
Python 4: Advanced Python
Lesson 1: Go ing Furt her wit h Funct io ns

About Eclipse
Perspectives and the Red Leaf Icon
Working Sets

Functions Are Objects
Function Attributes
Function and Method Calls
Function Composition
Lambdas: Anonymous Functions

Quiz 1 Pro ject 1
Lesson 2: Dat a St ruct ures

Organizing Data
Handling Multi-Dimensional Arrays in Python

Creating a Two-Dimensional Array
List o f Lists Example
Using a Single List to Represent an Array
Using an array.array instead o f a List
Using a dict instead o f a List

Summary

Quiz 1 Pro ject 1
Lesson 3: Delegat io n and Co mpo sit io n

Extending Functionality by Inheritance

More Complex Delegation

Extending Functionality by Composition

Recursive Composition

Quiz 1 Pro ject 1
Lesson 4: Publish and Subscribe

On Program Structure

Publish and Subscribe
Publish and Subscribe in Action
Validating Requests and Identifying Output
Making the Algorithm More General

A Note on Debugging

Quiz 1 Pro ject 1
Lesson 5: Opt imizing Yo ur Co de

Start with Correctness
Where to Optimize

The Profile Module
Two Different Modules
Using the Profile Module
More Complex Reporting

What to Optimize
Loop Optimizations

homework/GoingFurtherWithFunctions_quiz1.quiz.html
homework/GoingFurtherWithFunctions_proj1.project.html
homework/DataStructures_quiz1.quiz.html
homework/DataStructures_proj1.project.html
homework/DelegationAndComposition_quiz1.quiz.html
homework/DelegationAndComposition_proj1.project.html
homework/PublishAndSubscribe_quiz1.quiz.html
homework/PublishAndSubscribe_proj1.project.html

Pre-computing Attribute References
Local Variables are Faster than Global Variables

How to Optimize
Don't Optimize Prematurely
Use Timings, Not Intuition
Make One Change at a Time
The Best Way is Not Always Obvious

Quiz 1 Pro ject 1
Lesson 6 : Using Except io ns Wisely

Exceptions Are Not (Necessarily) Errors
Specifying Exceptions

Creating Exceptions and Raising Instances

Using Exceptions Wisely
Exception Timings

Quiz 1 Pro ject 1
Lesson 7: Advanced Uses o f Deco rat o rs

Decorator Syntax

Classes as Decorators

Class Decorators

Odd Decorator Tricks

Static and Class Method Decorators

Parameterizing Decorators

Quiz 1 Pro ject 1
Lesson 8 : Advanced Generat o rs

What Generators Represent

Uses o f Infinite Sequences

The Itertoo ls Module
itertoo ls.tee: duplicating generators
itertoo ls.chain() and itertoo ls.islice(): Concatenating Sequences and Slicing Generators Like Lists
itertoo ls.count(), itertoo ls.cycle() and itertoo ls.repeat()
itertoo ls.dropwhile() and itertoo ls.takewhile()

Generator Expressions

Quiz 1 Pro ject 1
Lesson 9 : Uses o f Int ro spect io n

The Meaning o f 'Introspection'
Some Simple Introspection Examples

Attribute Handling Functions

What Use is Introspection?

The Inspect module
The getmembers() Function
Introspecting Functions

Quiz 1 Pro ject 1
Lesson 10: Mult i-T hreading

Threads and Processes

homework/OptimizingYourCode_quiz1.quiz.html
homework/OptimizingYourCode_proj1.project.html
homework/UsingExceptionsWisely_quiz1.quiz.html
homework/UsingExceptionsWisely_proj1.project.html
homework/AdvancedUsesOfDecorators_quiz1.quiz.html
homework/AdvancedUsesOfDecorators_proj1.project.html
homework/AdvancedGenerators_quiz1.quiz.html
homework/AdvancedGenerators_proj1.project.html
homework/UsesOfIntrospection_quiz1.quiz.html
homework/UsesOfIntrospection_proj1.project.html

Multiprogramming
Multiprocessing
Multi-Threading
Threading, Multiprocessing, CPython and the GIL

The Threading Library Module
Creating Threads (1)
Waiting for Threads
Creating Threads (2)

Quiz 1 Pro ject 1
Lesson 11: Mo re o n Mult i-T hreading

Thread Synchronization
threading.Lock Objects

The Queue Standard Library
Adding Items to Queues: Queue.put()
Removing Items from Queues: Queue.get()
Monitoring Completion: Queue.task_done() and Queue.jo in()
A Simple Scalable Multi-Threaded Workhorse
The Output Thread
The Worker Threads
The Contro l Thread
Other Approaches

Quiz 1 Pro ject 1
Lesson 12: Mult i-Pro cessing

The Multiprocessing Library Module
multiprocessing Objects
A Simple Multiprocessing Example

A Multiprocessing Worker Process Pool
The Output Process
The Worker Process
The Contro l Process

Quiz 1 Pro ject 1
Lesson 13: Funct io ns and Ot her Object s

A Deeper Look at Functions
Required Keyword Arguments
Function Annotations
Nested Functions and Namespaces
Partial Functions

More Magic Methods
How Python Expressions Work

Quiz 1 Pro ject 1
Lesson 14: Co nt ext Managers

Another Python Contro l Structure: The With Statement
Using a Simple Context Manager
The Context Manager Pro toco l: __enter__() and __exit__()
Writing Context Manager Classes
Library Support fo r Context Managers

homework/MultiThreading_quiz1.quiz.html
homework/MultiThreading_proj1.project.html
homework/MoreOnMultiThreading_quiz1.quiz.html
homework/MoreOnMultiThreading_proj1.project.html
homework/MultiProcessing_quiz1.quiz.html
homework/MultiProcessing_proj1.project.html
homework/FunctionsAndOtherObjects_quiz1.quiz.html
homework/FunctionsAndOtherObjects_proj1.project.html

Nested Context Managers

Decimal Arithmetic and Arithmetic Contexts
Decimal Arithmetic Contexts
Decimal Signals
The Default Decimal Context

Quiz 1 Pro ject 1
Lesson 15: Memo ry-Mapped Files

Memory Mapping
Memory-Mapped Files Are Still Files
The mmap Interface
What Use is mmap(), and How Does it Work?

A Memory-Mapped Example

Quiz 1 Pro ject 1
Lesson 16: Yo ur Fut ure wit h Pyt ho n

Python Conferences
Tutorials
Talks
The Hallway Track
Open Space
Lightning Talks
Birds o f a Feather Sessions (BOFs)
Sprints: Moving Ahead

The Python Job Market and Career Choices

Python Development

Tips and Tricks

Quiz 1 Pro ject 1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/ContextManagers_quiz1.quiz.html
homework/ContextManagers_proj1.project.html
homework/MemoryMappedFiles_quiz1.quiz.html
homework/MemoryMappedFiles_proj1.project.html
homework/YourFutureWithPython_quiz1.quiz.html
homework/YourFutureWithPython_proj1.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Going Further with Functions

Welcome to the O'Reilly School o f Technology (OST) Advanced Python course! We're happy you've chosen to learn Python
programming with us. By the time you finish this course, you will have expanded your knowledge o f Python and applied it to
some really interesting techno logies.

Course Objectives
When you complete this course, you will be able to :

extend Python code functionality through inheritance, complex delegation, and recursive composition.
publish, subscribe, and optimize your code.
create advanced class decorators and generators in Python.
demonstrate knowledge o f Python introspection.
apply multi-threading and mult-processing to Python development.
manage arithmetic contexts and memory mapping.
demonstrate understanding o f the Python community, conferences, and job market.
develop a multi-processing so lution to a significant data processing problem.

This course builds on your existing Python knowledge, incorporating further object-oriented design principles and techniques
with the intention o f rounding out your skill set. Techniques like recursion, composition, and delegation are explained and put
into practice through the ever-present test-driven practical work.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.

Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

Before you start programming in Python, let's review a couple o f the too ls you'll be using. If you've already taken the OST
course on Int ro duct io n t o Pyt ho n, Get t ing Mo re Out o f Pyt ho n and/or T he Pyt ho n Enviro nment , you can skip to
the next section if you like, or you might want to go through this section to refresh your memory.

About Eclipse
We use an Integrated Development Environment (IDE) called Eclipse. It's the program filling up your screen right now.
IDEs assist programmers by performing tasks that need to be done repetitively. IDEs can also help to edit and debug
code, and organize pro jects.

Perspectives and the Red Leaf Icon

The Ellipse Plug-in fo r Eclipse was developed by OST. It adds a Red Leaf icon to the too lbar in Eclipse. This
icon is your "panic button." Because Eclipse is versatile and allows you to move things around, like views,
too lbars, and such, it's possible to lose your way. If you do get confused and want to return to the default
perspective (window layout), the Red Leaf icon is the fastest and easiest way to do that.

To use the Red Leaf icon to :

reset t he current perspect ive: click the icon.
change perspect ives: click the drop-down arrow beside the icon to select a perspective.
select a perspect ive: click the drop-down arrow beside the Red Leaf icon and select the course
(Java, Pyt ho n, C++ , etc.). Selecting a specific course opens the perspective designed for that
particular course.

For this course, select Pyt ho n:

Working Sets

In this course, we'll use working sets. All pro jects created in Eclipse exist in the workspace directory o f your
account on our server. As you create pro jects throughout the course, your directory could become pretty
cluttered. A working set is a view of the workspace that behaves like a fo lder, but it's actually an association o f
files. Working sets allow you to limit the detail that you see at any given time. The difference between a
working set and a fo lder is that a working set doesn't actually exist in the file system.

A working set is a convenient way to group related items together. You can assign a pro ject to one or more
working sets. In some cases, like the Python extension to Eclipse, new pro jects are created in a catch-all
"Other Pro jects" working set. To organize your work better, we'll have you assign your pro jects to an
appropriate working set when you create them. To do that, you'l right-click on the pro ject name and select the
Assign Wo rking Set s menu item.

We've already created some working sets for you in the Eclipse IDE. You can turn the working set display o n
or o f f in Eclipse.

For this course, we'll display only the working sets you need. In the upper-right corner o f the Package
Explorer panel, click the downward arrow and select Co nf igure Wo rking Set s:

Select the Ot her Pro ject s working set as well as the ones that begin with "Python4," then click OK:

Let's create a pro ject to store our programs for this lesson. Select File | New | Pydev Pro ject , and enter the
information as shown:

Click Finish. When asked if you want to open the associated perspective, check the Remember my
decisio n box and click No :

By default, the new pro ject is added to the Other Pro jects working set. Find Pyt ho n4_Lesso n01 there, right-
click it, and select Assign Wo rking Set s... as shown:

Select the Pyt ho n4_Lesso ns working set and click OK:

In the next section, we'll get to enter some Python code and run it!

Functions Are Objects
Everything in Python is an object, but unlike most objects in Python, function objects are not created by calling a class.
Instead you use the def statement, which causes the interpreter to compile the indented suite that comprises the
function body and bind the compiled code object to the function's name in the current local namespace.

Function Attributes

Like any object in Python, functions have a particular type; and like with any object in Python, you can examine
a function's namespace with the dir() function. Let's open a new interactive session. Select the Co nso le tab,
click the down arrow and select Pydev co nso le :

In the dialog that appears, select Pyt ho n co nso le :

Then, type the commands shown:

INTERACTIVE SESSION:

>>> def g(x):
... return x*x
...
>>> g
<function g at 0x100572490>
>>> type(g)
<class 'function'>
>>> dir(g)
['__annotations__', '__call__', '__class__', '__closure__', '__code__',
'__defaults__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__',
'__ge__', '__get__', '__getattribute__', '__globals__', '__gt__', '__hash__',
'__init__', '__kwdefaults__', '__le__', '__lt__', '__module__', '__name__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__']
>>>

Note Keep this interactive session open throughout this lesson.

While this tells you what attributes function objects possess, it does not make it very clear which o f them are

unique to functions. A good Python programmer like you needs to be able to think o f a way to discover the
attributes o f function that aren't also attributes o f the base object, o bject .

Think about it fo r a minute. Here's a hint: think about sets.

You may remember that the set() function produces a set when applied to any iterable (which includes lists:
the dir() function returns a list). You may also remember that sets implement a subtraction operation: if a and
b are sets, then a-b is the set o f items in a that are not also in b. Continue the interactive sesson as shown:

INTERACTIVE SESSION:

>>> def f(x):
... return x
...
>>> function_attrs = set(dir(f))
>>> object_attrs = set(dir(object))
>>> function_attrs -= object_attrs
>>> from pprint import pprint
>>> pprint(sorted(function_attrs))
['__annotations__',
 '__call__',
 '__closure__',
 '__code__',
 '__defaults__',
 '__dict__',
 '__get__',
 '__globals__',
 '__kwdefaults__',
 '__module__',
 '__name__']
>>>

At this stage in your Python programming career, you don't need to worry about most o f these, but there's
certainly no harm in learning what they do. Some of the features they o ffer are very advanced. You can read
more about them in the o fficial Python documentation. You can learn a lo t by working on an interactive
terminal session and by reading the documentation.

Function and Method Calls

The __call__() method is interesting—its name implies that it has something to do with function calling, and
this is correct. The interpreter calls any callable object by making use o f its __call__() method. You can
actually call this method directly if you want to ; it's exactly the same as calling the function directly.

INTERACTIVE SESSION:

>>> def f1(x):
... print("f1({}) called".format(x))
... return x
...
>>> f1.__call__(23) # should be equivalent to f1(23)
f1(23) called
23
>>>

You can define your own classes to include a __call__() method, and if you do, the instances you create from
that class will be callable directly, just like functions. This is a fairly general mechanism that illustrates a
Python equivalence you haven't observed yet:

Give it a try. Create a class with instances that are callable. Then verify that you can call the instances:

INTERACTIVE SESSION:

>>> class Func:
... def __call__(self, arg):
... print("%r(%r) called" % (self, arg))
... return arg
...
>>> f2 = Func()
>>> f2
<__main__.Func object at 0x100569dd0>
>>> f2("Danny")
<__main__.Func object at 0x100569dd0>('Danny') called
'Danny'
>>>

As we've seen, when you define a __call__() method on the class, you can call its instances. These calls
result in the activation o f the __call__() method, with the instance provided (as always on a method call) as
the first argument, fo llowed by the positional and keyword arguments that were passed to the instance call.
Methods are normally defined on a class. While it is possible to bind callable objects to names in an
instance's namespace, the interpreter does not treat it as a true method, and as such, it does not add the
instance as a first argument. So, callables in the instance's __dict__ are called with only the arguments
present on the call line—no instance is implicitly added as a first argument.

Note
The so-called "magic" methods (those with names that begin and end with a double

underscore) are never looked for on the instance—the interpreter goes straight to the classes
for these methods. So even when the instance's __dict__ contains the key "__call__", it is

ignored and the class's __call__() method is activated.

Let's continue our conso le session:

INTERACTIVE SESSION:

>>> def userfunc(arg):
... print("Userfunc called: ", arg)
...
>>> f2.regular = userfunc
>>> f2.regular("Instance")
Userfunc called: Instance
>>> f2.__call__ = userfunc
>>> f2("Hopeful")
<__main__.Func object at 0x100569dd0>('Hopeful') called
'Hopeful'

Since all callables have a __call__() method, and the __call__() method is callable, you might wonder whether
it too has a __call__() method. The answer is yes, it does (and so does that __call__() method, and so on...):

INTERACTIVE SESSION:

>>> "__call__" in dir(f2.__call__)
True
>>> f2.__call__("Audrey")
Userfunc called: Audrey
>>> f2.__call__.__call__("Audrey")
Userfunc called: Audrey
>>> f2.__call__.__call__.__call__("Audrey")
Userfunc called: Audrey
>>>

Function Composition

Because functions are first-class objects, they can be passed as arguments to o ther functions, and such. If f
and g are functions, then mathematicians defined the composition f * g o f those two functions by saying that (f
* g)(x) = f(g(x)). In o ther words, the composition o f two functions is a new function, that behaves the same as
applying the first function to the output o f the second.

Suppose you were given two functions; could you construct their composition? Of course you could! For
example, you could write a function that takes two functions as arguments, then internally defines a function
that calls the first on the result o f the second. Then the compose function returns that function. It's actually
almost easier to write the function than it is to describe it:

INTERACTIVE SESSION:

>>> def compose(g, h):
... def anon(x):
... return g(h(x))
... return anon
...
>>> f3 = compose(f1, f2)
>>> f3("Shillalegh")
<__main__.Func object at 0x100569dd0>('Shillalegh') called
f1('Shillalegh') called
'Shillalegh'

While it's pretty straightforward to compose functions this way, a mathematician would find it much more
natural to compose the functions with a multiplication operator (the asterisk*). Unfortunately, an attempt to
multiply two functions together is doomed to fail, as Python functions have not been designed to be
multiplied. If we could add a __mul__() method to our functions, we might stand a chance, but as we've seen,
this is not possible with function instances, and the class o f functions is a built- in object written in C:
impossible to change and difficult from which to inherit. Even when you do subclass the function type, how
would you create instances? The def statement will always create regular functions.

While you may not be able to subclass the function object, you do know how to create object classes with
callable instances. Using this technique, you could create a class with instances that act as proxies for the
functions. This class could define a __mul__() method, which would take another similar class as an
argument and return the composition o f the two proxied functions. This is typical o f the way that Python allows
you to "hook" into its workings to achieve a result that is simpler to use.

In your Pyt ho n4_Lesso n01/src fo lder, create a program called co mpo sable.py as shown below:

CODE TO TYPE:

"""
composable.py: defines a composable function class.
"""
class Composable:
 def __init__(self, f):
 "Store reference to proxied function."
 self.func = f
 def __call__(self, *args, **kwargs):
 "Proxy the function, passing all arguments through."
 return self.func(*args, **kwargs)
 def __mul__(self, other):
 "Return the composition of proxied and another function."
 if type(other) is Composable:
 def anon(x):
 return self.func(other.func(x))
 return Composable(anon)
 raise TypeError("Illegal operands for multiplication")
 def __repr__(self):
 return "<Composable function {0} at 0x{1:X}>".format(
 self.func.__name__, id(self))

 Save and run it. (Remember how to run a Python program in OST's sandbox environment? Right-click in the
editor window for the t est array.py file, and select Run As | Pyt ho n Run.)

Note
An alternative implementation o f the __mul__() method might have used the statement ret urn
self (o t her(x)) . Do you think that this would have been a better implementation? Why or why
not?

You will need tests, o f course. So you should also create a program called t est _co mpo sable.py that reads
as fo llows.

CODE TO TYPE:

"""
test_composable.py" performs simple tests of composable functions.
"""
import unittest
from composable import Composable

def reverse(s):
 "Reverses a string using negative-stride sequencing."
 return s[::-1]

def square(x):
 "Multiplies a number by itself."
 return x*x

class ComposableTestCase(unittest.TestCase):

 def test_inverse(self):
 reverser = Composable(reverse)
 nulltran = reverser * reverser
 for s in "", "a", "0123456789", "abcdefghijklmnopqrstuvwxyz":
 self.assertEquals(nulltran(s), s)

 def test_square(self):
 squarer = Composable(square)
 po4 = squarer * squarer
 for v, r in ((1, 1), (2, 16), (3, 81)):
 self.assertEqual(po4(v), r)

 def test_exceptions(self):
 fc = Composable(square)
 with self.assertRaises(TypeError):
 fc = fc * 3

if __name__ == "__main__":
 unittest.main()

The unit tests are relatively straightforward, simply comparing the expected results from known inputs with
expected outputs. In o lder Python releases it could be difficult to find out which iteration o f a loop had caused
the assertion to fail, but with the improved error messages o f newer releases this is much less o f a problem:
argument values for failing assertions are much better reported than previously.

The exception is tested by running the TestCase's assertRaises() method with a single argument (specifying
the exception(s) that are expected and acceptable. Under these circumstances the method returns what is
called a "context manager" that will catch and analyze any exceptions raised from the indented suite. (There is
a broader treatment o f context managers in a later lesson). When you run the test program you should see
three successful tests.

Output from test_composable.py

...
--
Ran 3 tests in 0.001s

OK

Once you get the idea o f how this works, you'll soon realize that the __mul__() method could be extended to
handle a regular function—in o ther words, as long as the operand to the left o f the "*" is a Composable, the
operand to the right would be either a Composable or a function. So the method can be extended slightly to
make Composables more usable.

Let's go ahead and edit composable.py to allow composition with 'raw' functions:

CODE TO TYPE:

"""
composable.py: defines a composable function class.
"""
import types
class Composable:
 def __init__(self, f):
 "Store reference to proxied function."
 self.func = f
 def __call__(self, *args, **kwargs):
 "Proxy the function, passing all arguments through."
 return self.func(*args, **kwargs)
 def __mul__(self, other):
 "Return the composition of proxied and another function."
 if type(other) is Composable:
 def anon(x):
 return self.func(other.func(x))
 return Composable(anon)
 elif type(other) is types.FunctionType:
 def anon(x):
 return self.func(other(x))
 return Composable(anon)
 raise TypeError("Illegal operands for multiplication")
 def __repr__(self):
 return "<Composable function {0} at 0x{1:X}>".format(
 self.func.__name__, id(self))

Now the updated __mul__() method does one thing if the right operand (o ther) is a Composable: it defines
and returns a function that extracts the functions from both Composables, that is the composition o f both o f
those functions. But if the right-side operator is a function (which you check for by using the types module,
designed specifically to allow easy reference to the less usual Python types), then the function passed in as
an argument can be used directly rather than having to be extracted from a Composable.

The tests need to be modified, but not as much as you might think. The simplest change is to have the
test_square() method use a function as the right operand o f its multiplications. This should not lose any
testing capability, since the first two tests were formerly testing essentially the same things. A further exception
test is also added to ensure that when the function is the left operand an exception is also raised.

CODE TO TYPE:

"""
test_composable.py" performs simple tests of composable functions.
"""
import unittest
from composable import Composable

def reverse(s):
 "Reverses a string using negative-stride sequencing."
 return s[::-1]

def square(x):
 "Multiplies a number by itself."
 return x*x

class ComposableTestCase(unittest.TestCase):

 def test_inverse(self):
 reverser = Composable(reverse)
 nulltran = reverser * reverser
 for s in "", "a", "0123456789", "abcdefghijklmnopqrstuvwxyz":
 self.assertEquals(nulltran(s), s)

 def test_square(self):
 squarer = Composable(square)
 po4 = squarer * squarer
 for v, r in ((1, 1), (2, 16), (3, 81)):
 self.assertEqual(po4(v), r)

 def test_exceptions(self):
 fc = Composable(square)
 with self.assertRaises(TypeError):
 fc = fc * 3
 with self.assertRaises(TypeError):
 fc = square * fc

if __name__ == "__main__":
 unittest.main()

A TypeError exception therefore is raised when you attempt to multiply a function by a Composable. The tests
as modified should all succeed. If no t, then debug your so lution until they do, with your mentor's assistance if
necessary.

The extensions you made to the Composable class in the last exercise made it more capable, but the last
example shows that there are always wrinkles that you need to take care o f to make your code as fully
general as it can be. How far to go in adapting to all possible circumstances is a matter o f judgment. Having a
good set o f tests at least ensures that the code is being exercised (it's also a good idea to employ coverage
testing, to ensure that your tests don't leave any o f the code unexecuted: this is not always as easy as you
might think).

Lambdas: Anonymous Functions

Python also has a feature that allows you to define simple functions as an expression. The lambda
expression is a way o f expressing a function without having to use a def statement. Because it's an
expression, there are limits to what you can do with a lambda. Some programmers use them frequently, but
o thers prefer to define all o f their functions. It's important fo r you to understand them, because you'll likely
encounter them in o ther people's code.

While the equivalence above is not exact, it's close enough for all practical purposes. The keyword lambda is
fo llowed by the names o f any parameters (all parameters to lambdas are positional) in a comma-separated
list. A co lon separates the parameters from the expression (normally referencing the parameters). The value
of the expression will be returned from a call (you may need to restart the conso le, so you'll need to redefine
some of the functions):

INTERACTIVE SESSION:

>>> def compose(g, h):
... def anon(x):
... return g(h(x))
... return anon
...
>>>
>>> add1 = lambda x: x+1
>>> add1
<function <lambda> at 0x100582270>
>>> sqr = lambda x: x*x
>>> sqp1 = compose(sqr, add1)
>>> sqp1(5)
36
>>> type(add1)
<class 'function'>
>>>

It is relatively easy to write a lambda equivalent to the compose() function we created earlier—and it works as
it would with any callable. The last result shows you that to the interpreter, lambda expressions are entirely
equivalent to functions (lambda expressions and functions have the same type, "<class 'function'>").

Also, the lambda has no name (or more precisely: all lambdas have the same name). When you define a
function with def , the interpreter stores the name from the def statement as its __name__ attribute. All
lambdas have the same name, '<lambda>', when they are created. You can change that name by assignment
to the attribute, but in general, if you're go ing to spend more than one line on a lambda, then you might as well
just write a named function instead.

Finally, keep in mind that lambda is deliberately restricted to functions with bodies that comprise a single
expression (which is implicitly what the lambda returns when called, with any argument values substituted for
the parameters in the expression). Again, rather than writing expressions that continue over several lines, it
would be better to write a named function (which, among o ther things, can be properly documented with
docstrings). If you do wish to continue the expression over multiple lines, the best way to do that is to
parenthesize the lambda expression. Do you think the parenthesized second version is an improvement?
Think about that as you work through this interactive session:

INTERACTIVE SESSION:

>>> def f1(x):
... print("f1({}) called".format(x))
... return x
...
>>> class Func:
... def __call__(self, arg):
... print("%r(%r) called" % (self, arg))
... return arg
...
>>> f2 = Func()
>>> ff = lambda f, g: lambda x: f(g(x))
>>> lam = ff(f1, f2)
>>> lam("Ebenezer")
<__main__.Func object at 0x10057a510>('Ebenezer') called
f1('Ebenezer') called
'Ebenezer'
>>>
>>> ff = lambda f, g: (lambda x:
... f(g(x)))
>>> lam = ff(f1, f2)
>>> lam("Ebenezer")
<__main__.Func object at 0x10057a510>('Ebenezer') called
f1('Ebenezer') called
'Ebenezer'
>>>

If you understand that last example, consider yourself a highly competent Python programmer. Well done!
These po ints are subtle, and your understanding o f the language is becoming increasingly thorough as you
continue here.

The too ls from this lesson will allow you to use callables with greater flexibility and to better purpose. You've learned
ways to write code that is able to co llaborate with the interpreter and will allow you to accomplish many o f your desired
programming tasks more efficiently. Nice work!

When you finish the lesson, return to the syllabus and complete the quizzes and pro jects.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Data Structures
Lesson Objectives

When you complete this lesson, you will be able to :

organize data efficiently.
create a two-dimensional array.

Organizing Data
In general, programming models the real world. Keep that in mind and it will help you to choose appropriate data
representations for specific objects. This may sound pretty straightforward, but in fact, it takes a considerable amount o f
experience to get it right.

Initially, you might struggle to find the best data structure for an application, but ultimately working through those
struggles will make you a better programmer. Of course you could bypass such challenges and fo llow some other
programmer's prio r direction, but I wouldn't recommend do ing that. There's no substitute for working through
programming challenges yourself. You develop a more thorough understanding o f your programs when you make
your own design decisions.

As you write more Python, you'll be able to accomodate increasingly complex data structures. So far, most o f the
structures we've created have been lists or dicts o f the basic Python types—the immutables, like numbers and strings.
However, there's no reason you can't use lists, tuples, dicts, o r o ther complex objects (o f your own creation or created
using some existing library) as the elements o f your data structures.

Data structures are important within your objects, as well. You define the behavior o f a whole class o f objects with a
class statement. This class statement defines the behavior o f each instance o f the class by providing methods that the
user can call to effect specific actions. Each instance has its own namespace though, which makes it appear like a data
structure with behaviors common to all members o f its class.

Handling Multi-Dimensional Arrays in Python

Python's "array" module provides a way to store a sequence o f values o f the same type in a compact
representation that does not require Python object overhead for each value in the array. Array objects are
one-dimensional, similar to Python lists, and most code actually creates arrays from an iterable containing
the relevant values. With large numbers o f elements, this can represent a substantial memory savings, but the
features o ffered by this array type are limited. For full multi-dimensional arrays o f complex data types, you
would normally go to the (third-party, but open source) NumPy package. In most computer languages,
multiple dimensions can be addressed by using multiple subscripts. So the Nth item in the Mth row of an
array called D would be D(M, N) in Fortran (which uses parentheses for subscripting).

INTERACTIVE CONSOLE SESSION

>>> mylst = ["one", "two", "three"]
>>> mylst[1]
'two'
>>> mylst[1.3]
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: list indices must be integers, not float
>>> mylst[(1, 3)]
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: list indices must be integers, not tuple
>>>

A Python list may have only a single integer or a slice as an index; anything else will raise a TypeError
exception such as "list indices must be integers."

A list is a one-dimensional array, with only a single length. A two-dimensional array has a size in each o f two
dimensions (o ften discussed as the numbers o f rows and co lumns). Think o f it as a sequence o f one-

http://www.numpy.org/

dimensional lists—an array o f arrays. Similarly, consider a three-dimensional array as a sequence o f two-
dimensional arrays, and so on (although four-dimensional arrays are not used all that frequently).

In Python we can usually create a class to execute any task. You may remember that indexing is achieved by
the use o f the __get it em__() method. Let's create a basic class that reports the arguments that call that
class's __get it em__() method. This will help us to see how Python indexing works.

The only two types that can be used as indexes on a sequence are integers and slices. The contents within the
square brackets in the indexing construct may be more complex than a regular integer. You won't usually
work directly with slices, because in Python you can get the same access to sequences using multiple
subscripts, separated by co lons (o ften referred to as slicing notation). You can slice a sequence with notation
like s[m:n] , and you can even specify a third item by adding what is known as the stride (a stride o f S causes
only every Sth value to be included in the slice) using the form s[M:N:S]. Although there are no Python types
that implement multi-dimensional arrays, the language is ready for them, and even allows multiple slices as
subscripts. The Numpy package frequently incorporates slicing notation to help facilitate data subsetting.

INTERACTIVE CONSOLE SESSION

>>> class GI:
... def __getitem__(self, *args, **kw):
... print("Args:", args)
... print("Kws: ", kw)
...
>>> gi = GI()
>>> gi[0]
Args: (0,)
Kws: {}
>>> gi[0:1]
Args: (slice(0, 1, None),)
Kws: {}
>>> gi[0:10:-2]
Args: (slice(0, 10, -2),)
Kws: {}
>>> gi[1, 2, 3]
Args: ((1, 2, 3),)
Kws: {}
>>> gi[1:2:3, 4:5:6]
Args: ((slice(1, 2, 3), slice(4, 5, 6)),)
Kws: {}
>>> gi[1, 2:3, 4:5:6]
Args: ((1, slice(2, 3, None), slice(4, 5, 6)),)
Kws: {}
>>> gi[(1, 2:3, 4:5:6)]
 File "<console>", line 1
 gi[(1, 2:3, 4:5:6)]
 ^
SyntaxError: invalid syntax
>>> (1, 2:3, 4:5:6)
 File "<console>", line 1
 (1, 2:3, 4:5:6)
 ^
SyntaxError: invalid syntax
>>>

Slices are allowed only as top-level elements o f a tuple o f subscripting expressions. Parenthesizing the
tuple, or trying to use a similar expression outside o f subscripting brackets, both result in syntax errors. A
single integer index is passed through to the __get it em__() method without change. But the interpreter
creates a special object called a slice object fo r constructs that contain co lons. The slice object is passed
through to the __get it em__() method. The last line in the example demonstrates that the interpreter allows
us to use multiple slice notations as subscripts, and the __get it em__() method will receive a tuple o f slice
objects. This gives you the freedom to implement subscripting and slicing just about any way you want—of
course, you have to understand how to use slice objects to take full advantage o f the notation. For our
purposes now, this isn't abso lutely necessary, but the knowledge will be valuable later in many o ther
contexts. The diagrams below summarize what we've learned so far about Python subscripting:

Note
The above equivalence ho lds true whether M is an integer or a slice. In cases where the slice is

provided as a single argument, it should be considered equivalent to one o f the __get it em__()
calls below.

and

The list is a basic Python sequence, and like all the built- in sequence types, it is one-dimensional (that is, any
item can be addressed with a single integer subscript o f appropriate value). But multi-dimensional lists are
often more convenient from a programmer's perspective, and, with the exception o f the slicing notation, if you
write a tuple o f values as a subscript, then that tuple is passed directly through to the __get it em__() method.
So it's possible to map tuples onto integer subscripts that can select a given item from an underlying list.
Here's how a two-dimensional array should look to the programmer:

The most straightforward way to represent an array in Python is as a list o f lists. Well actually, that would
represent a two-dimensional array—a three- dimensional array would have to be a list o f lists o f lists, but you
get the idea. So, in order to represent the array shown above, we could store it as either a list o f rows or a list
o f co lumns. It doesn't really matter which type o f list you choose, as long as you remain consistent. We'll use
"row major order" (meaning we'll store a reference to the rows and then use the co lumn number to index the
element within that row) this time around.

For example, we could represent a 6x5 array as a six-element list, each item in that list consisting o f a five-
element list which represents a row of the array. To access a single item, you first have to index the row list
with a row number (resulting in a reference to a row list), and then index that list to extract the element from the
required co lumn. Take a look:

Creating a Two-Dimensional Array

List of Lists Example

Let's write some code to create an identity matrix. This is a square array where every element is zero except
for the main diagonal (the elements that have the same number for both row and co lumn), and values o f one.
When you are dealing with complicated data structures, the print module o ften presents them more readably
than a print.

While it might be easier to bang away at a conso le window for small pieces o f code, it's good practice to
define an API and write tests to exercise that API. This will allow you to try and test different representations
efficiently, and you are able to improve your tests as you go. Create a Pyt ho n4_Lesso n02 pro ject, and in its

/src fo lder, create t est array.py as shown:

CODE TO TYPE: testarray.py

"""
Test list-of-list based array implementations.
"""
import unittest
import arr

class TestArray(unittest.TestCase):
 def test_zeroes(self):
 for N in range(4):
 a = arr.array(N, N)
 for i in range(N):
 for j in range(N):
 self.assertEqual(a[i][j], 0)

 def test_identity(self):
 for N in range(4):
 a = arr.array(N, N)
 for i in range(N):
 a[i][i] = 1
 for i in range(N):
 for j in range(N):
 self.assertEqual(a[i][j], i==j)

if __name__ == "__main__":
 unittest.main()

The tests are fairly limited at first, but even these basic tests allow you to detect gross errors in the code. Next,
you'll need an arr module on which the test will operate. Let's start with a basic arr mo dule fo r now. Create
arr.py in the same fo lder as shown:

CODE TO TYPE: arr.py

"""
Naive implementation of list-of-lists creation.
"""

def array(M, N):
 "Create an M-element list of N-element row lists."
 rows = []
 for _ in range(M):
 cols = []
 for _ in range(N):
 cols.append(0)
 rows.append(cols)
 return rows

 Run t est array; all tests pass.

OBSERVE:

..
--
Ran 2 tests in 0.001s

OK

By now you may be able to devise ways to make the array code simpler. Right now, our code is
straightforward, but rather verbose. Let's trim it down a little by using a list comprehension to create the
individual rows. Modify your code as shown:

CODE TO EDIT: Modify arr.py

"""
Naive implementation of list-of-lists creation.
"""
def array(M, N):
 "Create an M-element list of N-element row lists."
 rows = []
 for _ in range(M):
 cols = []
 for _ in range(N):
 cols.append(0)
 rows.append(cols[0] * N)
 return rows

 All the tests still pass:

OBSERVE:

..
--
Ran 2 tests in 0.001s

OK

At the moment, we are working strictly in two dimensions. But we are using "double subscripting"—[M][N] ,
rather than the "tuple o f subscripts" notation—[M, N] that most programmers use (and that the Python
interpreter is already prepared to accept). So let's modify our tests to use that notation, and verify that our
existing implementation breaks when called without change. Modify t est array.py as shown:

CODE TO TYPE

"""
Test list-of-list array implementations using tuple subscripting.
"""
import unittest
import arr

class TestArray(unittest.TestCase):
 def test_zeroes(self):
 for N in range(4):
 a = arr.array(N, N)
 for i in range(N):
 for j in range(N):
 self.assertEqual(a[i][j], 0)
 self.assertEqual(a[i, j], 0)

 def test_identity(self):
 for N in range(4):
 a = arr.array(N, N)
 for i in range(N):
 a[i][i] = 1
 a[i, i] = 1
 for i in range(N):
 for j in range(N):
 self.assertEqual(a[i][j], i==j)
 self.assertEqual(a[i, j], i==j)

if __name__ == "__main__":
 unittest.main()

 The test output indicates that something isn't quite right in the array code after tuple-subscripting is used:

OBSERVE:

EE
==
ERROR: test_identity (__main__.TestArray)
--
Traceback (most recent call last):
 File "V:\workspace\Python4_Lesson02\src\testarray.py", line 19, in test_identi
ty
 a[i, i] = 1
TypeError: list indices must be integers, not tuple

==
ERROR: test_zeroes (__main__.TestArray)
--
Traceback (most recent call last):
 File "V:\workspace\Python4_Lesson02\src\testarray.py", line 13, in test_zeroes
 self.assertEqual(a[i, j], 0)
TypeError: list indices must be integers, not tuple

--
Ran 2 tests in 0.000s

FAILED (errors=2)

The only way to fix this is to define a class with a __get it em__() method, which will allow you direct access
to the values passed as subscripts. This will make is easier to locate the correct element. Of course, the
__init __() method has to create the lists and bind them to an instance variable that __get it em__() can
access. The test code includes setting some array elements, so you also have to implement __set it em__() .
(To respond properly to the del statement, a __delit em__() method should also be implemented, but this is
not necessary for our immediate purposes.) Rewrite arr.py as shown:

CODE TO TYPE: arr.py

"""
Class-based list-of-lists allowing tuple subscripting.
"""

def array(M, N):
 "Create an M-element list of N-element row lists."
 rows = []
 for _ in range(M):
 rows.append([0] * N)
 return rows

class array:

 def __init__(self, M, N):
 "Create an M-element list of N-element row lists."
 self._rows = []
 for _ in range(M):
 self._rows.append([0] * N)

 def __getitem__(self, key):
 "Returns the appropriate element for a two-element subscript tuple."
 row, col = key
 return self._rows[row][col]

 def __setitem__(self, key, value):
 "Sets the appropriate element for a two-element subscript tuple."
 row, col = key
 self._rows[row][col] = value

 Save it and rerun the test. With __get it em__() and __set it em__() in place on your array class, the tests
pass again.

Using a Single List to Represent an Array

Using the standard subscripting API, you have built a way to reference two-dimensional arrays represented
internally as a list o f lists. If you wanted to represent a three-dimensional array, you'd have to change the
code to operate on a list o f lists o f lists, and so on. However, the code might be more adaptable if it used just
a single list and performed arithmetic on the subscripts to work out which element to access.

Now let's modify your current version o f the arr module to demonstrate the principle on a 2-D array. We aren't
go ing to extend the number o f dimensions yet, but you might get an idea for how the code could be extended.
Modify arr.py as shown:

CODE TO EDIT: arr.py

"""
Class-based single-list allowing tuple subscripting
"""

class array:

 def __init__(self, M, N):
 "Create an M-element list of N-element row lists."
 "Create a list long enough to hold M*N elements."
 self._rows = []
 for _ in range(M):
 self._rows.append([0] * N)
 self._data = [0] * M * N
 self._rows = M
 self._cols = N

 def __getitem__(self, key):
 "Returns the appropriate element for a two-element subscript tuple."
 row, col = key
 return self._rows[row][col]
 row, col = self._validate_key(key)
 return self._data[row*self._cols+col]

 def __setitem__(self, key, value):
 "Sets the appropriate element for a two-element subscript tuple."
 row, col = key
 self._rows[row][col] = value
 row, col = self._validate_key(key)
 self._data[row*self._cols+col] = value

 def _validate_key(self, key):
 """Validates a key against the array's shape, returning good tuples.
 Raises KeyError on problems."""
 row, col = key
 if (0 <= row < self._rows and
 0 <= col < self._cols):
 return key
 raise KeyError("Subscript out of range")

The changes that have been made here are pretty much invisible to the code that uses the module.

The __init __() method now initializes a single list that is big enough to ho ld all rows and co lumns. It also
saves the array size in rows and co lumns. Previous versions could rely on access to the lists to detect any
illegal values in the subscripts; now it has to be done explicitly because the location o f the required element in
the list now has to be calculated. We can no longer rely on IndexError exceptions to detect an out-o f-bounds
subscript. The current __get it em__() and __set it em__() methods use a _validat e_key() method to verify
that the subscript values do indeed fall within the required bounds before using them.

Although all existing tests pass, this detail about the index bounds checking reminds us to add tests to verify
that the logic works and that a KeyError exception is raised when illegal values are used. The resulting
changes are not complex. Modify t est arry.py as shown:

CODE TO EDIT: testarray.py

"""
Test list-of-list array implementations using tuple subscripting.
"""
import unittest
import arr

class TestArray(unittest.TestCase):
 def test_zeroes(self):
 for N in range(4):
 a = arr.array(N, N)
 for i in range(N):
 for j in range(N):
 self.assertEqual(a[i, j], 0)

 def test_identity(self):
 for N in range(4):
 a = arr.array(N, N)
 for i in range(N):
 a[i, i] = 1
 for i in range(N):
 for j in range(N):
 self.assertEqual(a[i, j], i==j)

 def _index(self, a, r, c):
 return a[r, c]

 def test_key_validity(self):
 a = arr.array(10, 10)
 self.assertRaises(KeyError, self._index, a ,-1, 1)
 self.assertRaises(KeyError, self._index, a ,10, 1)
 self.assertRaises(KeyError, self._index, a ,1, -1)
 self.assertRaises(KeyError, self._index, a ,1, 10)

if __name__ == "__main__":
 unittest.main()

 When all three tests pass, you can be confident in your bounds-checking logic. Keep in mind that it's just as
important to make sure your program fails when it should, as it is to make sure it runs correctly when it
should!

OBSERVE

...
--
Ran 3 tests in 0.000s

OK

As long as the API remains the same, you'll have considerable flexibility and programming technique options.
Let's consider alternative representations.

Using an array.array instead of a List

The array module defines a single data type (also called "array"), which is similar to a list, except that it stores
homogeneous values (each cell can ho ld values o f a given type only, that type being passed when the array
is created). The changes required to use such an array instead o f a list are minimal. Modify arr.py as shown:

CODE TO EDIT: arr.py

"""
Class-based array allowing tuple subscripting
"""
import array as sys_array

class array:

 def __init__(self, M, N):
 "Create a list long enough to hold M*N elements."
 "Create an M-element list of N-element row lists."
 self._data = [0] * M * Nsys_array.array("i", [0] * M * N)
 self._rows = M
 self._cols = N

 def __getitem__(self, key):
 "Returns the appropriate element for a two-element subscript tuple."
 row, col = self._validate_key(key)
 return self._data[row*self._cols+col]

 def __setitem__(self, key, value):
 "Sets the appropriate element for a two-element subscript tuple."
 row, col = self._validate_key(key)
 self._data[row*self._cols+col] = value

 def _validate_key(self, key):
 """Validates a key against the array's shape, returning good tuples.
 Raises KeyError on problems."""
 row, col = key
 if (0 <= row < self._rows and
 0 <= col < self._cols):
 return key
 raise KeyError("Subscript out of range")

The testing doesn't change in this case (note that the updated code in the arr module requires the numbers
stored in the array.array to be integers), and so your tests pass immediately. The advantage o f this
implementation (fo r applications using integer data) is most evident when you're working with extremely large
data structures. In these cases, values can be packed closely together within memory, because the
array.array structure does not store them as Python values. This could save large amounts o f memory
overhead with large datasets, and further smaller savings would result from not having to allocate memory for
the lists that refer to rows or individual values.

Using a dict instead of a List

Some mathematical techniques use "sparse" data sets. These are usually representations o f very large data
sets where the majority o f the values are zero (and therefore do not need to be duplicated). This technique
lends itself to using a dict to store the non-zero values using the subscript tuple passed in to the
__get it em__() method.

Since the data storage element does not provide any bounds checking, the methods should still do that.
There is no need to initialize the dict with zeroes, because the absence o f a value implies a zero ! Modify
arr.py as shown:

CODE TO EDIT: arr.py

"""
Class-based dict allowing tuple subscripting and sparse data
"""
import array as sys_array

class array:

 def __init__(self, M, N):
 "Create an M-element list of N-element row lists."
 self._data = sys_array.array("i", [0] * M * N)
 self._data = {}
 self._rows = M
 self._cols = N

 def __getitem__(self, key):
 "Returns the appropriate element for a two-element subscript tuple."
 row, col = self._validate_key(key)
 try:
 return self._data[row, col]
 except KeyError:
 return 0
 return self._data[row*self._cols+col]

 def __setitem__(self, key, value):
 "Sets the appropriate element for a two-element subscript tuple."
 row, col = self._validate_key(key)
 self._data[row*self._cols+col] = value
 self._data[row, col] = value

 def _validate_key(self, key):
 """Validates a key against the array's shape, returning good tuples.
 Raises KeyError on problems."""
 row, col = key
 if (0 <= row < self._rows and
 0 <= col < self._cols):
 return key
 raise KeyError("Subscript out of range")

 Save it and run the test again. The testing is somewhat simplified in this version, since zero values do not
need to be asserted. (Note that the current __set it em__() method is deficient in some ways; the storage o f a
zero should result in the given key being removed from the dict if present).

Summary
So now we have loads o f options at our disposal to complete our various Python tasks. Having so much flexibility
enables you to choose specific techniques to suit your specific needs. With some practice, you'll be able to make the
most efficient compromises between efficient use o f storage and adequate computation speed. You're do ing a fine job
so far! See you in the next lesson...

When you finish the lesson, don't fo rget to return to the syllabus and complete the homework.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Delegation and Composition
Lesson Objectives

When you complete this lesson, you will be able to :

extend functionality by inheritance.
execute more complex delegation.
extend functionality by composition.
utilize recursive composition.

Let's get right to it then, shall we?

In Python, it's unusual to come across deep inheritance trees (E inherits from D which inherits from C which inherits from B
which inherits from A). While such program structures are possible, they can become unwieldy quickly. If you want to implement
a dict- like object with some additional properties, you could choose to inherit from dict and extend the behavior, o r you could
decide to co mpo se your own object from scratch and make use o f a dict internally to provide the desired dict- like properties.

Extending Functionality by Inheritance
Suppose you want to make your program keep count o f how many items have been added (that is, how many times a
previously non-existent key was bound in the table. If the key already exists, it isn't an addition—it's a replacement).
With inheritance, you'd do it like this:

INTERACTIVE CONSOLE SESSION

>>> class Dict(dict):
... def __init__(self, *args, **kw):
... dict.__init__(self, *args, **kw)
... self.adds = 0
... def __setitem__(self, key, value):
... if key not in self:
... self.adds += 1
... dict.__setitem__(self, key, value)
...
>>> d = Dict(a=1, b=2)
>>> print("Adds:", d.adds)
Adds: 0
>>> d["newkey"] = "add"
>>> print("Adds:", d.adds)
Adds: 1
>>> d["newkey"] = "replace"
>>> print("Adds:", d.adds)
Adds: 1
>>>

This code behaves as we'd expect. Albeit limited, it provides functionality over and above that o f dict objects.

OBSERVE:

class Dict(dict):
 def __init__(self, *args, **kw):
 self.adds = 0
 dict.__init__(self, *args, **kw)
 def __setitem__(self, key, value):
 if key not in self:
 self.adds += 1
 dict.__setitem__(self, key, value)

Our Dict class inherits from the dict built- in. Because this Dict class needs to perform some initialization, it has to
make sure that the dict object initializes properly. The dict accomplishes this with an explicit call to the parent object
(dict) with the arguments that were provided to the initializing call to the class. dict .__init __(self , *args, **kw) passes
all the positional and keyword arguments that the caller passes, beginning with providing the current instance as an
explicit first argument (remember, the automatic provision o f the instance argument only happens when a method is
called on an instance—this method is being called on the superclass).

Because the dict type can be called with many different arguments, it is necessary to adopt this style, so that this dict
can be used just like a regular dict. We might say that the Dict object delegates most o f its initialization to its
superclass. Similarly, the only difference between t he __set it em__() method and a pure dict appears when testing to
determine whet her t he key already exist s in t he dict , and if no t, incrementing the "add" count. The remainder o f
the method is implemented by calling dict's superclass (the standard dict) to perform the normal item assignment, by
calling its __set it em__() method with the same arguments: dict .__set it em__(self , key, value) .

The initializer function does not call the __set it em__ () method to add any initial elements—the adds attribute still
has the value zero immediately after creation, despite the fact that the instance was created with two items.

Note

We didn't do it here, but if you are go ing to deliver code to paying customers, or if you expect the code to
see heavy use, you'll want to run tests that verify it operates correctly. Writing tests can be difficult, but
when something is go ing into production, it's important to have a bank o f tests available. That way, if
anyone refactors your code, they can do so with some confidence that if the tests still pass, they haven't
broken anything.

The Dict class inherits from dict. This is appropriate because most o f the behavior you want is standard dict behavior.
Since both the __init __() and __set it em__() methods o f Dict call the equivalent methods o f dict as a part o f their
code, we say that those methods extend the corresponding dict methods.

More Complex Delegation
In general, the more o f a particular object's behaviors you need, the more likely you are to inherit from it. But if only a
small part o f the behavior you require is provided by an existing class, you might choose to create an instance o f that
class and bind it to an instance variable o f your own class instead. The approach is similar, but does not use
inheritance. Let's take a look at that:

INTERACTIVE CONSOLE SESSION

>>> class MyDict:
... def __init__(self, *args, **kwargs):
... self._d = dict(*args, **kwargs)
... def __setitem__(self, key, value):
... return self._d.__setitem__(key, value)
... def __getitem__(self, key):
... return self._d.__getitem__(key)
... def __delitem__(self, key):
... return self._d.__delitem__(key)
...
>>> dd = MyDict(wynken=1, blynken=2)
>>> dd['blynken']
2
>>> dd['nod'] -->
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 7, in __getitem__
KeyError: 'nod'
>>> dd['nod'] = 3
>>> dd['nod']
3
>>> del dd['nod']
>>> dd.keys()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyDict' object has no attribute 'keys'
>>>

Here the MyDict class creates a dict in its __init __() method and binds it to the instance's _d variable. Three methods
of the MyDict class are delegated to that instance, but none o f the o ther methods o f the dict are available to the MyDict
user (which may or may not be what you intend). In this particular case, the MyDict class doesn't subclass dict, and so
not all dict methods are available.

The final attempt to access the keys o f the MyDict instance shows one potential shortcoming o f this approach:
methods o f the underlying object have to be made available explicitly. This technique can be useful when only a limited
subset o f behaviors is required, along with o ther functionality (provided by additional methods) not available from the
base type. Where most o f the behaviors o f the base type are required, it is usually better to use inheritance, and then
override the methods that you don't want to make available with a method that raises an exception.

Extending Functionality by Composition
Object composition allows you to create complex objects by using o ther objects, typically bound to instance variables.
An example where you might use such a complex object is during an attempt to simulate Python's namespace access.
You have already seen that Python gives many objects a namespace, and you know that the interpreter, when looking
for an attribute o f a particular name, will first look in the instance's namespace, next in the instance's class's
namespace, and so on until it gets to the "top" o f the inheritance chain (which is the built- in object class).

It is relatively straightforward to model a Python namespace; they are almost indistinguishable from dicts. Names are
used as keys, and the values associated with the names are the natural parallel to the values o f the variables with
those names. Multiple dicts can be stored in a list, with the dict to be searched placed first, as the lowest-numbered
element.

INTERACTIVE CONSOLE SESSION

>>> class Ns:
... def __init__(self, *args):
... "Initialize a tuple of namespaces presented as dicts."
... self._dlist = args
... def __getitem__(self, key):
... for d in self._dlist:
... try:
... return d[key]
... except KeyError:
... pass
... raise KeyError("{!r} not present in Ns object".format(key))
...
>>> ns = Ns(
... {"one": 1, "two": 2},
... {"one": 13, "three": 3},
... {"one": 14, "four": 4}
...)
>>>
>>> ns["one"]
1
>>> ns["four"]
4
>>>

The Ns class uses a list o f dicts as its primary data store, and doesn't call any o f their methods directly. It does call
their methods indirectly though, because the __get it em__() method iterates over the list and then tries to access the
required element from each dict in turn. Each failure raises a KeyError exception, which is ignored by the pass
statement to move on to the next iteration. So, effectively the __get it em__() method searches a list o f dicts, stopping
as soon as it finds something to return. That is why ns["o ne"] returned 1. While 14 is associated with the same key,
this association takes place in a dict later in the list and so is never considered; the function has already found the
same key in an earlier list and returned with that key's value.

Think o f an Ns object as being "composed" o f a list and dicts. Technically, any object can be considered as being
composed o f all o f its instance variables, but we don't normally regard composition as extending to simple types such
as numbers and strings. If you think about Python namespaces they act a bit like this: there are o ften a number o f
namespaces that the interpreter needs to search. Adding a new namespace (like a new layer o f inheritance does to a
class's instances, fo r example) would be the equivalent on inserting a new dict at position 0 (Do you know which list
method will do that?).

Recursive Composition
Some data structures are simple, o thers are complex. Certain complex data structures are composed o f o ther
instances o f the same type o f object; such structures are sometimes said to be recursively composed. A typical
example is the tree, used in many languages to store data in such a way that it can easily be retrieved both randomly
and sequentially (in the order o f the keys). The tree is made up o f nodes. Each node contains data and two po inters.
One o f the data elements will typically be used as the key, which determines the ordering to be maintained among the
nodes. The first po inter po ints to a subtree containing only nodes with key values that are less than the key value o f the
current node, and the second po ints to a subtree containing only nodes with key values that are greater than that o f the
current node.

Either o f the subtrees may be empty (there may not be any nodes with the required key values); if bo th subtrees are
empty, the node is said to be a leaf node, containing only data. If the relevant subtree is empty, the corresponding
po inter element will have the value None (all nodes start out containing only data, with None as the left and right
po inters).

Note In a real program, the nodes would have o ther data attached to them as well as the keys, but we have
omitted this feature to allow you to focus on the necessary logic to maintain a tree.

Create a new PyDev pro ject named Pyt ho n4_Lesso n03 and assign it to the Pyt ho n4_Lesso ns working set. Then,
in your Pyt ho n4_Lesso n03/src fo lder, create myt ree.py as shown:

CODE TO TYPE:

'''
Created on Aug 18, 2011

@author: sholden
'''
class Tree:
 def __init__(self, key):
 "Create a new Tree object with empty L & R subtrees."
 self.key = key
 self.left = self.right = None
 def insert(self, key):
 "Insert a new element into the tree in the correct position."
 if key < self.key:
 if self.left:
 self.left.insert(key)
 else:
 self.left = Tree(key)
 elif key > self.key:
 if self.right:
 self.right.insert(key)
 else:
 self.right = Tree(key)
 else:
 raise ValueError("Attempt to insert duplicate value")
 def walk(self):
 "Generate the keys from the tree in sorted order."
 if self.left:
 for n in self.left.walk():
 yield n
 yield self.key
 if self.right:
 for n in self.right.walk():
 yield n

if __name__ == '__main__':
 t = Tree("D")
 for c in "BJQKFAC":
 t.insert(c)

 print(list(t.walk()))

 Here again we chose not to have you write tests fo r your code, but we do test it rather informally with the code
fo llowing the class declaration. The tree as created, consists o f a single node. After creation, a loop inserts a number
of characters, and then finally the walk() method is used to visit each node and print out the value o f each data
element.

The root o f the tree is a Tree object, which in turn may po int to o ther Tree nodes. This means that each subtree has the
same structure as its parent, which implies that the same methods/algorithms can be used on the subtrees. This can
make the processing logic fo r recursive structures quite compact.

The insert () method locates the correct place for the insertion by comparing the node key with the key to be inserted. If
the new key is less than the node's key, it must be positioned in the left subtree, if greater, in the right subtree. If there
isn't a subtree there (indicated by the left o r right attribute having a value o f None), the newly-created node is added as
its value. If the subtree exists, its insert method is called to place it correctly. So not only is the data structure recursive,
so is the algorithm to deal with it!

The walk() method is designed to produce values from the nodes in sorted order. Again the algorithm is recursive:
first it walks the left subtree (if one exists), then it produces the current node (it yields the key value, but clearly the data
would be preferable, either instead o f or in addition to the key value, if it were being stored—here we are more
concerned with the basics o f the tree structure than with having the tree carry data, which could easily be added as a
new Tree instance variable passed in to the __init __() call on creation).

In essence, a Tree is a "root node" (the first one added, in this case with key "D") that contains a key value and two
subtrees—the first one for key values less than that o f the root node, the second for key values greater than that o f the
root node. The subtrees, o f course, are defined in exactly the same way, and so can be processed in the same way.
Recursive data structures and recursive algorithms tend to go together. The Tree o ffers a fairly decent visual
representation for your brain to latch onto :

Such recursive algorithms aren't quite the same as delegation, but still, you could think o f walk() and insert() as
delegating a part o f the processing to the subtrees. When you run t ree.py, you'll see this:

OBSERVE:

['A', 'B', 'C', 'D', 'F', 'J', 'K', 'Q']

This is how the tree actually stores elements in terms o f Tree objects referencing each o ther (the diagonal lines
represent Python references, the letters are the keys):

Although the keys were added in random order, the walk() method prints them in the correct order because it prints out
the keys o f the left subtree fo llowed by the key o f the root node, fo llowed by the keys o f the right subtree (it deals with
subtrees in the same way).

Great work! You've actually used composition in examples and pro jects. Now that you have a handle on composition, ponder
the many ways you could incorporate it into o ther programs!

When you finish the lesson, don't fo rget to return to the syllabus and complete the homework.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Publish and Subscribe
Lesson Objectives

When you complete this lesson, you will be able to :

structure programs.
publish objects.
validate requests and identify output.
subscribe to objects.

In this lesson, we'll go over program structuring, as well as Publish and Subscribe .

On Program Structure
Ideally, every part o f your program will communicate via known APIs only, but accomplishing that can be a real
challenge. When you are writing frameworks to be used in a wide variety o f circumstances, it can be difficult to predict
what the environment will look like. Data must be produced, but it may be consumed by a variety o f functions. Consider
a spreadsheet, fo r example. It may display both a bar chart and a pie chart o f the same data. How does the code that
updates the cells as users type in new numbers know to update the graphics, and how many graphics there are? The
answer lies in a generic technique known as "publish-and-subscribe", which is a general mechanism to allow flexible
distribution o f data.

Publish and Subscribe
Thanks to publish-and-subscribe and similar systems, data producers do not need to know in advance who will be
using their data. The term "data producer" is deliberately vague, because publish-and-subscribe is a broad and
encompassing architectural pattern. A data producer (the "publisher" element in publish-and-subscribe) might be a
stock price ticker that periodically spits out new prices for stocks, or a weather fo recasting program that produces new
forecasts every six hours, or even the lowly ticket machine that provides people with numbers to take turns at a grocery
counter. Anyone who wants to make use o f the data must subscribe (typically by calling a method o f the producer
object to "register" a subscription) and then when new data is available, it is distributed to all subscribers by the
publisher calling a method o f each o f the subscribed objects with the new information as an argument.

This "loosens the coupling" between the producers and consumers o f data, allowing each to be written in a general
way, pretty much independent o f each o ther. Each subscriber needs to know only about its own relationship with the
publisher, regardless o f any o ther subscriber.

Publish and Subscribe in Action

Suppose you have a class Publisher, whose instances can be given objects to publish, and that a number o f
consumers are potentially interested in consuming that "data feed." The Publisher class will need methods to
allow the subscribers to subscribe when they want to start receiving the feed and unsubscribe when they no
longer require it.

The consumers, in turn, have to know how the Publisher will transmit the data to them, which will normally be
achieved by calling one o f its methods. So consumers may need to provide an API to satisfy the
requirements o f the Publisher. We'll create an example.

For our purposes, we'll write a module that asks for lines o f input from the user, and then distributes the lines
to any subscribed consumers. The subscriber interface will have subscribe and unsubscribe methods that
add and remove items from the publisher's subscriber list. Subscribers must provide a "process" method,
which the publisher will call with each new input.

We will have the subscribers print the input string after processing it in basic, but distinguishable ways. In the
first example, subscribers print out the uppercase version o f the string they've received.

Create a Pyt ho n4_Lesso n04 pro ject and add it to your Pyt ho n4_Lesso ns working set. Then, create
pubandsub.py in your Pyt ho n4_Lesso n04/src fo lder as shown:

CODE TO TYPE:

class Publisher:
 def __init__(self):
 self.subscribers = []
 def subscribe(self, subscriber):
 self.subscribers.append(subscriber)
 def unsubscribe(self, subscriber):
 self.subscribers.remove(subscriber)
 def publish(self, s):
 for subscriber in self.subscribers:
 subscriber.process(s)

if __name__ == '__main__':
 class SimpleSubscriber:
 def __init__(self, publisher):
 publisher.subscribe(self)
 self.publisher = publisher
 def process(self, s):
 print(s.upper())

 publisher = Publisher()
 for i in range(3):
 newsub = SimpleSubscriber(publisher)
 line = input("Input {}: ".format(i))
 publisher.publish(line)

 The program asks you for three lines o f input. The first is echoed in uppercase once, the second twice, and
the third three times, because each time through the loop, a new subscriber is subscribed to the publisher.

OBSERVE:

Input 0: pub
PUB
Input 1: and
AND
AND
Input 2: sub
SUB
SUB
SUB

The Publisher keeps a list o f subscribers (which starts out empty). Subscribing an object appends it to the
subscriber list; unsubscribing an object removes it. The SimpleSubscriber object takes a publisher as an
argument to the __init __() method and immediately subscribes to the publisher.

These same principles can be applied to programs you may already use. For example, a spreadsheet
program may have to process spreadsheets where there are multiple graphics based on the data, all o f which
must be updated as the data changes. One way to arrange that is to enlist the graphics as subscribers to an
event stream publisher, which publishes an alert every time any change is made to the data. To avo id
unnecessary computing, the event stream publisher might publish the event after a change only when no
further changes were made to the data within a fixed (and preferably short) period o f time.

We can refine this process further in various ways because it allows very loose coupling between the
publisher and the subscriber: neither needs to have advance knowledge o f the o ther, and the connections are
created at run-time rather than determined in advance. We like loose coupling in systems design because it's
flexible and allows dynamic relationships between objects.

Validating Requests and Identifying Output

Our initial implementation is defective in a couple o f ways. First, there is nothing to stop a given subscriber
from being subscribed multiple times. Similarly, there is nothing present to check whether a subscriber
requesting unsubscription (code not yet exercised in the main program) is actually subscribed. Passing a
nonexistent subscriber would cause the list's remove() method to raise an exception:

OBSERVE:

>>> [1, 2, 3].remove(4)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
ValueError: list.remove(x): x not in list
>>>

In order to make the message associated with the exception easier to understand, you'll want to trap it o r test
beforehand for the condition that would cause the exception and then raise your own, more meaningful,
exception.

Finally, the original version o f our program does not identify which specific subscriber is responsible for an
individual message. We want it to identify the culprit though, because that will make the operation o f the
program easier to understand. Let's revise it so that each subscriber instance takes an additional argument
(its name), which it will then use to identify all o f its output. Modify pubandsub.py to check for errors and
identify subscribers

CODE TO TYPE:

class Publisher:
 def __init__(self):
 self.subscribers = []
 def subscribe(self, subscriber):
 if subscriber in self.subscribers:
 raise ValueError("Multiple subscriptions are not allowed")
 self.subscribers.append(subscriber)
 def unsubscribe(self, subscriber):
 if subscriber not in self.subscribers:
 raise ValueError("Can only unsubscribe subscribers")
 self.subscribers.remove(subscriber)
 def publish(self, s):
 for subscriber in self.subscribers:
 subscriber.process(s)

if __name__ == '__main__':
 class SimpleSubscriber:
 def __init__(self, name, publisher):
 publisher.subscribe(self)
 self.name = name
 self.publisher = publisher
 def process(self, s):
 print(self.name, ":", s.upper())

 publisher = Publisher()
 for i in range(3):
 newsub = SimpleSubscriber("Sub"+str(i), publisher)
 line = input("Input {}: ".format(i))
 publisher.publish(line)

This version o f the program doesn't actually trigger any o f the newly-added exceptions, but the inclusion o f
the tests makes our code more robust. The SimpleSubscriber.process() method identifies each output line
with the name of the instance that was responsible for it, which can be especially helpful in more complex
situations. The code that creates the subscribers generates names such as "Sub0", "Sub1" and so on for the
subscribers. You should see output that looks like this:

OBSERVE:

Input 0: sub
Sub0 : SUB
Input 1: and
Sub0 : AND
Sub1 : AND
Input 2: pub
Sub0 : PUB
Sub1 : PUB
Sub2 : PUB

If we were to write unit tests fo r this code, we might include an assertRaises() test to ensure that the double-
subscription and attempts to remove non-subscribed objects were handled correctly. In the absence o f unit
tests, we should at least make sure that exceptions will be raised under expected circumstances. We can do
that in an interactive conso le with the help o f Eclipse.

First, make sure that you activate the editor session containing the pubandsub.py source.Then, in the
Conso le pane, click Open Co nso le and select PyDev Co nso le from the drop-down menu that appears:

You will see a dialog asking you which type o f conso le window you want to create. Select Co nso le f o r
current ly act ive edit o r and click OK:

Now you will be able to import modules from the Python4_Lesson04/src directory. Next, verify that
exceptions are properly raised:

INTERACTIVE CONSOLE SESSION

>>> from pubandsub import Publisher
>>> publisher = Publisher()
>>> publisher.unsubscribe(None)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "pubandsub.py", line 16, in unsubscribe
 raise ValueError("Can only unsubscribe subscribers")
ValueError: Can only unsubscribe subscribers
>>> publisher.subscribe(None)
>>> publisher.subscribe(None)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
 File "pubandsub.py", line 12, in subscribe
 raise ValueError("Multiple subscriptions are not allowed")
ValueError: Multiple subscriptions are not allowed
>>>

Since exceptions appear to be raised under the correct circumstances, we could proceed without modifying
the code further, but it's a good idea to copy and paste the interactive session into your source as a doctest. A
simple copy-and-paste from the conso le panel is not adequate, however, because the conso le is designed
to let you copy and paste only the code, so when you copy from the interactive session in Eclipse, the
necessary prompt strings (">>> " and "... ") are absent from the pasted content. doctest and Eclipse don't
always play nicely together. It's a good thing Eclipse has so many o ther useful features.

So far our program has not tested the non-error branch o f the unsubscribe code. We'll perform that test next
by restricting the number o f subscribers. This can be done either internally (from within the
Publisher.subscribe() method, fo r example) or by truncating the subscription list from the main loop. We're
go ing to do the latter. We'll add a few loops to make sure that the strategy is properly tested. After each new
subscription, we'll remove the least recent if the length o f the subscription list exceeds three. This will ensure
that no input sees more than three responses. Modify pubandsub.py as shown below

CODE TO TYPE:

class Publisher:
 def __init__(self):
 self.subscribers = []
 def subscribe(self, subscriber):
 if subscriber in self.subscribers:
 raise ValueError("Multiple subscriptions are not allowed")
 self.subscribers.append(subscriber)
 def unsubscribe(self, subscriber):
 if subscriber not in self.subscribers:
 raise ValueError("Can only unsubscribe subscribers")
 self.subscribers.remove(subscriber)
 def publish(self, s):
 for subscriber in self.subscribers:
 subscriber.process(s)

if __name__ == '__main__':
 class SimpleSubscriber:
 def __init__(self, name, publisher):
 publisher.subscribe(self)
 self.name = name
 self.publisher = publisher
 def process(self, s):
 print(self.name, ":", s.upper())

 publisher = Publisher()
 for i in range(5):
 newsub = SimpleSubscriber("Sub"+str(i), publisher)
 if len(publisher.subscribers) > 3:
 publisher.unsubscribe(publisher.subscribers[0])
 line = input("Input {}: ".format(i))
 publisher.publish(line)
 line = input("Input {}: ".format(i))
 publisher.publish(line)

This code is not much different from the last example, except that there are never more than three responses
to any input, which indicates that the unsubscribe function is working correctly. Each time the subscriber count
exceeds three it is trimmed from the left:

OBSERVE:

Input 0: sub
Sub0 : SUB
Input 1: and
Sub0 : AND
Sub1 : AND
Input 2: pub
Sub0 : PUB
Sub1 : PUB
Sub2 : PUB
Input 3: more
Sub1 : MORE
Sub2 : MORE
Sub3 : MORE
Input 4: inputs
Sub2 : INPUTS
Sub3 : INPUTS
Sub4 : INPUTS

Making the Algorithm More General

At present, the publisher requires subscribers to have a "process" method, which it calls to have each
subscriber process the published data. This works well enough, but it does constrain the nature o f the
subscribers. For example, there is no way to subscribe functions, because there is no way to add a method to
a function.

Let's modify the program so that it registers the callable method directly instead o f registering an instance and
then calling a specific method. Our program will then allow any callable to be registered. We'll verify this by
defining a simple function and registering it with the publisher before the loop begins. Modify pubandsub.py
to allow registration o f any callable:

CODE TO TYPE:

class Publisher:
 def __init__(self):
 self.subscribers = []
 def subscribe(self, subscriber):
 if subscriber in self.subscribers:
 raise ValueError("Multiple subscriptions are not allowed")
 self.subscribers.append(subscriber)
 def unsubscribe(self, subscriber):
 if subscriber not in self.subscribers:
 raise ValueError("Can only unsubscribe subscribers")
 self.subscribers.remove(subscriber)
 def publish(self, s):
 for subscriber in self.subscribers:
 subscriber.process(s)

if __name__ == '__main__':
 def multiplier(s):
 print(2*s)

 class SimpleSubscriber:
 def __init__(self, name, publisher):
 publisher.subscribe(self)
 self.name = name
 self.publisher = publisher
 publisher.subscribe(self.process)
 def process(self, s):
 print(self, ":", s.upper())
 def __repr__(self):
 return self.name

 publisher = Publisher()
 publisher.subscribe(multiplier)
 for i in range(6):
 newsub = SimpleSubscriber("Sub"+str(i), publisher)
 line = input("Input {}: ".format(i))
 publisher.publish(line)
 if len(publisher.subscribers) > 3:
 publisher.unsubscribe(publisher.subscribers[0])

The SimpleSubscriber object now registers its (bound) process method as a callable, and the
Publisher.publish() method calls the subscribers directly rather than calling a method o f the subscriber. This
makes it possible to subscribe functions to the Publisher:

OBSERVE:

Input 0: pub
pubpub
Sub0 : PUB
Input 1: and
andand
Sub0 : AND
Sub1 : AND
Input 2: sub
subsub
Sub0 : SUB
Sub1 : SUB
Sub2 : SUB
Input 3: and
Sub0 : AND
Sub1 : AND
Sub2 : AND
Sub3 : AND
Input 4: dub
Sub1 : DUB
Sub2 : DUB
Sub3 : DUB
Sub4 : DUB
Input 5: and
Sub2 : AND
Sub3 : AND
Sub4 : AND
Sub5 : AND

Note
The full "publish and subscribe" algorithm is general enough to allow communication between
completely different processes. Technically, we have been studying a subset o f publish-and-

subscribe also referred to as "the observer pattern."

A Note on Debugging
Eclipse has some advanced debugging features, but we've ignored them. You won't always have Eclipse at your
disposal (at least when you aren't in the lab), so instead, we've directed our attention to assuring your code through
testing.

The relatively simple expedient o f inserting print() calls in your code is good enough to so lve many problems, and in
the upcoming pro ject the most important part o f the exercise is to use this technique to discover exactly how the
suggested modification breaks the program. See you in the next lesson!

When you finish the lesson, don't fo rget to return to the syllabus and complete the homework.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Optimizing Your Code
Lesson Objectives

When you complete this lesson, you will be able to :

focus your attention to the proper elements from the beginning.
use the pro file module.
identify which elements should be optimized.
optimize.

Start with Correctness
"Speed is fine, but accuracy is everything."

-Wyatt Earp

Inexperienced programmers o ften devote the majority o f their attention to speed and performance. This is a common
mistake that can o ften lead to additinal mistakes made as a result o f working with accelerated program speeds too
early on in the programming process. During development, your initial focus should be on producing programs that
work correctly and are supported by tests. When you do begin to consider speed and performance, you're likely to alter
your code; that's when tests will be indispensible. If your changes break your tests, you'll need to fix your code before
you address issues o f speed and performance. The prevailing programmer's wisdom applies, "First, make it work,
then make it faster."

When you write a working program, it's generally fast enough already. That isn't to say that your programs can't be
made faster—most o f them can—but a good programmer knows when to leave well enough alone.

Usually we optimize for time (that is, we make the program run as quickly as possible), but sometimes a program
appears to use an excessive amount o f memory. There is generally a trade-off between memory and time. You can
reduce memory usage by using a slower algorithm.

Guido van Rossum, Python's inventor, discussed optimizing one particular function. Take a look at that here. This
algorithm shows just how many different approaches there are to so lve a single problem.

Where to Optimize

Faced with an under-performing program, you first need to determine which parts o f the program are causing
the issues. In order to do that, you'll need to "pro file" your program, that is, to find out how much time is being
spent in each part o f the program. This will allow you to see which pieces are taking up the most CPU time.
These pieces will then be the primary targets for optimization. The Python language includes a pro file module
that enables you to gather detailed information about how much time is being spent in different parts o f your
program.

You can determine which pieces o f code run faster using the facilities o f the t imeit module. For our
purposes, you'll be using just a few features o f the library, but I encourage you to investigate the Python library
documentation outside the labs to learn more about it. Also , try out your own versions o f code to learn more
about different approaches to a given problem and how well they perfrom.

The Profile Module
The pro file module allows you to trace your program, by keeping information about the function call and return events,
as well as exceptions that are raised. It can provide detailed explanations o f where your program is spending its time.
The module co llects and summarizes data about the various function calls in a program.

Two Different Modules

The cProfile module (written in C) functions just like the pro file module, only faster. cProfile is not available in
every computer's Python, though. When cProfile is unavailable, use the pro file module instead. You can allow
your program to make use o f cProfile when it is available, and pro file when it is not. A quick illustration will
help you understand these too ls. Here's how to import one o f two modules with the same name:

http://www.python.org/doc/essays/list2str/

OBSERVE:

try:
 import cProfile as profile
except ImportError:
 import profile

If cProfile is available, it is imported under the name pro file. If it isn't available, the attempt to import it raises an
ImportError exception, and the pro file module is imported instead.

Using the Profile Module

Create a new Pydev pro ject named Pyt ho n4_Lesso n05 , assign it to the Pyt ho n4_Lesso ns working set,
and then create a new file in your Pyt ho n4_Lesso n05/src fo lder named prf l.py, as shown below:

CODE TO TYPE:

def f1():
 for i in range(300):
 f2()

def f2():
 for i in range(300):
 f3()

def f3():
 for i in range(300):
 pass

import cProfile as profile
profile.run("f1()")

The pro file.run() function takes as its argument, a string containing the code to be run, and then runs it with
pro filing active. If only one argument is given, the function produces output at the end o f the run that
summarizes the operation o f the code.

 Save and run it; you see something like this:

OBSERVE:

 90304 function calls in 1.110 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 1.110 1.110 <string>:1(<module>)
 1 0.000 0.000 1.110 1.110 prfl2.py:1(f1)
 300 0.030 0.000 1.110 0.004 prfl2.py:5(f2)
 90000 1.080 0.000 1.080 0.000 prfl2.py:9(f3)
 1 0.000 0.000 1.110 1.110 {built-in method exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof
iler' objects}

A to tal o f 90304 function calls are recorded during the execution o f the code in a to tal o f 1.110 seconds. The
rest o f the output is sorted by function name by default. The co lumns are:

Co lumn Name Meaning

ncalls The to tal number o f calls made to the listed function.

to ttime The to tal time spent in executing the listed function.

percall (1) The average execution time for a single call o f the function.

cumtime The cumulative execution time o f all calls o f this function, including the time taken
to execute all functions called from this one.

percall (2) The average cumulative execution time for a single call o f the function.

filename:lineno(function) The details o f the source code defining the function..

By looking at the "to ttime" co lumn, we can see that the majority o f the program's time is spent in the f3()
function. In fact, if you could eliminate the time taken by the rest o f the program altogether, the impact to the
program's to tal execution time would be less than 5%. In o ther words, the f3() function is taking up 95% of the
program's execution time. As Guido van Rossum says:

Rule number one: only optimize when there is a proven speed bottleneck. Only optimize the innermost loop.
(This rule is independent of Python, but it doesn't hurt repeating it, since it can save a lot of work.) :-)

More Complex Reporting

Sometimes you'll want more specific information from a pro filing run. When that's the case, you'll use the
second argument to pro file.run—the name of a file to which your program will send the raw pro filing data.
Then you can process this data separately using the pstats module. In order to give the module enough data
to work with, we'll use another artificially constructed program (there is no real computation taking place, but
many function calls). Modify prf l.py to add more function calls:

CODE TO TYPE:

def f1():
 for i in range(300):
 f2(); f3(); f5()

def f2():
 for i in range(300):
 f3()

def f3():
 for i in range(300):
 pass

def f4():
 for i in range(100):
 f5()

def f5():
 i = 0
 for j in range(100):
 i += j
 f6()

def f6():
 for i in range(100):
 f3()

import cProfile as profile
profile.run("f1()", "profiledata")

 When you run this program, you won't see any output in the conso le window. The program creates a file
named pro f iledat a in the fo lder where prf l.py is located (refresh the Package Explorer window [press F5]
to see it). Now if you start up a conso le window in the same directory (make sure the program is in the active
editor window, select PyDev Co nso le from the Open Co nso le pull-down menu, select Co nso le f o r
current ly act ive edit o r, then click OK), you can work with that file using the pstats module, written precisely
to allow analysis o f the pro file data.

The primary element in the pstats module is the Stats class. When you create an instance, you can give it the
name(s) o f one or more files as positional arguments. These files will have been created by pro filing. You
can also provide a stream keyword argument, which is an open file to which output will be sent (this defaults
to standard output, meaning you see the output straight away).

Note The next series o f operations should all be performed in the same conso le window, so do not
close it down between operations.

Make sure to keep this window open after this interactive session:

http://www.python.org/doc/essays/list2str.html

INTERACTIVE CONSOLE SESSION

>>> import pstats
>>> s = pstats.Stats("V:\\workspace\\Python4_Lesson05\\src\\profiledata")

>>> s.print_stats()
Mon Jun 25 17:55:43 2012 V:\workspace\Python4_Lesson05\src\profiledata

 121204 function calls in 3.275 seconds

 Random listing order was used

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 3.275 3.275 {built-in method exec}
 300 0.770 0.003 2.458 0.008 V:\workspace\Python4_Lesson05\src\
prfl.py:5(f2)
 300 0.259 0.001 0.795 0.003 V:\workspace\Python4_Lesson05\src\
prfl.py:23(f6)
 1 0.007 0.007 3.275 3.275 V:\workspace\Python4_Lesson05\src\
prfl.py:1(f1)
 1 0.000 0.000 3.275 3.275 <string>:1(<module>)
 120300 2.229 0.000 2.229 0.000 V:\workspace\Python4_Lesson05\src\
prfl.py:9(f3)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof
iler' objects}
 300 0.010 0.000 0.804 0.003 V:\workspace\Python4_Lesson05\src\
prfl.py:17(f5)

<pstats.Stats object at 0x0000000002955198>
>>>

Note The times and paths in your output will vary from the values in the above conso le session.

When you create a pstats.Stats instance, it loads the data, and you can manipulate it before producing output
(you'll see how shortly). There are several refinements you can make to the output, by calling methods o f
your Stats instance.

INTERACTIVE CONSOLE SESSION

>>> s.strip_dirs() # shorten function references
<pstats.Stats object at 0x0000000002955198>
>>> s.print_stats()
Mon Jun 25 17:55:43 2012 V:\workspace\Python4_Lesson05\src\profiledata

 121204 function calls in 3.275 seconds

 Random listing order was used

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 3.275 3.275 {built-in method exec}
 1 0.007 0.007 3.275 3.275 prfl.py:1(f1)
 120300 2.229 0.000 2.229 0.000 prfl.py:9(f3)
 300 0.259 0.001 0.795 0.003 prfl.py:23(f6)
 300 0.770 0.003 2.458 0.008 prfl.py:5(f2)
 1 0.000 0.000 3.275 3.275 <string>:1(<module>)
 300 0.010 0.000 0.804 0.003 prfl.py:17(f5)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof
iler' objects}

<pstats.Stats object at 0x0000000002955198>
>>>

The st rip_dirs() method has removed all o f the directory information from the last co lumn. st rip_dirs() is
applied to the default output; the path information isn't generally required. Next, you can sort the output to give
you the most significant items first by providing one or more keys to the St at s.so rt _st at s() method. The
keys that are acceptable currently are:

Key So rt by ...

'calls' The to tal count o f calls o f the function (including "recursive calls" where a function calls
itself, o r calls o ther functions which in turn call it).

'cumulat ive ' Cumulative execution time

' f ile ' File name from which the function was loaded

'mo dule ' Same as ' f ile '

'pcalls' Count o f primitive calls (i.e. calls made to the function while it is not actually executing)

' line ' Line number

'name' Function name

'nf l' Name/file/line

'st dname' Sorts by the function name as printed

' t ime' Internal time

You may have noticed that 3 o f the 8 lines o f the output aren't particularly useful fo r our requirements.
Fortunately, you can filter out the results you don't want by placing one or more restrictions on the output.
Those restrictions can take one o f three forms as additional arguments to print _st at s() :

An integer will limit the output to the given number o f lines.
A floating-po int number between 0 and 1 will restrict the output to the given proportion o f entries.
A regular expression will limit the output to those entries whose filename:lineno(function) fields
contain the given regular expression.

You can limit the output to omit the details o f the "structural" entries (those that relate strictly to the pro filing
framework) using the simple expression r" \.py" , o r, once the entries are sorted in the right order, by using the
integer 5 in this case.

The restrictions are applied in order, so print _st at s(0 .1, " t est ") reports those lines out o f the top tenth that
match "test", whereas print _st at s("t est " , 0 .1) reports a tenth o f all those lines matching "test." So, if there

were a hundred lines in the source data, print _st at s(0 .1, " t est ") would print any lines that contain "test"
from the first ten. print _st at s("t est " , 0 .1) would print one tenth o f ALL the lines that contain "test." If every
third line contained "test", print _st at s(0 .1, " t est ") would retrieve lines 3,6 , and 9 . print _st at s("t est " ,
0 .1) would retrieve lines 3,6 ,9 , and 11 -- four lines (assuming there were about 40 containing "test").

INTERACTIVE CONSOLE SESSION

>>> s.sort_stats('calls', 'time')
<pstats.Stats object at 0x10057c510>
>>> s.print_stats(r"\.py")
Mon Jun 25 17:55:43 2012 V:\workspace\Python4_Lesson05\src\profiledata

 121204 function calls in 3.275 seconds

 Ordered by: call count, internal time
 List reduced from 8 to 5 due to restriction <'\\.py'>

 ncalls tottime percall cumtime percall filename:lineno(function)
 120300 2.229 0.000 2.229 0.000 prfl.py:9(f3)
 300 0.770 0.003 2.458 0.008 prfl.py:5(f2)
 300 0.259 0.001 0.795 0.003 prfl.py:23(f6)
 300 0.010 0.000 0.804 0.003 prfl.py:17(f5)
 1 0.007 0.007 3.275 3.275 prfl.py:1(f1)

<pstats.Stats object at 0x0000000002955198>
>>> s.print_stats(5)
Mon Jun 25 17:55:43 2012 V:\workspace\Python4_Lesson05\src\profiledata

 121204 function calls in 3.275 seconds

 Ordered by: call count, internal time
 List reduced from 8 to 5 due to restriction <5>

 ncalls tottime percall cumtime percall filename:lineno(function)
 120300 2.229 0.000 2.229 0.000 prfl.py:9(f3)
 300 0.770 0.003 2.458 0.008 prfl.py:5(f2)
 300 0.259 0.001 0.795 0.003 prfl.py:23(f6)
 300 0.010 0.000 0.804 0.003 prfl.py:17(f5)
 1 0.007 0.007 3.275 3.275 prfl.py:1(f1)

<pstats.Stats object at 0x0000000002955198>
>>>

Note

You may have wondered why all o f the methods o f the pst at s.St at s object seem to return the
same pst at s.St at s instance. It's to allow users to utilize a technique called method chaining.
Since each method call returns the instance, you can apply a method call directly to the result o f
a previous method call, as in

s.st rip_dirs().so rt _st at s('calls' , ' t ime').print _st at s()

You'll also want to know which functions call which o ther functions. The pstats.Stats object has the
print_callers() and print_callees() methods that show you the calling relationships between various functions:

INTERACTIVE CONSOLE SESSION

>>> s.sort_stats('calls', 'time')
<pstats.Stats object at 0x0000000002955198>

>>> s.print_callers(r"\.py")
 Ordered by: call count, internal time
 List reduced from 8 to 5 due to restriction <'\\.py'>

Function was called by...
 ncalls tottime cumtime
prfl.py:9(f3) <- 300 0.005 0.005 prfl.py:1(f1)
 90000 1.688 1.688 prfl.py:5(f2)
 30000 0.536 0.536 prfl.py:23(f6)
prfl.py:5(f2) <- 300 0.770 2.458 prfl.py:1(f1)
prfl.py:23(f6) <- 300 0.259 0.795 prfl.py:17(f5)
prfl.py:17(f5) <- 300 0.010 0.804 prfl.py:1(f1)
prfl.py:1(f1) <- 1 0.007 3.275 <string>:1(<module>)

<pstats.Stats object at 0x0000000002955198>
>>> s.print_callees(r"\.py")
 Ordered by: call count, internal time
 List reduced from 8 to 5 due to restriction <'\\.py'>

Function called...
 ncalls tottime cumtime
prfl2.py:9(f3) ->
prfl2.py:5(f2) -> 90000 1.080 1.080 prfl2.py:9(f3)
prfl2.py:23(f6) -> 30000 0.355 0.355 prfl2.py:9(f3)
prfl2.py:17(f5) -> 300 0.010 0.365 prfl2.py:23(f6)
prfl2.py:1(f1) -> 300 0.027 1.107 prfl2.py:5(f2)
 300 0.004 0.004 prfl2.py:9(f3)
 300 0.004 0.369 prfl2.py:17(f5)

<pstats.Stats object at 0x0000000002955198>
>>>

Being aware o f which function calls which o ther functions can be useful when you are trying to locate specific
calls that take more time than o thers.

What to Optimize
You can use the pro file module to hone in on the parts o f your program that are using the most CPU time. Your next
consideration will be figuring out how to speed up the code in your "hot spots." To do this, we'll use the timeit module,
which allows you to measure the relative speeds o f different Python snippets. The timeit module contains more
features than we need for our task, but it's a good idea to familiarize yourself with its documentation for future tasks.

The timeit module defines a Timer class which allows you full contro l over the creation and execution o f timed code,
but we'll just use the module's timeit() function; it allows you to specify a statement to be timed and some initialization
code to execute before timing starts. The function runs the initialization code and then executes the code to be timed
repeatedly, printing out the to tal execution time in seconds. Take a look:

INTERACTIVE CONSOLE SESSION

>>> from timeit import timeit
>>> timeit("i = i + 1", "i=0")
0.11318016052246094
>>> timeit("i = i + 1", "i=0")
0.11426806449890137
>>> timeit("i = i + 1", "i=0")
0.1136329174041748
>>> timeit("i += 1", "i=0")
0.11641097068786621
>>> timeit("i += 1", "i=0")
0.11541509628295898
>>> timeit("i += 1", "i=0")
0.11439919471740723
>>>

The example demonstrates that timings are not completely repeatable (and therefore shouldn't be relied upon for
abso lute information). Secondly, it demonstrates that there isn't a big difference between the time it takes to execute
regular addition and the time required to execute the augmented addition operator.

Note
The timeit() function creates an entirely new namespace in which to run the code being timed, so the
examples use an initialization statement to set i to zero before the timed code is run; without that, you'd
see an exception indicating that the i had not been defined.

Now that you know how modules work, we can concentrate on getting your code to run faster. To help facilitate writing
your timing tests, you'll usually define functions containing the code that are called by the timing routine.

Loop Optimizations

Sometimes you write code and put a computation inside o f the loop when it doesn't need to be. Under those
circumstances there are gains to be made by moving the computation out o f the loop, a technique usually
referred to as "loop ho isting." Here is an example o f loop ho isting:

INTERACTIVE CONSOLE SESSION

>>> def loop1():
... lst = range(10)
... for i in lst:
... x = float(i)/len(lst)
...
>>> def loop2():
... lst = range(10)
... ln = len(lst)
... for i in lst:
... x = float(i)/ln
...
>>> timeit("loop1()", "from __main__ import loop1")
7.349833011627197
>>> timeit("loop2()", "from __main__ import loop2")
4.197483062744141
>>>

What seems like a small change to the code makes a substantial difference!

Actually, the best way to optimize a loop is to remove it altogether. Sometimes you can do that using
Python's built- in functions. Let's time four different ways to build the upper-case version o f a list:

INTERACTIVE CONSOLE SESSION

>>> oldlist = "the quick brown fox jumps over the lazy dog".split()
>>> def lf1(lst):
... newlist = []
... for w in lst:
... newlist.append(w.upper())
... return newlist
...
>>> def lf2(lst):
... return [w.upper() for w in lst]
...
>>> def lf3(lst):
... return list(w.upper() for w in lst)
...
>>> def lf4(lst):
... return map(str.upper, lst)
...
>>>
>>> timeit("lf1(oldlist)", "from __main__ import lf1, oldlist")
4.409790992736816
>>> timeit("lf2(oldlist)", "from __main__ import lf2, oldlist")
3.492004156112671
>>> timeit("lf3(oldlist)", "from __main__ import lf3, oldlist")
4.758850812911987
>>> timeit("lf4(oldlist)", "from __main__ import lf4, oldlist")
0.5220911502838135
>>>

You haven't run into the map() buit- in before, but it has some good things go ing for it. Its first argument is a
function (in this case, the unbound upper() method o f the built- in str type), and any remaining arguments are
iterables. There are as many iterables as the function takes arguments, and the result is a list containing the
return values o f the function when called with corresponding elements o f each iterable (if the iterables are not
all the same length, map stops as soon as the first one is exhausted).

So, why is the map()-based so lution so much faster? There are two reasons. First, it is the only so lution that
does not need to look up the upper() method in the str type each time around the loop. Second, the looping is
done inside map(), which is written in the C language, which saves a lo t o f time.

Another way to remove a loop is to write the loop contents out as literal code. This is really only practical fo r
short loops with a known number o f iterations, but it can be a very effective technique, as the next example o f
"inlining loop code" shows:

INTERACTIVE CONSOLE SESSION

>>> def f1():
... pass
...
>>> def loopfunc():
... for i in range(8):
... f1()
...
>>> def inline():
... f1(); f1(); f1(); f1(); f1(); f1(); f1(); f1()
...
>>> timeit("loopfunc()", "from __main__ import loopfunc")
1.9027259349822998
>>> timeit("inline()", "from __main__ import inline")
1.2639250755310059
>>>

There can be a substantial amount o f overhead in looping. When function calls are written out explicitly, the
execution time is 30% faster—a worthwhile gain. Of course, in this example the loop overhead does tend to

dominate because there is so little actual computation happening.

Pre-computing Attribute References

Due to Python's dynamic nature, when the interpreter comes across an expression like a.b.c, it looks up a
(trying first the local namespace, then the global namespace, and finally the built- in namespace), then it looks
in that object's namespace to reso lve the name b, and finally it looks in that object's namespace to reso lve
the name c. These lookups are reasonably fast; fo r local variables, lookups are extremely fast, since the
interpreter knows which variables are local and can assign them a known position in memory. There are
definitely gains to be had by storing references in local variables. Let's try removing Attribute Reso lution from
loops:

INTERACTIVE CONSOLE SESSION

>>> class Small:
... class Smaller:
... x = 20
... smaller = Smaller
...
>>> small = Small()
>>>
>>> def attr1():
... ttl = 0
... for i in range(50):
... ttl += small.smaller.x
... return ttl
...
>>> def attr2():
... ttl = 0
... x = small.smaller.x
... for i in range(50):
... ttl += x
... return ttl
...
>>> timeit("attr1()", "from __main__ import small, attr1")
11.901235103607178
>>> timeit("attr2()", "from __main__ import small, attr2")
6.448068141937256
>>>

Here, the function doesn't actually execute a huge amount o f computation, but we gain a lo t in speed.

Local Variables are Faster than Global Variables

As we mentioned before, the interpreter knows which names inside your functions are local and it assigns
them specific (known) locations inside the function call's memory. This makes references to locals much
faster than to globals and (most especially) to built- ins. Let's test name reference speed from various spaces:

INTERACTIVE CONSOLE SESSION

>>> glen = len # provides a global reference to a built-in
>>>
>>> def flocal():
... name = len
... for i in range(25):
... x = name
...
>>> def fglobal():
... for i in range(25):
... x = glen
...
>>> def fbuiltin():
... for i in range(25):
... x = len
...
>>> timeit("flocal()", "from __main__ import flocal")
1.743438959121704
>>> timeit("fglobal()", "from __main__ import fglobal")
2.192162036895752
>>> timeit("fbuiltin()", "from __main__ import fbuiltin")
2.259413003921509
>>>

This difference in speed isn't huge here, but it definitely shows that accessing a local variable is faster than
accessing a global or a built- in. If many globals or built- ins are used inside a function, it makes sense to
store a local reference to them. By contrast, if they are used only once, then you'd only be adding overhead to
your function!

How to Optimize
Optimizing code isn't easy, and it would be impossible to show you all the gotchas you can introduce into your code
here. For now, here are a few guidelines that can help you avo id common pitfalls.

Don't Optimize Prematurely

Don't consider performance while you're writing the code (although it's difficult fo r even experienced
programmers to ignore). The primary goal o f the initial programming process is a correct, functioning
algorithm that is relatively easy to understand. Only after your tests demonstrate correct operation should you
address performance.

Use Timings, Not Intuition

Our intuition is not always the best gauge o f what will run fast. You're much better o ff using timings to
determine how well your program is running.

Make One Change at a Time

If you make two changes to a program, and the first makes a 10% improvement, that's great, right? But if the
second takes performance down by 25%, the overall result will be worse than those o f the unchanged
program. Make your changes individually and methodically.

The Best Way is Not Always Obvious

Guido van Rossum has yet more wisdom to share with us (I am a fan). In the article we mentioned above he
presents us with a problem: given a list o f integers in the range 0-127 (these are ASCII values; Python 2 was
current when Guido wrote this), how does one create a string in which the characters have the ordinal values
held in the corresponding positions in the list o f integers? Guido (I think we have spent enough quality time
with Guido to be on a first name basis now) realized that the fastest way to create such a string was to take
advantage o f the array module's ability to create one-byte integers; he came up with this code:

OBSERVE:

import array
def f7(list):
 return array.array('B', list).tostring()

When you are writing code, the obvious way is the best. To extract maximum performance the best way is not
always obvious! Did I really say this was a short lesson? Time flies when we're deep into the Python! You're
do ing really well so far.

When you finish the lesson, don't fo rget to return to the syllabus and complete the homework.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using Exceptions Wisely
Lesson Objectives

When you complete this lesson, you will be able to :

identify which exceptions are errors.
create exceptions and raise instances.
use exceptions wisely.

Exceptions Are Not (Necessarily) Errors
Raising an exception alters the flow o f contro l in a program. The interpreter normally executes statements one after the
other (with looping to provide repetition, and conditionals to allow decision-making). When an exception is raised,
however, an entirely different mechanism takes over. Precisely because it is exceptional, we tend to be less familiar
with it, but knowing how exceptions are raised and handled can help you to program to focus on the main task, in
confidence that when exceptional conditions do occur, they will be handled appropriately. Knowing how, and when, to
use exceptions is a part o f your development as a Python programmer.

Exceptions o ffer such programming convenience that we would likely be quite happy to pay a modest penalty in
performance. The happy fact is, though, that when used judiciously exceptions can actually enhance your programs'
performance as well as making them easier to read.

Specifying Exceptions

Python's built- in exceptions are all available (in the built- in namespace, naturally) without any import. There is
an inheritance hierarchy among them. From the Python documentation:

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

Python's Built-In Exception Hierarchy

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 +-- BufferError
 +-- EOFError
 +-- ImportError
 +-- LookupError
 | +-- IndexError
 | +-- KeyError
 +-- MemoryError
 +-- NameError
 | +-- UnboundLocalError
 +-- OSError
 | +-- BlockingIOError
 | +-- ChildProcessError
 | +-- ConnectionError
 | | +-- BrokenPipeError
 | | +-- ConnectionAbortedError
 | | +-- ConnectionRefusedError
 | | +-- ConnectionResetError
 | +-- FileExistsError
 | +-- FileNotFoundError
 | +-- InterruptedError
 | +-- IsADirectoryError
 | +-- NotADirectoryError
 | +-- PermissionError
 | +-- ProcessLookupError
 | +-- TimeoutError
 +-- ReferenceError
 +-- RuntimeError
 | +-- NotImplementedError
 +-- SyntaxError
 | +-- IndentationError
 | +-- TabError
 +-- SystemError
 +-- TypeError
 +-- ValueError
 | +-- UnicodeError
 | +-- UnicodeDecodeError
 | +-- UnicodeEncodeError
 | +-- UnicodeTranslateError
 +-- Warning
 +-- DeprecationWarning
 +-- PendingDeprecationWarning
 +-- RuntimeWarning
 +-- SyntaxWarning
 +-- UserWarning
 +-- FutureWarning
 +-- ImportWarning
 +-- UnicodeWarning
 +-- BytesWarning
 +-- ResourceWarning

Although everything inherits from the BaseExcept io n class, its first three subclasses (Syst emExit ,
Keybo ardInt errupt and Generat o rExit) should not be caught and handled by regular programs under
normal circumstances. About the most general specification to catch would normally be except Except io n,

and that would be reserved for programs such as long-running network servers or equipment contro l and
monitoring applications.

The full syntax o f the except clause allows you to specify not just a single exception but a whole class or set
o f them, all to be handled in the same way by the same except clause. When you specify an exception class
then, any o f its subclasses will also be caught (unless, that is, the subclass is in an earlier except clause for
the same try and therefore caught already). In o ther words, if your program catches Arit hmet icErro r, it also
catches Flo at ingPo int Erro r, Overf lo wErro r and Z ero Divisio nErro r. As the next interactive session
should make plain, under some circumstances the ordering o f the except clauses will make a difference in
which handler handles the exception.

Where subclasses are concerned, except clause ordering is significant

>>> try:
... raise ZeroDivisionError
... except ArithmeticError:
... print("ArithmeticError")
... except ZeroDivisionError:
... print("ZeroDivisionError")
...
ArithmeticError
>>> try:
... raise ZeroDivisionError
... except ZeroDivisionError:
... print("ZeroDivisionError")
... except ArithmeticError:
... print("ArithmeticError")
...
ZeroDivisionError
>>>

OBSERVE:

try:
 raise ZeroDivisionError
except ArithmeticError:
 print("ArithmeticError")
except ZeroDivisionError:
 print("ZeroDivisionError")

ArithmeticError
try:
 raise ZeroDivisionError
except ZeroDivisionError:
 print("ZeroDivisionError")
except ArithmeticError:
 print("ArithmeticError")

ZeroDivisionError

In the first example, since ZeroDivisionError is a subclass o f ArithmeticError, the first except clause is
triggered, and the Z ero Divisio nErro r is never tested for (since the second except clause was never
evaluated). In the second example, the Z ero Divisio nErro r is specifically recognized because it is tested for
before the Arit hmet icErro r.

Creating Exceptions and Raising Instances
If you want to create your own exceptions, simply subclass the built- in Exception class or one o f its already existing
subclasses. Then create instances as required to raise exceptions. You may want to include an __init__() method on
your subclass. The standard Exception.__init__() saves the tuple o f positional arguments to the args attribute, so you
can either do the same yourself o r call Exception.__init__() to do it on your behalf. Your exceptions may at some stage
be passed to a piece o f code that expects to find an args instance variable.

Here's an example o f a user-defined exception.

How to Define an Exception [keep this session open and re-use it]

>>> class LocalError(Exception):
... def __init__(self, msg):
... self.args = (msg,)
... self.msg = msg
... def __str__(self):
... return self.msg
...
>>> try:
... raise LocalError("Appropriate message")
... except LocalError as e:
... print("Trapped", e)
...
Trapped Appropriate message
>>> raise LocalError
Traceback (most recent call last):
 File "<sonsole>", line 1, in <module>
TypeError: __init__() missing 1 required positional argument: 'msg'>>>

This exception class requires an argument when an instantiation call is made to create a new instance—without one,
the __init__() method does not receive enough arguments. You can see this happening when the raise Lo calErro r
statement is executed at the end o f the session: when you use a class to raise an exception, the interpreter attempts to
create an instance o f that exception by calling the class with no arguments. So the message you see has nothing to do
with the exception you have tried to raise; it's reporting the interpreter's inability to create an exception instance
because o f an argument mismatch in the __init__() method.

Exception objects are generally simple—the most they normally do is establish attribute values that can be used by the
handler to extract information about the exception. Since they are classes, it is possible to add complex logic in
multiple methods, but this is normally not done. As usual in Python, simplicity is the order o f the day.

Understanding the straightforward flow o f contro l when an exception is raised in the try suite is relatively easy. It is less
easy to appreciate what happens when exceptions occur in the except or finally suites. To look at that, define a function
that raises exceptions in one o f those three places, then see what it does under those circumstances.

Create a new PyDev pro ject named Pyt ho n4_Lesso n06 and assign it to the Pyt ho n4_Lesso ns working set. Then,
in your Pyt ho n4_Lesso n06/src fo lder, create f xf in.py as shown:

CODE TO TYPE: Create the fo llowing file as fxfin.py

class LocalError(Exception):
 def __init__(self, msg):
 self.args = (msg,)
 self.msg = msg
 def __str__(self):
 return self.msg

def fxfin(where):
 "Demonstrate exceptions in various places."
 try:
 if where == "try":
 raise LocalError("LocalError in try")
 raise ValueError("ValueError in try")
 except (ValueError, LocalError) as e:
 print("Caught", e)
 if where == "except":
 raise LocalError("LocalError in except")
 print("Exception not raised in except")
 finally:
 print("Running finalization")
 if where == "finally":
 raise LocalError("LocalError in finally")
 print("Exception not raised in finally")

for where in "try", "except", "finally":
 print("---- Exception in %s ----" % where)
 try:
 fxfin(where)
 except Exception as e:
 print("!!!", e, "raised")
 else:
 print("+++ No exception raised +++")

 Run the program; you see the fo llowing output:

Results o f running fxfin.py

---- Exception in try ----
Caught LocalError in try
Exception not raised in except
Running finalization
Exception not raised in finally
+++ No exception raised +++
---- Exception in except ----
Caught ValueError in try
Running finalization
Exception not raised in finally
!!! LocalError in except raised
---- Exception in finally ----
Caught ValueError in try
Exception not raised in except
Running finalization
!!! LocalError in finally raised

When the exception is raised in the try suite, everything is perfectly normal and comprehensible, and both the except
and finally handlers run without interruption. By the time the finally suite runs the exception has already been fully
handled. The except suite is always activated, but it can be so either by virture o f the parameter value or because o f the
final explicit exception. This means the except clause is more readable. With the "except" argument the handler raises
a second exception. This terminates the except handler, but the finally handler still runs; once it is complete, the second
exception is still raised from the function. When the exception is raised in the finally suite, the finally handler does not
run to completion, and the exception is passed up to the surrounding code (so the traceback is produced because o f
an uncaught exception).

Note that when you see a traceback for the case where an exception is raised during the handling o f an exception that a

second exception occurred during the processing o f the first. This information may be confusing to end users, but can
be invaluable to a programmer.

Using Exceptions Wisely
Let's take a look at the bytecodes that the CPython 3.1 interpreter produces for a simple function with exception
handling.

Note Different Python interpreters may use entirely different techniques to handle exceptions, but the effect
should always be the same as in these descriptions.

Examine the CPython byte code for try/except

>>> import dis
>>> def fex1():
... try:
... a = 1
... except KeyError:
... b = 2
...
>>> dis.dis(fex1)
 2 0 SETUP_EXCEPT 10 (to 13)

 3 3 LOAD_CONST 1 (1)
 6 STORE_FAST 0 (a)
 9 POP_BLOCK
 10 JUMP_FORWARD 24 (to 37)

 4 >> 13 DUP_TOP
 14 LOAD_GLOBAL 0 (KeyError)
 17 COMPARE_OP 10 (exception match)
 20 POP_JUMP_IF_FALSE 36
 23 POP_TOP
 24 POP_TOP
 25 POP_TOP

 5 26 LOAD_CONST 2 (2)
 29 STORE_FAST 1 (b)
 32 POP_EXCEPT
 33 JUMP_FORWARD 1 (to 37)
 >> 36 END_FINALLY
 >> 37 LOAD_CONST 0 (None)
 40 RETURN_VALUE
>>>

The interpreter establishes an exception-handling context by po inting at location 13 as the place to go if an exception
occurs (this is what the SETUP EXCEPT op code does). This is fo llowed by the body o f the try clause. If the try clause
reaches the end, the POP_BLOCK opcode throws away the exception-handling context and the JUMP_FORWARD
sends the interpreter o ff to perform the implicit ret urn No ne that terminates every function.

If an exception is raised, however, contro l is transferred to location 13, where the interpreter attempts to match the
exception to the except specifications. If a match is found (and after various housekeeping operations we will ignore),
line 26 is where the except suite is performed, after which another JUMP_FORWARD again selects the implicit ret urn
No ne . If no match is found for the exception, the END_FINALLY ensures that the exception is re-raised to activate any
surrounding exception-handling contexts.

The try/except blocks in your program can be nested lexically (that is, a try/except can be a part o f the try suite o f
another try suite) or dynamically (that is, a try suite can call a function that activates one or more try/excepts). When a try
block is nested dynamically, it will be deactivated by termination o f the function even if the return statement is in the try
suite or an except suite. The finally suite is always executed, even when the function returns from an unexpected place.
An explicit return in the finally suite does not allow that suite to run to completion—instead the return is executed
(overriding any return value that might have triggered the execution o f the finally clause).

Exception Timings

Sometimes in optimization, it's useful to be able to know how "expensive" it is in time to handle an exception.
With judicious coding, you can actually save time using exceptions, but you (as always) need to think about
what you are do ing rather than just applying rules blindly. The next interactive session shows that it can be
good or bad to rely on exceptions, depending on the surrounding circumstances.

Exception timings depend on how frequently the exception is raised

>>> def fdct1():
... wdict = {}
... for word in words:
... if word not in wdict:
... wdict[word] = 0
... wdict[word] += 1
...
>>> def fdct2():
... wdict = {}
... for word in words:
... try:
... wdict[word] += 1
... except KeyError:
... wdict[word] = 1
...
>>> from timeit import timeit
>>> words = "the quick brown fox jumps over the lazy dog".split()
>>> timeit("fdct1()", "from __main__ import fdct1")
4.041514158248901
>>> timeit("fdct2()", "from __main__ import fdct2")
6.705680847167969
>>> words = ["same"] * 9
>>> timeit("fdct1()", "from __main__ import fdct1")
2.6857001781463623
>>> timeit("fdct2()", "from __main__ import fdct2")
2.948345899581909
>>>

Here you did two sets o f timings, the first with a word list in which there was only one duplicate, the second
with one where every word was the same. Under the former conditions the specific test fo r wo rd no t in
wdict won out against raising an exception. In the second case, however, when the exception was rarely
raised, the exception-based so lution was at least competitive although still no t actually faster. Thus, the
optimal code can depend to some extent on the data. If you have advance information about the make-up o f
your data, that's all very well, but if no t, it would be more difficult to try and choose between approaches.

The important thing is not to run away with the idea that exceptions are somehow intended to be used in
exceptional circumstances. If your logic is easier to express with exceptions, use them. If fo r some reason
your program, once working, does not work fast enough, you can refactor it (making sure you do not break
any tests) fo r better performance.

Confidence in using exceptions to flag abnormal processing conditions is important to keep your logic simple. Without
exceptions, you have to have functions return sentinel values to indicate that problems occurred during processing. With them,
you can just write the logic o f the main task "in a straight line" inside a try clause, and use except to catch exceptions that
indicate special processing is required.

When you finish the lesson, don't fo rget to return to the syllabus and complete the homework.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Advanced Uses of Decorators
Lesson Objectives

When you complete this lesson, you will be able to :

use decorator Syntax.
use Classes as Decorators.
use Class Decorators.
employ some odd Decorator tricks.
utilize Static and Class Method Decorators.
parameterize Decorators.

When we discussed properties, we noted that you can use the decorator syntax to apply a function to another function. In this
lesson, we'll immerse you a little more thoroughly in the uses o f decoration. It can be difficult to think o f small examples,
however, because decorators are typically written to be applied in large systems without users having to think too deeply about
it.

Decorator Syntax
Let's jump right in!

Decorator Syntax (use the same interactive session throughout this lesson)

>>> def trace(f):
... "Decorate a function to print a message before and after execution."
... def traced(*args, **kw):
... "Print message before and after a function call."
... print("Entering", f.__name__)
... result = f(*args, **kw)
... print("Leaving", f.__name__)
... return result
... return traced
...
>>> @trace
... def myfunc(x, a=None):
... "Simply prints a message and arguments."
... print("Inside myfunc")
... print("x:", x, "a:", a)
...
>>> myfunc("ONE", "TWO")
Entering myfunc
Inside myfunc
x: ONE a: TWO
Leaving myfunc
>>>

In the example above, the trace function is a decorator. That means that it takes a single argument (which is normally
the function being decorated). Internally, it defines a function traced() that prints out a line o f text, calls the decorated
function with whatever arguments it was called with itself, prints out another line o f text and then returns the result
obtained from the decorated function. Then, trace returns the function it has just defined.

This means that you can apply trace() to any function, and the result will do just what the original function did as well as
printing out a line before and after the call to the decorated function. This is how most decorators work (although as
always there are some smart people who have found non-standard ways to use decorators that were not originally
intended by the specification). That's why you o ften see the internal function written to accept any combination o f
positional and keyword arguments—it means that the decorator can be applied to any function, no matter what its
signature.

Remember, the decorator syntax is really just an abbreviation; it doesn't do anything that you couldn't do without the

syntax. When you write @t race before the definition for myfunc(), it's exactly equivalent to writing myf unc =
t race(myf unc) after the function definition. The syntax was added because with longer function definitions it was
often difficult to notice the reassignment to the name when it fo llowed the function definition. The feature was restricted
to functions when it was originally introduced, but now you can also decorate classes. While this is a little bit more
complicated than decorating functions, it does have its uses.

Because the above decorator defines a function that contains a call to the decorated function as a part o f its code
(traced() in the example above), we say that the decorator wraps the decorated function. This has certain unfortunate
side effects: mostly, the name of the function appears to change to the name of the wrapper function from inside the
decorator, and the docstring is that o f the wrapper.

The decorated function name differs from the undecorated one

>>> trace.__name__ # undecorated
'trace'
>>> myfunc.__name__ # decorated
'traced'
>>> myfunc.__doc__
'Print message before and after a function call.'
>>>

Fortunately, this issue can be handled using the wraps decorator from the f unct o o ls library. This is provided
precisely to ensure that decorated functions continue to "look like themselves." Until you get the hang o f using it,
however, it seems a little weird because it means you end up using a decorator on the wrapper function inside your
decorator! But honestly, it isn't difficult.

Use functoo ls.wraps to avo id loss o f name and docstring

>>> from functools import wraps
>>> def simpledec(f):
... "A really simple decorator to demonstrate functools.wraps."
... @wraps(f)
... def wrapper(arg):
... print("Calling f with arg", arg)
... return f(arg)
... return wrapper
...
>>> @simpledec
... def f(x):
... "Simply prints its argument."
... print("Inside f, arg is", x)
...
>>> f("Hello")
Calling f with arg Hello
Inside f, arg is Hello
>>> f.__name__
'f'
>>> f.__doc__
'Simply prints its argument.'
>>>

Classes as Decorators
While decorators are usually functions, they don't need to be—any callable can be used as a decorator. This means
that you could use a class as a decorator, and when the decoration takes place the class's __init__() method is called
with the object to be decorated (whether it's a function or a class: note that a decorator is typically designed to decorate
either functions or classes but not both because they are fairly different in nature).

If you want to decorate a function with a class, remember that calling a class calls its __init__() method, and returns an
instance o f the class. As always, the first argument to __init__() is self, the newly created instance, so in this case the
function that the interpreter passes to the decorator will end up as the second argument to __init__(). Since calling the
class creates an instance, and since normally you want to be able to call the decorated function, the classes you use
as decorators should define a __call__() method, which will then be called when the decorated function is called.

Classes can be decorators too!

>>> class ctrace:
... def __init__(self, f):
... "__init__ records the passed function for later use in __call__()."
... self.__doc__ = f.__doc__
... self.__name__ = f.__name__
... self.f = f
... def __call__(self, *args, **kw):
... "Prints a trace line before calling the wrapped function."
... print("Called", self.f.__name__)
... return self.f(*args, **kw)
...
>>> @ctrace
... def simple(x):
... "Just prints arg and returns it."
... print("simple called with", x)
... return x
...
>>> simple("walking")
Called simple
simple called with walking
'walking'
>>> simple.__name__
'simple'
>>> simple.__doc__
'Just prints arg and returns it.'
>>>

By the time the decorator is called, the simple() function has already been compiled, and it is passed to the decorator's
__init__() method, where it is stored as an instance variable. To make sure the decorated function retains its name and
docstring, those attributes o f the function are also copied into instance variables with the same names.

Class Decorators
Up until now, we have decorated functions, but once the feature was introduced into Python, it was only a matter o f time
before it was extended to classes. So now you can decorate classes in just the same way as functions. The principle
is exactly the same: the decorator receives a class as an argument, and (usually) returns a class. Because classes are
more complicated than functions you will find it most convenient to modify the class in place and return the modified
class as the result o f the decorator.

Note Decorators can be applied individually to the methods o f a class. Essentially they are the same as
functions, and so exactly the same techniques can be used with methods as with regular functions.

To demonstrate this, suppose that you want to be able to have each o f the methods o f a class print out a trace call
during debugging. You could simply apply the trace decorator above to each method, but that would mean extensive
editing for a large class when you wanted to switch the debugging o ff. It is simpler fo r programmers to use a class
decorator, so we might well accept a slightly higher level o f complexity in the decorator to avo id the editing. Once the
interpreter has processed the class definition, it calls the decorator with the class as its argument, and the decorator
can then either create a new class (which is fairly difficult) o r modify the class and return it.

Since the interactive session has already defined a simple tracing function, we'll use that to wrap each o f the methods
in our decorated class. Finding the methods is not as easy as you might imagine. It invo lves looking through the
class's __dict__ and finding callable items whose names do not begin and end with "__" (it's best not to mess with the
"magic" methods). Once such an item is found, it is wrapped with the trace() function and replaced in the class
__dict__.

Using a class decorator to wrap each method

>>> def callable(o):
... return hasattr(o, "__call__")
...
>>> def mtrace(cls):
... for key, val in cls.__dict__.items():
... if key.startswith("__") and key.endswith("__") \
... or not callable(val):
... continue
... setattr(cls, key, trace(val))
... print("Wrapped", key)
... return cls
...
>>> @mtrace
... class dull:
... def method1(self, arg):
... print("Method 1 called with arg", arg)
... def method2(self, arg):
... print("Method 2 called with arg", arg)
...
Wrapped method2
Wrapped method1
>>> d = dull()
>>> d.method1("Hello")
Entering method1
Method 1 called with arg Hello
Leaving method1
>>> d.method2("Goodbye")
Entering method2
Method 2 called with arg Goodbye
Leaving method2
>>>

Note
The __dict__ o f a class (as opposed to that o f an instance) isn't a plain dict like the ones you know. It is
actually an object called a dict_proxy. To keep them as lightweight as possible, they do not directly
support item assignment like a standard dict does. This is why, in the mtrace() function, the wrapped
method replaces the original version by using the setattr() built- in function.

Note
The callable() function was present by accident in 3.0 . The developers had intended to remove it, thinking
that it could easily be replaced by hasattr(obj "__call__"). Consequently it was removed from Python 3.1.
It was then reinstated in Python 3.2 when some developers po inted out that a more specific version could
be written in C with full access to the object structures.

As you can see, when you call method1() and method2(), they print out the standard "before and after" trace lines,
because they are now wrapped by the trace() function.

Odd Decorator Tricks
Sometimes you don't want to wrap the function: instead you want to alter it in some other way, such as adding
attributes (yes, you can add attributes to functions the same way as you can to most o f the o ther objects in Python). In
that case, the decorator simply returns the function that is passed in as an argument, having modified the function in
whatever ways it needs to . So next we'll write a decorator that flags a function as part o f a framework by adding a
"framework" attribute.

Using a decorator to add attributes rather than wrapping a function

>>> def framework(f):
... f.framework = True
... f.author = "Myself"
... return f
...
>>> @framework
... def somefunc(x):
... pass
...
>>> somefunc.framework
True
>>> somefunc.author
'Myself'
>>>

Note that the decorator does still return a function, but since there is no need to wrap the decorated function it simply
returns the function that it was passed (now resplendent with new attributes). Since this avo ids a second function call, it
will be slightly quicker and there is no need to use functoo ls.wraps because the function is not being wrapped.

Static and Class Method Decorators
Python includes two built- in functions that are intended for use in decorating methods. The staticmethod() function
modifies a method so that the special behavior o f providing the instance as an implicit first argument is no longer
applied. In fact, the method can be called on either an instance or the class itself, and it will receive only the arguments
explicitly provided to the call. It becomes a static method. You can think o f static methods as being functions that don't
need any information from either their class or their instance, so they do not need a reference to it. Such functions are
relatively infrequently seen in the wild.

If you want to write a method that relies on data from the class (class variables are a common way to share data
among the various instances o f the class) but does not need any data from the specific instance, you should decorate
the method with the classmethod() function to create a class method. Like static methods, class methods can be called
on either the class or an instance o f the class. The difference is that the calls to a class method do receive an implicit
first argument. Unlike a standard method call, though, this first argument is the class that the method was defined on
rather than the instance it was called on. The conventional name for this argument is cls, which makes it more obvious
that you are dealing with a class method.

You may well ask what static and class methods are for—why use them when we already have standard methods that
are perfectly satisfactory for most purposes? Why not just use functions instead o f static methods, since no additional
arguments are provided? The answer to this question lies in the fact that these functions are methods o f a class, and
so will be inherited (and can be overridden or extended) by any subclasses you may define. Further, the instances o f
the class can reference class variables rather than using a global—this is always safer because there is no guarantee,
when your code lands in someone else's program, that their code isn't using the same global name for some other
purpose. It is difficult to think o f any example where the use o f a classmethod would be abso lutely required, but
sometimes it can simplify your design a little.

A typical application for class methods has each o f the instances using configuration data that is common to all, and
saved in the class. If you provide methods to alter the configuration data (fo r example, changing the frequency a
wireless transmitter works on, or changing the function that the instances call to allocate resources), they do not need
to reference any o f the instances, so a class method would be ideal.

Parameterizing Decorators
Sometimes you want to write a decorator that takes parameters. Remember, though, that the decorator syntax requires
a callable that takes precisely one argument (the class or function to be decorated). So if you want to parameterize a
decorator, you have to do so "at one remove"—the function that takes the arguments has to return a function that takes
one argument and returns the decorated object. This can be a little brain-twisting, so an example may help. Or, it may
just make your head explode!

Suppose that you wanted to have your program record the number o f calls that are made to each o f several different
types o f function. When you define a function, you want to give a parameter to the decorator to specify the classification
of the decorated function.

Required decorator syntax to count function f as a 'special' function

@countable('special')
def f(...):
 ...

In o ther words, @countable('special') has to return a function that is a conventional decorator—it takes a single
function as an argument and returns the decorated version o f the function as its result. This means that we need to
nest functions three levels deep! We will use a global variable to store a dict, and the different function-type strings will
be the keys. Here we go!

Using a parameterized decorator

>>> counts = {}
>>> def countable(ftype):
... "Returns a decorator that counts each call of a function against ftype."
... def decorator(f):
... "Decorates a function and to count each call."
... def wrapper(*args, **kw):
... "Counts every call as being of the given type."
... try:
... counts[ftype] += 1
... except KeyError:
... counts[ftype] = 1
... return f(*args, **kw)
... return wrapper
... return decorator
...
>>> @countable("short")
... def f1(a, b=None):
... print("f1 called with", a, b)
...
>>> @countable("f2")
... def f2():
... print("f2 called")
...
>>> @countable("short")
... def f3(*args, **kw):
... print("f3 called:", args, kw)
...
>>> for i in range(10):
... f1(1)
... f2()
... f3(i, i*i, a=i)
...
f1 called with 1 None
f2 called
f3 called: (0, 0) {'a': 0}
f1 called with 1 None
f2 called
f3 called: (1, 1) {'a': 1}
f1 called with 1 None
f2 called
f3 called: (2, 4) {'a': 2}
f1 called with 1 None
f2 called
f3 called: (3, 9) {'a': 3}
f1 called with 1 None
f2 called
f3 called: (4, 16) {'a': 4}
f1 called with 1 None
f2 called
f3 called: (5, 25) {'a': 5}
f1 called with 1 None
f2 called
f3 called: (6, 36) {'a': 6}
f1 called with 1 None
f2 called
f3 called: (7, 49) {'a': 7}
f1 called with 1 None
f2 called
f3 called: (8, 64) {'a': 8}
f1 called with 1 None
f2 called
f3 called: (9, 81) {'a': 9}
>>> for k in sorted(counts.keys()):
... print(k, ":", counts[k])
...

f2 : 10
short : 20
>>>

As you can see, f1 and f3 are classified as "short", while f2 is classified as "f2." Every time a @countable function is
called, one is added to the count fo r its category. There were 30 function calls in all, 20 to category "short" (f1 and f3).
Calling countable() returns a decorator whose action is to add one to the count identified by its argument. Your code
defines a function (countable()) that defines a function (decorator(), which is a decorator, that defines a function
(wrapper) that wraps the function f provided as an argument to deco rat o r, which was produced by calling co unt able .
This is probably about as far as anyone wants to go with decorators (and a little bit further than most).

In this survey o f decorators, you can appreciate that decorators enable you to perform arbitrary manipulations o f the functions
and classes that you write as you write them. Decorators can, o f course, also be used (though without the decorator syntax),
though you should exercise extreme caution in do ing so. This practice, when applied to "black box" code (code for which you
have no course, and no knowledge o f internal structure) is called "monkey patching", and is not generally well regarded as a
production technique. But it can be valuable during experimentation.

When you finish the lesson, don't fo rget to return to the syllabus and complete the homework.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Advanced Generators
Lesson Objectives

When you complete this lesson, you will be able to :

explain what generators represent.
use infinite sequences.
use the Itertoo ls Module.
use Generator Expressions.

What Generators Represent
Generators were added to Python to allow computation with sequences without having to actually build a data
structure to ho ld the values o f the sequence. This can yield large savings in memory. Earlier you saw that generators
obey the same iteration pro toco l that o ther iterators do, and that you can write generator functions and generator
expressions to avo id the creation o f such sequences.

You can also use generators as "filters," to remove some of the values from an input sequence. The general pattern o f
such a filter is:

The General Form of a Sequence Filter

def filter(s):
 for v in s:
 if some_condition_on(v):
 yield v

This technique can easily be used to "stack" filters, by providing one filter as the argument to another. To demonstrate
this technique, suppose that you wanted to examine a file, ignoring blank lines and lines beginning with a "#." While
there are several ways to do this, it would be fairly simple to use generators (remembering that text files are generators
too, in Python). Create a Pyt ho n4_Lesso n08 pro ject and assign it to your Pyt ho n4_Lesso ns working set. Then, in
the Pyt ho n4_Lesso n08 pro ject, create f ilt erf ile .py as fo llows.

filterfile.py: Using generators to filter the contents o f a file

"""
Filter file contents using a sequence of generators.
"""
def nocomment(f):
 "Generate the non-comment lines of a file."
 for line in f:
 if not line.startswith("#"):
 yield line

def nospaces(f):
 "Generate the lines of a file without leading or trailing spaces."
 for line in f:
 yield line.strip()

def noblanks(f):
 "Generate the non-blank lines of a file."
 for line in f:
 if line:
 yield line

if __name__ == "__main__":
 for line in nocomment(noblanks(nospaces(open("py08-01.txt")))):
 print(line)

Now, create py08-01.t xt as shown:

CODE TO TYPE: py08-01.txt

Excluded because a comment.
This is also a comment, and the next two lines are blank.

This line should be the first of four lines in the output.
The next line contains spaces and tabs, and should not appear.

And this should be the second.

 # This should not appear (leading spaces but a comment).
Neither should this (leading tabs but a comment).
 This should be the third line of output.

And this should be the last.

 Save the files and run filterfile.py:

Expected output from the filterfile.py

This line should be the first of four lines in the output.
And this should be the second.
This should be the third line of output.
And this should be the last.

The essence o f this program is the for loop guarded by the if __name__ == "__main__": condition. o pen("py08-
01.t xt ") is used to generate the raw text lines from the file, then the no spaces() generator strips the spaces from the
lines, after which the noblanks() generator removes blank lines, and then finally the nocomment() generator yields only
the lines that aren't comments.

Each individual filter performs a very simple task, but used in combination they can be much more powerful. (This is
the philosophy behind the UNIX operating system, by the way: provide simple primitive commands but allow them to
be combined together to create more powerful commands).

Uses of Infinite Sequences
You can never create all the values o f an infinite sequence. With a generator, you can generate as many members o f a
sequence o f indefinite length as you like, which is useful when you do not know in advance how many values will be
required. This can occur, fo r example, when you need to generate a value for each member o f a sequence o f unknown
length. Such requirements can arise in many contexts—when the user is entering a series o f values, when you are
processing the output o f another generator, and so on. (The one major advantage o f sequences over generators is
that you can aways find out how many elements they contain.)

This is the result o f generators' "lazy evaluation"—the values are not all produced first and then consumed by the client
code. Instead, when another value for the sequence is required, the generator produces it, and is then suspended
(retaining the values o f all local variables from the function call) until it is resumed to produce the next value in the
sequence. So as long as the client code eventually stops asking for values, there really is no problem with an infinite
generator. Just don't expect it to ever produce all its values—that would take an infinite amount o f time!

The Itertools Module
Once generators and generator expressions were introduced into the language, iteration became a focus for
development. This led to the introduction o f the it ert o o ls module, first released with Python 2.3. itertoo ls contains
many useful functions to operate on generators and sequences. The algorithms are implemented in C, and so they run
a lo t faster than pure-Python equivalents. When you look at the Python documentation for the module, however, you
will find that many o f the functions are documented to include broadly-equivalent Python to explain them more fully.

It's important to remember that generators are a "one-shot deal": once data is consumed, it isn't possible to go back
and retrieve that data again. Therefore, most o f the operations you perform on generated sequences are not
repeatable, unlike operations on tuples, lists, and strings.

itertools.tee: duplicating generators

t ee takes two arguments: the first is a generator and the second is a count (2, if no t specified). The result is

the given number o f generators that can be used independently o f each o ther.

Note

Because the resulting generators can be used independently, the implementation must store
any values that have been consumed from one o f the result generators but not from all the
others. Consequently, if your code consumes most o f the values from one o f the result
generators before the rest, you may find it more efficient to simply construct a list and use
multiple iterations over that.

In your Pyt ho n4_Lesso n08/src fo lder, create t eesamp.py as shown:

teesamp.py: Tee a generator to simplify program logic

"""
Demonstrate simple use of itertools.tee.
"""
import itertools

actions = "save", "delete"
data = ["file1.py", "file2.py", "save", "file3.py", "file4.py",
 "delete", "file5.py", "save", "file6.py",
 "file7.py", "file8.py", "file9.py", "save"]
saved = []
deleted = []

def datagen(d):
 "A 'toy' data generator using static data"
 for item in d:
 yield item

commands, files = itertools.tee(datagen(data))
for action in commands:
 if action in actions:
 for file in files:
 if file == action:
 break
 if action == "save":
 saved.append(file)
 elif action == "delete":
 deleted.append(file)
print("Saved:", ", ".join(saved))
print("Deleted:", ", ".join(deleted))

The program tees a single data source containing filenames and commands into two separate generators. It
then iterates over the first generator until it finds a command. Then, it iterates over the second generator,
performing the requested action on the files it retrieves until it "catches up" with the first generator (detected
because the command is seen). This avo ids the need to save the filenames in an ancillary list until the
program knows what to do with them.

 Save and run it:

Results expected from teesamp.py

Saved: file1.py, file2.py, file5.py, file6.py, file7.py, file8.py, file9.py
Deleted: file3.py, file4.py

itertools.chain() and itertools.islice(): Concatenating Sequences and
Slicing Generators Like Lists

The chain() function can be called with any number o f sequences as arguments. It yields all the elements o f
the first sequence, fo llowed by all the elements o f the second sequence, and so on until the last sequence
argument is exhausted.

It isn't possible to subscript a generator like it is a sequence such as a list o r a tuple, because subscripting
requires all the elements o f a sequence to be in memory at the same time. Sometimes, however, you need to
select elements from a generated sequence in much the same way you do for an in-memory sequence. The

itertoo ls module allows you to do this with its islice function..

It takes up to four arguments: (seq, [start,] stop [, step]). If only two arguments are provided, the second
argument is the length o f the slice to be generated, starting at the beginning o f the sequence. When three
arguments are provided, the second argument M is the index o f the starting element and the third argument N
is the index o f the element after the last one in the result. This closely parallels the seq[M:N] o f standard
sequence slicing. Finally, when all four arguments are present, the last argument is a "stride", which
determines the gap between selected elements. As mentioned above, slicing operations on generated
sequences will no t be repeatable because the operation consumes data from the sequence, and each value
can be produced only once.

The fo llowing interactive example demonstrates the use o f chaining and slicing on generated sequences.

Using sequence chaining and slicing

>>> import itertools
>>> s1 = (1, 3, 5, 7, 11)
>>> s2 = ['one', 'two', 'three', 'four']
>>> def sqq(n):
... for i in range(n):
... yield i*i
...
>>> s3 = sqq(10)
>>>
>>> input = itertools.chain(s1, s2, s3)
>>> list(itertools.islice(input, 2, 7, 2))
[5, 11, 'two']
>>> list(itertools.islice(input, 3))
['three', 'four', 0]
>>>

It is important here to observe that the second operation on the chained sequences starts with the first
element not consumed by the previous operation.

itertools.count(), itertools.cycle() and itertools.repeat()

These three functions provide convenient infinite seqences for use in o ther contexts. co unt (st art =0,
st ep=1) generates a sequence starting with the value o f its st art argument and incremented by the step
amount (with a default o f 1) fo r each call. cycle(i) takes an iterable argument i and yields each one until the
sequence is exhausted, whereupon it returns to the start o f the sequence and starts again. repeat (x) simply
yields its argument x every time a value is requested.

itertools.dropwhile() and itertools.takewhile()

Sometimes you only want to deal with the end o f a sequence, and sometimes you only want to deal with the
beginning. These functions allow you to do so by providing a predicate function that is used to determine
when to start o r stop yielding elements. The function is applied to successive values in the sequence. In the
case o f dro pwhile() , elements are discarded until one is found for which the function returns False, after
which the remaining values are yielded without testing them. t akewhile() , on the o ther hand, returns
elements o f the sequence until it encounters one for which the function returns False, at which po int it
immediately raises a StopIteration exception.

You can learn a little more about these functions in an interactive conso le session.

Experimenting with dropwhile() and takewhile()

>>> import itertools
>>> def lt5(n):
... return n<5
...
>>> s1 = [1, 3, 2, 4, 6, 4, 2, 3, 1]
>>> list(itertools.dropwhile(lt5, s1))
[6, 4, 2, 3, 1]
>>> list(itertools.takewhile(lt5, s1))
[1, 3, 2, 4]
>>>

For any function f and sequence s:

list (t akewhile(f , s)) + list (dro pwhile(f , s)) == list (s)

The two functions are therefore complementary in nature.

This has "scratched the surface" o f the itertoo ls module, but there is plenty more to reward your reading o f its
documentation should you feel so inclined.

Generator Expressions
In the same way that list comprehensions o ffer a more succinct way to create lists, generator expressions help you to
use generators without having to write a generator function.

Since list and tuple creation is relatively fast in Python, you will probably find that you have to be working with fairly
large data sets in order to see compelling advantages for generators over lists. Try it with some sample random data
to get a feel fo r the relative speed o f lists. In this example, we'll sum a bunch o f numbers from a list o f random
numbers between 0 and 1 in two ways: the first sums the values using a generator expression, the second creates a
list and sums that.

Note

The lists get so large it is entirely possible that there is not enough memory to create the larger ones. In
that case, you may see Memo ryErro r exceptions such as the one demonstrated below (this particular
run was made on a testing machine with limits on the amount o f memory one process can use, so you
may not see the exception because you are using better-resourced production machines in your lab
sessions). When you are finished with the interactive session, you should terminate the conso le with the

 button and start a new conso le session. Once an interpreter process has suffered a memory error, it
may not be able to reclaim all that memory, so it is best to start again.

Test the relative speed o f lists and generator expressions

>>> from random import random
>>> from timeit import timeit
>>> for i in (10000, 100000, 1000000, 10000000, 20000000, 50000000):
... lst = [random() for j in range(i)]
... print("Length", i)
... print(timeit("sum(x+1 for x in lst)", "from __main__ import lst", number=1))
... print(timeit("sum([x+1 for x in lst])", "from __main__ import lst", number=1))
...
Length 10000
0.0032087877090524073
0.0031928638975065268
Length 100000
0.032067762802255595
0.03326847406583798
Length 1000000
0.18962521773018637
0.2972891806081499
Length 10000000
2.405814984865395
2.7992426411736684
Length 20000000
4.417569830802519
5.341360144934622
Length 50000000
10.820288612100143
Traceback (most recent call last):
 File "<console>", line 5, in <module>
 File "C:\Python\lib\timeit.py", line 213, in timeit
 return Timer(stmt, setup, timer).timeit(number)
 File "C:\Python\lib\timeit.py", line 178, in timeit
 timing = self.inner(it, self.timer)
 File "<timeit-src>", line 6, in inner
 File "<timeit-src>", line 6, in <listcomp>
MemoryError
>>>

The code uses t imeit 's number argument to ensure that only one timed operation o f the sample code is run. This
means that the timings are not necessary repeatable, but are at least indicative o f the relative times o f the different
operations. It seems that, the longer the sequence, the more improvement you can expect to see from using a
generator expression. For comparison with the timings on Windows, here is the output from a MacOS machine (with
more memory) running the same code in a new Python conso le session.

Results o f the same test on a different machine

Length 10000
0.00169491767883
0.00142598152161
Length 100000
0.017655134201
0.0198609828949
Length 1000000
0.18835401535
0.206699848175
Length 10000000
1.77904486656
2.16294407845
Length 20000000
3.62438511848
4.16168618202
Length 50000000
9.03414511681
76.5883550644
>>>

You can see that there is sufficient memory for this computer to create the larger lists. While the performance o f the list-
based technique and the generator expressions are the same, the difference does not seem to be quite as marked.
These tests were run on a different operating system, which may have something to do with it. Note that with fifty
million elements in the last test iteration, the creation o f the list starts to add large overhead, and the generator
expression is markedly faster.

You have already come across list comprehensions such as [x*x f o r x in sequence] . You can, if you want, think o f
list comprehensions as generator expressions surrounded by list brackets. The brackets tell the interpreter that it is
required to create a list, so it runs the generator to exhaustion and adds each element to a newly-created list. There is
no essential difference between the expression above and list (x*x f o r x in sequence) , but the latter does seem to
be about 25% slower on implementations current at the time o f writing, whether the sequence is a list o r a generator
function.

Generators, while a relatively late addition to the Python language, are rapidly becoming an essential part o f it. When you are
dealing with large data sets, a good command of generators can make all the difference between a slow program and a fast
one. It is therefore important to be aware o f their possibilities. This is not too difficult, once you realise that they are o ften simply
a faster and more efficient way to handle data.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Uses of Introspection
Lesson Objectives

When you complete this lesson, you will be able to :

explain 'Introspection.'
attribute Handling Functions.
use Introspection.
use the Inspect Module.

The Meaning of 'Introspection'
The word "introspection" means "looking inside." Introspective people are ones who think about themselves, usually
to increase self-understanding. In Python, introspection is a way that your programs can learn about the environment
in which they operate and the properties o f the modules they import.

You have already learned about several o f Python's introspection mechanisms. The built- in dir() function, fo r example,
attempts to return (to quote from the documentation) "an interesting set o f names"—meaning the names o f attributes
accessible from the object passed as an argument. If no argument is passed, it returns the attributes found in the
current local namespace.

dir() in Python 3.x has a hook that looks for a __dir__() method on its argument. If such a method is present, it is called
and dir() returns what the method returns. This allows you to determine what users see about your object, and this can
be useful if you are using "virtual" attributes (that is, if your objects handle access to methods that do not appear in the
class's __dict__). If no __dir__() method is found, dir() uses a standard mechanism to compose its result after
examining its argument.

Some Simple Introspection Examples

x.__class__.__name__ will tell you the name of an object's class (and is much more reliable than trying to
analyze a repr() string):

The Right and Wrong Way to Extract a Class Name

>>> class Something:
... pass
...
>>> s = Something()
>>> s
<__main__.Something object at 0x10063be50>
>>> repr(s)[1:-1].split()[0].split(".")[1] # WRONG!
'Something'
>>> s.__class__.__name__ # RIGHT (AND SO MUCH EASIER)
'Something'
>>> repr(4)[1:-1].split()[0].split(".")[1] # Fail
Traceback (most recent call last):
 File "<console>", line 1, in <module>
IndexError: list index out of range
>>> 4.__class__.__name__
 File "<console>", line 1
 4.__class__.__name__
 ^
SyntaxError: invalid syntax
>>> (4).__class__.__name__ # SUCCEED
'int'
>>> str(type(4))[1:-1].split()[1][1:-1] # Way too complex
'int'
>>> str(type(s))[1:-1].split()[1][1:-1] # And only give same result for built-in
s (see s above)
'__main__.Something'

The failed attempt to extract the class name from the integer 4's repr() string shows just how fragile the
"wrong" method is: it applies only to objects with a very specific representation. When handed an int instance
it explodes, raising an exception. The syntax error occurred because the interpreter took the period (".") to be
part o f a number, and then could not understand why it was fo llowed by an identifier. Putting the (4) in
parentheses allows the lexical analysis routines to parse things correctly, and we see that the class name is
available from built- in classes just as it is on self-declared ones. If you find yourself writing code like the first
and last examples, you should question whether there isn't a better way: Python is designed to avo id the
need for such contortions.

so me_o bject .__do c__ can be useful, but if things are properly written, you'll get better presentation from
help(so me_o bject) , which is designed to print necessary documentation in a legible way.

Attribute Handling Functions
If you took earlier courses in this Certificate Series (or o therwise possibly from private study) you've encountered the
getattr(o bj), setattr(o bj), and delattr(o bj) functions, and learned that they result in a call to their argument o bj 's
__getattr__(), __setattr__(), and __delattr__() methods. There is also the hasattr() predicate, which can be used to
determine whether or not a given attribute is present in an object. There is, however, no corresponding __hasattr__()
method. You might wonder what hasattr() does to find out what value to return, and the answer to that question is
complex enough to have received the attention o f some of the best minds in Python.

Without go ing too deeply into the internals, it is fairly easy for you to determine whether or not __getattr__() gets called
by hasattr() under at least some circumstances. You simply write a class whose instances report calls o f their
__getattr__() method, and then call hasattr() on an instance:

INTERACTIVE SESSION:

>>> class X:
... def __getattr__(self, name):
... print("getattr", name)
... return 0
...
>>> x = X()
>>> hasattr(x, "thing")
getattr thing
True
>>>

hasat t r(o bj, "__call__") can be used to tell you whether or not o bj can be called like a function. Older versions o f
Python provide a callable() built- in function, which should have been removed in Python 3.0 because the given test is
now all that is required—everything callable has a __call__ attribute. Its deletion was omitted in error fo r the 3.0
release, with the result that callable is available for that release. It was then removed from 3.1 (the version in use when
this course was being written), but has returned in 3.2 because the above test turns out not to be quite as specific as
the version that can be written in C with full access to the object structures. Being able to determine the presence or
absence o f a particular attribute is occasionally useful in o ther contexts.

Note
You should avo id writing code where "too much" (a judgment call) o f the logic depends on the presence
or absence o f specific attributes, unless you are writing deliberately introspective code as part o f a
framework or library.

Of course you can implement whole "virtual namespaces" within your own objects by using getattr() and setattr(), but
remember that these functions can also be used (assuming you can gain access to the required namespaces) to
modify your current environment. Understand that do ing so in this way is not recommended except in rather extreme
cases, because it results in "magical" changes—changes whose origin is difficult o r impossible to discern by reading
the program code:

'Magical' changes to the module's namespace

>>> import sys
>>> __name__
'__main__'
>>> module = sys.modules[__name__]
>>> a
Traceback (most recent call last):
 File "<console>", line 1, in <module>
NameError: name 'a' is not defined
>>> setattr(module, "a", 42)
>>> a
42
>>>

Before the setattr() call, there was no "a" defined in the module's namespace. Since all imported modules are available
under their natural names from sys.mo dules, you can access the current module's namespace by looking it up.

If it were possible to subclass the module object to change its attribute access methods, we could be faced with some
extremely hard-to-understand code! Fortunately this is not something you need to worry about in practice. Most o f the
code you will encounter does not use such tricks (indeed, the Django framework mentioned earlier had a period in its
development devoted to "magic removal" to make the code easier fo r Python programmers and beginners to
understand, and provide a framework that was less brittle).

What Use is Introspection?
Frameworks use introspection frequently, to discover the capabilities o f objects the user has passed; fo r example,
"does this object's class have a so met hing() method? If so , call the object's do _so met hing() ; o therwise call the
do _so met hing_similar() framework function with the object as an argument." Some built- in functions also do this
kind o f introspection. The dir() built- in mentioned above returns the result o f the argument object's __dir__() method if it
has one; o therwise it uses built- in functionality to provide an "interesting" set o f names (the result is not defined more
clearly than that anywhere in the code).

Note

A framework is an environment that provides a wealth o f facilities to programmers. You can think o f it as
being like an "operating system for a particular type o f programming task." The users o f frameworks are
generally application programmers, using the framework (fo r example, Django or Tkinter) to build a
particular type o f application (in Django 's case, they would be web applications; in Tkinter's case, they
would be windowed applications).

The Inspect module
This module allows you to dig as deep as you ever need to in terms o f introspection. It provides many functions by
which you can determine the properties o f objects, incuding sixteen predicates that allow you to easily determine
whether an object is o f a particular type.

The getmembers() Function

inspect .get members(o bj[, predicat e]) returns a list o f two-element (name, value) tuples. If you provide a
second argument, it is called with the value as its only argument and the item only appears in the resulting list
if the result is True. This makes the predicates mentioned in the last paragraph very useful if you are only
interested in objects o f a particular type. Fo llowing are some special attributes especially worth knowing
about (co lumns to the right explain which attributes you can expect to see on five given types o f object).

At t ribut e Purpo se Mo dule Class Met ho d Funct io n Built -
in

__doc__ Documentation string ✓ ✓ ✓ ✓ ✓

__file__ Path to the file from which the object was
loaded ✓

__module__ Name of module in which the object was
imported ✓ ✓

__name__ Name of object ✓ ✓ ✓
__func__ The implementation o f the method ✓

__self__ Instance to which this method is bound (or
No ne) ✓ ✓

__code__ Code object containing function's bytecode ✓

__defaults__ Documentation string ✓ ✓ ✓ ✓

__globals__ Documentation string ✓ ✓ ✓ ✓

The predicates that you can use with get member() are:

Predicat e name Purpo se

ismodule(x) Returns True if x is a module.

isclass(x) Returns True if x is a class, whether built- in or user-defined.

ismethod(x) Returns True if x is a bound method written in Python.

isfunction(x) Returns True if x is a function (including functions created by lambda
expressions).

isgeneratorfunction(x) Returns True if x is a Python generator function.

isgenerator(x) Returns True if x is a generator.

istraceback(x) Returns True if x is a traceback object (created when an exception is handled).

isframe(x) Returns True if x is a stack frame (can be used to debug code interactively).

iscode(x) Returns True if x is a code object.

isbuiltin(x) Returns True if x is a built- in function or a bound built- in method.

isroutine(x) Returns True if x is a user-defined or built- in function or method.

isabstract(x) Returns True if x is an abstract base class (one meant to be inherited from rather
than instantiated).

ismethoddescriptor(x) Returns True if x is a method descriptor unless ismethod(x), isclass(x),
isfunction(x) or isbuiltin(x) is True.

isdatadescriptor(x) Returns True if x is a data descriptor (has both a __get __() and a __set __()
method).

isgetsetdescriptor(x) Returns True if x is a getsetdescriptor—these are used in extension modules.

ismemberdescriptor(x) Returns True if x is a member descriptor—these are used in extension modules.

The second argument to inspect.getmembers() allows you to access members o f a particular type easily:

Experimenting with getmembers()

>>> import inspect
>>> from smtplib import SMTP
>>> from pprint import pprint
>>> pprint(inspect.getmembers(SMTP))
[('__class__', <class 'type'>),
 ('__delattr__', <slot wrapper '__delattr__' of 'object' objects>),
 ('__dict__', <dict_proxy object at 0x1006b7910>),
 ('__doc__',
 "This class manages a connection to an SMTP or ESMTP server.\n
 SMTP Objects:\n
 SMTP objects have the following attributes:\n
 helo_resp\n
 This is the message given by the server in response to the\n
 most recent HELO command.\n\n
 ehlo_resp\n
 This is the message given by the server in response to the\n
 most recent EHLO command. This is usually multiline.\n\n
 does_esmtp\n
 This is a True value _after you do an EHLO command_, if the\n
 server supports ESMTP.\n\n
 esmtp_features\n
 This is a dictionary, which, if the server supports ESMTP,\n
 will _after you do an EHLO command_, contain the names of the\n
 SMTP service extensions this server supports, and their\n
 parameters (if any).\n\n
 Note, all extension names are mapped to lower case in the\n
 dictionary.\n\n
 See each method's docstrings for details. In general, there is a\n
 method of the same name to perform each SMTP command. There is also a\n
 method called 'sendmail' that will do an entire mail transaction.\n
 "),
 ('__eq__', <slot wrapper '__eq__' of 'object' objects>),
 ('__format__', <method '__format__' of 'object' objects>),
 ...
 ('__str__', <slot wrapper '__str__' of 'object' objects>),
 ('__subclasshook__',
 <built-in method __subclasshook__ of type object at 0x1b002aed0>),
 ('__weakref__', <attribute '__weakref__' of 'SMTP' objects>),
 ('_get_socket', <function _get_socket at 0x1007a3d98>),
 ('close', <function close at 0x116437958>),
 ...
 ('verify', <function verify at 0x116437628>),
 ('vrfy', <function verify at 0x116437628>)]
>>>
>>> pprint(inspect.getmembers(SMTP, inspect.ismethod))
[]
>>> pprint(inspect.getmembers(SMTP, inspect.isfunction))
[('__init__', <function __init__ at 0x1007a3c88>),
 ('_get_socket', <function _get_socket at 0x1007a3d98>),
 ('close', <function close at 0x116437958>),
 ...
 ('verify', <function verify at 0x116437628>),
 ('vrfy', <function verify at 0x116437628>)]
>>> smtp = SMTP()
>>> pprint(inspect.getmembers(smtp, inspect.ismethod))
[('__init__',
 <bound method SMTP.__init__ of <smtplib.SMTP object at 0x100644c90>>),
 ('_get_socket',
 <bound method SMTP._get_socket of <smtplib.SMTP object at 0x100644c90>>),
 ('close', <bound method SMTP.close of <smtplib.SMTP object at 0x100644c90>>),
 ...
 ('verify',
 <bound method SMTP.verify of <smtplib.SMTP object at 0x100644c90>>),
 ('vrfy', <bound method SMTP.verify of <smtplib.SMTP object at 0x100644c90>>)]
>>>

You will get rather more output than we showed here, and the docstring has been reformatted to make it
easier to read in the listing, but there is no reason to list eveything that is output. The detail presented is
sufficient to demonstrate that the SMTP class has many member attributes, including the standard "dunder"
names, many o f them inherited from the o bject type.

Asking for the methods o f the class (using the ismet ho d() predicate as a second argument to
get members()) changes it to return the empty list. This is not too surprising, as the predicate is documented
as returning True only fo r bound methods—methods associated with a particular instance. The isf unct io n()
predicate used in the third example returns the methods that are specifically defined on the class, but not
those inherited from superclasses (which in practice means the o bject type). Creating an instance o f the
SMTP class and querying that fo r methods gives a much more interesting result.

Introspecting Functions

There are various attributes o f a code object that can be used to discover information about the function to
which it belongs. The inspect module provides some convenience functions to avo id the need to use them
under most circumstances, however.

inspect .get f ullargspec(f) returns a named tuple FullArgSpec(args, varargs, varkw, def ault s,
kwo nlyargs, kwo nlydef ault s, anno t at io ns) containing information pertaining to the function argument f:

args is a list o f the names o f the standard (positional and keyword) arguments.
The def ault s member contains the default values for the arguments specified by keyword (which
always fo llow the positionals).
varargs and varkw are the names o f the * and ** arguments, if present. The value No ne is used
when there are no such arguments.
kwo nlyargs is a list o f the arguments that must be provided as keyword arguments
kwo nlydef ault s is the list o f default values o f those arguments.
anno t at io ns is a dict that maps argument names to annotations (which will usually be empty,
because we will no t cover function annotations in this course)

inspect .f o rmat argspec(args[, varargs, varkw, def ault s, kwo nlyargs, kwo nlydef ault s,
anno t at io ns]) takes the output from get f ullargspec() and re-creates the arguments part o f the function
signature.

Here is a little example to show you how they work.

Function introspection

>>> import inspect
>>> def f(a, b, c=1, d="one", *args, **kw):
... print('a', a, 'b', b, 'c', c, 'd', d, 'args', args, 'kw', kw)
...
>>> inspect.getfullargspec(f)
FullArgSpec(args=['a', 'b', 'c', 'd'], varargs='args', varkw='kw', defaults=(1,
'one'), kwonlyargs=[], kwonlydefaults=None, annotations={})
>>> inspect.formatargspec(*inspect.getfullargspec(f))
"(a, b, c=1, d='one', *args, **kw)"
>>>

As you can see, f o rmat argspec() produces a parenthesized list o f argument specifications that can easily
be translated back into the original fo rmat (or something equivalent to it) using the f o rmat argspec()
function.

There are o ther facilities that come as part o f the inspect module, and you can read the documentation for that module when
you feel the need to learn more. Using the features you have learned about in this lesson, however, you should be able to
discover what your program needs to know about the code that surrounds it.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multi-Threading
Lesson Objectives

When you complete this lesson, you will be able to :

utilize Threads and Processes.
use the Threading Library Module.

Threads and Processes
When you are new to programming (as some students were when they started this Certificate Series), you don't
necessarily think too much about all the o ther things that the computer is do ing besides running your programs. You
connect to a Windows system using remote desktop pro toco ls, and the same computer that is supporting your
session may be supporting o ther student sessions as well. It has to share its attention between these different tasks,
as well as handling your keyboard and mouse input and providing output in various GUIs. There is an enormous
amount o f activity go ing on in a modern server computer.

Multiprogramming

Early computers worked on exactly one problem at a time. As their resources grew and they became faster,
people observed that much o f the computer's time was spent idling, waiting for some external event (such as
reading an 80-co lumn card punched with data). Techniques were developed to allow several programs to
reside in the computer at the same time, so that when one program was waiting, the processor could be
working on another. The classic name for this technique is multiprogramming.

In a modern computer, each program is written as though it had exclusive use o f the machine that it runs on,
even though in fact the operating system will share its available processing power among hundreds or even
thousands o f processes. Each process is iso lated from the o thers by running in a special pro tected mode,
which can only access the memory that the operating system has allocated to it. To use storage and
communications features, fo r example, processes have to make calls to the operating system. Thus the
separate processes are iso lated from each o ther. Only the operating system has the ability to access all
processes' memory.

Multiprocessing

Nowadays, the engineers who design the chips that go into computers are running up against some fairly
fundamental speed constraints. Generally you can make things run faster by making them smaller (because
this reduces the travelling time o f the minute almost-light-speed electrical currents on which logic circuits
rely). The faster a circuit works, the more energy it dissipates as heat. But when you make the chips too small
o r too fast they melt, because too much energy is being dissipated in too small a space, leading to
overheating.

To try and overcome the speed limitations chip designers have started instead to build computers with more
than one processor on the same chip, and computer engineers are putting several o f those chips on a single
motherboard to build so-called multi-processor computers. The different processors share memory and
peripherals but are o therwise independent o f each o ther. As long as there are no conflicting requirements for
resources, each o f the processors can be running a different process in parallel—literally, the different
processes are executed at the same time on different processors, and the operating system tries to keep all
the processors as busy as it can. So speed increases today are being achieved by running several
computations in parallel on separate processors. This ability to execute several instruction streams truly
simultaneously is referred to as multiprocessing.

Multi-Threading

In the same way that the operating system shares the processor power between lo ts o f processes all
contending for its use at certain times, so you can write programs that take a similar approach. They manage
lo ts o f separate activities in essentially the same way, but independently o f each o ther. Each independent
activity is usually referred to as a thread, and programs that manage multiple threads are said to be multi-
threaded.

For example, around the turn o f the century I was asked to help a client send its monthly invo ices out by e-
mail. It was impractical to write a program that sent the emails one by one. Firstly, fo rmulating the messages
took a significant amount o f time, with waits fo r data to come in from the database and the networked domain

name system that translates names like ho ldenweb.com into IP addresses like 174.120.139.138.
Furthermore, there can be significant ho ldups in communication when a server is no longer present, and a
connection attempt takes minutes to time out. Early experiment established that it would take upwards o f two
days to send out the invo ices, and that performance would be flaky with occasional complete hang-ups.

Consequently, I had to take a different approach. Because I had written the code to send an email as a Python
function, it was relatively easy to refactor the code so that the function became the run() method o f a Python
t hreading.t hread subclass. This allowed me to easily create threads to send individual emails. Some
additional plumbing was required, with a thread extracting invo icing tasks from the database, dispatching
threads to send the emails, and finally updating the database with the record o f success or failure. The
plumbing code could easily be adjusted to create and use any number o f threads, and after a very short time
the client was able to send out almost 50,000 emails in under two hours using 200 parallel threads.

That represented a monthly saving o f at least $10,000 to the client in postage, so the time spent
programming was well worthwhile.

Threading, Multiprocessing, CPython and the GIL

The CPython implementation o f Python is currently the only implementation o f Python 3, though the
developers o f the o ther major implementations (PyPy, Jython and IronPython) have all expressed a
commitment to support this latest version o f Python. The CPython implementation retains a feature from
Python version 2 (which was the basis fo r development o f the Python 3.x code)—the so-called Global
Interpreter Lock, better known as the GIL.

Only one thread in a Python program can ho ld the GIL at any time. In effect this means that multi-threaded
programs in Python find it very difficult to take advantage of more than one processor—the purpose o f the GIL is
to allow speed-up o f common primitive operations by ensuring that the same object is never being accessed
in incompatible ways at the same time by two processors.

Guido van Rossum, Python's inventor, is on public record as saying that he sees no reason to remove the
GIL from CPython. He suggests that people wanting to take advantage o f hardware parallelism should either
write their applications to run as multiple cooperating processes or use a Python implementation that does
not rely on a GIL for thread safety. As you will see in a later lesson, once you understand how to use the
t hreading library, it is not much more effort to use the mult ipro cessing library to achieve a true multi-
process so lution. Since this runs multiple processes rather than multiple threads, each process runs with an
independent interpreter, and can take full advantage o f multiprocessing hardware if processes are created in
sufficient number.

In essence you will only see benefits from multi-threading if the tasks performed by each thread require significant
"waiting time" (such as awaiting a response from a user, o r from a remote computer, o r from some file). In CPython
only one thread at a time can ho ld the GIL, so multiple threads can only take advantage o f multiple processors if they
use C extensions specifically written to release the GIL while performing work that does not require access to the
interpreter's resources. Multi-threaded so lutions are frequently seen as "difficult" to communicate to beginners, but
most threading problems seem to come from not retaining strict iso lation between the namespaces and object space
used by different threads. This is not as simple as it seems, because some standard library functions can alter the
environment o f all threads in a particular process.

The Threading Library Module
t hreading is the primary library for handling threads in Python. In many implementations, you will find there is also an
underlying _t hread module, used to access threading libraries from the underlying system. In all cases, the threading
library works in roughly the same way.

When multiple threads are present, the interpreter will share its time between the threads. Threads can become blocked
for the same reasons that processes can become blocked: they need to wait fo r something (incoming network data, a
connection request, data from filestore). In CPython, the interpreter runs a certain number o f bytecodes o f one thread
before moving on to the next in a round-robin between non-blocked threads. If a thread is ho lding the GIL, no o ther
threads can be scheduled (except those that have explicitly released it, usually in an extension module).

Creating Threads (1)

The simplest way to create a new thread is by instantiating the t hreading.t hread class. You are expected to
provide a t arget keyword argument, which will be called in the context o f the new thread when it is started.
You can also provide args, a tuple o f positional arguments and kwargs, a dict o f keyword arguments. These
arguments will be passed to the t arget call when the thread is started. Finally, you can give your thread a
name if you want by passing a name keyword argument. Default names for threads are typically names like
"Thread-N." Create a Pyt ho n4_Lesso n10 pro ject and assign it to the Pyt ho n4_Lesso ns working set, and
then, in your Pyt ho n4_Lesso n10/src fo lder, create t hread.py as shown:

thread.py: do ing six things in parallel

"""
thread.py: demonstrate creation and parallel execution of threads.
"""

import threading
import time

def run(i, name):
 """Sleep for a given number of seconds, report and terminate."""
 time.sleep(i)
 print(name, "finished after", i, "seconds")

for i in range(6):
 t = threading.Thread(target=run, args=(i, "T"+str(i)))
 t.start()
print("Threads started")

The program defines a function that sleeps for a while, then prints a message and terminates. It then loops,
creating and starting six threads, each o f which uses the function to sleep a second longer than the last before
reporting, using its given name. When you run this program, you see:

Results o f running thread.py

T0 finished after 0 seconds
Threads started
T1 finished after 1 seconds
T2 finished after 2 seconds
T3 finished after 3 seconds
T4 finished after 4 seconds
T5 finished after 5 seconds

As soon as the interpreter has more than one active thread it starts sharing its time between the threads. This,
coupled with the zero wait time for the first task, means that the very first thread created has finished even
before the main thread has completed its creation and starting o f all six threads (which is when it prints the
"Threads started" message. The o ther threads then report in at one-second intervals.

Note

When a running program is associated with the conso le window, its "Terminate" and "Terminate
All" icons will be red, indicating that the conso le is monitoring an active process. As you run the
program, you will see that even though the main thread (the one which started program
execution) terminates, Ellipse still shows the conso le as containing an active process until the
last thread has terminated.

When Python creates a new thread, that thread is to a degree iso lated from the o ther threads in the same
process. Threads can share access to module-global variables, although you must be very careful not to
change anything that could be changed concurrently by any o ther thread. There are safe ways for threads to
communicate with each o ther (discussed in the next lesson), and you should use those. The namespace o f
the function call that starts the thread is unique to the thread, however, and any functions that are called
similarly have new namespaces created.

Waiting for Threads

Our initial thread.py program just assumed that the threads would all terminate in the end and everything
would come out nicely. If you don't want to make this assumption, you can either monitor the thread count or
you can wait fo r individual threads. The first approach is rather simpler, but it relies on your main thread being
the only part o f the program that is creating threads. Otherwise, the thread count would vary apparently
randomly. The function to access the current number o f threads is t hreading.act ive_co unt () .

Modify thread.py to monitor the number o f active threads

"""
thread.py: demonstrate simple monitoring of execution of threads.
"""

import threading
import time

def run(i, name):
 """Sleep for a given number of seconds, report and terminate."""
 time.sleep(i)
 print(name, "finished after", i, "seconds")

bgthreads = threading.active_count()
for i in range(6):
 t = threading.Thread(target=run, args=(i, "Thread-"+str(i)))
 t.start()
print("Threads started")
while threading.active_count() > bgthreads:
 print("Tick ...")
 time.sleep(2)
print("All threads done")

 Your output looks like this:

Output o f updated thread.py

Thread-0 finished after 0 seconds
Threads started
Tick ...
Thread-1 finished after 1 seconds
Thread-2 finished after 2 seconds
Tick ...
Thread-3 finished after 3 seconds
Thread-4 finished after 4 seconds
Tick ...
Thread-5 finished after 5 seconds
All threads done

The program now takes a thread count before starting any threads, and then after starting them waits in a
timed loop until the thread count returns to what it was before. An alternative is to wait fo r each thread to
complete by calling its jo in() method. This blocks the current thread until the thread whose jo in() method
was called has finished. Generally this works best when the order o f the threads is known, or unimportant:
once your thread blocks on a jo in() it can do nothing until that thread terminates.

Modify thread.py to wait fo r each thread using jo in()

"""
thread.py: demonstrate thread monitoring by awaiting termination.
"""

import threading
import time

def run(i, name):
 """Sleep for a given number of seconds, report and terminate."""
 time.sleep(i)
 print(name, "finished after", i, "seconds")

bgthreads = threading.active_count()
threads = []
for i in range(6):
 t = threading.Thread(target=run, args=(i, "Thread-"+str(i)))
 t.start()
 threads.append((i, t))
print("Threads started")
while threading.active_count() > bgthreads:
 print("Tick ...")
 time.sleep(2)
for i, t in threads:
 t.join()
 print("Thread", i, "done")
print("All threads done")

 The "worker" threads actually terminate in the order in which the main thread created—and waits fo r—them,
and so the output shows each thread logged as terminated as soon as it terminates.

Threads finish in the same order the main thread waits

Thread-0 finished after 0 seconds
Threads started
Thread 0 done
Thread-1 finished after 1 seconds
Thread 1 done
Thread-2 finished after 2 seconds
Thread 2 done
Thread-3 finished after 3 seconds
Thread 3 done
Thread-4 finished after 4 seconds
Thread 4 done
Thread-5 finished after 5 seconds
Thread 5 done
All threads done

A very simple modification to the source makes the threads started earlier finish later:

thread.py still waits, but worker threads finish last first

"""
thread.py: demonstrate thread monitoring by awaiting termination.
"""

import threading
import time

def run(i, name):
 time.sleep(i)
 print(name, "finished after", i, "seconds")

threads = []
for i in range(6):
 t = threading.Thread(target=run, args=(6-i, "Thread-"+str(i)))
 t.start()
 threads.append((i, t))
print("Threads started")
for i, t in threads:
 t.join()
 print("Thread", i, "done")
print("All threads done")

 This time the threads are all reported together, because by the time the first thread completes, all o thers have
already completed, and so their jo in() methods return immediately. This changes the nature o f the output
somewhat.

Once the first jo in() returns so will all o thers

Threads started
Thread-5 finished after 1 seconds
Thread-4 finished after 2 seconds
Thread-3 finished after 3 seconds
Thread-2 finished after 4 seconds
Thread-1 finished after 5 seconds
Thread-0 finished after 6 seconds
Thread 0 done
Thread 1 done
Thread 2 done
Thread 3 done
Thread 4 done
Thread 5 done
All threads done

Creating Threads (2)

The second way to create threads is to define a subclass o f t hreading.t hread, overriding its run() method
with the code you want to run in the threaded context. In this case, you are expected to pass any data in
through the __init__() method, which also means making an explicit call to t hreading.T hread.__init __()
with appropriate arguments. So there is a cost associated with creating threads this way, because the
programming is a little more detailed.

The approach can win if the logic gets complex, however, because o ther methods can be added to the
subclass and used to implement complex functionality in a reasonably modular way: all logic is still attached
to a single class. Further, each thread is a separate instance o f the class and so the methods can
communicate via instance variables as well as explicit arguments. When the thread is run as a function, there
is no corresponding "global" namespace that can be used.

First let's try and re-cast the thread.py program to use a threading.thread subclass. When you use such
subclasses, it is possible to access the thread name, so the only argument required will be the sleep time.
This argument is saved in an instance variable, and any o ther arguments are passed to the standard thread
initialization routine (though arguments are not normally passed to instantiate subclasses with run()
methods, who knows how the API may change in the future—this way is future-proof). When the thread is
started, its run() method begins to execute and the sleep time is extracted from the instance variable. As
before, the main thread ticks every two seconds and waits fo r the thread count to go back to its "main thread
only" value.

Modify thread.py to subclass threading.thread

"""
thread.py: Use threading.Thread subclass to specify thread logic in run() method
.
"""
import threading
import time

class MyThread(threading.Thread):
 def __init__(self, sleeptime, *args, **kw):
 threading.Thread.__init__(self, *args, **kw)
 self.sleeptime = sleeptime
 def run(self):
 print(self.name, "started")
 time.sleep(self.sleeptime)
 print(self.name, "finished after", self.sleeptime, "seconds")

def run(i, name):
 time.sleep(i)
 print(name, "finished after", i, "seconds")

threads = []
bgthreads = threading.active_count()
tt = [MyThread(i+1) for i in range(6)]
for t in tt:
for i in range(6):
 t = threading.Thread(target=run, args=(6-i, "Thread-"+str(i)))
 t.start()
 threads.append((i, t))
print("Threads started")
for i, t in threads:
 t.join()
 print("Thread", i, "done")
while threading.active_count() > bgthreads:
 time.sleep(2)
 print("tick")
print("All threads done")

 There should be no surprises in the output:

Subclassing threading.thread works too!

Thread-1 started
Thread-2 started
Thread-3 started
Thread-4 started
Thread-5 started
Thread-6 started
Threads started
Thread-1 finished after 1 seconds
tick
Thread-2 finished after 2 seconds
Thread-3 finished after 3 seconds
Thread-4 finished after 4 seconds
tick
Thread-5 finished after 5 seconds
Thread-6 finished after 6 seconds
tick
All threads done

So far, the threads we've written haven't done very much—simply sleeping and printing a message doesn't
really amount to a convincing computation. The computer is still do ing nothing but wait (in our process) fo r
sleep times to expire. Now let's see what happens when we replace the sleep with some real computation.

Modifying thread.py to compute instead o f sleep

"""
thread.py: Use threading.Thread subclass to specify thread logic in run() method
.
"""
import threading
import time

class MyThread(threading.Thread):
 def __init__(self, sleeptime, *args, **kw):
 threading.Thread.__init__(self, *args, **kw)
 self.sleeptime = sleeptime
 def run(self):
 print(self.name, "started")
 time.sleep(self.sleeptime)
 for i in range(self.sleeptime):
 for j in range(500000):
 k = j*j
 print(self.name, "finished pass", i)
 print(self.name, "finished after", self.sleeptime, "seconds")

bgthreads = threading.active_count()
tt = [MyThread(i+1) for i in range(6)]
for t in tt:
 t.start()
print("Threads started")
while threading.active_count() > bgthreads:
 time.sleep(2)
 print("tick")
print("All threads done")

 You can see that this time the output from the different threads is intermingled, indicating that all active
threads are receiving some processor time rather than one thread running until it finishes. Without this
"scheduling" behavior, threading would not be very popular.

thread.py now shows threads sharing compute resource

Threads started
Thread-1 finished pass 0
Thread-1 finished after 1 seconds
Thread-4 finished pass 0
Thread-3 finished pass 0
Thread-2 finished pass 0
Thread-5 finished pass 0
Thread-6 finished pass 0
Thread-4 finished pass 1
Thread-3 finished pass 1
Thread-2 finished pass 1
Thread-2 finished after 2 seconds
Thread-5 finished pass 1
Thread-4 finished pass 2
Thread-5 finished pass 2
Thread-6 finished pass 1
Thread-3 finished pass 2
Thread-3 finished after 3 seconds
Thread-4 finished pass 3
Thread-4 finished after 4 seconds
Thread-6 finished pass 2
Thread-5 finished pass 3
tick
Thread-6 finished pass 3
Thread-6 finished pass 4
Thread-5 finished pass 4
Thread-5 finished after 5 seconds
Thread-6 finished pass 5
Thread-6 finished after 6 seconds
tick
All threads done

Your results will probably differ from those shown above, precisely because the way the different threads are
scheduled may well no t be as "equitable" as you think. When you look at the long-lived threads, you can see
that Thread-4 finishes pass 3 before Thread-6 has finished pass 2. But ultimately all threads are computing
and they are all "pushed along" at roughly the same speed.

Multi-threading is one way to achieve asynchronous processing. For the CPython implementation (and o thers relying on
single-processor guarantees to speed processing) this will no t help if the application is CPU-bound, as all processing must
take place on a single processor, and so the application cannot benefit from multiple processors in the computer it runs on.

Next, we will consider how to synchronize multiple threads, amd how to pass data safely from one thread to another.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

More on Multi-Threading
Lesson Objectives

When you complete this lesson, you will be able to :

synchronize threads.
access the Queue Standard Library.

Thread Synchronization

threading.Lock Objects

Because attempts to access (and particularly to modify) the same resource from different threads can be
disastrous, the threading library includes Lo ck objects that allow you to place a lock on resources, stopping
any o ther thread that tries to access the resource in its tracks (in fact, stopping any thread that attempts to
acquire the same lock). A t hreading.Lo ck has two states: locked and unlocked, and it is created in the
unlocked state.

When a thread wants to access the resource associated with a specific Lock, it calls that Lock's acquire()
method. If the Lock is currently locked, the acquiring thread is blocked until the Lock becomes unlocked and
allows acquisition. If the Lock is unlocked, it is locked and acquired immediately. A Lock object becomes
unlocked when its release() method is called.

In the next example, we'll modify the thread.py code from the last lesson so that the "critical resource" is the
ability to sleep. Before sleeping for a tenth o f a second each thread has to acquire a single lock shared
between all threads. Even though each thread only has to sleep for a to tal o f a second, because there are six
threads and only one o f them can be sleeping at a time, it takes the program six seconds to run.

Modify thread.py to lock while sleeping

"""
thread.py: Use threading.Lock to ensure threads run sequentially.
"""
import threading
import time

class MyThread(threading.Thread):
 def __init__(self, lock, *args, **kw):
 threading.Thread.__init__(self, *args, **kw)
 self.sleeptime = sleeptime
 self.lock = lock
 def run(self):
 for i in range(10):
 for j in range(500000):
 k = j*j
 self.lock.acquire()
 time.sleep(0.1)
 self.lock.release()
 print(self.name, "finished pass", i)
 print(self.name, "finished")
 print(self.name, "finished after", self.sleeptime, "seconds")

lock = threading.Lock()
bgthreads = threading.active_count()
tt = [MyThread(lock) for i in range(6)]
for t in tt:
 t.start()
print("Threads started")
while threading.active_count() > bgthreads:
 time.sleep(2)
 print("tick")
print("All threads done")

 Save and run it:

The threads appear to finish deterministically in Eclipse

Threads started
tick
tick
tick
Thread-1 finished
Thread-2 finished
Thread-3 finished
Thread-4 finished
Thread-5 finished
Thread-6 finished
tick
All threads done

In different environments, however, the output from this program will typically vary each time you run it,
because there are enough acquisitions and releases to allow different threads to get an advantage in the
scheduling (which is not a simple deterministic round-robin). Here is the output from a run o f the same
program under Python 3.1.3 on MacOS 10.6 :

The threads finish in apparently random order over six seconds

AirHead:src sholden$ python3 thread.py
Threads started
Thread-3 finished
tick
Thread-6 finished
tick
Thread-1 finished
Thread-4 finished
Thread-5 finished
tick
Thread-2 finished
tick
All threads done
AirHead:src sholden$

The simple expedient o f removing the lock acquisition allows the threads to sleep in parallel, and without the
limitation that only one thread can sleep at a time, all threads have terminated before the first (and last) tick
from the main thread. Because the sleeps are intermingled, and again subject to random timing variations, the
order o f the threads finishing is unpredictable. [You should verify this assertion by making several runs o f
your program].

Removing the locks means one thread need not wait fo r o thers

"""
thread.py: Without threading.Lock, threads sleep in parallel.
"""
import threading
import time

class MyThread(threading.Thread):
 def __init__(self, lock, *args, **kw):
 threading.Thread.__init__(self, *args, **kw)
 self.lock = lock
 def run(self):
 for i in range(10):
 self.lock.acquire()
 time.sleep(0.1)
 self.lock.release()
 self.lock.acquire()
 print(self.name, "finished")
 self.lock.release()

lock = threading.Lock()
bgthreads = threading.active_count()
tt = [MyThread(lock) for i in range(6)]
for t in tt:
 t.start()
print("Threads started")
while threading.active_count() > bgthreads:
 time.sleep(2)
 print("tick")
print("All threads done")

 Now the six threads are all sleeping pretty much in parallel, and so all terminate after one second. The main
thread therefore ticks once and sees all threads already terminated, and so the program ends after two
seconds. Again you should find that the order in which the "worker" threads terminate is unpredictable,
because o f uncontro llable timing differences. Now it is much more likely that different threads could be
printing at the same time, which could lead to garbled output, so we use the locks to ensure this cannot
happen. A typical output fo llows.

It's all over before the first tick!

Threads started
Thread-4 finished
Thread-5 finished
Thread-6 finished
Thread-2 finished
Thread-1 finished
Thread-3 finished
tick
All threads terminated

Note

Int eract ive t hreading experiment s can be t ricky in IDEs: you may find, if you experiment with
threads from the Ellipse interactive conso le, that output from a thread running in the background does not
always appear immediately. This is because the IDE contro ls output in an attempt to ensure that your
input is never interspersed with output from running code (which would make sessions extremely difficult
to understand). So frequently you need to press Ent er at the ">>> " prompt to allow output to become
visible. A true interactive conso le session in a terminal window will no t generally cause the same issues.

If you are starting to enjoy the possibilities opened up by the t hreading library, you should definitely look at its
documentation to learn about Rlo ck, Co ndit io n, Semapho re and Event objects.

The Queue Standard Library
This library was produced to provide programmers o f threaded programs with a safe way for their threads to exchange

http://docs.python.org/py3k/library/threading.html

information. The queue module defines three classes that each have the same interface but queue things in slightly
different ways. queue.Queue is a FIFO (first- in first-out) queue in which the first objects added to the queue are the
first to be retrieved. This is the most usual type to use for handing out work to worker threads. queue.Lif o Queue
objects implement a stack o f sorts. The next item retrieved is the most recently-added item. Finally,
queue.Prio rit yQueue items are always retrieved in natural sort o rder.

When creating a queue, you can establish a maximum length for it by providing that length as an argument. If this
maximum length is not provided, the queue will be o f potentially infinite length, and further items may always be added
to it. With a maximum length, there are only a given number o f free slo ts, and attempts to add to a full queue will either
block the thread that is attempting the add or raise an exception to show that the queue is full (o r a combination o f
both). The thread-safety guarantees made by the library mean that the same queue item can be accessed by multiple
threads without any need to lock the queue (locking as necessary is taken care o f internally by the queue methods).
When a queue is empty, any attempt to extract an item will either block or raise an exception (or both).

We are making only the simplest use o f queues here, by using the put () and get () methods, to present a way o f
writing scalable threaded programs. There are many refinements you can adopt by reading the module documentation
once you understand the basics. In threaded applications, simplest is almost always best, as most o f us have brains
that can only conceptualize a limited amount o f parallelism and have difficulty predicting situations that cause
problems in practice (such as deadlocks, where Thread A is blocked waiting for Thread B, which is blocked waiting for
Thread A: since neither can progress, the two threads are doomed to wait fo r each o ther fo rever).

Adding Items to Queues: Queue.put()

queue.Queue.put (it em, blo ck=T rue, t imeo ut =No ne) adds the given item to the queue. If blo ck
evaluates false, either the item is added immediately or an exception is raised. When blo ck is True (the
default case), either the item is added immediately or the putting thread blocks. If timeout remains None, this
could leave the thread blocked indefinitely in a non-interruptible state. If a timeout (in seconds) is given, an
exception will be raised if the item has not been added before the timeout expires.

Removing Items from Queues: Queue.get()

queue.Queue.get (blo ck=T rue, t imeo ut =No ne) attempts to remove an item from the queue. If an item is
immediately available, it is always returned. Otherwise, if blo ck evaluates false, an exception is raised. When
blo ck evaluates true, the process blocks either indefinitely (when timeout is None) or until the timeout (in
seconds) has expired, in which case an exception is raised if no item has arrived.

Monitoring Completion: Queue.task_done() and Queue.join()

Every time an item is successfully added to a queue with put(), a task count is incremented. Removing an item
with get() does not decrement the counter. To decrement the counter, the removing thread should wait until
processing is complete and then call the queue's task_done() method.

If a queue is expected to end up empty, a thread can declare itself interested in the queue's exhaustion by
calling its jo in() method. This method blocks the calling thread until all tasks have been recorded as complete.
You should be confident that threads are all go ing to terminate correctly before using this technique, since it
can lead to indefinite delays.

A Simple Scalable Multi-Threaded Workhorse

We'll finish the lesson by building a fairly general framework to allow you to run programs with "any number"
o f threads (sometimes the system places limits on the number o f threads you can create).

The idea is to have a contro l thread that generates "work packets" fo r a given number o f worker threads (with
which it communicates by means o f a queue). The worker threads compute the necessary results, and deliver
them to a final output thread (by means o f a second queue) which displays the results. The structure is quite
general: work units can be generated by reading database tables, accepting data from web services, and the
like. Computations can invo lve not only calculation but further database work or network communication, all
o f which can invo lve some (in computer terms) fairly extensive waiting.

The contro l thread is the main thread with which every program starts out (the only thread o f all programs
before these lessons). It creates an input and an output queue, starts the worker threads and the output
thread, and thereafter distributes work packets to the worker threads until there is no more work. Since the
worker threads are programmed to terminate when they receive None from the work queue, the contro l
thread's final act is to Queue None for each worker thread and then wait fo r the queue to finally empty before
terminating. The worker threads put a None to the output queue before terminating. The output thread counts
these Nones, and terminates when enough None values have been seen to account fo r all workers.

The Output Thread

http://docs.python.org/py3k/library/queue.html

The output thread simply has to extract output packets from a queue where they are placed by the worker
threads. As each worker thread terminates, it posts a None to the queue. When a None has been received
from each thread, the output thread terminates. The output thread is to ld on initialization how many worker
threads there are, and each time it receives another None it decrements the worker count until eventually there
are no workers left. At that po int, the output thread terminates. Create a new PyDev pro ject named
Pyt ho n4_Lesso n11 and assign it to the Pyt ho n4_Lesso ns working set. Then, in your
Pyt ho n4_Lesso n11/src fo lder, create o ut put .py as shown:

output.py: the output thread definition

"""
output.py: The output thread for the miniature framework.
"""
identity = lambda x: x

import threading
class OutThread(threading.Thread):
 def __init__(self, N, q, sorting=True, *args, **kw):
 """Initialize thread and save queue reference."""
 threading.Thread.__init__(self, *args, **kw)
 self.queue = q
 self.workers = N
 self.sorting = sorting
 self.output = []
 def run(self):
 """Extract items from the output queue and print until all done."""
 while self.workers:
 p = self.queue.get()
 if p is None:
 self.workers -= 1
 else:
 # This is a real output packet
 self.output.append(p)
 print("".join(c for (i, c) in (sorted if self.sorting else identity)(sel
f.output)))
 print ("Output thread terminating")

In this particular case, the output thread is receiving (index, character) pairs (because the workers pass
through the position argument they are given as well as the transformed character, to allow the string to be
reassembled no matter in what order the threads finish). Rather than output each one as it arrives, the output
thread stores them until the workers are all done, then sorts them (unless sorting is disabled with
so rt ing=False) and the characters extracted and jo ined together.

The Worker Threads

The Worker threads have been cast so as to make interactions easy. The work units received from the input
queue are (index, character) pairs, and the output units are also pairs. The processing is split out into a
separate method to make subclassing easier—simply override the process() method. Create wo rker.py as
shown:

worker.py: the simple worker thread

"""
worker.py: a sample worker thread that receives input
 through one Queue and routes output through another.
"""
from threading import Thread

class WorkerThread(Thread):
 def __init__(self, iq, oq, *args, **kw):
 """Initialize thread and save Queue references."""
 Thread.__init__(self, *args, **kw)
 self.iq, self.oq = iq, oq
 def run(self):
 while True:
 work = self.iq.get()
 if work is None:
 self.oq.put(None)
 print("Worker", self.name, "done")
 self.iq.task_done()
 break
 i, c = work
 result = (i, self.process(c)) # this is the "work"
 self.oq.put(result)
 self.iq.task_done()
 def process(self, s):
 """This defines how the string is processed to produce a result"""
 return s.upper()

Although this particular worker thread is not do ing particularly interesting processing (merely converting a
single character to upper case), you can imagine more complex work units, perhaps with numerical inputs
and the need for database lookup as well as interaction with local disk files.

The Control Thread

Everything is started o ff by the contro l thread (which imports the output and worker threads from their
respective modules). It first creates the input and output queues. These are standard FIFOs, with a limit o f
50% more than the number o f worker threads to avo id locking up too much memory in buffered objects. Then
it creates and starts the output thread, and finally creates and starts as many worker threads as configured by
the WORKERS constant. Worker threads get from the input queue and put to the output queue. The contro l
thread then simply keeps the input queue loaded as long as it can before sending the None values required to
shut the worker threads down. Once the input queue is empty, the thread terminates.

contro l.py: The thread that drives everything else

"""
control.py: Creates queues, starts output and worker threads,
 and pushes inputs into the input queue.
"""
from queue import Queue
from output import OutThread
from worker import WorkerThread

WORKERS = 10

inq = Queue(maxsize=int(WORKERS*1.5))
outq = Queue(maxsize=int(WORKERS*1.5))

ot = OutThread(WORKERS, outq)
ot.start()

for i in range(WORKERS):
 w = WorkerThread(inq, outq)
 w.start()
instring = input("Words of wisdom: ")
for work in enumerate(instring):
 inq.put(work)
for i in range(WORKERS):
 inq.put(None)
inq.join()
print("Control thread terminating")

 Running the program causes a prompt fo r input, which is then split up into individual characters and passed
through the input queue to the worker threads. At present, ten threads operate in parallel, but the number can
easily be varied by changing the definition o f WORKERS in the source file. The output from a typical run is
shown below.

A Bizarrely Complex Way to Covert a String to Upper Case?

Words of wisdom: Elemental forces are at work to change the way we live.
Worker Thread-2 done
Worker Thread-3 done
Worker Thread-4 done
Worker Thread-10 done
Worker Thread-9 done
Worker Thread-8 done
Worker Thread-11 done
Worker Thread-7 done
Worker Thread-5 done
Worker Thread-6 done
Control thread terminating
ELEMENTAL FORCES ARE AT WORK TO CHANGE THE WAY WE LIVE.
Output thread terminating
Control thread terminating

You will appreciate the need for the sorting if you study this output, from a typical run where the output thread
was created with sorting=False:

Why sorting is required

Words of wisdom: Does the string really appear correct?
Worker Thread-7 done
Worker Thread-6 done
Worker Thread-4 done
Worker Thread-2 done
Worker Thread-11 done
Worker Thread-3 done
Worker Thread-9 done
Worker Thread-5 done
Worker Thread-10 done
Worker Thread-8 done
DOES THE STRING PEAELRYA PLAR CORERCT?
Output thread terminating
Control thread terminating

This ends our discussion o f the queue.Queue object, and with it our somewhat lengthy study o f threading.

Other Approaches

In the last two lessons, we've made use o f the t hreading library module to write classes whose instances
run as separate threads. If enough o f these are started, the waiting that each thread has to do can be filled by
useful work for o ther threads, and so a fairly high-bandwidth network channel can be kept busy and individual
ho ld-ups can be made to matter much less. There are a number o f o ther schemes that have been developed
to contro l multiple asynchronous tasks.

The o ldest (and the only one currently included in the standard library) is the asyncore module. With asyncore,
each client process is a "channel," and you program the channels to respond to specific network events in
specific ways. Asynchat is layered on top o f asyncore and allows you to specify pro toco l handling by looking
for specific sequences in the incoming data and triggering events when those sequences are detected.

The Twisted library is a system devised by Glyph Lefkowitz that has been used to good effect by many
surprisingly large enterprises (including one business that has since been purchased by Google). Operations
that will po tentially block (cause the process to wait) return a Def erred object, which is effectively a promise
of future data. A Deferred object is asked for its result by calling specific methods; if the data is not currently
available, the Twisted scheduler suspends that activity until the Deferred request can be satisfied, and returns
to some other suspended task that can now be restarted.

Stackless Python was an early attempt by Christian Tismer to allow massively parallel computing in Python
by the provision o f so-called "micro-threads." It has been used to great effect by a gaming company to
provide a space "shoot- 'em-up" environment fo r over 50,000 simultaneous players. More recent versions
allow advanced capabilities like saving a computation on one computer and restoring it on another. This was
very helpful in running code on a 250-CPU cluster.

A more recent approach to asynchronous networking is the Kamaelia package, initially developed by Michael
Sparks for BBCResearch in the UK. Kamaelia, as far as I am aware, pioneered the use o f generator functions
to interact with the task scheduling environment. This approach has also been taken in Monocle, another
even more recent development by Raymond Hettinger.

All in all, if you decide to venture beyond the standard library, a wealth o f cho ices awaits you and not all o f
them rely on threading.

Multi-threading is one way to achieve asynchronous processing. For the CPython implementation (and o thers relying on
single-processor guarantees to speed processing) this will no t help if the application is CPU-bound, as all processing must
take place on a single processor, and so the application cannot benefit from multiple processors in the computer it runs on.

Next, we'll go on to consider how to share work between multiple processes, which can be done on different processors and
therefore extract more work from modern multi-processor hardware.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://docs.python.org/library/asyncore.html
http://twistedmatrix.com/trac/
http://en.wikipedia.org/wiki/Stackless_Python
http://www.kamaelia.org/
https://github.com/saucelabs/monocle
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multi-Processing
Lesson Objectives

When you complete this lesson, you will be able to :

use the Multiprocessing Library Module.
create a Multiprocessing Worker Process Pool.

The Multiprocessing Library Module
The mult ipro cessing module was written specifically to o ffer features closely parallel to the t hreading library but
allowing the individual threads o f contro l to be processes rather than threads within a single process. This allows the
operating system to take advantage o f any parallelism inherent in the hardware design, since generally processes can
run completely independently o f one another, and on separate processors if they are available.

multiprocessing Objects

The mult ipro cessing library defines various classes, most o f which operate in the same way as similar
classes in the t hreading and related modules. Whereas in using t hreading you also imported resources
from other modules, the mult ipro cessing module tries to put all necessary resources into one convenient
place, simplifying imports. But you will easily recognize the program style from your recent work on multi-
threading.

A Simple Multiprocessing Example

Our first multiprocessing example is marked up below as though we were editing the first thread.py example.
This shows how similar the two environments are. Create a new pydev pro ject named Pyt ho n4_Lesso n12
and assign it to the Pyt ho n4_Lesso ns working set. Then, in your Pyt ho n4_Lesso n12/src fo lder, create
pro cess.py as shown:

CODE TO TYPE: process.py

"""
process.py: demonstrate creation and parallel execution of processes.
"""

import multiprocessing
import time
import sys

def run(i, name):
 """Sleep for a given number of seconds, report and terminate."""
 time.sleep(i)
 print(name, "finished after", i, "seconds")
 sys.stdout.flush()

if __name__ == "__main__":
 for i in range(6):
 t = multiprocessing.Process(target=run, args=(i, "P"+str(i)))
 t.start()
 print("Processes started")

Note that this program has been correctly written as a module, so that the action o f starting six processes is
only performed by the process that runs this code, and not in any processes that may try to import the
module. This is very important, because the subprocesses have to get their description o f the work to be
done from somewhere, and they do that by importing the main module. So in this case the subprocesses will
import the pro cess module (so the test __name__ == "__main__" is false) to access the run() function.

Note
Not all platfo rms require that the main module be "importable" in that way. Since it does not hurt
to write your programs this way, however, we recommend that you do so every time. Then,
platform differences are less likely to "bite" you.

 The output should not be at all surprising:

Waiting in processes rather than threads

Processes started
P0 finished after 0 seconds
P1 finished after 1 seconds
P2 finished after 2 seconds
P3 finished after 3 seconds
P4 finished after 4 seconds
P5 finished after 5 seconds

A Multiprocessing Worker Process Pool
The lesson on multi-threading concluded with an example that used a poo l o f worker threads to convert the characters
of a string into upper case. To demonstrate the (at least superficial) similarities between mult ipro cessing and
t hreading and friends, we'll now adapt that code.

So first, copy the three programs (o ut put .py, wo rker.py, and co nt ro l.py from your Pyt ho n4_Lesso n11/src fo lder
to your Pyt ho n4_Lesso n12/src fo lder.

The Output Process

The fo llowing listing shows the code for the mult ipro cesso r version alongside the equivalent t hreading-
based code. The differences are small enough to be negligible, and to allow anyone who understood the
threaded code to also understand the multi-process version.

Modifying output.py for multi-processor operations

"""
output.py: The output process for the miniature framework.
"""
identity = lambda x: x

import multiprocessing
import sys

class OutThread(multiprocessing.Process):
 def __init__(self, N, q, sorting=True, *args, **kw):
 """Initialize process and save queue reference."""
 multiprocessing.Process.__init__(self, *args, **kw)
 self.queue = q
 self.workers = N
 self.sorting = sorting
 self.output = []

 def run(self):
 """Extract items and print until all done."""
 while self.workers:
 p = self.queue.get()
 if p is None:
 self.workers -= 1
 else:
 # This is a real output packet
 self.output.append(p)
 print("".join(c for (i, c) in (sorted if self.sorting else identity)(sel
f.output)))
 print ("Output process terminating")
 sys.stdout.flush()

The main difference between the two pieces o f code is the use o f mult ipro cessing.pro cess in place o f
t hreading.T hread, and associated changes to a couple o f comments. It is also necessary to flush the
process's standard output stream to make sure that it is captured before the process terminates—otherwise
you will see a confusing lack o f output! (Feel free to try running the program with the flush() call commented
out to verify this).

The Worker Process

The next listing shows the differences in the worker code when processes are being used instead o f threads.

Modifying worker.py for multi-processor operations

"""
worker.py: a sample worker process that receives input
 through one queue and routes output through another.
"""

from multiprocessing import Process
import sys

class WorkerThread(Process):
 def __init__(self, iq, oq, *args, **kw):
 """Initialize process and save Queue references."""
 Process.__init__(self, *args, **kw)
 self.iq, self.oq = iq, oq
 def run(self):
 while True:
 work = self.iq.get()
 if work is None:
 self.oq.put(None)
 print("Worker", self.name, "done")
 self.iq.task_done()
 break
 i, c = work
 result = (i, self.process(c)) # this is the "work"
 self.oq.put(result)
 self.iq.task_done()
 sys.stdout.flush()
 def process(self, s):
 """This defines how the string is processed to produce a result."""

 return s.upper()

Again the only change is to use Pro cess from mult ipro cessing instead o f T hread from t hreading. (Two
of the differences are again in comments.)

The Control Process

The contro l process again needs very little change: queue objects come from the mult ipro cessing module
rather than the queue module, and in that module if you are go ing to jo in() a queue then you must use a
Jo inableQueue . The rest o f the logic is exactly the same, with the exception that the code must now be
guarded so that it isn't executed when the module is imported by the multiprocessing module. This means you
have to indent the majority o f the logic. This is easy in Ellipse: just highlight all the lines o f code (making sure
you are selecting whole lines) and then press T ab once.

Modifying contro l.py for multi-processor operations

"""
control.py: Creates queues, starts output and worker processes,
 and pushes inputs into the input queue.
"""
from multiprocessing import Queue, JoinableQueue
from output import OutThread
from worker import WorkerThread

if __name__ == '__main__':
 WORKERS = 10

 inq = JoinableQueue(maxsize=int(WORKERS*1.5))
 outq = Queue(maxsize=int(WORKERS*1.5))

 ot = OutThread(WORKERS, outq, sorting=True)
 ot.start()

 for i in range(WORKERS):
 w = WorkerThread(inq, outq)
 w.start()
 instring = input("Words of wisdom: ")
 # feed the process pool with work units
 for work in enumerate(instring):
 inq.put(work)
 # terminate the process pool
 for i in range(WORKERS):
 inq.put(None)
 inq.join()
 print("Control process terminating")

 This version o f contro l.py does exactly what the threading version did, except that the individual characters are now
being passed to one o f a poo l o f processes rather than one o f a poo l o f threads. The computation is trivial, but the
principle would be the same if the work packets were filenames and the outputs were MD5 checksums of the contents
of the file (which could require substantial computation and I/O in the case o f long files). Since the processes run
independently o f each o ther, they can be run on different processors at the same time, allowing programs to take true
advantage o f hardware parallelism. The output will seem prosaic fo r the amount o f work that is being done!

Output o f the multiprocessing upper-case converter

Words of wisdom: No words of wisdom at all, in fact. Just a rather long and boring line
 of text.
Worker Thread-2 done
Worker Thread-3 done
Worker Thread-4 done
Worker Thread-5 done
Worker Thread-6 done
Worker Thread-7 done
Worker Thread-8 done
Worker Thread-9 done
Worker Thread-10 done
Worker Thread-11 done
Control thread terminating
NO WORDS OF WISDOM AT ALL, IN FACT. JUST A RATHER LONG AND BORING LINE OF TEXT.
Output thread terminating.

Do not make the mistake o f thinking that this brief treatment has taught you all you need to know about multiprocessing. There
are many more things to learn about it including, fo r example, limitations on what can be transmitted from process to process
through a mult ipro cessing.Queue . These restrictions are fairly commonsense, and are the result o f having to pickle the
objects to transmit them to the remote process. As long as you stick to Python's basic data objects (and combinations thereof),
you should be fine. Other restrictions are less obvious: when you subclass mult ipro cess.Pro cess, the instances should be
pickleable (because the class has to be instantiated in a new process when the instance's start() method is called).

As systems evo lve, multiprocessor so lutions will become more and more common, and it will be necessary to put systems
together to take contro l o f multi-processor machines. This lesson is intended to give you the necessary grounding so that you
can take the next steps with confidence.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions and Other Objects
Lesson Objectives

When you complete this lesson, you will be able to :

interact with more Functions.
employ more Magic Methods.

A Deeper Look at Functions

Required Keyword Arguments

You already know that the arguments passed to a function call must match the parameter specifications in the
function's definition. Any mismatch can be taken up in the definition, where a parameter o f the form *name
associates unmatched positional arguments with a tuple and one o f the form **name associates the names
and values o f unmatched keyword arguments with the keys and values o f a dict.

You have also seen that a positional argument may be associated with a keyword parameter and vice versa.
You currently have no way, however, o f requiring that specific arguments be presented as keyword
arguments. You can specify such a requirement by inserting an asterisk on its own as a parameter
specification: any parameters that fo llow the star (o ther than the *args and **kwargs arguments, if present)
must be provided as keyword arguments on the call.

Investigating this phenomenon is quite easy in the interactive conso le:

Investigating function signatures

>>> def f(a, *, b, c=2):
... print("A", a, "B", b, "C", c)
...
>>> f(1, 2)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: f() takes 1 positional argument but 2 were given
>>> f(1, c=3)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: f() missing 1 required keyword-only argument: 'b'
>>> f(1, b=2, c=3)
A 1 B 2 C 3
>>> f(1, b=2)
A 1 B 2 C 2
>>>

Attempting to provide a positional argument fo r b raises an exception because o f the wrong number o f
positional arguments. The second test is the most telling one, as that explains the requirement fo r a keyword
argument b.

Function Annotations

We mention this feature because you may come across some code that uses it, and wonder what on Earth is
go ing on. In Python 3, functions and their parameters can be annotated. A parameter is annotated by fo llowing
its name with a co lon and an expression, and a function is annotated by fo llowing its parameter list with "->"
and an expression.

The language definition specifically avo ids associating any kind o f meaning to annotations. The stated
intention is that if people find ways o f using annotations that find general acceptance, specific semantics may
be added to the interpreter at a later date; fo r now you can access them through the __anno t at io ns__
attribute o f the function object. This is a dict in which each o f the function's annotated parameters is stored
against the parameter name as key. The function's return-value annotation, if present, is stored against key
"return" which, being a Python keyword, cannot be the name of any parameter.

Just to show you how annotations appear in practice, we'll create an annotated function in an interactive
interpreter session:

INTERACTIVE SESSION:

>>> def f(i: int, x:float=1.2) -> str:
... return str(i*x)
...
>>> f.__annotations__
{'i': <class 'int'>, 'x': <class 'float'>, 'return': <class 'str'>}
>>>

Although there is no restriction on the expressions used as annotations, in practice most people see them as
being useful fo r making assertions about the types o f arguments and the function's return value. At present,
nothing in the interpreter uses the anotation information at all. You would need to specifically action such
uses with additional code if you don't want your annotation data to be ignored. It is likely that, as the feature
becomes better known, frameworks will emerge to make use o f different types o f annotation data.

Nested Functions and Namespaces

Although you have seen functions with function definitions inside them, we have not yet fo rmalized the rules
for looking up names within those functions. You already know the general rule for (unqualified) name
reso lution in Python: first look in the local namespace, then look in the (module) global namespace, and
finally look in the built- in namespace.

The only additional complexity that nested functions introduce is that the local namespace is actually
enhanced by names from surrounding functions (unless they are redefined in the contained function).
Remember that a name is only considered local to a function if the name is bound in that function. So when a
function is defined inside a function, a name can be a reference from the function call's namespace, or a
reference to the namespace o f the function call during which the inner function was defined, and this regress
can go on until the outermost function call is encountered.

Understanding Python as you do now, you will see that it requires some trickery to allow a function to return
another function defined inside the first function. That is because the returned function may contain references
to values defined in the local namespace o f the (now completed) function call that returned it! We do not need
to examine the mechanism the interpreter uses to reso lve this issue, but since it is a genuine feature o f the
language, it is one that every implementation has to so lve in its own way.

Python 3 also introduces a second declaration statement, the no nlo cal statement. This can be used to force
an apparently local variable to instead be treated as though it came from the containing scope where it is
already defined. This is slightly different from the global statement, in that the interpreter searches the
containing scopes (function namespaces) to locate the one that already contains a definition o f the name(s)
listed after the no nlo cal keyword. (The glo bal statement always and unambiguously places the name in the
module global namespace, whether it has been defined there or not).

Create a new PyDev pro ject named Pyt ho n4_Lesso n13 and assign it to the Pyt ho n4_Lesso ns working
set. Then, in your Pyt ho n4_Lesso n13/src fo lder, create no nlo c.py as shown:

Difference between global and nonlocal: create this as nonloc.py

a, b, c = "Module a", "Module b", "Module c"
def outer():
 def inner():
 nonlocal b
 global c
 a = "Inner a"
 b = "Inner b"
 c = "Inner c"
 print("inner", a, b, c)
 a = "Outer a"
 b = "Outer b"
 c = "Outer c"
 print("outer", a, b, c)
 inner()
 print("outer", a, b, c)

print("module", a, b, c)
outer()
print("module", a, b, c)

 Save and run it:

The result o f running nonloc.py

module Module a Module b Module c
outer Outer a Outer b Outer c
inner Inner a Inner b Inner c
outer Outer a Inner b Outer c
module Module a Module b Inner c

Just as the glo bal statement allows the inner() function to refer to the module-global "c" name, so the
no nlo cal statement allows it to use the name "b" to refer to the outer function's "b." After the call to outer(),
only the module-global "c" has changed, because only "c" was declared as glo bal in the inner() function.

Partial Functions

You learned about the f unct o o ls module when we were discussing decorators earlier in this course. The
module contains another useful function that allows you to take a function and define another function that is
the same as the first function, but with fixed values for some arguments. The signature o f the function is:

f unct o o ls.part ial(f [, *args[, **kw]]) returns a function g which is the same as f with the positional
arguments args giving values for the initial positional arguments and the keyword arguments kw setting
default values for the given named arguments. The intention is to allow you to fix some arguments o f a
function, leaving you with a function-like object to which the remaining arguments can be applied at your
convenience. The resulting partial function objects cannot be called with quite the same abandon as real
functions, however, since certain counterintuitive behaviors can occur.

Partial function examples

>>> import functools
>>> def fp(a, b, c="summat", d="nowt"):
... print("a b c d", a, b, c, d)
...
>>> fp("ayeup", "geddaht")
a b c d ayeup geddaht summat nowt
>>> fp1 = functools.partial(fp, 1, b=2)
>>> fp1()
a b c d 1 2 summat nowt
>>> fp1("ayeup", "geddaht")
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: fp() got multiple values for argument 'b'
>>> fp1(c="ayeup", d="geddaht")
a b c d 1 2 ayeup geddaht
>>> fp2 = functools.partial(fp, 1, c="two")
>>> fp2("ayeup", "geddaht")
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: fp() got multiple values for argument 'c'
>>> fp2
functools.partial(<function fp at 0x000000000349B2F0>, 1, c='two')
>>> fp2("ayeup", c="geddaht")
a b c d 1 ayeup geddaht nowt
>>>

f p1 is ostensibly a function taking two keyword arguments (its two positionals having been applied in the
creation o f the partial). The expression f p1("ayeup", "geddaht ") , however, makes it plain that the first
positional argument is being provided to match up with f p() 's b argument, and that when the same keyword
argument is later applied a duplication is detected.

The simplest so lution to this dilemma is to always replace positional parameters with positional arguments
and replace keyword parameters with keyword arguments when using partial(). This rule also has to be
extended to the calls o f the partial functions. The first call to f p2() shows that although the partial function has
one positional and one keyword parameter, it is not possible to match a positional argument to the keyword
parameter d as would be possible with a real function. So remember to treat partials carefully when you
encounter them.

One very nice little example from the documentation shows how a default can be applied to a required
argument. The int() built- in type can be called with a number or a string as an argument. When called with a
string, a second argument base can be provided which determines the number system used to interpret the
string. Providing that argument creates a partial object that will convert base-2 strings to integers.

Partial(int) function converts binary strings

>>> from functools import partial
>>> basetwo = partial(int, base=2)
>>> basetwo.__doc__ = "Convert base-2 string to int."
>>> basetwo("1111")
15
>>> basetwo("1001010")
74
>>> help(basetwo)
Help on partial object:

class partial(builtins.object)
 | partial(func, *args, **keywords) - new function with partial application
 | of the given arguments and keywords.
 |
 | Methods defined here:
 |
 | __call__(self, /, *args, **kwargs)
 | Call self as a function.
 |
 | __delattr__(self, name, /)
 | Implement delattr(self, name).
 |
 | __getattribute__(self, name, /)
 | Return getattr(self, name).
 |
 | __new__(*args, **kwargs) from builtins.type
 | Create and return a new object. See help(type) for accurate signature.
 |
 | __reduce__(...)
 |
 | __repr__(self, /)
 | Return repr(self).
 |
 | __setattr__(self, name, value, /)
 | Implement setattr(self, name, value).
 |
 | __setstate__(...)
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 |
 | args
 | tuple of arguments to future partial calls
 |
 | func
 | function object to use in future partial calls
 |
 | keywords
 | dictionary of keyword arguments to future partial calls

Beware o f the differences between partial objects and true functions, and respect them. While partials can be
very helpful, they are only a shorthand and not a complete replacement.

More Magic Methods
We have explained in the past how certain operations and functions cause the interpreter to invoke various "magic"
methods—methods whose names usually start and end with a double underscore, causing some people to refer
them as "dunder methods." In particular you should now be aware o f the attribute access methods (__getattr__(),
__setattr__(), and __delattr__()) and the indexing methods (__getitem__(), __setitem__(), and __delitem__(), which
parallel the attribute access methods but operate on mappings rather than namespaces (and can also be used to
index lists and o ther sequences, with slice objects as arguments where necessary).

Now we are go ing to cover a few more o f those magic methods and explain a little more about the interpreter's
interfaces to the various objects you can create. Understanding in this area allows you to take advantage o f the natural
operation o f the interpreter. It's a little like jiu-jitsu: you write your objects to fit in with the way the interpreter naturally
does things rather than trying to overpower the interpreter.

How Python Expressions Work

This simplified treatment expresses the way that the interpreter works to a first approximation. As always, we
try to be as precise as possible without necessarily providing exact detail o f what goes on in the more
complex corner cases.

When you see the expression s = x + y in a program, the interpreter has to decide how to evaluate it. It does
so by looking for specific methods on the x and y objects. For addition, the relevant methods are __add__()
and __radd__() . First the interpreter looks for an x.__add__() method (special/magic methods are always
looked up on the class and its parents, never on the instance). If such a method exists. x.__add__(y) is
called. If this call returns a result, that becomes the value o f the expression.

The method may, however, choose to indicate that it is unable to compute a response (for example because
y is incompatible) by returning a special built- in value No t Implement ed. In that case, the interpreter next
looks for a y.__radd__() method ("radd" is intended to be a mnemonic for "reflected add"). If such a method
exists, y.__radd__(x) is called and, unless it returns No t Implement ed, the return value becomes the value
of the expression. There is one exception to this rule: if the two values are o f the same type, the __radd__()
method is not called. The assumption is that if a and b are o f the same type and you can't (say) add a to b,
then you shouldn't be able to add b to a either, and there is no po int trying.

Try it out in an interactive session:

Verifying use o f reflected operators

>>> class mine:
... def __add__(self, other):
... print("__add__({}, {})".format(self, other))
... return NotImplemented
... def __radd__(self, other):
... print("__radd__({}, {})".format(self, other))
... return 42
... def __repr__(self):
... return "[Mine {}]".format(id(self))
...
>>> class yours:
... def __add__(self, other):
... print("__add__({}, {})".format(self, other))
... return NotImplemented
... def __radd__(self, other):
... print("__radd__({}, {})".format(self, other))
... return NotImplemented
... def __repr__(self):
... return "[Yours {}]".format(id(self))
...
>>> m1 = mine()
>>> m2 = mine()
>>> m1, m2
([Mine 4300644112], [Mine 4300643600])
>>> y1 = yours()
>>> y2 = yours()
>>> y1, y2
([Yours 4300644240], [Yours 4300643728])
>>>
>>> m1+m2
__add__([Mine 4300644112], [Mine 4300643600])
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'mine' and 'mine'
>>> y1+y2
__add__([Yours 4300644240], [Yours 4300643728])
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'yours' and 'yours'
>>> m1+y2
__add__([Mine 4300644112], [Yours 4300643728])
__radd__([Yours 4300643728], [Mine 4300644112])
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'mine' and 'yours'
>>> y1+m2
__add__([Yours 4300644240], [Mine 4300643600])
__radd__([Mine 4300643600], [Yours 4300644240])
42
>>>

As you can see, since both classes' __add__() methods return No t Implement ed, attempting to add a
mine to a mine o r a yo ur to a yo ur will fail, raising an exception. The third case also raises an exception
because the __radd__() method o f the yo urs right-hand operand also returns the value No t Implement ed.
The final test works, however, because mine.__radd__() actually returns a value (albeit one that does not
depend on its operands at all).

There is another series o f special methods associated with the augmented arithmetic operations (that is,
"+=", "-=" and so on). When you see a statement such as x += y (that is to say, any statement using
augmented assignment operations) in a program, the interpreter evaluates it by looking for a specific method
on the x object. For addition, the relevant method is __iadd__() . If this method does not exist, the statement
is treated as though it read x = x+y. If the x.__iadd__() method is found, however, it is called with y as an
argument, and the result (which may be a modified version o f the existing object or a completely new object,
entirely at the option o f the implementor o f the object in question) is bound to x. Fo llowing are the methods

corresponding to the basic Python arithmetic operations.

Operat o r St andard Met ho d Ref lect ed Met ho d Augment ed Met ho d

+ __add__() __radd__() __iadd__()

- __sub__() __rsub__() __isub__()

* __mul__() __rmul__() __imul__()

/ __truediv__() __rtruediv__() __itruediv__()

// __floordiv__() __rfloordiv__() __ifloordiv__()

% __mod__() __rmod__() __imod__()

divmod() __divmod__() __rdivmod__() __idivmod__()

** __pow__() __rpow__() __ipow__()

<< __lshift__() __rlshift__() __ilshift__()

>> __rshift__() __rrshift__() __irshift__()

& __and__() __rand__() __iand__()

^ __xor__() __rxor__() __ixor__()

| __or__() __ror__() __ior__()

So you now understand a little more about functions in Python, and understand more o f the ro le o f "magic" methods in Python.

In the next lesson, we consider some of the differences between small pro jects and large ones.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Context Managers
Lesson Objectives

When you complete this lesson, you will be able to :

use another Python Contro l Structure called the With Statement.
use Decimal Arithmetic and Arithmetic Contexts in Python.

Another Python Control Structure: The With Statement
One of the more recently added contro l constructs in Python is the wit h statement. This allows you to create
resources for the duration o f an indented suite and have them automatically released when no longer required. The
statement's basic syntax is:

with statement syntax

with object1 [as name1][, object2 [as name2]] ...:
 [indented suite]

The o bject s are referred to as context managers, and if the indented suite needs to refer to them, they can be named in
the as clause(s) (which can o therwise be omitted). Nowadays, files are context managers in Python, meaning that it is
possible to write file processing code without explicitly closing the files you open.

Using a Simple Context Manager

Create the usual pro ject fo lder (Pyt ho n4_Lesso n14) and assign it to the Pyt ho n4_Lesso ns working set.
In your Pyt ho n4_Lesso n14 fo lder, create a file named lo calt ext f ile . Then, open an interactive conso le
session and enter commands as shown:

The fo llowing interactive conso le session shows how to use files as context managers.

An Introduction to Context Managers

>>> with open(r"v:\workspace\Python4_Lesson14\src\localtextfile") as f:
... print("f:", f)
... print("closed:", f.closed)
... for line in f:
... print(line, end='')
...
f: <_io.TextIOWrapper name='v:\\workspace\\Python4_Lesson14\\src\\localtextfile'
 mode='r' encoding='cp1252'>
closed: False
>>> f
<_io.TextIOWrapper name='v:\\workspace\\Python4_Lesson14\\src\\localtextfile' mo
de='r' encoding='cp1252'>
>>> f.closed
True

>>> f = open(r"v:\workspace\Python4_Lesson14\src\localtextfile", 'r')
>>> 3/0
Traceback (most recent call last):
 File "<console>", line 1, in <module>
ZeroDivisionError: division by zero
>>> f
<_io.TextIOWrapper name='v:/workspace/Python4_Lesson14/src/localtextfile' mode='
r' encoding='cp1252'>
>>> f.closed
False
>>> with open(r"v:\workspace\Python4_Lesson14\src\localtextfile") as f:
... 3/0
...
Traceback (most recent call last):
 File "<console>", line 2, in <module>
ZeroDivisionError: division by zero
>>> f.closed
True
>>>

You can see that the wit h statement is a way o f contro lling the context o f execution for the contro lled suite.
You might wonder why we didn't simply bind the Python file object (the result o f opening the file) using an
assignment statement. The major purpose o f using wit h in this case is to ensure that, if anything goes wrong
inside the context-contro lled indented suite, the file will be correctly closed (similarly to the way it might be in
the f inally clause o f a t ry ... f inally statement.

Files, in and out o f context

>>> with open(r"v:\workspace\Python4_Lesson14\src\localtextfile") as f:
... print("f:", f)
... print("closed:", f.closed)
... for line in f:
... print(line, end='')
...
f: <_io.TextIOWrapper name='v:\\workspace\\Python4_Lesson14\\src\\localtextfile'
 mode='r' encoding='cp1252'>
closed: False
The open function returns a file object.
This has an __enter__() method that simply
returns self. Its __exit__() method calls
its __close__() method.
>>> f
<_io.TextIOWrapper name='v:\\workspace\\Python4_Lesson14\\src\\localtextfile' mo
de='r' encoding='cp1252'>
>>> f.closed
True
>>> f = open(r"v:\workspace\Python4_Lesson14\src\localtextfile", 'r')
>>> 3/0
Traceback (most recent call last):
 File "<console>", line 1, in <module>
ZeroDivisionError: division by zero
>>> f
<_io.TextIOWrapper name='v:\\workspace\\Python4_Lesson14\\src\\localtextfile' mo
de='r' encoding='cp1252'>
>>> f.closed
False
>>> f.close()
>>> with open(r"v:\workspace\Python4_Lesson14\src\localtextfile") as f:
... 3/0
...
Traceback (most recent call last):
 File "<console>", line 2, in <module>
ZeroDivisionError: division by zero
>>> f.closed
True
>>>

In the first wit h example, we saw that f was a st andard IO Wrapper o bject (in po int o f fact, exactly the same
object returned by the o pen() call, though as you will learn this is not typical o f context managers). When the
indented suite is run, the file is initially open. Next we see that the file object (still available after the wit h) is
closed when the wit h statement terminates, even though no explicit action was taken to close it. You will
understand this after the next interactive session.

Next you reminded yourself that when an except io n o ccurs during regular f ile pro cessing the file
remains open unless explicit action is taken to close it. When the except io n o ccurs inside t he suit e o f
t he wit h st at ement , however, once again we see that the file is magically closed without any explicit action
being taken. The magic is quite easily explained (as usual in Python, where a simple, easy-to-understand
style is preferred) by two file magic methods we have not previously discussed.

The Context Manager Protocol: __enter__() and __exit__()

The wit h statement has rules for interacting with the object it is given as a context manager. It processes wit h
expr by evaluating the expression and saving the resulting context manager object. The context manager's
__enter__() method is then called, and if the as name clause is included, the result o f the method call is
bound to the given name. Without the as name clause, the result o f the __enter__() method is not available.
The indented suite is then executed.

As the execution o f the suite progresses, an exception may be raised. If so , the execution o f the suite ends
and the context manager's __exit__() method is called with three arguments together referencing detailed
information about the causes and location o f the exception.

If no exception is raised and the suite terminates normally (that is, by "dropping o ff the end"), the context
manager's __exit__() method is called with three No ne arguments.

There are o ther ways that the wit h suite can be exited, all fairly normal—how many ways can you think o f? In
those circumstances, the context manager's __exit__() method is called with three No ne arguments, and
then the normal exit is taken.

The reason for the name "context manager" is that the indented suite in a with statement is surrounded by
calls to the manager's __enter__() and __exit__() methods, which can therefore provide some context to the
execution o f the suite. Note carefully that the __exit__() method is always called—even when the suite raises
an exception.

Writing Context Manager Classes

As is so o ften the case in Python, it is quite easy to write a class that demonstrates exactly how the context
manager objects work with the interpreter as it executes the wit h statement. Since there are two alternative
strategies for handling the raising o f an exception in the indented suite, an __init__() method can record in an
instance variable which strategy the creator (the code calling the class) chooses. If no exception is raised, this
will make no difference.

Besides the very simple __init__() outlined (which is not itself a part o f the context manager pro toco l), you just
need the __enter__() and __exit__() methods. If you are only interested in finding out how the wit h statement
works, these methods don't have to do a lo t except print out useful information. Try this out in an interactive
interpreter session:

Investigating the with Statement

>>> class ctx_mgr:
... def __init__(self, raising=True):
... print("Created new context manager object", id(self))
... self.raising = raising
... def __enter__(self):
... print("__enter__ called")
... cm = object()
... print("__enter__ returning object id:", id(cm))
... return cm
... def __exit__(self, exc_type, exc_val, exc_tb):
... print("__exit__ called")
... if exc_type:
... print("An exception occurred")
... if self.raising:
... print("Re-raising exception")
... return not self.raising
...
>>> with ctx_mgr(raising=True) as cm:
... print("cm ID:", id(cm))
...
Created new context manager object 4300642640
__enter__ called
__enter__ returning object id: 4300469808
cm ID: 4300469808
__exit__ called
>>> with ctx_mgr(raising=False):
... 3/0
...
Created new context manager object 4300642768
__enter__ called
__enter__ returning object id: 4300469904
__exit__ called
An exception occurred
>>> with ctx_mgr(raising=True) as cm:
... 3/0
...
Created new context manager object 4300642640
__enter__ called
__enter__ returning object id: 4300469744
__exit__ called
An exception occurred
Re-raising exception
Traceback (most recent call last):
 File "<console>", line 2, in <module>
ZeroDivisionError: division by zero
>>>

Your context manager object does not get too much o f a workout in the above session, but as always you
should feel free to try out o ther things. You are unlikely to cause a fire or bring the server to a halt by being a
little adventurous: you are now a seasoned Python programmer, and can (we hope) be trusted to flex your
muscles a little. Let's just review the output from that session:

What Just Happened?

>>> with ctx_mgr(raising=True) as cm:
... print("cm ID:", id(cm))
...
Created new context manager object 4300642640
__enter__ called
__enter__ returning object id: 4300469808
cm ID: 4300469808
__exit__ called
>>> with ctx_mgr(raising=False):
... 3/0
...
Created new context manager object 4300642768
__enter__ called
__enter__ returning object id: 4300469904
__exit__ called
An exception occurred
>>> with ctx_mgr(raising=True) as cm:
... 3/0
...
Created new context manager object 4300642640
__enter__ called
__enter__ returning object id: 4300469744
__exit__ called
An exception occurred
Re-raising exception
Traceback (most recent call last):
 File "<console>", line 2, in <module>
ZeroDivisionError: division by zero
>>>

In the f irst example , you can see that this context manager returns an entirely different object as the result o f
its __enter__() method. The print statement which forms the indented suite demonstrates that the name cm is
bound in the wit h statement to the result o f the context manager's __enter__() method and not the context
manager itself. (The file open() example earlier is atypical, as a file object's __enter__() method returns self).
No exception is raised by the indented suite, and so the __exit__() method simply reports it has been called.

The seco nd example raises an exception in the context o f a context manager that was created not to re-
raise the exception. So it does report the fact that an exception was raised, but then it again terminates
normally (because its self .raising attribute has the value False , and so the method returns T rue).

The t hird example is exactly the same as the second except that the instance is created with its raising
attribute T rue . This means that once the instance has reported the exception it announces its intention to re-
raise it, and does so by returning False .

Library Support for Context Managers

Although you have just seen it is very easy to write a simple context manager class, it can be even easier to
use context managers if you use the co nt ext lib module. This contains a decorator called
co nt ext manager that you can use to create context managers really simply. There is no need to declare a
class with __enter__() and __exit__() methods.

You must apply the co nt ext lib.co nt ext manager decorator to a generator function that contains precisely
one yie ld expression. When the decorated function is used in a wit h statement, the (decorated) generator's
next method is called for the first time, so the function body runs right up to the yie ld. The yielded value is
returned as the result o f the context manager's __enter__() method, and the indented suite o f the wit h
statement then runs.

If the indented suite raises an exception, it appears inside the context manager as an exception raised by the
yie ld. Your context manager can choose to handle the exception (by processing the yie ld as part o f the
indented suite o f a t ry statement) or not (in which case the exception must be re-raised after logging or o ther
actions if the surrounding logic is to see it). So your context manager can trap exceptions raised by the
indented suite and suppress them simply by choosing not to re-raise them.

Experimenting with contextlib.contextmanager

>>> from contextlib import contextmanager
>>> @contextmanager
... def ctx_man(raising=False):
... try:
... cm = object()
... print("Context manager returns:", id(cm))
... yield cm
... print("With concluded normally")
... except Exception as e:
... print("Exception", e, "raised")
... if raising:
... print("Re-raising exception")
... raise
...
>>> with ctx_man() as cm:
... print("cm from __enter__():", id(cm))
...
Context manager returns: 4300470512
cm from __enter__(): 4300470512
With concluded normally
>>> with ctx_man(False) as cm:
... 3/0
...
Context manager returns: 4300801264
Exception division by zero raised
>>> with ctx_man(True) as cm:
... 3/0
...
Context manager returns: 4300801280
Exception division by zero raised
Re-raising exception
Traceback (most recent call last):
 File "<console>", line 2, in <module>
ZeroDivisionError: division by zero
>>>

This interactive session shows that it is possible to create equivalent context managers using this approach.
The same parameterization o f the functionality is provided (so you can say when creating the context
manager whether or not it should re-raise exceptions). co nt ext lib.co nt ext manager provides a nice
compromise between writing a full context manager and using o lder, less well-contro lled methods (such as
t ry ... except ... f inally) o f contro lling the execution context. You will find that the o ther members o f the
co nt ext lib library can also be useful in creating and supporting context managers.

Nested Context Managers

The statement:

OBSERVE:

with expr1 as name1, expr2 as name2:
 [indented suite]

is equivalent to :

OBSERVE:

with expr1 as name1:
 with expr2 as name2:
 [indented suite]

This shows that the expr1 context wraps the name2 context. If an exception occurs in the indented suite, it
will present as a call to expr2.__exit__() with the necessary exception-related arguments. As always, the

__exit__() method has the cho ice o f returning T rue (which suppresses the exception, resulting in a call to
expr1.__exit __() with three No ne arguments) or False , in which case the exception is automatically re-
raised and expr1.__exit __() is called with the traceback arguments. It also has the cho ice o f returning T rue
to suppress the exception or False to re-raise it a second time.

The multi-context fo rm of the wit h statement is a simple syntactic convenience; no new functionality is
introduced, but it does reduce the indentation level required for the indented suite. This enhances readability
without compromising simplicity.

Decimal Arithmetic and Arithmetic Contexts
Decimal arithmetic is quite a large topic, and we don't cover it anywhere near fully in this chapter. The decimal module
was designed to allow easy decimal calculations, which are much more appropriate when accurate answers are
required than the sometimes-slightly-inaccurate floating-po int numbers built into the language. This is typically the
case in commerce and accounting, where strict decimal arithmetic has been used for hundreds o f years and
inaccuracies in representation cannot be permitted.

Note

Fixed-po int vs. f lo at ing-po int . In fixed-po int representations, a digit in a given position always has a
specific value. Thus in the number represented as "3.14159", the digit after the decimal po int always
represents some number o f tenths, and the given fixed-po int representation can represent numbers
between -9 .9999 and +9.9999, with the smallest difference beteen two numbers being 0 .0001 (which is
the difference between every pair o f "adjacent" numbers). Floating-po int representations allow the po int
(in this case, the decimal po int) to move. This means that the size o f the numbers you can represent is
independent o f the number o f digits o f precision you can represent, and depends primarily on the range
of exponents. If we allow exponents to range from -5 to +5, with five digits the smallest positive number
you can represent is 0 .00001 * 10 ^ -5 (which is 0 .0000000001) and the largest is 0 .99999 * 10 ^ 5 (or
99999.0). But the gaps between the adjacent larger numbers are much greater than the gaps between the
smaller numbers. The value 0 .99999 * 10 ^ 5 is conventionally written as 0 .99999E5.

Decimal Arithmetic Contexts

This section will briefly introduce the decimal module, to whose documentation you are referred for further
information. The context in which decimal arithmetic is performed has several elements:

At t ribut e Meaning

prec

Specifies precision—how many digits are retained in calculations (the default is 28 decimal
digits). The decimal po int may occur many places before or after the significant digits, since
decimal arithmetic can handle a floating decimal po int. decimal knows how to maintain
proper precision through calculations, so for exampleDecimal("2.50") * Decimal("3.60")
evaluates to Decimal("9.0000") .

ro unding One of a set o f constants defined in the decimal module that tells the arithmetic routines how
to round when precision must be discarded.

f lags
A list o f signals (discussed below) whose flags are currently set. Flags are usually clear when
a context is created, and set by abnormal conditions in arithmetic operations, although they
can be set when the context is created if required.

t raps A list o f signals whose setting by an arithmetic operation should cause an exception to be
raised.

Emin An integer containing the minimum value the exponent is allowed to take. This sets a lower
bound on the values that numbers can represent.

Emax An integer containing the maximum value the exponent is allowed to take. This sets an upper
bound on the values that the numbers can represent.

capit als T rue (the default) to use an upper-case "E" in exponential representations, False to use a
lower case "e".

clamp

T rue (the default) to ensure that numbers are represented as ten to the power o f the exponent
times some number in the range 0 .1 <= mantissa < 1.0 . This ensures easy interchange with
other computers using standard "IEEE 754" decimal representation. False allows some
latitude in representation, allowing a wider range o f numbers with fewer digits o f actual
precision at the cost o f losing "IEEE normalization" at the extremes o f the value range.

The decimal module has been carefully written to ensure that each thread can have an independent decimal
context (because it would be disastrous if one thread could affect another by making changes to a shared

context).

Most o f the attributes o f the context are fairly esoteric stuff that you really don't need to alter. For many
applications, you can just use the default context. While prec and ro unding are fairly frequently adjusted,
capit als and clamp are rarely touched.

Decimal Signals

Certain things can happen during arithmetic operations that cause the results to be imprecise or o therwise
misleading, and the operations raise signals to indicate this. The decimal code responds to these signals by
setting flags in the arithmetic context. If the trap corresponding to a signal is set, an exception is raised after
the flag is set. The fo llowing flags are defined:

Signal Raised when ...

Clamped When a number's representation had to be modified to normalize it to a mantissa
range o f 0 .1 to 0 .999999999999...

DecimalException Not raised: this is simply a base class for the o thers, and a subclass o f the built- in
ArithmeticError exception.

DivisionByZero Either a division or a modulo operation had a left operand o f zero .

Inexact Indicates that rounding took place after an operation.

InvalidOperation This o ften occurs when operations are performed on decimal infinities or "Not a
Number" objects.

Overflow The result cannot be represented with an exponent Emax or less.

Rounded Rounding has occurred. If the digits rounded were all zero , no information has been
lost.

Subnormal The number cannot be represented with an exponent o f Emin or larger.

Underflow The result o f an arithmetic operation was so small in magnitude that the most accurate
way to represent it is as 0 .

The Default Decimal Context

You can access the default decimal context using the get co nt ext () function from the decimal module.
Contexts know how to present themselves in a fairly readable form, and you can modify the context just by
assigning to its various attributes. You can also create copies o f contexts and switch between them. Finally,
o f course, you can create instances o f the decimal.Co nt ext class, providing the non-default required
attributes as keyword arguments. Note that if you modify decimal.Def ault Co nt ext , it will change the default
values used to create future contexts. This is useful fo r setting up defaults before creating multiple threads, but
should not be used casually in non-threaded programs.

Understanding Decimal Contexts

>>> from decimal import *
>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> getcontext()
Context(prec=60, rounding=ROUND_HALF_DOWN, Emin=-999999, Emax=999999, capitals=1
, clamp=0, flags=[], traps=[InvalidOperation, DivisionByZero, Overflow])
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')
>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999, capitals=1,
 clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999, capitals=1,
 clamp=0, flags=[], traps=[])
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')
>>> setcontext(BasicContext)
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_UP, Emin=-999999, Emax=999999, capitals=1, c
lamp=0, flags=[], traps=[Clamped, InvalidOperation, DivisionByZero, Overflow, Un
derflow])
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
decimal.DivisionByZero: [<class 'decimal.DivisionByZero'>]
>>> with localcontext() as ctx:
... ctx.prec = 42
... s = Decimal(1) / Decimal(7)
... print(s)
...
0.142857142857142857142857142857142857142857
>>> s = +s
>>> print(s)
0.142857143
>>>

You can see that the decimal module provides a number o f "ready-made" contexts, which can be modified
easily by attribute assignment. It is easy to make changes to the current context's attributes, but these
changes are permanent. The decimal.lo calco nt ext () function returns a context manager that sets the
active thread's current context to the context provided as an argument or (in the case above where no
argument is provided) the current context. The wit h statement provides a natural way to perform such
localised changes. Note that the unary plus sign in "+s" does actually perform a conversion, because it is an
arithmetic operation whose result must be conditioned by the (now restored) original context.

With context managers and the wit h statement, Python gives you the chance to closely contro l the context o f execution o f your
code. You should consider them whenever you might consider t ry ... except ... f inally.

You are getting close to the end o f the Certificate Series in Python! Well done! Keep it up!

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Memory-Mapped Files
Lesson Objectives

When you complete this lesson, you will be able to :

utilize Memory Mapping.
process a Memory-Mapped Example.

Memory Mapping
Files can be so large that it is impractical to load all o f their content into memory at once. The mmap.mmap() function
creates a virtual file object. Not only can you perform all the regular file operations on a memory-mapped file, you can
also treat it as a vast object (far larger than any real object could be) that you can address just like any o ther sequence.

This technique deals with files by mapping them into your process's address space. The mmap module allows you to
treat files as similar to byt earray objects—you can index them, slice them, search them with regular expressions and
the like. Many o f these operations can make it much easier to handle the data in a file: without memory mapping, you
have to read the file in chunks and process the chunks (assuming the files are too large to read into memory as a
single chunk). This makes it very difficult to process strings that overlap the inter-chunk boundaries. Memory mapping
allows you to pretend that all the data is in memory at the same time even when that is not actually the case. The
necessary manipulations to allow this are performed automatically.

In this lesson, we primarily cover only the details o f mmap that apply across both Windows and Unix platforms, and a
few Windows-specific features. You should be aware that there are different additional feature sets available for
Windows and Unix platforms. The documentation on the module is fairly specific about the implementation differences.

Memory-Mapped Files Are Still Files

In standard file operations, there is no difference between a memory-mapped file and one that is opened in
the regular way—all regular file access methods continue to work, and you can also treat the file content pretty
much like a bytearray.

Here's a simple example from the module's documentation to get you started.

Getting Started with Memory-Mapped Files

>>> with open("v:/workspace/Python4_Lesson15/src/hello.txt", "wb") as f:
... f.write(b"Hello Python!\n")
...
14
>>> import mmap
>>> with open("v:/workspace/Python4_Lesson15/src/hello.txt", "r+b") as f:
... mapf = mmap.mmap(f.fileno(), 0)
... print(mapf.readline()) # prints b"Hello Python!\n"
... print(mapf[:5]) # prints b"Hello"
... mapf.tell()
... mapf[6:] = b" world!\n"
... mapf.seek(0)
... print(mapf.readline()) # prints b"Hello world!\n"
... mapf.close()
...
b'Hello Python!\n'
b'Hello'
14
b'Hello world!\n'
>>>

The code above opens a file, then memory maps it. It exercises the readline() method o f the mapped file,
demonstrating that it works just as with a standard file. It then reads and writes slices o f the mapped file (an
equally valid way to access the mapped file's content, which does not alter the file po inter). Finally the file
po inter is repositioned at the start and the (updated) contents are read in. (The "14" is the return value o f the

write() function, which always returns the number o f bytes written.)

OBSERVE:

>>> with open("v:/workspace/Python4_Lesson15/src/hello.txt", "wb") as f:
... f.write(b"Hello Python!\n")
...
14
>>> with open("v:/workspace/Python4_Lesson15/src/hello.txt", "r+b") as f:
... mapf = mmap.mmap(f.fileno(), 0)
... print(mapf.readline()) # prints b"Hello Python!\n"
... print(mapf[:5]) # prints b"Hello"
... mapf.tell()
... mapf[6:] = b" world!\n"
... mapf.seek(0)
... print(mapf.readline()) # prints b"Hello world!\n"
... # close the map
... mapf.close()
...
b'Hello Python!\n'
b'Hello'
14
b'Hello world!\n'
>>>

As we observed in an earlier lesson, f ile o bject s are co nt ext managers, albeit o f a slightly degenerate
kind (because they return themselves as the result o f their __enter__() method). The first argument to
mmap.mmap is a file number (an internal number used to identify the file to the operating system), which is
obtained by calling t he f ile 's f ileno () met ho d. The call t o readline() demonstrates normal file
handling, but then you see indexed access t o t he co nt ent , which nevertheless demonstrates that t he
f ile po int er is unchanged by such access.

Next you see that the content o f the file can also be changed by subscript ing, though in this case it is
essential that the new content is the same length as the slice being assigned. Finally you observed that the
file had been changed by restarting at the beginning.

The difference between using a memory-mapped file and a standard one is that standard files are
independently buffered in each process that uses them, meaning that a write to a file from one program is not
necessarily immediately written to disk, and will no t necessarily be seen immediately by a separate program
reading the file using its own buffers.

The mmap Interface

For calls to mmap.mmap() to be cross-platform compatible they should stick to the fo llowing signature:

OBSERVE:

mmap(fileno, length, access=ACCESS_WRITE, offset=0)

The f ile number is used simply because this mirrors the interface o f the underlying C library (not always the
best design decision, but fo rtunately the file number is easily obtained from an open file's fileno() method).
Using a file number o f -1 creates an anonymous share (one that cannot be accessed from the filestore).

The call above maps lengt h bytes from the beginning o f the file, and returns an mmap object that gives both
file- and index-based access to that portion o f the file's contents. If lengt h exceeds the current length o f the
file, the file is extended to the new length before operations continue. If lengt h is zero , the mmap object will
map the current length o f the file, which in turn sets the maximum valid index that can be used.

The optional access argument can take one o f three values, all defined in the mmap module:

Access Value Meaning

ACCESS_READ Any attempt to assign to the memory map raises a TypeError exception.

ACCESS_WRITE Assignments to the map affect both the map's content and the underlying file.

ACCESS_COPY Assignments to the memory map change the map's contents but do not update the file
on which the map was based (a copy-on-write mapping).

The o f f set argument, when present, establishes an o ffset within the file fo r the starting position o f the
memory map. The o ffset must be a multiple o f the constant mmap.ALLOCAT IONGRANULARIT Y (which is
typically the size o f a virtual memory block, 4096 bytes on many systems).

What Use is mmap(), and How Does it Work?

The real benefit o f mmap over o ther techniques is twofo ld: first, the file is mapped directly into memory (hence
the name). When only one process is using the mapped file, this is a pedestrian application, but remember
that modern computers use virtual memory systems. Each process's memory consists o f a list o f "memory
pages." The actual address o f the memory page does not matter to the process: the process accesses
"virtual memory," and the hardware uses a "memory map" to determine whereabouts in a process's memory
a particular page appears.

When a file is memory-mapped, the operating system effectively reserves enough memory to ho ld the whole
file's contents (or that portion o f the file that is being mapped) in memory, and then maps that memory into the
process's address space. If another process comes along and maps the same file, then exactly the same block
of memory is mapped into the second process's address space. This allows the two processes to exchange
information extremely rapidly by writing into the shared memory. Since each is writing into the same memory,
each can see the o ther's changes immediately.

Note

Be caref ul wit h large f iles. Remember that if you memory map a file it gets mapped into your
process's virtual address space. If you are using 32-bit Python (either because you are running
on a 32-bit system or because your system administrators chose to install a 32-bit Python
interpreter on a system built using 64-bit techno logy), each process has a 4GB upper limit on
the size o f its address space. Since there are many o ther claims on a process's memory, it is
unlikely you will be able to map all o f a file much above 1GB in size in a 32-bit Python
environment.

A Memory-Mapped Example
The fo llowing example code gives you some idea how memory-mapped files might be used for interprocess
communication. The program creates a file that will ho ld data (encoded by the struct module) to be passed between
the main program and its subprocesses. The file is split up into "slo ts," each large enough to ho ld a byte used to
indicate the status o f the slo t, a 7-character string, and three double-length floating-po int numbers. The status starts as
EMPT Y, and is set to the slo t number every time new data becomes available. When there is no more data, the status
is set to TERM, which indicates to the subprocess that there is no more work available.

The whole program is given in the listing below. This is a rather larger program than we normally ask you to enter in
one go, but by now you should be able to understand what a lo t o f the code does as you type it in (explanations fo llow
the listing).

Enter the fo llowing code as mpmmap.py

"""
mpmmap.py: use memory-mapped file as an interprocess communication area
 to support multi-processed applications.
"""

import struct
import mmap
import multiprocessing as mp
import os
import time
import sys

FILENAME = "mappedfile"
SLOTFMT = b"B7s3d"
SLOTSIZE = struct.calcsize(SLOTFMT)
SLOTS = 6 # Number of subprocesses
EMPTY = 255
TERM = 254

def unpackslot(byte_data):
 """Return slot data as (slot#, string, float, float, float)."""
 return struct.unpack(SLOTFMT, byte_data)

def packslot(slot, s, f1, f2, f3):
 """Generate slot string from individual data elements."""
 return struct.pack(SLOTFMT, slot, s, f1, f2, f3)

def run(slot):
 """Implements the independent processes that will consume the data."""
 offset = SLOTSIZE*slot
 print("Process", slot, "running")
 sys.stdout.flush()
 f = open(FILENAME, "r+b")
 mapf = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_WRITE)
 while True:
 while mapf[offset] == EMPTY:
 time.sleep(0.01)
 if mapf[offset] == TERM:
 print("Process", slot, "done")
 sys.stdout.flush()
 mapf.close()
 return
 x, s, f1, f2, f3 = unpackslot(mapf[offset:offset+SLOTSIZE])
 print(x, slot, ":", s, f1*f2*f3)
 sys.stdout.flush()
 mapf[offset] = EMPTY

def numbers():
 """Generator: 0.01, 0.02, 0.03, 0.04, 0.05, ..."""
 i = 1
 while True:
 yield i/100.0
 i += 1

if __name__ == "__main__":
 f = open(FILENAME, "wb")
 f.write(SLOTSIZE*SLOTS*b'\0')
 f.close()
 f = open(FILENAME, "r+b")
 mapf = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_WRITE)

 ptbl = []
 for slot in range(SLOTS):
 offset = slot*SLOTSIZE
 mapf[offset] = EMPTY
 p = mp.Process(target=run, args=(slot,))

 ptbl.append(p)
 print("Starting", p)
 p.start()

 numseq = numbers()
 b = next(numseq)
 c = next(numseq)
 for i in range(4):
 for slot in range(SLOTS):
 a, b, c = b, c, next(numseq)
 offset = slot*SLOTSIZE
 while mapf[offset] != EMPTY:
 time.sleep(0.01)
 mapf[offset+1:offset+SLOTSIZE] = packslot(slot, b"*******", a, b, c)[1:]
 mapf[offset] = slot

 for slot in range(SLOTS):
 offset = SLOTSIZE*slot
 while mapf[offset] != EMPTY:
 time.sleep(0.01)
 mapf[offset] = TERM

 for p in ptbl:
 p.join()

 mapf.close()
 print(f.read())
 sys.stdout.flush()
 f.close()
 os.unlink(FILENAME)

There are a couple o f utility functions for packing and unpacking the slo t data; these are simple calls to standard
st ruct functions that you may remember. Next comes the run() function that will be the meat o f the subprocesses.
When we call it, we pass the process's slo t number, and it uses the computed size o f the slo t to work out where its
particular portion o f the data file begins. It then establishes a mapping onto the standard data file and goes into an
infinite loop (which will be terminated by the logic it contains). It repeatedly looks at the first byte o f its slo t, until the
EMPTY value it starts with is changed (by the main program). The process sleeps between different looks at the first
byte, to avo id using too much CPU. The sleep should be long enough that the computations in the loop take a
relatively insignificant time. If the value has changed to TERM, the process closes everything down and terminates.
Otherwise it extracts the data from the slo t, performs a calculation and prints out the results, and then sets the slo t
indicator back to EMPTY so the main program will refill the slo t.

The run() function is fo llowed by a simple numbers() generator function that separates the task o f generating numbers
from their use inside the main program. It is an infinite generator that yields numbers starting at 0 .01 and increasing by
0.01 each call.

Now, we see the logic o f the main program. The program first creates a data file large enough to contain the mapped
data for all slo ts, then maps the file into memory. It then iterates over the slo ts, setting their status to EMPTY, creates a
new process with the current slo t number, saves it in a list and starts it. The newly-started process will wait until its slo t
is switched from EMPTY status before taking any action.

Next the program loops four times over all the slo ts, filling them with data and only then setting the slo t indicator to the
slo t number. This avo ids a potential hazard which might occur if the slo t status was set at the same time as the rest o f
the data: it is just possible that a subprocess might see its status change and start trying to act before the rest o f the
data is copied in. Yes, this would be a low-probability occurrence, but that does not mean you are at liberty to ignore it.

Once the main loop is over, the program waits fo r each slo t to become EMPTY and sets it to TERM to indicate that the
associated process should terminate. Finally, the program waits fo r all the processes it started to terminate, deletes
the file it created at the start o f the run, and itself terminates. When you run the program, you should see the fo llowing
output.

Output from mpmmap.py

Starting <Process(Process-1, initial)>
Starting <Process(Process-2, initial)>
Starting <Process(Process-3, initial)>
Starting <Process(Process-4, initial)>
Starting <Process(Process-5, initial)>
Starting <Process(Process-6, initial)>
Process 0 running
0 0 : b'*******' 6e-06
Process 1 running
1 1 : b'*******' 2.3999999999999997e-05
Process 3 running
3 3 : b'*******' 0.00012
Process 2 running
2 2 : b'*******' 5.9999999999999995e-05
Process 5 running
5 5 : b'*******' 0.00033600000000000004
Process 4 running
4 4 : b'*******' 0.00021000000000000004
0 0 : b'*******' 0.0005040000000000001
0 0 : b'*******' 0.0027300000000000002
3 3 : b'*******' 0.00132
1 1 : b'*******' 0.00072
4 4 : b'*******' 0.001716
2 2 : b'*******' 0.00099
5 5 : b'*******' 0.002184
3 3 : b'*******' 0.004896
4 4 : b'*******' 0.005814000000000001
2 2 : b'*******' 0.00408
1 1 : b'*******' 0.00336
0 0 : b'*******' 0.007980000000000001
4 4 : b'*******' 0.0138
5 5 : b'*******' 0.006840000000000001
3 3 : b'*******' 0.012143999999999999
2 2 : b'*******' 0.010626
1 1 : b'*******' 0.00924
5 5 : b'*******' 0.0156
Process 0 done
Process 4 done
Process 3 done
Process 1 done
Process 5 done
Process 2 done
b'\xfe*******R\xb8\x1e\x85\xebQ\xc8?\x9a\x99\x99\x99\x99\x99\xc9?\xe1z\x14\xaeG\xe1\xca
?\xfe*******\x9a\x99\x99\x99\x99\x99\xc9?\xe1z\x14\xaeG\xe1\xca?)\\\x8f\xc2\xf5(\xcc?\x
fe*******\xe1z\x14\xaeG\xe1\xca?)\\\x8f\xc2\xf5(\xcc?q=\n\xd7\xa3p\xcd?\xfe*******)\\\x
8f\xc2\xf5(\xcc?q=\n\xd7\xa3p\xcd?\xb8\x1e\x85\xebQ\xb8\xce?\xfe*******q=\n\xd7\xa3p\xc
d?\xb8\x1e\x85\xebQ\xb8\xce?\x00\x00\x00\x00\x00\x00\xd0?\xfe*******\xb8\x1e\x85\xebQ\x
b8\xce?\x00\x00\x00\x00\x00\x00\xd0?\xa4p=\n\xd7\xa3\xd0?'

Note

The program above is fo r demonstration purposes only so you can start to understand the advantages
of shared memory. The mult ipro cessing module actually has o ther ways to keep processes
synchronized, and you should investigate those for production purposes. But if you understand the logic
of the code above, you know what mapped files do and how they work, which is a significant piece o f
learning.

Memory-mapped files allow you to treat huge tracts o f data as though they were large strings, and also allow you to share
those large chunks o f data between independent processes. They allow you to use inter-process communication.

In the final lesson, we consider some of the differences between small pro jects and large ones.

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Your Future with Python
Lesson Objectives

When you complete this lesson, you will be able to :

find coo l Python Conferences.
explore the Python job market and career cho ices.
explore new developments in Python.
access a few new Python tips and tricks.

Python Conferences
Python is a rapidly growing language that attracts programmers all over the world. In the early 1990s an International
Python Conference was started, which became the principal fo rum for live discussion o f Python's uses and
development (naturally extensive discussions were also held online, as they continue to be—but face-to-face
meetings are still incredibly useful, and usually more productive than mailing list dicussions).

In 2002, I was asked by Guido van Rossum to chair a new type o f conference, one that invo lved the community
members far more, and was priced to allow those who didn't have pro fessional budgets to come along and contribute.
That first PyCon, in March 2003, attracted over 250 people, and established community conferences as the preferred
mechanism for meeting up with o ther Python users (fo llowing in the footsteps o f EuroPython, which had been held in
Gotheborg, Sweden, a couple o f months before). I chaired the first three conferences (by which time attendance had
swollen to 450) and then handed the torch to Andrew Kuchling.

At the same time, PyCons were growing up in o ther countries, whose Python enthusiasts started to run national
PyCons, and o ther, smaller, conferences are now held regionally in the USA (the first three o f these were PyOhio ,
PyTexas and PyArkansas). PyCon Ireland, Kiwi PyCon, Python Brasil, PyCon AR (Argentina), PyCon UK, PyCon Italy,
and many o thers. The Asia Pacific region recently started a pan-Asian conference (PyCon Asia Pacific) to support
Python users in that region. It seems as though soon it will be impossible to avo id Python events clashing with each
other simply because there are so many in the worldwide calendar.

In 2011 PyCon had 1200 delegates, and it currently looks set to start capping growth some time in the next two to three
years (there is a general feeling that over-large conventions run the risk o f losing the "community" flavor that is such
an important part o f conferences like PyCon). PyCon even runs a financial assistance scheme that regularly helps
people who would o therwise not be able to afford to travel and attend PyCon. To learn more about these conferences,
the best starting po int is the root PyCon web site.

There are also a growing number o f local user groups throughout the world. Some such groups use the popular
MeetUp system to organize their groups, as it allows people to easily sign up for meetings and allows the meeting
administrators reasonable contro l over attendance and the like.

All these activities are, in essence, run by members o f the community (though certainly the larger ones like PyCon US
are assisted by pro fessional conference companies: vo lunteers cannot have their depth o f experience, and must o ften
make their contributions outside o ffice hours.

Tutorials

As a conference matures and the organizers acquire more experience, you will o ften see tutorials o ffered at
very reasonable prices. World authorities on various aspects o f Python o ffer tutorials to help the Python
Software Foundation to raise funds through the conference.

These tutorials are an amazing bargain, and an incredible way to learn new Python skills and techniques.
Many o f them cannot be taken anywhere else, and would alone be worth the price o f conference registration.

Talks

The talks are the "meat" o f most conferences, and Python conferences are no exception. Any given
conference might include papers for beginners about some more obscure aspect o f the language,
intermediate papers on applications, or advanced stuff on how a particular framework achieves a certain effect
using aspects o f Python to achieve high efficiency (or o ther desirable aspects o f their case).

Talks will typically be thirty minutes to an hour long, including time for questions. A lo t o f conferences are now
putting out live video streams as the talks are presented (though with more than a couple o f independent

http://pycon.org/

tracks this can get rather demanding in bandwidth). The same video stream will be recorded, and there is a
huge amount o f Python-related material saved and available on the web. The primary searchable resource is
the Python Miro Community, which tries to organize and index the material.

The Hallway Track

Much favored by experienced conference-goers, the hallway track is the discussions that take place between
people outside the meeting rooms where talks are given. These discussions o ften arise completely
spontaneously, but give better value than the rest o f the conference. Even if you are new to conference-go ing,
you should definitely keep your schedule open enough to take in the hallway track. And don't be surprised if
some random conversation leads you to abandon your plans and use the hallway track instead.

Open Space

Many conferences now set aside space for participants to use for activities o f their own cho ice. There are
particular rules traditionally associated with the term "open space," but sometimes (to the annoyance o f
purists) the Python community simply interprets it as "rooms you can use for pretty much any conference-
related activity." It is not unusual fo r speakers to invite interested audience members to an open space
session where their questions can be answered in a more participative framework. You can get to meet some
anazing people in open space .

Lightning Talks

Often the most entertaining sessions o f the whole conference, the lightning talk sessions use five-minute
slo ts in which speakers, who can o ften only sign up in person at the conference, must complete their
presentation within the slo t or be cut short by the session chairman.

If you are interested in becoming a conference speaker, presenting a lightning talk is a good way to dip a toe
in the water. Audiences are very forgiving to new speakers and those who are not presenting in their first
language. Topics are o ften light-hearted (one I particularly remember was "How I replaced myself with a small
Python script"), and quite o ften introduce you to novel techno logies that you would o therwise not have come
across. Because the talks are short, the sessions go by quickly, and every speaker gets a round o f applause.

Birds of a Feather Sessions (BOFs)

These are usually evening sessions, not fo rmally organized but o ften using rooms in the conference venue,
where people with a common interest in one specific area (testing, Django, numerical computing, Twisted
networking, ...) get together and just share information in any suitable way. The Testing BOF has become a
tradition on Saturday night at PyCon US, and runs lightning talks all o f its own. In 2011 Testing BOF speakers
were required to wear a white lab coat.

Sprints: Moving Ahead

Conferences are o ften fo llowed by sprints—focused efforts on getting some aspect o f a pro ject up and
running, by a team that might be scattered around the world when not actually at the same conference.

Sprints are a great place to learn about existing code bases: you can o ften get to talk with and learn from the
people who wrote and/or are maintaining the code. Once you have met some of the people who contribute to
the development, it is far less intimidating to jo in in and become a contributor yourself. The open source
world only exists because people like us ro ll up their sleeves and start building things.

Whether local, national, o r regional, Python conferences are an amazing way to improve your Python knowledge and
increase your skill level. They are social as well as technical events, and when you become a regular conference-goer
you will doubtless find, as do I, that there are people you look forward to meeting again and again, even if you only
ever meet them at conferences.

The Python Job Market and Career Choices
Python is employed in such diverse ways, it is hard to think o f an area o f life that isn't affected by it one way or another.
Google is well-known as an organization where Python is used extensively. Many organizations, including most o f
the USA's 100 largest newspapers, use a Python-based web framework called Django to build their web sites and
maintain journalistic content.

In the scientific and engineering world, Python is equally versatile. The SciPy and Numpy packages put blazingly fast
calculations and publication-quality graphics into the hands o f scientists. This is done by using Python as a "glue"
language to ho ld together high-speed logic written in compiled languages like Fortran and C, with most o f the
computation taking place in the compiled code.

http://pyvideo.org
https://www.djangoproject.com/

Note
The PyPy Python pro ject is now reliably producing benchmark results that are several times faster than
those o f the CPython interpreter, although at present only available for Python 2.7. If this progress
continues, Python could become a viable language in which to write numerical algorithms!

If you enjoy programming and want to carry on do ing it, you will probably always find something to do. Programming
is a great career if you like to find out about how things are (or can be) done. Of course, fo r many people programming
will only be a part o f their job, but that does not mean they can't enjoy it. Python can be used in so-called "embedded
devices," the computers that are increasingly built into o ther equipment to act as a contro lling element. Technicians o f
all kinds will find themselves thrust into programming as a part o f their jobs, and having the introduction to Python that
this Certificate Series has produced is a great introduction to programming generally (if you can program in Python, it
is much easier to learn o ther languages).

If you want to know what jobs are currently available, the Internet is as usual your friend. The Python Software
Foundation maintains a Jobs Board on which employers post jobs. Track that page for a while to get an idea o f the
range o f jobs likely to be available, but many employers never find out about the Jobs Board. How do you find the
other jobs? Well, the conventional ways all apply. For example, you can go to job search sites and enter "Python" as a
keyword. You will find that many large companies are looking for Python skills.

In fact, as these words are being written, there is a worldwide shortage o f Python skills. Clearly there is no guarantee
how long this situation will last, but as long as it does, even fairly new programmers should be able to find jobs.

The difference between you as an O'Reilly School student and o ther applicants is that you have, over the course o f
your studies, been required to demonstrate understanding o f the material and practical skills in applying it. You can
show people code you have written, and can prove that you understand it and can talk sensibly about its structure.
Even if you have not been studying for vocational reasons, we hope that you have found these methods helpful; if
you're looking for work, they will set you apart from the average applicant. I have had to hire people, and it can be
horrifying how many applications come from candidates who are obviously ill-qualified for the ro le or have only the
shakiest grasp o f programming concepts. So emphasize your practical experience: employers should regard it as
valuable.

Python Development
This lesson is not intended to recruit Python core developers, but I am quite happy to encourage people with a sense
of adventure to consider becoming one. Some beginners feel that they will no t be wanted, or that their effo rts will be
unappreciated. This can seem so if the new developer's contributions are not reviewed sensitively, but people being
people, this does not necessarily always happen.

Although not all developer-specific, most o f the lists mentioned on the Python Mailing Lists page are concerned with
some aspect o f Python development or applications. The one exception is the general "comp.lang.python" list, which
is a broad church in which you might expect to find anything from using a C debugger to whether Schrodinger's cat
really does exist in two parallel states. It is fairly eclectic, and threads can ramble all over the place.

There is a new core-mentorship mailing list started specifically so that those with an interest in becoming a developer
could interact with a gentler group than the whole developers list, and get a more welcoming reception. Once they have
been inducted into the necessary processes, they are introduced to the rest o f the developer community. Introductions
are easier once someone has made an initial contribution.

Do not make the mistake o f assuming that because the CPython interpreter is written in C you have to know the C
language before you become a core contributor. The standard library and its test suite have lo ts o f code written entirely
in Python, and it needs maintenance just like everything else. Your Python skills are needed if you want to jo in the
open source community!

There is quite a bit o f material intended to help and encourage the new or would-be Python developer, concentrated in
the python.org site. Although there may be a steep learning curve, contributing to Python's development can give you
awesome rewards in terms o f self-respect, and will also earn you kudos in the open source world that should transfer
into o ther areas too.

Tips and Tricks
There is no stored co llection o f tips and tricks for you to rummage in (well, there is, it's called "Google" and it's
accessible on the web). Our tips and tricks have been passed on as you have proceeded through your course work, in
email discussions with your mentor, and through the training materials you have used.

You may even by now have begun to develop some sense o f what is and is not "Pythonic," which should have
improved the quality o f your code somewhat. The simple rules continue to apply: as you write, express your code in
the simplest way you can. Code that is easy to write is easy to read, and code that is easy to read is easy to maintain.

http://python.org/community/jobs/
http://python.org/community/lists/
http://docs.python.org/devguide/

Code that is easy to maintain saves money in the long run because computer costs nowadays tend to be dominated
by the costs o f the people to program and run the systems.

Thus, if you stick with what you have learned, you should be able to get Python to help you do pretty much whatever
you want it to do. That practical skill is the added value behind these classes.

Congratulations! You've just finished the final lesson in the fourth course o f our Python Certificate Series! How coo l are you?
We sincerely hope that you've enjoyed these courses, and that you're a confident Python programmer. You've earned it!

When you finish the lesson, don't fo rget to complete the homework!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

