called')
return self.sizes[self.size]

def str (self):

"Render as a string."
return "Tree: Size %s" % self.size

class Lumberjack (object) :
"Represent a lumberjack who can cut down trees."
def init (self):
"Initialize: start with no tree."
self.tree = None
logging.info ('Instantiated a Lumberjack')

def cut down tree(self):

"Convert tree to boards and go back to not having a tree."

if not self.tree:
msg = "Cannot cut down tree(): Lumberjack has no tree!"
logging.error (msg)
raise TypeError (msg)

boards = self.tree.get boards ()

self.tree = None

logging.info ('Lumberjack.tree cut down')

return boards

if name == " main ":
"Demonstrate basic usage."
john = Lumberjack()
john.tree = Tree ("XXL")

if john.cut down tree() != 5:
print ("Error: XXL tree should yield 5 boards")

We now need to modify test_forestry.py to ensure that it still passes its tests. lt needs to call the forestry module's
start_logging function, which it does with a level argument value of "error," which is automatically converted inside the
function to logging.ERROR.

CODE TO EDIT: test_forestry.py

import unittest

from forestry import Lumberjack, Tree, start logging

sizes = (("s", 1), ("™M", 2), ("L", 3), ("XL", 4), ("XXL", 5))
class TestTree (unittest.TestCase) :

def test lumber (self):
for code, boards in sizes:
tree = Tree (code)
self.assertEqual (boards, tree.get boards())

def test string(self):
tree = Tree("L")
self.assertEqual (str(tree), "Tree: Size L")

def test exceptions(self):
self.assertRaises (ValueError, Tree, "parrot")
self.assertRaises (TypeError, Lumberjack().cut down tree)

class TestLumberjack (unittest.TestCase):

def test lumberjack(self):
for code, boards in sizes:

tree = Tree (code)
graham = Lumberjack()
self.assertIsNone (graham.tree)
graham.tree = tree
brds = graham.cut down tree()
self.assertIsNone (graham.tree)
self.assertEqual (boards, brds)

if name == " main ":

start logging (level="error")
unittest.main ()

Getting Tests to Use Different Logging Levels

Right now, when you run test_forestry.py, italways runs under the ERROR level because it overrides the forestry.py
defaultlogging level. Which means all thatis logged from the current code base is:

test_forestry.py results - Error level restricts output!

ERROR:root:Tree size must be one of: S,M,L, XL, XXL
ERROR:root:Cannot cut down tree(): Lumberjack has no tree!

Since you probably wantas much information as possible to be generated by your unittests, you can do a local
override of the logger configuration item by modifying the call to start_logging in test forestry.py.

CODE TO EDIT: test_forestry.py

import unittest

from forestry import Lumberjack, Tree, start logging

sizes = (("s", 1), ("™M", 2), ("L", 3), ("XL", 4), ("XXL", 5))
class TestTree (unittest.TestCase) :

def test lumber (self):
for code, boards in sizes:
tree = Tree (code)
self.assertEqual (boards, tree.get boards())

def test string(self):
tree = Tree("L")
self.assertEqual (str(tree), "Tree: Size L")

def test exceptions(self):
self.assertRaises (ValueError, Tree, "parrot")
self.assertRaises (TypeError, Lumberjack().cut down tree)

class TestLumberjack (unittest.TestCase):

def test lumberjack(self):
for code, boards in sizes:

tree = Tree (code)
graham = Lumberjack()
self.assertIsNone (graham.tree)
graham.tree = tree
brds = graham.cut down tree()
self.assertIsNone (graham.tree)
self.assertEqual (boards, brds)

if name == " main ":

] [1AY
T e v

i | : h|
Tartc TOgSTIS (T

start logging (level="info")
unittest.main ()

Run test forestry.py to get these added log entries in forestry.log

INFO:root:Starting up the forestry program
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
INFO:root:Instantiated a tree
INFO:root:Instantiated a Lumberjack
INFO:root:tree.get boards method called
INFO:root:Lumberjack.tree cut down
ERROR:root:Tree size must be one of: S,M,L, XL, XXL
INFO:root:Instantiated a Lumberjack
ERROR:root:Cannot cut down tree(): Lumberjack has no tree!
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree
INFO:root:tree.get boards method called
INFO:root:Instantiated a tree

Log Formatting

The log entries are providing a lot ofinformation, but the default formatting we've used so far only provides a small
subset of what the logger can capture for you. You'll use the log formatter to display significantly more data.

CODE TO EDIT: forestry.py

import logging

LOG _FILENAME = "forestry.log"
LOG_FORMAT = "% (asctime)s % (name)s:%(levelname)s:%(filename)s function:%(funcName)s lin

e:%(lineno)d % (message)s"
DEFAULT LOG LEVEL = "warning" # Default log level
LEVELS = {'debug': logging.DEBUG,

'info': logging.INFO,

'warning': logging.WARNING,

'error': logging.ERROR,

'critical': logging.CRITICAL

def start logging(filename=LOG_FILENAME, level=DEFAULT LOG LEVEL) :
"Start logging with given filename and level."
logging.basicConfig(filename=filename, level=LEVELS[level], format=LOG FORMAT)
log a message
logging.info('Starting up the forestry program')

class Tree (object):
"Represent a tree in a forest that can be converted into boards."
sizes = dict(S=1, M=2, L=3, XL=4, XXL=5)

def init (self, size="L"):

"Initialize: insist that size is a valid code."

if size not in self.sizes:
message = "Tree size must be one of: %$s" & ",".join(self.sizes.keys())
logging.error (message)
raise ValueError (message)

self.size = size

logging.info ('Instantiated a tree')

def get boards(self):
"Return number of boards equivalent."
logging.info('tree.get boards method called')
return self.sizes[self.size]

def str (self):

"Render as a string."
return "Tree: Size %s" $ self.size

class Lumberjack (object):
"Represent a lumberjack who can cut down trees."
def init (self):
"Initialize: start with no tree."
self.tree = None
logging.info ('Instantiated a Lumberjack')

def cut down tree(self):

"Convert tree to boards and go back to not having a tree."

if not self.tree:
msg = "Cannot cut down tree(): Lumberjack has no tree!"
logging.error (msg)
raise TypeError (msg)

boards = self.tree.get boards()

self.tree = None

logging.info ('Lumberjack.tree cut down')

return boards

if name == " main ":
"Demonstrate basic usage."
john = Lumberjack()
john.tree = Tree ("XXL")
if john.cut down tree() != 5:
print ("Error: XXL tree should yield 5 boards")

This small change to the forestry framework makes a great deal of difference to the outputin the logging stream. If you
clearthe log file and run test_forestry.py, yourlog should look like the following.

Results of test_forestry.py

2010-11-08 20:04:

58,319

p the forestry program

2010-11-08 20:04:
tree

2010-11-08 20:04:
Lumberjack
2010-11-08 20:04:
ds method called
2010-11-08 20:04:
.tree cut down
2010-11-08 20:04:
tree

2010-11-08 20:04:
Lumberjack
2010-11-08 20:04
ds method called
2010-11-08 20:04:
.tree cut down
2010-11-08 20:04:
tree

2010-11-08 20:04:
Lumberjack
2010-11-08 20:04:
ds method called
2010-11-08 20:04:
.tree cut down
2010-11-08 20:04:
CIEEE

2010-11-08 20:04:
Lumberjack
2010-11-08 20:04:
ds method called
2010-11-08 20:04:
.tree cut down
2010-11-08 20:04:
tree

2010-11-08 20:04:
Lumberjack
2010-11-08 20:04:
ds method called
2010-11-08 20:04
.tree cut down
2010-11-08 20:04:
be one of:
2010-11-08
Lumberjack
2010-11-08 20
t down tree():
2010-11-08 20:04:
tree

2010-11-08 20:04:
ds method called
2010-11-08 20:04:
CIEEE

2010-11-08 20:04
ds method called
2010-11-08 20:04:
cree

2010-11-08 20:04:
ds method called
2010-11-08 20:04:
cree

2010-11-08 20:04:
ds method called
2010-11-08 20:04:
tree

20

58,382
58,382
58,382
58,384
58,384

58,384

:58,384

58,384
58,384
58,384
58,384
58,385
58,385
58,385
58,385
58,387
58,387
58,387

58,387

:58,388

58,388

S,M, L, XL, XXL
:04:58,388 root:

58,388
58,388

58,388

:58,390

58,391
58,391
58,391
58,391

58,391

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root

root:

root:

root:

root:

root:

root:

root:

:INFO:

: INFO:

:INFO:

: INFO:

: INFO:

: INFO:

: INFO:

: INFO:

: INFO:

:INFO:

: INFO:

:INFO:

: INFO:

:INFO:

: INFO:

:INFO:

: INFO:

: INFO:

: INFO:

: INFO:

: INFO

:forestry.

forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.
forestry.

forestry.

py

Py

Py

Py

120%

19

Py

Py

Py

py

Py

py

=5

py

Py

py

Py

Py

py

Py

py

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

function:

start logging line:17 Starting u
__init line:30 Instantiated a
__init line:46 Instantiated a
get boards line:34 tree.get boar
cut down tree line:56 Lumberjack
__init line:30 Instantiated a
__init line:46 Instantiated a
get boards line:34 tree.get boar
cut down tree line:56 Lumberjack
__init 1ine:30 Instantiated a
__init line:46 Instantiated a
get boards line:34 tree.get boar
cut down tree line:56 Lumberjack
__init line:30 Instantiated a
__init line:46 Instantiated a
get boards line:34 tree.get boar
cut down tree line:56 Lumberjack
__init line:30 Instantiated a
__init line:46 Instantiated a
get boards line:34 tree.get boar

cut down tree line:56 Lumberjack

:ERROR: forestry.py function: init line:27 Tree size must

: INFO

: INFO

INFO

INFO:

INFO:

INFO:

INFO:

INFO:

INFO:

:forestry.py function

:forestry.

:forestry.

forestry.

forestry.
forestry.
forestry.
forestry.

forestry.

Py

py

Py

Py

Py

Py

Py

Py

function

function

function

function

function

function

function

function

INFO: forestry.py function: init 1line:46 Instantiated a

:04:58,388 root:ERROR:forestry.py function:cut down tree line:52 Cannot cu
Lumberjack has no tree!

: init line:30 Instantiated a
:get boards line:34 tree.get boar
: init line:30 Instantiated a
:get boards line:34 tree.get boar
: init line:30 Instantiated a
:get boards line:34 tree.get boar
: init line:30 Instantiated a
:get boards line:34 tree.get boar

: init line:30 Instantiated a

2010-11-08 20:04:58,391 root:INFO:forestry.py function:get boards line:34 tree.get boar
ds method called

2010-11-08 20:04:58,391 root:INFO:forestry.py function: init 1line:30 Instantiated a
tree

You now have log entries that provide the date and time down to the microsecond for when the entry was recorded, the
name of the file and the function/method that called it, and the line number if was called from. All of this from this line of
Formatter String:

It should look like this but all on one line

% (asctime) s
% (name) s: % (levelname) s: % (filename) s
function:% (funcName)s line:% (lineno)d
% (message) s

The dark blue elements above, such as "function:," are there to display the outputin a more readable format. The
dark red elements above are mapping keys that tell the logger where to put the data it collects. Some of the most
useful keys are:

Key Provides
%(name) The owner of the log file
o Numeric logging level for the message (DEBUG=10, INFO=20, WARNING=30, ERROR=40,
%(levelno)s | cRiTICAL=50)

%(levelname)s | Textlogging level for the message ((DEBUG', 'INFO', 'WARNING', 'ERROR’, 'CRITICAL")

% (pathname)s | Full pathname of the source file where the logging call was issued (if available)

%(filename)s |Filename portion of pathname

%(module)s Module (name portion of filename)

%(funcName)s | Name of function/method containing the logging call

%(lineno)d Source line number where the logging call was issued (if available)

% (asctime)s Time when the log entry was created

%(message)s | The message passed into the log entry by the logger

Itis often tempting to put everything into the log entry, but this can prove to be a mistake because too much texton a
single line is hard for the human eye to interpret. In addition, if you have to scroll side-to-side on a log file you are
prone to miss things. So here are some quick tips to making your log formats useful:

e Well-written messages make log files much more readable and searchable.
e Instead of adding print() calls, try changing your log format to include more information.
e %(pathname)s and %(filename)s are useful to identify the source of a message.

e Since you can search your code for log messages, recording the line number (%(lineno)d), though tempting,
is less useful than you mightimagine.

e Because the Python logging module can't capture which class objects generated an entry. the %(module)s
and %(funcName)s keys can be troublesome.

The following is a reasonable example ofa log file format:

OBSERVE: A Good Log File Format

% (asctime)s - % (name)s - % (levelname)s - % (message)s

Logging isn'tjusta useful tool, itis like code comments and tests in that consistentuse of it will impress experienced
developers and good IT managers. Thatis because as much as good developers try to have all their code properly covered by
tests, bugs creep in. Without logging, it can be nearly impossible to analyze sophisticated software behavior, uncover subtle
errors, or see exactly step-by-step how a hacker tried to penetrate a system. With logging, you can provide a usage history that
allows yourselfand others to see what has happened with your programs. ltis just another way to make processes visible.
Don't be afraid of that visibility or the mistakes it may uncover; instead embrace it and learn from whatis exposed.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and projecit(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Engineering Your Programs

Lesson Objectives

When you complete this lesson, you will be able to:

e use optparse, a powerful command-line processor.

e use configparserto control settings correctly.

In a previous lesson, we learned how to use sys.argv to access command line elements. However, sys.argv is only useful for
providing per-run information about what you want a program to do. If there are actions you wanta program to always take, you
need a mechanism that allows that (while still allowing the use of command-line arguments for the per-run data).

For example, problems quickly arise if you need to accept several arguments. Let's say besides logging when you starta
program, you need to pointa program to a specific database, let the user set a specific directory to save files, and accept user
name/password combinations. Now instead of one, you have five command-line arguments, each of which needs validation
and precise help instructions. The logic to handle this would likely involve lots of nested if blocks to handle field
determination/validation and print() calls for help instructions, and you'd spend significant effort, not justin writing and testing
the command-line code, but also in maintaining it.

Thankfully, Python provides two libraries for handling this exactissue. The firstlibrary, opt parse, is a more powerful
command-line system than simply processing sys.argv "by hand." The second library, configparser, lets you create
configuration files, often used to establish default program settings that can become, either for a single useror across a
system, the defaults for command-line operation. This can sometimes shorten the "average" command line.

optparse: A Powerful Command-line Processor

optparse is a convenient, flexible, and powerful library for parsing command-line options. It follows the conventional
GNU/POSIX syntax, which sounds fancy but really just means that command-line users on Windows, Mac, Unix, Linux,
and BSD will find it matches the general operation of their existing command-line tools.

A Simple optparse Example

Here we'll see how to capture a loglevel using the optparse library. This behavior may be useful to other
programs, so we'llimplementitin a new file. Create a Python3_Lesson12 project, and assign itto the
Python3_Lessons working set. In your Python3_Lesson12 folder, create commands.py as shown:

CODE TO TYPE: commands.py

commands.py: Parse logging level options from sys.argv

o

from optparse import OptionParser

if name == " main ":
instantiate an OptionParser object
parser = OptionParser ()
parser.add option("-1", "--loglevel",
action="store",
dest="1level",
default="warning",
help="set level of logger: debug, info, warning (default
), error, critical")
(options, args) = parser.parse_args()

o

print ("level: %s" % options.level)

Now, let's try this out by using -l debug as command-line arguments.

Remember, to setup command-line arguments in Ellipse, first, select Run | Run Configurations... from
the menu and click the lefticon (New Launch Configuration) on the Run Configurations dialog toolbar.
Enter commands.py in the Name field at the top of the dialog; for the Project, click Browse to select the
Python3_Lesson12 project; and for the Main Module, click Browse to select your commands.py program
(in the src folder) as the program to run. Next, select the Arguments tab. In the Program Arguments field,

enter ${string_prompt}. This special value tells Ellipse to ask you for the arguments to the program when
you run this configuration. Leave everything else as itis. Click Run at the bottom of the window. When
prompted for the command-line arguments, enter -l debug.

commands.py called with '-I debug' argument

level: debug

Try the same thing with -1 critical for a different result (you can justrun command.py like you would run
any Python program; Ellipse will remember to prompt you for the arguments):

commands.py called with '-I critical'

level: critical

Run it again, leaving the arguments field empty. It even provides a default value:

commands.py called without any argument

level: warning

Pretty handy, but besides a lot more typing, this isn't doing anything that sys.argv doesn'tdo, right? Lets go
ahead and prove thatassumption wrong. Run it with the -h argument:

commands.py called with -h argument

Usage: commands.py [options]

Options:
-h, --help show this help message and exit
-1 LEVEL, --loglevel=LEVEL
set level of logger: debug, info, warning (default),
error, critical

There you have it—instant help! And help thatfollows the same format that you getany time you do '-h' or'--
h' on a command-line tool. Also, note that the print() command did notrun. This is because all Python
programs, regardless of whether or notthey use the optparse library, do notrun any code exceptto produce
the help text when the user calls for help. So users can call the -h command without fear that they will
inadvertently run your program.

A Complex optparse Example

Let's do something familiar and create a very simple email address book program. It will allow you to add,
delete, and list all addresses from the command line. The addresses will be stored using the shelve module.

The first thing to do is to get our program to add and delete emails. You'll need two options for this, the first
one to letyour users pick the add, edit, or delete actions, and the second being the email value in question.
So create addressbook.py as shown below. You will need to add another run configuration that allows you
to setthe command-line arguments when you run it, just like you did for commands.py.

CODE TO TYPE: addressbook.py

from optparse import OptionParser

if name == "' main ':

parser = OptionParser ()

parser.add option('-a', '--action', dest="action", action="store", help="req
uires -e option. Actions: add/delete")

parser.add option('-e', '--email', dest="email", action="store", help="email
used in the -a option")

(options, args) = parser.parse_args()

Save and run it with the -h option:

OBSERVE: Running addressbook.py With -h Argument

Usage:
addressbook.py [options]
Options: -h, --help show this help message and exit
—-a ACTION, --action=ACTION requires -e option.
Actions: add/edit/delete
-e EMATL, --email=EMAIL email used in the -a option

Validating optparse Options

Now, we'll add some more validation. Firstwe'll check that, when a user provides the --action option, they
also provide an --email option. Then we'll check that the email provided is valid (for the sake of simplicity,
we'll just check that it contains the "@" character).

The first validation, that --action has an --email (and vice versa) is done by checking thatif one of those
options exists, so should the other. If only one exists, a parser.error() is called. Editaddressbook.py as
shown:

CODE TO EDIT: addressbook.py

from optparse import OptionParser

if name == "' main ':
parser = OptionParser ()
parser.add option('-a', '--action', dest="action", action="store",
help="requires -e option. Actions: add/delete")
parser.add option('-e', '--email', dest="email", action="store",
help="email used in the -a option")
(options, args) = parser.parse args()

validation

if options.action and not options.email:
parser.error ("option -a requires option -e")

elif options.email and not options.action:
parser.error ("option -e requires option -a")

print (options)

Save and run it with -a add:

OBSERVE: Running addressbook.py with -a add

Usage: addressbook.py [options]

addressbook.py: error: option -a requires option -e

Now, run it with -e steve@oreilly.com:

OBSERVE: Running addressbook.py with -e steve@oreilly.com

Usage: addressbook.py [options]

addressbook.py: error: option -e requires option -a

The requirement for both options to appear together is working, so it only remains to ensure that when both
options are present they are correctly captured in the options dict. You can do this by running the program
with both options.

Run itwith -a steve -e something:

OBSERVE: Running addressbook.py with -a steve -e something

{'action': 'steve', 'email': 'something'}

Now, can you figure out how to validate that user-provided email includes "@"? Try it before we show you!

Go ahead; try itl

We're waiting!

You should have arrived at something like this:

CODE TO EDIT: addressbook.py

from optparse import OptionParser

if name == "' main ':
parser = OptionParser ()
parser.add option('-a', '--action', dest="action",
action="store", help="requires -e option. Actions: add/delete")
parser.add option('-e', '--email', dest="email",
action="store", help="email used in the -a option")
(options, args) = parser.parse_args()

validation

if options.action and not options.email:
parser.error ("option -a requires option -e")

elif options.email and not options.action:
parser.error ("option -e requires option -a")

elif options.email and '@' not in options.email:
parser.error ("option -e requires a valid email address")

print (options)

Run itwith -a steve -e something:

OBSERVE: Running addressbook.py with -a steve -e something

Usage: addressbook.py [options]

addressbook.py: error: option -e requires a valid email address

Showtime!

Okay, it's time to add the code that handles the emails. But before we do that, let's add the obligatory tests.
Create test_addressbook.py as shown:

CODE TO TYPE: test_addressbook.py

import unittest
import addressbook

class TestEmailHandlers (unittest.TestCase) :

def setUp(self):
self.email = 'testl23@t.com'

def test email delete(self):
addressbook.email add(self.email) # ensure the email is active
self.assertEqual (addressbook.email delete(self.email) [0], True)
self.assertEqual (addressbook.email delete (self.email) [0], False)

def test email add(self):
self.assertEqual (addressbook.email add(self.email) [0], True)
self.assertEqual (addressbook.email add(self.email) [0], False)

if name == " main ":
unittest.main ()

Now editthe addressbook program to accommodate the tests:

CODE TO EDIT: addressbook.py

from optparse import OptionParser
import shelve
import sys

shelf location = 'V:/workspace/Python3 Lessonl2/src/email.shelf’

def

def

def

email add(email):

shelf = shelve.open(shelf location)

if 'emails' not in shelf:
shelf['emails'] = []

emails = shelf['emails']
if email in emails:

message = False, 'Email "%s" already in address book' $ email
else:

emails.append(email)

message = True, 'Email "%s" added to address book' $ email
shelf['emails'] = emails
shelf.close()
return message

email delete(email):
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emalils = shelf['emails']
try:
emails.remove (email)
message = True, 'Email "$%$s" removed from address book' % email
except ValueError:
message = False, 'Email "%s" was not in the address book' % email
shelf['emails'] = emails
shelf.close()
return message

main (options) :
"routes requests"
if options.action == 'add':
return email add(options.email)
elif options.action == 'delete':

return email delete (options.email)

if name == ' main ':

shelf = shelve.open(shelf location)

if 'emails' not in shelf:
shelf['emails'] = []

shelf.close()

parser = OptionParser ()

parser.add option('-a', '--action', dest="action", action="store",
help="requires -e option. Actions: add/delete")
parser.add option('-e', '--email', dest="email",

action="store", help="email used in the -a option")

(options, args) = parser.parse args()
validation
if options.action is None:

sys.exit ("You must specify an action (add or delete) with '-a action'")

if options.action and not options.email:
parser.error ("option -a requires option -e")

elif options.email and not options.action:
parser.error ("option -e requires option -a")

elif options.email and '@' not in options.email:
parser.error ("option -e requires a valid email address")

Lo . \
PrTI T TSP TTIoITST

print (main (options) [1])

Of course, you wrote tests for this code before writing it. Better try out the tests before trying to exercise the
code. Save both programs and run test_addressbook.py:

OBSERVE: Testing with test_addressbook.py

Ran 2 tests in 0.003s

OK

Well, that seemed to work out OK, or atleast the tests seem to indicate that the add and delete functionality is
succeeding and failing where expected. So let's see what we get with various calls from the command line.

Run addrbook.py with -a add -e steve@h.com:

OBSERVE: Running addressbook.py with -a add -e steve@h.com

Email "steve@h.com" added to address book

Run addrbook.py with -a add -e steve@h.com again:

OBSERVE: Running addressbook.py again with -a add -e steve@h.com

Email "steve@h.com" already in address book

Run addrbook.py with -a delete -e steve@h.com:

OBSERVE: Running addressbook.py with -a delete -e steve@h.com

Email "steve@h.com" removed from address book

Run addrbook.py with -a delete -e steve@h.com again:

OBSERVE: Running addressbook.py again with -a delete -e steve@h.com

Email "steve@h.com" was not in the address book

You've now gota grip on quite a few of the fundamentals ofusing optparse. Notice how, once the code gets
pastoptparse validation, the action turns to functions. This makes things much easier to extend and test, in
turn helping you to reuse this code in other modules. In fact, the email validation ought to take place in its own
function called by the email handlers, and would raise an exception that would be caught by the parse handler.
Something like this could work:

CODE TO EDIT: addressbook.py

from optparse import OptionParser
import shelve
import sys

shelf location = 'V:/workspace/Python3 Lessonl2/src/email.shelf’

class InvalidEmail (Exception) :

def

def

pass

validate email (email) :
if '@' not in email:
raise InvalidEmail ("Invalid email: "+email)

email add(email):
validate email (email)
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emails = shelf['emails']
if email in emails:
message = False, 'Email "%s" already in address book' % email
else:
emails.append(email)
message = True, 'Email "%s" added to address book' % email
shelf['emails'] = emails
shelf.close()
return message

def email delete(email):
validate email (email)
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emails = shelf['emails']
try:
emails.remove (email)
message = True, 'Email "%s" removed from address book' $ email
except ValueError:
message = False, 'Email "%s" was not in the address book' % email
shelf['emails'] = emails
shelf.close()
return message
def main (options) :
"routes requests"
if options.action == 'add':
return email add(options.email)
elif options.action == 'delete':
return email delete (options.email)
if name == "' main ':

shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf(['emails'] = []
shelf.close ()
parser = OptionParser ()
parser.add option('-a', '--action', dest="action", action="store",

help="requires -e option. Actions: add/delete")

parser.add option('-e', '--email', dest="email",

action="store", help="email used in the -a option")

(options, args) = parser.parse args()
validation
if options.action is None:

sys.exit ("You must specify an action (add or delete) with '-a action'")

if options.action and not options.email:

parser.error ("option -a requires option -e")
elif options.email and not options.action:
parser.error ("option -e requires option -a")

I s : 7
TS T—T1T PTIroTr S eha T

14 A | a1
e s g PTIo S et ottt ©

(1] A : 12 :] 1
4=y = EoTET PTIOIT regquTT =3 oo e acaE T

prirttmetatoptionsitih
try:
print (main (options) [1])
except InvalidEmail:
parser.error ("option -e requires a valid email address")

Go ahead and test this code. All tests should continue to pass.

OBSERVE: Refactored code passes all tests

Ran 2 tests in 0.016s

OK

Then run the program itself. It should work just as before, but the refactoring makes the code more easily
extended.

Displaying All the Records

Now, suppose we want to list the contents of the shelffile. For this, all we need is an option without a value.
Perhaps just-d or --display without a value to show every address in the system. We'll do it with this parser

option:

boolean flag parser option

parser.add option('-d',
'--display', dest="display", action="store true", help="show all emails"

In this parser option, the action of 'store_true' means thatif you call it via the box above, the display attribute
of options will be a boolean True. Otherwise itis a None object. With thatin your tool-chest, you can add to
your existing code base. First, as usual, we'll add a test for the new functionality. Edittest_addressbook.py

as shown:

CODE TO EDIT: test_addressbook.py

import unittest, shelve
import addressbook

class TestEmailHandlers (unittest.TestCase) :

def setUp(self):
self.email = 'testl23@t.com'
shelf location = addressbook.shelf location

shelf = shelve.open(shelf location)
if 'emails' in shelf:
if self.email in shelf['emails']:
shelf['emails']=[]
shelf.close()

def test email delete(self):
addressbook.email add(self.email) # ensure the email is active
self.assertEqual (addressbook.email delete(self.email) [0], True)
self.assertEqual (addressbook.email delete (self.email) [0], False)

def test email add(self):
self.assertEqual (addressbook.email add(self.email) [0], True)
self.assertEqual (addressbook.email add(self.email) [0], False)

def test email display(self):
addressbook.email add(self.email)
val, display = addressbook.email display ()
self.assertTrue(self.email in display)

if name == " main ":
unittest.main ()

Now, add the functionality; editaddressbook.py as shown:

CODE TO EDIT: addressbook.py

from optparse import OptionParser
import shelve

tmport—sys

shelf location = 'V:/workspace/Python3 Lessonl2/src/email.shelf’

class InvalidEmail (Exception) :

def

def

def

def

def

if name == main

pass

validate email (email) :
if '@' not in email:
raise InvalidEmail ("Invalid email: "+email)

email add(email) :
validate email (email)
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emails = shelf['emails']
if email in emails:
message = False, 'Email "%s" already in address book' % email
else:
emails.append(email)
message = True, 'Email "%s" added to address book' % email
shelf['emails'] = emails
shelf.close()
return message

email delete(email):
validate email (email)
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emails = shelf['emails']
try:
emails.remove (email)
message = True, 'Email "%s" removed from address book' $ email
except ValueError:
message = False, 'Email "%s" was not in the address book' % email
shelf['emails'] = emails
shelf.close()
return message

email display():

shelf = shelve.open(shelf location)
emails = shelf['emails']
shelf.close ()

text = "'

for email in emails:
text += email + '\n'
return True, text

main (options) :
"routes requests"
if options.action == 'add':
return email add(options.email)
elif options.action == 'delete':
return email delete (options.email)
elif options.display == True:

return email display ()

] L

shelf = shelve.open(shelf location)

if 'emails' not in shelf:
shelf['emails'] = []

shelf.close()

parser = OptionParser ()

parser.add option('-a', '--action', dest="action", action="store",
help="requires -e option. Actions: add/delete")
parser.add option('-e', '--email', dest="email",

action="store", help="email used in the -a option")

parser.add option('-d', '--display', dest="display", action="store true",
help="show all emails")
(options, args) = parser.parse_args()

validation

= s s : hN
ITT OpPCIoirS-acTTor T NOTT

S 1] s
SysTexttYormust
if options.action and not options.email:

parser.error ("option -a requires option -e")
elif options.email and not options.action:

parser.error ("option -e requires option -a")
try:

print (main (options) [1])
except InvalidEmail:

parser.error ("option -e requires a valid email address")

L s (adld dal ot . e 1
PeCTT I aC IO aCSr e e TS)—WI Tt T aCtTOoOIT Vi

Run your tests, and then add some emails and run addressbook.py with the -d/--display flag. You'll geta
printed display of all your email entries.

optparse Type Validation

Let's say we want to change the -d/--display flag to provide a number of records based on an integer we pass
in. Normally that means we'll have to do type checking via the int () built-in, but with optparse, we geta
shortcut.

OBSERVE: Adding an Integer Check

parser.add option('-d', '--display', dest="display", type="int",
action="store—trwe", help="show all emails limited by value")

The optparse module also includes type checking for string, float, and choices. These should all be obvious,
exceptfor choices.

The optparse module lets you easily write scripts that handle arguments in a fashion thatis consistent with the rest of
the world. In other words, itis common to putall of your optparse code under the if __name__=="'__main__' block
of code, since that means if another module extends your code it doesn't trigger the optparse code in your program.

configparser: Controlling Settings the Right Way

Let's say you just boughta brand new computer. The firsttime you start it up, the computer asks you your name,
password, time zone, language, and probably some other questions. Itisn't hard to do, but it takes away from your
time with your new machine. Wouldn'tit be nice if you could simply save this configuration information on one
computer and place iton another as needed?

Actually, you can. System Engineers often use tools that set up computers with all the configuration information set
exactly how they want it. With some automated scripting, they can start up a new computer this way in minutes and
sometimes seconds. This is how companies that provide hosting for individuals or firms that run gigantic server farms
can maintain hundreds and thousands of machines.

Python's configparser library provides an easily used API for interacting with one of the popular formats used to
save configurations, the INI file format. Frequently associated with Microsoft Windows, INl is in fact also used by other
platorms such as Linux and Mac OS X.

configparser to Store Database Settings

In previous courses and earlier in this lesson, we used simple files, pickle, shelve, or SQL databases to save
information. The information that handled your settings was coded rightinto your programs. While this works
on small projects under well-defined academic conditions such as Eclipse, Ellipse, and the O'Reilly teaching
environment, it can be problematic under professional conditions. For example, because Python is so
portable you might save data on Windows at c:\datalemails.shelf, but this simply won'twork on Linux or

Mac OS X, which might want to see something like /usr/local/data/lemails.shelf. Python has tools that
make it easy to detect operating systems, but then users might want to save their data in a specific location.
This forces them to change your code to store data where they want, which introduces the risk of breaking
your code, and only works if they were actually given access to your code (source files).

This is where config files can be priceless. Users not familiar with Python can quickly figure out the format and
change things. Furthermore, since the file usually has a .cfg (orless commonly, .ini) extension, mostusers
will be able to quickly identify it as a configuration file.

So, let's make a configuration file. Create addressbook.cfg as shown:

CODE TO TYPE: addressbook.cfg

[database]

mac os x or linux

file = /workspace/Python3 lessonl2/src/email.shelf
windows

file = V:\workspace\Python3 lessonl2\src\email.shelf

[database] is a section header. That means any option variables defined under it use "database" as partof
the process of displaying them. Under that are a series of comments that use Python '#' syntax so that they
are notloaded. Finally, file = V:\'workspace\Python3_lesson12\src\email.shelf sets the file variable
under the database section. To display this addressbook.cfg file, create a config.py file as shown:

CODE TO TYPE: config.py

import configparser

create a config parser object
config = configparser.RawConfigParser ()

open and read the addressbook.cfg file into the config parser
config.read('addressbook.cfg')

loop through the sections
for section in config.sections() :
print (section)
get all the options for the current section
for option in config.options(section):
print the option and its value indented for clarity
text ="' %s = %$s' % (option, config.get(section, option))
print (text)

w

ave and run it:

OBSERVE: the results of running config.py

database
file = V:\workspace\Python3 lessonl2\src\email.shelf

As you can see, this gives us the ability to provide per-system config files. This is a good thing, because it
means you don't have to worry so much about users needing to change settings. A system administrator can
establish a central configuration file (and savvy users can provide their own configurations). Let's use the
addressbook.cfg file to setthe database location in addressbook.py:

CODE TO EDIT: addressbook.py

import configparser
from optparse import OptionParser
import shelve

o

137 1 Pz lo T 10 | kil
WOLrRKSPaCT7 Ly CLIOIT TS SOITT 7 emaTr . STIcT

config = configparser.RawConfigParser ()
config.read('V:/workspace/Python3 Lessonl2/src/addressbook.cfg')

shelf location = config.get ('database', 'file')

class InvalidEmail (Exception) :
pass

def validate email (email) :
if '@' not in email:
raise InvalidEmail ("Invalid email: "+email)

def email add(email) :
validate email (email)
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emails = shelf['emails']
if email in emails:
message = False, 'Email "%s" already in address book' % email
else:
emails.append (email)
message = True, 'Email "%s" added to address book' % email
shelf['emails'] = emails
shelf.close ()
return message

def email delete(email):
validate email (email)
shelf = shelve.open(shelf location)
if 'emails' not in shelf:
shelf['emails'] = []
emails = shelf['emails']
try:
emails.remove (email)
message = True, 'Email "$%$s" removed from address book' % email
except ValueError:

o)

message = False, 'Email "%s" was not in the address book' % email

shelf['emails'] = emails
shelf.close()
return message

def email display():
shelf = shelve.open(shelf location)
emails = shelf['emails']
shelf.close()
text = "'
for email in emails:
text += email + '\n'
return True, text

def main (options):
"routes requests"
if options.action == 'add':
return email add(options.email)
elif options.action == 'delete':
return email delete (options.email)
elif options.display == True:
return email display ()

if name == "' main ':
shelf = shelve.open(shelf location)

if 'emails' not in shelf:
shelf['emails'] = []

shelf.close ()

parser = OptionParser ()

parser.add option('-a', '--action', dest="action", action="store",
help="requires -e option. Actions: add/delete")
parser.add option('-e', '--email', dest="email",

action="store", help="email used in the -a option")

parser.add option('-d', '--display', dest="display", action="store true",
help="show all emails")
(options, args) = parser.parse_args()

validation
if options.action and not options.email:
parser.error ("option -a requires option -e")
elif options.email and not options.action:
parser.error ("option -e requires option -a")
try:
print (main (options) [1])
except InvalidEmail:
parser.error ("option -e requires a valid email address")

Save and run your tests and your code. There should be no difference in the results. Now, let's see what
happens when we don't provide a file option. Commentitoutin the cfg file as shown:

CODE TO EDIT: addressbook.cfg

[database]

mac os x or linux

file = /workspace/Python3 lessonl2/src/email.shelf
windows

#file = V:\workspace\Python3 lessonl2\src\email.shelf

Save itand run your addressbook.py.

OBSERVE: Running addressbook.py with no defined database.

Traceback (most recent call last):
File "addressbook.py", line 7, in <module>
shelf location = config.get ('database', 'file')
File "configparser.py", line 327, in get
raise NoOptionError (option, section)
configparser.NoOptionError: No option 'file' in section: 'database'

Your code has justthrown an exception! You can have the config.get() method pass in a default, but
usually you want to leave these exceptions as they are. Users who play with config files need as much
information as possible to get their configurations working, and passing in defaults means they may not

understand what happens when they pass in a setting incorrectly. Remember, good Python programmers like

to be as explicitas possible!

Multiple Sections

Here's a sample config file that might be used to setup a computer. This is justa simple example to show
you how system engineers often work:

Operating System Basic Setup

[personal]

first name = Steve
last name = Holden
age = 33

gender = male

[professional]
occupation = author
website = http://holdenweb.com

[location]
language = English (USA)
timezone = EST

[authentication]
username = sholden
password = like I'm going to tell you

The configparser tool is extremely readable and quite machine-friendly. A significant portion of the Python
community uses the INI format to describe critical dependency lists and so do users from other programming
languages. While there are other competing formats, such as XML, the INI format remains popular because
quite simply itis easy for humans to read and for machines itis as fastas, if not faster than, the others to
parse and interpret. This ease of interpretation has meant that XML usage for configuration has declined in
recent years while use of the older INI format has grown.

When you finish the lesson, return to the syllabus and complete the quiz(zes) and project(s).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Time-Based Computations

Lesson Objectives

When you complete this lesson, you will be able to:

e use time-based functions.

e representtime in various ways.

e calculate time in Python.

Whattime is it?
Ifit takes seven days for the check to arrive, on what day will it arrive?
How many days until my birthday?

While these might seem amusing, they are serious—and common—questions for software developers. Time-based functions
are invariably complex because we track time by non-decimal methods. While we might have 10 fingers and a meter has 100
centimeters, when itcomes to time an hour has 60 minutes, a week has 7 days, and a month can have from 28 to 31 days.
Also, almost every four years you have to account for leap year. Many day-tracking calculations have to take into accountthe
standard business days of Monday through Friday, and the weekend days of Saturday and Sunday. The list of "edge cases" in
time calculations is almost infinite!

Itis arguably for this reason that Python has three built-in libraries for handling time issues: datetime, time, and calendar,
each of which has a lot of sophisticated functionality. Because of the volume of functionality provided by each library, this
lesson will focus on the datetime library. In fact, this lesson will focus on the three questions asked at the start, since they
provide an excellentintroduction to many features of handling time from the perspective of a software developer.

What Time is It?

A common way to find the currenttime is with the code in this interactive session:

CODE TO TYPE: Type this code in an interactive console session

>>> import datetime
>>> print (datetime.datetime.now())
2010-09-26 20:21:50.813824

And there you have the time!

Time Representations

How a date is formatted depends on who is looking atit. For a software developer, engineer, system
administrator, or scientist, the format shown in thatlast session is a good way to see time. Because the date
is in YYYY-MM-DD format and the time uses the 24-hour clock, you can do easy sorting on the results either
by hand or with computers, whereas the American (MM/DD/YYYY) and European (DD/MM/YYYY) date
methods require more work for sorting, and the 12-hour clock repeats itself, so times after noon won'tsort
correctly.

In fact, often people working in these time-sensitive fields rely on alternate time measurement methods like
counting seconds since the epoch or the Julian date (JD) system used by the astronomy community. Python
supports these alternate methods extremely well, which is one minor reason why Python is so frequently
used by the scientific community.

However, most people don'tlike, or even understand, this way of representing time. It isn't what they're used
to seeing and forcing them to use a new time representation formatis a good way to lose theirinterestin your
projects. Let's do some formatting to make this a litle more natural to the American eye. Continue your
interactive session:

CODE TO TYPE: Type this code in an interactive console session

>>> now = datetime.datetime.now ()
>>> format string = "%$x X"
>>> now.strftime (format string)

09/26/10 20:35:04

From previous lessons, you know what a formatter string does. Now nearly every time object by Python
supports the strftime() method, which accepts a format string with any number of predefined mapping keys.
"%x %X" fetches the datetime setup you defined on your computer when you setitup.

These predefined mapping keys let you map exactly what date and time setup you want your users to
experience. The legal mapping keys are:

key Meaning

%a |Locale's abbreviated weekday name.

%A |Locale's full weekday name.

%b |Locale's abbreviated month name.

%B | Locale's full month name.

%c |Locale's appropriate date and time representation.

%d |Day ofthe month as a decimal number [01,31].

%f |Microsecond as a decimal number[0,999999], zero-padded on the left

%H |Hour (24-hour clock) as a decimal number [00,23].

%! |Hour (12-hour clock) as a decimal number [01,12].

%j |Day ofthe year as a decimal number [001,366].

%m | Month as a decimal number [01,12].

%M | Minute as a decimal number [00,59].

%p |Locale's equivalent of either AM or PM.

%S | Second as a decimal number [00,61].

Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All days

0,
%U in a new year preceding the first Sunday are considered to be in week 0.

%w | Weekday as a decimal number [0(Sunday),6].

Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All days

0,
oW in a new year preceding the first Monday are considered to be in week 0.

%x |Locale's appropriate date representation.

%X | Locale's appropriate time representation.

%y |Year without century as a decimal number [00,99].

%Y | Year with century as a decimal number.

%z |UTC offsetin the form +HHMM or -HHMM (empty string if the object is naive).

%Z | Time zone name (empty string if the objectis naive).

%% | A literal '%' character.

Armed with this table and the stritime() function, you can now provide a much more attractive date format
customized for your target user. Continue your interactive session now to try itout:

CODE TO TYPE: Type this code in an interactive console session

o

>>> format string = "$A, $B 3d, 3Y at
>>> now.strftime (format string)
Sunday, September 26, 2010 at 8:35 PM.

I:

oo
=
o

kel

If it Takes Thirty-One Days...?

At a glance this should be easy—you just take the date of the month as fetched by datetime.datetime.now() and
add 31, right? Lets give ita try. Create a Python3_Lesson13 project and assign itto the Python3_Lessons working
set. Then, in your Python3_Lesson13/src folder, create count_thirtyone_days.py as shown:

CODE TO TYPE: count_thirtyone_days.py

import datetime

now = datetime.datetime.now ()
date = now.strftime ("%d")
delivery = int(date) + 31
print ("Today: %s" % date)

o)

print ("Delivery: %s" % delivery)

At a glance, this looks like it should work, butin fact you'll get a response like this:

OBSERVE: Running count_thirtyone_days.py on November 29th

Today: 29
Delivery: 60

In theory, you could write a bit of code that would handle month rollovers and the leap year. This is nota small
undertaking and will probably take more time than you really want to dedicate to the problem of adding thirty-one days
to the current date. Also, your result would lack the ability to reformat the results via the strftime() method because it
would be a simple integer, not a time object.

There Must be a Better Way to Add Days to a Date!

Yes, there is a way. The Python datetime library has an object named timedelta, which represents the
difference between two dates or times. This difference is called a duration. You can add a timedelta to the
current date, and it will account for month rollovers and the leap year. Modify count_thirtyone_days.py as
shown:

CODE TO EDIT: count_thirtyone_days.py

from datetime import datetime, timedelta # more attractive import
now = datetimerdatetime.now ()

delta = timedelta(31) # create a timedelta of 31 days

delivery = now + delta # add the timedelta to the current datetime.

print ("Today: %$s" % now.strftime ("%d"))
print ("Delivery: %s" % delivery.strftime("%d"))

Save and runit. You'll see thatit works correctly:

Running count_thirtyone_days.py on November 29th

Today: 29
Delivery: 30

You may have noticed that what was printed was string values returned from the strftime() methods on the
now() and delivery objects. This means that you can execute further calculations as needed on these
objects—they have notbeen changed at all. This becomes really useful when you want to skip over
weekends. Thanks to the datetime object's isoweekday() method which returns a numeric value as shown
below, we can write code that skips over weekends with some ease.

Value returned from isoweekday() | Weekday name

1 Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

N|jojoajlbhlwlN

Sunday

The nextexample shows how to skip over weekends. It doesn't take into account national or bank holidays,
butitis similar to what organizations use to determine when they can expect payments and other letters to
arrive.

CODE TO TYPE: Enter the code below as skip_weekdays.py

from datetime import datetime, timedelta
delivery = datetime.now ()
delta = timedelta (1)
count = 0
while count < 31:
delivery = delivery + delta
if delivery.isoweekday() in (6, 7):
continue
count += 1

now = datetime.now ()

print (now)

print (delivery)

print ("Today: %$s" $ now.strftime ("%d"))

print ("Delivery: %s" $ delivery.strftime ("%d"))

t
t

Save and run it. It counts only working days.

OBSERVE: Running skip_weekdays.py on November 29th

2010-11-29 10:40:26.439000
2011-01-11 10:40:26.439000
Today: 29

Delivery: 11

timedeltas for Weeks, Hours, Minutes, and Seconds

The timedelta object can be instantiated with other values than days. Some of the ones you'll use frequently
are weeks, hours, minutes, and seconds. All you need to do is add one or more of these items as arguments
and the timedelta is constructed accordingly. Create more_deltas.py as shown to see what you get:

CODE TO TYPE: more_deltas.py

from datetime import datetime, timedelta

weeks = timedelta (weeks=2)

hours = timedelta (hours=1)

minutes = timedelta (minutes=100)

seconds = timedelta (seconds=1000)
composite = timedelta (hours=1, minutes=30)

now = datetime.now ()
print (now)

print (now + weeks)
print (now + hours)
print (now + minutes)
print (now + seconds)
print (now + composite)

wn

ave and run it (your results will vary unless you traveled back in time to November 29,2010):

OBSERVE: Running more_deltas.py

2010-11-29 10:41:06.312000
2010-12-13 10:41:06.312000
2010-11-29 11:41:06.312000
2010-11-29 12:21:06.312000
2010-11-29 10:57:46.312000
2010-11-29 12:11:06.312000

timedeltas for Years and Months

Years and months are not constants, thanks to the leap year issue and the general inconsistency of month
durations. Therefore, the timedelta does notacceptthem as arguments. However, because the other
arguments (weeks, hours, minutes, etc.) are constants, timedeltas can handle the leapyear and month
durations, which works well for years and notso well for months.

This means you can provide an almost exact year timedelta by simply doing this:

CODE TO TYPE: Type this code in an interactive console session

>>> from datetime import timedelta
>>> timedelta (365)
datetime.timedelta (365)

On the other hand, this obviously fails because months range in duration from 28 to 31 days:

CODE TO TYPE: Type this code in an interactive console session

>>> timedelta (30)
datetime.timedelta (30)

The general indeterminate duration of a month is exactly why bankers use 30 days as their standard value
and why scientists prefer other date formats.

How Many Days Until my Birthday?

Remember when you were a kid and carefully counted the days until your next birthday? As a programmer you can
skip marking off each day and simply write a program to do the work for you. You can write a simple program that:

1. Takes your birthday.

2. Converts your birthday to a datetime object.
3. Subtracts the current date from your birthday object.
4. Publishes the results.

Ready? Let's do this thing!

When is Your Birthday?

The first step is to accept a date as your birthday. Let's use optparse to accept a string to be converted into a
datetime object. Then we'll use a new method, datetime.strptime() to notonly convert the string to a date,
but confirm thatitis a valid date. The datetime.strptime() method works like datetime.strftime(), butin
reverse, converting strings to date objects. You use the same date-formatting keys as described for
datetime.strftime(), which means you can create common formatting strings used across your
application for both creating and rendering time objects.

CODE TO TYPE: Type this code in an interactive console session

>>> formatter string = "%m-%d-%Y" # format for MM-DD-YYYY

>>> from datetime import datetime

>>> datetime.strptime ("07-24-1967", formatter string) # The conversion code
datetime.datetime (1967, 7, 24, 0, 0)

But whatif someone enters a date such as "1967-07-24" or something like "Python ROCKS" or even "15-35-
2010"? Since those does not match the format specified by the formatter string and are not valid dates,
datetime.strptime() throws a ValueError exception. This makes it trivial to create datetime validators
without having to lean on string methods or even regular expressions, which could handle the rough
formatting issue of numbers, but can't as easily handle the confirmation that a date is real.

With what we've learned so far, let's write some birthday.py code:

CODE TO TYPE: birthday.py

import logging
from datetime import datetime
from optparse import OptionParser

logging.basicConfig(filename='birthday.log', level=1logging.DERUG)

class InvalidDateFormat (Exception) :
pass

def string to date(date):
Converts 'MM-DD-YYYY' to a date/time object
or throws an InvalidDateFormat exception
try:
create a datetime object from the date value
formatter string = "Sm-%d-%Y"
birthday = datetime.strptime (date, formatter string)
except ValueError as e:
log the format error then raise it again so it can be handled graceful
ly
logging.error (e)
raise InvalidDateFormat (e)
return birthday

def birthday counter (birthday) :
Returns the number of days until your birthday.
(not yet fully implemented)

wwn

return 100

if name == ' main ':
parser = OptionParser ()
parser.add option('-b', '--birthday', dest="birthday", action="store",
help="Your birthday in MM-DD-YYYY format")
(options, args) = parser.parse_args()
format error message = "birthday.py requires a date in MM-DD-YYYY format"

if not options.birthday:
parser.error (format error message)

try:
print (birthday counter (options.birthday))
except InvalidDateFormat:
parser.error (format error message)

A more modern approach would use ArgParse instead of the somewhat dated OptionParser.
We will update this course soon to show how to do that. Meanwhile, check out the examples at
the Argparse tutorial page; it's not that different from optparse, butitremoves some limitations in
design.

=
o
-
o

This looks pretty good, buthow do you know itworks? Time to write a unittest!

https://docs.python.org/dev/library/argparse.html
https://docs.python.org/dev/howto/argparse.html

CODE TO TYPE: test_birthday.py

from datetime import datetime
import unittest

from birthday import *
class TestBirthday (unittest.TestCase) :

def test birthday counter (self):
self.assertEqual (birthday counter ("10-31-1948"), 100)

def test string to date(self):

self.assertRaises (InvalidDateFormat, string to date, "10-32-1948")
create a new datetime object from scratch

datetime obj = datetime (2012, 10, 31)

self.assertEqual (datetime obj, string to date("10-31-2012"))

if name == " main ":
unittest.main ()

Save and run itas a Python unit-test; both tests pass. Take a careful look at the second test, which checks
thatthe string_to_date() function works properly. To do that, its second assertion requires a datetime

created from scratch. Hence this line of code:

CODE TO TYPE: Type this code in an interactive console session

>>> from datetime import datetime
>>> datetime (2012, 10, 31)
datetime.datetime (2010, 10, 31, 0, 0)

Note thatthe self.assertEqual(datetime_obj, string_to_date("10-31-1948")) assertion is actually just
doing datetime_obj ==string_to_date("10-31-1948"). Justas you can add or subtract datetime
objects to or from each other, you can also do comparisons againstthem. This means you can do any of

these comparisons:

Sign Description

== equals

> greater than

>= greater than or equals
< less than

<= less than or equals

More Ways to Construct Dates

You can getalot more specific than days. You can specify hours, minutes, seconds, and microseconds. This

is good for constructing tests and setting up deadlines and other time-related points. Create
making_time.py as shown:

CODE TO TYPE: making_time.py

from datetime import datetime

print (datetime (2012, 10, 31))

print (datetime (2012, 10, 31, 12))

print (datetime (2012, 10, 31, 12, 30))

print (datetime (2012, 10, 31, 12, 30, 59))
print (datetime (2012, 10, 31, 12, 30, 59, 300))

Save and run it

OBSERVE: Results from Running making_time.py

2012-10-31 00:00:00
2012-10-31 12:00:00
2012-10-31 12:30:00
2012-10-31 12:30:59
2012-10-31 12:30:59.000300

Fetching Years, Months, Hours, etc. from a Datetime Object

The datetime object has integer attributes that are specific year, month, day, hour, minute, second, and
microsecond representations for that object. Create time_attributes.py as shown below to demonstrate
your options:

code to enter: time_attributes.py

from datetime import datetime

dt = datetime (2012, 10, 31, 12, 30, 59, 300)
print (dt.year)

print (dt.month)

print (dt.day)

print (dt.hour)

print (dt.minute)

print (dt.second)

print (dt.microsecond)

Save and run it:

OBSERVE: Results from Running time_attributes.py

2012
10
31
12
30
59
300

Finishing the birthday counter

We now have enough information to finish the birthday.py program and test it adequately. Let's expand the
unittest to properly testthe birthday_counter() function.

CODE TO EDIT: test_birthday.py

from datetime import datetime
import unittest

from birthday import *
class TestBirthday(unittest.TestCase) :

def test birthday counter(self):
1 £ =10 1 (1 o =1 = L
set+fa rERefrat{irehda e+

will fail on October 31
self.assertTrue (birthday counter ("10-31-1948") > 0)

"

10 2
T =

will fail on February 1
self.assertTrue (birthday counter ("02-01-1999") > 0)

def test string to date(self):

self.assertRaises (InvalidDateFormat, string to date, "10-32-1948")
create a new datetime object from scratch

datetime obj = datetime (2012, 10, 31)

self.assertEqual (datetime obj, string to date("10-31-2012"))

if name == " main ":
unittest.main ()

Now, we'll finish the birthday_counter() itself. Because datetime handling can get tricky, we'll include lots of
comments and logging.debug statements. Once we confirm that the provided birthday is valid, we can
construct an upcoming birthday using attributes from your own birthday and the current year. Give it a try:

CODE TO EDIT: birthday.py

import logging
from datetime import datetime, timedelta
from optparse import OptionParser

logging.basicConfig(filename='birthday.log', level=1logging.DERUG)

class InvalidDateFormat (Exception) :
pass

def string to date(date):
Converts 'MM-DD-YYYY' to a date/time object
or throws an InvalidDateFormat exception

try:
create a datetime object from the date value
formatter string = "Sm-%d-%Y"

birthday = datetime.strptime (date, formatter string)
except ValueError as e:
log the format error then raise it again so it can be handled graceful
ly
logging.error (e)
raise InvalidDateFormat (e)
return birthday

def birthday counter (birthday) :

Returns the number of days until your birthday.

i I = B : hl ol
ISt | R v g o remeircety
wuon

now = datetime.now ()
birthday = string to date (birthday)
logging.debug ("birthday: %s" % birthday)

construct the upcoming birthday from this year, your birthday month, and b
irthday day
upcoming = datetime (now.year, birthday.month, birthday.day)

o)

logging.debug ("upcoming: %s" $ upcoming)

Make sure that upcoming is in the future, not the past
if upcoming < now:

upcoming = upcoming + timedelta (365)

logging.debug ("fixed upcoming: %$s" % upcoming)

create a timedelta (duration) between the now and your birthday
duration = upcoming - now
logging.debug ("duration: %s" % duration)

return only the days
return duration.days

if name == "' main ':
parser = OptionParser ()
parser.add option('-b', '--birthday', dest="birthday", action="store",
help="Your birthday in MM-DD-YYYY format")
(options, args) = parser.parse args()
format error message = "birthday.py requires a date in MM-DD-YYYY format"

if not options.birthday:
parser.error (format error message)

try:
print (birthday counter (options.birthday))
except InvalidDateFormat:
parser.error (format error message)

You'll need to setthe Run Configuration for birthday.py, as learned earlier, to prompt for the argument
${string_prompt}. For detailed instructions, see the beginning of the previous lesson.

Save both programs and run the unit-test again:

OBSERVE: Results from Running test_birthday.py

Ran 2 tests in 0.172s

OK

Once the tests pass, run the program:

birthday.py -b 11-01-1957 (as done on 11-29-2010)

336

So how many days is it until your birthday?

Summary

Handling basic dates and times seems easy for us humans to do in our head because we've been taught
from a very young age how to read clocks. However, as soon as you need to calculate adding 156 minutes to
the currenttime or 65 days to the current day, things get very challenging. We often need to stop and think
about things because the math is not clear—we are converting from decimal into a chaotic mix of base 60,
base 24 and other counting systems. Because of this lack of clarity, we need to take extra special care when

writing any kind of date/time code.
When you finish the lesson, return to the syllabus and complete the quiz(zes) and project(s).

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

